WO2018159248A1 - 積層フィルム - Google Patents
積層フィルム Download PDFInfo
- Publication number
- WO2018159248A1 WO2018159248A1 PCT/JP2018/004343 JP2018004343W WO2018159248A1 WO 2018159248 A1 WO2018159248 A1 WO 2018159248A1 JP 2018004343 W JP2018004343 W JP 2018004343W WO 2018159248 A1 WO2018159248 A1 WO 2018159248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- resin
- thin film
- inorganic thin
- film
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/10—Interconnection of layers at least one layer having inter-reactive properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
- C09D201/02—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C09D201/06—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/04—4 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/308—Heat stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/536—Hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/538—Roughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/75—Printability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/80—Medical packaging
Definitions
- the present invention relates to a laminated film used in the packaging field of foods, pharmaceuticals, industrial products and the like. Specifically, when a gas barrier laminate film provided with an inorganic thin film layer is used, by controlling the physical properties of the film surface, the resulting laminate film can exhibit good gas barrier properties, adhesion, printability, and heat and humidity resistance. About.
- Packaging materials used for foods, pharmaceuticals, etc. should have the property of blocking gases such as oxygen and water vapor, that is, gas barrier properties, in order to prevent protein and fat oxidation, maintain taste and freshness, and maintain the efficacy of pharmaceuticals. It has been demanded. Further, gas barrier materials used for electronic devices such as solar cells and organic EL, electronic components, and the like require higher gas barrier properties than packaging materials such as food.
- the surface of the base film made of plastic is made of a metal thin film made of aluminum or the like, or an inorganic oxide such as silicon oxide or aluminum oxide.
- a gas barrier laminate in which an inorganic thin film is formed is generally used.
- those formed with inorganic oxide thin films (inorganic thin film layers) such as silicon oxide, aluminum oxide, and mixtures thereof are widely used because they are transparent and the contents can be confirmed.
- the gas barrier property deteriorates due to physical damage caused by bending load of the inorganic thin film layer in the post-processing step of the packaging material such as printing, laminating and bag making, and further in the transportation and distribution process.
- I have a problem.
- the gas barrier property is greatly deteriorated by subsequent wet heat treatment such as boil / retort treatment.
- a film having poor interlayer adhesion between the vapor deposition layer and the resin in contact with it has a problem that peeling occurs due to a bending load, resulting in deterioration of barrier properties and leakage of contents.
- the coating layer between the base film and the inorganic thin film can be carried out continuously during the film formation of the base material, and a greater cost reduction can be expected than when a protective layer is formed on the inorganic thin film.
- the coating layer itself has no gas barrier property, and the contribution to the gas barrier property is largely due to only the inorganic thin film layer.
- a protective layer having a gas barrier property on the inorganic thin film For example, a water-soluble polymer, an inorganic layered compound and a metal alkoxide or a hydrolyzate thereof are coated on the inorganic thin film, and a composite of the inorganic substance containing the inorganic layered compound and the water-soluble polymer on the inorganic thin film by a sol-gel method.
- a method of forming a body has been proposed. According to this method, excellent properties are exhibited even after wet heat treatment, but the stability of the liquid used for the coating is low, so at the start and end of the coating (for example, in the case of an industrially distributed roll film).
- the outer circumference and inner circumference of the roll have different characteristics, the characteristics differ due to slight differences in drying and heat treatment in the width direction of the film, and the quality varies greatly depending on the production environment. It was. Furthermore, since the film coated by the sol-gel method is poor in flexibility, it has been pointed out that when the film is subjected to bending or impact, pinholes and defects are likely to occur and the gas barrier property is lowered. In addition, since the film coated by the sol-gel method has a low surface wettability and tends to be a smooth surface, there is a problem that sufficient adhesiveness cannot be obtained with respect to ink during printing and adhesive during laminating. .
- Gas barrier laminates with such improvements include gas barrier laminates in which an inorganic thin film is coated with a resin layer containing an inorganic layered compound having a specific particle size and aspect ratio, and silane coupling on an inorganic thin film. Examples include a gas barrier laminate in which a barrier resin containing an agent is coated, and a laminate in which a metaxylylene group-containing polyurethane is coated on an inorganic thin film (see, for example, Patent Document 3).
- any of the above-described methods is excellent in production stability and economical efficiency during production, can maintain good barrier properties and adhesiveness even after severe wet heat treatment, and can be used for printing ink and laminating adhesive.
- the present situation is that a gas barrier film having sufficient transferability and adhesiveness has not been obtained.
- Patent Document 2 the improvement of the gas barrier property before the treatment has not been studied because it particularly aimed at maintaining the retort-resistant barrier performance.
- Patent Document 3 the humidity dependence of oxygen permeability is examined, and each shows a good value.
- the gas barrier property and adhesiveness after severe wet heat treatment such as retort and boil are examined. There wasn't.
- the present invention has been made against the background of the problems of the prior art, and in the case of a gas barrier laminated film having an inorganic thin film layer, the oxygen gas barrier property and each layer can be obtained even after performing normal and wet heat treatment.
- An object of the present invention is to provide a laminated film that is excellent in adhesiveness, has good adhesiveness even when subjected to processing such as printing and laminating, and is easy to manufacture and economical.
- the inventors of the present invention have improved the gas barrier performance before the treatment and the severe humidity by forming a laminated film having a structure in which the inorganic thin film layer is sandwiched between a specific coating layer excellent in flexibility and adhesiveness and a specific barrier protective layer.
- the present invention has the following configuration.
- (1) It has a coating layer on at least one side of the base film, and the coating layer is made of a coating layer resin composition containing a resin having an oxazoline group as a constituent component, and has an inorganic thin film layer on the coating layer.
- a protective layer having a urethane resin on the inorganic thin film layer the surface hardness of the protective layer of the laminated film is 350 to 700 N / mm 2 , and the arithmetic average roughness of the protective layer is 2 ⁇ m square.
- (2) The laminated film as described in (1), wherein the protective layer contains an aromatic or araliphatic component.
- the laminated film of the present invention when a gas barrier laminate film provided with an inorganic thin film layer is used, not only in a normal state, but also after excellent harsh heat treatment such as retort treatment is maintained, In addition, it is possible to provide a laminated film that exhibits good laminate strength (adhesiveness) that does not cause delamination. Moreover, the laminated film of the present invention is excellent in both economic efficiency and production stability because it can ensure stable quality in a wide range of manufacturing conditions, regardless of the material, even in processing processes such as printing and laminating. A gas barrier film having uniform characteristics can be provided.
- the laminated film of the present invention is one in which a coating layer, an inorganic thin film layer, and a protective layer are provided on at least one side of a plastic substrate film.
- a coating layer, an inorganic thin film layer, and a protective layer are provided on at least one side of a plastic substrate film.
- base film As the base film used in the present invention (hereinafter sometimes referred to as “base film”), for example, a plastic is melt-extruded and, if necessary, stretched in the longitudinal direction and / or the width direction, cooled, and heat-set. The applied film can be used.
- plastic examples include polyamides represented by nylon 4, 6, nylon 6, nylon 6, 6, nylon 12, etc .; polyesters represented by polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, etc .; polyethylene, In addition to polyolefins typified by polypropylene, polybutene and the like; polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polystyrene, polylactic acid and the like.
- polyester is preferable in terms of heat resistance, step stability, and transparency, and polyethylene terephthalate or a copolymer obtained by copolymerizing polyethylene terephthalate with other components is particularly preferable.
- the substrate film can be of any film thickness depending on the desired purpose and application such as mechanical strength and transparency, and the film thickness is not particularly limited, but is usually 5 to 250 ⁇ m. Is recommended, and it is preferably 10 to 60 ⁇ m when used as a packaging material.
- the transparency of the base film is not particularly limited, but when used as a packaging material that requires transparency, a film having a light transmittance of 50% or more is desirable.
- the base film may be a single-layer film made of one kind of plastic or a laminated film in which two or more kinds of plastic films are laminated. There are no particular limitations on the type of laminate, the number of laminations, the lamination method, and the like in the case of a laminated film, and any one of known methods can be selected according to the purpose.
- the base film may be subjected to surface treatment such as corona discharge treatment, glow discharge, flame treatment, surface roughening treatment, etc., as long as the object of the present invention is not impaired. Processing, printing, decoration and the like may be performed.
- the coating layer in the present invention contains a resin having an oxazoline group.
- an unreacted oxazoline group is present in the coating layer.
- the oxazoline group has high affinity with inorganic thin films such as metal oxides, and can react with oxygen deficient portions of inorganic oxides and metal hydroxides generated during the formation of inorganic thin film layers, thus providing strong adhesion to inorganic thin film layers. Indicates.
- the unreacted oxazoline group present in the coating layer can react with the carboxylic acid terminal generated by hydrolysis of the base film and the coating layer to form a crosslink, and the water resistance of the coating layer can be maintained. .
- a coating layer consisting only of a resin having an oxazoline group can exhibit heat-resistant heat resistance, but the coating layer itself has a slightly insufficient cohesive strength when subjected to severe wet heat treatment for a longer time and at a higher temperature. Damage to the inorganic thin film layer due to deformation of itself may be unavoidable. Therefore, in the present invention, it is preferable to further contain an acrylic resin so that the coating layer can sufficiently withstand a more severe wet heat treatment. By containing the acrylic resin, the cohesive force of the coating layer itself is improved, and as a result, the water resistance is increased.
- the coating layer resin composition further includes a urethane resin, particularly a urethane resin having a carboxylic acid group, whereby the moisture resistance heat resistance of the coating layer can be further improved. That is, by reacting the carboxylic acid group and the oxazoline group in the urethane resin, the coating layer becomes a layer having the flexibility of the urethane resin while partially cross-linking, and the stress relaxation of the inorganic thin film is performed at a higher level. It can be carried out.
- a urethane resin particularly a urethane resin having a carboxylic acid group
- the laminated film of the present invention is a laminated body provided with an inorganic thin film layer.
- the gas barrier property and interlayer adhesion of the inorganic thin film layer are maintained even after wet heat treatment such as retort according to the above embodiment. can do.
- the coating layer of the present invention contains a resin having an oxazoline group.
- a resin having an oxazoline group for example, a polymerizable unsaturated monomer having an oxazoline group may be combined with other polymerizable unsaturated monomers as required by a conventionally known method (for example, solution polymerization, emulsion polymerization, etc.). Examples thereof include a polymer having an oxazoline group obtained by copolymerization.
- Examples of the polymerizable unsaturated monomer having an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-vinyl Examples thereof include isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline and the like. These may be used alone or in combination of two or more.
- Examples of other polymerizable unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclohexyl (meth).
- C1-C24 alkyl or cycloalkyl esters of (meth) acrylic acid such as acrylate, lauryl (meth) acrylate, isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc.
- the resin having an oxazoline group used in the present invention is preferably a water-dispersible resin from the viewpoint of improving compatibility with other resins, wettability, crosslinking reaction efficiency, transparency of the coating layer, and the like.
- a water-dispersible resin it is preferable to contain a hydrophilic monomer as the other polymerizable unsaturated monomer.
- hydrophilic monomers include monomers having a polyethylene glycol chain such as 2-hydroxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, monoester compounds of (meth) acrylic acid and polyethylene glycol, 2- Examples thereof include aminoethyl (meth) acrylate and salts thereof, (meth) acrylamide, N-methylol (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, (meth) acrylonitrile, sodium styrenesulfonate, and the like.
- monomers having a polyethylene glycol chain such as methoxypolyethylene glycol (meth) acrylate having high solubility in water, monoester compounds of (meth) acrylic acid and polyethylene glycol (the molecular weight of the introduced polyethylene glycol chain is 150 to 700, preferably 150 to 200 from the viewpoint of water resistance, and 300 to 700) from the viewpoint of compatibility with other resins and transparency of the coating layer.
- the composition molar ratio of the polymerizable unsaturated monomer having an oxazoline group is 30 to 70 mol. % Is preferable, and 40 to 65 mol% is more preferable.
- the resin having an oxazoline group preferably has an oxazoline group content of 5.1 to 9.0 mmol / g. More preferably, it is in the range of 6.0 to 8.0 mmol / g.
- a resin having an oxazoline group for a coating layer a use example of a resin having an oxazoline group of about 5.0 mmol / g has been reported (for example, see Patent Document 4).
- Use a large amount of resin This is because by using a resin having a large amount of oxazoline groups, a cross-linked structure can be formed in the coating layer, and at the same time, oxazoline groups can be left in the coating layer. Contributes to improved flexibility.
- Such oxazoline group-containing resins are commercially available as “Epocross (registered trademark)” series from Nippon Shokubai Co., Ltd.
- the content of the resin having an oxazoline group is preferably 20 to 60% by mass, more preferably 25 to 55% by mass, and still more preferably 30% in 100% by mass of the total resin components in the resin composition for coating layers. It should be ⁇ 50% by mass.
- the content ratio of the resin having an oxazoline group is less than 20% by mass, the effect of improving the water-resistant adhesion due to the oxazoline group tends not to be sufficiently exhibited.
- the content exceeds 60% by mass unreacted oxazoline groups are present. If the amount is too large, the cohesive force of the coating layer becomes insufficient, and the water resistance may decrease.
- the resin composition for a coating layer may contain an acrylic resin in order to improve the water resistance and solvent resistance of the coating layer.
- an acrylic resin an acrylic resin whose main component is alkyl acrylate and / or alkyl methacrylate (hereinafter sometimes collectively referred to as “alkyl (meth) acrylate”) is used.
- an acrylic resin specifically, an alkyl (meth) acrylate component is usually contained in a content of 40 to 95 mol%, and a vinyl monomer component that can be copolymerized and has a functional group is usually used as necessary. Examples thereof include water-soluble or water-dispersible resins that are contained at a content of 5 to 60 mol%.
- the content rate of the alkyl (meth) acrylate in acrylic resin into 40 mol% or more, applicability
- the content ratio of alkyl (meth) acrylate 95 mol% or less and introducing a compound having a specific functional group as a copolymerization component 5 mol% or more into an acrylic resin water-solubilization or water dispersion is easy.
- the state can be stabilized over a long period of time. As a result, the adhesion between the coating layer and the base film, the strength of the coating layer due to the reaction in the coating layer, water resistance, solvent resistance, etc. Can be improved.
- a preferred range for the content of the alkyl (meth) acrylate is 50 to 90 mol%, more preferably 60 to 85%.
- alkyl group in the alkyl (meth) acrylate examples include a methyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 2-ethylhexyl group, lauryl group, stearyl group, and cyclohexyl group.
- Examples of the functional group in the vinyl monomer that is copolymerizable and has a functional group include a carboxyl group, an acid anhydride group, a sulfonic acid group or a salt thereof, an amide group, an alkylolated amide group, an amino group ( A substituted amino group), an alkylolated amino group or a salt thereof, a hydroxyl group, an epoxy group, and the like. Particularly preferred are a carboxyl group, an acid anhydride group, and an epoxy group. These functional groups may be used alone or in combination of two or more.
- Examples of the compound having a carboxyl group or an acid anhydride group that can be used as a vinyl monomer include acrylic acid, methacrylic acid, itaconic acid, maleic acid, alkali metal salts thereof, and alkaline earth metals. Examples thereof include salts and ammonium salts, and further maleic anhydride and the like.
- Examples of the compound having a sulfonic acid group or a salt thereof that can be used as a vinyl monomer include vinyl sulfonic acid, styrene sulfonic acid, metal salts (such as sodium) and ammonium salts of these sulfonic acids.
- Examples of the compound having an amide group or an alkylolated amide group that can be used as a vinyl monomer include acrylamide, methacrylamide, N-methylmethacrylamide, methylolated acrylamide, methylolated methacrylamide, and ureido vinyl ether. , ⁇ -ureido isobutyl vinyl ether, ureido ethyl acrylate and the like.
- Examples of the compound having an amino group, an alkylolated amino group or a salt thereof that can be used as a vinyl monomer include diethylaminoethyl vinyl ether, 2-aminoethyl vinyl ether, 3-aminopropyl vinyl ether, 2-aminopropyl Examples thereof include aminobutyl vinyl ether, dimethylaminoethyl methacrylate, dimethylaminoethyl vinyl ether, and those obtained by converting these amino groups to methylol, and those quaternized with alkyl halide, dimethyl sulfate, sultone, or the like.
- Examples of the compound having a hydroxyl group that can be used as a vinyl monomer include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, ⁇ -hydroxypropyl acrylate, ⁇ -hydroxypropyl methacrylate, ⁇ -hydroxyvinyl ether, 5- Examples thereof include hydroxypentyl vinyl ether, 6-hydroxyhexyl vinyl ether, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monoacrylate, and polypropylene glycol monomethacrylate.
- Examples of the compound having an epoxy group that can be used as a vinyl monomer include glycidyl acrylate and glycidyl methacrylate.
- the water-based acrylic resin includes, for example, acrylonitrile, styrenes, butyl vinyl ether, maleic acid mono- or dialkyl ester, fumaric acid mono- or dialkyl Esters, itaconic acid mono- or dialkyl esters, methyl vinyl ketone, vinyl chloride, vinylidene chloride, vinyl acetate, vinyl pyridine, vinyl pyrrolidone, vinyl trimethoxysilane, and the like may be used in combination.
- the acrylic resin preferably contains a carboxyl group, and its acid value is preferably 10 mgKOH / g or less. More preferably, it is 8 mgKOH / g, More preferably, it is 5 mgKOH / g or less.
- the acid value is 10 mgKOH / g or less, the resin itself is excellent in water resistance, so that the cohesive force of the coating layer can be improved without crosslinking. If the acid value exceeds 10 mgKOH / g, the strength of the coating layer is improved by crosslinking, but the flexibility of the coating layer is lowered, and the stress on the inorganic thin film layer during retort treatment may increase.
- the content ratio of the acrylic resin in the resin composition for the coating layer constituting the coating layer is 100% by mass of all resin components in the composition (for example, the total of the resin having the oxazoline group, the acrylic resin, and the urethane resin described later).
- the amount is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, and still more preferably 20 to 50% by mass. If the acrylic resin content is less than 10% by mass, the effect of improving water resistance and solvent resistance may not be sufficiently exhibited. On the other hand, if the content exceeds 60% by mass, the coating layer becomes too hard. The stress load on the inorganic thin film layer during heat treatment tends to increase.
- the resin composition which comprises a coating layer contains a urethane resin.
- a urethane resin for example, a water-soluble or water-dispersible resin obtained by reacting a polyhydroxy compound (polyol component) and a polyisocyanate compound according to a conventional method can be used.
- the aqueous polyurethane resin one containing a carboxyl group or a salt thereof is preferably used in order to increase the affinity with an aqueous medium.
- the components of these urethane resins can be specified by nuclear magnetic resonance analysis or the like.
- polyhydroxy compound that is a component of the urethane resin examples include polyethylene glycol, polypropylene glycol, polyethylene / propylene glycol, polytetramethylene glycol, hexamethylene glycol, tetramethylene glycol, 1,5-pentanediol, diethylene glycol, and triethylene.
- polyisocyanate compound as a constituent component of the urethane resin examples include toluylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), diphenylmethane diisocyanate (4,4′-, 2, 4'- or 2,2'-diphenylmethane diisocyanate or mixtures thereof) (MDI), aromatic diisocyanates such as xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), 4,4- Alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethyle Aliphatic diisocyanates such as diisocyanates or polyisocyanates obtained by previously adding trimethylolpropane and the like of these
- a carboxyl group or a salt thereof into a urethane resin for example, as a copolymer component by using a polyol compound (polyhydroxy compound) having a carboxyl group such as dimethylolpropionic acid and dimethylolbutanoic acid. It may be introduced and neutralized with a salt forming agent.
- the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, and tri-n-butylamine, N such as N-methylmorpholine and N-ethylmorpholine.
- -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine, N-diethylethanolamine and the like. These may be used alone or in combination of two or more.
- the urethane resin preferably has a carboxyl group and has an acid value in the range of 10 to 40 mgKOH / g.
- the oxazoline group and the carboxyl group described above react, and the coating layer can maintain flexibility while partially cross-linking, and can further improve the cohesive force and relieve the stress of the inorganic thin film. More preferably, it is within the range of 15 to 35 mgKOH / g, and further preferably within the range of 20 to 30 mgKOH / g.
- the content ratio of the urethane resin in the resin composition constituting the coating layer is the total resin component in the composition (for example, the resin having an oxazoline group, the acrylic resin, and the urethane described later)
- the total amount of the resin is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, and still more preferably 20 to 50% by mass.
- the carboxyl group amount [mmol] relative to the oxazoline group amount [mmol] in the composition is preferably 20 mmol% or less, more preferably 15 mmol% or less. is there. If the amount of carboxyl groups exceeds 20 mmol%, the cross-linking reaction proceeds too much during the formation of the coating layer, resulting in the consumption of a large amount of oxazoline groups, which decreases the adhesion with the inorganic thin film layer and the flexibility of the coating layer. As a result, there is a possibility that the gas barrier property and adhesion after the wet heat treatment may be impaired.
- the adhesion amount of the coating layer is preferably 0.010 to 0.200 g / m 2 .
- Adhesion amount of the coating layer is preferably from 0.015 g / m 2 or more, more preferably 0.020 g / m 2 or more, more preferably 0.025 g / m 2 or more, preferably 0.190 g / m 2 or less More preferably, it is 0.180 g / m ⁇ 2 > or less, More preferably, it is 0.170 g / m ⁇ 2 > or less. If the coating amount of the coating layer exceeds 0.200 g / m 2 , the cohesive force inside the coating layer becomes insufficient, and the uniformity of the coating layer also deteriorates. There are cases where the gas barrier properties before and after cannot be fully expressed.
- the thickness of the coating layer is less than 0.010 g / m 2 , sufficient gas barrier properties and interlayer adhesion may not be obtained.
- the coating layer resin composition may contain various known inorganic and organic additives such as an antistatic agent, a slipping agent, and an antiblocking agent, as necessary, within a range not impairing the present invention. Also good.
- the method for forming the coating layer is not particularly limited, and a conventionally known method such as a coating method can be employed.
- Preferred examples of the coating method include an offline coating method and an in-line coating method.
- the drying and heat treatment conditions during coating depend on the thickness of the coat and the conditions of the equipment, but are sent to the right-angled stretching process immediately after coating and stretched. It is preferable to dry in the preheating zone or the stretching zone of the process. In such a case, it is usually preferable to set the temperature to about 50 to 250 ° C.
- the laminated film of the present invention has an inorganic thin film layer on the coating layer.
- the inorganic thin film layer is a thin film made of a metal or an inorganic oxide.
- the material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film, but from the viewpoint of gas barrier properties, inorganic oxidation such as silicon oxide (silica), aluminum oxide (alumina), a mixture of silicon oxide and aluminum oxide, etc. A thing is mentioned preferably.
- a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint that both flexibility and denseness of the thin film layer can be achieved.
- the mixing ratio of silicon oxide and aluminum oxide is preferably such that Al is in the range of 20 to 70% by mass ratio of metal. If the Al concentration is less than 20%, the water vapor barrier property may be lowered.
- the silicon oxide referred to here is various silicon oxides such as SiO and SiO 2 or a mixture thereof
- the aluminum oxide is various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
- the film thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the thickness of the inorganic thin film layer is less than 1 nm, satisfactory gas barrier properties may be difficult to obtain. On the other hand, even if the thickness exceeds 100 nm, the corresponding effect of improving gas barrier properties is obtained. However, it is disadvantageous in terms of bending resistance and manufacturing cost.
- the method for forming the inorganic thin film layer is not particularly limited.
- a known vapor deposition method such as a vacuum vapor deposition method, a sputtering method, a physical vapor deposition method such as an ion plating method (PVD method), or a chemical vapor deposition method (CVD method).
- PVD method physical vapor deposition method
- CVD method chemical vapor deposition method
- a typical method for forming the inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide thin film as an example.
- a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as a deposition material.
- particles are used as these vapor deposition materials.
- the size of each particle is desirably such that the pressure during vapor deposition does not change, and the preferred particle diameter is 1 mm to 5 mm.
- heating methods such as resistance heating, high frequency induction heating, electron beam heating, and laser heating can be employed.
- reactive vapor deposition using oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as a reactive gas, or using means such as ozone addition or ion assist.
- the film forming conditions can be arbitrarily changed, for example, by applying a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
- a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
- Such a vapor deposition material, reaction gas, bias of the deposition target, heating / cooling, and the like can be similarly changed when a sputtering method or a CVD method is employed.
- the inorganic thin film layer laminated on the plastic film is not a completely dense film but is dotted with minute defects.
- a specific protective layer resin composition described later on the inorganic thin film layer to form a protective layer, the resin in the protective layer resin composition penetrates into the defective portion of the inorganic thin film layer, and as a result The effect that the gas barrier property is stabilized is obtained.
- the gas barrier performance of the laminated film is greatly improved.
- the surface hardness of the protective layer of the laminated film is preferably 350 to 700 N / mm 2 .
- the surface hardness of the protective layer of the laminated film is preferably 350 to 700 N / mm 2 .
- it has the hardness required for expression of adhesive force, and it becomes possible to maintain the performance even after retorting.
- Surface hardness preferably 375N / mm 2 or more, more preferably 400 N / mm 2 or more, more preferably 420N / mm 2 or more, preferably 675N / mm 2 or less, more preferably 650 N / mm 2 or less, further Preferably it is 625 N / mm 2 or less.
- the surface hardness of the protective layer of the laminated film exceeds 700 N / mm 2 , the surface becomes so hard that the adhesive during printing or laminating does not penetrate and adhesion decreases.
- the surface hardness is less than 350 N / mm 2 , the cohesive force of the protective layer is weak, and the protection of the inorganic thin film layer may be insufficient, and further, the pigment in the ink is buried and ink transferability ( (Print appearance) may be deteriorated.
- the arithmetic average roughness of the protective layer at a viewing angle of 2 ⁇ m square is preferably 0.50 to 2.0 nm.
- adhesiveness can be improved by the anchor effect by formation of minute surface unevenness
- the arithmetic average roughness is preferably 0.60 nm or more, more preferably 0.70 nm or more, further preferably 0.80 nm or more, preferably 1.9 nm or less, more preferably 1.8 nm or less, and further preferably 1 0.7 nm or less.
- the deposition amount of the protective layer 0.15 ⁇ 0.60g / m 2.
- adhesiveness can be improved by an anchor effect, reducing coat unevenness and a defect by uniformity.
- cohesive strength of the protective layer itself is improved, the adhesion between the inorganic thin film layer and the protective layer is strengthened, and the water resistance can be enhanced.
- Deposition amount of the protective layer is preferably from 0.17 g / m 2 or more, more preferably 0.20 g / m 2 or more, more preferably at 0.23 g / m 2 or more, preferably 0.57 g / m 2 or less , more preferably 0.54 g / m 2, more preferably not more than 0.51 g / m 2.
- the adhesion amount of the protective layer exceeds 0.600 g / m 2 , the gas barrier property is improved, but the surface hardness is lowered, the cohesive force inside the protective layer becomes insufficient, and the adhesion may be lowered.
- the arithmetic average roughness of the protective layer is also increased, unevenness and defects may occur in the appearance of the coat, and gas barrier properties and adhesiveness after wet heat treatment may not be sufficiently exhibited.
- the thickness of the protective layer is less than 0.15 g / m 2 , sufficient gas barrier properties and interlayer adhesion may not be obtained.
- urethane resin is used for the protective layer. Since the urethane resin has a urethane bond portion having polarity, the urethane resin has good adhesion to the metal oxide layer, and the resin easily penetrates into the defective portion. In addition, since there is a crystal part having high cohesion due to hydrogen bonds between urethane bonds, stable gas barrier performance can be obtained. Furthermore, since a highly flexible amorphous part is also present at the same time, the surface hardness can be within the predetermined range by controlling the ratio of the amorphous part to the crystalline part.
- the urethane resin is preferably an aqueous dispersion having high polarity and good wettability to the metal oxide layer. Further, as the resin curing type, a thermosetting resin is desirable from the viewpoint of production stability.
- the urethane resin (D) is obtained by reacting the following polyisocyanate component (E) with the following polyol component (F) by an ordinary method. Furthermore, chain extension is carried out by reacting a low molecular weight compound having two or more active hydrogens such as a diol compound (eg 1,6-hexanediol) or a diamine compound (eg hexamethylenediamine) as a chain extender. Is also possible.
- a diol compound eg 1,6-hexanediol
- a diamine compound eg hexamethylenediamine
- polyisocyanate component (E) Polyisocyanate component
- examples of the polyisocyanate component (E) that can be used for the synthesis of the urethane resin (D) include aromatic polyisocyanates, alicyclic polyisocyanates, and aliphatic polyisocyanates.
- a diisocyanate compound is usually used.
- aromatic diisocyanate examples include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4 '-Diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or mixtures thereof) (MDI) 4,4′-toluidine diisocyanate (TODI), 4,4′-diphenyl ether diisocyanate, and the like.
- TDI tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof)
- TDI phenylene diisocyanate
- Examples of the araliphatic diisocyanate include xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethylxylylene diisocyanate (1,3- or 1,4-tetramethyl). Examples include xylylene diisocyanate or a mixture thereof (TMXDI), ⁇ , ⁇ ′-diisocyanate-1,4-diethylbenzene, and the like.
- alicyclic diisocyanate examples include 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (iso Holodiisocyanate, IPDI), methylene bis (cyclohexyl isocyanate) (4,4'-, 2,4'- or 2,2'-methylene bis (cyclohexyl isocyanate)) (hydrogenated MDI), methylcyclohexane diisocyanate (methyl-2,4- Cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), bis (isocyanatomethyl) cyclohexane (1,3- or 1,4-bis (i Cyanate methyl) cyclohexane or a
- aliphatic diisocyanate examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), hexamethylene
- diisocyanate pentamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, and 2,6-diisocyanate methyl caffeate.
- the polyol component (particularly the diol component) can be used from a low molecular weight glycol to a high molecular weight one, but from the viewpoint of gas barrier properties and flexibility due to the amorphous part, alkylene glycol (for example, ethylene Linear or branched C 2- such as glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentylglycol, heptanediol, octanediol, etc.
- alkylene glycol for example, ethylene Linear or branched C 2- such as glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentylglycol,
- Low molecular weight glycols such as ( 10 alkylene glycol), (poly) oxy C 2-4 alkylene glycol (diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, etc.) are used.
- C 2-8 polyol component e.g., C 2-6 alkylene glycols (particularly, ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol Diol, 3-methyl-1,5-pentanediol, etc.], di- or trioxy C 2-3 alkylene glycol (diethylene glycol, triethylene glycol, dipropylene glycol, etc.), and particularly preferred diol components are C 2-8 alkylene Glycol (especially C 2-6 alkylene glycol).
- C 2-8 polyol component e.g., C 2-6 alkylene glycols (particularly, ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol Diol, 3-methyl-1,5-pentanediol, etc.]
- di- or trioxy C 2-3 alkylene glycol diethylene glycol
- diol components can be used alone or in combination of two or more.
- an aromatic diol for example, bisphenol A, bishydroxyethyl terephthalate, catechol, resorcin, hydroquinone, 1,3- or 1,4-xylylene diol or a mixture thereof
- an alicyclic diol for example, a low molecular weight diol component such as hydrogenated bisphenol A, xylylenediol, cyclohexanediol, cyclohexanedimethanol, etc.
- a low molecular weight diol component such as hydrogenated bisphenol A, xylylenediol, cyclohexanediol, cyclohexanedimethanol, etc.
- a trifunctional or higher functional polyol component such as glycerin, trimethylolethane, trimethylolpropane, polyester polyol, polycarbonate polyol, or polyether polyol can be used in combination.
- the polyol component preferably contains at least a C 2-8 polyol component (particularly C 2-6 alkylene glycol).
- the proportion of the C 2-8 polyol component (especially C 2-6 alkylene glycol) in 100% by mass of the polyol component can be selected from the range of about 50 to 100% by mass, and usually 70% by mass or more and 100% by mass or less. More preferably, it is 80 mass% or more and 100 mass% or less, More preferably, it is 90 mass% or more and 100 mass% or less.
- a urethane resin containing an aromatic or araliphatic diisocyanate component as a main component from the viewpoint of improving gas barrier properties by forming a crystal part derived from a urethane bond.
- the ratio of aromatic or araliphatic diisocyanate in the urethane resin is preferably in the range of 30 mol% or more (30 to 100 mol%) in 100 mol% of the polyisocyanate component (E).
- the ratio of the total amount of aromatic or araliphatic diisocyanate is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, and still more preferably 60 to 100 mol%.
- a resin “Takelac (registered trademark)” series commercially available from Mitsui Chemicals, Inc. can be suitably used.
- the ratio of the total amount of aromatic or araliphatic diisocyanate is less than 30 mol%, good gas barrier properties may not be obtained.
- the urethane resin preferably has a carboxylic acid group (carboxyl group) from the viewpoint of improving the affinity with the inorganic thin film layer.
- a carboxylic acid (salt) group for example, a polyol compound having a carboxylic acid group such as dimethylolpropionic acid or dimethylolbutanoic acid may be introduced as a copolymer component.
- a carboxylic acid group-containing urethane resin is synthesized and then neutralized with a salt forming agent, a urethane resin in an aqueous dispersion can be obtained.
- the salt forming agent include trialkylamines such as ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, tri-n-butylamine, N such as N-methylmorpholine and N-ethylmorpholine.
- -N-dialkylalkanolamines such as alkylmorpholines, N-dimethylethanolamine and N-diethylethanolamine. These may be used alone or in combination of two or more.
- the acid value of the urethane resin is preferably in the range of 10 to 60 mgKOH / g. More preferably, it is within the range of 15 to 55 mgKOH / g, and further preferably within the range of 20 to 50 mgKOH / g.
- the acid value of the urethane resin is within the above range, the liquid stability is improved when the aqueous dispersion is used, and the protective layer can be uniformly deposited on the high-polarity metal oxide layer. Becomes better.
- the urethane resin of the present invention preferably has a glass transition temperature (Tg) of 100 ° C. or higher, more preferably 110 ° C. or higher, and still more preferably 120 ° C. or higher.
- Tg glass transition temperature
- additives may be blended as necessary within a range not impairing the gas barrier property.
- additives include silane coupling agents, layered inorganic compounds, stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, fillers. And crystal nucleating agents.
- the silane coupling agent is effective for improving the adhesion of the gas barrier polyurethane resin to the metal oxide layer.
- the silane coupling agent include hydrolyzable alkoxysilane compounds such as halogen-containing alkoxysilanes (2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltrimethoxysilane).
- Chloro C2-4 alkyltri C1-4 alkoxysilane such as ethoxysilane
- alkoxysilane having an epoxy group [2-glycidyloxyethyltrimethoxysilane, 2-glycidyloxyethyltriethoxysilane, 3-glycidyloxypropyltrimethoxy Glycidyloxy C2-4 alkyltri C1-4 alkoxysilane such as silane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropylmethyldimethoxysilane, 3-glycidyloxypropylmethyl Glycidyloxydi C2-4 alkyldiC1-4 alkoxysilane such as diethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (
- the proportion of the silane coupling agent is 30 parts by weight or less (for example, 0.1 to 30 parts by weight), preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polyurethane resin. About a part.
- the coating liquid which consists of the said polyurethane resin, ion-exchange water, and a water-soluble organic solvent should be prepared, and it should just apply
- the water-soluble organic solvent alcohols such as ethanol and isopropyl alcohol (IPA), or single or mixed solvents selected from ketones such as acetone and methyl ethyl ketone can be used, from the viewpoint of coating film processing and odor. Is preferably IPA.
- the coating method of the protective layer resin composition is not particularly limited as long as it is a method of forming a layer by coating on the film surface.
- usual coating methods such as gravure coating, reverse roll coating, wire bar coating, and die coating can be employed. From the viewpoint of productivity and coating stability, wire bar coating and gravure coating are preferably used.
- the drying temperature at that time is preferably 110 to 210 ° C, more preferably 115 to 205 ° C, still more preferably. Is 120-200 ° C. If the drying temperature is less than 110 ° C., the protective layer may be insufficiently dried or insufficiently aggregated due to heat, and the surface hardness may be out of the predetermined range. As a result, there is a possibility that the water resistance of the protective layer when the adhesiveness and the retort treatment are performed is lowered.
- the protective layer may be excessively agglomerated and the film may become too hard, or the resin may be fused and uniform, and surface irregularities may not be obtained. Moreover, there is a possibility that the film itself as a substrate is excessively heated and the film becomes brittle, or contracts due to shrinkage. In addition to drying, adding an additional heat treatment (for example, 150 to 190 ° C.) is also effective in promoting the drying of the protective layer.
- an additional heat treatment for example, 150 to 190 ° C.
- the laminated film of the present invention is excellent in oxygen gas barrier properties and adhesiveness between layers even after being subjected to normal conditions and wet heat treatment, and also has good adhesiveness when subjected to processing such as printing and laminating.
- a gas barrier laminate film (laminate) that is easy to manufacture and excellent in economic efficiency is obtained.
- the gas barrier laminated film provided with the inorganic thin film layer using the laminated film of the present invention includes, as necessary, a known gas barrier laminated film.
- Various layers provided in the film can be provided.
- a gas barrier laminated film provided with an inorganic thin film layer is used as a packaging material, it is preferable to form a heat-sealable resin layer called a sealant.
- the heat-sealable resin layer is usually provided on the inorganic thin film layer, but may be provided on the outer side of the base film (the surface opposite to the coating layer forming surface).
- the heat-sealable resin layer is usually formed by an extrusion lamination method or a dry lamination method.
- the thermoplastic polymer for forming the heat-sealable resin layer may be any one that can sufficiently exhibit sealant adhesion, such as polyethylene resins such as HDPE, LDPE, and LLDPE, and polypropylene resins.
- An ethylene-vinyl acetate copolymer, an ethylene- ⁇ -olefin random copolymer, an ionomer resin, or the like can be used.
- the gas barrier laminated film having the inorganic thin film layer includes a printed layer or other plastic substrate and / or paper base between or outside the inorganic thin film layer or substrate film and the heat-sealable resin layer. At least one layer may be laminated.
- aqueous and solvent-based resin-containing printing inks can be preferably used as the printing ink for forming the printing layer.
- the resin used in the printing ink include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof.
- the printing method for providing the printing layer is not particularly limited, and a known printing method such as an offset printing method, a gravure printing method, a screen printing method, or the like can be used.
- a known printing method such as an offset printing method, a gravure printing method, a screen printing method, or the like
- known drying methods such as hot air drying, hot roll drying and infrared drying can be used.
- plastic base materials and paper base materials paper, polyester resin, polyamide resin, biodegradable resin and the like are preferably used from the viewpoint of obtaining sufficient rigidity and strength of the laminate.
- stretched films such as a biaxially stretched polyester film and a biaxially stretched nylon film, are preferable.
- nylon is used to improve mechanical properties such as pinhole property and piercing strength between the inorganic thin film layer and the heat sealable resin layer. It is preferable to laminate films.
- nylon 6, nylon 66, metaxylene adipamide and the like are usually used as the type of nylon.
- the thickness of the nylon film is usually 10 to 30 ⁇ m, preferably 15 to 25 ⁇ m. If the nylon film is thinner than 10 ⁇ m, the strength may be insufficient. On the other hand, if the nylon film exceeds 30 ⁇ m, the waist is strong and may not be suitable for processing.
- the nylon film is preferably a biaxially stretched film having a stretching ratio in each of the vertical and horizontal directions of usually 2 times or more, preferably about 2.5 to 4 times.
- the laminated film of the present invention includes an embodiment having the above-described layers other than the coating layer and the inorganic thin film layer.
- Oxygen permeability evaluation method For the obtained laminated film alone, an oxygen permeability measuring device (“OX-TRAN” manufactured by MOCON Co., Ltd.) according to the electrolytic sensor method (Appendix A) of JIS-K7126-2. 2/20 "), and the oxygen permeability in a normal state was measured in an atmosphere having a temperature of 23 ° C and a relative humidity of 65%. The oxygen permeability was measured in a direction in which oxygen permeates from the base film side on which the coating layer / protective layer is not laminated to the coating layer / protective layer side.
- the laminated laminate produced in the above (1) is subjected to a wet heat treatment that is kept in hot water at 130 ° C. for 30 minutes and dried at 40 ° C. for 1 day (24 hours).
- the oxygen permeability (after retorting) of the laminate laminate was measured in the same manner as described above.
- Laminate Strength Evaluation Method The laminate laminate produced in (1) above is subjected to wet heat treatment for 30 minutes in hot water at 130 ° C. Cut out to 200 mm to make a test piece, laminate strength (retort) using a Tensilon universal material testing machine (“Tensilon UMT-II-500” manufactured by Toyo Baldwin) under the conditions of a temperature of 23 ° C. and a relative humidity of 65% After) was measured.
- the laminate strength was the strength when peeling was performed at a peeling angle of 90 degrees with a tensile speed of 200 mm / min.
- the arithmetic average roughness of the protective layer was measured using a scanning probe microscope (SPM) ("SPM9700" manufactured by Shimadzu Corporation) (cantilever: Olympus) (Observation mode: phase mode) was performed. Specifically, an SPM image was obtained at a viewing angle of 2 ⁇ m square on the surface of the coating layer. In the obtained image, the inclination correction which is a function of the software attached to the SPM was used to perform the inclination correction in the X direction, the Y direction, and the Z direction, and then the arithmetic average roughness value was calculated.
- SPM scanning probe microscope
- the surface hardness of the protective layer was measured using a dynamic ultra-micro hardness meter ("DUH-211" manufactured by Shimadzu Corporation). Specifically, a hardness measurement test is performed in a load unloading test using a 115 ° diamond edge triangular indenter (Berkovic type) on the protective layer surface of a single laminated film fixed and held on a glass plate with an adhesive. The obtained Martens hardness was defined as the surface hardness value.
- the test conditions were a test force of 0.1 mN, a load speed of 0.02 mN / second, and a holding time of 2 seconds.
- each laminated film obtained in the stage of laminating the protective layer on the base film was used as a sample, and a test piece of 100 mm x 100 mm was prepared from this sample.
- the protective layer was wiped off with 1-methoxy-2-propanol or dimethylformamide, and the amount of adhesion was calculated from the change in mass of the film before and after wiping.
- Oxazoline group amount of resin having oxazoline group The resin containing oxazoline was freeze-dried, and a 1 H-NMR spectrum was measured using a nuclear magnetic resonance analyzer (NMR) Gemini-200 manufactured by Varian, Inc. The absorption peak intensity derived from the above and the absorption peak intensity derived from other monomers were determined, and the amount of oxazoline group (mmol / g) was calculated from the peak intensity.
- NMR nuclear magnetic resonance analyzer
- each material used for forming the coating layer and the protective layer was prepared as follows.
- acrylic resin (B) As an acrylic resin, a commercially available 25% by weight emulsion of an acrylic ester copolymer ("Muvinyl (registered trademark) 7980" manufactured by Nichigo Movinyl Co., Ltd.) was prepared. Acid value (theoretical value) of this acrylic resin (B) ) was 4 mg KOH / g.
- urethane resin (C) As the urethane resin, a commercially available polyester urethane resin dispersion (“Takelac (registered trademark) W605” manufactured by Mitsui Chemicals, Inc .; solid content: 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 100 ° C. The ratio of aromatic or araliphatic diisocyanate to the whole polyisocyanate component measured by 1 H-NMR was 55 mol%.
- urethane resin (D1) As a urethane resin, a commercially available metaxylylene group-containing urethane resin dispersion ("Takelac (registered trademark) WPB341" manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mgKOH / g, and the glass transition temperature (Tg) measured by DSC was 130 ° C. The ratio of aromatic or araliphatic diisocyanate to the whole polyisocyanate component measured by 1 H-NMR was 85 mol%.
- urethane resin (D2) As the urethane resin, a commercially available dispersion of polycarbonate urethane resin (“Takelac (registered trademark) WS4000” manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The glass transition temperature (Tg) of this urethane resin measured by DSC was 130 ° C.
- Urethane resin (D3) As the urethane resin, a commercially available polyester urethane resin dispersion (“Takelac (registered trademark) WS4022” manufactured by Mitsui Chemicals, Inc .; solid content: 30%) was prepared. The glass transition temperature (Tg) measured by DSC of this urethane resin was 110 ° C.
- silane coupling agent (G) As the silane coupling agent, commercially available “(registered trademark) KBM603” manufactured by Shin-Etsu Chemical Co., Ltd .; solid content 30%) was prepared.
- Gas barrier vinyl alcohol resin (H) As a vinyl alcohol resin having a gas barrier property, a commercially available water-soluble vinyl alcohol resin (“Nichigo G-Polymer (registered trademark) OKS-8049” manufactured by Nippon Synthetic Chemical Co., Ltd .; powder) is dissolved in water and has a solid content of 5%. An aqueous solution was prepared.
- Example 1 Adjustment of the coating liquid 1 used for a coating layer Each material was mixed with the following mixture ratio, and the coating liquid (resin composition for coating layers) was created.
- the mass ratio in terms of solid content of the resin (A), acrylic resin (B), and urethane resin (C) having an oxazoline group in the obtained coating solution is as shown in Table 1.
- a composite inorganic oxide layer of silicon dioxide and aluminum oxide was formed as an inorganic thin film layer on the coating layer surface of the laminated film obtained in (2) above by an electron beam evaporation method.
- the deposition source particulate SiO 2 (purity 99.9%) and A1 2 O 3 (purity 99.9%) of about 3 mm to 5 mm were used.
- the film thickness of the inorganic thin film layer (SiO 2 / A1 2 O 3 composite oxide layer) was 13 nm.
- Coating of vapor deposition film with coating liquid 2 (laminate of protective layer)
- the coating liquid 2 was apply
- the coating amount after drying was 0.210 g / m 2 (Dry).
- a laminated film provided with a coating layer / metal oxide layer / protective layer on a base film was produced.
- the obtained laminated film was evaluated for oxygen permeability, laminate strength, and printability. The results are shown in Table 1.
- the gas barrier property is excellent, and at the same time, the adhesive property is excellent regardless of the thickness of the adhesive, and sufficient adhesion to the ink during printing and It was possible to provide a gas barrier laminate film provided with an inorganic thin film layer having transition properties.
- a gas barrier laminate film has the advantages that it is easy to produce, is excellent in economic efficiency and production stability, and can easily obtain uniform characteristics.
- the gas barrier laminate film is not limited to food packaging for wet heat treatment, but also for industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements in addition to packaging applications for various foods, pharmaceuticals, and industrial products. Can also be widely used.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
(1)基材フィルムの少なくとも片面に被覆層を有し、前記被覆層はオキサゾリン基を有する樹脂を構成成分として含有する被覆層用樹脂組成物からなり、前記被覆層上に無機薄膜層を有すると共に、該無機薄膜層上にウレタン樹脂を有する保護層を有し、前記積層フィルムの保護層の表面硬度が350~700N/mm2であり、かつ前記保護層の2μm四方における算術平均粗さが0.5~2.0nmであることを特徴とする積層フィルム。
(2)前期保護層が芳香族または芳香脂肪族成分を含有することを特徴とする(1)に記載の積層フィルム。
(3)前記保護層がメタキシリレンジイソシアネート成分を含有することを特徴とする(1)または(2)に記載の積層フィルム。
(4)前記被覆層用樹脂組成物中のオキサゾリン基を含有する樹脂は、そのオキサゾリン基量が5.1~9.0mmol/gである(1)~(3)のいずれかに記載の積層フィルム。
(5)前記被覆層中に酸価10mgKOH/g以下のアクリル樹脂を含む(1)~(4)のいずれかに記載の積層フィルム。
(6)前記無機薄膜層が、酸化ケイ素と酸化アルミニウムの複合酸化物の層である(1)~(5)のいずれかに記載の積層フィルム。
本発明で用いる基材フィルム(以下「基材フィルム」と称することがある)としては、例えば、プラスチックを溶融押出しし、必要に応じ、長手方向および/または幅方向に延伸、冷却、熱固定を施したフィルムを用いることができる。プラスチックとしては、ナイロン4・6、ナイロン6、ナイロン6・6、ナイロン12等に代表されるポリアミド;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等がに代表されるポリエステル;ポリエチレン、ポリプロピレン、ポリブテン等に代表されるポリオレフィン;のほか、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリスチレン、ポリ乳酸等が挙げられる。これらの中でも、耐熱性、寸歩安定性、透明性の点でポリエステルが好ましく、特にポリエチレンテレフタレートやポリエチレンテレフタレートに他の成分を共重合した共重合体が好ましい。
基材フィルムの透明度は、特に限定されるものではないが、透明性が求められる包装材料として使用する場合には、50%以上の光線透過率をもつものが望ましい。
また基材フィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電、火炎処理、表面粗面化処理等の表面処理が施されていてもよく、また、公知のアンカーコート処理、印刷、装飾等が施されてもよい。
本発明における被覆層は、オキサゾリン基を有する樹脂を含む。特に被覆層中に未反応のオキサゾリン基が存在するのが好ましい。オキサゾリン基は金属酸化物といった無機薄膜との親和性が高く、また、無機薄膜層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物と反応できるため、無機薄膜層と強固な密着性を示す。また、被覆層中に存在する未反応のオキサゾリン基は、基材フィルムおよび被覆層の加水分解により発生したカルボン酸末端と反応し、架橋を形成することができ、被覆層の耐水性を維持できる。
(オキサゾリン基を有する樹脂(A))
本発明の被覆層には、オキサゾリン基を有する樹脂を含有する。オキサゾリン基を有する樹脂としては、例えば、オキサゾリン基を有する重合性不飽和単量体を、必要に応じその他の重合性不飽和単量体とともに従来公知の方法(例えば溶液重合、乳化重合等)で共重合させることにより得られるオキサゾリン基を有する重合体等を挙げることができる。
前記被覆層用樹脂組成物には、被覆層の耐水性や耐溶剤性を向上させるためにアクリル樹脂を含有させてもよい。アクリル樹脂としては、アルキルアクリレート及び/又はアルキルメタクリレート(以下、纏めて「アルキル(メタ)アクリレート」と称することがある)を主要な成分とするアクリル樹脂が用いられる。アクリル樹脂としては、具体的には、アルキル(メタ)アクリレート成分を通常40~95モル%の含有割合で含み、必要に応じて、共重合可能でかつ官能基を有するビニル単量体成分を通常5~60モル%の含有割合で含む水溶性または水分散性の樹脂が挙げられる。アクリル系樹脂におけるアルキル(メタ)アクリレートの含有割合を40モル%以上とすることにより、塗布性、塗膜の強度、耐ブロッキング性が特に良好になる。一方、アルキル(メタ)アクリレートの含有割合を95モル%以下とし、共重合成分として特定の官能基を有する化合物をアクリル系樹脂に5モル%以上導入することにより、水溶化ないし水分散化を容易にするとともに、その状態を長期にわたり安定化することができ、その結果、被覆層と基材フィルムとの接着性や、被覆層内での反応による被覆層の強度、耐水性、耐溶剤性などの改善を図ることができる。アルキル(メタ)アクリレートの含有割合の好ましい範囲は50~90モル%であり、より好ましくは60~85%である。
共重合可能でかつ官能基を有するビニル単量体における官能基としては、例えば、カルボキシル基、酸無水物基、スルホン酸基またはその塩、アミド基またはアルキロール化されたアミド基、アミノ基(置換アミノ基を含む)、アルキロール化されたアミノ基またはその塩、水酸基、エポキシ基などが挙げられ、特に、カルボキシル基、酸無水物基、エポキシ基が好ましい。これらの官能基は、1種のみでもよいし2種以上であってもよい。
ビニル単量体として用いることのできる、スルホン酸基またはその塩を有する化合物としては、例えば、ビニルスルホン酸、スチレンスルホン酸、これらスルホン酸の金属塩(ナトリウム等)やアンモニウム塩などが挙げられる。
ビニル単量体として用いることのできる、アミノ基、アルキロール化されたアミノ基またはそれらの塩を有する化合物としては、例えば、ジエチルアミノエチルビニルエーテル、2-アミノエチルビニルエーテル、3-アミノプロピルビニルエーテル、2-アミノブチルビニルエーテル、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルビニルエーテル、およびこれらのアミノ基をメチロール化したものや、ハロゲン化アルキル、ジメチル硫酸、サルトン等により4級化したもの等が挙げられる。
被覆層を構成する樹脂組成物は、ウレタン樹脂を含有することが好ましい。
ウレタン樹脂としては、例えば、ポリヒドロキシ化合物(ポリオール成分)とポリイソシアネート化合物とを常法に従って反応させることにより得られる水溶性または水分散性樹脂を用いることができる。特に、水性ポリウレタン樹脂は水媒体との親和性を高めるため、カルボキシル基またはその塩等を含有するものが好ましく用いられる。なお、これらウレタン樹脂の構成成分は、核磁気共鳴分析などにより特定することが可能である。
本発明の積層フィルムは、前記被覆層の上に無機薄膜層を有する。
ルミニウムとは、AlOやAl2O3等の各種アルミニウム酸化物又はそれらの混合物である。
本発明においては、前記無機薄膜層の上に保護層を有する。プラスチックフィルム上に積層した無機薄膜層は完全に密な膜ではなく、微小な欠損部分が点在している。無機薄膜層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、無機薄膜層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。
ウレタン樹脂(D)は、下記ポリイソシアネート成分(E)に下記ポリオール成分(F)を、通常の方法により反応させることにより得られる。さらに、ジオール化合物(例えば1,6-ヘキサンジオール等)やジアミン化合物(例えばヘキサメチレンジアミン等)等の2個以上の活性水素を有する低分子化合物を鎖延長剤として反応させることにより鎖延長することも可能である。
ウレタン樹脂(D)の合成に用いることのできるポリイソシアネート成分(E)としては、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が含まれる。ポリイソシアネート化合物としては、通常、ジイソシアネート化合物が使用される。
ポリオール成分(特にジオール成分)としては、低分子量のグリコールから高分子量のものまで用いることはできるが、ガスバリア性および非晶部による柔軟性の観点から、アルキレングリコール(例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ヘプタンジオール、オクタンジオール等の直鎖状または分岐鎖状C2-10アルキレングリコール)、(ポリ)オキシC2-4アルキレングリコール(ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール等)等の低分子量グリコールが使用される。好ましいグリコール成分は、C2-8ポリオール成分[例えば、C2-6アルキレングリコール(特に、エチレングリコール、1,2-または1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール)等]、ジまたはトリオキシC2-3アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等)であり、特に好ましいジオール成分はC2-8アルキレングリコール(特にC2-6アルキレングリコール)である。
ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の金属酸化物層上に均一に堆積することができるため、コート外観が良好となる。
本発明の積層フィルムを用いてなる無機薄膜層を備えたガスバリア性積層フィルムには、上記基材フィルム、被覆層、無機薄膜層、保護層のほかに、必要に応じて、公知のガスバリア性積層フィルムが備えている種々の層を設けることができる。
例えば、無機薄薄膜層を備えたガスバリア性積層フィルムを包装材料として用いる場合には、シーラントと呼ばれるヒートシール性樹脂層を形成することが好ましい。ヒートシール性樹脂層は通常、無機薄膜層上に設けられるが、基材フィルムの外側(被覆層形成面の反対側の面)に設けることもある。ヒートシール性樹脂層の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が充分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂。エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。
実施例および比較例で得られた各積層フィルムの保護層面側(保護層がない場合は蒸着層面側)に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」とを13.5:1(質量比)の割合で配合)を用いて、ヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡社製「P1147」)をドライラミネート法により貼り合わせ、40℃で4日間エージングを施すことによって、評価用のラミネートガスバリア性積層体(以下「ラミネート積層体」と称することもある)を得た。なお、ウレタン系2液硬化型接着剤で形成された接着剤層の乾燥後の厚みは、濃度を変えることで約2μmまたは5μmの2種類に調整した。
得られた積層フィルム単体に対して、JIS-K7126-2の電解センサー法(付属書A)に準じて、酸素透過度測定装置(MOCON社製「OX-TRAN 2/20」)を用い、温度23℃、相対湿度65%の雰囲気下で、常態での酸素透過度を測定した。なお、酸素透過度の測定は、被覆層・保護層を積層していない基材フィルム側から被覆層・保護層側に酸素が透過する方向で行った。
上記(1)で作製したラミネート積層体に対して、130℃の熱水中に30分間保持する湿熱処理を行い、未乾燥のままの状態で、幅15mm、長さ200mmに切り出して試験片とし、温度23℃、相対湿度65%の条件下で、テンシロン万能材料試験機(東洋ボールドウイン社製「テンシロンUMT-II-500型」)を用いてラミネート強度(レトルト後)を測定した。ラミネート強度は、引張速度を200mm/分とし、剥離角度90度で剥離させたときの強度とした。
保護層の算術平均粗さの測定は、走査型プローブ顕微鏡(SPM)(株式会社島津製作所製「SPM9700」)を使用して(カンチレバー:オリンパス社から提供されるOMCL―AC200TSを使用、観察モード:位相モード)実施した。詳しくは、被覆層表面の視野角2μm四方においてSPM画像を得た。得られた画像において、SPM付属のソフトウエアの機能である傾き補正を使用し、X方向・Y方向・Z方向の傾き補正を行った後、算術平均粗さの値を算出した。
保護層の表面硬度の測定は、ダイナミック超微小硬度計(株式会社島津製作所製「DUH-211」)を使用して実施した。詳しくは、ガラスプレートに接着剤で固定保持した積層フィルム単体の保護層面に対して、稜間角115°ダイヤモンド三角すい圧子(バーコビッチ型)を用い、負荷除荷試験にて硬さ測定試験を行い、得られたマルテンス硬さを表面硬度の値とした。試験条件は、試験力0.1mN、負荷速度0.02mN/秒、保持時間2秒で行った。
得られた積層フィルム単体に対して、溶剤系インキ(東洋インキ社製「リオアルファ(登録商標)R641白」を用いて2μmの印刷層を積層した。得られた印刷層を綿棒を用いて5回擦り、インキ剥がれがないものを密着○、一部剥がれるものを密着△、全面で剥がれるものを密着×とした。また、インキ転移性に関して、前述のインキを用いて濃度60%にて半調印刷を行い、光学顕微鏡にて×50倍の倍率にて印刷層の表面観察をした際に、インキが繋がり網目状になっているものを転移性○、インキが一部繋がっていないものを転移性△、インキが全く繋がっておらずドット状になっているものを転移性×とした。
各実施例および比較例において、基材フィルム上に保護層を積層した段階で得られた各積層フィルムを試料とし、この試料から100mm×100mmの試験片を切り出し、1-メトキシ-2-プロパノールまたはジメチルホルムアミドによる保護層の拭き取りを行い、拭き取り前後のフィルムの質量変化から付着量を算出した。
オキサゾリンを含有する樹脂を凍結乾燥し、ヴァリアン社製核磁気共鳴分析計(NMR)ジェミニ-200を用いて1H-NMRスペクトルを測定し、オキサゾリン基に由来する吸収ピーク強度と、その他のモノマーに由来する吸収ピーク強度とを求め、それらのピーク強度からオキサゾリン基量(mmol/g)を算出した。
試料を減圧乾燥し、ヴァリアン社製核磁気共鳴分析計(NMR)ジェミニ-200を用いて1H-NMRスペクトルを測定し、各イソシアネート成分に由来するピーク強度の積分比からイソシアネート成分のモル%比を決定した。
[オキサゾリン基を有する樹脂(A)]
オキサゾリン基を有する樹脂として、市販の水溶性オキサゾリン基含有アクリレート(日本触媒社製「エポクロス(登録商標)WS-300」;固形分10%)を用意した。この樹脂のオキサゾリン基量は7.7mmol/gであった。
アクリル樹脂として、市販のアクリル酸エステル共重合体の25質量%エマルジョン(ニチゴー・モビニール(株)社製「モビニール(登録商標)7980」を用意した。このアクリル樹脂(B)の酸価(理論値)は4mgKOH/gであった。
ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)W605」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は100℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、55モル%であった。
ウレタン樹脂として、市販のメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WPB341」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は130℃であった。また、1H-NMRにより測定したポリイソシアネート成分全
体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、85モル%であった。
[ウレタン樹脂(D2)]
ウレタン樹脂として、市販のポリカーボネートウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WS4000」;固形分30%)を用意した。このウレタン樹脂のDSCで測定したガラス転移温度(Tg)は130℃であった。
[ウレタン樹脂(D3)]
ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WS4022」;固形分30%)を用意した。このウレタン樹脂のDSCで測定したガラス転移温度(Tg)は110℃であった。
[シランカップリング剤(G)]
シランカップリング剤として、市販の信越化学社製「(登録商標)KBM603」;固形分30%)を用意した。
[ガスバリア性ビニルアルコール系樹脂(H)]
ガスバリア性を有するビニルアルコール系樹脂として、市販の水溶性ビニルアルコール樹脂(日本合成化学社製「Nichigo G-Polymer(登録商標)OKS-8049」;粉末)を水に溶解し、固形分5%の水溶液を用意した。
[ガスバリア性保護層溶液(I)]
テトラエトキシシランを0.02mol/Lの塩酸で加水分解した溶液をけん化度99%、重合度2400のポリビニルアルコール樹脂(PVA)の5重量%水溶液に、重量比でSiO2/PVA=60/40となる割合で加え、ガスバリア性保護層溶液(I)とした。
(1)被覆層に用いる塗工液1の調整
下記の配合比率で各材料を混合し、塗布液(被覆層用樹脂組成物)を作成した。なお、得られた塗布液中のオキサゾリン基を有する樹脂(A)、アクリル樹脂(B)、ウレタン樹脂(C)の固形分換算の質量比は表1に示す通りである。
水 54.40%
イソプロパノール 25.00%
オキサゾリン基含有樹脂 (A) 15.00%
アクリル樹脂 (B) 3.60%
ウレタン樹脂 (C) 2.00%
下記の塗剤を混合し、塗工液2を作成した。ここでウレタン樹脂(D1)の固形分換算の質量比は表1に示す通りである。
水 58.33%
イソプロパノール 30.00%
ウレタン樹脂(D1) 11.67%
(3)ポリエステル基材フィルムの製造および塗工液1のコート(被覆層の積層)
極限粘度0.62dl/g(30℃、フェノール/テトラクロロエタン=60/40)のポリエチレンテレフタレート樹脂を予備結晶化後、本乾燥し、Tダイを有する押出し機を用いて280℃で押出し、表面温度40℃のドラム上で急冷固化して無定形シートを得た。次に得られたシートを加熱ロールと冷却ロールの間で縦方向に100℃で4.0倍延伸を行った。そして、得られた一軸延伸フィルムの片面に、上記塗工液1をファウンテンバーコート法によりコートした。乾燥しつつテンターに導き、100℃で予熱、120℃で4.0倍横方向に延伸し、6%の横方向の弛緩を行いながら225℃で熱処理を行い、厚さ12μmの二軸延伸ポリエステルフィルムに0.020g/m2の被覆層が形成され
た積層フィルムを得た。
次に、上記(2)で得られた積層フィルムの被覆層面に、無機薄膜層として、二酸化ケイ素と酸化アルミニウムの複合無機酸化物層を電子ビーム蒸着法で形成した。蒸着源としては、3mm~5mm程度の粒子状SiO2(純度99.9%)とA12O3(純度99.9%)とを用いた。ここで複合酸化物層の組成は、SiO2/A12O3(質量比)=60/40であった。また無機薄膜層(SiO2/A12O3複合酸化物層)の膜厚は13nmであった。
(5)蒸着フィルムへの塗工液2のコート(保護層の積層)
塗工液2をワイヤーバーコート法によって(4)で得られた蒸着フィルムの無機薄膜層上に塗布し、200℃で15秒乾燥させ、保護層を得た。乾燥後の塗布量は0.210g/m2(Dry)であった。
以上のようにして、基材フィルムの上に被覆層/金属酸化物層/保護層を備えた積層フィルムを作製した。得られた積層フィルムについて、上記の通り、酸素透過度、ラミネート強度、印刷性を評価した。結果を表1に示す。
保護層形成用の塗工液を調製するにあたり、樹脂の配合量、付着量および種類を表1に示す通りとなるよう変更したこと以外は、実施例1と同様にして積層フィルムを作製し、酸素透過度、ラミネート強度、印刷性を評価した。結果を表1に示す。
Claims (6)
- 基材フィルムの少なくとも片面に被覆層を有し、前記被覆層はオキサゾリン基を有する樹脂を構成成分として含有する被覆層用樹脂組成物からなり、前記被覆層上に無機薄膜層を有すると共に、該無機薄膜層上にウレタン樹脂を含有する保護層を有し、前記積層フィルムの保護層の表面硬度が350~700N/mm2であり、かつ前記保護層の2μm四方における算術平均粗さが0.5~2.0nmであることを特徴とする積層フィルム。
- 前記保護層に含有される前記ウレタン樹脂が芳香族または芳香脂肪族成分を含有することを特徴とする請求項1に記載の積層フィルム。
- 前記保護層に含有される前記ウレタン樹脂がメタキシリレン成分を含有することを特徴とする請求項1または2に記載の積層フィルム。
- 前記被覆層用樹脂組成物中の前記オキサゾリン基を含有する樹脂は、そのオキサゾリン基量が5.1~9.0mmol/gである請求項1~3のいずれかに記載の積層フィルム。
- 前記被覆層中に酸価10mgKOH/g以下のアクリル樹脂を含む請求項1~4のいずれかに記載の積層フィルム。
- 前記無機薄膜層が、酸化ケイ素と酸化アルミニウムの複合酸化物の層である請求項1~5のいずれかに記載の積層フィルム。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197026258A KR102522920B1 (ko) | 2017-02-28 | 2018-02-08 | 적층 필름 |
US16/486,754 US12128656B2 (en) | 2017-02-28 | 2018-02-08 | Laminated film |
CN201880014564.7A CN110352167A (zh) | 2017-02-28 | 2018-02-08 | 层叠薄膜 |
BR112019016435-9A BR112019016435B1 (pt) | 2017-02-28 | 2018-02-08 | Filme laminado |
CA3052128A CA3052128C (en) | 2017-02-28 | 2018-02-08 | Laminated film |
JP2018509856A JP7138851B2 (ja) | 2017-02-28 | 2018-02-08 | 積層フィルム |
EP18760880.7A EP3590703A4 (en) | 2017-02-28 | 2018-02-08 | LAMINATE FILM |
JP2022136020A JP7480810B2 (ja) | 2017-02-28 | 2022-08-29 | 積層フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-037205 | 2017-02-28 | ||
JP2017037205 | 2017-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159248A1 true WO2018159248A1 (ja) | 2018-09-07 |
Family
ID=63370765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004343 WO2018159248A1 (ja) | 2017-02-28 | 2018-02-08 | 積層フィルム |
Country Status (9)
Country | Link |
---|---|
US (1) | US12128656B2 (ja) |
EP (1) | EP3590703A4 (ja) |
JP (2) | JP7138851B2 (ja) |
KR (1) | KR102522920B1 (ja) |
CN (1) | CN110352167A (ja) |
BR (1) | BR112019016435B1 (ja) |
CA (1) | CA3052128C (ja) |
TW (1) | TWI796321B (ja) |
WO (1) | WO2018159248A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021166881A1 (ja) * | 2020-02-20 | 2021-08-26 | 東洋紡株式会社 | 積層フィルム |
JP7238938B1 (ja) | 2021-09-30 | 2023-03-14 | 東洋紡株式会社 | 積層フィルム及び包装材料 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113874429A (zh) * | 2019-05-31 | 2021-12-31 | 三井化学东赛璐株式会社 | 包装用膜、包装体及层叠膜的制造方法 |
US11932742B2 (en) * | 2019-10-29 | 2024-03-19 | Toyobo Co., Ltd. | Laminated polyester film |
JPWO2021100558A1 (ja) * | 2019-11-20 | 2021-05-27 | ||
CN111907161B (zh) * | 2020-07-13 | 2022-07-29 | 厦门长塑实业有限公司 | 一种透明的超高阻隔复合薄膜及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250837A (ja) | 1988-08-12 | 1990-02-20 | Toyobo Co Ltd | 蒸着ポリエステルフィルム |
JPH11179836A (ja) | 1997-09-25 | 1999-07-06 | Mitsubishi Chemical Corp | 蒸着プラスチックフイルム |
JP2003154596A (ja) * | 2001-11-22 | 2003-05-27 | Nitto Denko Corp | 透明ガスバリア性フィルム、及びそれを用いた透明導電性電極基材、表示素子、太陽電池又は面状発光体 |
JP2005178137A (ja) * | 2003-12-18 | 2005-07-07 | Dainippon Printing Co Ltd | ガスバリアフィルムとこれを用いた積層材、画像表示媒体 |
WO2007111092A1 (ja) * | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | 透明バリア性シートおよび透明バリア性シートの製造方法 |
JP4524463B2 (ja) | 1999-07-27 | 2010-08-18 | 三井化学株式会社 | ガスバリア性ポリウレタン樹脂及びこれを含むガスバリア性フィルム |
JP5560708B2 (ja) | 2009-12-24 | 2014-07-30 | 東洋紡株式会社 | 積層フィルム |
WO2016136768A1 (ja) * | 2015-02-24 | 2016-09-01 | 東洋紡株式会社 | 積層フィルム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0905174B1 (en) | 1997-09-25 | 2001-12-19 | Mitsubishi Chemical Corporation | Deposited plastic film |
CN1922005B (zh) * | 2004-03-25 | 2010-12-08 | 三菱树脂株式会社 | 阻气性叠层体 |
JP4792859B2 (ja) * | 2005-07-27 | 2011-10-12 | 三菱樹脂株式会社 | 熱水処理用ガスバリア性積層体 |
JP2007302726A (ja) * | 2006-05-09 | 2007-11-22 | Tombow Pencil Co Ltd | ボールペン型接着具用水性接着剤 |
JP2009274381A (ja) | 2008-05-16 | 2009-11-26 | Toyobo Co Ltd | 積層フィルム |
US11613617B2 (en) * | 2010-12-01 | 2023-03-28 | Toyobo Co., Ltd. | Multilayer film |
JP6136092B2 (ja) * | 2011-03-25 | 2017-05-31 | 東洋紡株式会社 | 積層フィルム |
JP2014030984A (ja) * | 2012-08-06 | 2014-02-20 | Toyobo Co Ltd | 積層フィルム |
TWI555639B (zh) * | 2012-08-31 | 2016-11-01 | 王子控股股份有限公司 | 印刷用片材、裝飾片材及黏著性裝飾片材 |
JP6631098B2 (ja) | 2014-08-28 | 2020-01-15 | 東洋紡株式会社 | 積層フィルム |
JP6777396B2 (ja) * | 2014-12-09 | 2020-10-28 | 日本製紙株式会社 | ハードコートフィルム |
EP3287500B1 (en) * | 2015-04-22 | 2023-05-10 | Toppan Printing Co., Ltd. | Coating agent and gas barrier film |
JP6794633B2 (ja) | 2016-02-23 | 2020-12-02 | 東洋紡株式会社 | 積層フィルム |
-
2018
- 2018-02-08 CN CN201880014564.7A patent/CN110352167A/zh active Pending
- 2018-02-08 EP EP18760880.7A patent/EP3590703A4/en active Pending
- 2018-02-08 BR BR112019016435-9A patent/BR112019016435B1/pt active IP Right Grant
- 2018-02-08 CA CA3052128A patent/CA3052128C/en active Active
- 2018-02-08 WO PCT/JP2018/004343 patent/WO2018159248A1/ja unknown
- 2018-02-08 JP JP2018509856A patent/JP7138851B2/ja active Active
- 2018-02-08 US US16/486,754 patent/US12128656B2/en active Active
- 2018-02-08 KR KR1020197026258A patent/KR102522920B1/ko active IP Right Grant
- 2018-02-26 TW TW107106294A patent/TWI796321B/zh active
-
2022
- 2022-08-29 JP JP2022136020A patent/JP7480810B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250837A (ja) | 1988-08-12 | 1990-02-20 | Toyobo Co Ltd | 蒸着ポリエステルフィルム |
JPH11179836A (ja) | 1997-09-25 | 1999-07-06 | Mitsubishi Chemical Corp | 蒸着プラスチックフイルム |
JP4524463B2 (ja) | 1999-07-27 | 2010-08-18 | 三井化学株式会社 | ガスバリア性ポリウレタン樹脂及びこれを含むガスバリア性フィルム |
JP2003154596A (ja) * | 2001-11-22 | 2003-05-27 | Nitto Denko Corp | 透明ガスバリア性フィルム、及びそれを用いた透明導電性電極基材、表示素子、太陽電池又は面状発光体 |
JP2005178137A (ja) * | 2003-12-18 | 2005-07-07 | Dainippon Printing Co Ltd | ガスバリアフィルムとこれを用いた積層材、画像表示媒体 |
WO2007111092A1 (ja) * | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | 透明バリア性シートおよび透明バリア性シートの製造方法 |
JP5560708B2 (ja) | 2009-12-24 | 2014-07-30 | 東洋紡株式会社 | 積層フィルム |
WO2016136768A1 (ja) * | 2015-02-24 | 2016-09-01 | 東洋紡株式会社 | 積層フィルム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021166881A1 (ja) * | 2020-02-20 | 2021-08-26 | 東洋紡株式会社 | 積層フィルム |
CN115103766A (zh) * | 2020-02-20 | 2022-09-23 | 东洋纺株式会社 | 层叠薄膜 |
CN115103766B (zh) * | 2020-02-20 | 2023-12-15 | 东洋纺株式会社 | 层叠薄膜 |
JP7238938B1 (ja) | 2021-09-30 | 2023-03-14 | 東洋紡株式会社 | 積層フィルム及び包装材料 |
WO2023054103A1 (ja) * | 2021-09-30 | 2023-04-06 | 東洋紡株式会社 | 積層フィルム及び包装材料 |
JP2023050911A (ja) * | 2021-09-30 | 2023-04-11 | 東洋紡株式会社 | 積層フィルム及び包装材料 |
JP7537541B2 (ja) | 2021-09-30 | 2024-08-21 | 東洋紡株式会社 | 積層フィルム及び包装材料 |
Also Published As
Publication number | Publication date |
---|---|
JP7138851B2 (ja) | 2022-09-20 |
TW201836848A (zh) | 2018-10-16 |
BR112019016435B1 (pt) | 2023-02-14 |
CA3052128C (en) | 2023-09-26 |
BR112019016435A2 (pt) | 2020-04-07 |
KR20190124727A (ko) | 2019-11-05 |
CN110352167A (zh) | 2019-10-18 |
US20190389191A1 (en) | 2019-12-26 |
US12128656B2 (en) | 2024-10-29 |
EP3590703A1 (en) | 2020-01-08 |
TWI796321B (zh) | 2023-03-21 |
KR102522920B1 (ko) | 2023-04-17 |
JP7480810B2 (ja) | 2024-05-10 |
JP2022162165A (ja) | 2022-10-21 |
EP3590703A4 (en) | 2021-01-13 |
CA3052128A1 (en) | 2018-09-07 |
JPWO2018159248A1 (ja) | 2019-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7480810B2 (ja) | 積層フィルム | |
JP6606165B2 (ja) | 積層フィルム | |
JP6794633B2 (ja) | 積層フィルム | |
WO2012074030A1 (ja) | 積層フィルム | |
JP6631098B2 (ja) | 積層フィルム | |
JP6558463B2 (ja) | 積層フィルム | |
JP2014030984A (ja) | 積層フィルム | |
JP6060533B2 (ja) | 積層フィルム | |
JP6137357B2 (ja) | 積層体 | |
JP5879980B2 (ja) | 積層フィルム | |
JP6278067B2 (ja) | 積層フィルム | |
JP7014283B2 (ja) | 積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018509856 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760880 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3052128 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019016435 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197026258 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018760880 Country of ref document: EP Effective date: 20190930 |
|
ENP | Entry into the national phase |
Ref document number: 112019016435 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190808 |