[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018164540A1 - Thermoplastic polymer particles - Google Patents

Thermoplastic polymer particles Download PDF

Info

Publication number
WO2018164540A1
WO2018164540A1 PCT/KR2018/002845 KR2018002845W WO2018164540A1 WO 2018164540 A1 WO2018164540 A1 WO 2018164540A1 KR 2018002845 W KR2018002845 W KR 2018002845W WO 2018164540 A1 WO2018164540 A1 WO 2018164540A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polymer
particles
polymer particles
temperature
nozzle
Prior art date
Application number
PCT/KR2018/002845
Other languages
French (fr)
Korean (ko)
Inventor
임재호
강성용
강경민
이희정
김민경
박창영
최준호
송재한
고유진
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170119573A external-priority patent/KR20180103667A/en
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to EP18764218.6A priority Critical patent/EP3594271A4/en
Priority to US16/491,368 priority patent/US11001677B2/en
Priority to JP2019548311A priority patent/JP6921460B2/en
Publication of WO2018164540A1 publication Critical patent/WO2018164540A1/en
Priority to US17/212,095 priority patent/US11542372B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles

Definitions

  • the present invention relates to thermoplastic polymer particles.
  • Polymeric resins in the form of particles are used in various ways throughout the industry. Such polymer resin particles are manufactured through a process of granulating a polymer resin raw material.
  • a method for granulating a thermoplastic polymer resin includes a grinding method represented by freeze grinding; A solvent dissolution precipitation method in which a solution is dissolved in a high temperature solvent and then cooled to precipitate or dissolved in a solvent and then precipitated by adding a poor solvent; And a melt kneading method in which a thermoplastic resin particle is obtained by mixing the thermoplastic resin and the incompatible resin in a mixer to form a composition having the thermoplastic resin and the incompatible resin in the continuous phase, and then removing the incompatible resin.
  • thermoplastic polymer resin particles there is a problem that it is difficult to ensure particle uniformity of the manufactured thermoplastic polymer resin particles.
  • liquid nitrogen is used during cooling of the grinding method, it costs more than the particle obtaining process.
  • a compounding step of adding a pigment, an antioxidant, or the like to the thermoplastic polymer raw material is added, the compounding process proceeds in a batch manner, thereby lowering the productivity compared to the continuous particle obtaining process.
  • the particles are manufactured by the solvent dissolution precipitation method and the melt kneading method, there is a problem that other components such as a solvent may be detected as impurities in addition to the thermoplastic resin particles.
  • impurities are mixed in the process, it is difficult to produce particles composed of purely thermoplastic polymer resin, and there is a high possibility of causing deformation of physical properties and shapes of the particles, and it is difficult to finely control them.
  • thermoplastic polymer resin particles having suitable physical properties for application to products by conventional methods Due to the above-described problems, it is not possible to produce thermoplastic polymer resin particles having suitable physical properties for application to products by conventional methods. Accordingly, there is a need in the art for thermoplastic polymer resin particles having improved physical properties by improving conventional methods.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2001-288273
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-007789
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2004-269865
  • the present invention is to extrude the thermoplastic polymer resin, and to atomize the extruded resin in contact with air, and then cooled to produce the thermoplastic polymer particles, thereby effectively preventing the incorporation of impurities other than the resin component in the particles, the particles are widely It is an object of the present invention to provide a thermoplastic polymer particle that can be controlled to have physical properties that can be utilized.
  • the aspect ratio calculated by the following formula 1 is 1.00 or more and less than 1.05,
  • thermoplastic polymer particles having a sphericity of 0.95 to 1.00 calculated by the following formula (2).
  • thermoplastic polymer particles are formed in a continuous matrix (matrix) phase from the thermoplastic polymer resin.
  • the thermoplastic polymer particles have a glass transition temperature (T g ) and melting point (DS) in a DSC curve derived from an elevated temperature analysis of 10 ° C./min by differential scanning calorimetry (DSC). At temperatures between T m ), a peak of cold crystallization temperature (T cc ) appears.
  • T g glass transition temperature
  • DS melting point
  • the thermoplastic polymer is polylactic acid (PLA, Poly lactic acid), thermoplastic polyurethane (TPU, Thermoplastic Polyurethane), polyethylene (PE, Polyethylene), polypropylene (PP, Polypropylene), polyether Polyether sulfone (PES), polymethyl methacrylate (PMMA, Poly (methyl methacrylate)), ethylene vinyl-alcohol polymer (EVOH, Ethylene Vinyl-Alcohol Copolymer) and at least one polymer selected from the group consisting of a combination thereof.
  • PLA Polylactic acid
  • TPU thermoplastic polyurethane
  • PE Polyethylene
  • PP polypropylene
  • PES polyether Polyether sulfone
  • PMMA Polymethyl methacrylate
  • EVOH Ethylene Vinyl-Alcohol Copolymer
  • the particle diameter of the thermoplastic polymer particles is 1 to 1000 ⁇ m.
  • the present invention comprises the steps of supplying a thermoplastic polymer resin to the extruder; Supplying the extruded thermoplastic polymer resin and air to a nozzle, contacting the thermoplastic polymer resin and air to granulate the thermoplastic polymer resin, and then discharging the granulated thermoplastic polymer resin; And cooling the thermoplastic polymer particles by supplying the discharged thermoplastic polymer particles to a cooler, and then obtaining the cooled thermoplastic polymer particles.
  • thermoplastic polymer particles according to the present invention have an almost spherical shape, the handling and processing characteristics of the particles are excellent. Since the thermoplastic polymer particles are formed in a continuous matrix form from the thermoplastic polymer resin and there are almost no impurities in the particles, there is little defect in a product manufactured by processing the particles. In addition, since the thermoplastic polymer particles exhibit a cold crystallization temperature (T cc ) peak in the DSC curve, when the particles are heated and processed, thermal energy is generated by heat generation, and thus the particles may be easily processed even with a small supply of thermal energy. .
  • T cc cold crystallization temperature
  • thermoplastic resin particles of the present invention is an image schematically showing the shape of the thermoplastic resin particles of the present invention.
  • thermoplastic polymer particles according to the present invention.
  • FIG 3 is a cross-sectional view of a nozzle discharge portion showing a supply position of a thermoplastic polymer resin and air to a nozzle according to an embodiment of the present invention.
  • the present invention provides thermoplastic polymer particles that could not be obtained by conventional particle production methods.
  • thermoplastic polymer particles according to the present invention will be described in detail.
  • the present invention provides thermoplastic polymer particles having a shape close to a spherical shape.
  • the shape of the particles is evaluated in the following aspect ratio and roundness, and the closer the aspect ratio and sphericity to 1, the closer the shape of the particles is interpreted.
  • the aspect ratio is calculated by the following formula (1).
  • the sphericity degree is calculated by the following formula (2).
  • FIG. 1 schematically shows a thermoplastic polymer particle.
  • the "long axis” in the formula 1 and 2 means the longest distance among the vertical distance (d) between two parallel tangents of the 2D image (cross section) of the thermoplastic polymer particles
  • “short axis” is It means the shortest distance among the vertical distance (d) between two parallel tangents of the 2D image (cross section) of the thermoplastic polymer particles.
  • "area” means a cross-sectional area including the long axis of the thermoplastic polymer particles.
  • FIG. 1 illustrates an area A as an example when the vertical distance d between two parallel tangent planes of the thermoplastic polymer particles is a long axis.
  • the thermoplastic polymer particles according to the invention may have an aspect ratio of 1.00 or more and less than 1.05, more specifically 1.02 or more and less than 1.05, and may have a spherical shape of 0.95 to 1.00, more specifically 0.98 to 1.00 May have a degree.
  • the shape of the thermoplastic polymer particles satisfies the above-described aspect ratios and sphericity ranges, the flowability and uniformity of the thermoplastic polymer particles are increased, so that the particles are easily handled, and the products produced by the particles also have defects such as internal voids. This is suppressed and the quality is improved.
  • the numerical values according to Formulas 1 and 2 can be measured by image processing of thermoplastic polymer particles using ImageJ (National Institutes of Health (NIH))-converting them into binary images and quantifying the degree of sphericalness of individual particles- Do.
  • ImageJ National Institutes of Health
  • thermoplastic polymer particles according to the present invention are particles formed in a continuous matrix from the thermoplastic polymer resin.
  • Forming into a continuous matrix from the thermoplastic polymer resin means forming the thermoplastic polymer resin in a continuous dense structure without additional components.
  • the thermoplastic polymer particles are continuously produced with a dense structure.
  • particles are formed by adding additional components or particles are formed through a discontinuous process of cooling and pulverization, so that particles are not formed on a continuous matrix.
  • impurity means components other than the thermoplastic polymer which may be incorporated in the preparation of the particles.
  • impurities include a solvent for dispersing the thermoplastic polymer resin, a heavy metal component included in the grinding or grinding process, and an unreacted monomer included in the polymerization process.
  • the impurity content of the thermoplastic polymer particles of the present invention may be 50 ppm or less, preferably 20 ppm or less, more preferably 5 ppm or less.
  • the particles may additionally have other properties as well as purity.
  • One of these characteristics is that the thermoplastic polymer particles are separated from the glass transition temperature (T g ) and the melting point (T m ) in a DSC curve derived from an elevated temperature analysis of 10 ° C./min by differential scanning calorimetry (DSC). The peak of the cold crystallization temperature (T cc ) appears at the temperature.
  • Thermoplastic polymer particles are spherical solid particles at room temperature.
  • thermoplastic polymer particles When the particles are temperature-analyzed using a differential scanning calorimeter, the thermoplastic polymer particles have a peak of cold crystallization temperature (T cc ) at a temperature between the glass transition temperature (T g ) and the melting point (T m ), This means that the thermoplastic polymer particles generate heat before melting.
  • Peak of cold crystallization temperature (T cc) used herein refers to only the peak of cold crystallization temperature (T cc) appears when the first temperature elevation analysis of the thermoplastic polymer particles, and the internal structure of the particles by the subsequent repeated temperature rise modification As The peak of the cold crystallization temperature (T cc ) that may occur is not included in the properties of the particles described herein.
  • the cold crystallization temperature (T cc ) is shown in the 30% to 70% section between the glass transition temperature (T g ) and the melting point (T m ). In this section, 0% is the glass transition temperature (T g ), and 100% is the melting point (T m ).
  • the thermoplastic polymer particles may have a difference ( ⁇ H1- ⁇ H2) of 3 to 100 J / g between an endothermic amount ( ⁇ H1) and a calorific value ( ⁇ H2). In this case, when the heat processing is performed using the thermoplastic polymer particles, it is possible to obtain an advantage that processing at a low temperature is possible compared to the processing temperatures of conventional thermoplastic polymer particles.
  • the thermoplastic polymer is not particularly limited, but according to one embodiment of the present invention, the thermoplastic polymer is polylactic acid (PLA), thermoplastic polyurethane (TPU, Thermoplastic Polyurethane), polyethylene (PE, Polyethylene) ), Polypropylene (PP, Polypropylene), polyether sulfone (PES), polymethyl methacrylate (PMMA, Poly (methyl methacrylate)), ethylene vinyl-alcohol polymer (EVOH, Ethylene Vinyl-Alcohol Copolymer) and At least one polymer selected from the group consisting of combinations thereof.
  • PLA polylactic acid
  • TPU thermoplastic polyurethane
  • TPU Thermoplastic Polyurethane
  • PE Polyethylene
  • PP Polypropylene
  • PES polyether sulfone
  • PMMA Polymethyl methacrylate
  • EVOH Ethylene Vinyl-Alcohol Copolymer
  • At least one polymer selected from the group consisting of combinations thereof At least one polymer selected from
  • the particle diameter of the thermoplastic polymer particles may be freely adjusted during the preparation of the particles by the manufacturing method according to the present invention, but the physical properties of the thermoplastic polymer particles may be adjusted to 1 to 1000 ⁇ m, more specifically 1 to 500 ⁇ m. Considering the handleability together, it can be preferably utilized.
  • thermoplastic polymer particles having the above characteristics are produced by the following production method. Hereinafter, a method of manufacturing the thermoplastic polymer particles according to the present invention will be described in detail.
  • FIG. 2 schematically shows a process flow diagram for the manufacturing method.
  • the manufacturing method is a step of extruding by supplying a thermoplastic polymer resin to the extruder (S100); Supplying the extruded thermoplastic polymer resin and air to a nozzle, contacting the thermoplastic polymer resin and air to granulate the thermoplastic polymer resin, and then discharging the granulated thermoplastic polymer resin (S200); And cooling the thermoplastic polymer particles by supplying the discharged thermoplastic polymer particles to a cooler, and then obtaining the cooled thermoplastic polymer particles (S300).
  • S100 thermoplastic polymer resin to the extruder
  • S200 Supplying the extruded thermoplastic polymer resin and air to a nozzle, contacting the thermoplastic polymer resin and air to granulate the thermoplastic polymer resin, and then discharging the granulated thermoplastic polymer resin (S200); And cooling the thermoplastic polymer particles by supplying the discharged thermoplastic polymer particles to a cooler, and then
  • thermoplastic polymer resin which is a raw material
  • the thermoplastic polymer resin has suitable physical properties for processing the particles in the nozzle.
  • the thermoplastic polymer resin used as a raw material is not particularly limited as long as it is a material that can be granulated according to the manufacturing method of the present invention.
  • the thermoplastic polymer resin has a weight average molecular weight (Mw) of 10,000 to 200,000 g / mol in consideration of the proper physical properties of the manufactured particles. It may be desirable.
  • the thermoplastic polymer resin is polylactic acid (PLA, Poly lactic acid), thermoplastic polyurethane (TPU, Thermoplastic Polyurethane), polyethylene (PE, Polyethylene), polypropylene (PP, Polypropylene), poly It may be a resin selected from the group consisting of ether sulfone (PES, Polyether sulfone), polymethyl methacrylate (PMMA, Poly (methyl methacrylate)), ethylene vinyl-alcohol polymer (EVOH, Ethylene Vinyl-Alcohol Copolymer) and combinations thereof. .
  • PES ether sulfone
  • PMMA Polymethyl methacrylate
  • EVOH Ethylene Vinyl-Alcohol Copolymer
  • the extruder supplied with the thermoplastic polymer resin heats and pressurizes the thermoplastic polymer resin to control physical properties such as viscosity of the thermoplastic polymer resin.
  • the type of the extruder is not particularly limited as long as it can be adjusted to suitable physical properties for granulation at the nozzle.
  • the extruder may be used a twin screw extruder for efficient extrusion.
  • the interior of the extruder may be maintained at 150 to 450 °C, preferably 170 to 400 °C, more preferably 200 to 350 °C.
  • the internal temperature of the extruder is less than 150 ° C.
  • the viscosity of the thermoplastic polymer resin is high, which is not suitable for granulation at the nozzle, and the flowability of the thermoplastic polymer resin in the extruder is not efficient for extrusion.
  • the internal temperature of the extruder is higher than 450 ° C.
  • the flowability of the thermoplastic polymer resin is high, so that efficient extrusion is possible, but it is difficult to control fine physical properties when the thermoplastic polymer resin is granulated in the nozzle.
  • the extrusion amount of the thermoplastic polymer resin may be easily set in consideration of the size of the extruder to control the physical properties of the thermoplastic polymer resin.
  • the thermoplastic polymer resin is extruded at a rate of 1 to 10 kg / hr.
  • the extruded thermoplastic polymer resin may have a viscosity of 0.5 to 20 Pa ⁇ s, preferably 1 to 15 Pa ⁇ s, more preferably 2 to 10 Pa ⁇ s. If the viscosity of the thermoplastic polymer resin is less than 0.5 Pa ⁇ s, it is difficult to process the particles at the nozzle.
  • the extruded thermoplastic polymer resin may have a temperature of 150 to 450 ° C.
  • thermoplastic polymer resin extruded in the extruder is supplied to the nozzle. Together with the thermoplastic polymer resin, air is also supplied to the nozzle. The air contacts the thermoplastic polymer resin in the nozzle to granulate the thermoplastic polymer resin. Hot air is supplied to the nozzle to properly maintain the physical properties of the thermoplastic polymer resin.
  • the temperature of the air may be 250 to 600 °C, preferably 270 to 500 °C, more preferably 300 to 450 °C.
  • the temperature of the air is less than 250 ° C or more than 600 ° C, when the thermoplastic polymer particles are manufactured from the thermoplastic polymer resin, the physical properties of the surface contacted with the air may be changed in an undesirable direction, thereby causing a problem.
  • the temperature of the air exceeds 600 °C excessive heat is supplied to the contact surface with the air may cause decomposition of the polymer on the surface of the particles.
  • thermoplastic polymer resin and the air supplied to the nozzle may have a suitable size and shape of the thermoplastic polymer particles, and the feeding position is set so that the formed particles may be evenly dispersed.
  • Figure 3 shows a cross-sectional view of the nozzle discharge portion, the supply position of the thermoplastic polymer resin and air according to an embodiment of the present invention will be described in detail with reference to FIG.
  • the position of the nozzle is expressed as "injection part", “discharge part", "end part”, and the like.
  • the "injection part” of the nozzle means the position where the nozzle starts, and the “discharge part” of the nozzle means the position where the nozzle ends.
  • the "end" of a nozzle means the position from two thirds of a nozzle to a discharge part.
  • the zero point of the nozzle is the injection portion of the nozzle, and one point of the nozzle is the discharge portion of the nozzle.
  • the cross section perpendicular to the flow direction of the thermoplastic polymer resin and air is circular.
  • the air is supplied through a first air stream 40 supplied to the center of the circle and a second air stream 20 supplied to the outer portion of the circle, and the thermoplastic polymer resin is connected to the first air stream 40. Supplied between the second air streams 20.
  • Each supply flow (the thermoplastic polymer resin stream 30, the first air stream 40 and the second air stream 20) from when the thermoplastic polymer resin and air are supplied to the inlet of the nozzle to just before the discharge part of the nozzle It is separated by the structure inside the nozzle.
  • the thermoplastic polymer resin stream and the second air stream are combined to make contact with the thermoplastic polymer resin and air, whereby the thermoplastic polymer resin is granulated.
  • the first air stream is separated by the nozzle internal structure from the thermoplastic polymer stream and the second air stream until the thermoplastic polymer resin and the air are discharged from the nozzle.
  • the first air stream prevents the particles of the thermoplastic polymer resin granulated by the second air stream from sticking to the discharge portion of the nozzle, and evenly distributes the discharged particles before discharge to the cooler after discharge from the nozzle. .
  • thermoplastic polymer resin extruded from the extruder are all supplied to the above-described position of the nozzle, and the flow rate of air supplied to the nozzle can be adjusted according to the flow rate of the extruded thermoplastic polymer resin.
  • the air is supplied to the nozzle at a flow rate of 1 to 300m 3 / hr, preferably 30 to 240m 3 / hr, more preferably 60 to 180m 3 / hr. Air is supplied separately from the first air stream and the second air stream within the flow rate range of the air.
  • the thermoplastic polymer resin is granulated by the second air stream, and the ratio of the thermoplastic polymer resin and the second air stream as well as the temperature of the second air stream may determine the physical properties of the particles.
  • the ratio of the cross-sectional area of the thermoplastic polymer resin and the second air flow is 1: 1 to 10: 1, preferably 1.5: 1 to 8: 1, more preferably based on the discharge cross section of the nozzle.
  • the inside of the nozzle is controlled to a temperature suitable for the thermoplastic polymer resin to be granulated. Since the sudden rise in temperature can change the structure of the polymer in the thermoplastic polymer resin, the temperature from the extruder to the discharge portion of the nozzle can be raised step by step. Therefore, the internal temperature of the nozzle is set in a range higher than the internal temperature of the extruder on average. Since the temperature for the distal end of the nozzle is defined separately below, the internal temperature of the nozzle herein means the average temperature of the rest of the nozzle except for the distal end of the nozzle, unless otherwise specified.
  • the interior of the nozzle may be maintained at 250 to 450 °C. If the internal temperature of the nozzle is less than 250 °C, sufficient heat is not transmitted to the thermoplastic polymer resin to satisfy the physical properties when granulated, if the internal temperature of the nozzle is more than 450 °C excessive heat is supplied to the thermoplastic polymer resin to improve the structure of the polymer Can change.
  • the distal end of the nozzle may be maintained at a temperature higher than the average temperature inside the nozzle to improve the external and internal properties of the resulting particles.
  • the temperature of the distal end of the nozzle may be determined between the glass transition temperature (T g ) and the pyrolysis temperature (T d ) of the thermoplastic polymer, specifically, according to the following equation (3).
  • Terminal Temperature Glass Transition Temperature (T g ) + (Pyrolysis Temperature (T d ) -Glass Transition Temperature (T g )) ⁇ A
  • A may be 0.5 to 1.5, preferably 0.65 to 1.35, more preferably 0.8 to 1.2. If A is less than 0.5, it is difficult to expect the improvement of the external and internal properties of the particles as the temperature rises at the distal end of the nozzle. If A is greater than 1.5, the heat substantially transferred to the thermoplastic polymer at the distal end of the nozzle is excessively increased.
  • the structure of the thermoplastic polymer can be modified.
  • the glass transition temperature and pyrolysis temperature may vary depending on the type of polymer, degree of polymerization, structure, and the like. According to one embodiment of the present invention, a thermoplastic polymer having a glass transition temperature of -40 to 250 ° C and a glass transition temperature of 270 to 500 ° C may be used. Since the distal end of the nozzle is kept higher than the average temperature of the nozzle, in some cases the distal end of the nozzle may be provided with additional heating means.
  • thermoplastic polymer particles discharged from the nozzle are supplied to the cooler.
  • the nozzle and the cooler may be spaced apart, in which case the discharged thermoplastic polymer particles are primarily cooled by ambient air before being supplied to the cooler.
  • the nozzle discharges not only thermoplastic polymer particles but also high temperature air, and by separating the nozzle and the cooler, the hot air can be discharged to the outside instead of the cooler, thereby increasing the cooling efficiency in the cooler.
  • the cooler is positioned 100 to 500 mm, preferably 150 to 400 mm, more preferably 200 to 300 mm apart from the nozzle. When the separation distance is shorter than the distance, a large amount of high-temperature air is injected into the cooling chamber to lower the cooling efficiency.
  • the injection angle may be 10 to 60 °, and when the thermoplastic polymer particles are discharged at the angle, the effect of the separation between the nozzle and the cooler may be doubled.
  • the cooler may cool the thermoplastic polymer particles by supplying low temperature air into the cooler to contact the air with the thermoplastic polymer particles.
  • the low temperature air forms a rotary airflow in the cooler, and the residence time of the thermoplastic polymer particles in the cooler can be sufficiently secured by the rotary airflow.
  • the flow rate of the air supplied to the cooler may be adjusted according to the supply amount of the thermoplastic polymer particles, and according to one embodiment of the present invention, the air may be supplied to the cooler at a flow rate of 1 to 10 m 3 / min.
  • the air may preferably have a temperature of -30 to -20 °C.
  • thermoplastic polymer particles By supplying the cryogenic air into the cooler as compared to the thermoplastic polymer particles supplied to the cooler, the thermoplastic polymer particles are rapidly cooled to maintain the internal structure of the hot thermoplastic polymer particles at the time of discharge.
  • the thermoplastic polymer particles are reheated again, wherein the reheated thermoplastic polymer has properties favorable for processing.
  • the thermoplastic polymer particles cooled by low temperature air are cooled to 40 ° C. or lower and discharged, and the discharged particles are collected through a cyclone or a bag filter.
  • Example 1 according to the manufacturing method of the present invention Polylactic acid Preparation of Particles
  • the twin screw extruder was subjected to extrusion by setting at a temperature condition of about 220 ° C. and an extrusion amount condition of about 5 kg / hr.
  • the extruded polylactic acid resin has a viscosity of about 10 Pa.s, and the extruded polylactic acid resin has a nozzle set to an internal temperature of about 300 ° C.
  • the cooling chamber was controlled to form a rotary airflow by injecting air at ⁇ 25 ° C. at a flow rate of about 6 m 3 / min before the injected particles were supplied. Particles sufficiently cooled down to 40 ° C. in the cooling chamber were collected via cyclone or bag filter.
  • Example 2 preparation of thermoplastic polyurethane particles according to the preparation method of the present invention
  • thermoplastic polyurethane resin as a starting material a (Lubrizol, Pearlthane TM D91M80, Mw : about 160,000g / mol, a glass transition temperature (T g):: about -37 °C, the thermal decomposition temperature (T d) of about 290 °C) 100% by weight Particles were prepared in the same manner as in Example 1 except for the use.
  • Example 2 The same polylactic acid resin as in Example 1 was fed to a screw feeder through a hopper. Water was removed while moving the raw material through the screw, and then the raw material was introduced into a grinder supplied with liquid nitrogen at -130 ° C.
  • the grinder was a pin crusher type grinder was used. Particle size was controlled via grinding size crystal pins. The particles atomized through the mill were collected through the cyclone.
  • Example 1 Average particle diameter ( ⁇ m) 1 ) Aspect ratio 2 ) Spherical degree 3 )
  • Example 1 14.2 1.02 ⁇ 0.01 0.98 ⁇ 0.01
  • Example 2 102.6 1.01 ⁇ 0.01 0.99 ⁇ 0.01
  • Comparative Example 1 10.8 1.43 ⁇ 0.41 0.74 ⁇ 0.18
  • thermoplastic polymer particles according to Examples 1 and 2 have a shape close to a sphere by measuring the aspect ratio and the sphericity degree close to 1, whereas the thermoplastic polymer particles according to Comparative Example 1 have an aspect ratio and a sphere shape.
  • the degree of saturation was slightly different from 1, so it did not have a near-spherical shape.
  • thermoplastic polymer particles prepared by the conventional freeze-pulverization method do not satisfy the aspect ratio and the degree of sphericity close to the sphere, so that the thermoplastic polymer particles of Examples 1 and 2 when the thermoplastic polymer particles are later handled Not easy
  • the particles prepared according to Examples 1 and 2 and Comparative Example 1 are shown in Table 2 by DSC analysis.
  • the DSC curve was obtained by using a differential scanning calorimeter (DSC, Perkin-Elmer, DSC8000) to increase the temperature from 0 ° C to 200 ° C at a temperature increase rate of 10 ° C / min.
  • the difference between glass transition temperature (T g ), melting point (T m ), cold crystallization temperature (T cc ), and endothermic amount ( ⁇ H1) and calorific value ( ⁇ H2) was derived from each DSC curve.
  • thermoplastic polymer particles of Example 1 showed a cold crystallization temperature peak at 98 °C
  • thermoplastic polymer particles of Example 2 appeared a cold crystallization temperature peak at 34 °C
  • Comparative Example 1 It was confirmed that the thermoplastic polymer particles of did not exhibit such a cold crystallization temperature peak.
  • Example 1 the difference between the endothermic amount ⁇ H1 and the calorific value ⁇ H2 is about 36 J / g.
  • Example 2 the endothermic amount ⁇ H1 and the calorific value ⁇ H2 It was confirmed that the difference appeared about 6J / g.
  • the difference between the heat absorbing amount ( ⁇ H1) and the calorific value ( ⁇ H2) was about 42 J / g. This is understood to have a relatively high calorific value since the polylactic acid particles of Example 1 have a property of generating heat before the particles are melted by cold crystallization.
  • thermoplastic polymer particles When the thermoplastic polymer particles have cold crystallization temperature peaks as in Examples 1 and 2, when the heat processing is performed using these particles, the thermoplastic polymer particles may have an advantage of being able to be processed at a low temperature compared to the processing temperature of the thermoplastic polymer particles of Comparative Example 1. Can be.
  • Comparative example 2 according to the solvent polymerization method Polylactic acid Preparation of Particles
  • Lactic acid was added to the xylene solvent, followed by stirring. Then, a tin-based catalyst and a polyol were added thereto and polymerized at a temperature of about 140 ° C. The polymer was dissolved in chloroform, precipitated in methanol, and dried to prepare polylactic acid particles having a size of 10 ⁇ m.
  • Comparative example 3 Preparation of thermoplastic polyurethane particles according to solvent polymerization method
  • Prepolymer was synthesized by adding an ester or ether-based polyol to a dimethylformamide solvent, followed by diisocyanate. Subsequently, at a temperature of 80 ° C., a reactive monomolecular diol or diamine-based chain extender was added to finally prepare a thermoplastic polyurethane particle having a size of 400 ⁇ m.
  • the impurity content of the particles prepared according to Example 1 and Comparative Examples 2 and 3 is shown in Table 3 below. Specifically, the residual solvent in the particles was measured through a GC / FID apparatus (manufacturer: Agilent, model name: 7890A), and the heavy metals in the particles were measured by an ICP / MS apparatus (manufacturer: Perkinelmer, model name: Nexion300). The impurity content of Table 3 is the sum of the content of the residual solvent and the content of heavy metals in the particles.
  • the particles of Comparative Examples 2 and 3 have a significantly higher content of impurities compared to the particles of Example 1 due to the residual solvent in the particles because the solvent is used in the preparation of the particles.
  • the particles of Example 1 contained little impurities such as a residual solvent except for a small amount of impurities introduced from the apparatus during the preparation of the particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided are thermoplastic polymer particles having an aspect ratio of 1.00 or more and less than 1.05, and a sphericity of 0.95 to 1.00. The thermoplastic polymer particles are formed from a thermoplastic polymer resin in a continuous matrix phase. The thermoplastic polymer particles show a peak cold crystallization temperature (Tcc) at a temperature between a glass transition temperature (Tg) and the melting point (Tm) in a differential scanning calorimetry (DSC) curve which is derived from an elevated temperature analysis at 10℃/min by differential scanning calorimetry.

Description

열가소성 고분자 입자Thermoplastic polymer particles
본 출원은 2017년 3월 9일자 한국 특허 출원 제10-2017-0030178호, 2017년 3월 9일자 한국 특허 출원 제10-2017-0030179호, 2017년 9월 18일자 한국 특허 출원 제10-2017-0119573호, 및 2018년 3월 8일자 한국 특허 출원 제10-2018-0027661호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application is filed with Korean Patent Application No. 10-2017-0030178 filed March 9, 2017, Korean Patent Application No. 10-2017-0030179 filed March 9, 2017, and Korean Patent Application No. 10-2017 dated September 18, 2017 -0119573, and the benefit of priority based on Korean Patent Application No. 10-2018-0027661 dated March 8, 2018, including all content disclosed in the documents of that Korean Patent Application as part of this specification.
본 발명은 열가소성 고분자 입자에 관한 것이다.The present invention relates to thermoplastic polymer particles.
입자 형태의 고분자 수지는 산업 전반에 걸쳐 다양하게 이용되고 있다. 이러한 고분자 수지 입자는 고분자 수지 원료를 입자화하는 공정을 통해 제조된다.Polymeric resins in the form of particles are used in various ways throughout the industry. Such polymer resin particles are manufactured through a process of granulating a polymer resin raw material.
일반적으로, 열가소성 고분자 수지를 입자화하는 방법으로서, 동결 분쇄로 대표되는 분쇄법; 고온의 용매에 용해한 후 냉각해서 석출시키거나 용매에 용해한 후 빈용매를 첨가하여 석출시키는 용매 용해 석출법; 및 혼합기 내에 열가소성 수지 및 비상용 수지를 혼합하여 열가소성 수지를 분산상에 열가소성 수지와 비상용 수지를 연속상에 갖는 조성물을 형성시킨 후, 비상용 수지를 제거함으로써 열가소성 수지 입자를 얻을 용융 혼련법 등이 존재한다.In general, a method for granulating a thermoplastic polymer resin includes a grinding method represented by freeze grinding; A solvent dissolution precipitation method in which a solution is dissolved in a high temperature solvent and then cooled to precipitate or dissolved in a solvent and then precipitated by adding a poor solvent; And a melt kneading method in which a thermoplastic resin particle is obtained by mixing the thermoplastic resin and the incompatible resin in a mixer to form a composition having the thermoplastic resin and the incompatible resin in the continuous phase, and then removing the incompatible resin.
상기 분쇄법을 통해 입자를 제조하는 경우 제조된 열가소성 고분자 수지 입자의 입자 균일성을 확보하기 어렵다는 문제점이 있다. 또한, 분쇄법의 냉각 시에 액체 질소를 사용하기 때문에, 입자 수득 공정 대비 고비용이 소요된다. 열가소성 고분자 수지 원료에 대해 안료, 산화방지제 등을 첨가하는 컴파운딩 공정이 추가되는 경우에는 배치식으로 진행되기 때문에 연속적인 입자 수득 공정에 비해 생산성이 낮아진다. 상기 용매 용해 석출법 및 용융 혼련법을 통해 입자를 제조하는 경우 열가소성 수지 입자 외에 용매 등의 다른 성분이 불순물로 검출될 수 있다는 문제점이 있다. 가공 과정에서 불순물이 혼입되는 경우에는 순수하게 열가소성 고분자 수지만으로 이루어진 입자를 제조하기 어려울 뿐만 아니라, 입자의 물성 및 형상의 변형이 야기될 우려가 높으며, 이를 미세하게 제어하기도 어렵다.When preparing the particles through the grinding method, there is a problem that it is difficult to ensure particle uniformity of the manufactured thermoplastic polymer resin particles. In addition, since liquid nitrogen is used during cooling of the grinding method, it costs more than the particle obtaining process. When a compounding step of adding a pigment, an antioxidant, or the like to the thermoplastic polymer raw material is added, the compounding process proceeds in a batch manner, thereby lowering the productivity compared to the continuous particle obtaining process. When the particles are manufactured by the solvent dissolution precipitation method and the melt kneading method, there is a problem that other components such as a solvent may be detected as impurities in addition to the thermoplastic resin particles. When impurities are mixed in the process, it is difficult to produce particles composed of purely thermoplastic polymer resin, and there is a high possibility of causing deformation of physical properties and shapes of the particles, and it is difficult to finely control them.
상술한 문제점으로 인해 종래의 방법으로 제품에 적용하기에 적합한 물성을 갖는 열가소성 고분자 수지 입자를 제조할 수 없다. 따라서, 해당 기술 분야에서는 종래의 방법을 개선하여 입자의 물성이 개선된 열가소성 고분자 수지 입자가 요구된다.Due to the above-described problems, it is not possible to produce thermoplastic polymer resin particles having suitable physical properties for application to products by conventional methods. Accordingly, there is a need in the art for thermoplastic polymer resin particles having improved physical properties by improving conventional methods.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 일본 공개특허공보 제2001-288273호 (Patent Document 1) Japanese Unexamined Patent Publication No. 2001-288273
(특허문헌 2) 일본 공개특허공보 제2000-007789호(Patent Document 2) Japanese Unexamined Patent Publication No. 2000-007789
(특허문헌 3) 일본 공개특허공보 제2004-269865호(Patent Document 3) Japanese Unexamined Patent Publication No. 2004-269865
본 발명은 열가소성 고분자 수지를 압출하고, 압출된 수지를 공기와 접촉시켜 미립화한 후, 이를 냉각하여 열가소성 고분자 입자를 제조함으로써, 입자 내에 수지 성분을 제외한 불순물의 혼입이 효과적으로 방지되고, 입자가 광범위하게 활용될 수 있는 물성을 갖도록 제어할 수 있는 열가소성 고분자 입자를 제공하고자 한다.The present invention is to extrude the thermoplastic polymer resin, and to atomize the extruded resin in contact with air, and then cooled to produce the thermoplastic polymer particles, thereby effectively preventing the incorporation of impurities other than the resin component in the particles, the particles are widely It is an object of the present invention to provide a thermoplastic polymer particle that can be controlled to have physical properties that can be utilized.
본 발명의 제1 측면에 따르면,According to the first aspect of the invention,
본 발명은 하기 계산식 1에 의해 계산된 종횡비가 1.00 이상 1.05 미만이고,In the present invention, the aspect ratio calculated by the following formula 1 is 1.00 or more and less than 1.05,
하기 계산식 2에 의해 계산된 구형화도가 0.95 내지 1.00인 열가소성 고분자 입자를 제공한다.It provides a thermoplastic polymer particles having a sphericity of 0.95 to 1.00 calculated by the following formula (2).
[계산식 1][Calculation 1]
종횡비(aspect ratio)=장축(major axis)/단축(minor axis)Aspect ratio = major axis / minor axis
[계산식 2][Calculation 2]
구형화도(roundness)=4×면적(area)/(π×장축^2)Roundness = 4 × area / (π × long axis ^ 2)
본 발명의 일 구체예에 있어서, 상기 열가소성 고분자 입자는 열가소성 고분자 수지로부터 연속적인 매트릭스(matrix) 상으로 형성된다.In one embodiment of the invention, the thermoplastic polymer particles are formed in a continuous matrix (matrix) phase from the thermoplastic polymer resin.
본 발명의 일 구체예에 있어서, 상기 열가소성 고분자 입자는 시차주사열량계(DSC, Differential Scanning Calorimetry)에 의해 10℃/min의 승온 분석으로 도출된 DSC 곡선에서 유리전이온도(Tg)와 녹는점(Tm) 사이의 온도에서 냉결정화 온도(Tcc)의 피크가 나타난다.In one embodiment of the present invention, the thermoplastic polymer particles have a glass transition temperature (T g ) and melting point (DS) in a DSC curve derived from an elevated temperature analysis of 10 ° C./min by differential scanning calorimetry (DSC). At temperatures between T m ), a peak of cold crystallization temperature (T cc ) appears.
본 발명의 일 구체예에 있어서, 상기 열가소성 고분자는 폴리락트산(PLA, Poly lactic acid), 열가소성 폴리우레탄(TPU, Thermoplastic Polyurethane), 폴리에틸렌(PE, Polyethylene), 폴리프로필렌(PP, Polypropylene), 폴리에테르술폰(PES, Polyether sulfone), 폴리메틸메타크릴레이트(PMMA, Poly(methyl methacrylate)), 에틸렌 비닐-알코올 중합체(EVOH, Ethylene Vinyl-Alcohol Copolymer) 및 이의 조합으로 이루어진 군으로부터 선택된 하나 이상의 고분자이다.In one embodiment of the present invention, the thermoplastic polymer is polylactic acid (PLA, Poly lactic acid), thermoplastic polyurethane (TPU, Thermoplastic Polyurethane), polyethylene (PE, Polyethylene), polypropylene (PP, Polypropylene), polyether Polyether sulfone (PES), polymethyl methacrylate (PMMA, Poly (methyl methacrylate)), ethylene vinyl-alcohol polymer (EVOH, Ethylene Vinyl-Alcohol Copolymer) and at least one polymer selected from the group consisting of a combination thereof.
본 발명의 일 구체예에 있어서, 상기 열가소성 고분자 입자의 입경은 1 내지 1000㎛이다.In one embodiment of the present invention, the particle diameter of the thermoplastic polymer particles is 1 to 1000㎛.
본 발명의 제2 측면에 따르면,According to a second aspect of the invention,
본 발명은 열가소성 고분자 수지를 압출기에 공급하여 압출하는 단계; 압출된 열가소성 고분자 수지 및 공기를 노즐에 공급하고, 열가소성 고분자 수지와 공기를 접촉시켜 열가소성 고분자 수지를 입자화한 후, 입자화된 열가소성 고분자 수지를 토출하는 단계; 및 토출된 열가소성 고분자 입자를 냉각기에 공급하여 열가소성 고분자 입자를 냉각한 후, 냉각된 열가소성 고분자 입자를 수득하는 단계를 포함하는 열가소성 고분자 입자의 제조방법을 제공한다.The present invention comprises the steps of supplying a thermoplastic polymer resin to the extruder; Supplying the extruded thermoplastic polymer resin and air to a nozzle, contacting the thermoplastic polymer resin and air to granulate the thermoplastic polymer resin, and then discharging the granulated thermoplastic polymer resin; And cooling the thermoplastic polymer particles by supplying the discharged thermoplastic polymer particles to a cooler, and then obtaining the cooled thermoplastic polymer particles.
본 발명에 따른 열가소성 고분자 입자는 거의 구형을 가지기 때문에, 입자의 취급 및 가공 특성이 우수하다. 상기 열가소성 고분자 입자는 열가소성 고분자 수지로부터 연속적인 매트릭스 상으로 형성되어 입자 내의 불순물이 거의 없기 때문에, 입자를 가공하여 제조된 제품에 결함이 적다. 또한, 상기 열가소성 고분자 입자는 DSC 곡선에서 냉결정화 온도(Tcc) 피크가 나타나기 때문에, 입자를 가열하여 가공할 때 발열에 의해 열에너지가 발생하여 적은 열에너지의 공급으로도 입자를 용이하게 가공할 수 있다.Since the thermoplastic polymer particles according to the present invention have an almost spherical shape, the handling and processing characteristics of the particles are excellent. Since the thermoplastic polymer particles are formed in a continuous matrix form from the thermoplastic polymer resin and there are almost no impurities in the particles, there is little defect in a product manufactured by processing the particles. In addition, since the thermoplastic polymer particles exhibit a cold crystallization temperature (T cc ) peak in the DSC curve, when the particles are heated and processed, thermal energy is generated by heat generation, and thus the particles may be easily processed even with a small supply of thermal energy. .
도 1은 본 발명의 열가소성 수지 입자의 형상을 개략적으로 나타낸 이미지이다.1 is an image schematically showing the shape of the thermoplastic resin particles of the present invention.
도 2는 본 발명에 따른 열가소성 고분자 입자의 제조방법을 개략적으로 나타낸 공정 순서도이다.2 is a process flowchart schematically showing a method of manufacturing thermoplastic polymer particles according to the present invention.
도 3은 본 발명의 구체예에 따라 노즐에 열가소성 고분자 수지 및 공기의 공급 위치를 나타낸 노즐 토출부의 단면도이다.3 is a cross-sectional view of a nozzle discharge portion showing a supply position of a thermoplastic polymer resin and air to a nozzle according to an embodiment of the present invention.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.Embodiments provided according to the present invention can all be achieved by the following description. It is to be understood that the following description describes preferred embodiments of the invention, and the invention is not necessarily limited thereto.
이하 명세서에서 수치 범위에 대하여, "내지"의 표현은 범위의 상한과 하한을 모두 포함하는 의미로 사용되며, 상한 또는 하한을 포함하지 않는 경우에는 포함여부를 구체적으로 표시하기 위해 "미만", "초과", "이하" 또는 "이상"의 표현이 사용된다.In the following specification, for the numerical range, the expression "to" is used to include both the upper and lower limits of the range, and when not including the upper limit or the lower limit, "less than", " The expression "greater than", "less than" or "greater than" is used.
본 발명은 종래의 입자 제조방법에 의해서는 수득할 수 없었던 열가소성 고분자 입자를 제공한다. 이하에서는 본 발명에 따른 열가소성 고분자 입자에 대해서 구체적으로 설명한다.The present invention provides thermoplastic polymer particles that could not be obtained by conventional particle production methods. Hereinafter, the thermoplastic polymer particles according to the present invention will be described in detail.
열가소성 고분자 입자Thermoplastic polymer particles
본 발명은 구형에 가까운 형상을 갖는 열가소성 고분자 입자를 제공한다. 본 발명에 있어서, 입자의 형상은 하기의 종횡비(aspect ratio) 및 구형화도(roundness)에 평가되며, 종횡비 및 구형화도가 1에 가까울수록 입자의 형상은 구형에 가까운 것으로 해석된다. 상기 종횡비는 하기의 계산식 1에 의해 계산된다.The present invention provides thermoplastic polymer particles having a shape close to a spherical shape. In the present invention, the shape of the particles is evaluated in the following aspect ratio and roundness, and the closer the aspect ratio and sphericity to 1, the closer the shape of the particles is interpreted. The aspect ratio is calculated by the following formula (1).
[계산식 1][Calculation 1]
종횡비(aspect ratio)=장축(major axis)/단축(minor axis)Aspect ratio = major axis / minor axis
또한, 상기 구형화도는 하기의 계산식 2에 의해 계산된다.In addition, the sphericity degree is calculated by the following formula (2).
[계산식 2][Calculation 2]
구형화도(roundness)=4×면적(area)/(π×장축^2)Roundness = 4 × area / (π × long axis ^ 2)
상기 계산식에 대해서 구체적으로 설명하기 위해, 열가소성 고분자 입자를 개략적으로 도시한 도 1을 제공한다. 도 1에 따르면, 상기 계산식 1 및 2에서 “장축”은 상기 열가소성 고분자 입자의 2D 이미지(단면)의 평행한 두 접선 사이의 수직 거리(d) 중에서 가장 긴 거리를 의미하며, “단축”은 상기 열가소성 고분자 입자의 2D 이미지(단면)의 평행한 두 접선 사이의 수직 거리(d) 중에서 가장 짧은 거리를 의미한다. 또한, 상기 계산식 2에서 “면적” 상기 열가소성 고분자 입자의 장축을 포함하는 단면적을 의미한다. 도 1은 상기 열가소성 고분자 입자의 평행한 두 접평면 사이의 수직 거리(d)가 장축인 경우의 예시로서, 면적(A)를 도시한 것이다.In order to explain the above formula in more detail, FIG. 1 schematically shows a thermoplastic polymer particle. According to Figure 1, the "long axis" in the formula 1 and 2 means the longest distance among the vertical distance (d) between two parallel tangents of the 2D image (cross section) of the thermoplastic polymer particles, "short axis" is It means the shortest distance among the vertical distance (d) between two parallel tangents of the 2D image (cross section) of the thermoplastic polymer particles. In addition, in Formula 2, "area" means a cross-sectional area including the long axis of the thermoplastic polymer particles. FIG. 1 illustrates an area A as an example when the vertical distance d between two parallel tangent planes of the thermoplastic polymer particles is a long axis.
본 발명의 일 구체예에 따르면, 본 발명에 따른 열가소성 고분자 입자는 1.00 이상 1.05 미만, 보다 구체적으로는 1.02 이상 1.05 미만의 종횡비를 가질 수 있고, 0.95 내지 1.00, 보다 구체적으로는 0.98 내지 1.00의 구형화도를 가질 수 있다. 열가소성 고분자 입자의 형상이 상술한 종횡비 및 구형화도의 범위를 만족하는 경우에, 열가소성 고분자 입자의 흐름성 및 균일도가 높아져서 입자의 취급이 용이하고, 상기 입자에 의해 제조된 제품 또한 내부 공극 등의 결함이 억제되어 품질이 향상된다.According to one embodiment of the invention, the thermoplastic polymer particles according to the invention may have an aspect ratio of 1.00 or more and less than 1.05, more specifically 1.02 or more and less than 1.05, and may have a spherical shape of 0.95 to 1.00, more specifically 0.98 to 1.00 May have a degree. When the shape of the thermoplastic polymer particles satisfies the above-described aspect ratios and sphericity ranges, the flowability and uniformity of the thermoplastic polymer particles are increased, so that the particles are easily handled, and the products produced by the particles also have defects such as internal voids. This is suppressed and the quality is improved.
상기 계산식 1 및 2에 따른 수치 값은 열가소성 고분자 입자의 이미지를 ImageJ(National Institutes of Health(NIH))를 사용하여 이미지처리 - Binary 이미지로 변환 후 개별 입자의 구형화 정도를 수치화 - 함으로써 측정이 가능하다.The numerical values according to Formulas 1 and 2 can be measured by image processing of thermoplastic polymer particles using ImageJ (National Institutes of Health (NIH))-converting them into binary images and quantifying the degree of sphericalness of individual particles- Do.
본 발명에 따른 열가소성 고분자 입자는 열가소성 고분자 수지로부터 연속적인 매트릭스(matrix) 상으로 형성된 입자이다. 열가소성 고분자 수지로부터 연속적인 매트릭스 상으로 형성된다는 것은, 열가소성 고분자 수지를 추가 성분 없이 연속적으로 밀집된 구조를 형성하는 것을 의미한다. 열가소성 고분자 수지를 압출하고, 용융한 후 용융물을 공기로 입자화함으로써, 열가소성 고분자 입자는 밀집된 구조를 가지고 연속적으로 생성된다. 이와 달리, 종래의 제조방법에 의하면, 추가 성분을 투입하여 입자가 형성되거나 냉각·분쇄의 불연속적인 과정을 통해 입자가 형성되기 때문에, 연속적인 매트릭스 상으로 입자가 형성되지 않는다.The thermoplastic polymer particles according to the present invention are particles formed in a continuous matrix from the thermoplastic polymer resin. Forming into a continuous matrix from the thermoplastic polymer resin means forming the thermoplastic polymer resin in a continuous dense structure without additional components. By extruding the thermoplastic polymer resin, melting and granulating the melt with air, the thermoplastic polymer particles are continuously produced with a dense structure. In contrast, according to the conventional manufacturing method, particles are formed by adding additional components or particles are formed through a discontinuous process of cooling and pulverization, so that particles are not formed on a continuous matrix.
열가소성 고분자 수지로부터 연속적인 매트릭스 상으로 형성된 입자는 기본적으로 입자의 제조과정에서 불순물이 혼입되지 않기 때문에, 높은 순도를 가진다. 여기서, “불순물”은 입자 제조시에 혼입될 수 있는 열가소성 고분자 이외의 성분을 의미한다. 예시적인 불순물로서, 열가소성 고분자 수지를 분산시키기 위한 용매, 분쇄 또는 그라인딩 과정에서 포함되는 중금속 성분, 및 중합 과정에서 포함되는 미반응 단량체 등이 있다. 본 발명의 일 구체예에 따르면, 본 발명의 열가소성 고분자 입자의 불순물 함량은 50ppm 이하, 바람직하게는 20ppm 이하, 보다 바람직하게는 5ppm 이하일 수 있다.Particles formed in a continuous matrix from the thermoplastic polymer resin have a high purity since impurities are not incorporated in the manufacturing process of the particles. Here, “impurity” means components other than the thermoplastic polymer which may be incorporated in the preparation of the particles. Exemplary impurities include a solvent for dispersing the thermoplastic polymer resin, a heavy metal component included in the grinding or grinding process, and an unreacted monomer included in the polymerization process. According to one embodiment of the present invention, the impurity content of the thermoplastic polymer particles of the present invention may be 50 ppm or less, preferably 20 ppm or less, more preferably 5 ppm or less.
또한, 상기 입자는 순도뿐만 아니라 다른 특성을 추가적으로 가질 수 있다. 이러한 특성 중 하나로 상기 열가소성 고분자 입자는 시차주사열량계(DSC, Differential Scanning Calorimetry)에 의해 10℃/min의 승온 분석으로 도출된 DSC 곡선에서 유리전이온도(Tg)와 녹는점(Tm) 사이의 온도에서 냉결정화 온도(Tcc)의 피크가 나타난다. 열가소성 고분자 입자는 상온에서 구형의 고체 입자이다. 이러한 입자를 시차주사열량계를 이용하여 승온 분석할 경우, 상기 열가소성 고분자 입자는 유리전이온도(Tg)와 녹는점(Tm) 사이의 온도에서 냉결정화 온도(Tcc)의 피크가 나타나게 되며, 이는 곧 상기 열가소성 고분자 입자가 용융되기 전에 발열하는 특성을 갖는 것을 의미한다. 본 명세서에서 냉결정화 온도(Tcc)의 피크는 열가소성 고분자 입자를 최초로 승온 분석할 때 나타나는 냉결정화 온도(Tcc)의 피크만을 의미하며, 이 후의 반복적인 승온에 의해 입자의 내부 구조가 변형됨에 따라 발생할 수 있는 냉결정화 온도(Tcc)의 피크는 본 명세서에서 설명하고 있는 입자의 특성에는 포함되지 않는다. 반복적인 승온에 의해 냉결정화 온도(Tcc)의 피크를 갖는다면, 반복적인 승온을 위한 에너지가 소모되기 때문에, 입자 가공 시 에너지 측면에서 이점을 갖지 못한다. 본 발명의 일 구체예에 따르면, 상기 냉결정화 온도(Tcc)는 유리전이온도(Tg)와 녹는점(Tm) 사이의 30% 내지 70% 구간에서 나타난다. 상기 구간에서 0%는 유리전이온도(Tg)이고, 100%는 녹는점(Tm)이다. 또한, 상기 DSC 곡선에 따르면, 상기 열가소성 고분자 입자는 흡열량(△H1)과 발열량(△H2)의 차이(△H1-△H2) 값이 3 내지 100J/g일 수 있다. 이러한 특징에 의해 상기 열가소성 고분자 입자를 이용해 가열 가공을 수행하는 경우에 종래에 동종의 열가소성 고분자 입자의 가공 온도에 비해 저온에서 가공이 가능한 이점을 얻을 수 있다.In addition, the particles may additionally have other properties as well as purity. One of these characteristics is that the thermoplastic polymer particles are separated from the glass transition temperature (T g ) and the melting point (T m ) in a DSC curve derived from an elevated temperature analysis of 10 ° C./min by differential scanning calorimetry (DSC). The peak of the cold crystallization temperature (T cc ) appears at the temperature. Thermoplastic polymer particles are spherical solid particles at room temperature. When the particles are temperature-analyzed using a differential scanning calorimeter, the thermoplastic polymer particles have a peak of cold crystallization temperature (T cc ) at a temperature between the glass transition temperature (T g ) and the melting point (T m ), This means that the thermoplastic polymer particles generate heat before melting. Peak of cold crystallization temperature (T cc) used herein refers to only the peak of cold crystallization temperature (T cc) appears when the first temperature elevation analysis of the thermoplastic polymer particles, and the internal structure of the particles by the subsequent repeated temperature rise modification As The peak of the cold crystallization temperature (T cc ) that may occur is not included in the properties of the particles described herein. If it has a peak of the cold crystallization temperature (T cc ) by repeated elevated temperature, because the energy for the repeated elevated temperature is consumed, there is no advantage in terms of energy when processing the particles. According to one embodiment of the invention, the cold crystallization temperature (T cc ) is shown in the 30% to 70% section between the glass transition temperature (T g ) and the melting point (T m ). In this section, 0% is the glass transition temperature (T g ), and 100% is the melting point (T m ). In addition, according to the DSC curve, the thermoplastic polymer particles may have a difference (ΔH1-ΔH2) of 3 to 100 J / g between an endothermic amount (ΔH1) and a calorific value (ΔH2). In this case, when the heat processing is performed using the thermoplastic polymer particles, it is possible to obtain an advantage that processing at a low temperature is possible compared to the processing temperatures of conventional thermoplastic polymer particles.
본 발명에서 열가소성 고분자는 특별히 한정되지는 않지만, 본 발명의 일 구체예에 따르면, 상기 열가소성 고분자는 폴리락트산(PLA, Poly lactic acid), 열가소성 폴리우레탄(TPU, Thermoplastic Polyurethane), 폴리에틸렌(PE, Polyethylene), 폴리프로필렌(PP, Polypropylene), 폴리에테르술폰(PES, Polyether sulfone), 폴리메틸메타크릴레이트(PMMA, Poly(methyl methacrylate)), 에틸렌 비닐-알코올 중합체(EVOH, Ethylene Vinyl-Alcohol Copolymer) 및 이의 조합으로 이루어진 군으로부터 선택된 하나 이상의 고분자일 수 있다.In the present invention, the thermoplastic polymer is not particularly limited, but according to one embodiment of the present invention, the thermoplastic polymer is polylactic acid (PLA), thermoplastic polyurethane (TPU, Thermoplastic Polyurethane), polyethylene (PE, Polyethylene) ), Polypropylene (PP, Polypropylene), polyether sulfone (PES), polymethyl methacrylate (PMMA, Poly (methyl methacrylate)), ethylene vinyl-alcohol polymer (EVOH, Ethylene Vinyl-Alcohol Copolymer) and At least one polymer selected from the group consisting of combinations thereof.
열가소성 고분자 입자의 입경은 본 발명에 따른 제조방법으로 입자 제조 시에 자유롭게 조절될 수 있지만, 열가소성 고분자 입자의 입경을 1 내지 1000㎛, 보다 구체적으로는 1 내지 500㎛로 조절하는 경우에 상기 물성과 함께 취급성을 고려해 볼 때, 바람직하게 활용될 수 있다. The particle diameter of the thermoplastic polymer particles may be freely adjusted during the preparation of the particles by the manufacturing method according to the present invention, but the physical properties of the thermoplastic polymer particles may be adjusted to 1 to 1000 μm, more specifically 1 to 500 μm. Considering the handleability together, it can be preferably utilized.
상술한 특징을 갖는 열가소성 고분자 입자는 하기의 제조방법에 의해 제조된다. 이하에서는 본 발명에 따른 열가소성 고분자 입자의 제조방법에 대해서 구체적으로 설명한다.The thermoplastic polymer particles having the above characteristics are produced by the following production method. Hereinafter, a method of manufacturing the thermoplastic polymer particles according to the present invention will be described in detail.
열가소성 고분자 입자의 제조방법Manufacturing method of thermoplastic polymer particles
도 2은 상기 제조방법에 대한 공정 순서도를 개략적으로 나타낸다. 상기 제조방법은 열가소성 고분자 수지를 압출기에 공급하여 압출하는 단계(S100); 압출된 열가소성 고분자 수지 및 공기를 노즐에 공급하고, 열가소성 고분자 수지와 공기를 접촉시켜 열가소성 고분자 수지를 입자화한 후, 입자화된 열가소성 고분자 수지를 토출하는 단계(S200); 및 토출된 열가소성 고분자 입자를 냉각기에 공급하여 열가소성 고분자 입자를 냉각한 후, 냉각된 열가소성 고분자 입자를 수득하는 단계(S300)를 포함한다. 이하에서는 상기 제조방법의 각 단계에 대해서 구체적으로 설명한다.Figure 2 schematically shows a process flow diagram for the manufacturing method. The manufacturing method is a step of extruding by supplying a thermoplastic polymer resin to the extruder (S100); Supplying the extruded thermoplastic polymer resin and air to a nozzle, contacting the thermoplastic polymer resin and air to granulate the thermoplastic polymer resin, and then discharging the granulated thermoplastic polymer resin (S200); And cooling the thermoplastic polymer particles by supplying the discharged thermoplastic polymer particles to a cooler, and then obtaining the cooled thermoplastic polymer particles (S300). Hereinafter, each step of the manufacturing method will be described in detail.
본 발명에 따라 열가소성 고분자 입자를 제조하기 위해, 먼저 원료인 열가소성 고분자 수지를 압출기에 공급하여 압출한다. 열가소성 고분자 수지를 압출함으로써, 열가소성 고분자 수지는 노즐에서의 입자 가공에 적합한 물성을 갖는다. 원료로 사용되는 열가소성 고분자 수지는 본 발명의 제조방법에 따라 입자화가 가능한 물질이면 특별히 한정되지 않지만, 제조된 입자의 적정한 물성을 고려하여 10,000 내지 200,000g/mol의 중량평균분자량(Mw)을 갖는 것이 바람직할 수 있다. 본 발명의 일 구체예에 따르면, 상기 열가소성 고분자 수지는 폴리락트산(PLA, Poly lactic acid), 열가소성 폴리우레탄(TPU, Thermoplastic Polyurethane), 폴리에틸렌(PE, Polyethylene), 폴리프로필렌(PP, Polypropylene), 폴리에테르술폰(PES, Polyether sulfone), 폴리메틸메타크릴레이트(PMMA, Poly(methyl methacrylate)), 에틸렌 비닐-알코올 중합체(EVOH, Ethylene Vinyl-Alcohol Copolymer) 및 이의 조합으로 이루어진 군으로부터 선택된 수지일 수 있다.In order to manufacture the thermoplastic polymer particles according to the present invention, first, the thermoplastic polymer resin, which is a raw material, is fed to an extruder and extruded. By extruding the thermoplastic polymer resin, the thermoplastic polymer resin has suitable physical properties for processing the particles in the nozzle. The thermoplastic polymer resin used as a raw material is not particularly limited as long as it is a material that can be granulated according to the manufacturing method of the present invention. However, the thermoplastic polymer resin has a weight average molecular weight (Mw) of 10,000 to 200,000 g / mol in consideration of the proper physical properties of the manufactured particles. It may be desirable. According to one embodiment of the invention, the thermoplastic polymer resin is polylactic acid (PLA, Poly lactic acid), thermoplastic polyurethane (TPU, Thermoplastic Polyurethane), polyethylene (PE, Polyethylene), polypropylene (PP, Polypropylene), poly It may be a resin selected from the group consisting of ether sulfone (PES, Polyether sulfone), polymethyl methacrylate (PMMA, Poly (methyl methacrylate)), ethylene vinyl-alcohol polymer (EVOH, Ethylene Vinyl-Alcohol Copolymer) and combinations thereof. .
상기 열가소성 고분자 수지가 공급되는 압출기는 열가소성 고분자 수지를 가열 및 가압하여 열가소성 고분자 수지의 점도 등의 물성을 조절한다. 노즐에서 입자화하기에 적합한 물성으로 조절이 가능하다면, 상기 압출기의 종류는 특별히 한정되지 않는다. 본 발명의 일 구체예에 따르면, 상기 압출기는 효율적인 압출을 위해 이축 스크류 압출기가 사용될 수 있다. 상기 압출기의 내부는 150 내지 450℃, 바람직하게는 170 내지 400℃, 보다 바람직하게는 200 내지 350℃로 유지되는 것이 바람직할 수 있다. 상기 압출기의 내부 온도가 150℃ 미만이면 열가소성 고분자 수지의 점도가 높아서 노즐에서의 입자화에 적합하지 않을 뿐만 아니라 압출기 내에서 열가소성 고분자 수지의 흐름성이 낮아서 압출에 효율적이지 않다. 또한, 상기 압출기의 내부 온도가 450℃ 초과이면 열가소성 고분자 수지의 흐름성이 높아서 효율적인 압출이 가능하지만, 노즐에서 열가소성 고분자 수지가 입자화될 때 미세한 물성 조절이 어렵다.The extruder supplied with the thermoplastic polymer resin heats and pressurizes the thermoplastic polymer resin to control physical properties such as viscosity of the thermoplastic polymer resin. The type of the extruder is not particularly limited as long as it can be adjusted to suitable physical properties for granulation at the nozzle. According to one embodiment of the invention, the extruder may be used a twin screw extruder for efficient extrusion. The interior of the extruder may be maintained at 150 to 450 ℃, preferably 170 to 400 ℃, more preferably 200 to 350 ℃. When the internal temperature of the extruder is less than 150 ° C., the viscosity of the thermoplastic polymer resin is high, which is not suitable for granulation at the nozzle, and the flowability of the thermoplastic polymer resin in the extruder is not efficient for extrusion. In addition, when the internal temperature of the extruder is higher than 450 ° C., the flowability of the thermoplastic polymer resin is high, so that efficient extrusion is possible, but it is difficult to control fine physical properties when the thermoplastic polymer resin is granulated in the nozzle.
열가소성 고분자 수지의 압출량은 압출기의 사이즈를 고려하여 열가소성 고분자 수지의 물성 조절이 용이하게 설정될 수 있다. 본 발명의 일 구체예에 따르면, 열가소성 고분자 수지는 1 내지 10kg/hr의 속도로 압출된다. 압출된 열가소성 고분자 수지의 점도는 0.5 내지 20Pa·s, 바람직하게는 1 내지 15Pa·s, 더욱 바람직하게는 2 내지 10Pa·s일 수 있다. 열가소성 고분자 수지의 점도가 0.5Pa·s 미만이면 노즐에서 입자를 가공하기 어렵고, 열가소성 고분자 수지의 점도가 20Pa·s 초과이면 노즐에서 열가소성 고분자 수지의 흐름성이 낮아서 가공 효율이 떨어진다. 압출된 열가소성 고분자 수지의 온도는 150 내지 450℃일 수 있다.The extrusion amount of the thermoplastic polymer resin may be easily set in consideration of the size of the extruder to control the physical properties of the thermoplastic polymer resin. According to one embodiment of the invention, the thermoplastic polymer resin is extruded at a rate of 1 to 10 kg / hr. The extruded thermoplastic polymer resin may have a viscosity of 0.5 to 20 Pa · s, preferably 1 to 15 Pa · s, more preferably 2 to 10 Pa · s. If the viscosity of the thermoplastic polymer resin is less than 0.5 Pa · s, it is difficult to process the particles at the nozzle. If the viscosity of the thermoplastic polymer resin is more than 20 Pa · s, the flowability of the thermoplastic polymer resin at the nozzle is low, resulting in poor processing efficiency. The extruded thermoplastic polymer resin may have a temperature of 150 to 450 ° C.
압출기에서 압출된 열가소성 고분자 수지는 노즐에 공급된다. 상기 열가소성 고분자 수지와 함께, 공기도 노즐에 공급된다. 상기 공기는 노즐 내에서 열가소성 고분자 수지와 접촉하여 열가소성 고분자 수지를 입자화한다. 열가소성 고분자 수지의 물성을 적절하게 유지할 수 있도록 노즐에는 고온의 공기가 공급된다. 본 발명의 일 구체예에 따르면, 상기 공기의 온도는 250 내지 600℃, 바람직하게는 270 내지 500℃, 더욱 바람직하게는 300 내지 450℃일 수 있다. 상기 공기의 온도가 250℃ 미만이거나 600℃ 초과이면 열가소성 고분자 수지에서 열가소성 고분자 입자가 제조될 때 공기와 접촉된 표면의 물성을 바람직하지 못한 방향으로 변화시킬 수 있어 문제가 된다. 특히, 공기의 온도가 600℃를 초과하면 공기와의 접촉면에 과도한 열이 공급되어 입자의 표면에서 고분자의 분해 현상이 발생할 수 있다.The thermoplastic polymer resin extruded in the extruder is supplied to the nozzle. Together with the thermoplastic polymer resin, air is also supplied to the nozzle. The air contacts the thermoplastic polymer resin in the nozzle to granulate the thermoplastic polymer resin. Hot air is supplied to the nozzle to properly maintain the physical properties of the thermoplastic polymer resin. According to one embodiment of the invention, the temperature of the air may be 250 to 600 ℃, preferably 270 to 500 ℃, more preferably 300 to 450 ℃. If the temperature of the air is less than 250 ° C or more than 600 ° C, when the thermoplastic polymer particles are manufactured from the thermoplastic polymer resin, the physical properties of the surface contacted with the air may be changed in an undesirable direction, thereby causing a problem. In particular, when the temperature of the air exceeds 600 ℃ excessive heat is supplied to the contact surface with the air may cause decomposition of the polymer on the surface of the particles.
노즐에 공급되는 열가소성 고분자 수지 및 공기는 열가소성 고분자 입자가 적절한 크기 및 형상을 가질 수 있고, 형성된 입자가 고르게 분산될 수 있도록 공급 위치가 설정된다. 도 3는 노즐 토출부의 단면도를 나타내고, 본 발명의 일 구체예에 따른 열가소성 고분자 수지 및 공기의 공급 위치는 도 3를 통해 구체적으로 설명된다. 본 명세서에서 구체적인 설명을 위해, 노즐의 위치를 “주입부”, “토출부”, 및 “말단부” 등으로 표현한다. 노즐의 “주입부”는 노즐이 시작되는 위치를 의미하고, 노즐의 “토출부”는 노즐이 끝나는 위치를 의미한다. 또한, 노즐의 “말단부”는 노즐의 3분의 2 지점으로부터 토출부까지의 위치를 의미한다. 여기서, 노즐의 0 지점은 노즐의 주입부이고, 노즐의 1 지점은 노즐의 토출부이다.The thermoplastic polymer resin and the air supplied to the nozzle may have a suitable size and shape of the thermoplastic polymer particles, and the feeding position is set so that the formed particles may be evenly dispersed. Figure 3 shows a cross-sectional view of the nozzle discharge portion, the supply position of the thermoplastic polymer resin and air according to an embodiment of the present invention will be described in detail with reference to FIG. For the detailed description herein, the position of the nozzle is expressed as "injection part", "discharge part", "end part", and the like. The "injection part" of the nozzle means the position where the nozzle starts, and the "discharge part" of the nozzle means the position where the nozzle ends. In addition, the "end" of a nozzle means the position from two thirds of a nozzle to a discharge part. Here, the zero point of the nozzle is the injection portion of the nozzle, and one point of the nozzle is the discharge portion of the nozzle.
도 3에서 도시된 바와 같이, 열가소성 고분자 수지 및 공기의 흐름 방향과 수직인 단면은 원형이다. 상기 공기는 상기 원형의 중심으로 공급되는 제1 공기 흐름(40)과 상기 원형의 외곽부로 공급되는 제2 공기 흐름(20)을 통해 공급되고, 상기 열가소성 고분자 수지는 제1 공기 흐름(40)과 제2 공기 흐름(20)의 사이에 공급된다. 열가소성 고분자 수지 및 공기가 노즐의 주입부에 공급될 때부터 노즐의 토출부 직전까지 각 공급 흐름(열가소성 고분자 수지 흐름(30), 제1 공기 흐름(40) 및 제2 공기 흐름(20))은 노즐 내부의 구조에 의해 분리된다. 노즐의 토출부 직전에서 열가소성 고분자 수지 흐름과 제2 공기 흐름이 합쳐져 열가소성 고분자 수지와 공기가 접촉하고, 이에 의해 열가소성 고분자 수지는 입자화된다. 이와 달리, 제1 공기 흐름은 열가소성 고분자 수지 및 공기가 노즐로부터 토출될 때까지 열가소성 고분자 수지 흐름 및 제2 공기 흐름과는 노즐 내부 구조에 의해 분리된다. 제1 공기 흐름은 제2 공기 흐름에 의해 입자화된 열가소성 고분자 수지의 입자가 노즐의 토출부에서 점착되는 것을 방지하고, 노즐에서 토출 후 냉각기에 공급되기 전에 토출된 입자를 고르게 분산시키는 역할은 한다.As shown in FIG. 3, the cross section perpendicular to the flow direction of the thermoplastic polymer resin and air is circular. The air is supplied through a first air stream 40 supplied to the center of the circle and a second air stream 20 supplied to the outer portion of the circle, and the thermoplastic polymer resin is connected to the first air stream 40. Supplied between the second air streams 20. Each supply flow (the thermoplastic polymer resin stream 30, the first air stream 40 and the second air stream 20) from when the thermoplastic polymer resin and air are supplied to the inlet of the nozzle to just before the discharge part of the nozzle It is separated by the structure inside the nozzle. Immediately before the discharge portion of the nozzle, the thermoplastic polymer resin stream and the second air stream are combined to make contact with the thermoplastic polymer resin and air, whereby the thermoplastic polymer resin is granulated. Alternatively, the first air stream is separated by the nozzle internal structure from the thermoplastic polymer stream and the second air stream until the thermoplastic polymer resin and the air are discharged from the nozzle. The first air stream prevents the particles of the thermoplastic polymer resin granulated by the second air stream from sticking to the discharge portion of the nozzle, and evenly distributes the discharged particles before discharge to the cooler after discharge from the nozzle. .
압출기에서 압출된 열가소성 고분자 수지는 모두 노즐의 상술한 위치에 공급되고, 노즐에 공급되는 공기의 유량은 압출된 열가소성 고분자 수지의 유량에 따라 조절될 수 있다. 본 발명의 일 구체예에 따르면, 상기 공기는 1 내지 300m3/hr, 바람직하게는 30 내지 240m3/hr, 더욱 바람직하게는 60 내지 180m3/hr의 유량으로 노즐에 공급된다. 상기 공기의 유량 범위 내에서 공기는 제1 공기 흐름과 제2 공기 흐름으로 분리되어 공급된다. 상술한 바와 같이, 열가소성 고분자 수지는 제2 공기 흐름에 의해 입자화 되는데, 제2 공기 흐름의 온도뿐만 아니라 열가소성 고분자 수지와 제2 공기 흐름의 비율이 입자의 물성을 결정할 수 있다. 본 발명의 일 구체예에 따르면, 노즐의 토출부 단면을 기준으로 열가소성 고분자 수지와 제2 공기 흐름의 단면적 비는 1:1 내지 10:1, 바람직하게는 1.5:1 내지 8:1, 보다 바람직하게는 2:1 내지 6:1일 수 있다. 상기 범위 내로 열가소성 고분자 수지와 제2 공기 흐름의 비율이 조절되는 경우에 활용성이 높은 적정 크기 및 형태의 열가소성 고분자 입자를 제조할 수 있다.The thermoplastic polymer resin extruded from the extruder are all supplied to the above-described position of the nozzle, and the flow rate of air supplied to the nozzle can be adjusted according to the flow rate of the extruded thermoplastic polymer resin. According to one embodiment of the invention, the air is supplied to the nozzle at a flow rate of 1 to 300m 3 / hr, preferably 30 to 240m 3 / hr, more preferably 60 to 180m 3 / hr. Air is supplied separately from the first air stream and the second air stream within the flow rate range of the air. As described above, the thermoplastic polymer resin is granulated by the second air stream, and the ratio of the thermoplastic polymer resin and the second air stream as well as the temperature of the second air stream may determine the physical properties of the particles. According to one embodiment of the present invention, the ratio of the cross-sectional area of the thermoplastic polymer resin and the second air flow is 1: 1 to 10: 1, preferably 1.5: 1 to 8: 1, more preferably based on the discharge cross section of the nozzle. Preferably 2: 1 to 6: 1. When the ratio of the thermoplastic polymer resin and the second air flow is controlled within the above range, it is possible to produce thermoplastic polymer particles of appropriate size and shape with high usability.
노즐에서 열가소성 고분자 수지는 입자화가 되기 때문에, 노즐의 내부는 열가소성 고분자 수지가 입자화되기에 적합한 온도로 조절된다. 급격한 온도의 상승은 열가소성 고분자 수지 내의 고분자의 구조를 변화시킬 수 있기 때문에, 압출기에서 노즐의 토출부까지의 온도는 단계적으로 상승될 수 있다. 따라서, 노즐의 내부 온도는 평균적으로 압출기의 내부 온도보다 높은 범위에서 설정된다. 노즐의 말단부에 대한 온도는 이하에서 별도로 정의하고 있기 때문에, 본 명세서에서 노즐의 내부 온도는 특별한 언급이 없다면, 노즐의 말단부를 제외한 노즐의 나머지 부분의 평균 온도를 의미한다. 본 발명의 일 구체예에 따르면, 노즐의 내부는 250 내지 450℃로 유지될 수 있다. 노즐의 내부 온도가 250℃ 미만이면 열가소성 고분자 수지에 입자화 시 물성을 만족시키기 위한 충분한 열이 전달되지 못하고, 노즐의 내부 온도가 450℃ 초과이면 열가소성 고분자 수지에 과도한 열이 공급되어 고분자의 구조를 변화시킬 수 있다.Since the thermoplastic polymer resin is granulated in the nozzle, the inside of the nozzle is controlled to a temperature suitable for the thermoplastic polymer resin to be granulated. Since the sudden rise in temperature can change the structure of the polymer in the thermoplastic polymer resin, the temperature from the extruder to the discharge portion of the nozzle can be raised step by step. Therefore, the internal temperature of the nozzle is set in a range higher than the internal temperature of the extruder on average. Since the temperature for the distal end of the nozzle is defined separately below, the internal temperature of the nozzle herein means the average temperature of the rest of the nozzle except for the distal end of the nozzle, unless otherwise specified. According to one embodiment of the invention, the interior of the nozzle may be maintained at 250 to 450 ℃. If the internal temperature of the nozzle is less than 250 ℃, sufficient heat is not transmitted to the thermoplastic polymer resin to satisfy the physical properties when granulated, if the internal temperature of the nozzle is more than 450 ℃ excessive heat is supplied to the thermoplastic polymer resin to improve the structure of the polymer Can change.
노즐의 말단부는 생성된 입자의 외적 및 내적 물성을 향상시키기 위해 노즐 내부의 평균 온도보다 높은 온도로 유지될 수 있다. 노즐의 말단부의 온도는 열가소성 고분자의 유리전이온도(Tg)와 열분해온도(Td) 사이에서 결정될 수 있는데, 구체적으로는 하기 계산식 3에 따라 결정될 수 있다.The distal end of the nozzle may be maintained at a temperature higher than the average temperature inside the nozzle to improve the external and internal properties of the resulting particles. The temperature of the distal end of the nozzle may be determined between the glass transition temperature (T g ) and the pyrolysis temperature (T d ) of the thermoplastic polymer, specifically, according to the following equation (3).
[계산식 3][Calculation 3]
말단부 온도 = 유리전이온도(Tg)+(열분해온도(Td)-유리전이온도(Tg))×ATerminal Temperature = Glass Transition Temperature (T g ) + (Pyrolysis Temperature (T d ) -Glass Transition Temperature (T g )) × A
여기서, 상기 A는 0.5 내지 1.5, 바람직하게는 0.65 내지 1.35, 보다 바람직하게는 0.8 내지 1.2일 수 있다. 상기 A가 0.5 미만이면 노즐의 말단부의 온도 상승에 따른 입자의 외적 및 내적 물성의 향상을 기대하기 어렵고, 상기 A가 1.5 초과이면 노즐의 말단부에서 열가소성 고분자에 실질적으로 전달되는 열이 과도하게 증가하여 열가소성 고분자의 구조가 변형될 수 있다. 상기 유리전이온도 및 열분해온도는 고분자의 종류, 중합도, 구조 등에 의해서 달라질 수 있다. 본 발명의 일 구체예에 따르면, -40 내지 250℃의 유리전이온도를 갖고, 270 내지 500℃의 유리전이온도를 갖는 열가소성 고분자가 사용될 수 있다. 노즐의 말단부는 노즐의 평균 온도보다 높게 유지되기 때문에, 경우에 따라 노즐의 말단부에는 추가적인 가열 수단이 구비될 수 있다.Here, A may be 0.5 to 1.5, preferably 0.65 to 1.35, more preferably 0.8 to 1.2. If A is less than 0.5, it is difficult to expect the improvement of the external and internal properties of the particles as the temperature rises at the distal end of the nozzle. If A is greater than 1.5, the heat substantially transferred to the thermoplastic polymer at the distal end of the nozzle is excessively increased. The structure of the thermoplastic polymer can be modified. The glass transition temperature and pyrolysis temperature may vary depending on the type of polymer, degree of polymerization, structure, and the like. According to one embodiment of the present invention, a thermoplastic polymer having a glass transition temperature of -40 to 250 ° C and a glass transition temperature of 270 to 500 ° C may be used. Since the distal end of the nozzle is kept higher than the average temperature of the nozzle, in some cases the distal end of the nozzle may be provided with additional heating means.
노즐에서 토출된 열가소성 고분자 입자는 냉각기에 공급된다. 노즐과 냉각기는 이격하여 위치시킬 수 있고, 이 경우 토출된 열가소성 고분자 입자가 냉각기에 공급되기 전에 주변 공기에 의해 1차적으로 냉각된다. 노즐에서는 열가소성 고분자 입자뿐만 아니라 고온의 공기도 함께 배출되는데, 노즐과 냉각기를 이격시킴으로써, 고온의 공기를 냉각기가 아닌 외부로 배출할 수 있기 때문에, 냉각기에서 냉각 효율을 높일 수 있다. 본 발명의 일 구체예에 따르면, 냉각기는 노즐과 100 내지 500mm, 바람직하게는 150 내지 400mm, 더욱 바람직하게는 200 내지 300mm 이격하여 위치한다. 상기 거리보다 이격 거리가 짧은 경우에는 냉각 챔버 내에 다량의 고온의 공기가 주입되어 냉각 효율이 낮으며, 상기 거리보다 이격 거리가 긴 경우에는 주변 공기에 의해 냉각되는 양이 커져서 냉각 챔버에 의한 급속 냉각이 이루어지지 못한다. 또한, 노즐에서 열가소성 고분자 입자를 토출할 때 분사각은 10 내지 60°일 수 있는데, 해당 각도로 열가소성 고분자 입자를 토출하는 경우 노즐과 냉각기의 이격에 따른 효과를 배가할 수 있다.The thermoplastic polymer particles discharged from the nozzle are supplied to the cooler. The nozzle and the cooler may be spaced apart, in which case the discharged thermoplastic polymer particles are primarily cooled by ambient air before being supplied to the cooler. The nozzle discharges not only thermoplastic polymer particles but also high temperature air, and by separating the nozzle and the cooler, the hot air can be discharged to the outside instead of the cooler, thereby increasing the cooling efficiency in the cooler. According to one embodiment of the invention, the cooler is positioned 100 to 500 mm, preferably 150 to 400 mm, more preferably 200 to 300 mm apart from the nozzle. When the separation distance is shorter than the distance, a large amount of high-temperature air is injected into the cooling chamber to lower the cooling efficiency. When the separation distance is longer than the distance, the cooling by the surrounding air becomes large and rapid cooling by the cooling chamber. This can't be done. In addition, when the thermoplastic polymer particles are discharged from the nozzle, the injection angle may be 10 to 60 °, and when the thermoplastic polymer particles are discharged at the angle, the effect of the separation between the nozzle and the cooler may be doubled.
냉각기는 냉각기 내부에 저온의 공기를 공급하여 상기 공기와 열가소성 고분자 입자를 접촉시킴으로써, 열가소성 고분자 입자를 냉각할 수 있다. 상기 저온의 공기는 냉각기 내에서 회전 기류를 형성하는데, 상기 회전 기류에 의해 냉각기 내에서 열가소성 고분자 입자의 체류시간을 충분하게 확보할 수 있다. 냉각기에 공급되는 공기의 유량은 열가소성 고분자 입자의 공급량에 따라 조절될 수 있고, 본 발명의 일 구체예에 따르면, 상기 공기는 1 내지 10m3/min의 유량으로 냉각기에 공급될 수 있다. 상기 공기는 -30 내지 -20℃의 온도를 갖는 것이 바람직할 수 있다. 냉각기에 공급되는 열가소성 고분자 입자와 대비하여 극저온의 공기를 냉각기 내에 공급함으로써, 열가소성 고분자 입자가 급속 냉각되어 토출시 고온의 열가소성 고분자 입자의 내부 구조를 적당하게 유지할 수 있다. 열가소성 고분자 입자는 제품의 제조를 위해 실제로 적용할 때, 다시 재가열되는데 이 때 재가열된 열가소성 고분자는 가공에 유리한 물성을 갖는다. 저온의 공기에 의해 냉각된 열가소성 고분자 입자는 40℃ 이하로 냉각되어 배출되며, 배출된 입자는 싸이클론 또는 백필터를 통해서 포집한다.The cooler may cool the thermoplastic polymer particles by supplying low temperature air into the cooler to contact the air with the thermoplastic polymer particles. The low temperature air forms a rotary airflow in the cooler, and the residence time of the thermoplastic polymer particles in the cooler can be sufficiently secured by the rotary airflow. The flow rate of the air supplied to the cooler may be adjusted according to the supply amount of the thermoplastic polymer particles, and according to one embodiment of the present invention, the air may be supplied to the cooler at a flow rate of 1 to 10 m 3 / min. The air may preferably have a temperature of -30 to -20 ℃. By supplying the cryogenic air into the cooler as compared to the thermoplastic polymer particles supplied to the cooler, the thermoplastic polymer particles are rapidly cooled to maintain the internal structure of the hot thermoplastic polymer particles at the time of discharge. When the thermoplastic polymer particles are actually applied for the production of the product, the thermoplastic polymer particles are reheated again, wherein the reheated thermoplastic polymer has properties favorable for processing. The thermoplastic polymer particles cooled by low temperature air are cooled to 40 ° C. or lower and discharged, and the discharged particles are collected through a cyclone or a bag filter.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention, but the following examples are provided only for better understanding of the present invention, and the present invention is not limited thereto.
실시예Example
실시예Example 1: 본 발명의 제조방법에 따른  1: according to the manufacturing method of the present invention 폴리락트산Polylactic acid 입자의 제조 Preparation of Particles
폴리락트산 수지(Natureworks, 2003D, Mw: 약 200,000g/mol, 유리전이온도(Tg): 약 55℃, 열분해온도(Td): 약 300℃) 100 중량%를 이축 스크류 압출기(직경(D)=32mm, 길이/직경(L/D)=40)에 공급하였다. 상기 이축 스크류 압출기는 약 220℃의 온도 조건 및 약 5kg/hr의 압출량 조건으로 설정하여 압출을 진행하였다. 압출된 폴리락트산 수지는 약 10Pa·s의 점도를 가지며, 상기 압출된 폴리락트산 수지를 약 300℃의 내부 온도 및 약 350℃의 말단부 온도(계산식 3에 따른 A값은 약 1.2임)로 설정된 노즐에 공급하였다. 또한, 약 350℃의 공기를 약 1m3/min의 유량으로 노즐에 공급하였다. 상기 공기는 노즐 단면의 중심부와 외곽부에 공급되고, 상기 압출된 폴리락트산 수지는 공기가 공급되는 노즐의 중심부와 외곽부 사이에 공급되었다. 외곽부에 공급된 공기와 공기가 공급된 중심부와 외곽부 사이에 공급된 압출된 폴리락트산의 단면적 비는 약 4.5:1이었다. 노즐에 공급된 폴리락트산 수지는 고온의 공기와 접촉하여 미립화되었고, 미립화된 입자가 노즐로부터 분사되었다. 노즐로부터의 분사각은 약 45°이고, 분사된 입자는 노즐로부터 약 200mm 이격된 냉각 챔버(직경(D)=1,100mm, 길이(L)=3,500mm)에 공급되었다. 또한, 상기 냉각 챔버는 분사된 입자가 공급되기 전부터 -25℃의 공기를 약 6m3/min의 유량으로 주입하여 회전 기류를 형성하도록 조절하였다. 냉각 챔버 내에서 40℃ 이하로 충분히 냉각된 입자는 싸이클론 또는 백필터를 통해 포집되었다.Polylactic acid resin (Natureworks, 2003D, Mw: about 200,000g / mol, glass transition temperature (T g ): about 55 ° C, pyrolysis temperature (T d ): about 300 ° C) 100% by weight of twin screw extruder (diameter (D ) = 32 mm, length / diameter (L / D) = 40). The twin screw extruder was subjected to extrusion by setting at a temperature condition of about 220 ° C. and an extrusion amount condition of about 5 kg / hr. The extruded polylactic acid resin has a viscosity of about 10 Pa.s, and the extruded polylactic acid resin has a nozzle set to an internal temperature of about 300 ° C. and an end temperature of about 350 ° C. (A value according to formula 3 is about 1.2). Supplied to. In addition, air of about 350 ° C. was supplied to the nozzle at a flow rate of about 1 m 3 / min. The air was supplied to the center and the outer portion of the nozzle cross section, and the extruded polylactic acid resin was supplied between the center and the outer portion of the nozzle to which the air is supplied. The cross-sectional ratio of extruded polylactic acid supplied between the air supplied to the periphery and the air-fed core and the periphery was about 4.5: 1. The polylactic acid resin supplied to the nozzle was atomized in contact with the hot air, and the atomized particles were ejected from the nozzle. The spray angle from the nozzle was about 45 ° and the sprayed particles were supplied to a cooling chamber (diameter D = 1,100 mm, length L = 3500 mm) spaced about 200 mm from the nozzle. In addition, the cooling chamber was controlled to form a rotary airflow by injecting air at −25 ° C. at a flow rate of about 6 m 3 / min before the injected particles were supplied. Particles sufficiently cooled down to 40 ° C. in the cooling chamber were collected via cyclone or bag filter.
실시예Example 2: 본 발명의 제조방법에 따른 열가소성 폴리우레탄 입자의 제조 2: preparation of thermoplastic polyurethane particles according to the preparation method of the present invention
원료물질로 열가소성 폴리우레탄 수지(Lubrizol, PearlthaneTM D91M80, Mw: 약 160,000g/mol, 유리전이온도(Tg): 약 -37℃, 열분해온도(Td): 약 290℃) 100 중량%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 입자를 제조하였습니다. The thermoplastic polyurethane resin as a starting material a (Lubrizol, Pearlthane TM D91M80, Mw : about 160,000g / mol, a glass transition temperature (T g):: about -37 ℃, the thermal decomposition temperature (T d) of about 290 ℃) 100% by weight Particles were prepared in the same manner as in Example 1 except for the use.
비교예Comparative example 1: 냉동 분쇄 방식에 따른  1: freeze grinding 폴리락트산Polylactic acid 입자의 제조 Preparation of Particles
실시예 1과 동일한 폴리락트산 수지를 호퍼를 통해 스크류 공급기로 공급하였다. 스크류를 통해 원료를 이동시키면서 수분을 제거한 다음 -130℃의 액체 질소가 공급되는 분쇄기로 원료를 투입하였다. 상기 분쇄기는 핀 크러셔(Pin Crusher) 타입의 분쇄기가 사용되었다. 입자 크기는 분쇄 사이즈 결정핀을 통해 조절되었다. 분쇄기를 통해 미립화된 입자는 싸이클론을 통하여 포집되었다.The same polylactic acid resin as in Example 1 was fed to a screw feeder through a hopper. Water was removed while moving the raw material through the screw, and then the raw material was introduced into a grinder supplied with liquid nitrogen at -130 ° C. The grinder was a pin crusher type grinder was used. Particle size was controlled via grinding size crystal pins. The particles atomized through the mill were collected through the cyclone.
실험예Experimental Example 1: 입자의 물성 평가 1: Evaluation of Physical Properties of Particles
상기 실시예 1 및 2와 비교예 1에 따라 제조된 입자의 물성을 측정하여 하기 표 1에 나타내었다.The physical properties of the particles prepared according to Examples 1 and 2 and Comparative Example 1 are shown in Table 1 below.
평균 입경(㎛)1 ) Average particle diameter (㎛) 1 ) 종횡비2 ) Aspect ratio 2 ) 구형화도3 ) Spherical degree 3 )
실시예 1Example 1 14.214.2 1.02±0.011.02 ± 0.01 0.98±0.010.98 ± 0.01
실시예 2Example 2 102.6102.6 1.01±0.011.01 ± 0.01 0.99±0.010.99 ± 0.01
비교예 1Comparative Example 1 10.810.8 1.43±0.411.43 ± 0.41 0.74±0.180.74 ± 0.18
1) 상온에서 ImageJ(National Institutes of Health(NIH))를 사용하여 입자의 집합체인 분말의 평균 입경을 도출함. 입자 각각의 장축을 입경으로 하였으며, 입자의 집합체에 대하여, 각각의 입경의 수평균 값을 평균 입경으로 함.1) Derived the average particle diameter of the powder, which is an aggregate of particles, using ImageJ (National Institutes of Health (NIH)) at room temperature. The major axis of each particle is the particle size, and the number average value of each particle diameter is the average particle diameter for the aggregate of particles.
2), 3) 동일 장치를 사용하여 이미지처리 - Binary 이미지로 변환 후 개별 입자의 구형화 정도를 수치화 -함으로써 입자의 형성을 분석하였고, 계산식 1 및 2에 의해 종횡비 및 구형화도를 도출함.2), 3) Analysis of particle formation by image processing-converting into binary image and quantifying the degree of spherical shape of individual particles-using the same apparatus, and calculating the aspect ratio and the degree of sphericity by Equations 1 and 2.
상기 표 1에 의하면, 실시예 1 및 2에 따른 열가소성 고분자 입자는 종횡비 및 구형화도가 1에 가까운 값으로 측정되어 구형에 가까운 형상을 가지며, 이에 비하여 비교예 1에 따른 열가소성 고분자 입자는 종횡비 및 구형화도가 1과는 다소 차이가 있는 값으로 측정되어 구형에 가까운 형상을 가지지 못하였다.According to Table 1, the thermoplastic polymer particles according to Examples 1 and 2 have a shape close to a sphere by measuring the aspect ratio and the sphericity degree close to 1, whereas the thermoplastic polymer particles according to Comparative Example 1 have an aspect ratio and a sphere shape. The degree of saturation was slightly different from 1, so it did not have a near-spherical shape.
비교예 1과 같이 종래의 냉동 분쇄 방식으로 제조된 열가소성 고분자 입자는 종횡비 및 구형화도가 구형에 가까운 수준을 만족하지 못하여, 추후에 열가소성 고분자 입자를 취급 시 실시예 1 및 2의 열가소성 고분자 입자에 비해 용이하지 못하다.As in Comparative Example 1, the thermoplastic polymer particles prepared by the conventional freeze-pulverization method do not satisfy the aspect ratio and the degree of sphericity close to the sphere, so that the thermoplastic polymer particles of Examples 1 and 2 when the thermoplastic polymer particles are later handled Not easy
실험예Experimental Example 2:  2: DSCDSC 분석 analysis
상기 실시예 1 및 2와 비교예 1에 따라 제조된 입자를 DSC 분석하여 하기 표 2에 나타내었다. 구체적으로, 시차주사열량계(DSC, Perkin-Elmer, DSC8000)를 이용하여 10℃/min의 승온 속도 하에서 0℃에서 200℃까지 승온하여 DSC 곡선을 얻었다. 각각의 DSC 곡선으로부터 유리전이온도(Tg), 녹는점(Tm), 냉결정화 온도 (Tcc) 및 흡열량(△H1)과 발열량(△H2)의 차이를 도출하였다.The particles prepared according to Examples 1 and 2 and Comparative Example 1 are shown in Table 2 by DSC analysis. Specifically, the DSC curve was obtained by using a differential scanning calorimeter (DSC, Perkin-Elmer, DSC8000) to increase the temperature from 0 ° C to 200 ° C at a temperature increase rate of 10 ° C / min. The difference between glass transition temperature (T g ), melting point (T m ), cold crystallization temperature (T cc ), and endothermic amount (ΔH1) and calorific value (ΔH2) was derived from each DSC curve.
Tg(℃)T g (℃) Tm(℃)T m (℃) Tcc(℃)T cc (℃) △H1-△H2(J/g)ΔH1-ΔH2 (J / g)
실시예 1Example 1 5555 140140 9898 3636
실시예 2Example 2 -37-37 136136 3434 66
비교예 1Comparative Example 1 5959 146146 -- 4242
상기 표 2에 따르면, 상기 실시예 1의 열가소성 고분자 입자는 98℃에서 냉결정화 온도 피크가 나타나며, 상기 실시예 2의 열가소성 고분자 입자는 34℃에서 냉결정화 온도 피크가 나타나는 반면에, 상기 비교예 1의 열가소성 고분자 입자는 이러한 냉결정화 온도 피크가 나타나지 않는 것을 확인할 수 있었다.According to Table 2, the thermoplastic polymer particles of Example 1 showed a cold crystallization temperature peak at 98 ℃, the thermoplastic polymer particles of Example 2 appeared a cold crystallization temperature peak at 34 ℃, Comparative Example 1 It was confirmed that the thermoplastic polymer particles of did not exhibit such a cold crystallization temperature peak.
나아가, 실시예 1의 경우에는 흡열량(△H1)과 발열량(△H2)의 차이가 약 36 J/g로 나타나며, 실시예 2의 경우에는 흡열량(△H1)과 발열량(△H2)의 차이가 약 6J/g로 나타나는 것을 확인할 수 있었다. 실시예 1과 달리 비교예 1의 경우에 흡열량(△H1)과 발열량(△H2)의 차이가 약 42J/g로 나타나는 것을 확인할 수 있었다. 이는 실시예 1의 폴리락트산 입자가 냉결정화 현상에 의해 입자가 용융되기 전에 발열하는 특성을 갖기 때문에, 상대적으로 높은 발열량을 갖는 것으로 이해된다.Further, in Example 1, the difference between the endothermic amount ΔH1 and the calorific value ΔH2 is about 36 J / g. In Example 2, the endothermic amount ΔH1 and the calorific value ΔH2 It was confirmed that the difference appeared about 6J / g. Unlike Example 1, it was confirmed that the difference between the heat absorbing amount (ΔH1) and the calorific value (ΔH2) was about 42 J / g. This is understood to have a relatively high calorific value since the polylactic acid particles of Example 1 have a property of generating heat before the particles are melted by cold crystallization.
실시예 1 및 2와 같이 열가소성 고분자 입자가 냉결정화 온도 피크를 갖는 경우, 이러한 입자를 이용하여 가열 가공을 수행하는 경우 비교예 1의 열가소성 고분자 입자의 가공 온도에 비해 저온에서 가공이 가능한 이점을 가질 수 있다.When the thermoplastic polymer particles have cold crystallization temperature peaks as in Examples 1 and 2, when the heat processing is performed using these particles, the thermoplastic polymer particles may have an advantage of being able to be processed at a low temperature compared to the processing temperature of the thermoplastic polymer particles of Comparative Example 1. Can be.
비교예Comparative example 2: 용매 중합 방식에 따른  2: according to the solvent polymerization method 폴리락트산Polylactic acid 입자의 제조 Preparation of Particles
자일렌 용매에 락트산을 넣고 교반한 다음 주석 계열의 촉매와 폴리올을 투입하여 약 140℃의 온도에서 중합하였다. 중합체를 클로로포름에 녹여서 메탄올에 침전시킨 후 이를 건조하여 최종적으로 10㎛ 크기의 폴리락트산 입자를 제조하였다.Lactic acid was added to the xylene solvent, followed by stirring. Then, a tin-based catalyst and a polyol were added thereto and polymerized at a temperature of about 140 ° C. The polymer was dissolved in chloroform, precipitated in methanol, and dried to prepare polylactic acid particles having a size of 10 μm.
비교예Comparative example 3: 용매 중합 방식에 따른 열가소성 폴리우레탄 입자의 제조 3: Preparation of thermoplastic polyurethane particles according to solvent polymerization method
디메틸포름아미드 용매에 에스테르 또는 에테르 계열의 폴리올을 넣고 교반한 다음 디이소시아네이트를 투입하여 프리폴리머를 합성하였다. 이 후에, 80℃의 온도에서 반응성 단분자인 디올 또는 디아민 계열의 사슬연장제를 넣어 최종적으로 400㎛ 크기의 열가소성 폴리우레탄 입자를 제조하였다.Prepolymer was synthesized by adding an ester or ether-based polyol to a dimethylformamide solvent, followed by diisocyanate. Subsequently, at a temperature of 80 ° C., a reactive monomolecular diol or diamine-based chain extender was added to finally prepare a thermoplastic polyurethane particle having a size of 400 μm.
실험예Experimental Example 3: 입자 내 불순물 분석 3: Impurity Analysis in Particles
상기 실시예 1과 비교예 2 및 3에 따라 제조된 입자의 불순물 함량을 분석하여 하기 표 3에 나타내었다. 구체적으로, 입자 내의 잔류 용매는 GC/FID 장치(제조사: Agilent, 모델명: 7890A)를 통해 측정되었으며, 입자 내의 중금속은 ICP/MS 장치(제조사: Perkinelmer, 모델명: Nexion300)를 통해 측정되었다. 하기 표 3의 불순물 함량은 입자 내의 잔류 용매의 함량과 중금속의 함량을 합한 값이다.The impurity content of the particles prepared according to Example 1 and Comparative Examples 2 and 3 is shown in Table 3 below. Specifically, the residual solvent in the particles was measured through a GC / FID apparatus (manufacturer: Agilent, model name: 7890A), and the heavy metals in the particles were measured by an ICP / MS apparatus (manufacturer: Perkinelmer, model name: Nexion300). The impurity content of Table 3 is the sum of the content of the residual solvent and the content of heavy metals in the particles.
불순물의 함량(ppm)Impurity Content (ppm)
실시예 1Example 1 33
비교예 2Comparative Example 2 6161
비교예 3Comparative Example 3 5353
상기 표 3에 따르면, 비교예 2 및 3의 입자는 입자의 제조 시 용매가 사용되기 때문에 입자 내의 잔류 용매 등으로 인하여 실시예 1의 입자와 대비하여 현저하게 높은 함량의 불순물이 확인되었다. 이와 달리, 실시예 1의 입자는 입자의 제조 과정에서 장치로부터 유입되는 미량의 불순물을 제외한 잔류 용매 등의 불순물은 거의 존재하지 않았다.According to Table 3, the particles of Comparative Examples 2 and 3 have a significantly higher content of impurities compared to the particles of Example 1 due to the residual solvent in the particles because the solvent is used in the preparation of the particles. On the contrary, the particles of Example 1 contained little impurities such as a residual solvent except for a small amount of impurities introduced from the apparatus during the preparation of the particles.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention will fall within the scope of the present invention, and the specific scope of protection of the present invention will be clarified by the appended claims.
[부호의 설명][Description of the code]
d: 평행한 두 접평면의 수직 거리d: vertical distance of two parallel tangent planes
A: 면적A: Area
10: 노즐10: nozzle
20: 제2 공기 흐름20: second air flow
30: 열가소성 고분자 수지 흐름30: thermoplastic polymer resin flow
40: 제1 공기 흐름40: first air flow

Claims (6)

  1. 하기 계산식 1에 의해 계산된 종횡비가 1.00 이상 1.05 미만이고,The aspect ratio calculated by the following formula 1 is not less than 1.00 and less than 1.05,
    하기 계산식 2에 의해 계산된 구형화도가 0.95 내지 1.00인 열가소성 고분자 입자.Thermoplastic polymer particles having a degree of sphericity of 0.95 to 1.00 calculated by the following Formula 2.
    [계산식 1][Calculation 1]
    종횡비(aspect ratio)=장축(major axis)/단축(minor axis)Aspect ratio = major axis / minor axis
    [계산식 2][Calculation 2]
    구형화도(roundness)=4×면적(area)/(π×장축^2)Roundness = 4 × area / (π × long axis ^ 2)
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 열가소성 고분자 입자는 열가소성 고분자 수지로부터 연속적인 매트릭스(matrix) 상으로 형성되는 것을 특징으로 하는 열가소성 고분자 입자.The thermoplastic polymer particles are thermoplastic polymer particles, characterized in that formed in a continuous matrix (matrix) phase from the thermoplastic polymer resin.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 열가소성 고분자 입자의 불순물 함량은 50ppm 이하인 것을 특징으로 하는 열가소성 고분자 입자.The impurity content of the thermoplastic polymer particles is characterized in that 50ppm or less thermoplastic polymer particles.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 열가소성 고분자 입자는 시차주사열량계(DSC, Differential Scanning Calorimetry)에 의해 10℃/min의 승온 분석으로 도출된 DSC 곡선에서 유리전이온도(Tg)와 녹는점(Tm) 사이의 온도에서 냉결정화 온도(Tcc)의 피크가 나타나는 것을 특징으로 하는 열가소성 고분자 입자.The thermoplastic polymer particles were cold crystallized at a temperature between the glass transition temperature (T g ) and the melting point (T m ) in a DSC curve derived from an elevated temperature analysis of 10 ° C./min by differential scanning calorimetry (DSC). A thermoplastic polymer particle characterized by the appearance of a peak of temperature (T cc ).
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 열가소성 고분자는 폴리락트산(PLA, Poly lactic acid), 열가소성 폴리우레탄(TPU, Thermoplastic Polyurethane), 폴리에틸렌(PE, Polyethylene), 폴리프로필렌(PP, Polypropylene), 폴리에테르술폰(PES, Polyether sulfone), 폴리메틸메타크릴레이트(PMMA, Poly(methyl methacrylate)), 에틸렌 비닐-알코올 중합체(EVOH, Ethylene Vinyl-Alcohol Copolymer) 및 이의 조합으로 이루어진 군으로부터 선택된 하나 이상의 고분자인 것을 특징으로 하는 열가소성 고분자 입자.The thermoplastic polymer is polylactic acid (PLA), thermoplastic polyurethane (TPU, Thermoplastic Polyurethane), polyethylene (PE, Polyethylene), polypropylene (PP, Polypropylene), polyether sulfone (PES, Polyether sulfone), poly Thermoplastic polymer particles, characterized in that at least one polymer selected from the group consisting of methyl methacrylate (PMMA, Poly (methyl methacrylate)), ethylene vinyl alcohol (EVOH, Ethylene Vinyl-Alcohol Copolymer) and combinations thereof.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 열가소성 고분자 입자의 입경은 1 내지 1000㎛인 것을 특징으로 하는 열가소성 고분자 입자.The thermoplastic polymer particles have a particle diameter of 1 to 1000 μm.
PCT/KR2018/002845 2017-03-09 2018-03-09 Thermoplastic polymer particles WO2018164540A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18764218.6A EP3594271A4 (en) 2017-03-09 2018-03-09 Thermoplastic polymer particles
US16/491,368 US11001677B2 (en) 2017-03-09 2018-03-09 Thermoplastic polymer particles having low impurity content
JP2019548311A JP6921460B2 (en) 2017-03-09 2018-03-09 Thermoplastic polymer particles
US17/212,095 US11542372B2 (en) 2017-03-09 2021-03-25 Thermoplastic polymer particles having a peak of cold crystallization temperature

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20170030179 2017-03-09
KR20170030178 2017-03-09
KR10-2017-0030178 2017-03-09
KR10-2017-0030179 2017-03-09
KR1020170119573A KR20180103667A (en) 2017-03-09 2017-09-18 Thermoplastic polymer particle
KR10-2017-0119573 2017-09-18
KR10-2018-0027661 2018-03-08
KR1020180027661A KR102346169B1 (en) 2017-03-09 2018-03-08 Thermoplastic polymer particle

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/491,368 A-371-Of-International US11001677B2 (en) 2017-03-09 2018-03-09 Thermoplastic polymer particles having low impurity content
US17/212,095 Continuation US11542372B2 (en) 2017-03-09 2021-03-25 Thermoplastic polymer particles having a peak of cold crystallization temperature

Publications (1)

Publication Number Publication Date
WO2018164540A1 true WO2018164540A1 (en) 2018-09-13

Family

ID=63448780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002845 WO2018164540A1 (en) 2017-03-09 2018-03-09 Thermoplastic polymer particles

Country Status (1)

Country Link
WO (1) WO2018164540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022548845A (en) * 2019-09-11 2022-11-22 エルエックス・ハウシス・リミテッド Thermoplastic polymer particles and method for producing the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007789A (en) 1998-04-23 2000-01-11 Dainippon Ink & Chem Inc Self-water dispersible particles composed of biodegradable polyester and method for producing the same
JP2000052341A (en) * 1998-08-05 2000-02-22 Nippon Pneumatic Mfg Co Ltd Raw material supply apparatus in spheroidizing treatment apparatus
KR20000073060A (en) * 1999-05-04 2000-12-05 장용균 The Processing Method for Thermoplastic Resin Sheet Manufacture
KR20010031742A (en) * 1997-11-04 2001-04-16 로르티와르 미셀 Method for impregnating a fibre or filament array with powder, in particular for producing a composite material
JP2001288273A (en) 2000-04-04 2001-10-16 Kanebo Ltd Polylactic acid-based resin powder, method for preparing it, and adhesive produced therefrom
JP2004269865A (en) 2003-02-17 2004-09-30 Daicel Chem Ind Ltd Method for producing biodegradable resin particles
KR20070068490A (en) * 2003-03-12 2007-06-29 세키스이가세이힝코교가부시키가이샤 Die for assembly, assembly apparatus, and method for producing expandable thermoplastic particles
JP2008137377A (en) * 2006-11-10 2008-06-19 Ricoh Co Ltd Manufacturing apparatus of resin fine particle, manufacturing method of resin fine particle and manufacturing method of toner
KR101292498B1 (en) * 2011-07-29 2013-08-01 이준현 Nozzle which composes vent block
US8710144B2 (en) * 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
KR20150126517A (en) * 2014-05-02 2015-11-12 (주)엘지하우시스 Microparticle for dry impregation and thermoplastic composite including the same and the preparation method thereof
KR20170030179A (en) 2015-09-09 2017-03-17 김용대 A windows having enhanced moisture absorption capability
KR20170119573A (en) 2016-04-19 2017-10-27 주식회사 엘지화학 Composite transition metal oxide precursor having high structural stability and preparing method thereof, and cathode active material using the same
KR20180027661A (en) 2016-09-05 2018-03-15 한온시스템 주식회사 Portable type air conditioning system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031742A (en) * 1997-11-04 2001-04-16 로르티와르 미셀 Method for impregnating a fibre or filament array with powder, in particular for producing a composite material
JP2000007789A (en) 1998-04-23 2000-01-11 Dainippon Ink & Chem Inc Self-water dispersible particles composed of biodegradable polyester and method for producing the same
JP2000052341A (en) * 1998-08-05 2000-02-22 Nippon Pneumatic Mfg Co Ltd Raw material supply apparatus in spheroidizing treatment apparatus
KR20000073060A (en) * 1999-05-04 2000-12-05 장용균 The Processing Method for Thermoplastic Resin Sheet Manufacture
JP2001288273A (en) 2000-04-04 2001-10-16 Kanebo Ltd Polylactic acid-based resin powder, method for preparing it, and adhesive produced therefrom
JP2004269865A (en) 2003-02-17 2004-09-30 Daicel Chem Ind Ltd Method for producing biodegradable resin particles
KR20070068490A (en) * 2003-03-12 2007-06-29 세키스이가세이힝코교가부시키가이샤 Die for assembly, assembly apparatus, and method for producing expandable thermoplastic particles
US8710144B2 (en) * 2004-03-21 2014-04-29 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
JP2008137377A (en) * 2006-11-10 2008-06-19 Ricoh Co Ltd Manufacturing apparatus of resin fine particle, manufacturing method of resin fine particle and manufacturing method of toner
KR101292498B1 (en) * 2011-07-29 2013-08-01 이준현 Nozzle which composes vent block
KR20150126517A (en) * 2014-05-02 2015-11-12 (주)엘지하우시스 Microparticle for dry impregation and thermoplastic composite including the same and the preparation method thereof
KR20170030179A (en) 2015-09-09 2017-03-17 김용대 A windows having enhanced moisture absorption capability
KR20170119573A (en) 2016-04-19 2017-10-27 주식회사 엘지화학 Composite transition metal oxide precursor having high structural stability and preparing method thereof, and cathode active material using the same
KR20180027661A (en) 2016-09-05 2018-03-15 한온시스템 주식회사 Portable type air conditioning system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594271A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022548845A (en) * 2019-09-11 2022-11-22 エルエックス・ハウシス・リミテッド Thermoplastic polymer particles and method for producing the same

Similar Documents

Publication Publication Date Title
KR102346169B1 (en) Thermoplastic polymer particle
WO2016052935A1 (en) Thermoplastic elastomer resin powder and method for preparing thermoplastic elastomer resin powder
WO2018164433A1 (en) Resin for thermoplastic polyurethane yarn using nano-silica, and method for manufacturing thermoplastic polyurethane yarn by using same
WO2018164540A1 (en) Thermoplastic polymer particles
KR102231131B1 (en) Method for preparing thermoplastic polymer particle
WO2018164541A1 (en) Method for manufacturing thermoplastic polymer particles
WO2018164542A1 (en) Polylactic acid particles and manufacturing method therefor
WO2018164539A1 (en) Thermoplastic polyurethane particles and manufacturing method therefor
KR102294373B1 (en) Poly lactic acid particles and method for preparing the same
KR102259633B1 (en) Thermoplastic polyurethane particles and method for preparing the same
WO2016052958A1 (en) Polymer powder and method for preparing same
KR102317520B1 (en) Thermoplastic polyurethane particles and method for preparing the same
WO2021071242A1 (en) Polypropylene particles, preparation method therefor, bipolar plate manufactured using same, and redox flow battery comprising same
WO2015030517A1 (en) Method for manufacturing fibrous particles of polylactic acid resin, colloid composition for forming foam sheet, foam sheet, and method for manufacturing foam sheet
WO2024071600A1 (en) Method for preparing recycled abs resin
WO2023096047A1 (en) Method for manufacturing pellet type polypropylene resin, pellet type polypropylene resin, and molded article comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764218

Country of ref document: EP

Effective date: 20191009