WO2018159356A1 - ケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサン - Google Patents
ケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサン Download PDFInfo
- Publication number
- WO2018159356A1 WO2018159356A1 PCT/JP2018/005724 JP2018005724W WO2018159356A1 WO 2018159356 A1 WO2018159356 A1 WO 2018159356A1 JP 2018005724 W JP2018005724 W JP 2018005724W WO 2018159356 A1 WO2018159356 A1 WO 2018159356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- silicon
- containing film
- carbon atoms
- forming
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/28—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/11—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
Definitions
- the present invention relates to a silicon-containing film forming composition, a silicon-containing film, a pattern forming method, and polysiloxane.
- a resist film is exposed and developed on a substrate to be processed via an organic antireflection film and a silicon-containing film, and etching is performed using the obtained resist pattern as a mask.
- the process is heavily used.
- problems such as collapse of resist patterns and reduction in etching selectivity of mask patterns.
- studies have been made on silicon-containing film materials that improve the resist pattern collapse and mask pattern etching selectivity, and methods for forming patterns on substrates using such silicon-containing film materials. (See JP 2004-310019 A and International Publication No. 2012/039337).
- the above conventional silicon-containing film cannot satisfy these requirements.
- the substrate to be processed is damaged when the silicon-containing film is removed by plasma etching with a fluorine-based gas after the silicon-containing film pattern is formed using the resist pattern as a mask. Improvement in the removability of the contained film is also required.
- the invention made to solve the above problems is a silicon-containing film-forming composition containing a polysiloxane having a group represented by the following formula (1) and a solvent.
- L is a single bond or an (n + 1) -valent organic group having 1 to 20 carbon atoms.
- E is a group represented by the following formula (2-1) or (2-2).
- N is an integer of 1 to 3.
- n is 2 or more, L is an organic group, and a plurality of E are the same or different, * is a site bonded to a silicon atom in the polysiloxane. Is shown.
- R 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
- Y 1 is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms or at least 1 A monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one hydrogen atom is substituted with an electron withdrawing group.
- R 2 is a monovalent organic group having 1 to 20 carbon atoms.
- Y 2 is a substituted or unsubstituted arenediyl group having 6 to 20 carbon atoms or a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with an electron withdrawing group.
- Another invention made to solve the above problems is a silicon-containing film formed from the silicon-containing film-forming composition.
- Still another invention made in order to solve the above-mentioned problems is a step of forming a silicon-containing film on the upper side of the substrate by coating the silicon-containing film-forming composition, and a step of forming a pattern on the silicon-containing film Is a pattern forming method.
- Still another invention made to solve the above problems is a polysiloxane having a group represented by the above formula (1).
- the composition for forming a silicon-containing film and the pattern forming method of the present invention it is possible to form a silicon-containing film that is excellent in resist pattern collapse suppression while maintaining the etching removability with a fluorine-based gas. It is possible to form a silicon-containing film that is excellent in resistance to an alkaline developer in the resist pattern forming step and excellent in releasability with alkaline hydrogen peroxide. Furthermore, the silicon-containing film forming composition of the present invention is excellent in storage stability. The silicon-containing film of the present invention is excellent in resist pattern collapse suppression while maintaining etching removability by a fluorine-based gas, and is excellent in resistance to an alkaline developer in the resist pattern forming process, and is also highly alkaline.
- the polysiloxane of the present invention can be suitably used as a polysiloxane component of the silicon-containing film forming composition. Therefore, these can be used suitably for a multilayer resist process, and can be used suitably for manufacture of a semiconductor device etc. which are expected to be further miniaturized in the future.
- the silicon-containing film forming composition includes a polysiloxane having a group represented by the formula (1) (hereinafter also referred to as “[A] polysiloxane”) and a solvent (hereinafter also referred to as “[B] solvent”). ) And.
- the silicon-containing film-forming composition may contain an optional component as long as the effects of the present invention are not impaired. Hereinafter, each component will be described.
- the polysiloxane is a polysiloxane having a group represented by the following formula (1) (hereinafter also referred to as “group (I)”).
- L is a single bond or an (n + 1) -valent organic group having 1 to 20 carbon atoms.
- E is a group represented by the following formula (2-1) or (2-2) (hereinafter also referred to as “group (II-1) or (II-2)”).
- n is an integer of 1 to 3.
- L is an organic group, and a plurality of E are the same or different. * Shows the site
- R 1 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
- Y 1 is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms or a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with an electron withdrawing group.
- R 2 is a monovalent organic group having 1 to 20 carbon atoms.
- Y 2 is a substituted or unsubstituted arenediyl group having 6 to 20 carbon atoms or a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with an electron withdrawing group.
- the silicon-containing film-forming composition contains [A] polysiloxane and [B] solvent, so that it retains etching removability with a fluorine-based gas and is excellent in resist pattern collapse suppression, A silicon-containing film having excellent resistance to an alkaline developer in the resist pattern forming step and excellent peelability with alkaline hydrogen peroxide can be formed, and storage stability is also excellent.
- the reason why the composition for forming a silicon-containing film has the above-described configuration and thus achieves the above effect is not necessarily clear, but can be inferred as follows, for example.
- [A] polysiloxane has a group (I) containing a sulfonate structure to which an electron withdrawing group or the like is bonded. Since this sulfonic acid ester structure has an electron-attracting group or the like bonded thereto, it is difficult to cleave even when heated at room temperature. Therefore, the silicon-containing film-forming composition is excellent in storage stability, and the formed silicon-containing film is excellent in resistance to an alkaline developer. Moreover, since this sulfone ester structure is cleaved by alkaline hydrogen peroxide and a sulfo group is generated, the silicon-containing film is excellent in releasability by alkaline hydrogen peroxide.
- the (n + 1) -valent organic group having 1 to 20 carbon atoms represented by L in the above formula (1) includes an (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, and the carbon-carbon of this hydrocarbon group A group ( ⁇ ) containing a divalent heteroatom-containing group in between, a group obtained by substituting part or all of the hydrogen atoms of the hydrocarbon group and the group ( ⁇ ) with a monovalent heteroatom-containing group, and the like It is done.
- Examples of the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms include an (n + 1) -valent chain hydrocarbon group having 1 to 20 carbon atoms and an (n + 1) -valent alicyclic carbon group having 3 to 20 carbon atoms. Examples thereof include a hydrogen group and an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms.
- Examples of the (n + 1) -valent chain hydrocarbon group having 1 to 20 carbon atoms include alkanes such as methane, ethane, propane, and butane, alkenes such as ethene, propene, and butene, and alkynes such as ethyne, propyne, and butyne. And a group in which 2 to 4 hydrogen atoms are removed.
- Examples of the (n + 1) valent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cycloalkanes such as cyclopentane and cyclohexane, alicyclic rings such as bridged ring saturated hydrocarbons such as norbornane, adamantane, and tricyclodecane.
- alicyclic unsaturated hydrocarbons such as cycloalkenes such as saturated hydrocarbons, cyclopentenes, cyclohexenes and the like, bridged ring unsaturated hydrocarbons such as norbornene and tricyclodecene, etc., are removed from 2 to 4 hydrogen atoms Etc.
- Examples of the (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms include 2 to 4 aromatic rings contained in an arene such as benzene, toluene, ethylbenzene, xylene, naphthalene, methylnaphthalene, anthracene, and methylanthracene.
- Examples include a hydrogen atom on the above or a group on which 2 to 4 aromatic rings and an alkyl group are removed.
- hetero atom constituting the divalent and monovalent hetero atom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- divalent heteroatom-containing group examples include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like.
- R ' is a hydrogen atom or a monovalent hydrocarbon group. Of these, —O— and —S— are preferred.
- Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group. Among these, a halogen atom is preferable, and a fluorine atom is more preferable.
- n in the above formula (1) 1 and 2 are preferable, and 1 is more preferable.
- L is preferably an (n + 1) -valent hydrocarbon group and a group containing a divalent heteroatom-containing group between carbon-carbons of this hydrocarbon group, and is an (n + 1) -valent chain hydrocarbon group or aromatic carbon group.
- a hydrogen group and a group containing a divalent heteroatom-containing group between carbon-carbons of these hydrocarbon groups are more preferable.
- L is more preferably an alkanediyl group, a group containing —O— or —S— between the carbon-carbon of the alkanediyl group, and an arenediyl group.
- L is a group containing a divalent heteroatom-containing group between carbon-carbon of the hydrocarbon group, the etching removability of the silicon-containing film with a fluorine-based gas can be further enhanced.
- Examples of the divalent organic group having 1 to 20 carbon atoms represented by R 1 in the formula (2-1) include those in which n is 1 among those exemplified as the (n + 1) valent organic group of L above. Etc.
- R 1 is preferably a single bond.
- Examples of the aryl group in the substituted or unsubstituted aryl group having 6 to 20 carbon atoms represented by Y 1 in the above formula (2-1) include, for example, a phenyl group, a benzyl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group. Groups and the like.
- Examples of the substituent for the aryl group of Y 1 include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a hydroxy group, a cyano group, a nitro group, an acyl group, an acyloxy group, a hydrocarbon group, and an oxycarbonization.
- a hydrogen group etc. are mentioned.
- a halogen atom, a cyano group, a nitro group, an acyl group, and an acyloxy group are preferable from the viewpoint of electron withdrawing property, a halogen atom is more preferable, and a fluorine atom is more preferable.
- Examples of the substituted or unsubstituted aryl group having 6 to 20 carbon atoms of Y 1 include a phenyl group, a naphthyl group, an anthryl group, a fluorophenyl group, a chlorophenyl group, a trifluorophenyl group, a pentafluorophenyl group, a fluorobenzyl group, and A difluorobenzyl group is preferred, a phenyl group, a fluorophenyl group and a fluorobenzyl group are more preferred, and a phenyl group and a fluorophenyl group are more preferred.
- electron withdrawing an electron withdrawing group
- Examples of the aliphatic hydrocarbon group in (also referred to as “substituent group-substituted aliphatic hydrocarbon group”) include, for example, the above-mentioned (1 + 1) -valent chain hydrocarbon group having 1 to 20 carbon atoms and (n + 1) carbon atoms having 3 to 20 carbon atoms. )
- the valent alicyclic hydrocarbon group a group in which one hydrogen atom is added to a divalent group in which n is 1 can be mentioned.
- Examples of the electron withdrawing group in the Y 1 electron withdrawing group-substituted aliphatic hydrocarbon group include a halogen atom, a cyano group, a nitro group, a halogenated hydrocarbon group having 1 to 10 carbon atoms, and a carbon number of 1 to 10 A group having —O—, a group having —SO— having 1 to 10 carbon atoms, a group having —SO 2 — having 1 to 10 carbon atoms, a group having —CO— having 1 to 10 carbon atoms, And groups having 1 to 10 —COO—.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- halogenated hydrocarbon group having 1 to 10 carbon atoms examples include monovalent groups such as a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, a trifluoroethyl group, a hexafluoro i-propyl group, And halogenated chain hydrocarbon groups such as pentafluoro n-propyl group and nonafluoro n-butyl group.
- Examples of the group having —O— having 1 to 10 carbon atoms include monovalent groups such as oxy hydrocarbon groups such as methoxy group, cyclohexyloxy group, and phenoxy group, hydroxy aromatic hydrocarbon groups such as hydroxyphenyl group, Examples thereof include cyclic ether groups such as a tetrahydrofuranyl group and a tetrahydropyranyl group.
- Examples of the group having —SO— having 1 to 10 carbon atoms include monovalent groups such as a sulfoxy hydrocarbon group such as a methylsulfoxy group and a phenylsulfoxy group, and a cyclic sulfoxy group such as an S-oxotetrahydrothiophenyl group. Etc.
- Examples of the group having 1 to 10 carbon atoms —SO 2 — include monovalent groups such as sulfonyl hydrocarbon groups such as methylsulfonyl group and phenylsulfonyl group, and cyclic sulfonyl groups such as S-dioxotetrahydrothiophenyl group. Etc.
- Examples of the group having -CO- having 1 to 10 carbon atoms include monovalent groups such as acyl groups such as formyl group, acetyl group and benzoyl group, cyclic ketone groups such as oxocyclohexyl group and oxoadamantyl group. It is done.
- Examples of the group having 1 to 10 carbon atoms —COO— include monovalent groups such as acyloxy groups such as formyloxy group, acetoxy group and benzoyloxy group, and carbonyloxy hydrocarbons such as methoxycarbonyl group and phenoxycarbonyl group. And a group having a lactone structure such as a butyrolactone-yl group and a norbornanelactone-yl group.
- Examples of the electron withdrawing group include a monovalent group such as a halogen atom, a cyano group, a halogenated hydrocarbon group having 1 to 10 carbon atoms, a group having —O— having 1 to 10 carbon atoms, and 1 to 10 carbon atoms.
- a group having —SO—, a group having 1 to 10 carbon atoms —SO 2 —, a group having 1 to 10 carbon atoms —CO—, and a group having 1 to 10 carbon atoms —COO— are preferred, More preferred are a fluorine atom, a chlorine atom, a cyano group, a fluorinated hydrocarbon group, an oxyhydrocarbon group, an acyl group, a carbonyloxy hydrocarbon group and a sulfonyl hydrocarbon group, a fluorine atom, a chlorine atom, a cyano group, a fluorinated alkyl group.
- an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group and an alkylsulfonyl group, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a methoxy group, an acetyl group, Group, methoxycarbonyl group and methylsulfonyl group is particularly preferred.
- the silicon-containing film formed from [A] polysiloxane is a resist pattern formed on the upper side thereof, particularly a positive electrode formed by alkali development. It is considered that the adhesion between the mold and the resist pattern is further improved, and the resist pattern collapse prevention property is further improved.
- the polysiloxane contains a fluorine atom, the etching removability by the fluorine-based gas is further improved.
- the sensitivity of the radiation sensitive resin composition in the case of using extreme ultraviolet rays (EUV) can be increased.
- EUV extreme ultraviolet rays
- Examples of the electron-withdrawing group-substituted aliphatic hydrocarbon group for Y 1 include a group represented by the following formula (4-1).
- R 4 to R 8 are each independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 18 carbon atoms, or a monovalent electron withdrawing group.
- p is 0 or 1. However, when p is 0, at least one of R 6 to R 8 is an electron withdrawing group. When p is 1, at least one of R 4 to R 8 is an electron withdrawing group.
- R 4 to R 8 are preferably a hydrogen atom, a methyl group, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a methoxy group, a methoxycarbonyl group, a methylsulfonyl group, and an acetoxy group.
- Y 1 is preferably an electron-withdrawing group-substituted aliphatic hydrocarbon group.
- Group (II-2) As the monovalent organic group having 1 to 20 carbon atoms represented by R 2 in the above formula (2-2), for example, among those exemplified as the (n + 1) valent organic group of L, n is 1. And a group obtained by adding one hydrogen atom to a divalent organic group.
- a monovalent hydrocarbon group is preferable, a monovalent chain hydrocarbon group is more preferable, an alkyl group is further preferable, and a methyl group and an ethyl group are particularly preferable.
- Examples of the arenediyl group in the substituted or unsubstituted arenediyl group represented by Y 2 in the above formula (2-2) include benzenediyl group, toluenediyl group, xylenediyl group, naphthalene A diyl group, an anthracene diyl group, etc. are mentioned. Of these, a benzenediyl group is preferred.
- Examples of the substituent of the above arenediyl group of Y 2 include those exemplified as the substituent of the aryl group of Y 1 . Among these, a halogen atom is preferable and a fluorine atom is more preferable.
- Examples of the electron-withdrawing group-substituted aliphatic hydrocarbon group for Y 2 include a group represented by the following formula (4-2).
- R 9 to R 12 are each independently a hydrogen atom, a monovalent hydrocarbon group having 1 to 18 carbon atoms, or a monovalent electron withdrawing group.
- R 13 is a single bond, a divalent hydrocarbon group having 1 to 18 carbon atoms, or a divalent electron withdrawing group.
- q is 0 or 1. However, when q is 0, at least one of R 11 to R 13 is an electron withdrawing group. When q is 1, at least one of R 9 to R 13 is an electron withdrawing group. ** represents a site bonded to —O— in the above formula (2-2).
- R 9 to R 12 are preferably a hydrogen atom, a methyl group, a fluorine atom, a chlorine atom, a trifluoromethyl group, a cyano group, a methoxy group, a methoxycarbonyl group, a methylsulfonyl group, and an acetoxy group.
- R 13 is preferably a single bond.
- Q is preferably 1.
- Y 2 is preferably a substituted or unsubstituted arenediyl group, more preferably a substituted or unsubstituted benzenediyl group, and even more preferably a benzenediyl group and a fluorobenzenediyl group.
- the polysiloxane has a first structural unit represented by the formula (3) containing the group (I) (hereinafter also referred to as “structural unit (I)”).
- structural unit (I) the polysiloxane includes a second structural unit represented by the formula (5) described later (hereinafter also referred to as “structural unit (II)”) and / or a formula (6) described later. 3) (hereinafter also referred to as “structural unit (III)”), and other than the structural units (I) to (III), as long as the effects of the present invention are not impaired.
- structural unit (III) structural unit
- the structural unit (I) is a structural unit represented by the following formula (3).
- the composition for forming a silicon-containing film has the [A] polysiloxane having the structural unit (I), so that it is resistant to an alkaline developer, resist pattern is prevented from being collapsed, peelable by alkaline hydrogen peroxide, and stored. Stability can be further improved.
- Z is said group (I).
- R 3 is a monovalent organic group having 1 to 20 carbon atoms, a hydrogen atom or a hydroxy group that does not contain —SO 2 O—.
- m is an integer of 0-2. When m is 2, two R 3 are the same or different.
- Examples of the monovalent organic group having 1 to 20 carbon atoms that does not include —SO 2 O— represented by R 3 include, for example, a monovalent organic group having 1 to 20 carbon atoms in R 2 of the above formula (2-2). Examples thereof include those similar to the organic group.
- R 3 is preferably an alkoxy group or a hydroxy group.
- M is preferably 0 or 1, more preferably 0.
- Examples of the monomer that gives the structural unit (I) include compounds represented by the following formulas (i-1-1) to (i-1-18) having the group (II-1) (hereinafter, It is assumed that “compounds (i-1-1) to (i-1-18)” have a group represented by the group (II-2) and the following formulas (i-2-1) to ( i-2-3) (hereinafter also referred to as “compounds (i-2-1) to (i-2-3)”) and the like.
- R represents a monovalent hydrocarbon group having 1 to 20 carbon atoms. It is.
- the hydrocarbon group for R is preferably an alkyl group, more preferably a methyl group or an ethyl group.
- the lower limit of the content ratio of the structural unit (I) is preferably 0.1 mol%, more preferably 1 mol%, still more preferably 2 mol%, based on all structural units constituting the [A] polysiloxane. 5 mol% is particularly preferred, and 8 mol% is even more particularly preferred. As an upper limit of the said content rate, 80 mol% is preferable, 50 mol% is more preferable, 30 mol% is further more preferable, 20 mol% is especially preferable.
- the composition for forming a silicon-containing film makes the content ratio of the structural unit (I) within the above range, so that it is resistant to an alkali developer, resist pattern collapse prevention, peelability by alkaline hydrogen peroxide, and storage stability. The property can be further improved.
- the structural unit (II) is a structural unit represented by the following formula (5).
- the etching resistance of the silicon-containing film with an oxygen-based gas can be further improved because [A] polysiloxane has the structural unit (II).
- Examples of the monomer that gives the structural unit (II) include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, and tetrahalosilanes such as tetrachlorosilane and tetrabromosilane.
- the lower limit of the content ratio of the structural unit (II) is preferably 1 mol% with respect to all the structural units constituting the [A] polysiloxane. More preferably, mol% is more preferable, 30 mol% is further more preferable, and 60 mol% is especially preferable. As an upper limit of the said content rate, 95 mol% is preferable, 90 mol% is more preferable, 85 mol% is further more preferable, 80 mol% is especially preferable.
- the composition for forming a silicon-containing film can further enhance the resistance of the silicon-containing film to an alkali developer and the etching resistance with an oxygen-based gas by setting the content ratio of the structural unit (II) in the above range.
- the structural unit (III) is a structural unit represented by the following formula (6).
- the said silicon-containing film formation composition can adjust the various characteristics of a silicon-containing film because [A] polysiloxane has structural unit (III).
- R A is a monovalent organic group having 1 to 20 carbon atoms that does not contain —SO 2 O—.
- a is 1 or 2.
- two RA are the same or different.
- Examples of the monovalent organic group having 1 to 20 carbon atoms that does not include —SO 2 O— represented by R A include monovalent organic groups having 1 to 20 carbon atoms of R 2 in the above formula (2-2). Examples are the same as those described above. Among these, a hydrocarbon group is preferable, a chain hydrocarbon group and an aromatic hydrocarbon group are more preferable, an alkyl group and an aryl group are further preferable, and a methyl group, an ethyl group, a phenyl group, and a naphthyl group are particularly preferable.
- A is preferably 1.
- Examples of the monomer that gives the structural unit (III) include methyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, cyclohexyltrichlorosilane, and the like.
- the lower limit of the content ratio of the structural unit (III) is preferably 0.1 mol% with respect to all the structural units constituting the [A] polysiloxane. 1 mol% is more preferable, 8 mol% is further more preferable, and 12 mol% is especially preferable. As an upper limit of the said content rate, 80 mol% is preferable, 50 mol% is more preferable, 40 mol% is further more preferable, 25 mol% is further especially preferable.
- the polysiloxane may have structural units other than the structural units (I) to (III) as other structural units as long as the effects of the present invention are not impaired.
- Examples of other structural units include structural units derived from silane monomers containing a plurality of silicon atoms, such as hexamethoxydisilane, bis (trimethoxysilyl) methane, polydimethoxymethylcarbosilane, and the like.
- the upper limit of the content ratio of the other structural units is preferably 10 mol%, preferably 5 mol% with respect to all structural units constituting the [A] polysiloxane. Is more preferable, 2 mol% is more preferable, and 5 mol% is particularly preferable.
- the lower limit of the content of polysiloxane is preferably 50% by mass, more preferably 80% by mass, still more preferably 90% by mass, based on the total solid content of the silicon-containing film-forming composition. Mass% is particularly preferred. As an upper limit of the said content, 100 mass% is preferable, 99 mass% is preferable, and 97 mass% is more preferable.
- the total solid content of the silicon-containing film forming composition refers to the sum of components other than [B] solvent. [A] Only 1 type of polysiloxane may be contained and 2 or more types may be contained.
- the lower limit of the weight average molecular weight (Mw) of the polysiloxane is preferably 1,000, more preferably 1,300, still more preferably 1,500, and particularly preferably 1,700.
- the upper limit of Mw is preferably 100,000, more preferably 20,000, still more preferably 7,000, and particularly preferably 3,000.
- the Mw of [A] polysiloxane in this specification uses Tosoh's GPC columns (two “G2000HXL”, one “G3000HXL” and one “G4000HXL”), flow rate: 1.0 mL / min, elution It is a value measured by gel permeation chromatography (detector: differential refractometer) using monodisperse polystyrene under the analysis conditions of solvent: tetrahydrofuran, column temperature: 40 ° C.
- Polysiloxane can be obtained by a method of hydrolyzing and condensing a hydrolyzable silane monomer corresponding to each structural unit described above. It is considered that each hydrolyzable silane monomer is incorporated into the polysiloxane regardless of the type by the hydrolytic condensation reaction, and the structural units (I) to (III) and other structural units in the synthesized [A] polysiloxane
- the content ratio of is usually equivalent to the ratio of the amount of each monomer compound used in the synthesis reaction.
- the silicon-containing film-forming composition contains a [B] solvent.
- the solvent include alcohol solvents, ketone solvents, ether solvents, ester solvents, nitrogen-containing solvents, water, and the like.
- a solvent can be used individually by 1 type or in combination of 2 or more types.
- the alcohol solvent examples include monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol and the like.
- monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol and the like.
- polyhydric alcohol solvents examples include polyhydric alcohol solvents.
- ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-butyl ketone, and cyclohexanone.
- ether solvents include ethyl ether, iso-propyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, Tetrahydrofuran etc. are mentioned.
- ester solvent examples include ethyl acetate, ⁇ -butyrolactone, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, acetic acid
- Examples include propylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethyl propionate, n-butyl propionate, methyl lactate, and ethyl lactate.
- nitrogen-containing solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
- ether solvents and ester solvents are preferable, and ether solvents and ester solvents having a glycol structure are more preferable because of excellent film-forming properties.
- ether solvents and ester solvents having a glycol structure examples include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl acetate
- examples include ether. Among these, propylene glycol monomethyl ether acetate is particularly preferable.
- the lower limit of the content of the ether solvent and the ester solvent having a glycol structure in the solvent is preferably 20% by mass, more preferably 60% by mass, still more preferably 90% by mass, and particularly preferably 100% by mass. preferable.
- the lower limit of the content of the [B] solvent in the silicon-containing film-forming composition is preferably 80% by mass, more preferably 90% by mass, and still more preferably 95% by mass.
- 99 mass% is preferable and 98 mass% is more preferable.
- the silicon-containing film-forming composition may contain optional components such as a basic compound and an acid generator.
- Examples of the basic compound include a compound having a basic amino group and a compound (base generator) that becomes a compound having a basic amino group by the action of an acid or the action of heat. More specifically, an amine compound, an amide group-containing compound as a base generator, a urea compound, a nitrogen-containing heterocyclic compound, and the like can be given.
- the silicon-containing film-forming composition contains a base compound, curing of the silicon-containing film-forming composition can be promoted, and the resulting silicon-containing film can be more peelable from an acidic liquid. Can be increased.
- Examples of the amine compound include mono (cyclo) alkylamines, di (cyclo) alkylamines, tri (cyclo) alkylamines, substituted alkylanilines or derivatives thereof, ethylenediamine, N, N, N ′, N′— Tetramethylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylamine, 2,2-bis ( 4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4- Aminophenyl) -2- (4-hydroxyphenyl) propane 1,4-bis (1- (4-aminophenyl)
- Examples of the amide group-containing compound include Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-butoxycarbonyl-2-carboxy-4-hydroxypyrrolidine, and Nt-butoxycarbonyl-2-carboxypyrrolidine.
- Nt-butoxycarbonyl group-containing amino compounds Nt-amyloxycarbonyl group-containing amino compounds such as Nt-amyloxycarbonyl-4-hydroxypiperidine, N- (9-anthrylmethyloxycarbonyl) piperidine, etc.
- N- (9-anthrylmethyloxycarbonyl) group-containing amino compounds formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, Piro Don, N- methylpyrrolidone, N- acetyl-1-adamantyl amine, and the like.
- urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea. Etc.
- nitrogen-containing heterocyclic compound examples include imidazoles, pyridines, piperazines, pyrazines, pyrazoles, pyridazines, quinosalines, purines, pyrrolidines, piperidines, piperidine ethanol, 3- (N-piperidino) -1,2-propanediol. , Morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3- (N-morpholino) -1,2-propanediol, 1,4-dimethylpiperazine, 1,4-diazabicyclo [ 2.2.2] octane and the like.
- an amide group-containing compound and a nitrogen-containing heterocyclic compound are particularly preferable.
- an Nt-butoxycarbonyl group-containing amino compound, an Nt-amyloxycarbonyl group-containing amino compound, and an N- (9-anthrylmethyloxycarbonyl) group-containing amino compound are more preferable.
- Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-butoxycarbonyl-2-carboxy-4-hydroxypyrrolidine, Nt-butoxycarbonyl-2-carboxy-pyrrolidine, Nt-amyloxycarbonyl-4 More preferred are -hydroxypiperidine and N- (9-anthrylmethyloxycarbonyl) piperidine.
- the nitrogen-containing heterocyclic compound 3- (N-piperidino) -1,2-propanediol is preferable.
- the content of the basic compound with respect to 100 parts by mass of [A] polysiloxane is preferably 0.01 parts by mass, and 0.1% by mass. More preferably, 0.5 part by mass is further preferable, and 1 part by mass is particularly preferable. As an upper limit of the said content, 20 mass parts is preferable, 10 mass parts is more preferable, and 5 mass parts is further more preferable.
- the acid generator is a compound that generates an acid upon irradiation with ultraviolet light and / or heating.
- the silicon-containing film-forming composition contains an acid generator, curing can be promoted, and as a result, the strength of the silicon-containing film can be further increased, and solvent resistance and oxygen gas etching resistance can be increased. it can.
- An acid generator can be used individually by 1 type or in combination of 2 or more types.
- Examples of the acid generator include onium salt compounds and N-sulfonyloxyimide compounds.
- onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, ammonium salts, and the like.
- Examples of the sulfonium salt include the sulfonium salts described in paragraph [0110] of JP-A-2014-037386, and more specifically, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, Examples include triphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethane sulfonate, 4-cyclohexylphenyl diphenylsulfonium trifluoromethane sulfonate, and the like.
- tetrahydrothiophenium salt examples include tetrahydrothiophenium salts described in paragraph [0111] of JP 2014-037386 A, and more specifically, 1- (4-n-butoxynaphthalene-1- Yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nonafluoro-n-butanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) And tetrahydrothiophenium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate.
- iodonium salts examples include iodonium salts described in paragraph [0112] of JP 2014-037386 A, and more specifically, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium.
- examples include 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethane sulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butane sulfonate, and the like. .
- ammonium salt examples include trimethylammonium nonafluoro-n-butanesulfonate, triethylammonium nonafluoro-n-butanesulfonate, and the like.
- N-sulfonyloxyimide compound examples include N-sulfonyloxyimide compounds described in paragraph [0113] of JP-A No. 2014-037386, and more specifically, N- (trifluoromethanesulfonyloxy) bicyclo [ 2.2.1] Hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-di Carboximide, N- (2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene- 2,3-dicarboximide and the like can be mentioned.
- the content of the acid generator with respect to 100 parts by mass of [A] polysiloxane is preferably 0.01 parts by mass, and 0.1% by mass. More preferably, 0.5 part by mass is further preferable, and 1 part by mass is particularly preferable. As an upper limit of the said content, 20 mass parts is preferable, 10 mass parts is more preferable, and 5 mass parts is further more preferable.
- the silicon-containing film-forming composition may contain other optional components in addition to the basic compound and the acid generator.
- other optional components include surfactants, radical generators, colloidal silica, colloidal alumina, and organic polymers.
- the upper limit of the content is preferably 2 parts by mass and more preferably 1 part by mass with respect to 100 parts by mass of [A] polysiloxane. .
- the method for preparing the composition for forming a silicon-containing film is not particularly limited, and for example, [A] polysiloxane, [B] solvent and optional components are mixed at a predetermined ratio, preferably, the obtained mixture
- the solution can be prepared by filtering with a filter having a pore size of 0.2 ⁇ m.
- the lower limit of the solid content concentration of the silicon-containing film forming composition is preferably 0.01% by mass, more preferably 0.05% by mass, still more preferably 0.1% by mass, and particularly preferably 0.2% by mass. preferable.
- the upper limit of the solid content concentration is preferably 20% by mass, more preferably 10% by mass, further preferably 5% by mass, and particularly preferably 3% by mass.
- the solid content concentration of the silicon-containing film-forming composition means that the mass of the solid content in the silicon-containing film-forming composition is measured by baking the silicon-containing film-forming composition at 250 ° C. for 30 minutes, It is a value (mass%) calculated by dividing the mass of this solid content by the mass of the composition for forming a silicon-containing film.
- the silicon-containing film-forming composition can be suitably used as a film-forming material in a resist process such as a silicon-containing film as an intermediate film in a multilayer resist process, and a pattern (inverted pattern) obtained through an inversion process It can also be used for applications other than the film forming material in the resist process, such as the forming material.
- the silicon-containing film obtained from the silicon-containing film-forming composition is excellent in resist pattern collapse suppression while maintaining etching removability with a fluorine-based gas, and is resistant to an alkaline developer in the resist pattern forming step. Excellent resistance and exfoliation with alkaline hydrogen peroxide. Therefore, the composition for forming a silicon-containing film can be suitably used as a material for forming a silicon-containing film as an intermediate film in a resist process, particularly a multilayer resist process.
- the multilayer resist processes it is particularly preferably used in pattern formation using a multilayer resist process in a region finer than 90 nm (ArF, ArF in immersion exposure, F 2 , EUV, nanoimprint, etc.). it can.
- the silicon-containing film forms a coating film by applying the above-mentioned composition for forming a silicon-containing film to the surface of another lower layer film such as a substrate or an organic lower layer film, and heat-treats the coating film. Then, it can be formed by curing.
- Examples of the method for applying the silicon-containing film forming composition include a spin coating method, a roll coating method, and a dip method.
- a spin coating method As a minimum of the temperature of heat processing, 50 ° C is preferred and 70 ° C is more preferred.
- As an upper limit of the said temperature 450 degreeC is preferable and 300 degreeC is more preferable.
- the lower limit of the average thickness of the formed silicon-containing film is preferably 10 nm, more preferably 20 nm.
- the upper limit of the average thickness is preferably 200 nm, and more preferably 150 nm.
- the pattern forming method includes a step of forming a silicon-containing film on the upper side of a substrate by applying the silicon-containing film-forming composition (hereinafter also referred to as “silicon-containing film forming step”), and patterning the silicon-containing film. (Hereinafter, also referred to as “silicon-containing film patterning step”).
- the silicon-containing film-forming composition described above since the silicon-containing film-forming composition described above is used, it is possible to form a silicon-containing film that is excellent in resist pattern collapse suppression while maintaining etching removability with a fluorine-based gas. In addition, it is possible to form a silicon-containing film that is excellent in resistance to an alkaline developer in the resist pattern forming step and excellent in releasability with alkaline hydrogen peroxide.
- the silicon-containing film patterning step includes a step of forming a resist pattern on the upper side of the silicon-containing film (hereinafter also referred to as “resist pattern forming step”), and a step of etching the silicon-containing film using the resist pattern as a mask. (Hereinafter also referred to as “silicon-containing film etching step”).
- the pattern forming method may further include a step of forming an organic underlayer film on the upper side of the substrate (hereinafter, also referred to as “organic underlayer film forming step”) before the silicon-containing film forming step, if necessary. Good.
- the pattern forming method may further include a step of removing the silicon-containing film (hereinafter, also referred to as “silicon-containing film removing step”) after the silicon-containing film forming step.
- the pattern forming method usually includes a step of etching a substrate (hereinafter also referred to as “substrate etching step”) using the patterned silicon-containing film as a mask after the silicon-containing film patterning step.
- substrate etching step etching a substrate
- Organic underlayer formation process In this step, an organic underlayer film is formed on the upper side of the substrate.
- an organic underlayer film forming step can be performed as necessary.
- the silicon-containing film forming step is performed after the organic underlayer film forming step, and the silicon-containing film forming composition is formed on the organic underlayer film in the silicon-containing film forming step. Is used to form a silicon-containing film.
- the substrate examples include an insulating film such as silicon oxide, silicon nitride, silicon oxynitride, and polysiloxane, a resin substrate, and the like.
- an interlayer insulating film such as a wafer covered with a low dielectric insulating film formed by “Black Diamond” from AMAT, “Silk” from Dow Chemical, “LKD5109” from JSR, or the like can be used.
- a patterned substrate such as a wiring groove (trench) or a plug groove (via) may be used.
- the organic underlayer film is different from the silicon-containing film formed from the silicon-containing film forming composition.
- the organic underlayer film has a predetermined function (for example, antireflection) that is necessary for further supplementing the function of the silicon-containing film and / or the resist film in the formation of the resist pattern, or to obtain a function that these do not have. Film, coating film flatness, and high etching resistance against fluorine-based gas).
- Examples of the organic underlayer film include an antireflection film.
- Examples of the composition for forming an antireflection film include “NFC HM8006” manufactured by JSR Corporation.
- the organic underlayer film can be formed by applying a composition for forming an organic underlayer film by a spin coating method or the like to form a coating film, followed by heating.
- a silicon-containing film is formed on the upper side of the substrate by applying the silicon-containing film-forming composition.
- a silicon-containing film is formed on the substrate directly or via another layer such as an organic underlayer film.
- the method for forming the silicon-containing film is not particularly limited.
- the coating film formed by applying the silicon-containing film-forming composition onto a substrate or the like by a known method such as a spin coating method may be exposed and / or Examples of the method include a method of curing by heating.
- Examples of the radiation used for this exposure include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and ⁇ rays, particle beams such as electron beams, molecular beams and ion beams.
- the temperature at the time of heating a coating film 90 ° C is preferred, 150 ° C is more preferred, and 200 ° C is still more preferred.
- As an upper limit of the said temperature 550 degreeC is preferable, 450 degreeC is more preferable, and 300 degreeC is further more preferable.
- As a minimum of average thickness of a silicon content film formed 1 nm is preferred, 10 nm is more preferred, and 20 nm is still more preferred.
- the upper limit of the average thickness is preferably 20,000 nm, more preferably 1,000 nm, and even more preferably 100 nm.
- ⁇ Silicon-containing film patterning process> the silicon-containing film is patterned.
- the silicon-containing film formed in the silicon-containing film forming step is patterned.
- Examples of the method for patterning the silicon-containing film include a method including a resist pattern forming step and a silicon-containing film etching step.
- resist pattern formation process In this step, a resist pattern is formed on the upper side of the silicon-containing film. By this step, a resist pattern is formed on the upper side of the silicon-containing film formed in the silicon-containing film forming step.
- Examples of the method for forming a resist pattern include conventionally known methods such as a method using a resist composition and a method using a nanoimprint lithography method. This resist pattern is usually formed from an organic material.
- a step of forming a resist film on the upper side of the silicon-containing film with the resist composition for example, a step of forming a resist film on the upper side of the silicon-containing film with the resist composition (hereinafter also referred to as “resist film forming step”), and a step of exposing the resist film (hereinafter also referred to as “development step”) may be used.
- resist film formation process In this step, a resist film is formed on the upper side of the silicon-containing film with a resist composition. By this step, a resist film is formed on the upper side of the silicon-containing film.
- the resist composition examples include a radiation-sensitive resin composition (chemically amplified resist composition) containing a polymer having an acid-dissociable group and a radiation-sensitive acid generator, an alkali-soluble resin, and a quinonediazide-based photosensitizer. And a negative resist composition containing an alkali-soluble resin and a crosslinking agent.
- a radiation sensitive resin composition is preferable.
- a positive pattern can be formed by developing with an alkali developer
- a negative pattern can be formed by developing with an organic solvent developer.
- a double patterning method, a double exposure method, or the like, which is a method for forming a fine pattern may be used as appropriate.
- the polymer contained in the radiation-sensitive resin composition includes, in addition to the structural unit containing an acid dissociable group, for example, a structural unit containing a lactone structure, a cyclic carbonate structure and / or a sultone structure, or a structural unit containing an alcoholic hydroxyl group. Further, it may have a structural unit containing a phenolic hydroxyl group, a structural unit containing a fluorine atom, or the like.
- EUV extreme ultraviolet rays
- the lower limit of the solid content concentration of the resist composition is preferably 0.1% by mass, and more preferably 1% by mass.
- As an upper limit of the said solid content concentration 50 mass% is preferable and 30 mass% is more preferable.
- As the resist composition a resist composition filtered with a filter having a pore diameter of about 0.2 ⁇ m can be suitably used. In the pattern forming method, a commercially available resist composition can be used as it is as the resist composition.
- Examples of the resist film forming method include a method of coating a resist composition on a silicon-containing film.
- Examples of the resist composition coating method include conventional methods such as a spin coating method. When applying the resist composition, the amount of the resist composition to be applied is adjusted so that the resulting resist film has a predetermined thickness.
- the resist film can be formed by volatilizing the solvent in the coating film by pre-baking the coating film of the resist composition.
- the pre-baking temperature is appropriately adjusted according to the type of resist composition to be used, and the like.
- the lower limit of the pre-baking temperature is preferably 30 ° C., more preferably 50 ° C.
- 200 degreeC is preferable and 150 degreeC is more preferable.
- the resist film is exposed. This exposure is performed by selectively irradiating radiation, for example, through a photomask.
- the radiation used for the exposure includes electromagnetic waves such as visible rays, ultraviolet rays, far ultraviolet rays, X-rays, ⁇ rays, electron beams, molecular rays, ions, depending on the type of acid generator used in the resist composition.
- electromagnetic waves such as visible rays, ultraviolet rays, far ultraviolet rays, X-rays, ⁇ rays, electron beams, molecular rays, ions, depending on the type of acid generator used in the resist composition.
- a particle beam such as a beam is appropriately selected, and among these, deep ultraviolet rays and electron beams are preferable, and KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm).
- the exposure method is not particularly limited, and can be performed in accordance with a conventionally known pattern formation method.
- the development may be alkali development or organic solvent development.
- alkali developer examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol.
- alkaline aqueous solutions in which at least one of the alkaline compounds is dissolved.
- these alkaline aqueous solutions may be those obtained by adding appropriate amounts of water-soluble organic solvents such as alcohols such as methanol and ethanol, surfactants and the like.
- organic solvent developer examples include liquids mainly composed of organic solvents such as ketone solvents, alcohol solvents, amide solvents, ether solvents, ester solvents and the like.
- organic solvents such as ketone solvents, alcohol solvents, amide solvents, ether solvents, ester solvents and the like.
- these solvents include those similar to the respective solvents exemplified as the above [B] solvent. These solvents may be used alone or in combination.
- a predetermined resist pattern corresponding to the photomask can be formed by washing and drying.
- the silicon-containing film is etched using the resist pattern as a mask. More specifically, a silicon-containing film on which a pattern is formed is obtained by one or more etchings using the resist pattern formed in the resist pattern forming step as a mask.
- the etching may be dry etching or wet etching, but is preferably dry etching.
- Dry etching can be performed using, for example, a known dry etching apparatus.
- the etching gas used for dry etching can be selected as appropriate depending on the elemental composition of the silicon-containing film to be etched, such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6, etc.
- Fluorine gas chlorine gas such as Cl 2 , BCl 3 , oxygen gas such as O 2 , O 3 , H 2 O, H 2 , NH 3 , CO, CO 2 , CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HF, HI, HBr, HCl, NO, NH 3 , reducing gases such as BCl 3 , He, N 2 , An inert gas such as Ar is used. These gases can also be mixed and used. For dry etching of a silicon-containing film, a fluorine-based gas is usually used, and a mixture of an oxygen-based gas and an inert gas is preferably used.
- the substrate is etched using the patterned silicon-containing film as a mask. More specifically, the patterned substrate is obtained by performing etching one or more times using the pattern formed on the silicon-containing film obtained in the silicon-containing film etching step as a mask.
- the organic underlayer film is formed by etching the organic underlayer film using the silicon-containing film pattern as a mask, and then the substrate is etched using the organic underlayer film pattern as a mask. Thus, a pattern is formed on the substrate.
- the etching may be dry etching or wet etching, but is preferably dry etching.
- Dry etching for forming a pattern on the organic underlayer film can be performed using a known dry etching apparatus.
- the etching gas used for the dry etching can be appropriately selected depending on the elemental composition of the gas silicon-containing film and the organic underlayer film to be etched.
- An inert gas such as He, N 2 , or Ar is used, and these gases may be used in combination.
- an oxygen-based gas is usually used for dry etching of an organic underlayer film using a silicon-containing film pattern as a mask.
- Dry etching for forming a pattern on a substrate using an organic underlayer film pattern as a mask can be performed using a known dry etching apparatus.
- the etching gas used for the dry etching can be appropriately selected depending on the elemental composition of the organic underlayer film and the substrate to be etched, and is similar to those exemplified as the etching gas used for the dry etching of the organic underlayer film.
- the silicon-containing film is removed after the silicon-containing film forming step.
- this step is performed after the substrate etching step, the silicon-containing film remaining on the upper side of the substrate is removed.
- This step can also be performed on a patterned or non-patterned silicon-containing film before the substrate etching step. That is, for example, when a defect occurs in the formation of a silicon-containing film, or when a defect occurs in the patterned silicon-containing film before the substrate etching process, this step is performed without discarding the substrate. It is possible to start again from the silicon-containing film forming step.
- Examples of the method for removing the silicon-containing film include a method of dry etching the silicon-containing film, and a method of bringing a liquid such as a basic liquid or an acidic liquid into contact with the silicon-containing film.
- a liquid such as a basic liquid or an acidic liquid.
- a basic liquid is preferable.
- the dry etching can be performed using a known dry etching apparatus. Further, as a source gas at the time of dry etching, for example, a fluorine gas such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6 , a chlorine gas such as Cl 2 , BCl 3, or the like is used. These gases can be mixed and used.
- a fluorine gas such as CHF 3 , CF 4 , C 2 F 6 , C 3 F 8 , SF 6
- a chlorine gas such as Cl 2 , BCl 3, or the like.
- the wet stripping method is not particularly limited as long as the silicon-containing film and the alkaline hydrogen peroxide solution can be in contact with each other for a certain period of time under heating conditions, for example, a silicon-containing film.
- substrate which has this in the heated alkaline hydrogen peroxide solution, the method of spraying alkaline hydrogen peroxide solution in a heating environment, the method of coating the heated alkaline hydrogen peroxide solution, etc. are mentioned. After each of these methods, the substrate may be washed with water and dried.
- the lower limit of the temperature when the silicon-containing film removing step is performed using alkaline hydrogen peroxide is preferably 40 ° C., more preferably 50 ° C.
- 90 degreeC is preferable and 80 degreeC is more preferable.
- the lower limit of the dipping time in the dipping method is preferably 0.2 minutes, and more preferably 0.5 minutes.
- the upper limit of the immersion time is preferably 30 minutes, more preferably 20 minutes, further preferably 10 minutes, and particularly preferably 5 minutes from the viewpoint of suppressing the influence on the substrate.
- Example shown below shows an example of the typical Example of this invention, and, thereby, the range of this invention is not interpreted narrowly.
- the measurement of the solid content concentration in the [A] polysiloxane solution and the measurement of the weight average molecular weight (Mw) of [A] polysiloxane in this example were performed by the following methods.
- Average thickness of film The average thickness of the film was measured using a spectroscopic ellipsometer (“M2000D” from JA WOOLLAM).
- the inside of the reaction vessel was cooled to 30 ° C. or lower.
- the alcohol produced by the reaction and excess propylene glycol monoethyl ether were removed using an evaporator, and the propylene of polysiloxane (A-1) was removed.
- a glycol monoethyl ether solution was obtained.
- the Mw of the polysiloxane (A-1) was 1,800.
- the solid content concentration of this polysiloxane (A-1) in propylene glycol monoethyl ether solution was 10.7% by mass.
- composition for forming silicon-containing film ⁇ Preparation of composition for forming silicon-containing film> Components other than [A] polysiloxane used for the preparation of the silicon-containing film-forming composition are shown below.
- B-1 Propylene glycol monomethyl ether acetate
- B-2 Propylene glycol monoethyl ether
- Example 1 [A] 2.2 parts by mass of (A-1) as a polysiloxane (solid content), 10 parts by mass of (B-1) and (B-2) 90 parts by mass of (B) as a solvent ([A] And a solvent (B-2) contained in a polysiloxane solution), and the resulting solution is filtered through a filter having a pore size of 0.2 ⁇ m to obtain a silicon-containing film-forming composition (J-1).
- A 2.2 parts by mass of (A-1) as a polysiloxane (solid content), 10 parts by mass of (B-1) and (B-2) 90 parts by mass of (B) as a solvent ([A] And a solvent (B-2) contained in a polysiloxane solution), and the resulting solution is filtered through a filter having a pore size of 0.2 ⁇ m to obtain a silicon-containing film-forming composition (J-1).
- Example 2 to 20 and Comparative Examples 1 and 2 The silicon-containing film-forming compositions (J-2) to (J-20) and (j-1) were obtained in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 2 were used. And (j-2) were prepared.
- Each of the silicon-containing film-forming compositions prepared above was coated on a silicon wafer (substrate) by a spin coating method using a spin coater (“CLEAN TRACK ACT12” manufactured by Tokyo Electron Ltd.).
- the obtained coating film was heated on a hot plate at 220 ° C. for 60 seconds, and then cooled at 23 ° C. for 60 seconds, whereby the average thickness of 35 nm shown in Examples 1 to 20 and Comparative Examples 1 and 2 in Table 2 was obtained.
- a substrate on which a silicon-containing film was formed was obtained.
- the substrate on which the silicon-containing film was formed was immersed in an aqueous 2.38 mass% tetramethylammonium hydroxide (TMAH) solution (20 to 25 ° C.) for 60 seconds and washed with water.
- TMAH tetramethylammonium hydroxide
- Film thickness change rate (%)
- the resistance to alkaline developer was evaluated as “A” (good) when the film thickness change rate was less than 1%, and “B” (bad) when the film thickness change rate was 1% or more.
- SC1 mixed liquid
- the average thickness of the film before and after immersion was measured.
- the film thickness change rate (%) due to SC1 immersion was determined by the following formula.
- Film thickness change rate (%) (S 0 ⁇ S 1 ) ⁇ 100 / S 0
- the peelability by the alkaline hydrogen peroxide solution was evaluated as “A” (good) when the rate of change in film thickness was 99% or more, and “B” (bad) when it was less than 99%.
- a radiation sensitive resin composition (“ARF AR2772JN” manufactured by JSR) is coated on the silicon-containing film by the spin coater, heat-treated at 90 ° C. for 60 seconds, and then cooled at 23 ° C. for 30 seconds. Thus, a resist film having an average thickness of 100 nm was formed.
- ArF immersion exposure apparatus (“S610C” manufactured by NIKON)
- exposure was performed through a mask having a mask size for forming a 40 nm line / 80 nm pitch under the optical conditions of NA: 1.30 and Dipole. Heat treatment is performed at 100 ° C. for 60 seconds on a “Lithius Pro-i” hot plate, cooled at 23 ° C.
- the collapse inhibition property (1) is “A” (good) when the minimum pre-collapse dimension is 32 nm or less, “B” (slightly good) when it exceeds 32 nm and 38 nm or less, and “C” when it exceeds 38 nm. "(Poor).
- the substrate for evaluation on which a resist pattern was formed was obtained by washing with water and drying.
- the exposure amount formed in a one-to-one line and space with a line width of 150 nm was determined as the optimum exposure amount.
- a scanning electron microscope (“CG-4000” manufactured by Hitachi High-Technologies Corporation) was used for measuring and observing the resist pattern on the evaluation substrate.
- the collapse inhibition property (2) was evaluated as “A” (good) when pattern collapse was not confirmed and “B” (bad) when pattern collapse was confirmed at the optimum exposure amount.
- the etching removability by the fluorine-based gas is “A” (good) when the etching rate is 60 (nm / min) or more, and “B” when the etching rate is 55 (nm / min) or more and less than 60 (nm / min). (Slightly good) and less than 55 (nm / min) were evaluated as “C” (bad).
- the silicon-containing film forming compositions of the examples are excellent in storage stability, excellent in resistance to an alkaline developer, and excellent in peelability with alkaline hydrogen peroxide, and etched with a fluorine-based gas. It is possible to form a silicon-containing film that is excellent in removability and excellent in resist pattern collapse suppression. In general, it is known that electron beam exposure shows the same tendency as in EUV exposure. Therefore, according to the composition for forming a silicon-containing film of Examples, even in the case of EUV exposure. It is presumed that the resist pattern collapse resistance is excellent.
- the composition for forming a silicon-containing film and the pattern forming method of the present invention it is possible to form a silicon-containing film that is excellent in resist pattern collapse suppression while maintaining the etching removability with a fluorine-based gas. It is possible to form a silicon-containing film that is excellent in resistance to an alkaline developer in the resist pattern forming step and excellent in releasability with alkaline hydrogen peroxide. Furthermore, the silicon-containing film forming composition of the present invention is excellent in storage stability. The silicon-containing film of the present invention is excellent in resistance to an alkali developer while maintaining etching removability by a fluorine-based gas and excellent in peelability by an alkaline hydrogen peroxide solution.
- the polysiloxane of the present invention can be suitably used as a polysiloxane component of the silicon-containing film forming composition. Therefore, these can be used suitably for a multilayer resist process, and can be used suitably for manufacture of a semiconductor device etc. which are expected to be further miniaturized in the future.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Materials For Photolithography (AREA)
Abstract
フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れるケイ素含有膜を形成することができケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサンの提供を目的とする。本発明は、下記式(1)で表される基を有するポリシロキサンと、溶媒とを含有するケイ素含有膜形成用組成物である。下記式(1)中、Lは、単結合又は炭素数1~20の(n+1)価の有機基である。Eは式(2-1)又は(2-2)で表される基である。Y1は置換若しくは非置換の炭素数6~20のアリール基又は水素原子が電子求引性基で置換された炭素数1~20の1価の脂肪族炭化水素基である。Y2は置換若しくは非置換の炭素数6~20のアレーンジイル基又は水素原子が電子求引性基で置換された炭素数1~20の2価の脂肪族炭化水素基である。
Description
本発明は、ケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサンに関する。
半導体素子等のパターン形成には、被加工基板上に有機系の反射防止膜及びケイ素含有膜を介して積層されたレジスト膜を露光・現像し、得られたレジストパターンをマスクとしてエッチングを行うレジストプロセスが多用されている。近年、レジストパターンの微細化に伴い、レジストパターンの倒壊、マスクパターンのエッチング選択性の低下等が問題となっている。ここで、従来よりレジストパターンの倒壊やマスクパターンのエッチング選択性を改善するケイ素含有膜用材料、及びこのようなケイ素含有膜用材料を用いて基板上にパターンを形成する方法の検討がなされている(特開2004-310019号公報及び国際公開第2012/039337号参照)。
しかしながら、レジストパターンの微細化が線幅40nm以下となると、上記従来のケイ素含有膜では、これらの要求を満足させることはできていない。また、レジストパターンをマスクとして、ケイ素含有膜のパターンを形成した後に、ケイ素含有膜をフッ素系ガス等によるプラズマエッチングにより除去する際に、被加工基板がダメージを受けるという問題があることから、ケイ素含有膜の除去性の向上も必要になってきている。
本発明は、以上のような事情に基づいてなされたものであり、その目的は、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れるケイ素含有膜を形成することができるケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサンを提供することにある。
上記課題を解決するためになされた発明は、下記式(1)で表される基を有するポリシロキサンと、溶媒とを含有するケイ素含有膜形成用組成物である。
(式(1)中、Lは、単結合又は炭素数1~20の(n+1)価の有機基である。Eは、下記式(2-1)又は(2-2)で表される基である。nは、1~3の整数である。nが2以上の場合、Lは有機基であり、複数のEは同一又は異なる。*は、上記ポリシロキサン中のケイ素原子に結合する部位を示す。)
(式(2-1)中、R1は、単結合又は炭素数1~20の2価の有機基である。Y1は、置換若しくは非置換の炭素数6~20のアリール基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の1価の脂肪族炭化水素基である。
式(2-2)中、R2は、炭素数1~20の1価の有機基である。Y2は、置換若しくは非置換の炭素数6~20のアレーンジイル基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の2価の脂肪族炭化水素基である。)
式(2-2)中、R2は、炭素数1~20の1価の有機基である。Y2は、置換若しくは非置換の炭素数6~20のアレーンジイル基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の2価の脂肪族炭化水素基である。)
上記課題を解決するためになされた別の発明は、当該ケイ素含有膜形成用組成物から形成されるケイ素含有膜である。
上記課題を解決するためになされたさらに別の発明は、当該ケイ素含有膜形成用組成物の塗工により基板の上側にケイ素含有膜を形成する工程と、上記ケイ素含有膜にパターンを形成する工程とを備えるパターン形成方法である。
上記課題を解決するためになされたさらに別の発明は、上記式(1)で表される基を有するポリシロキサンである。
本発明のケイ素含有膜形成用組成物及びパターン形成方法によれば、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れるケイ素含有膜を形成することができ、また、レジストパターン形成工程におけるアルカリ現像液に対する耐性に優れ、かつ、アルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができる。さらに、本発明のケイ素含有膜形成用組成物は、保存安定性にも優れている。本発明のケイ素含有膜は、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れており、また、レジストパターン形成工程におけるアルカリ現像液に対する耐性に優れ、かつ、アルカリ性過酸化水素水による剥離性に優れている。本発明のポリシロキサンは、当該ケイ素含有膜形成用組成物のポリシロキサン成分として好適に用いることができる。従って、これらは、多層レジストプロセスに好適に使用することができ、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。
以下、本発明のケイ素含有膜形成用組成物、ポリシロキサン、ケイ素含有膜及びパターン形成方法の実施形態について説明する。
<ケイ素含有膜形成用組成物>
当該ケイ素含有膜形成用組成物は、式(1)で表される基を有するポリシロキサン(以下、「[A]ポリシロキサン」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有する。当該ケイ素含有膜形成用組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。以下、各成分について説明する。
当該ケイ素含有膜形成用組成物は、式(1)で表される基を有するポリシロキサン(以下、「[A]ポリシロキサン」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有する。当該ケイ素含有膜形成用組成物は、本発明の効果を損なわない範囲において、任意成分を含有していてもよい。以下、各成分について説明する。
<[A]ポリシロキサン>
[A]ポリシロキサンは、下記式(1)で表される基(以下、「基(I)」ともいう)を有するポリシロキサンである。
[A]ポリシロキサンは、下記式(1)で表される基(以下、「基(I)」ともいう)を有するポリシロキサンである。
上記式(1)中、Lは、単結合又は炭素数1~20の(n+1)価の有機基である。Eは、下記式(2-1)又は(2-2)で表される基(以下、「基(II-1)又は(II-2)」ともいう)である。nは、1~3の整数である。nが2以上の場合、Lは有機基であり、複数のEは同一又は異なる。*は、上記ポリシロキサン中のケイ素原子に結合する部位を示す。
上記式(2-1)中、R1は、単結合又は炭素数1~20の2価の有機基である。Y1は、置換若しくは非置換の炭素数6~20のアリール基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の1価の脂肪族炭化水素基である。
上記式(2-2)中、R2は、炭素数1~20の1価の有機基である。Y2は、置換若しくは非置換の炭素数6~20のアレーンジイル基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の2価の脂肪族炭化水素基である。
上記式(2-2)中、R2は、炭素数1~20の1価の有機基である。Y2は、置換若しくは非置換の炭素数6~20のアレーンジイル基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の2価の脂肪族炭化水素基である。
当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンと[B]溶媒とを含有することで、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れ、また、レジストパターン形成工程におけるアルカリ現像液に対する耐性に優れ、かつアルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができ、さらに、保存安定性にも優れる。当該ケイ素含有膜形成用組成物が上記構成を備えることで、上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンが、電子求引性基等が結合しているスルホン酸エステル構造を含む基(I)を有している。このスルホン酸エステル構造は、電子求引性基等が結合しているので、常温でも加熱しても開裂し難い。そのため、当該ケイ素含有膜形成用組成物は保存安定性に優れ、また、形成されたケイ素含有膜はアルカリ現像液に対する耐性に優れる。また、このスルホンエステル構造はアルカリ性過酸化水素水によって開裂し、スルホ基が生じるので、ケイ素含有膜はアルカリ性過酸化水素水による剥離性に優れるものとなる。
[基(I)]
上記式(1)のLで表される炭素数1~20の(n+1)価の有機基としては、炭素数1~20の(n+1)価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基及び上記基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。
上記式(1)のLで表される炭素数1~20の(n+1)価の有機基としては、炭素数1~20の(n+1)価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基及び上記基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。
炭素数1~20の(n+1)価の炭化水素基としては、例えば炭素数1~20の(n+1)価の鎖状炭化水素基、炭素数3~20の(n+1)価の脂環式炭化水素基、炭素数6~20の(n+1)価の芳香族炭化水素基等が挙げられる。
炭素数1~20の(n+1)価の鎖状炭化水素基としては、例えば、メタン、エタン、プロパン、ブタン等のアルカン、エテン、プロペン、ブテン等のアルケン、エチン、プロピン、ブチン等のアルキンなどが有する2~4個の水素原子を除いた基等が挙げられる。
炭素数3~20の(n+1)価の脂環式炭化水素基としては、例えば、シクロペンタン、シクロヘキサン等のシクロアルカン、ノルボルナン、アダマンタン、トリシクロデカン等の橋かけ環飽和炭化水素などの脂環式飽和炭化水素、シクロペンテン、シクロヘキセン等のシクロアルケン、ノルボルネン、トリシクロデセン等の橋かけ環不飽和炭化水素などの脂環式不飽和炭化水素などが有する2~4個の水素原子を除いた基等が挙げられる。
炭素数6~20の(n+1)価の芳香族炭化水素基としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、ナフタレン、メチルナフタレン、アントラセン、メチルアントラセン等のアレーンが有する2~4個の芳香環上の水素原子又は2~4個の芳香環上及びアルキル基上の水素原子を除いた基等が挙げられる。
2価及び1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。これらの中で、-O-及び-S-が好ましい。
1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。これらの中でハロゲン原子が好ましく、フッ素原子がより好ましい。
上記式(1)のnとしては、1及び2が好ましく、1がより好ましい。
Lとしては、(n+1)価の炭化水素基及びこの炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基が好ましく、(n+1)価の鎖状炭化水素基又は芳香族炭化水素基及びこれらの炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基がより好ましい。nが1の場合、Lとしては、アルカンジイル基、アルカンジイル基の炭素-炭素間に-O-又は-S-を含む基、及びアレーンジイル基がさらに好ましく、メタンジイル基、エタンジイル基、プロパンジイル基、メタンジイルスルファニルメタンジイル基、メタンジイルスルファニルエタンジイル基、エタンジイルスルファニルエタンジイル基、プロパンジイルスルファニルメタンジイル基、プロパンジイルスルファニルエタンジイル基、メタンジイルオキシメタンジイル基、メタンジイルオキシエタンジイル基、エタンジイルオキシメタンジイル基、エタンジイルオキシエタンジイル基、プロパンジイルオキシメタンジイル基、プロパンジイルオキシエタンジイル基、及びベンゼンジイル基が特に好ましい。
Lが炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基であると、ケイ素含有膜のフッ素系ガスによるエッチング除去性をより高めることができる。
[基(II-1)]
上記式(2-1)のR1で表される炭素数1~20の2価の有機基としては、例えば上記Lの(n+1)価の有機基として例示したもののうちnが1である基等が挙げられる。
上記式(2-1)のR1で表される炭素数1~20の2価の有機基としては、例えば上記Lの(n+1)価の有機基として例示したもののうちnが1である基等が挙げられる。
R1としては、単結合が好ましい。
上記式(2-1)のY1で表される置換若しくは非置換の炭素数6~20のアリール基におけるアリール基としては、例えばフェニル基、ベンジル基、トリル基、キシリル基、ナフチル基、アントリル基等が挙げられる。
Y1の上記アリール基の置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、アシル基、アシロキシ基、炭化水素基、オキシ炭化水素基等が挙げられる。これらの中で、電子求引性の観点からハロゲン原子、シアノ基、ニトロ基、アシル基及びアシロキシ基が好ましく、ハロゲン原子がより好ましく、フッ素原子がさらに好ましい。
上記Y1の置換若しくは非置換の炭素数6~20のアリール基としては、フェニル基、ナフチル基、アントリル基、フルオロフェニル基、クロロフェニル基、トリフルオロフェニル基、ペンタフルオロフェニル基、フルオロベンジル基及びジフルオロベンジル基が好ましく、フェニル基、フルオロフェニル基及びフルオロベンジル基がより好ましく、フェニル基及びフルオロフェニル基がさらに好ましい。
上記式(2-1)のY1で表される少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の1価の脂肪族炭化水素基(以下、「電子求引性基置換脂肪族炭化水素基」ともいう)における脂肪族炭化水素基としては、例えば上記Lの炭素数1~20の(n+1)価の鎖状炭化水素基、炭素数3~20の(n+1)価の脂環式炭化水素基として例示したもののうち、nが1である2価の基に1個の水素原子を加えた基等が挙げられる。
Y1の電子求引性基置換脂肪族炭化水素基における電子求引性基としては、例えばハロゲン原子、シアノ基、ニトロ基、炭素数1~10のハロゲン化炭化水素基、炭素数1~10の-O-を有する基、炭素数1~10の-SO-を有する基、炭素数1~10の-SO2-を有する基、炭素数1~10の-CO-を有する基、炭素数1~10の-COO-を有する基等が挙げられる。
ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
炭素数1~10のハロゲン化炭化水素基としては、1価の基として、例えばフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリクロロメチル基、トリフルオロエチル基、ヘキサフルオロi-プロピル基、ペンタフルオロn-プロピル基、ノナフルオロn-ブチル基等のハロゲン化鎖状炭化水素基などが挙げられる。
炭素数1~10の-O-を有する基としては、1価の基として、例えばメトキシ基、シクロヘキシルオキシ基、フェノキシ基等のオキシ炭化水素基、ヒドロキシフェニル基等のヒドロキシ芳香族炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基等の環状エーテル基などが挙げられる。
炭素数1~10の-SO-を有する基としては、1価の基として、例えばメチルスルホキシ基、フェニルスルホキシ基等のスルホキシ炭化水素基、S-オキソテトラヒドロチオフェニル基等の環状スルホキシ基などが挙げられる。
炭素数1~10の-SO2-を有する基としては、1価の基として、例えばメチルスルホニル基、フェニルスルホニル基等のスルホニル炭化水素基、S-ジオキソテトラヒドロチオフェニル基等の環状スルホニル基などが挙げられる。
炭素数1~10の-CO-を有する基としては、1価の基として、例えばホルミル基、アセチル基、ベンゾイル基等のアシル基、オキソシクロヘキシル基、オキソアダマンチル基等の環状ケトン基などが挙げられる。
炭素数1~10の-COO-を有する基としては、1価の基として、例えばホルミルオキシ基、アセトキシ基、ベンゾイルオキシ基等のアシロキシ基、メトキシカルボニル基、フェノキシカルボニル基等のカルボニルオキシ炭化水素基、ブチロラクトン-イル基、ノルボルナンラクトン-イル基等のラクトン構造を含む基などが挙げられる。
電子求引性基としては、1価の基として、ハロゲン原子、シアノ基、炭素数1~10のハロゲン化炭化水素基、炭素数1~10の-O-を有する基、炭素数1~10の-SO-を有する基、炭素数1~10の-SO2-を有する基、炭素数1~10の-CO-を有する基及び炭素数1~10の-COO-を有する基が好ましく、フッ素原子、塩素原子、シアノ基、フッ素化炭化水素基、オキシ炭化水素基、アシル基、カルボニルオキシ炭化水素基及びスルホニル炭化水素基がより好ましく、フッ素原子、塩素原子、シアノ基、フッ素化アルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基及びアルキルスルホニル基がさらに好ましく、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、メトキシ基、アセチル基、メトキシカルボニル基及びメチルスルホニル基が特に好ましい。
基(I)中に電子求引性基等としてフッ素原子を含むと、[A]ポリシロキサンから形成されるケイ素含有膜は、その上側に形成されるレジストパターン、特にアルカリ現像により形成されたポジ型のレジストパターンとの密着性がより向上すると考えられ、レジストパターンの倒壊抑制性がより向上する。[A]ポリシロキサンがフッ素原子を含むと、フッ素系ガスによるエッチング除去性がより向上する。また、[A]ポリシロキサンがフッ素原子を含むと、極端紫外線(EUV)を用いる場合の感放射線性樹脂組成物の感度を高めることができる。
Y1の電子求引性基置換脂肪族炭化水素基としては、例えば下記式(4-1)で表される基等が挙げられる。
上記式(4-1)中、R4~R8は、それぞれ独立して、水素原子、炭素数1~18の1価の炭化水素基又は1価の電子求引性基である。pは、0又は1である。但し、pが0の場合、R6~R8のうちの少なくとも1つは電子求引性基である。pが1の場合、R4~R8のうちの少なくとも1つは電子求引性基である。
R4~R8としては、水素原子、メチル基、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、メトキシ基、メトキシカルボニル基、メチルスルホニル基及びアセトキシ基が好ましい。
Y1としては、電子求引性基置換脂肪族炭化水素基が好ましい。
[基(II-2)]
上記式(2-2)のR2で表される炭素数1~20の1価の有機基としては、例えば上記Lの(n+1)価の有機基として例示したもののうち、nが1である2価の有機基に1個の水素原子を加えた基等が挙げられる。これらの中で、1価の炭化水素基が好ましく、1価の鎖状炭化水素基がより好ましく、アルキル基がさらに好ましく、メチル基及びエチル基が特に好ましい。
上記式(2-2)のR2で表される炭素数1~20の1価の有機基としては、例えば上記Lの(n+1)価の有機基として例示したもののうち、nが1である2価の有機基に1個の水素原子を加えた基等が挙げられる。これらの中で、1価の炭化水素基が好ましく、1価の鎖状炭化水素基がより好ましく、アルキル基がさらに好ましく、メチル基及びエチル基が特に好ましい。
上記式(2-2)のY2で表される置換若しくは非置換の炭素数6~20のアレーンジイル基におけるアレーンジイル基としては、としては、例えばベンゼンジイル基、トルエンジイル基、キシレンジイル基、ナフタレンジイル基、アントラセンジイル基等が挙げられる。これらの中で、ベンゼンジイル基が好ましい。
Y2の上記アレーンジイル基の置換基としては、例えば上記Y1のアリール基の置換基として例示したもの等が挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
Y2の電子求引性基置換脂肪族炭化水素基としては、例えば下記式(4-2)で表される基等が挙げられる。
上記式(4-2)中、R9~R12は、それぞれ独立して、水素原子、炭素数1~18の1価の炭化水素基又は1価の電子求引性基である。R13は、単結合、炭素数1~18の2価の炭化水素基又は2価の電子求引性基である。qは、0又は1である。但し、qが0の場合、R11~R13のうちの少なくとも1つは電子求引性基である。qが1の場合、R9~R13のうちの少なくとも1つは電子求引性基である。**は、上記式(2-2)における-O-に結合する部位を示す。
R9~R12としては、水素原子、メチル基、フッ素原子、塩素原子、トリフルオロメチル基、シアノ基、メトキシ基、メトキシカルボニル基、メチルスルホニル基及びアセトキシ基が好ましい。
R13としては、単結合が好ましい。
qとしては、1が好ましい。
Y2としては、置換又は非置換のアレーンジイル基が好ましく、置換又は非置換のベンゼンジイル基がより好ましく、ベンゼンジイル基及びフルオロベンゼンジイル基がさらに好ましい。
[A]ポリシロキサンは、上記基(I)を含む式(3)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有している。[A]ポリシロキサンは、構造単位(I)以外に、後述する式(5)で表される第2構造単位(以下、「構造単位(II)」ともいう)及び/又は後述する式(6)で表される第3構造単位(以下、「構造単位(III)」ともいう)をさらに有することが好ましく、本発明の効果を損なわない範囲において、構造単位(I)~(III)以外のその他の構造単位を有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
構造単位(I)は、下記式(3)で表される構造単位である。当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンが構造単位(I)を有することで、アルカリ現像液に対する耐性、レジストパターンの倒壊抑制性、アルカリ性過酸化水素水による剥離性、及び保存安定性をより向上させることができる。
構造単位(I)は、下記式(3)で表される構造単位である。当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンが構造単位(I)を有することで、アルカリ現像液に対する耐性、レジストパターンの倒壊抑制性、アルカリ性過酸化水素水による剥離性、及び保存安定性をより向上させることができる。
上記式(3)中、Zは、上記基(I)である。R3は、-SO2O-を含まない炭素数1~20の1価の有機基、水素原子又はヒドロキシ基である。mは、0~2の整数である。mが2の場合、2つのR3は同一又は異なる。
R3で表される-SO2O-を含まない炭素数1~20の1価の有機基としては、例えば、上記式(2-2)のR2の炭素数1~20の1価の有機基と同様のもの等が挙げられる。
R3としては、アルコキシ基及びヒドロキシ基が好ましい。
mとしては、0及び1が好ましく、0がより好ましい。
構造単位(I)を与える単量体としては、例えば基(II-1)を有するものとして、下記式(i-1-1)~(i-1-18)で表される化合物(以下、「化合物(i-1-1)~(i-1-18)」ともいう)が、基(II-2)で表される基を有するものとして、下記式(i-2-1)~(i-2-3)で表される化合物(以下、「化合物(i-2-1)~(i-2-3)」ともいう)等が挙げられる。
上記式(i-1-1)~(i-1-18)及び(i-2-1)~(i-2-3)中、Rは、炭素数1~20の1価の炭化水素基である。
Rの炭化水素基としては、アルキル基が好ましく、メチル基及びエチル基がより好ましい。
構造単位(I)の含有割合の下限としては、[A]ポリシロキサンを構成する全構造単位に対して、0.1モル%が好ましく、1モル%がより好ましく、2モル%がさらに好ましく、5モル%が特に好ましく、8モル%がさらに特に好ましい。上記含有割合の上限としては、80モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましく、20モル%が特に好ましい。当該ケイ素含有膜形成用組成物は、構造単位(I)の含有割合を上記範囲とすることで、アルカリ現像液に対する耐性、レジストパターンの倒壊抑制性、アルカリ性過酸化水素水による剥離性及び保存安定性をさらに向上させることができる。
[構造単位(II)]
構造単位(II)は、下記式(5)で表される構造単位である。当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンが構造単位(II)を有することで、ケイ素含有膜の酸素系ガスによるエッチング耐性をより高めることができる。
構造単位(II)は、下記式(5)で表される構造単位である。当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンが構造単位(II)を有することで、ケイ素含有膜の酸素系ガスによるエッチング耐性をより高めることができる。
構造単位(II)を与える単量体としては、例えば
テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン、テトラクロロシラン、テトラブロモシラン等のテトラハロシランなどが挙げられる。
テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン、テトラクロロシラン、テトラブロモシラン等のテトラハロシランなどが挙げられる。
[A]ポリシロキサンが構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]ポリシロキサンを構成する全構造単位に対して、1モル%が好ましく、10モル%がより好ましく、30モル%がさらに好ましく、60モル%が特に好ましい。上記含有割合の上限としては、95モル%が好ましく、90モル%がより好ましく、85モル%がさらに好ましく、80モル%が特に好ましい。当該ケイ素含有膜形成用組成物は、構造単位(II)の含有割合を上記範囲とすることで、ケイ素含有膜のアルカリ現像液に対する耐性、酸素系ガスによるエッチング耐性をさらに高めることができる。
[構造単位(III)]
構造単位(III)は、下記式(6)で表される構造単位である。当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンが構造単位(III)を有することで、ケイ素含有膜の種々の特性を調整することができる。
構造単位(III)は、下記式(6)で表される構造単位である。当該ケイ素含有膜形成用組成物は、[A]ポリシロキサンが構造単位(III)を有することで、ケイ素含有膜の種々の特性を調整することができる。
上記式(6)中、RAは、-SO2O-を含まない炭素数1~20の1価の有機基である。aは、1又は2である。aが2の場合、2つのRAは同一又は異なる。
RAで表される-SO2O-を含まない炭素数1~20の1価の有機基としては、例えば上記式(2-2)のR2の炭素数1~20の1価の有機基と同様のもの等が挙げられる。これらの中で炭化水素基が好ましく、鎖状炭化水素基及び芳香族炭化水素基がより好ましく、アルキル基及びアリール基がさらに好ましく、メチル基、エチル基、フェニル基及びナフチル基が特に好ましい。
aとしては、1が好ましい。
構造単位(III)を与える単量体としては、例えばメチルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、シクロヘキシルトリクロロシラン等が挙げられる。
[A]ポリシロキサンが構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]ポリシロキサンを構成する全構造単位に対して、0.1モル%が好ましく、1モル%がより好ましく、8モル%がさらに好ましく、12モル%が特に好ましい。上記含有割合の上限としては、80モル%が好ましく、50モル%がより好ましく、40モル%がさらに好ましく、25モル%がさらに特に好ましい。
[その他の構造単位]
[A]ポリシロキサンは、本発明の効果を損なわない限り、その他の構造単位として、上記構造単位(I)~(III)以外の構造単位を有していてもよい。他の構造単位としては、例えばヘキサメトキシジシラン、ビス(トリメトキシシリル)メタン、ポリジメトキシメチルカルボシラン等の複数のケイ素原子を含むシランモノマーに由来する構造単位等が挙げられる。[A]ポリシロキサンがその他の構造単位を有する場合、その他の構造単位の含有割合の上限としては、[A]ポリシロキサンを構成する全構造単位に対して、10モル%が好ましく、5モル%がより好ましく、2モル%がさらに好ましく、5モル%が特に好ましい。
[A]ポリシロキサンは、本発明の効果を損なわない限り、その他の構造単位として、上記構造単位(I)~(III)以外の構造単位を有していてもよい。他の構造単位としては、例えばヘキサメトキシジシラン、ビス(トリメトキシシリル)メタン、ポリジメトキシメチルカルボシラン等の複数のケイ素原子を含むシランモノマーに由来する構造単位等が挙げられる。[A]ポリシロキサンがその他の構造単位を有する場合、その他の構造単位の含有割合の上限としては、[A]ポリシロキサンを構成する全構造単位に対して、10モル%が好ましく、5モル%がより好ましく、2モル%がさらに好ましく、5モル%が特に好ましい。
[A]ポリシロキサンの含有量の下限としては、当該ケイ素含有膜形成用組成物の全固形分に対して、50質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましく、95質量%が特に好ましい。上記含有量の上限としては、100質量%が好ましく、99質量%が好ましく、97質量%がより好ましい。当該ケイ素含有膜形成用組成物の全固形分とは、[B]溶媒以外の成分の総和をいう。[A]ポリシロキサンは、1種のみ含有されていてもよいし、2種以上含有されていてもよい。
[A]ポリシロキサンの重量平均分子量(Mw)の下限としては、1,000が好ましく、1,300がより好ましく、1,500がさらに好ましく、1,700が特に好ましい。上記Mwの上限としては、100,000が好ましく、20,000がより好ましく、7,000がさらに好ましく、3,000が特に好ましい。
本明細書における[A]ポリシロキサンのMwは、東ソー社のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した値である。
[A]ポリシロキサンは、上述した各構造単位に対応する加水分解性シランモノマーを加水分解縮合する方法により得ることができる。加水分解縮合反応により、各加水分解性シランモノマーは種類に関係なくポリシロキサン中に取り込まれると考えられ、合成された[A]ポリシロキサンにおける構造単位(I)~(III)及びその他の構造単位の含有割合は、合成反応に用いた各単量体化合物の使用量の割合と通常、同等になる。
<[B]溶媒>
当該ケイ素含有膜形成用組成物は、[B]溶媒を含有する。[B]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒、水等が挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
当該ケイ素含有膜形成用組成物は、[B]溶媒を含有する。[B]溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒、水等が挙げられる。[B]溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。
アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等の多価アルコール系溶媒などが挙げられる。
ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-iso-ブチルケトン、シクロヘキサノン等が挙げられる。
エーテル系溶媒としては、例えばエチルエーテル、iso-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、テトラヒドロフラン等が挙げられる。
エステル系溶媒としては、例えば酢酸エチル、γ-ブチロラクトン、酢酸n-ブチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、プロピオン酸エチル、プロピオン酸n-ブチル、乳酸メチル、乳酸エチル等が挙げられる。
含窒素系溶媒としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
これらの中でも、エーテル系溶媒及びエステル系溶媒が好ましく、成膜性に優れるため、グリコール構造を有するエーテル系溶媒及びエステル系溶媒がより好ましい。
グリコール構造を有するエーテル系溶媒及びエステル系溶媒としては、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル等が挙げられる。これらの中でも、特に、酢酸プロピレングリコールモノメチルエーテルが好ましい。
[B]溶媒中のグリコール構造を有するエーテル系溶媒及びエステル系溶媒の含有率の下限としては、20質量%が好ましく、60質量%がより好ましく、90質量%がさらに好ましく、100質量%が特に好ましい。
当該ケイ素含有膜形成用組成物における[B]溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。上記含有量の上限としては、99質量%が好ましく、98質量%がより好ましい。
<任意成分>
当該ケイ素含有膜形成用組成物は、塩基性化合物、酸発生剤等の任意成分を含有していてもよい。
当該ケイ素含有膜形成用組成物は、塩基性化合物、酸発生剤等の任意成分を含有していてもよい。
[塩基性化合物]
塩基性化合物(塩基発生剤を含む)としては、例えば塩基性アミノ基を有する化合物や、酸の作用又は熱の作用により塩基性アミノ基を有する化合物となる化合物(塩基発生剤)が挙げられる。より具体的には、アミン化合物、並びに塩基発生剤としてのアミド基含有化合物、ウレア化合物、含窒素複素環化合物などが挙げられる。当該ケイ素含有膜形成用組成物に塩基化合物が含有されている場合、当該ケイ素含有膜形成用組成物の硬化を促進することができ、また、得られるケイ素含有膜の酸性液に対する剥離性をより高めること等ができる。
塩基性化合物(塩基発生剤を含む)としては、例えば塩基性アミノ基を有する化合物や、酸の作用又は熱の作用により塩基性アミノ基を有する化合物となる化合物(塩基発生剤)が挙げられる。より具体的には、アミン化合物、並びに塩基発生剤としてのアミド基含有化合物、ウレア化合物、含窒素複素環化合物などが挙げられる。当該ケイ素含有膜形成用組成物に塩基化合物が含有されている場合、当該ケイ素含有膜形成用組成物の硬化を促進することができ、また、得られるケイ素含有膜の酸性液に対する剥離性をより高めること等ができる。
上記アミン化合物としては、例えばモノ(シクロ)アルキルアミン類、ジ(シクロ)アルキルアミン類、トリ(シクロ)アルキルアミン類、置換アルキルアニリン又はその誘導体、エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、1,3-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1-(2-ヒドロキシエチル)-2-イミダゾリジノン、2-キノキサリノール、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’N’’-ペンタメチルジエチレントリアミン等が挙げられる。
上記アミド基含有化合物としては、例えばN-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニル-2-カルボキシ-4-ヒドロキシピロリジン、N-t-ブトキシカルボニル-2-カルボキシピロリジン等のN-t-ブトキシカルボニル基含有アミノ化合物、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン等のN-t-アミロキシカルボニル基含有アミノ化合物、N-(9-アントリルメチルオキシカルボニル)ピペリジン等のN-(9-アントリルメチルオキシカルボニル)基含有アミノ化合物、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン、N-アセチル-1-アダマンチルアミン等が挙げられる。
上記ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等が挙げられる。
上記含窒素複素環化合物としては、例えばイミダゾール類、ピリジン類、ピペラジン類、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3-(N-ピペリジノ)-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1-(4-モルホリニル)エタノール、4-アセチルモルホリン、3-(N-モルホリノ)-1,2-プロパンジオール、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
本実施形態では、これらの中でも特に、アミド基含有化合物及び含窒素複素環化合物が好ましい。アミド基含有化合物としては、N-t-ブトキシカルボニル基含有アミノ化合物、N-t-アミロキシカルボニル基含有アミノ化合物、及びN-(9-アントリルメチルオキシカルボニル)基含有アミノ化合物がより好ましく、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニル-2-カルボキシ-4-ヒドロキシピロリジン、N-t-ブトキシカルボニル-2-カルボキシ-ピロリジン、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン、及びN-(9-アントリルメチルオキシカルボニル)ピペリジンがさらに好ましい。含窒素複素環化合物としては、3-(N-ピペリジノ)-1,2-プロパンジオールが好ましい。
当該ケイ素含有膜形成用組成物が塩基性化合物を含有する場合、この塩基性化合物の[A]ポリシロキサン100質量部に対する含有量としては、0.01質量部が好ましく、0.1質量%がより好ましく、0.5質量部がさらに好ましく、1質量部が特に好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましい。
[酸発生剤]
酸発生剤は、紫外光の照射及び/又は加熱により酸を発生する化合物である。当該ケイ素含有膜形成用組成物は、酸発生剤を含有すると硬化を促進することができ、その結果、ケイ素含有膜の強度をより高めることができ、溶剤耐性や酸素ガスエッチング耐性を高めることができる。酸発生剤は、1種単独で又は2種以上を組み合わせて用いることができる。
酸発生剤は、紫外光の照射及び/又は加熱により酸を発生する化合物である。当該ケイ素含有膜形成用組成物は、酸発生剤を含有すると硬化を促進することができ、その結果、ケイ素含有膜の強度をより高めることができ、溶剤耐性や酸素ガスエッチング耐性を高めることができる。酸発生剤は、1種単独で又は2種以上を組み合わせて用いることができる。
酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物等が挙げられる。
上記オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、アンモニウム塩等が挙げられる。
スルホニウム塩としては、特開2014-037386号公報の段落[0110]に記載のスルホニウム塩が挙げられ、より具体的には、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート等が挙げられる。
テトラヒドロチオフェニウム塩としては、特開2014-037386号公報の段落[0111]に記載のテトラヒドロチオフェニウム塩が挙げられ、より具体的には、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート等が挙げられる。
ヨードニウム塩としては、特開2014-037386号公報の段落[0112]に記載のヨードニウム塩が挙げられ、より具体的には、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
アンモニウム塩としては、例えばトリメチルアンモニウムノナフルオロ-n-ブタンスルホネート、トリエチルアンモニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
N-スルホニルオキシイミド化合物としては、特開2014-037386号公報の段落[0113]に記載のN-スルホニルオキシイミド化合物が挙げられ、より具体的には、N-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
当該ケイ素含有膜形成用組成物が酸発生剤を含有する場合、この酸発生剤の[A]ポリシロキサン100質量部に対する含有量としては、0.01質量部が好ましく、0.1質量%がより好ましく、0.5質量部がさらに好ましく、1質量部が特に好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましい。
当該ケイ素含有膜形成用組成物は、上記塩基性化合物及び酸発生剤以外にも、その他の任意成分を含有していてもよい。その他の任意成分としては、例えば界面活性剤、ラジカル発生剤、コロイド状シリカ、コロイド状アルミナ、有機ポリマー等が挙げられる。当該ケイ素含有膜形成用組成物がその他の任意成分を含有する場合、その含有量の上限としては、[A]ポリシロキサン100質量部に対して、2質量部が好ましく、1質量部がより好ましい。
<ケイ素含有膜形成用組成物の調製方法>
当該ケイ素含有膜形成用組成物の調製方法は特に限定されず、例えば[A]ポリシロキサン、[B]溶媒及び必要に応じて任意成分を所定の割合で混合し、好ましくは、得られた混合溶液を孔径0.2μmのフィルターでろ過することにより調製することができる。
当該ケイ素含有膜形成用組成物の調製方法は特に限定されず、例えば[A]ポリシロキサン、[B]溶媒及び必要に応じて任意成分を所定の割合で混合し、好ましくは、得られた混合溶液を孔径0.2μmのフィルターでろ過することにより調製することができる。
当該ケイ素含有膜形成用組成物の固形分濃度の下限としては、0.01質量%が好ましく、0.05質量%がより好ましく、0.1質量%がさらに好ましく、0.2質量%が特に好ましい。上記固形分濃度の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましく、3質量%が特に好ましい。当該ケイ素含有膜形成用組成物の固形分濃度とは、ケイ素含有膜形成用組成物を250℃で30分間焼成することで、ケイ素含有膜形成用組成物中の固形分の質量を測定し、この固形分の質量をケイ素含有膜形成用組成物の質量で除することにより算出される値(質量%)である。
当該ケイ素含有膜形成用組成物は、多層レジストプロセスにおける中間膜としてのケイ素含有膜などのレジストプロセスにおける膜形成材料として好適に用いることができ、また、反転プロセスを経て得られるパターン(反転パターン)の形成材料など、レジストプロセスにおける膜形成材料以外の用途にも用いることができる。
<ケイ素含有膜>
当該ケイ素含有膜形成用組成物から得られるケイ素含有膜は、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れており、また、レジストパターン形成工程におけるアルカリ現像液に対する耐性に優れ、かつ、アルカリ性過酸化水素水による剥離性に優れている。従って、当該ケイ素含有膜形成用組成物は、レジストプロセス、特に多層レジストプロセスにおける中間膜としてのケイ素含有膜を形成するための材料として好適に用いることができる。また、多層レジストプロセスの中でも、90nmよりも微細な領域(ArF、液浸露光でのArF、F2、EUV、ナノインプリント等)での多層レジストプロセスを用いたパターン形成において、特に好適に用いることができる。
当該ケイ素含有膜形成用組成物から得られるケイ素含有膜は、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れており、また、レジストパターン形成工程におけるアルカリ現像液に対する耐性に優れ、かつ、アルカリ性過酸化水素水による剥離性に優れている。従って、当該ケイ素含有膜形成用組成物は、レジストプロセス、特に多層レジストプロセスにおける中間膜としてのケイ素含有膜を形成するための材料として好適に用いることができる。また、多層レジストプロセスの中でも、90nmよりも微細な領域(ArF、液浸露光でのArF、F2、EUV、ナノインプリント等)での多層レジストプロセスを用いたパターン形成において、特に好適に用いることができる。
上記ケイ素含有膜は、上述の当該ケイ素含有膜形成用組成物を、基板、有機下層膜等の他の下層膜などの表面に塗工することにより塗膜を形成し、この塗膜を加熱処理し、硬化させることにより形成することができる。
当該ケイ素含有膜形成用組成物を塗工する方法としては、例えば回転塗工法、ロールコート法、ディップ法等が挙げられる。加熱処理の温度の下限としては、50℃が好ましく、70℃がより好ましい。上記温度の上限としては、450℃が好ましく、300℃がより好ましい。形成されるケイ素含有膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、200nmが好ましく、150nmがより好ましい。
<パターン形成方法>
当該パターン形成方法は、当該ケイ素含有膜形成用組成物の塗工により基板の上側にケイ素含有膜を形成する工程(以下、「ケイ素含有膜形成工程」ともいう)と、上記ケイ素含有膜をパターン化する工程(以下、「ケイ素含有膜パターン化工程」ともいう)とを備える。
当該パターン形成方法は、当該ケイ素含有膜形成用組成物の塗工により基板の上側にケイ素含有膜を形成する工程(以下、「ケイ素含有膜形成工程」ともいう)と、上記ケイ素含有膜をパターン化する工程(以下、「ケイ素含有膜パターン化工程」ともいう)とを備える。
当該パターン形成方法によれば、上述の当該ケイ素含有膜形成用組成物を用いるので、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れるケイ素含有膜を形成することができ、また、レジストパターン形成工程におけるアルカリ現像液に対する耐性に優れ、かつ、アルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができる。
上記ケイ素含有膜パターン化工程は、上記ケイ素含有膜の上側にレジストパターンを形成する工程(以下、「レジストパターン形成工程」ともいう)と、上記レジストパターンをマスクとして上記ケイ素含有膜をエッチングする工程(以下、「ケイ素含有膜エッチング工程」ともいう)とを備えていてもよい。
当該パターン形成方法は、必要に応じて、上記ケイ素含有膜形成工程前に、基板の上側に有機下層膜を形成する工程(以下、「有機下層膜形成工程」ともいう)をさらに備えていてもよい。また、当該パターン形成方法は、上記ケイ素含有膜形成工程後に、上記ケイ素含有膜を除去する工程(以下、「ケイ素含有膜除去工程」ともいう)をさらに備えていてもよい。当該パターン形成方法は、通常、上記ケイ素含有膜パターン化工程後に、パターン化されたケイ素含有膜をマスクとして、基板をエッチングする工程(以下、「基板エッチング工程」ともいう)を備える。以下、各工程について説明する。
<有機下層膜形成工程>
本工程では、基板の上側に有機下層膜を形成する。当該パターン形成方法では、必要に応じて、有機下層膜形成工程を行うことができる。
本工程では、基板の上側に有機下層膜を形成する。当該パターン形成方法では、必要に応じて、有機下層膜形成工程を行うことができる。
当該パターン形成方法において、有機下層膜形成工程を行う場合、有機下層膜形成工程後に、ケイ素含有膜形成工程を行い、ケイ素含有膜形成工程において、有機下層膜上に当該ケイ素含有膜形成用組成物を用いてケイ素含有膜を形成する。
上記基板としては、例えば酸化シリコン、窒化シリコン、酸窒化シリコン、ポリシロキサン等の絶縁膜、樹脂基板等が挙げられる。例えば、AMAT社の「ブラックダイヤモンド」、ダウケミカル社の「シルク」、JSR社の「LKD5109」等により形成される低誘電体絶縁膜で被覆したウェハ等の層間絶縁膜を使用することができる。この基板としては配線溝(トレンチ)、プラグ溝(ビア)等のパターン化された基板を用いてもよい。
上記有機下層膜は、当該ケイ素含有膜形成用組成物から形成されるケイ素含有膜とは異なるものである。有機下層膜は、レジストパターン形成において、ケイ素含有膜及び/又はレジスト膜が有する機能をさらに補ったり、これらが有していない機能を得るために、必要とされる所定の機能(例えば、反射防止性、塗布膜平坦性、フッ素系ガスに対する高エッチング耐性)を付与したりする膜のことである。
有機下層膜としては、例えば反射防止膜等が挙げられる。反射防止膜形成用組成物としては、例えばJSR社の「NFC HM8006」等が挙げられる。
有機下層膜は、有機下層膜形成用組成物を回転塗工法等により塗布して塗膜を形成した後、加熱することにより形成することができる。
<ケイ素含有膜形成工程>
本工程では、当該ケイ素含有膜形成用組成物の塗工により、基板の上側にケイ素含有膜を形成する。本工程により、基板上に直接又は有機下層膜等の他の層を介してケイ素含有膜が形成される。
本工程では、当該ケイ素含有膜形成用組成物の塗工により、基板の上側にケイ素含有膜を形成する。本工程により、基板上に直接又は有機下層膜等の他の層を介してケイ素含有膜が形成される。
ケイ素含有膜の形成方法は特に限定されないが、例えば回転塗工法等の公知の方法により当該ケイ素含有膜形成用組成物を基板上等に塗工して形成された塗膜を、露光及び/又は加熱することにより硬化させて形成する方法等が挙げられる。
この露光に用いられる放射線としては、例えば可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。
塗膜を加熱する際の温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。上記温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。形成されるケイ素含有膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましい。上記平均厚みの上限としては、20,000nmが好ましく、1,000nmがより好ましく、100nmがさらに好ましい。
<ケイ素含有膜パターン化工程>
本工程では、上記ケイ素含有膜をパターン化する。本工程により、ケイ素含有膜形成工程で形成されたケイ素含有膜がパターニングされる。ケイ素含有膜をパターン化する方法としては、例えばレジストパターン形成工程及びケイ素含有膜エッチング工程を備える方法等が挙げられる。
本工程では、上記ケイ素含有膜をパターン化する。本工程により、ケイ素含有膜形成工程で形成されたケイ素含有膜がパターニングされる。ケイ素含有膜をパターン化する方法としては、例えばレジストパターン形成工程及びケイ素含有膜エッチング工程を備える方法等が挙げられる。
[レジストパターン形成工程]
本工程では、上記ケイ素含有膜の上側にレジストパターンを形成する。本工程により、ケイ素含有膜形成工程で形成されたケイ素含有膜の上側にレジストパターンが形成される。レジストパターンを形成する方法としては、例えばレジスト組成物を用いる方法、ナノインプリントリソグラフィー法を用いる方法等の従来公知の方法などが挙げられる。このレジストパターンは、通常、有機材料から形成される。
本工程では、上記ケイ素含有膜の上側にレジストパターンを形成する。本工程により、ケイ素含有膜形成工程で形成されたケイ素含有膜の上側にレジストパターンが形成される。レジストパターンを形成する方法としては、例えばレジスト組成物を用いる方法、ナノインプリントリソグラフィー法を用いる方法等の従来公知の方法などが挙げられる。このレジストパターンは、通常、有機材料から形成される。
レジスト組成物を用いる方法としては、例えばレジスト組成物により上記ケイ素含有含有膜の上側にレジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)と、上記レジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える方法等が挙げられる。
(レジスト膜形成工程)
本工程では、レジスト組成物により上記ケイ素含有膜の上側にレジスト膜を形成する。本工程により、ケイ素含有膜の上側にレジスト膜が形成される。
本工程では、レジスト組成物により上記ケイ素含有膜の上側にレジスト膜を形成する。本工程により、ケイ素含有膜の上側にレジスト膜が形成される。
レジスト組成物としては、例えば酸解離性基を有する重合体及び感放射線性酸発生剤を含有する感放射線性樹脂組成物(化学増幅型レジスト組成物)、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤を含有するネガ型レジスト組成物等が挙げられる。これらの中で、感放射線性樹脂組成物が好ましい。感放射線性樹脂組成物を用いた場合、アルカリ現像液で現像することでポジ型パターンを形成することができ、有機溶媒現像液で現像することでネガ型パターンを形成することができる。レジストパターンの形成には、微細パターンを形成する手法であるダブルパターニング法、ダブルエクスポージャー法等を適宜用いてもよい。
感放射線性樹脂組成物に含有される重合体は、酸解離性基を含む構造単位以外にも、例えばラクトン構造、環状カーボネート構造及び/又はスルトン構造を含む構造単位、アルコール性水酸基を含む構造単位、フェノール性水酸基を含む構造単位、フッ素原子を含む構造単位等を有していてもよい。上記重合体が、フェノール性水酸基を含む構造単位及び/又はフッ素原子を含む構造単位を有すると、露光における放射線として極端紫外線(EUV)、電子線等を用いる場合の感度を向上させることができる。
レジスト組成物の固形分濃度の下限としては、0.1質量%が好ましく、1質量%が好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましい。レジスト組成物としては、孔径0.2μm程度のフィルターを用いてろ過したものを好適に用いることができる。当該パターン形成方法においては、レジスト組成物として、市販品のレジスト組成物をそのまま使用することもできる。
レジスト膜の形成方法としては、例えばレジスト組成物をケイ素含有膜上に塗工する方法等が挙げられる。レジスト組成物の塗工方法としては、例えば回転塗工法等の従来の方法などが挙げられる。レジスト組成物を塗工する際には、得られるレジスト膜が所定の膜厚となるように、塗工するレジスト組成物の量を調整する。
レジスト膜は、レジスト組成物の塗膜をプレベークすることにより、塗膜中の溶媒を揮発させて形成することができる。プレベークの温度は、使用するレジスト組成物の種類等に応じて適宜調整されるが、プレベークの温度の下限としては、30℃が好ましく、50℃がより好ましい。上記温度の上限としては、200℃が好ましく、150℃がより好ましい。
(露光工程)
本工程では、上記レジスト膜を露光する。この露光は、例えばフォトマスクを透過させることにより選択的に放射線を照射して行う。
本工程では、上記レジスト膜を露光する。この露光は、例えばフォトマスクを透過させることにより選択的に放射線を照射して行う。
露光に用いられる放射線としては、レジスト組成物に使用されている酸発生剤の種類等に応じて、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線から適切に選択されるが、これらの中で、遠紫外線及び電子線が好ましく、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、F2エキシマレーザー光(波長157nm)、Kr2エキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)、EUV(波長13nm等)及び電子線がより好ましく、ArFエキシマレーザー光、EUV及び電子線がさらに好ましい。また、露光の方法についても特に限定されず、従来公知のパターン形成において行われる方法に準じて行うことができる。
(現像工程)
本工程では、上記露光されたレジスト膜を現像する。これにより、レジストパターンが形成される。
本工程では、上記露光されたレジスト膜を現像する。これにより、レジストパターンが形成される。
上記現像は、アルカリ現像でも有機溶媒現像でもよい。
アルカリ現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のアルカリ性化合物のうち少なくとも1種を溶解させたアルカリ性水溶液などが挙げられる。また、これらのアルカリ性水溶液は、例えばメタノール、エタノール等のアルコール類などの水溶性有機溶媒、界面活性剤等を適量添加したものであってもよい。
有機溶媒現像液としては、例えばケトン系溶媒、アルコール系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒等の有機溶媒を主成分とする液などが挙げられる。これらの溶媒としては、例えば上記[B]溶媒として例示したそれぞれの溶媒と同様のもの等が挙げられる。これらの溶媒は1種単独でも、複数混合して用いてもよい。
現像液で現像を行った後、好ましくは、洗浄し、乾燥することによって、フォトマスクに対応した所定のレジストパターンを形成することができる。
[ケイ素含有膜エッチング工程]
本工程では、上記レジストパターンをマスクとして、上記ケイ素含有膜をエッチングする。より具体的には、上記レジストパターン形成工程で形成されたレジストパターンをマスクとした1又は複数回のエッチングによって、パターンが形成されたケイ素含有膜を得る。
本工程では、上記レジストパターンをマスクとして、上記ケイ素含有膜をエッチングする。より具体的には、上記レジストパターン形成工程で形成されたレジストパターンをマスクとした1又は複数回のエッチングによって、パターンが形成されたケイ素含有膜を得る。
上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。
ドライエッチングは、例えば公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、エッチングされるケイ素含有膜の元素組成等により、適宜選択することができ、例えばCHF3、CF4、C2F6、C3F8、SF6等のフッ素系ガス、Cl2、BCl3等の塩素系ガス、O2、O3、H2O等の酸素系ガス、H2、NH3、CO、CO2、CH4、C2H2、C2H4、C2H6、C3H4、C3H6、C3H8、HF、HI、HBr、HCl、NO、NH3、BCl3等の還元性ガス、He、N2、Ar等の不活性ガスなどが用いられる。これらのガスは混合して用いることもできる。ケイ素含有膜のドライエッチングには、通常フッ素系ガスが用いられ、これに酸素系ガスと不活性ガスとを混合したものが好適に用いられる。
<基板エッチング工程>
本工程では、上記パターン化されたケイ素含有膜をマスクとして、基板をエッチングする。より具体的には、上記ケイ素含有膜エッチング工程で得られたケイ素含有膜に形成されたパターンをマスクとした1又は複数回のエッチングを行って、パターニングされた基板を得る。
本工程では、上記パターン化されたケイ素含有膜をマスクとして、基板をエッチングする。より具体的には、上記ケイ素含有膜エッチング工程で得られたケイ素含有膜に形成されたパターンをマスクとした1又は複数回のエッチングを行って、パターニングされた基板を得る。
基板上に有機下層膜を形成した場合には、ケイ素含有膜パターンをマスクとして有機下層膜をエッチングすることにより有機下層膜のパターンを形成した後に、この有機下層膜パターンをマスクとして基板をエッチングすることにより、基板にパターンを形成する。
上記エッチングは、ドライエッチングでもウェットエッチングでもよいが、ドライエッチングが好ましい。
有機下層膜にパターンを形成する際のドライエッチングは、公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、ガスケイ素含有膜及びエッチングされる有機下層膜の元素組成等により、適宜選択することができ、例えば、CHF3、CF4、C2F6、C3F8、SF6等のフッ素系ガス、Cl2、BCl3等の塩素系ガス、O2、O3、H2O等の酸素系ガス、H2、NH3、CO、CO2、CH4、C2H2、C2H4、C2H6、C3H4、C3H6、C3H8、HF、HI、HBr、HCl、NO、NH3、BCl3等の還元性ガス、He、N2、Ar等の不活性ガス等が用いられ、これらのガスは混合して用いることもできる。ケイ素含有膜パターンをマスクとした有機下層膜のドライエッチングには、通常、酸素系ガスが用いられる。
有機下層膜パターンをマスクとして基板にパターンを形成する際のドライエッチングは、公知のドライエッチング装置を用いて行うことができる。ドライエッチングに使用するエッチングガスとしては、有機下層膜及びエッチングされる基板の元素組成等により、適宜選択することができ、例えば上記有機下層膜のドライエッチングに用いられるエッチングガスとして例示したものと同様のエッチングガス等が挙げられる。複数回の異なるエッチングガスにより、エッチングを行ってもよい。なお、基板パターン形成工程後、基板上、レジスト下層パターン上等にケイ素含有膜が残留している場合には、後述のケイ素含有膜除去工程を行うことにより、ケイ素含有膜を除去することができる。
<ケイ素含有膜除去工程>
本工程では、上記ケイ素含有膜形成工程後に上記ケイ素含有膜を除去する。本工程が上記基板エッチング工程後に行われる場合、基板の上側に残存するケイ素含有膜が除去される。また、本工程は、上記基板エッチング工程前のパターン化された又はパターン化されていないケイ素含有膜に対して行うこともできる。すなわち、例えばケイ素含有膜の形成において不具合が生じた場合や、上記基板エッチング工程前のパターン化されたケイ素含有膜に不具合が生じた場合に、本工程を行うことにより、基板を廃棄することなく、ケイ素含有膜形成工程から再度やり直すことができる。
本工程では、上記ケイ素含有膜形成工程後に上記ケイ素含有膜を除去する。本工程が上記基板エッチング工程後に行われる場合、基板の上側に残存するケイ素含有膜が除去される。また、本工程は、上記基板エッチング工程前のパターン化された又はパターン化されていないケイ素含有膜に対して行うこともできる。すなわち、例えばケイ素含有膜の形成において不具合が生じた場合や、上記基板エッチング工程前のパターン化されたケイ素含有膜に不具合が生じた場合に、本工程を行うことにより、基板を廃棄することなく、ケイ素含有膜形成工程から再度やり直すことができる。
上記ケイ素含有膜を除去する方法としては、例えば上記ケイ素含有膜をドライエッチングする方法、上記ケイ素含有膜に塩基性液や酸性液等の液体を接触させる方法等が挙げられる。上記液体としては、塩基性液が好ましい。
上記ドライエッチングは、公知のドライエッチング装置を用いて行うことができる。また、ドライエッチング時のソースガスとしては、例えばCHF3、CF4、C2F6、C3F8、SF6等のフッ素系ガス、Cl2、BCl3等の塩素系ガス等が用いられ、これらのガスは混合して用いることができる。
上記塩基性液としては、アルカリ性過酸化水素水等が挙げられる。より具体的には、アンモニア及び過酸化水素の混合水溶液(25質量%アンモニア水溶液/30質量%過酸化水素水溶液/水=1/2/40(質量比)混合水溶液(SC1))が特に好ましい。アルカリ性過酸化水素水を用いる場合、ウェット剥離の方法としては、ケイ素含有膜とアルカリ性過酸化水素水等とが、加熱条件下で一定時間接触できる方法であれば特に限定されず、例えばケイ素含有膜を有する基板を加熱したアルカリ性過酸化水素水に浸漬する方法、加熱環境下でアルカリ性過酸化水素水を吹き付ける方法、加熱したアルカリ性過酸化水素水を塗工する方法等が挙げられる。これらの各方法の後、基板を水洗し、乾燥させるとよい。
ケイ素含有膜除去工程を、アルカリ性過酸化水素水を用いて行う場合の温度の下限としては、40℃が好ましく、50℃がより好ましい。上記温度の上限としては、90℃が好ましく、80℃がより好ましい。
浸漬する方法における浸漬時間の下限としては、0.2分が好ましく、0.5分がより好ましい。上記浸漬時間の上限としては、基板への影響を抑制する観点から、30分が好ましく、20分がより好ましく、10分がさらに好ましく、5分が特に好ましい。
以下、実施例を説明する。なお、以下に示す実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
本実施例における[A]ポリシロキサンの溶液における固形分濃度の測定、及び[A]ポリシロキサンの重量平均分子量(Mw)の測定は下記の方法により行った。
[[A]ポリシロキサンの溶液の固形分濃度]
[A]ポリシロキサンの溶液0.5gを250℃で30分間焼成することで、この溶液0.5g中の固形分の質量を測定し、[A]ポリシロキサンの溶液の固形分濃度(質量%)を算出した。
[A]ポリシロキサンの溶液0.5gを250℃で30分間焼成することで、この溶液0.5g中の固形分の質量を測定し、[A]ポリシロキサンの溶液の固形分濃度(質量%)を算出した。
[重量平均分子量(Mw)]
GPCカラム(東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
GPCカラム(東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を使用し、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(検出器:示差屈折計)により測定した。
[膜の平均厚み]
膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
<[A]ポリシロキサンの合成>
[A]ポリシロキサンの合成に用いた単量体を以下に示す。
なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味する。
[A]ポリシロキサンの合成に用いた単量体を以下に示す。
なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味する。
[合成例1](ポリシロキサン(A-1)の合成)
反応容器において、上記式(M-1)で表される化合物、上記式(M-A1)で表される化合物及び上記式(M-A2)で表される化合物をモル比率が10/75/15(モル%)となるようプロピレングリコールモノエチルエーテル62質量部に溶解し、単量体溶液を調製した。上記反応容器内を60℃とし、撹拌しながら、9.1質量%シュウ酸水溶液40質量部を20分間かけて滴下した。滴下開始を反応の開始時間とし、反応を4時間実施した。反応終了後、反応容器内を30℃以下に冷却した。冷却した反応溶液にプロピレングリコールモノエチルエーテルを52質量部加えた後、エバポレーターを用いて、反応により生成したアルコール及び余剰のプロピレングリコールモノエチルエーテルを除去して、ポリシロキサン(A-1)のプロピレングリコールモノエチルエーテル溶液を得た。ポリシロキサン(A-1)のMwは1,800であった。このポリシロキサン(A-1)のプロピレングリコールモノエチルエーテル溶液の固形分濃度は、10.7質量%であった。
反応容器において、上記式(M-1)で表される化合物、上記式(M-A1)で表される化合物及び上記式(M-A2)で表される化合物をモル比率が10/75/15(モル%)となるようプロピレングリコールモノエチルエーテル62質量部に溶解し、単量体溶液を調製した。上記反応容器内を60℃とし、撹拌しながら、9.1質量%シュウ酸水溶液40質量部を20分間かけて滴下した。滴下開始を反応の開始時間とし、反応を4時間実施した。反応終了後、反応容器内を30℃以下に冷却した。冷却した反応溶液にプロピレングリコールモノエチルエーテルを52質量部加えた後、エバポレーターを用いて、反応により生成したアルコール及び余剰のプロピレングリコールモノエチルエーテルを除去して、ポリシロキサン(A-1)のプロピレングリコールモノエチルエーテル溶液を得た。ポリシロキサン(A-1)のMwは1,800であった。このポリシロキサン(A-1)のプロピレングリコールモノエチルエーテル溶液の固形分濃度は、10.7質量%であった。
[合成例2~22](ポリシロキサン(A-2)~(A-20)並びに(a-1)及び~(a-2)の合成)
下記表1に示す種類及び使用量の各単量体を使用した以外は、合成例1と同様にして、ポリシロキサン(A-2)~(A-20)並びに(a-1)及び(a-2)のプロピレングリコールモノエチルエーテル溶液を得た。得られた[A]ポリシロキサンの溶液における[A]ポリシロキサンのMw及び固形分濃度(質量%)を表1に合わせて示す。
下記表1に示す種類及び使用量の各単量体を使用した以外は、合成例1と同様にして、ポリシロキサン(A-2)~(A-20)並びに(a-1)及び(a-2)のプロピレングリコールモノエチルエーテル溶液を得た。得られた[A]ポリシロキサンの溶液における[A]ポリシロキサンのMw及び固形分濃度(質量%)を表1に合わせて示す。
<ケイ素含有膜形成用組成物の調製>
ケイ素含有膜形成用組成物の調製に用いた[A]ポリシロキサン以外の成分を以下に示す。
ケイ素含有膜形成用組成物の調製に用いた[A]ポリシロキサン以外の成分を以下に示す。
[[B]溶媒]
B-1:酢酸プロピレングリコールモノメチルエーテル
B-2:プロピレングリコールモノエチルエーテル
B-1:酢酸プロピレングリコールモノメチルエーテル
B-2:プロピレングリコールモノエチルエーテル
[実施例1]
[A]ポリシロキサン(固形分)としての(A-1)2.2質量部と、[B]溶媒としての(B-1)10質量部及び(B-2)90質量部([A]ポリシロキサンの溶液に含まれる溶媒(B-2)も含む)とを混合し、得られた溶液を孔径0.2μmのフィルターでろ過して、ケイ素含有膜形成用組成物(J-1)を調製した。
[A]ポリシロキサン(固形分)としての(A-1)2.2質量部と、[B]溶媒としての(B-1)10質量部及び(B-2)90質量部([A]ポリシロキサンの溶液に含まれる溶媒(B-2)も含む)とを混合し、得られた溶液を孔径0.2μmのフィルターでろ過して、ケイ素含有膜形成用組成物(J-1)を調製した。
[実施例2~20並びに比較例1及び2]
下記表2に示す種類及び配合量の各成分を用いた以外は、実施例1と同様にして、ケイ素含有膜形成用組成物(J-2)~(J-20)並びに(j-1)及び(j-2)を調製した。
下記表2に示す種類及び配合量の各成分を用いた以外は、実施例1と同様にして、ケイ素含有膜形成用組成物(J-2)~(J-20)並びに(j-1)及び(j-2)を調製した。
<ケイ素含有膜の形成>
上記調製した各ケイ素含有膜形成用組成物をシリコンウェハ(基板)上に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を用い、回転塗工法により塗工した。得られた塗膜に対し、220℃のホットプレートで60秒間加熱した後、23℃で60秒間冷却することにより、表2の実施例1~20並びに比較例1及び2に示す平均厚み35nmのケイ素含有膜が形成された基板を得た。
上記調製した各ケイ素含有膜形成用組成物をシリコンウェハ(基板)上に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を用い、回転塗工法により塗工した。得られた塗膜に対し、220℃のホットプレートで60秒間加熱した後、23℃で60秒間冷却することにより、表2の実施例1~20並びに比較例1及び2に示す平均厚み35nmのケイ素含有膜が形成された基板を得た。
<評価>
上記調製したケイ素含有膜形成用組成物及び上記形成したケイ素含有膜の下記項目について下記方法により評価した。評価結果を下記表2に合わせて示す。表2中の「-」は、該当する評価を行わなかったことを示す。
上記調製したケイ素含有膜形成用組成物及び上記形成したケイ素含有膜の下記項目について下記方法により評価した。評価結果を下記表2に合わせて示す。表2中の「-」は、該当する評価を行わなかったことを示す。
[アルカリ現像液に対する耐性]
上記ケイ素含有膜が形成された基板を、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液(20~25℃)に60秒間浸漬し、水で洗浄した。浸漬前後の膜の平均厚みを測定した。
浸漬前の平均厚みをT0と、浸漬後の平均厚みをT1とした場合、TMAH水溶液浸漬による膜厚変化率(%)を下記式により求めた。
膜厚変化率(%)=|T1-T0|×100/T0
アルカリ現像液に対する耐性は、膜厚変化率が1%未満の場合は「A」(良好)と、1%以上の場合は「B」(不良)と評価した。
上記ケイ素含有膜が形成された基板を、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液(20~25℃)に60秒間浸漬し、水で洗浄した。浸漬前後の膜の平均厚みを測定した。
浸漬前の平均厚みをT0と、浸漬後の平均厚みをT1とした場合、TMAH水溶液浸漬による膜厚変化率(%)を下記式により求めた。
膜厚変化率(%)=|T1-T0|×100/T0
アルカリ現像液に対する耐性は、膜厚変化率が1%未満の場合は「A」(良好)と、1%以上の場合は「B」(不良)と評価した。
[アルカリ性過酸化水素水による剥離性]
上記ケイ素含有膜が形成された基板を、アルカリ性過酸化水素水(25質量%アンモニア水溶液/30質量%過酸化水素水溶液/水=1/2/40(質量比)の混合液(SC1)、60~65℃)に5分間浸漬し、水で洗浄した。浸漬前後の膜の平均厚みを測定した。
浸漬前の平均厚みをS0と、浸漬後の平均厚みをS1とした場合、SC1浸漬による膜厚変化率(%)を下記式により求めた。
膜厚変化率(%)=(S0-S1)×100/S0
アルカリ性過酸化水素水による剥離性は、膜厚変化率が99%以上の場合は「A」(良好)と、99%未満の場合は「B」(不良)と評価した。
上記ケイ素含有膜が形成された基板を、アルカリ性過酸化水素水(25質量%アンモニア水溶液/30質量%過酸化水素水溶液/水=1/2/40(質量比)の混合液(SC1)、60~65℃)に5分間浸漬し、水で洗浄した。浸漬前後の膜の平均厚みを測定した。
浸漬前の平均厚みをS0と、浸漬後の平均厚みをS1とした場合、SC1浸漬による膜厚変化率(%)を下記式により求めた。
膜厚変化率(%)=(S0-S1)×100/S0
アルカリ性過酸化水素水による剥離性は、膜厚変化率が99%以上の場合は「A」(良好)と、99%未満の場合は「B」(不良)と評価した。
[倒壊抑制性(1)](ArF露光におけるレジストパターンの倒壊抑制性)
12インチシリコンウェハ上に、有機下層膜形成用組成物(JSR社の「NFC HM8006」)を上記スピンコーターを用いた回転塗工法により塗工した後、250℃で60秒間加熱処理を行い、平均厚み100nmの有機下層膜を形成した。この有機下層膜上に、上記得られたケイ素含有膜形成用組成物を、上記スピンコーターを用いた回転塗工法により塗工し、220℃で60秒間加熱処理した後、23℃で60秒間冷却することにより平均厚み35nmのケイ素含有膜を形成した。次いで、感放射線性樹脂組成物(JSR社の「ARF AR2772JN」)をこのケイ素含有膜上に上記スピンコーターにより塗工し、90℃で60秒間加熱処理した後、23℃で30秒間冷却することにより平均厚み100nmのレジスト膜を形成した。
次いで、ArF液浸露光装置(NIKON社の「S610C」)を使用し、NA:1.30、Dipoleの光学条件にて、40nmライン/80nmピッチ形成用のマスクサイズのマスクを介して露光した。「Lithius Pro-i」のホットプレート上で、100℃で60秒間加熱処理を行い、23℃で30秒間冷却した後、2.38質量%TMAH水溶液を現像液として30秒間パドル現像し、水で洗浄した。2,000rpm、15秒間回転乾燥することにより、40nmライン/80nmピッチのレジストパターンが形成された評価用基板を得た。
上記評価用基板のレジストパターンの測長及び観察には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4000」)を用いた。
上記レジストパターンの形成において、段階的に露光量を増加させて順次露光を行い、レジストパターンの倒壊が確認されない最大の露光量に対応する線幅を最小倒壊前寸法(nm)と定義してレジストパターンの倒壊抑制性の指標とした。倒壊抑制性(1)は、最小倒壊前寸法が32nm以下の場合は「A」(良好)と、32nmを超え38nm以下の場合は「B」(やや良好)と、38nmを超える場合は「C」(不良)と評価した。
12インチシリコンウェハ上に、有機下層膜形成用組成物(JSR社の「NFC HM8006」)を上記スピンコーターを用いた回転塗工法により塗工した後、250℃で60秒間加熱処理を行い、平均厚み100nmの有機下層膜を形成した。この有機下層膜上に、上記得られたケイ素含有膜形成用組成物を、上記スピンコーターを用いた回転塗工法により塗工し、220℃で60秒間加熱処理した後、23℃で60秒間冷却することにより平均厚み35nmのケイ素含有膜を形成した。次いで、感放射線性樹脂組成物(JSR社の「ARF AR2772JN」)をこのケイ素含有膜上に上記スピンコーターにより塗工し、90℃で60秒間加熱処理した後、23℃で30秒間冷却することにより平均厚み100nmのレジスト膜を形成した。
次いで、ArF液浸露光装置(NIKON社の「S610C」)を使用し、NA:1.30、Dipoleの光学条件にて、40nmライン/80nmピッチ形成用のマスクサイズのマスクを介して露光した。「Lithius Pro-i」のホットプレート上で、100℃で60秒間加熱処理を行い、23℃で30秒間冷却した後、2.38質量%TMAH水溶液を現像液として30秒間パドル現像し、水で洗浄した。2,000rpm、15秒間回転乾燥することにより、40nmライン/80nmピッチのレジストパターンが形成された評価用基板を得た。
上記評価用基板のレジストパターンの測長及び観察には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4000」)を用いた。
上記レジストパターンの形成において、段階的に露光量を増加させて順次露光を行い、レジストパターンの倒壊が確認されない最大の露光量に対応する線幅を最小倒壊前寸法(nm)と定義してレジストパターンの倒壊抑制性の指標とした。倒壊抑制性(1)は、最小倒壊前寸法が32nm以下の場合は「A」(良好)と、32nmを超え38nm以下の場合は「B」(やや良好)と、38nmを超える場合は「C」(不良)と評価した。
[倒壊抑制性(2)](電子線露光におけるレジストパターンの倒壊抑制性)
8インチシリコンウェハ上に、反射防止膜形成材料(JSR社の「HM8006」)を上記スピンコーターによる回転塗工法により塗工した後、250℃で60秒間加熱を行うことにより平均厚み100nmの反射防止膜を形成した。この反射防止膜上に、ケイ素含有膜形成組成物を塗工し、220℃で60秒間加熱した後、23℃で30秒間冷却することにより平均厚み35nmのケイ素含有膜を形成した。
次いで、ケイ素含有膜上に、後述する感放射線性樹脂組成物を塗工し、130℃で60秒間加熱処理をした後、23℃で30秒間冷却することにより平均厚み50nmのレジスト膜を形成した。
上記感放射線性樹脂組成物は、4-ヒドロキシスチレンに由来する構造単位(1)、スチレンに由来する構造単位(2)及び4-t-ブトキシスチレンに由来する構造単位(3)(各構造単位の含有割合は、(1)/(2)/(3)=65/5/30(モル%))を有する重合体100質量部と、感放射線性酸発生剤としてのトリフェニルスルホニウムサリチレート2.5質量部と、溶媒としての乳酸エチル1,500質量部及び酢酸プロピレングリコールモノメチルエーテル700質量部とを混合し、得られた溶液を孔径0.2μmのフィルターでろ過することで得た。
次いで、電子線描画装置(日立製作所社の「HL800D」、出力:50KeV、電流密度:5.0アンペア/cm2)を用いてレジスト膜に電子線を照射した。電子線の照射後、基板を110℃で60秒間加熱を行い、次いで23℃で60秒間冷却した後、2.38質量%のTMAH水溶液(20~25℃)を用い、パドル法により現像した後、水で洗浄し、乾燥することにより、レジストパターンが形成された評価用基板を得た。
上記レジストパターン形成の際、線幅150nmの1対1ラインアンドスペースに形成される露光量を最適露光量とした。
上記評価用基板のレジストパターンの測長及び観察には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4000」)を用いた。
倒壊抑制性(2)は、上記最適露光量において、パターン倒壊が確認されなかった場合は「A」(良好)と、パターン倒壊が確認された場合は「B」(不良)と評価した。
8インチシリコンウェハ上に、反射防止膜形成材料(JSR社の「HM8006」)を上記スピンコーターによる回転塗工法により塗工した後、250℃で60秒間加熱を行うことにより平均厚み100nmの反射防止膜を形成した。この反射防止膜上に、ケイ素含有膜形成組成物を塗工し、220℃で60秒間加熱した後、23℃で30秒間冷却することにより平均厚み35nmのケイ素含有膜を形成した。
次いで、ケイ素含有膜上に、後述する感放射線性樹脂組成物を塗工し、130℃で60秒間加熱処理をした後、23℃で30秒間冷却することにより平均厚み50nmのレジスト膜を形成した。
上記感放射線性樹脂組成物は、4-ヒドロキシスチレンに由来する構造単位(1)、スチレンに由来する構造単位(2)及び4-t-ブトキシスチレンに由来する構造単位(3)(各構造単位の含有割合は、(1)/(2)/(3)=65/5/30(モル%))を有する重合体100質量部と、感放射線性酸発生剤としてのトリフェニルスルホニウムサリチレート2.5質量部と、溶媒としての乳酸エチル1,500質量部及び酢酸プロピレングリコールモノメチルエーテル700質量部とを混合し、得られた溶液を孔径0.2μmのフィルターでろ過することで得た。
次いで、電子線描画装置(日立製作所社の「HL800D」、出力:50KeV、電流密度:5.0アンペア/cm2)を用いてレジスト膜に電子線を照射した。電子線の照射後、基板を110℃で60秒間加熱を行い、次いで23℃で60秒間冷却した後、2.38質量%のTMAH水溶液(20~25℃)を用い、パドル法により現像した後、水で洗浄し、乾燥することにより、レジストパターンが形成された評価用基板を得た。
上記レジストパターン形成の際、線幅150nmの1対1ラインアンドスペースに形成される露光量を最適露光量とした。
上記評価用基板のレジストパターンの測長及び観察には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4000」)を用いた。
倒壊抑制性(2)は、上記最適露光量において、パターン倒壊が確認されなかった場合は「A」(良好)と、パターン倒壊が確認された場合は「B」(不良)と評価した。
[フッ素系ガスによるエッチング除去性]
上記得られたケイ素含有膜が形成された基板を、エッチング装置(東京エレクトロン社の「TACTRAS」)を用いて、CF4=200sccm、PRESS.=75mT、HF RF=250W、LF RF=0W、DCS=-150V、RDC=50%、5secの条件にてエッチング処理し、処理前後の平均膜厚からエッチング速度(nm/分)を算出し、フッ素系ガスによるエッチング除去性を評価した。フッ素系ガスによるエッチング除去性は、エッチング速度が60(nm/分)以上の場合は「A」(良好)と、55(nm/分)以上60(nm/分)未満の場合は「B」(やや良好)と、55(nm/分)未満の場合は「C」(不良)と評価した。
上記得られたケイ素含有膜が形成された基板を、エッチング装置(東京エレクトロン社の「TACTRAS」)を用いて、CF4=200sccm、PRESS.=75mT、HF RF=250W、LF RF=0W、DCS=-150V、RDC=50%、5secの条件にてエッチング処理し、処理前後の平均膜厚からエッチング速度(nm/分)を算出し、フッ素系ガスによるエッチング除去性を評価した。フッ素系ガスによるエッチング除去性は、エッチング速度が60(nm/分)以上の場合は「A」(良好)と、55(nm/分)以上60(nm/分)未満の場合は「B」(やや良好)と、55(nm/分)未満の場合は「C」(不良)と評価した。
[保存安定性]
上記調製した各ケイ素含有膜形成用組成物を-15℃及び40℃で7日間保管した後、それぞれ組成物中の[A]ポリシロキサンの重量平均分子量(Mw)を測定した。保存安定性は、-15℃で保管後のMwと40℃で保管後のMwとの差が100未満の場合は「A」(良好)と、100以上1,000未満の場合は「B」(やや良好)と、1,000以上の場合は「C」(不良)と評価した。
上記調製した各ケイ素含有膜形成用組成物を-15℃及び40℃で7日間保管した後、それぞれ組成物中の[A]ポリシロキサンの重量平均分子量(Mw)を測定した。保存安定性は、-15℃で保管後のMwと40℃で保管後のMwとの差が100未満の場合は「A」(良好)と、100以上1,000未満の場合は「B」(やや良好)と、1,000以上の場合は「C」(不良)と評価した。
表2の結果から分かるように、実施例のケイ素含有膜形成用組成物は、保存安定性に優れると共に、アルカリ現像液に対する耐性及びアルカリ性過酸化水素水による剥離性に優れ、フッ素系ガスによるエッチング除去性に優れ、レジストパターンの倒壊抑制性に優れるケイ素含有膜を形成することができる。
一般的に、電子線露光によれば、EUV露光の場合と同様の傾向を示すことが知られており、従って、実施例のケイ素含有膜形成用組成物によれば、EUV露光の場合においても、レジストパターンの倒壊抑制性に優れると推測される。
一般的に、電子線露光によれば、EUV露光の場合と同様の傾向を示すことが知られており、従って、実施例のケイ素含有膜形成用組成物によれば、EUV露光の場合においても、レジストパターンの倒壊抑制性に優れると推測される。
本発明のケイ素含有膜形成用組成物及びパターン形成方法によれば、フッ素系ガスによるエッチング除去性を維持しつつ、レジストパターンの倒壊抑制性に優れるケイ素含有膜を形成することができ、また、レジストパターン形成工程におけるアルカリ現像液に対する耐性に優れ、かつ、アルカリ性過酸化水素水による剥離性に優れるケイ素含有膜を形成することができる。さらに、本発明のケイ素含有膜形成用組成物は、保存安定性にも優れている。本発明のケイ素含有膜は、フッ素系ガスによるエッチング除去性を維持しつつ、アルカリ現像液に対する耐性に優れ、かつ、アルカリ性過酸化水素水による剥離性に優れている。本発明のポリシロキサンは、当該ケイ素含有膜形成用組成物のポリシロキサン成分として好適に用いることができる。従って、これらは、多層レジストプロセスに好適に使用することができ、今後さらに微細化が進行すると予想される半導体デバイスの製造等に好適に用いることができる。
Claims (15)
- 下記式(1)で表される基を有するポリシロキサンと、
溶媒と
を含有するケイ素含有膜形成用組成物。
式(2-2)中、R2は、炭素数1~20の1価の有機基である。Y2は、置換若しくは非置換の炭素数6~20のアレーンジイル基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の2価の脂肪族炭化水素基である。) - 上記電子求引性基が、ハロゲン原子、シアノ基、炭素数1~10のハロゲン化炭化水素基、炭素数1~10の-O-を有する基、炭素数1~10の-SO-を有する基、炭素数1~10の-SO2-を有する基、炭素数1~10の-CO-を有する基又は炭素数1~10の-COO-を有する基である請求項1又は請求項2に記載のケイ素含有膜形成用組成物。
- 上記ポリシロキサンを構成する全構造単位に対する上記第1構造単位の含有割合が、0.1モル%以上50モル%以下である請求項2から請求項6のいずれか1項に記載のケイ素含有膜形成用組成物。
- レジストプロセスに用いられる請求項1から請求項7のいずれか1項に記載のケイ素含有膜形成用組成物。
- 請求項1から請求項8のいずれか1項に記載のケイ素含有膜形成用組成物から形成されるケイ素含有膜。
- 請求項1から請求項8のいずれか1項に記載のケイ素含有膜形成用組成物の塗工により基板の上側にケイ素含有膜を形成する工程と、
上記ケイ素含有膜をパターン化する工程と
を備えるパターン形成方法。 - 上記ケイ素含有膜形成工程後に、
上記ケイ素含有膜を除去する工程
をさらに備える請求項10に記載のパターン形成方法。 - 上記ケイ素含有膜を除去する工程が、上記ケイ素含有膜に塩基性液を接触させて上記ケイ素含有膜を除去することを特徴とする請求項11に記載のパターン形成方法。
- 上記ケイ素含有膜パターン化工程が、
上記ケイ素含有膜の上側にレジストパターンを形成する工程と、
上記レジストパターンをマスクとして上記ケイ素含有膜をエッチングする工程と
を備える請求項10、請求項11又は請求項12に記載のパターン形成方法。 - 上記ケイ素含有膜形成工程前に、
基板の上側に有機下層膜を形成する工程
をさらに備える請求項10から請求項13のいずれか1項に記載のパターン形成方法。 - 下記式(1)で表される基を有するポリシロキサン。
式(2-2)中、R2は、炭素数1~20の1価の有機基である。Y2は、置換若しくは非置換の炭素数6~20のアレーンジイル基又は少なくとも1つの水素原子が電子求引性基で置換された炭素数1~20の2価の脂肪族炭化水素基である。)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017039801 | 2017-03-02 | ||
JP2017-039801 | 2017-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159356A1 true WO2018159356A1 (ja) | 2018-09-07 |
Family
ID=63370038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005724 WO2018159356A1 (ja) | 2017-03-02 | 2018-02-19 | ケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサン |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201841998A (ja) |
WO (1) | WO2018159356A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7357505B2 (ja) | 2018-11-21 | 2023-10-06 | 信越化学工業株式会社 | ヨウ素含有熱硬化性ケイ素含有材料、これを含むeuvリソグラフィー用レジスト下層膜形成用組成物、及びパターン形成方法 |
JP7368324B2 (ja) | 2019-07-23 | 2023-10-24 | 信越化学工業株式会社 | ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03206461A (ja) * | 1990-01-09 | 1991-09-09 | Fuji Photo Film Co Ltd | 感光性組成物 |
JPH05262812A (ja) * | 1991-11-14 | 1993-10-12 | Dow Corning Ltd | 輻射線硬化性組成物 |
JP2000336093A (ja) * | 1999-05-26 | 2000-12-05 | Jsr Corp | 加水分解性シラン化合物およびその製造方法 |
JP2010085878A (ja) * | 2008-10-02 | 2010-04-15 | Tokyo Ohka Kogyo Co Ltd | レジスト下層膜形成用組成物 |
JP2011515514A (ja) * | 2008-03-04 | 2011-05-19 | ダウ・コーニング・コーポレイション | シルセスキオキサン樹脂 |
WO2012114864A1 (ja) * | 2011-02-24 | 2012-08-30 | 日産化学工業株式会社 | シラン化合物及びそれを用いた単分子層又は多分子層形成用組成物 |
WO2014098076A1 (ja) * | 2012-12-19 | 2014-06-26 | 日産化学工業株式会社 | 環状ジエステル基を有するシリコン含有レジスト下層膜形成組成物 |
WO2016111210A1 (ja) * | 2015-01-09 | 2016-07-14 | Jsr株式会社 | シリコン含有膜形成用組成物及び該組成物を用いたパターン形成方法 |
JP2016130809A (ja) * | 2015-01-14 | 2016-07-21 | Jsr株式会社 | 硬化膜形成用感放射線性組成物、硬化膜、表示素子及び硬化膜の形成方法 |
-
2018
- 2018-02-19 WO PCT/JP2018/005724 patent/WO2018159356A1/ja active Application Filing
- 2018-03-01 TW TW107106814A patent/TW201841998A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03206461A (ja) * | 1990-01-09 | 1991-09-09 | Fuji Photo Film Co Ltd | 感光性組成物 |
JPH05262812A (ja) * | 1991-11-14 | 1993-10-12 | Dow Corning Ltd | 輻射線硬化性組成物 |
JP2000336093A (ja) * | 1999-05-26 | 2000-12-05 | Jsr Corp | 加水分解性シラン化合物およびその製造方法 |
JP2011515514A (ja) * | 2008-03-04 | 2011-05-19 | ダウ・コーニング・コーポレイション | シルセスキオキサン樹脂 |
JP2010085878A (ja) * | 2008-10-02 | 2010-04-15 | Tokyo Ohka Kogyo Co Ltd | レジスト下層膜形成用組成物 |
WO2012114864A1 (ja) * | 2011-02-24 | 2012-08-30 | 日産化学工業株式会社 | シラン化合物及びそれを用いた単分子層又は多分子層形成用組成物 |
WO2014098076A1 (ja) * | 2012-12-19 | 2014-06-26 | 日産化学工業株式会社 | 環状ジエステル基を有するシリコン含有レジスト下層膜形成組成物 |
WO2016111210A1 (ja) * | 2015-01-09 | 2016-07-14 | Jsr株式会社 | シリコン含有膜形成用組成物及び該組成物を用いたパターン形成方法 |
JP2016130809A (ja) * | 2015-01-14 | 2016-07-21 | Jsr株式会社 | 硬化膜形成用感放射線性組成物、硬化膜、表示素子及び硬化膜の形成方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201841998A (zh) | 2018-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI687773B (zh) | 圖案形成方法、積層體以及有機溶劑顯影用抗蝕劑組成物 | |
TWI521018B (zh) | Poly Silicon alumoxane composition and pattern forming method | |
TWI702469B (zh) | 感光化射線性或感放射線性樹脂組成物、圖案形成方法及電子元件的製造方法 | |
TWI811239B (zh) | 感光化射線性或感放射線性樹脂組成物、抗蝕劑膜、圖案形成方法及電子元件的製造方法 | |
TWI813634B (zh) | 感光化射線性或感放射線性樹脂組成物、抗蝕劑膜、圖案形成方法、電子元件的製造方法 | |
WO2017110352A1 (ja) | 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び、電子デバイスの製造方法 | |
TW201727365A (zh) | 阻劑組成物及阻劑圖型之形成方法 | |
WO2018180070A1 (ja) | 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法 | |
WO2019064961A1 (ja) | 感光性樹脂組成物、レジスト膜、パターン形成方法及び電子デバイスの製造方法 | |
TW201701079A (zh) | 基板處理方法、樹脂組成物及電子裝置的製造方法 | |
JP6786783B2 (ja) | 多層レジストプロセス用シリコン含有膜形成組成物及びパターン形成方法 | |
KR102556781B1 (ko) | Euv 리소그래피용 규소 함유 막 형성 조성물, euv 리소그래피용 규소 함유 막 및 패턴 형성 방법 | |
WO2018159356A1 (ja) | ケイ素含有膜形成用組成物、ケイ素含有膜、パターン形成方法及びポリシロキサン | |
WO2021220648A1 (ja) | 感放射線性樹脂組成物及びそれを用いたレジストパターンの形成方法、並びに、スルホン酸塩化合物及びそれを含む感放射線性酸発生剤 | |
US20180292753A1 (en) | Composition for forming silicon-containing film for euv lithography, silicon-containing film for euv lithography, and pattern-forming method | |
WO2020170934A1 (ja) | 膜形成用組成物及び半導体基板の製造方法 | |
TW201443570A (zh) | 圖案形成方法、其所使用之感光化射線性或感放射線性樹脂組成物、及使用其之電子裝置及其製造方法 | |
US20200117091A1 (en) | Pattern-forming method, and silicon-containing film-forming composition | |
JP6897071B2 (ja) | レジストプロセス用膜形成材料、パターン形成方法及び重合体 | |
JP6741957B2 (ja) | レジストプロセス用膜形成材料及びパターン形成方法 | |
WO2018155377A1 (ja) | レジストプロセス用膜形成材料、パターン形成方法及びポリシロキサン | |
JP2018159789A (ja) | レジストプロセス用ケイ素含有膜形成組成物、ケイ素含有膜及びパターン形成方法 | |
TWI726950B (zh) | 圖案形成方法、電子元件的製造方法 | |
TW202013098A (zh) | 半導體基板的處理方法 | |
JP2020067599A (ja) | レジストパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |