[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018155504A1 - ダイヤモンド磁気センサー - Google Patents

ダイヤモンド磁気センサー Download PDF

Info

Publication number
WO2018155504A1
WO2018155504A1 PCT/JP2018/006280 JP2018006280W WO2018155504A1 WO 2018155504 A1 WO2018155504 A1 WO 2018155504A1 JP 2018006280 W JP2018006280 W JP 2018006280W WO 2018155504 A1 WO2018155504 A1 WO 2018155504A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
magnetic field
magnetic
frequency
fluorescence
Prior art date
Application number
PCT/JP2018/006280
Other languages
English (en)
French (fr)
Inventor
西林 良樹
和寛 池田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP18757691.3A priority Critical patent/EP3588117A4/en
Priority to US16/487,166 priority patent/US11181590B2/en
Priority to CN201880012808.8A priority patent/CN110325869B/zh
Priority to JP2019501383A priority patent/JP7136076B2/ja
Priority to EP19199655.2A priority patent/EP3629044B1/en
Publication of WO2018155504A1 publication Critical patent/WO2018155504A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/10Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/323Detection of MR without the use of RF or microwaves, e.g. force-detected MR, thermally detected MR, MR detection via electrical conductivity, optically detected MR

Definitions

  • the present invention relates to a magnetic sensor using diamond.
  • This application claims priority based on Japanese Patent Application No. 2017-029689 filed on Feb. 21, 2017, and incorporates all the contents described in the above Japanese application.
  • Non-patent Document 1 As a magnetic sensor for measuring the strength of a magnetic field, a Hall element is widely used. In addition, SQUID using superconductivity is known for measuring a minute magnetic field. In recent years, as a new sensor, a sensor that can detect a magnetic field in a minute region with high sensitivity using a nitrogen-hole complex (NV - center) formed in diamond has been proposed (Non-patent Document 1). ). In such a sensor, when a diamond having an NV ⁇ center is irradiated with microwaves having a frequency of about 2.8 GHz and green light is irradiated as excitation light to the NV ⁇ center, red light generated as fluorescence from the NV ⁇ center is emitted. To detect.
  • Patent Document 1 Since the drop point of the fluorescence intensity when sweeping the frequency of the microwave to be irradiated changes depending on the magnetic field intensity, the magnetic field intensity is detected (Patent Document 1). Further, diamond suitable for such a sensor has been studied (Patent Document 2).
  • the sensor using the NV - center can measure a very weak change in magnetic field strength.
  • the detectable magnetic field strength can be measured.
  • the range was narrow.
  • An object of the present invention is to obtain a diamond magnetic sensor suitable for practical use by extending the range of detectable magnetic intensity and eliminating the environmental magnetic field in a magnetic sensor using diamond having an NV - center.
  • a diamond magnetic sensor includes a diamond having at least one NV ⁇ center, a microwave generator for irradiating the diamond with microwaves, and an excitation for irradiating the NV ⁇ center of the diamond with excitation light.
  • a diamond magnetic sensor comprising a light generator and a fluorescence detector that receives fluorescence generated from the NV - center of the diamond, and measures a temporal change pattern of magnetic intensity from a change in fluorescence intensity detected by the fluorescence detector It is a diamond magnetic sensor provided with a pattern measuring device.
  • a planar diamond having a plurality of NV - center regions in a plan view, a magnetic array arranged corresponding to the NV - center region, and microwave generation for irradiating the diamond with microwaves
  • a diamond magnetic sensor comprising: a detector; an excitation light generator that irradiates the diamond with excitation light; and a fluorescence detector array that individually receives fluorescence generated from the plurality of NV - center regions.
  • a diamond magnetic sensor suitable for practical use can be obtained by expanding the range of detectable magnetic intensity and eliminating the environmental magnetic field.
  • FIG. 1 is a schematic diagram showing a basic configuration of a diamond magnetic sensor according to a first embodiment of the present invention.
  • FIG. 2 is a graph for explaining the basic principle of a diamond magnetic sensor having an NV - center.
  • FIG. 3 is a graph for explaining the measurement principle of a minute magnetic field change in a conventional diamond magnetic sensor.
  • FIG. 4 is a graph for explaining one measurement principle of the diamond magnetic sensor according to the present embodiment.
  • FIG. 5 is a graph for explaining a time change pattern obtained by the diamond magnetic sensor according to the present embodiment.
  • FIG. 6 is a schematic diagram showing a basic configuration of a diamond magnetic sensor according to the second embodiment of the present invention.
  • FIG. 7A is a perspective view showing an arrangement state of the diamond and the magnetic array.
  • FIG. 7B is a cross-sectional view showing a cross section C1 passing through the region a and the region b in FIG. 7A.
  • FIG. 7C is a cross-sectional view showing a state in which the fluorescence detector array 31 is further arranged in FIG. 7B.
  • FIG. 8 is a graph showing fluorescence intensity signals corresponding to the region a to the region e.
  • FIG. 9 is a graph showing a state in which a constant external magnetic field is applied and the frequency interval is Fx shifted.
  • FIG. 10 is a graph showing changes in fluorescence intensity detected from the region d.
  • FIG. 11 is a graph for explaining a measurement method using the diamond magnetic sensor according to the third embodiment.
  • FIG. 12 is a graph showing the result of weighting and adding the graph shown in FIG.
  • FIG. 13 is a graph showing a result of weighting and adding graphs having peak intervals different from those in FIGS. 11 and 12.
  • FIG. 14 is a graph showing the result of weighting and adding graphs having peak intervals different from those in FIGS.
  • FIG. 15 is a graph showing the result of weighting and adding graphs having peak intervals different from those in FIGS.
  • FIG. 16 is a graph showing the result of weighting and adding graphs having peak intervals different from those in FIGS.
  • FIG. 17A is a side view showing an example in which the diamond magnetic sensor according to the first embodiment is configured as a module on one circuit board.
  • FIG. 17B is a plan view showing an example in which the diamond magnetic sensor according to the first embodiment is configured as a module on one circuit board.
  • FIG. 17A is a side view showing an example in which the diamond magnetic sensor according to the first embodiment is configured as a module on one circuit board.
  • FIG. 17B is a plan view showing an example in which the diamond magnetic sensor according to the first
  • FIG. 18A is a side view showing an example in which the diamond magnetic sensor according to the second embodiment is configured as a module on one circuit board.
  • FIG. 18B is a plan view showing an example in which the diamond magnetic sensor according to the second embodiment is configured as a module on one circuit board.
  • FIG. 19 is a graph for explaining how the environmental magnetic field and the detection target magnetic field are combined and measured.
  • FIG. 20 is a plan view showing a prototype sample E.
  • FIG. FIG. 21 is a schematic diagram illustrating a configuration of the apparatus used in the first embodiment.
  • FIG. 22 is a graph showing the measurement conditions of Example 1.
  • FIG. 23 is a graph schematically showing a measurement result under the measurement conditions of FIG.
  • FIG. 24 is a graph showing measurement conditions different from those in FIG. FIG.
  • FIG. 25 is a graph schematically showing a measurement result under the measurement conditions of FIG.
  • FIG. 26 is a schematic diagram illustrating the configuration of the apparatus used in the second embodiment.
  • FIG. 27 is a graph showing measurement conditions and measurement results of Example 2.
  • FIG. 28 is a graph showing measurement conditions and measurement results different from those in FIG.
  • FIG. 29 is a graph showing measurement conditions and measurement results different from those of FIGS. 27 and 28 in Example 2.
  • FIG. 30 is a graph showing measurement conditions and measurement results different from those in FIGS.
  • FIG. 31 is a schematic diagram showing the configuration of an apparatus different from that shown in FIG. 26 used in the second embodiment.
  • FIG. 32 is a schematic diagram illustrating a configuration of the apparatus used in the fifth embodiment.
  • Embodiment of the present invention Preferred embodiments of the present invention are listed.
  • One embodiment includes a diamond having at least one NV ⁇ center, a microwave generator for irradiating the diamond with microwaves, an excitation light generator for irradiating the NV ⁇ center of the diamond with excitation light, NV of the diamond - a diamond magnetic sensor and a fluorescence detector for receiving fluorescence emitted from the center, the pattern measuring apparatus wherein the fluorescent detector for measuring the temporal change pattern of the magnetic field intensity from the change in the fluorescence intensity detected It is a diamond magnetic sensor equipped.
  • the pattern measuring device has a function of controlling sweeping of the frequency of the microwave, a function of specifying a microwave frequency that generates a minimum value of the fluorescence intensity, and a function of detecting a magnetic field intensity based on the specified frequency. It is preferable to measure the temporal change pattern of the magnetic field intensity by repeating the sweep of the frequency and repeating the detection of the magnetic field intensity.
  • a data analysis device for separating the magnetic field intensity caused by the measurement environment and the magnetic field intensity caused by the measurement object based on the time change pattern.
  • the data analysis device may be a diamond magnetic sensor that separates the magnetic field strength by filtering based on the frequency of the time change pattern.
  • a planar diamond having a plurality of NV - center regions in a plan view, a magnetic array arranged corresponding to the NV - center region, and a microwave for irradiating the diamond with microwaves
  • the diamond magnetic sensor includes a generator, an excitation light generator that irradiates the diamond with excitation light, and a fluorescence detector array that individually receives fluorescence generated from the plurality of NV - center regions.
  • a cancel coil for reducing an environmental magnetic field acting on the diamond by generating a predetermined magnetic field.
  • These diamond magnetic sensors include the diamond, the microwave generator, the excitation light generator, the fluorescence detector, or the fluorescence detector directly on one circuit board or via another member. It is good to be comprised so that an array may be mounted. As a result, the entire sensor configuration can be made smaller and more compact, the optical axis can be stabilized, the efficiency of excitation light irradiation and microwave irradiation can be increased, and the accuracy and stability of the irradiation position can be increased. Performance and reliability are improved.
  • It can be configured to further include a magnetic shield for shielding an environmental magnetic field acting on the diamond and an antenna for introducing an external signal including a detection target into the magnetic shield.
  • the pattern measuring device is a device that measures a spatial direction pattern of the magnetic field strength, or measures a temporal change pattern for each spatial direction, instead of measuring the temporal change pattern of the magnetic field strength. You can also.
  • the data analysis device separates the magnetic field strength caused by the measurement environment and the magnetic field strength caused by the measurement object based on the spatial direction pattern or based on both the spatial direction pattern and the time change pattern. And it is sufficient.
  • a plurality of NV in a plan view - irradiating the magnetic array arranged in correspondence with the center region, the microwave to said diamond - a plate-shaped diamond having a center region, the NV A microwave generator; an excitation light generator for irradiating the diamond with excitation light; and a fluorescence detector for receiving fluorescence generated from the plurality of NV - centers. depending on the applied magnetic field, said plurality of NV - the magnitude of the minimum value of the fluorescence intensity resulting from the center region, the NV - a diamond magnetic sensor attached weights to vary the center region.
  • the diamond magnetic sensor unit includes: a plate-like diamond having a plurality of NV - center regions in plan view; and a magnetic array disposed corresponding to each of the NV - center regions, the diamond and the magnetic array It is good to use what is touching. Thus, a fixed magnetic field can be effectively applied to each NV - center region.
  • the diamond and the electronic circuit unit including the fluorescence detector are separated by 1 cm or more, and the diamond and the electronic circuit unit are electrically connected between the diamond and the electronic circuit unit. It is preferable that no member be present. That is, in the diamond magnetic sensor, the weak magnetic field generated from the diamond and the electronic circuit (excitation light generation electronic circuit, fluorescent light reception electronic circuit, microwave generation electronic circuit) is eliminated as much as possible. It is preferable that the device has a structure in which the diamond and the electronic circuit are separated physically and spatially. Thereby, the influence of the extra magnetic field on the diamond magnetic sensor can be eliminated.
  • the electronic circuit unit including the fluorescence detector is separated from the diamond by a solid that transmits visible light or infrared light, and has a temperature environment different from a standard state, and a pressure different from the standard state. It can be used in at least one of an environment and a gas atmosphere other than air.
  • the diamond magnetic sensor is a device having a structure in which the diamond serving as a sensing unit and the electronic circuit unit are separated from each other by a plate transparent in the visible light region or the infrared light region, and placed in different environments. be able to. As a result, the magnetic field under the environment can be measured as long as the diamond can withstand an environment in which the electronic circuit cannot withstand.
  • magnetism is used to mean a source that generates a magnetic field in space (including those having N and S poles and quantum mechanical spins). It is used to mean a magnetic field formed in space.
  • the magnetic sensor is a sensor that measures a magnetic field in a place where the sensor exists. However, since this also means measuring magnetism, the term “magnetism” is used. In addition, when it is not necessary to strictly distinguish magnetism and magnetic field, they are not clearly distinguished.
  • Expressed as magnetic field strength or magnetic strength in the sense that the object being measured is magnetic or magnetic strength. In addition, it is expressed as a magnetic field direction or a magnetic direction in the sense that the object being measured is a magnetic field or a magnetic direction.
  • magnetism what is expressed as a magnetic field (magnetism) can be said to be a fragment obtained by cutting out an instant of the temporal change pattern of the magnetic field (magnetism). Even at a certain moment, even if the magnetic field (magnetism) intensity itself cannot be distinguished from the magnetic field to be detected (magnetism) and other magnetic fields (magnetism), the magnetic field (magnetism) intensity or magnetic field (magnetism) ) )
  • the time change pattern in the direction can be distinguished from each other. This is because by paying attention to time, frequency, etc., the strength or direction change characteristics of the two differ.
  • the time change pattern refers to the entire change in magnetic field (magnetic) intensity or direction over time.
  • the spatial direction pattern refers to the direction distribution of the magnetic field (magnetism) observed at the sensing position. Therefore, a magnetic field vector pattern can be obtained by synthesizing the time change pattern and the spatial direction pattern.
  • FIG. 1 is a schematic diagram showing a basic configuration of a diamond magnetic sensor according to a first embodiment of the present invention.
  • Diamond 1 is a detector that detects a magnetic field.
  • Diamond 1 the nitrogen in the crystal lattice - vacancies complex (hereinafter, NV - called Center) has at least one.
  • a microwave 12 having a frequency of about 2.8 GHz is irradiated from the microwave source 10 to the diamond 1 having the NV - center.
  • the diamond 1 is irradiated with excitation light 21 from an excitation light generator 20 such as a green laser light source having a wavelength of 532 nm.
  • an excitation light generator 20 such as a green laser light source having a wavelength of 532 nm.
  • the diamond 1 emits red light as fluorescence 22 from the NV ⁇ center.
  • the emitted fluorescence 22 is condensed by the lens 23 and guided to the fluorescence detector 30, and its intensity is detected.
  • the arrangement of each component is schematically drawn and is not limited to this.
  • the side where the fluorescence 22 of the diamond 1 is detected and the side where the microwave 12 is irradiated are not limited to each other, and the excitation light 21 from the excitation light generator 20 is irradiated obliquely from above. It is not limited to that.
  • the NV - center fluorescence of diamond is the level excited when excited from the ground state (the state where the spin magnetic quantum number m s is 0) and the level excited when the electrons are resonated with the microwave (the magnetic quantum number m s of the spin). Is different from the case of being excited from the state of ⁇ 1 or +1). In the former case, the fluorescence intensity is high, and in the latter case, the fluorescence intensity is low.
  • the spin magnetic quantum number ms is excited from a state of ⁇ 1, the fluorescence intensity decreases because the state returns to the ground state by a non-emitting transition in which no fluorescence is emitted.
  • the level at which electrons are excited is excited by irradiation with a specific microwave frequency corresponding to the level difference, and the number of ground state electrons contributing to fluorescence decreases. Strength decreases. In the presence of a magnetic field, the excited state splits energetically (Zeeman effect), so there are at least two minimum values of fluorescence intensity. Since the microwave frequency difference (energy difference) between the two levels, which was the same before the division by the magnetic field, is proportional to the magnetic field strength, the magnetic field strength can be calculated by the microwave frequency difference.
  • the fluorescence intensity graph shows a plurality of minimum values if the magnetic field strength differs for each direction. .
  • there are a maximum of four bond directions of N and V so the minimum value in the fluorescence intensity graph does not exceed eight places.
  • pairs of local minimum values for calculating the microwave frequency difference are generated by the same magnetic field strength, so that they can be distinguished from other pairs.
  • each pair is centered on the frequency at zero magnetic field (since the minimum value of the pair is centered on the frequency at zero magnetic field), it can be distinguished from other pairs.
  • FIG. 1 the case where the frequency of the microwave irradiated from the microwave generation source 10 is swept by the frequency sweeping device 11 is considered.
  • FIG. 2 is a graph for explaining the basic principle of a diamond magnetic sensor having an NV - center, and schematically shows the relationship between the fluorescence intensity I detected by the fluorescence detector 30 and the microwave frequency F. It is. As described above, the fluorescence minima of the intensity I is present at least two locations, that is the frequency difference ⁇ F is the NV diamond 1 - determined by the magnetic field strength that is applied to the center. This magnetic field strength refers to an external magnetic field and an internal magnetic field.
  • the external magnetic field is a magnetic field having a factor outside the diamond
  • the internal magnetic field is a magnetic field having a factor inside the diamond (for example, a magnetic field caused by a nuclear spin such as 13 C or 15 N, or an electron spin in a defect. Magnetic field).
  • FIG. 3 is a graph for explaining the measurement principle of a minute magnetic field change in a conventional diamond magnetic sensor.
  • the fluorescence intensity I is detected with the microwave frequency fixed at f1.
  • the magnetic field as an initial state is applied to the NV - center of diamond, and the minimum value of the fluorescence intensity exactly matches the frequency of f1.
  • I1 is detected as the fluorescence intensity.
  • the magnetic field slightly changes and the minimum value of the fluorescence intensity is shifted to the microwave frequency f2.
  • the fluorescence intensity is I2.
  • a minute change in the magnetic field can be measured as a change in the fluorescence intensity.
  • Diamond magnetic sensor A diamond magnetic sensor according to a first embodiment of the present invention will be described with reference to FIGS. 1, 4, and 5.
  • the frequency of the microwave 12 in FIG. 1 is swept by the frequency sweep device 11 and the intensity of the fluorescence 22 is measured by the fluorescence detector 30, the minimum value of the fluorescence intensity as shown in FIG. 2 is obtained. .
  • FIG. 4 is a diagram for explaining the measurement principle of one embodiment of the present diamond magnetic sensor.
  • the frequency difference is ⁇ F1.
  • the magnetic field changes with time.
  • the frequency difference indicating the minimum value of the detected fluorescence intensity is ⁇ F2.
  • FIG. 5 shows the frequency difference detected by repeating the sweep of the microwave frequency every time ⁇ t and the time plotted on the horizontal axis. The vertical axis represents the detected frequency difference ⁇ F.
  • ⁇ F can be converted into a magnetic intensity by using a correspondence equation prepared in advance or conversion data associated therewith.
  • a graph showing the time variation of the magnetic field strength with the vertical axis as the magnetic strength and the horizontal axis as the time is called the time variation pattern of the magnetic field strength, and the magnetic strength that is the source of the magnetic field is the magnetic strength. This is called a time change pattern.
  • the frequency difference of two local minimum values was used, it should just be a technique which can measure an equivalent change.
  • the frequency sweep width can be made narrower.
  • the median is a point representing the case where the magnetism is zero, and if it is evaluated in advance, it can be calibrated later.
  • the time change pattern of the magnetic intensity can be obtained from the frequency indicating the minimum value of the detected fluorescence intensity by repeating the sweep of the microwave frequency.
  • the microwave frequency sweep speed (the time required for one sweep) is preferably shorter than 1 msec, more preferably shorter than 10 ⁇ sec, and more than 1 ⁇ sec. Is more preferable. This is because the faster the frequency sweep rate, the shorter the period or the more complex the waveform can be reproduced.
  • the microwave frequency sweep range (frequency range) and frequency interval (frequency interval set during one sweep) are the range and interval at which two minimum values of fluorescence intensity can be confirmed, and at least one minimum value.
  • the range and the interval can be confirmed. This is so that the minimum value can be clearly reproduced. Since the detection is a change in the frequency of the microwave, even if this frequency is greatly shifted, the magnetic sensitivity becomes a frequency difference / frequency and does not change greatly. Compared with the case where a change in intensity is used as a signal, a minute magnetic field can be detected in a wide magnetic field range. That is, it is possible to maintain a high magnetic field resolution sensitivity. The resolution sensitivity of magnetic strength depends on the frequency resolution.
  • the magnetic measurement method presented here includes a diamond having at least one NV ⁇ center, a microwave generator for irradiating the diamond with a microwave, and an excitation light generator for irradiating the NV ⁇ center of the diamond with excitation light.
  • a diamond magnetic sensor equipped with a pattern measuring device for measuring a temporal change pattern of magnetic intensity from a change in fluorescence intensity, and a fluorescence detector for receiving fluorescence emitted from the NV - center of diamond.
  • a procedure for sweeping a wave frequency, a procedure for identifying a microwave frequency at which the intensity of the fluorescence measured in the sweep exhibits a minimum value, a procedure for detecting a magnetic intensity based on the identified frequency, and a frequency sweep Repeatedly repeats the detection of the magnetic intensity to measure the temporal change pattern of the magnetic intensity.
  • a phase sweep device can be used instead of a frequency sweep device. That is, a magnetic measurement method using a procedure for sweeping the phase instead of the procedure for sweeping the frequency can be realized.
  • a method of sweeping the phase by irradiating a synthesized wave of a microwave having a desired frequency width and a microwave whose phase is shifted can be employed.
  • the amount of change in the fluorescence intensity with respect to the phase shift amount can be obtained by obtaining the spectrum as the change in the fluorescence intensity with respect to the frequency by using Fourier transform, thereby obtaining the magnetic intensity.
  • the conventional method described with reference to FIG. 3 can capture a very weak magnetic field change by observing the change in fluorescence intensity while fixing the microwave frequency, but cannot cope with a large magnetic field change.
  • a time change pattern of magnetic intensity can be obtained by digitizing the output of the fluorescence intensity detector.
  • the time response depends on the response speed of the fluorescence intensity detector and the sampling time interval, and a very fast response can be expected.
  • the data sampling interval from one sweep to the next sweep in a plurality of sweeps
  • Time depends on the speed of the microwave frequency sweep. The preferred sweep rate is as described above.
  • the change pattern of the magnetic intensity that becomes the background or the environment is preferably 100 Hz or less, or 1000 Hz or less, and the change pattern of the magnetic intensity to be captured is preferably greater than 1 kHz, more than 100 kHz. More preferably, it is more preferably greater than 1 MHz. However, this is not the case as long as the magnetic intensity to be captured in the environmental magnetic intensity can be separated from the environmental magnetic intensity by analysis.
  • it is effective to subtract the environmental magnetic intensity and leave only the magnetic intensity that is desired to be captured, and it is preferable to cut a frequency lower than 70 Hz, and more preferable to cut a frequency lower than 1 kHz. It is more preferable to cut a frequency lower than 10 kHz.
  • the data sampling interval depends on the speed of the microwave phase shift amount sweep.
  • FIG. 6 is a schematic diagram showing a basic configuration of a diamond magnetic sensor according to the second embodiment of the present invention.
  • the diamond 2 is a plate-like diamond having a plurality of NV - center regions in plan view. Viewing the diamond from the plate-shaped main surface (the one surface having the widest area and the front and back surfaces) is a plan view.
  • the diamond 2 has a region where a plurality of NV - centers exist, and each NV - center region is a region where one or a plurality of NV - centers are aggregated. In plan view, the plurality of NV - center regions may be regularly arranged or randomly arranged.
  • each NV - center area can be specified in advance.
  • the method of forming diamond 2 NV - centers arranged in an array by making holes (V) locally in the array by electron beam irradiation through a mask formed by photolithography, The NV ⁇ centers can be formed in an array, and the space in the diamond having the NV ⁇ centers in the array can be processed into a box by the same photolithography technique. It can also be realized by arranging single diamonds having NV - centers on different substrates.
  • a magnetic array 3 as a magnetic field generator is arranged.
  • the magnetic array 3 is disposed on the main surface of the diamond 2 or the back surface thereof.
  • a plurality of magnetism generating members are arranged at positions corresponding to the locations of the plurality of NV - center regions existing in the diamond 2. Therefore, the regular arrangement is easier to manufacture (corresponding to the random arrangement) than the random arrangement.
  • the magnetism generating member is generally a magnetic material (ferromagnetic material) and has only to be a minute one that has a known magnetism and can be arranged.
  • the magnetic material may be patterned, or a magnetic material sheet with a magnetic pattern may be used.
  • the strength of the magnetic field formed in each NV - center region by the magnetic material can be controlled by the volume (amount) of the magnetic material, and the strength can be measured in advance in an environment without a magnetic field. If you can.
  • the aforementioned NV ⁇ center region may ultimately be a single NV ⁇ and the magnetic source may ultimately be a 13 C or 15 N nuclear magnetism of an isotope element in diamond. Good. NV - different magnetic field strength applied to the, 13 C or 15 N and NV - the difference in the distance of closest approach between, automatically so that the randomly generated. If the NV - centers can be individually observed with a microscope, each one corresponds to a plurality of NV - center regions arranged at random.
  • the form in which different magnetic arrays and NV - center region arrays are arranged in one diamond 2 makes it possible to separate and grasp NV - centers that have caused various Zeeman splits. This is the biggest feature. Being able to grasp separately is one form that helps to sweep the microwave frequency by grasping the state in which different microwave frequencies are changed instantaneously.
  • the relationship between the magnetic intensity and the microwave frequency is preferably the same in all NV - center regions, but even if they are different, there is no particular problem as long as they are individually calibrated first.
  • the microwave generator for irradiating the diamond 2 with microwaves includes at least a microwave generation source 10 and preferably a frequency sweeping device 11.
  • the microwave 12 is configured to be uniformly irradiated on the entire diamond 2.
  • An excitation light generator 20 for irradiating the diamond 2 with the excitation light 21 is provided.
  • Excitation light 21 is applied to the entire NV - center in diamond 2.
  • the excitation light generator may spread light from one laser light source by an optical system, or may use a plurality of light sources.
  • a fluorescence detector array 31 is provided at a position facing the main surface of the diamond 2 or the back surface thereof.
  • the fluorescence detector array 31 only needs to have a plurality of light receiving elements.
  • a plurality of individual light receiving elements may be arranged at positions facing the NV - center region of the diamond 2, or a CMOS (Complementary metal-oxide-semiconductor) sensor or a CCD element.
  • a large number of fine light receiving elements may be arranged as in (Charge Coupled Device). Further, it may be enlarged and projected onto the light receiving element via a lens system.
  • a pattern measuring device 40 is provided for controlling the frequency of the microwave and measuring the received fluorescence intensity to obtain a time-varying pattern.
  • a plurality of NV - centers are in one diamond substrate.
  • a plurality of NV - centers exist on a plurality of diamond substrates, and the plurality of diamond substrates may be formed in combination.
  • One diamond is preferable in that the entire sensor is compact and measurement is easy in the same magnetic field environment.
  • a method of forming the NV - center in the diamond for example, a known method is used such as forming a vacancy in diamond containing nitrogen in the crystal lattice by electron beam irradiation and then annealing to form an NV defect. be able to.
  • FIG. 7A is a perspective view schematically showing a state in which the diamond 2 and the magnetic array 3 are arranged so as to overlap each other.
  • a magnetic array 3 is arranged to face one main surface of the flat diamond 2.
  • the diamond 2 has five regions including the NV - center, and each region is referred to as a to e.
  • the number of regions can be arbitrarily determined as necessary, and the arrangement is not particularly limited.
  • the number of NV - centers included in one region may be one or plural.
  • the fluorescence intensity detected by a plurality of people can be increased, and the intensity distribution showing the minimum value tends to be broad.
  • FIG. 7B is a diagram schematically showing a cross section C1 cut perpendicularly to the main surface so as to include the region a and the region b in FIG. 7A.
  • the magnetic body 3a is embedded corresponding to the region a
  • the magnetic body 3b is embedded corresponding to the region b.
  • strong magnetism is generated at equal intervals in the order of a, b, c, d, and e.
  • FIG. 7C is a cross-sectional view schematically showing a state where the fluorescence detector array 31 is further arranged in FIG. 7B.
  • a light receiving element array such as a CMOS sensor or a CCD is exemplified as the fluorescence detector array.
  • light receiving elements are two-dimensionally arranged on one surface.
  • FIG. 7C shows a light receiving element 32a located at a location corresponding to the region a and a light receiving element 32b located at a location corresponding to the region b.
  • the output of the light receiving element that exists in a location other than the NV - center region is not used, but it can also be used for measuring background noise.
  • a light receiving element arranged in accordance with the location of the NV - center region may be used.
  • a filter for blocking excitation light can be appropriately disposed between the NV - center and the light receiving element.
  • the NV - center portion can be enlarged and condensed by a lens and guided to the light receiving element as appropriate.
  • the excitation light is confined between the excitation light generator and the diamond having the NV ⁇ center, and a device that is difficult to be emitted to the outside can be appropriately taken.
  • FIG. 8 is a graph for explaining the difference in signal when the fluorescence intensity corresponding to the region a to the region e is measured when the microwave frequency is swept.
  • the fluorescence intensity has two minimum values depending on the microwave frequency, and the frequency difference between the minimum values depends on the magnetic field intensity.
  • a known magnetic field is individually applied by the magnetic array 3 to each NV - center from the region a to the region e, and the magnetic fields are equally spaced in the order of a, b, c, d, and e (difference is different). Suppose that it is constant and strong.
  • the frequency difference between the minimum values of the fluorescence intensity generated corresponding to the magnetic field applied to the region a is ⁇ Fa
  • the frequency difference between the minimum values of the fluorescence intensity generated corresponding to the magnetic field applied to the region b is ⁇ Fb
  • the region c is the frequency difference between the minimum values of the fluorescence intensity generated in response to the magnetic field applied to
  • ⁇ Fd is the frequency difference between the minimum values of the fluorescence intensity generated in response to the magnetic field applied to the region d.
  • ⁇ Fe be the frequency difference between the minimum values of the fluorescence intensity generated corresponding to the applied magnetic field.
  • FIG. 8 shows the fluorescence intensity detected corresponding to each region with the microwave frequency on the horizontal axis.
  • the measurement waveforms (profiles) obtained with respect to each of the regions a to e are shown in the vertical direction with corresponding symbols.
  • the vertical direction of each waveform is the axis of fluorescence intensity, but the axis of fluorescence intensity is not common, and the flat portion in each waveform has substantially the same fluorescence intensity.
  • the interval between the minimum values is expanded according to the strength of the magnetic field.
  • the following premise is assumed as a preferable aspect. That is, in the fluorescence intensity profile corresponding to each region in FIG.
  • the interval between the minimum values of the fluorescence intensity from each region with respect to the microwave frequency is an interval that is uniformly changed by the magnetic field added from the initial state.
  • the change width is Fx
  • the frequency differences corresponding to the region a to the region e change to ⁇ Fa + Fx, ⁇ Fb + Fx, ⁇ Fc + Fx, ⁇ Fd + Fx, and ⁇ Fe + Fx, respectively.
  • FIG. 9 shows an example of a state in which a constant external magnetic field is applied and the fluorescence intensity from all regions is shifted in frequency interval by Fx.
  • the horizontal axis shows the fluorescence intensity in each region with the frequency as the frequency, but in actual measurement, the fluorescence intensity from each region is detected with the frequency fe fixed. Therefore, the fluorescence intensity of the regions a, b, and c is the same as the initial value, the fluorescence intensity of the region e is changed to a state where the magnetic field is zero, and it can be detected that the fluorescence intensity of the region d is changed. Since the difference set between the regions is 2 ⁇ ⁇ F1, it can be seen that the applied magnetic field Fx is in the range of ⁇ F1 ⁇ ⁇ F1 / 2.
  • FIG. 10 shows only the change in the fluorescence intensity detected from the region d.
  • the fluorescence intensity changes near the magnetic field corresponding to Fx.
  • the fluorescence intensity from the area d becomes a constant value, and the fluorescence intensity from the area c, which is the adjacent area, starts to change, so that the fluorescence intensity detected from each area is synthesized. By doing so, it is possible to obtain a temporal change pattern of the magnetic intensity with a larger change width.
  • the number of regions is preferably 1000 or more, more preferably 10,000 or more, and even more preferably 160,000 or more.
  • the size of the region (for example, the maximum diameter) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and 20 ⁇ m or less. More preferably.
  • the distance between the regions (the closest distance) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the size of the region (for example, the maximum diameter) is preferably smaller than the space between the regions. The realization of these sizes is not so difficult if a microfabrication technique or the like is used, and these sizes are suitable as a measure of the size that can be easily detected optically.
  • a plate-like diamond having a plurality of NV - center regions in a plan view, a magnetic array arranged corresponding to the NV - center regions, and microwave irradiation to the diamonds
  • a diamond magnetic sensor comprising a microwave generator, an excitation light generator for irradiating the diamond with excitation light, and a fluorescence detector array for individually receiving fluorescence generated from a plurality of NV - center regions
  • Magnetic measurement having a procedure for measuring the intensity for each NV - center region and a procedure for measuring a temporal change pattern of magnetic intensity from a position where there is an individual fluorescence change (reduction from zero magnetic field) and a change in fluorescence intensity Is the method.
  • the magnetic intensity change pattern serving as the background or the environment is preferably 100 Hz or less, or 1000 Hz or less, and the magnetic intensity change pattern to be captured therein is It is preferably greater than 1 kHz, more preferably greater than 100 kHz, and even more preferably greater than 1 MHz. However, this is not the case as long as the magnetic intensity desired to be captured in the environmental magnetic intensity can be well separated and analyzed from the environmental magnetic intensity.
  • it is effective to subtract the environmental magnetic intensity and leave only the magnetic intensity that is desired to be captured, and it is preferable to cut a frequency lower than 70 Hz, and more preferable to cut a frequency lower than 1 kHz. It is more preferable to cut a frequency lower than 10 kHz.
  • ⁇ Third Embodiment> (Diamond magnetic sensor)
  • a diamond magnetic sensor having a plurality of NV - center regions, a magnetic array, and a fluorescence detector array
  • the fluorescence detected from each NV - center region is spatially separated. It has been stated that measurement in a wide range is possible without sweeping the microwave frequency. It can also be measured in conjunction with a microwave frequency sweep. These can be further developed. That is, in the diamond magnetic sensor according to the third embodiment, without requiring a sweep of microwave frequencies, moreover NV spatially separated - without grasping the individual fluorescent centers, each NV - detecting from the center area A time change pattern of the magnetic intensity is measured based on the change of the whole fluorescence intensity.
  • the magnetic measurement method presented here includes a diamond magnetic sensor, a procedure for measuring the intensity of the entire fluorescence without using a fluorescence detector array that individually receives fluorescence generated from a plurality of NV - center regions, And a procedure for measuring a temporal change pattern of the magnetic intensity from the change of the fluorescence intensity.
  • a planar diamond having a plurality of NV - center regions in plan view, a magnetic array disposed corresponding to the NV - center region, a microwave generator for irradiating the diamond with microwaves, An excitation light generator for irradiating the diamond with excitation light and a fluorescence detector for receiving fluorescence generated from the NV ⁇ center of the diamond, and a plurality of NV ⁇ depending on the frequency of the irradiated microwave and the magnetic field by the magnetic array.
  • a diamond magnetic sensor is used in which the magnitude of the minimum value of the fluorescence intensity generated from the center region is different for each NV - center region.
  • the change from the maximum value to the minimum value of the fluorescence intensity with respect to the microwave frequency is moderated. Therefore, even when the frequency changes over a wide range, the measurement is performed by fixing the frequency to a specific frequency without sweeping the frequency. Can be converted to change. That is, it can be converted into a time change pattern of magnetic strength. Furthermore, even if a part exceeds the measurable range, valid data can be acquired as long as at least a part is within the measurable range.
  • a magnetic array including four center regions and two NV - center regions that are the same as region e is fabricated.
  • the number is a weighting numerical value (weight) regarding the intensity of fluorescence from each NV - center region.
  • the frequency half-value width (hereinafter also simply referred to as half-value width) of the valleys of the respective fluorescence intensities is produced with ⁇ F1 shown in FIG.
  • the number and the half-value width are examples, and it is preferable that the number is larger.
  • the half width of the valley is preferably equal to or larger than the minimum value interval (for example, ⁇ Fb ⁇ Fa (see FIG. 8)) of the respective NV - center regions, thereby increasing the accuracy.
  • the number representing the weight does not have to be different by two, and each number (weight) may be any integer value. In other words, if different weights are applied to the respective NV - center areas, the effect is exhibited.
  • close numbers are selected for areas with close characteristics, and the distant numbers change sequentially as the characteristics become distant (monotonically increasing, monotonically decreasing, or a combination thereof (for example, monotonically increasing and then monotonically decreasing)). It is preferable to choose.
  • FIGS. 11 to 16 simulation results related to the above are shown. 11 to 16, the horizontal axis of the graph corresponds to the microwave frequency, and the vertical axis corresponds to the fluorescence intensity.
  • the graph of FIG. 11 shows seven profiles of fluorescence intensity (corresponding to the waveform of FIG. 3) as symbols, and the half-value width of each valley is “5”.
  • the intervals between adjacent local minimum values (hereinafter also referred to as valley intervals) are all equal to “4”.
  • the meaning of each symbol is shown at the right end of FIG.
  • FIG. 12 shows a graph obtained by weighting and adding the seven profiles shown in FIG.
  • the weights of the first to seventh profiles are “2”, “4”, “6”, “8”, “6”, “4” and “2”, respectively, and the fluorescence intensity of the first to seventh profiles.
  • FIG. 13 is a graph showing the result of calculating the weighted fluorescence intensity P W in the same manner as described above for a profile in which the half width of each valley is fixed to “5” and the interval between adjacent valleys is different from “4”.
  • FIGS. 13 to 16 show the results when the intervals between the adjacent valleys of the seven profiles are set to “3”, “2”, “5”, and “7”, respectively.
  • a waveform having one wide valley can be obtained by weighting and adding the fluorescence intensity profiles.
  • the half width of the valley is equal to the interval between adjacent valleys (FIG. 15)
  • one valley having one minimum value formed by a monotonically decreasing value and a monotonically increasing value was obtained.
  • the numerical value of the microwave frequency can be determined by the numerical value of the total fluorescence intensity.
  • Each NV - half width of the center region of the trough the NV - smaller than the spacing of the minimum value of the center area (see FIG. 16), the numeric value of total overall fluorescence intensity, accuracy determines the value of microwave frequency
  • the method of measuring a plurality of NV - center regions at the same time is inferior in magnetic field sensitivity compared to the case of measuring only individual NV - center regions, but the measurement range (range) of the magnitude of the magnetic field. Is effective from the viewpoint of measuring a large magnetic field change.
  • the measurement target preferably includes 1000 or more NV - center regions, more preferably 10,000 or more, and even more preferably 160,000 or more. This is because the larger the number of regions, the smoother the entire curve. Since the effect is proportional to the square root of the number, the sensitivity is improved by an order of magnitude.
  • the sample prepared so that it can measure collectively like this method also has the effect of the setting magnetic field from the self, and the profile (the fluorescence intensity graph which shows the frequency dependence of a microwave) which is the result of having measured collectively. It is preferable that two minimum values of) are observed. If it remains as it is, an external magnetic field will be applied and the local minimum will gradually be separated into two, reflecting different states between the initial state and the state where the external magnetic field is applied. This is because the analysis becomes complicated. Therefore, it is preferable that the minimum value of the fluorescence intensity is divided into two from the beginning in a state where there is no external magnetic field.
  • Magnetic shielding is effective for shielding environmental magnetic fields.
  • a soft magnetic material having a high magnetic permeability such as permalloy
  • permalloy is disposed so as to surround the diamond magnetic sensor so that magnetism does not enter the position of the sensor. It is conceivable to form a sealed space with a member having such a shielding effect or to eliminate the magnetic field using the Meissner effect of the superconducting material.
  • the antenna can be disposed in the magnetic shield and introduced into the magnetic shield as a current variation through the antenna.
  • a cancel coil is also preferable to use as a method of canceling the environmental magnetic field.
  • the cancel coil is to ideally make the environmental magnetic field zero by generating a magnetic field whose direction is reversed from that of the environmental magnetic field (hereinafter also referred to as a cancel magnetic field) for the sensor. It is difficult to cancel all environmental magnetic fields with a cancel magnetic field.
  • a certain cancellation is possible by reversing a specific magnetic pattern assumed in advance or a magnetic pattern separately detected in the vicinity of the sensor into a canceling magnetic field. For example, it is relatively easy to cancel only an alternating magnetic field having a specific frequency.
  • a double coil of a cancel coil and an introduction coil is formed, the cancel coil cancels all the magnetic field patterns, and only the frequency of the magnetic field pattern around the frequency including the detection signal is introduced from the introduction coil as an antenna.
  • a method of generating a magnetic field can also be selected.
  • the direction of the magnetic field can be detected.
  • this function it may be possible to cancel the environmental magnetic field. That is, the magnetic field to be measured often has a different magnetic field direction from the environmental magnetic field.
  • the NV - center in diamond can be designed with sensors that detect magnetic fields in four directions, so the direction and magnitude of the magnetic field can be detected, and the magnitude and direction of the magnetic field perpendicular to the environmental magnetic field can be output. Thus, information obtained by canceling the environmental magnetic field can be obtained.
  • the diamond magnetic sensor according to the first to third embodiments described above is preferably configured as a diamond magnetic sensor module in which components are arranged directly on one circuit board or via another member.
  • Diamond, a microwave generator, an excitation light generator, a fluorescence detector or a fluorescence detector array are mounted on a single circuit board, and power supply and signal wiring are performed according to the wiring pattern of the circuit board.
  • FIGS. 17A and 17B are schematic views showing an example in which the diamond magnetic sensor according to the first embodiment shown in FIG. 1 is configured as a module on one circuit board.
  • FIG. 17A is a side view seen along the principal surface direction of the circuit board
  • FIG. 17B is a plan view seen from a direction perpendicular to the principal surface of the circuit board.
  • a magnetic shield member 80 described later shows only a frame, and the inside thereof can be seen.
  • the circuit board is a rigid or flexible board called a printed wiring board or the like having electrical wiring on the surface or inside thereof.
  • a microwave generation source 10 On one surface of the circuit board 60, a microwave generation source 10, a frequency sweeping device 11, an excitation light generator 20, a fluorescence detector 30, and a pattern measuring device 40, which is a microprocessor, are arranged. Wired by wiring pattern.
  • the diamond 1 is disposed on the microwave source 10.
  • Other electrical components and optical components such as lenses are not shown, but are arranged as necessary. These arrangements are merely examples, and are not limited to the arrangements shown in FIGS. 17A and 17B.
  • a cancel coil 70 is provided on the back surface of the circuit board 60 at a location corresponding to the diamond 1.
  • the cancel coil 70 is not essential, a desired magnetic field can be canceled by using the cancel coil 70.
  • the cancel coil 70 can be formed as a printed wiring on the circuit board 60, and such a formation is preferable in that a separate coil component is not required and space efficiency is good.
  • the entire circuit board on which the components are mounted in this way is covered with the magnetic shield member 80.
  • the magnetic shield member 80 is not essential, the magnetic field can be blocked by the magnetic shield member 80. Measurement can be performed by providing an opening in a part of the magnetic shield member 80 so as to bring magnetism to be measured closer, or by inducing a magnetic field in the opening. In addition, such an arrangement is desirable as long as the measurement object itself can be placed inside the magnetic shield member 80 without providing an opening. Further, an antenna (not shown) may be provided inside the magnetic shield member 80 without providing an opening to introduce a magnetic field as a current.
  • FIGS. 18A and 18B are schematic views showing an example in which the diamond magnetic sensor according to the second embodiment shown in FIG. 6 is configured as a module on one circuit board.
  • 18A is a side view seen along the principal surface direction of the circuit board
  • FIG. 18B is a plan view seen from a direction perpendicular to the principal surface of the circuit board.
  • the microwave generation source 10 the frequency sweep device 11, the excitation light generator 20, and the pattern measurement device 40 as a microprocessor are arranged on one surface of the circuit board 60.
  • the diamond 2 is disposed on the circuit board 60 as a laminate of the magnetic array 3 and the fluorescence detector array 31.
  • Each component is connected by a wiring pattern on the circuit board 60 or individual wiring.
  • Other electrical components and optical components such as lenses are not shown, but are arranged as necessary. These arrangements are merely examples, and are not limited to the arrangements shown in FIGS. 18A and 18B.
  • the cancel coil 70 and the magnetic shield member 80 are the same as in FIGS. 17A and 17B.
  • ⁇ Drive circuits for each component, ancillary circuits related to the power supply, and signal processing processors can be arranged on the same circuit board.
  • mounting an electric circuit also becomes a magnetic noise source, it is preferable to reduce extra electric circuits and wiring as much as possible.
  • diamond 1 (FIG. 1) or diamond 2 (FIG. 6) as a sensing unit and other electronic circuits (excitation light generating electronic circuit, fluorescent light receiving electronic circuit, microwave generating electronic circuit) unit It is effective to separate them from each other in space.
  • the diamond 2 is limited to the experimental layout when there is no adjacent light receiving element array. This is because the sensing portion is desired to be close to the place where the magnetic detection is desired, and this is effective in proportion to the square or the third power of the distance without depending on the sensitivity of the sensor.
  • only a small sensing portion can be arranged, which increases the degree of freedom of the detection module or detection system.
  • the device can have a structure in which diamond and other circuits are separated physically and spatially. This is because the influence of an extra magnetic field on the diamond magnetic sensor can be eliminated.
  • the excitation light is a laser beam that can be easily irradiated from a distance.
  • it was found that it is effective to use a telescope microscope or a telephoto lens for light reception. It was also found effective to have a lens near the sensing part of the diamond. As for the lens to be brought close to, it is an insulator as in the case of diamond, and a lens without deterioration is essential.
  • the light receiving unit since the light receiving unit enlarges a distant diamond, it is possible to install a light receiving element array as the light receiving unit. Furthermore, it is also important to facilitate microwave irradiation, and it is effective to use a parabolic antenna, and it is more effective to use an ellipsoidal antenna. This is because it is very efficient to place the oscillation part of the microwave at the focal point of the antenna and the diamond to be irradiated at the other focal point.
  • the distance between the sensing part of diamond and the other electronic circuit part or the closest part such as the antenna part of the microwave oscillator is preferably 10 cm or more, more preferably 20 cm or more, and 50 cm or more. Is more preferable.
  • each antenna is preferably 15 cm or more in diameter, more preferably 20 cm or more, and further preferably 30 cm or more. This is because focusing at one focal point becomes difficult when the size of the aperture is larger than the wavelength of the microwave.
  • diamond As a sensing part and other electronic circuit parts are separated by a plate (such as glass or quartz) that is transparent in the visible light region or infrared light region, and each has a different environment. It can be a module or a device of the structure to be arranged.
  • a plate such as glass or quartz
  • the magnetism in the environment where diamond is placed can be measured.
  • the environment refers to a gas atmosphere or a harsh liquid such as water, acid, or alkali. In other sensing materials, it is very difficult to obtain high reliability in such an environment.
  • the distance from the electronic circuit portion is 1 cm or more, noise due to the electronic circuit portion is greatly reduced. Therefore, it is preferable to separate the diamond and the electronic circuit portion by 1 cm or more.
  • the distance between the two is more preferably 2 cm or more, and further preferably 5 cm or more.
  • the diamond magnetic sensor according to the first to third embodiments described above can measure the temporal change pattern of the magnetic intensity, the influence of the environmental magnetic field is excluded based on the temporal change pattern to detect a minute magnetic field. Is possible.
  • an environmental magnetic field for example, when a pattern including a plurality of alternating magnetic fields exists, it is possible to detect by separating and extracting a magnetic field less than 1/10 of the maximum magnetic field of the magnetic field pattern having the maximum magnetic field among them. .
  • FIG. 19 is a graph showing how the environmental magnetic field and the detection target magnetic field are synthesized.
  • the separation analysis of the environmental magnetic field will be described.
  • the graph (i) shows an alternating magnetic field as an environmental magnetic field, and is drawn with time on the horizontal axis and magnetic field strength on the vertical axis.
  • the graph (ii) shows a signal magnetic field as a measurement object, and is a weak fluctuation at a high frequency compared to the environmental magnetic field.
  • the graph of (iii) shows a time change pattern as a result of actual measurement by the pattern measuring device.
  • the signal (iii) is a signal obtained by synthesizing the signal (i) representing the environmental magnetic field and the signal (ii) representing the signal magnetic field. For ease of explanation, it is assumed that no other magnetic field exists in the measurement environment.
  • the time pattern (i) of the environmental magnetic field is obtained by measurement in a state where there is no measurement target.
  • the frequency component of the environmental magnetic field is obtained from frequency analysis of data measured in advance. Let the obtained frequency be f0.
  • One method for separating and extracting the signal (ii) from the measured time change pattern (iii) is filtering.
  • the signal is an analog signal
  • a high-pass filter that excludes signals having a frequency of f0 or less can be used.
  • Signal (ii) can be obtained by filtering signal (iii).
  • the time change pattern is generally obtained as a digitally processed discrete value data string. Even in this case, the signal (ii) can be obtained by realizing an arbitrary filter using a known digital filtering technique.
  • the measured time change pattern (iii) can be separated into frequency components by digital Fourier transform, and the frequency component specified in advance as the environmental magnetic field or the assumed frequency component may be excluded.
  • the signal (ii) can be obtained by returning the excluded signal to the time change pattern by the inverse Fourier transform method.
  • Other signal processing means such as a method using a signal autocorrelation function may also be used.
  • an AC magnetic field is assumed as an environmental magnetic field, but it can be understood as a superposition of an AC magnetic field in many noises. Separation is also possible in an environmental magnetic field having a broad frequency component such as white noise. That is, by analyzing the frequency component included in the measured time change pattern and extracting and separating the signal component different from the noise component that has been investigated and analyzed in advance, the signal to be measured can be extracted. Thus, according to the diamond magnetic sensor of the present application, a temporal change pattern of the magnetic intensity can be obtained, so that a weak magnetic field can be efficiently measured by eliminating the environmental magnetic field.
  • a diamond magnetic sensor comprising: a pattern measuring device that measures a change pattern of a magnetic field intensity and a magnetic field direction from an individual change in the fluorescence intensity.
  • Appendix 2 The diamond magnetic sensor according to appendix 1, wherein the pattern measuring device measures a spatial direction pattern of magnetic field intensity from a spatial distribution of fluorescence intensity corresponding to a spatial distribution of each NV - center.
  • the pattern measuring apparatus has a function of controlling sweeping of the microwave frequency, a function of specifying a microwave frequency that generates a minimum value of the fluorescence intensity, and a function of detecting a magnetic field intensity based on the specified frequency.
  • the diamond magnetism according to any one of appendix 1 to appendix 3, wherein a time change pattern of magnetic intensity corresponding to each NV - center is measured by repeating the frequency sweep and repeating the detection of the magnetic field strength. sensor.
  • Appendix 5 The diamond magnetism according to any one of appendix 1 to appendix 4, further comprising a data analysis device for separating the magnetic field strength caused by the measurement environment and the magnetic field strength caused by the measurement object based on the spatial direction pattern. sensor.
  • a diamond magnetic sensor comprising a fluorescence detector that receives the generated fluorescence, and a pattern measuring device that measures a temporal change pattern of the magnetic field intensity from a change in fluorescence intensity detected by the fluorescence detector,
  • the microwave generator generates a combined wave of a microwave having a desired frequency width and a microwave having a phase shifted from the microwave
  • the pattern measuring apparatus measures the time-varying pattern of the magnetic field strength by repeating the sweep of the phase shift amount and repeating the detection of the magnetic field strength by controlling the sweep of the phase shift amount of the combined wave.
  • Example preparation for sensor First, the following single crystal diamond samples A to D were prepared. (1) Sample A A single crystal diamond having a substitutional nitrogen content of 0.1 ppm or less contained in the diamond was prepared by a high-temperature and high-pressure method and used as sample A. In the production, a sample with less nitrogen was obtained by adding a metal acting as a nitrogen getter to the solvent. (2) Sample B A single crystal diamond in which the substitutional nitrogen contained in the diamond was controlled to 60 ppm was produced by a high-temperature and high-pressure method and used as sample B.
  • Samples D1 and D2 are diamonds containing isotope carbon in a natural abundance ratio, but the abundance ratio of 13 C is 5%, and single crystal diamond with substitutional nitrogen of 50 ppm and 100 ppm is used at high temperature and high pressure. It produced by the method and it was set as the samples D1 and D2, respectively. Impurity uniformity was a uniform sample within ⁇ 25%.
  • the nitrogen concentration was evaluated by SIMS analysis. As a result, the substitutional nitrogen concentration almost coincided with the nitrogen content.
  • the substitutional nitrogen concentration of the single crystal diamond sample C was substituted by the sum of the density of the emission center of NV ⁇ and the density of the emission center of NV 0 . Since the nitrogen concentration is low and vacancies are introduced sufficiently, it can be estimated that there is no difference in the digits. All of the samples A, B, and C are the concentration of the measurement portion.
  • the vacancies (V) were introduced by electron beam irradiation (irradiation conditions were energy 4 MeV, radiation dose 20 MGy), and then bonded to substitutional nitrogen by annealing (1600 ° C. for 3 hours). The formation of the NV - center was confirmed by photoluminescence. For Samples A and C, the NV - center could be observed alone. For samples B, D1 and D2, an uncountable collection of NV - centers could be observed.
  • Samples E1 and E2 First, a sample having an NV - center substantially equal to that of sample B was prepared, the back surface thereof was polished to 100 ⁇ m, and further etched by reactive ion etching to a final thickness of 70 ⁇ m. Fe having a thickness of 2 ⁇ m was vapor-deposited on the back surface, and dot arrays having diameters of about 5, 8, 13, 20, and 30 ⁇ m were formed in a lattice pattern with intervals of 200 ⁇ m. Each Fe dot was prepared at a number ratio of approximately 10: 8: 6: 4: 2.
  • FIG. 20 schematically shows the arrangement of Fe dots (shaded portions).
  • the dots in the c1 column r1 to r10 row are about 5 ⁇ m ⁇
  • the dots in the c2 column r1 to r8 row are about 8 ⁇ m ⁇
  • the c3 column r1 to r6 row The dots are about 13 ⁇ m ⁇
  • the dots in the c4 column r1 to r4 rows are about 20 ⁇ m ⁇
  • the dots in the c5 column r1 to r2 rows are about 30 ⁇ m ⁇ , respectively.
  • the arrangement of the dots in the region R2 is an arrangement obtained by rotating the region R1 by 180 degrees.
  • the arrangement of dots in the regions R3 and R4 is the same as that in the regions R1 and R2, respectively.
  • an Al mask having a diameter of 20 ⁇ m is formed on the surface side by photolithography in a lattice pattern with an interval of 200 ⁇ m, and diamond containing NV - center is etched (etching depth 40 ⁇ m). It was set as the member for preparation.
  • a member in which the etched portion was refilled by epitaxial growth was produced, and used as a member for producing sample E2. Since the position of the Al mask was almost exactly coincided with the position where the Fe dot array on the back surface was formed, a member for preparing the sample E1 having a cylindrical micro diamond having an NV - center on the Fe dot array A member for preparing sample E2 in which portions having NV - centers were scattered on the Fe dot array could be manufactured.
  • sample E1 Fe of the member for producing sample E1 was magnetized to produce sample E1 having NV - centers with different magnetic field environments. Further, the sample E2 having a NV - center having a different magnetic field environment was produced by magnetizing Fe as a member for producing the sample E2. The samples E1 and E2 became diamond magnetic sensors (diamond substrates for magnetic sensors) having a magnetic array. (6) Sample F An array with NV - centers in a partially latticed manner was prepared in almost the same manner as Sample E and designated Sample F.
  • An experimental apparatus having the configuration shown in FIG. 21 was produced, and an experiment was performed using each of the diamond samples A and C.
  • a GaN-based semiconductor laser laser light source 102 that outputs green laser light (wavelength 520 nm) serving as excitation light, a microwave generator, and a semiconductor light receiving element 104 were prepared.
  • Laser light and observed fluorescence were transmitted using an optical lens system 106 (including a microscope lens 108, a triangular prism 110, and a reflecting mirror 112).
  • the microwave generator is designed to sweep around a frequency of 2.87 GHz.
  • a prototype of a solenoid coil-shaped antenna (microwave coil 114) is placed about 5 mm away from the sample (diamond 100), and the microwave is I was able to irradiate.
  • the surface image of each sample was magnified with a lens to find a single fluorescent spot.
  • the object closest to the sample was an objective lens, and the distance was about 1 mm.
  • a device for generating a simulated magnetic waveform was prepared.
  • a 0.8 mm ⁇ copper wire X116 was prepared, and the alternating current flowing through the copper wire X116 was controlled by the alternating current source 122.
  • the alternating current was 60 Hz, and the current value was appropriately set.
  • a 0.1 mm ⁇ copper wire Y118 is disposed in parallel to the copper wire X116 in the vicinity of the copper wire X116 so that a pulse current can flow from the pulse power supply 124.
  • the pulse current was 60 Hz and the pulse width was 1 msec.
  • Copper wire X116 and copper wire Y118 were placed at a distance of 0.5 cm closest to each of diamond samples A and C to be sensed.
  • the alternating current source 122 and the pulse power source 124 constitute a simulation circuit for generating a simulated signal as a detection target.
  • FIG. 22 shows the waveform of the alternating current that flows through the copper wire X116 that forms the magnetic field.
  • the obtained fluorescence intensity profile is shown in FIG.
  • the profiles measured at the timings indicated by t1 to t5 in FIG. 22 are shown in the vertical direction with corresponding reference numerals.
  • the vertical direction of each profile is an axis of fluorescence intensity, but the axis of fluorescence intensity is not common, and the flat portion in each profile has substantially the same fluorescence intensity.
  • the profile is shown by a solid line, but in actuality, it is a collection of data at intervals of 1 msec. In this time change pattern, the minimum value intervals ⁇ f1 to ⁇ f5 change with the same period and phase as the 60 Hz alternating current, and thus the period and phase of the change in the magnetic field strength can be obtained as information.
  • FIG. 24 schematically shows a combined waveform of the alternating current passed through the copper wire X116 and the pulse current passed through the copper wire Y118. The portion surrounded by the alternate long and short dash line is due to the pulse current flowing through the copper wire Y118. The others were measured under the same conditions as above.
  • the obtained fluorescence intensity profile is shown in FIG. 25, similarly to FIG. 23, profiles measured at timings indicated by t1 to t5 in FIG. 24 are shown in the vertical direction with corresponding reference numerals.
  • FIG. 25 shows a combined waveform of the alternating current passed through the copper wire X116 and the pulse current passed through the copper wire Y118. The portion surrounded by the alternate long and short dash line is due to the pulse current flowing through the copper wire Y118. The others were measured under the same conditions as above.
  • the obtained fluorescence intensity profile is shown in FIG. 25, similarly to FIG. 23, profiles measured at timings indicated by t1 to t5 in FIG. 24 are shown in the vertical direction with corresponding reference numeral
  • the profile is indicated by a solid line, but in actuality, it is a collection of data at intervals of 1 msec. That is, a time change pattern was obtained in the same manner, and the measurement results of the alternating current magnetic pattern and the pulse current magnetic pattern could be obtained.
  • the interval between the minimum values of the profiles of t1 and t3 to t5 ( ⁇ f1 and ⁇ f3 to ⁇ f5) is the same in FIG. 23 and FIG.
  • the minimum value interval ⁇ f2 in FIG. 25 is larger than that in FIG. This is because a pulse current flows at the timing t2 (see FIG. 24). Therefore, the pulse magnetic field generated in the alternating magnetic field can be detected from the change in the minimum value interval.
  • the microwave frequency sweep period can be set as small as 1 msec, a small pulse magnetic field can be detected even in a large alternating magnetic field, and the pulse current takes a difference from the alternating current by analyzing the time change pattern. It was easy to confirm.
  • the analysis of the time change pattern gives a result with a simple difference by subtracting the large signal (AC signal) from the copper wire X116, but the frequency analysis of the time change pattern is performed to cut the frequency of the large signal from the copper wire X116. It was also obtained. That is, a circuit configuration incorporating a high-pass filter in data processing may be adopted. Here, the frequency lower than 70 Hz was cut (to remove 60 Hz, which is the frequency of the alternating current passed through the copper wire X116), and succeeded by leaving a frequency higher than that (1 kHz).
  • Example 1 An experimental apparatus having the configuration shown in FIG. 26 was produced, and an experiment was performed using each of the diamond samples B, D1, and D2.
  • Excitation light semiconductor laser (520 nm) (laser light source 102), microwave generator, and semiconductor light receiving element 104 were the same as those in Example 1.
  • a solenoid coil-shaped antenna (microwave coil 114) is prototyped as in the first embodiment, and unlike the first embodiment, the microwave coil 114 is placed about 1 cm away from the sample (diamond 100). did.
  • the center of the sample is irradiated with a semiconductor laser beam on the center of the sample without passing through an optical system such as a lens, and a telephoto microscope (long focus lens 126) with a magnification of 50 times is used.
  • the red fluorescence emitted from the light was detected by the light receiving element.
  • a filter that cuts green light was used.
  • the closest to the sample was a microwave antenna about 1 cm apart.
  • Example 2 devices (an alternating current source 122 and a pulse power source 124) that generate simulated magnetic waveforms were prepared. Copper wire X116 and copper wire Y118 were arranged at a distance of 0.5 cm closest to the diamond sample to be sensed.
  • the width of the distribution becomes wide and broad.
  • the fluorescence intensity showed the maximum value. Even if the microwave was fixed to one frequency included in the valley due to the minimum value and the microwave irradiation was stopped (even if the microwave output was zero), the fluorescence showed the maximum value.
  • the sample was irradiated with laser light as pulse light having a duty of 50% (pulse width is half of the period) at each period of 10 msec (100 Hz) and 0.1 msec (10 kHz), and red fluorescence was observed. As a result, it was confirmed that light was emitted at respective periods of 100 Hz and 10 kHz while the laser beam was irradiated.
  • the copper wire X116 is used.
  • the supply of the constant current (1A) was turned on (energized) or turned off (non-energized).
  • FIG. 27 shows a temporal change pattern of the fluorescence intensity observed at that time. Further, the current supply to the copper wire X116 is turned off or turned on again while the constant current (1A) is turned on to the copper wire X116 and the microwave having the frequency at which the fluorescence intensity is minimized. did.
  • FIG. 1A constant current
  • FIGS. 27 and 28 show a temporal change pattern of the fluorescence intensity observed at that time.
  • FIGS. 27 and 28 are shown by solid lines, but are actually a collection of data at intervals of 10 msec (100 Hz).
  • the time change pattern of the measured fluorescence intensity exactly matches the current pattern of the copper wire (pattern It was confirmed that it was a little away without contact. If the time change pattern is not known, the uncertainty about whether the current is derived from the copper wire X remains.
  • an alternating current of 60 Hz and a maximum value of 1.05 A is passed through the copper wire X116, a pulse interval (period) of 60 Hz, a pulse width of 1 msec, and a maximum current value of 1 mA is passed through the copper wire Y118.
  • a pulse current was applied.
  • the fluorescence intensity measured at this time is shown in FIG. 30 together with a combined waveform of currents flowing through the copper wire X116 and the copper wire Y118. The fluorescence intensity showed a minimum value every time the sum of the alternating current and the pulse current reached 1A.
  • FIG. 30 The fluorescence intensity showed a minimum value every time the sum of the alternating current and the pulse current reached 1A.
  • a device having a function of accumulating the temporal change pattern of the fluorescence intensity and a device for analyzing the accumulated data were provided.
  • the time change pattern of the fluorescence intensity can be converted into a magnetic time change pattern by a database of samples.
  • the pulse current could be confirmed by frequency analysis. That is, a component of 70 Hz or less is cut from the extracted data by a high-pass filter (to remove the 60 Hz frequency of the alternating current flowing through the copper wire X116), and when the component beyond that is analyzed, a 1 kHz component of the pulse current is detected. It was.
  • the copper wire X116 and the copper wire Z120 are connected in parallel via the capacitor 128 and the resistor 130 that are directly connected, and an alternating current having a predetermined frequency is supplied from the alternating current source 122 to the connection node of the capacitor 128 and the resistor 130.
  • the resistance value of the resistor 130 is set to a value that is negligible compared to the copper wire X116 and the copper wire Z120, and the capacitance of the capacitor 128 is such that the impedance is negligible compared to the impedance of the copper wire X116 and the copper wire Z120. Large capacity.
  • the diamond 136 was arranged close to the copper wire Z120.
  • the laser light source 102, the microwave coil 114, the long focus lens 126, and the semiconductor light receiving element 104 constitute a measurement system 132 for the diamond 100, and the measurement system 134 for the diamond 136 is configured in the same manner as the measurement system 132. In the measurement system 134, the microwave coil and the long focus lens are not shown.
  • a pair of samples was a sample prepared by the same method, and each of samples B, D1, and D2 was used. Whichever sample was used, a phase difference having the same value as the alternating current could be detected.
  • the measurement system 132 In a state where current is supplied from the AC current source 122 to the copper wire X116 and the copper wire Z120, the measurement system 132 is used to irradiate the diamond 100 close to the copper wire X116 with a laser beam and a microwave. Similarly to the measurement of the fluorescence intensity, the measurement system 134 was used to irradiate the diamond 136 close to the copper wire Z120 with a laser beam and a microwave to measure the emitted fluorescence intensity. By analyzing the obtained results as described above, a 90 ° phase difference could be detected.
  • the concentration of NV - center was higher than 200 ppm, the two minimum values could not be observed, and a sufficient difference in fluorescence intensity could not be obtained.
  • the sample X having a concentration of 13 C of 28% was manufactured and measured. As a result, when the concentration of NV - center was 1 ppm and the concentration of 13 C was greater than 20%, two minimum values were obtained. Can no longer be observed, and a sufficient difference in fluorescence intensity cannot be obtained.
  • a pulse interval of the laser beam was set to 1 ⁇ sec and an experiment similar to the above was performed, the same phase difference could be detected with high accuracy. Further, the pulse current passed through the copper wire Y118 could be detected in exactly the same manner as in Example 1.
  • Example 2 was passed through the copper wire X116 and the copper wire Y118 to form an external magnetic field, and the change in fluorescence intensity was measured.
  • the change in fluorescence intensity was measured.
  • a magnetic temporal change pattern corresponding to each of the fluorescence intensity patterns in FIGS. . That is, a function that replaces the frequency sweep of the first embodiment can be realized by the time change pattern of the position.
  • the external magnetic field can be measured by the position showing the minimum value of the fluorescence intensity, and the time change pattern or position change of this fluorescence intensity with time change A pattern was also obtained, and when the data was processed, a time-varying pattern of the magnetic field could be obtained in a large magnetic field strength range.
  • the point of this method is to replace the sweep of the microwave frequency by previously creating a database of position data equivalent to changing the frequency. That is, the magnetic time change pattern is obtained by the combined information of the individual fluorescence intensity information and the fluorescence position information.
  • the dots arranged in a grid are enlarged by a long focal lens placed in front of the light receiving element.
  • Experiments were performed to identify fluorescence.
  • one light-emitting region in which areas (NV - center regions) including NV - centers of 20 ⁇ m ⁇ are arranged in a lattice pattern has a plurality of NV - centers. Compared to the NV - center, a large fluorescence intensity was obtained as an absolute value of the intensity.
  • the Fe array on the back side of the substrate retained the magnetic field and became a magnetic field having a strength substantially corresponding to the area of each Fe array. Therefore, the plurality of array-like areas have different magnetic field backgrounds (magnetic fields due to the Fe array), and the minimum value of the fluorescence intensity occurs at different frequencies of the microwave. Compared to the case where each of samples A and C was measured at a high magnification, the fluorescence intensity was high at a low magnification, the frequency range was wide, and a wide magnetic field range could be covered. Further, since Fe dots are arranged in a lattice pattern and the internal magnetic field strength difference can be designed, measurement is easy. An experiment was conducted in which a current as shown in FIGS.
  • Samples E1 and E2 differ from Samples A and C by creating a convenient NV - center population by design in advance, rather than looking for the NV - center population responsible for the luminescence that is convenient for the measurement. Be able to.
  • sample F an experiment was performed in the same manner as described above. As a result, although the size of the NV - center region of sample F was 40 ⁇ m ⁇ , almost the same functions as those of samples E1 and E2 (detection of magnetism by AC current and detection of magnetism by pulse current in AC current) can be realized. Was confirmed.
  • the samples A and C are observed at a high magnification so that the NV - center (each of which can be said to be an NV - center region) has 1000 or more light emitting points, and each is addressed.
  • a method of forming a different background magnetism by designing a lattice-like array (NV - center region) having a plurality of NV - centers at a low magnification in each of the samples E1, E2 and F and combining with the magnetic array
  • small magnetic changes could be measured individually. That is, a minute magnetic field in a large magnetic field could be measured.
  • the fluorescence intensity of each array was observed using the samples E1, E2, and F.
  • the entire sample was irradiated with excitation light, and the fluorescence intensity emitted from the entire sample was collectively observed.
  • Similar characteristics mean NV - center resonating at the same microwave frequency. Different characteristics mean that the resonant microwave frequencies are different. Therefore, the microwave frequency can be understood from the fluorescence intensity that is the minimum value.
  • the microwave frequency is almost determined by the fluorescence intensity.
  • the relationship between the fluorescence intensity and the microwave frequency that is, the relationship between the fluorescence intensity and the magnetism is determined by the performance of the diamond and the design performance, and can be stored in advance as a database, and the magnetic data can be calculated by the fluorescence intensity. .
  • the relationship between fluorescence intensity and magnetism can be set loosely, and measurement can be performed over a wide magnetic range.
  • the time change pattern could be obtained in the same way.
  • FIG. 29 showing the measurement of Example 2 when a current is passed through the copper wire X116, information on the external magnetic field can be confirmed as a time change pattern by the change in the fluorescence intensity of the entire sample measured.
  • the time change pattern of magnetism can be known, and the cause of magnetism can be identified as an alternating current.
  • the time change pattern matches the AC waveform, I was able to know its phase. Thereby, like Example 2 (refer FIG. 31), the difference with the electric current waveform of the orthogonal phase difference was also able to be confirmed.
  • the sample was irradiated with microwaves using an elliptical spherical mirror 138. That is, a sample was placed at one focal point of an elliptical spherical surface (spheroid) constituting a part of the elliptical spherical mirror 138, and a solenoid coil-shaped antenna (microwave coil 114) was placed at the other focal point.
  • the elliptical spherical mirror 138 is only on the side where the coiled antenna is arranged, and the side facing the diamond 100 is open.
  • the microwaves radiated from the antenna arranged at the focal point were reflected by the elliptic spherical mirror 138 and collected on the diamond 100 arranged at another focal point.
  • the diameter of the end surface (open portion) of the elliptic spherical mirror 138 was 30 cm, and the focal point where the microwave coil 114 was disposed was 20 cm away from the end surface of the elliptic spherical mirror 138.
  • the sample was irradiated with an excitation laser from a laser light source disposed at a position 30 cm away from the sample (diamond 100), and fluorescence emitted from the sample was observed with a long focus microscope disposed at a position 20 cm away from the sample.
  • an alternating current is passed through the copper wire X116 as shown in FIG. 29 of the second embodiment, and information on the external magnetic field is obtained by changing the address of the magnetic array and the fluorescent intensity change at that address.
  • a diamond sample as a sensor part is placed remotely from a measuring instrument composed of a semiconductor element for excitation (laser light source), a semiconductor part for light receiving (light receiving element), a microwave generator including a microwave coil, and the like.
  • the magnetic field and the magnetic time pattern were detected, and the cause of the magnetic field could be detected.
  • the diamond samples E1, E2, and F which are sensor parts, are arranged remotely from the measurement electronic elements (excitation semiconductor laser and semiconductor light receiving element), the same as in the fifth embodiment, but the sensing part
  • the diamond sample is placed in an environment such as vacuum (0.01 atm), high pressure water (10 atm), high temperature oil (200 ° C.), etc., and laser light and microwave are remotely transmitted through a quartz glass window. Irradiated to detect fluorescence.
  • Other configurations, arrangements, and measurement conditions are the same as in Example 5.
  • the environment of the sensing part was significantly different from the standard state (for example, 1 atm (101325 Pa) 0 ° C.), basically the same measurement as described above could be performed.
  • Example 2 The same sample and measurement system as in Example 1 were employed, and a magnetic field generating coil was disposed so as to cover the diamond sample serving as the sensing unit.
  • a magnetic field was generated by the magnetic field generating coil so that the alternating magnetic field generated at the position where the diamond sample was disposed was canceled by the alternating current of the copper wire X116.
  • the synthesized magnetic field formed by the copper wire X116 and the magnetic field generating coil is not uniform on the diamond, so strictly speaking, the magnetic field cannot be canceled, but if the observation target part is small and an alternating magnetic field is predicted, Canceled. In this state, the magnetic field change can be detected in almost all phases of the sinusoidal magnetic field that remains without being canceled, and can be detected as a time change pattern, as shown in FIG. 30 (Example 2). So that the pulsed magnetic field in the alternating magnetic field could be detected.
  • Magnetic and magnetic time change patterns can be detected.
  • an alternating magnetic field as shown in FIG. 29 of Example 2
  • the current value for forming the alternating magnetic field was gradually reduced from 1.2 A of Example 2 and measured as 0.12 A, 12 mA, and 1.2 mA. If it was not manufactured on the same circuit, measurement at 1.2 mA was difficult, but if it was manufactured on the same circuit, the magnetic time change pattern of the alternating magnetic field should be measured even at 1.2 mA. I was able to.
  • Example 7 The same sample and measurement system as in Example 7 were employed, and the experiment was performed with the magnetic field generating coil arranged in the same manner as in Example 7.
  • the magnetic field generating coil generates a magnetic field so as to cancel the alternating magnetic field generated at the position where the diamond sample is arranged by the alternating current of the copper wire X116, and is generated by the pulse current of the copper wire Y118 by another coil.
  • the magnetic field to be increased.
  • the AC magnetic field generated by the copper wire X116 can be canceled in the same manner as in the seventh embodiment, and the magnetic field generated by the copper wire Y118 can be amplified and applied to the diamond, which is detected as a magnetic time-varying pattern. I was able to. That is, the pulse magnetic field in the alternating magnetic field shown in FIG.
  • Example 2 could be detected.
  • the circuit portion of the sample and the detector is placed in a magnetic shield, and only the magnetism (current) of the coil used to increase the magnetic field generated by the pulse current of the copper wire Y118 is irradiated to the diamond by the antenna. Similar results were also obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

少なくとも一つのNV-センターを有するダイヤモンドと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドのNV-センターに励起光を照射する励起光発生器と、前記ダイヤモンドのNV-センターから生じる蛍光を受光する蛍光検知器とを備えるダイヤモンド磁気センサーであって、前記蛍光検知器が検知する蛍光強度の変化から磁場強度の時間変化パターンを測定するパターン測定装置を備えたダイヤモンド磁気センサー。

Description

ダイヤモンド磁気センサー
 本発明は、ダイヤモンドを用いた磁気センサーに関する。
 本出願は、2017年2月21日出願の日本出願第2017-029689号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 磁場の強度を測定する磁気センサーとしては、ホール素子が広く用いられている。また、微小な磁場測定には超電導を利用したSQUIDが知られている。近年、新たなセンサーとして、ダイヤモンド中に形成される窒素-空孔複合体(NVセンター)を利用して、微小領域における磁場を高感度に検出できるセンサーが提案されている(非特許文献1)。かかるセンサーでは、NVセンターを有するダイヤモンドに約2.8GHzの周波数のマイクロ波を照射しつつ、励起光として緑色光をNVセンターに照射するときに、NVセンターから蛍光として生じる赤色光を検出する。照射するマイクロ波の周波数を掃引する際の蛍光強度の低下点が磁場強度に依存して変化することから、磁場の強度を検出する(特許文献1)。また、このようなセンサーに適したダイヤモンドが検討されている(特許文献2)。
国際公開 WO 2015/107907 A1 特開2012-121748号公報
 NVセンターを利用したセンサーは非常に微弱な磁場強度の変化を測定することができるが、照射するマイクロ波の周波数を固定して蛍光強度の変化を測定する方法では、検出可能な磁場強度のレンジが狭いという制約があった。また、一般には検出したい微小磁場よりも大きな環境磁場が存在するために、環境磁場の遮蔽のために大規模な遮蔽ルームを設けることが必要である。その場合でもなお、センサー等の電気回路に起因する磁場などの環境磁場を完全に遮蔽することは困難であり、実用化への大きな制約となっていた。本発明は、NVセンターを有するダイヤモンドを用いた磁気センサーにおいて、検出可能な磁気強度の範囲を拡げ、また環境磁場を排除する工夫により実用化に適したダイヤモンド磁気センサーを得ることを目的とする
 本発明の一態様に係るダイヤモンド磁気センサーは、少なくとも一つのNVセンターを有するダイヤモンドと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドのNVセンターに励起光を照射する励起光発生器と、前記ダイヤモンドのNVセンターから生じる蛍光を受光する蛍光検知器とを備えるダイヤモンド磁気センサーであって、前記蛍光検知器が検知する蛍光強度の変化から磁気強度の時間変化パターンを測定するパターン測定装置を備えたダイヤモンド磁気センサーである。
 また別の態様は、平面視において複数のNVセンター領域を有する板状のダイヤモンドと、前記NVセンター領域に対応して配置された磁気アレイと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドに励起光を照射する励起光発生器と、前記複数のNVセンター領域からそれぞれ生じる蛍光を個別に受光する蛍光検知器アレイとを備えるダイヤモンド磁気センサーである。
 上記によれば、検出可能な磁気強度の範囲を拡げ、また環境磁場を排除することで実用化に適したダイヤモンド磁気センサーを得ることができる。
図1は、本発明の第1の実施形態に係るダイヤモンド磁気センサーの基本的な構成を示す模式図である。 図2は、NVセンターを有するダイヤモンド磁気センサーの基本原理を説明するためのグラフである。 図3は、従来のダイヤモンド磁気センサーにおける微小磁場変化の測定原理を説明するためのグラフである。 図4は、本実施形態に係るダイヤモンド磁気センサーの一つの測定原理を説明するためのグラフである。 図5は、本実施形態に係るダイヤモンド磁気センサーにより得られる時間変化パターンを説明するためのグラフである。 図6は、本発明の第2の実施形態に係るダイヤモンド磁気センサーの基本的な構成を示す模式図である。 図7Aは、ダイヤモンドと磁気アレイとの配置状態を示す斜視図である。 図7Bは、図7Aの領域a及び領域bを通る断面C1を示す断面図である。 図7Cは、図7Bにおいてさらに蛍光検知器アレイ31を配置した状態を示す断面図である。 図8は、領域aから領域eに対応した蛍光強度信号を示すグラフである。 図9は、一定の外部磁場が加わって周波数間隔がFxシフトした状態を示すグラフである。 図10は、領域dから検出される蛍光強度の変化を示すグラフである。 図11は、第3の実施形態に係るダイヤモンド磁気センサーによる測定方法を説明するためのグラフである。 図12は、図11に示したグラフを重み付けして加算した結果を示すグラフである。 図13は、ピーク間隔が図11及び12とは異なるグラフを重み付けして加算した結果を示すグラフである。 図14は、ピーク間隔が図11~13とは異なるグラフを重み付けして加算した結果を示すグラフである。 図15は、ピーク間隔が図11~14とは異なるグラフを重み付けして加算した結果を示すグラフである。 図16は、ピーク間隔が図11~15とは異なるグラフを重み付けして加算した結果を示すグラフである。 図17Aは、第1の実施態様に係るダイヤモンド磁気センサーをモジュールとして1枚の回路基板上に構成する例を示す側面図である。 図17Bは、第1の実施態様に係るダイヤモンド磁気センサーをモジュールとして1枚の回路基板上に構成する例を示す平面図である。 図18Aは、第2の実施態様に係るダイヤモンド磁気センサーをモジュールとして1枚の回路基板上に構成する例を示す側面図である。 図18Bは、第2の実施態様に係るダイヤモンド磁気センサーをモジュールとして1枚の回路基板上に構成する例を示す平面図である。 図19は、環境磁場と検知対象磁場とが合成されて測定される様子を説明するためのグラフである。 図20は、試作したサンプルEを示す平面図である。 図21は、実施例1で使用した装置の構成を示す模式図である。 図22は、実施例1の測定条件を示すグラフである。 図23は、図22の測定条件での測定結果を模式的に示すグラフである。 図24は、実施例1の図22とは別の測定条件を示すグラフである。 図25は、図24の測定条件での測定結果を模式的に示すグラフである。 図26は、実施例2で使用した装置の構成示す模式図である。 図27は、実施例2の測定条件及び測定結果を示すグラフである。 図28は、実施例2の図27とは別の測定条件及び測定結果を示すグラフである。 図29は、実施例2の図27及び28とは別の測定条件及び測定結果を示すグラフである。 図30は、実施例2の図27~29とは別の測定条件及び測定結果を示すグラフである。 図31は、実施例2で使用した図26とは別の装置の構成示す模式図である。 図32は、実施例5で使用した装置の構成示す模式図である。
 [本発明の実施形態]
 本発明の好適な実施態様を列記する。
 実施態様の一つは、少なくとも一つのNVセンターを有するダイヤモンドと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドのNVセンターに励起光を照射する励起光発生器と、前記ダイヤモンドのNVセンターから生じる蛍光を受光する蛍光検知器とを備えるダイヤモンド磁気センサーであって、前記蛍光検知器が検知する蛍光強度の変化から磁場強度の時間変化パターンを測定するパターン測定装置を備えたダイヤモンド磁気センサーである。
 前記パターン測定装置は、前記マイクロ波の周波数の掃引を制御する機能と、前記蛍光強度の極小値を生じるマイクロ波周波数を特定する機能と、前記特定した周波数に基づいて磁場強度を検出する機能を備え、前記周波数の掃引を繰り返して前記磁場強度の検出を繰り返すことによって、前記磁場強度の時間変化パターンを測定するとよい。
 また前記時間変化パターンに基づいて測定環境に起因する磁場強度と測定対象に起因する磁場強度を分離するためのデータ解析装置をさらに備えるとよい。
 ここで、前記データ解析装置は、前記時間変化パターンの周波数に基づくフィルタリングによって前記磁場強度の分離を行うダイヤモンド磁気センサーであるとよい。
 また別の実施態様は、平面視において複数のNVセンター領域を有する板状のダイヤモンドと、前記NVセンター領域に対応して配置された磁気アレイと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドに励起光を照射する励起光発生器と、前記複数のNVセンター領域からそれぞれ生じる蛍光を個別に受光する蛍光検知器アレイとを備えるダイヤモンド磁気センサーである。
 上述の各態様において、所定の磁場を発生させることで前記ダイヤモンドに作用する環境磁場を低減するためのキャンセルコイルをさらに備えるとよい。
 これらのダイヤモンド磁気センサーは、1枚の回路基板上に直接又は他の部材を介して、前記ダイヤモンドと、前記マイクロ波発生器と、前記励起光発生器と、前記蛍光検知器又は前記蛍光検知器アレイとを搭載するように構成されるとよい。これにより、センサー全体の構成を小型化し、コンパクトにすることができ、光軸が安定し、励起光照射及びマイクロ波照射の効率が上がる、照射位置の精度及び安定性が増すなど、磁気センサーとしての性能及び信頼性が向上する。
 前記ダイヤモンドに作用する環境磁場を遮蔽するための磁気シールドと、検知対象を含む外部信号を前記磁気シールド内に導入するためのアンテナとをさらに備えるように構成することもできる。
 以上のダイヤモンド磁気センサーにおいて、前記パターン測定装置は、磁場強度の時間変化パターンの測定に代えて、磁場強度の空間方向パターンを測定する、又は空間方向毎の時間変化パターンを測定する装置とすることもできる。
 この場合、前記データ解析装置は、空間方向パターンに基づいて、又は空間方向パターンと時間変化パターンとの両方に基づいて測定環境に起因する磁場強度と測定対象に起因する磁場強度とを分離する装置とすればよい。
 さらに別の実施態様は、平面視において複数のNVセンター領域を有する板状のダイヤモンドと、前記NVセンター領域のそれぞれに対応して配置された磁気アレイと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドに励起光を照射する励起光発生器と、前記複数のNVセンターから生じる蛍光を受光する蛍光検知器とを備え、照射するマイクロ波の周波数及び前記磁気アレイによる印加磁場に応じて、前記複数のNVセンター領域から生じる蛍光強度の極小値の大きさが、前記NVセンター領域ごとに異なるように重み付されたダイヤモンド磁気センサーである。
 ダイヤモンド磁気センサーのユニットとして、平面視において複数のNVセンター領域を有する板状のダイヤモンドと、前記NVセンター領域のそれぞれに対応して配置された磁気アレイを備え、前記ダイヤモンドと前記磁気アレイとが接触しているものを用いるとよい。これによって、それぞれのNVセンター領域に効果的に固定磁場を印加することができる。
 前記ダイヤモンドと前記蛍光検知器を含む電子回路部との間は、1cm以上離隔されており、前記ダイヤモンドと前記電子回路部との間には、前記ダイヤモンドと前記電子回路部とを電気的に接続する部材が存在しないことがよい。即ち、ダイヤモンド磁気センサーにおいて、センシング部であるダイヤモンドと電子回路部(励起光発生の電子回路、蛍光受光部の電子回路、マイクロ波発生の電子回路)から発生する微弱磁場をできるだけ排除するという点において、前記ダイヤモンドと電子回路を物理的、空間的に離した構造である装置とすることがよい。これにより、ダイヤモンド磁気センサーへの余計な磁場の影響を排除することができる。
 上記のダイヤモンド磁気センサーにおいて、前記蛍光検知器を含む前記電子回路部は、可視光又は赤外光を透過する固体によって前記ダイヤモンドから離隔されており、標準状態と異なる温度環境、標準状態と異なる圧力環境、及び、空気以外のガス雰囲気のうちの少なくとも1つの環境下で使用され得る。
 上記のダイヤモンド磁気センサーは、センシング部である前記ダイヤモンドと前記電子回路部とが、可視光領域又は赤外光領域において透明である板により離隔され、それぞれ異なる環境下に置かれる構造の装置とすることができる。これにより、電子回路が耐えられない環境であってもダイヤモンドが耐えられる環境であれば、その環境下での磁場を測定することができる。
 [本発明の実施形態の説明]
 以下、本発明の実施の形態について図面を参照して説明する。図面は特に記載がない限り、説明を明確にするための概略図である。よって、部材の大きさ、及び位置関係等は誇張されている場合、又は、見やすい比率で記載されている場合がある。複数の図面に表れる同一符号が付された要素は、同一の部分又は部材を示す。なお、図面の参照又は説明の都合において必要に応じて上下左右の方向等の位置関係を示す用語を用いるが、それらの用語の使用は発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。
 基本的に、磁気とは空間に磁場を発生するもとになるもの(N極とS極を有するもの及び量子力学的なスピンを含む)の意味で使用し、磁場とは、磁気によりその周辺空間に形成される磁力の場の意味で使用する。本願明細書において、磁気センサーとは当該センサーが存在する場所での磁場を測定するセンサーである。しかし、そのことは磁気を測ることをも意味するので、「磁気」の用語を用いている。なお、磁気と磁場とを厳密に区別する必要がない場合には、明確には区別して記載してはいない。
 測定している対象が磁場又は磁気の強度であるという意味で、磁場強度、又は磁気強度と表現する。また、測定している対象が磁場又は磁気の方向であるという意味で、磁場方向、又は磁気方向と表現する。
 また、磁場(磁気)と表現しているものは、分かりやすくは磁場(磁気)の時間変化パターンの一瞬を切り取った断片と言える。ある瞬間において、磁場(磁気)強度自体の単なる値では、検知しようとする磁場(磁気)とそれ以外の磁場(磁気)とを区別できない場合であっても、磁場(磁気)強度又は磁場(磁気)方向の時間変化パターンでみると、両者を区別することができる。時間や周波数などに着目することで、両者の強度又は方向の変化の特性が異なるからである。
 また、磁気の空間分布である空間方向パターンにも着目するとさらに両者の区別が可能である。時間変化パターンとは時間経過に伴う磁場(磁気)強度又は方向の変化全体を指すものである。一方空間方向パターンとはセンシング位置で観察した磁場(磁気)の方向分布を指す。よって、時間変化パターンと空間方向パターンとを合成することにより、磁場のベクトルパターンを得ることができる。
<第1の実施形態>
(ダイヤモンド磁気センサーの基本動作)
 図1は、本発明の第1の実施形態に係るダイヤモンド磁気センサーの基本的な構成を示す模式図である。ダイヤモンド1は、磁場を検知する検知体である。ダイヤモンド1は、その結晶格子の中に窒素-空孔複合体(以下、NVセンターという)を少なくとも1つ有している。このNVセンターを有するダイヤモンド1に約2.8GHzの周波数のマイクロ波12を、マイクロ波発生源10から照射する。この状態で、ダイヤモンド1に、例えば波長532nmの緑色レーザー光源などの励起光発生器20から励起光21を照射する。このとき、ダイヤモンド1は、NVセンターから蛍光22として赤色光を放出する。放出された蛍光22はレンズ23で集光するなどして、蛍光検知器30に導かれ、その強度が検出される。なお、図1において各部品の配置は模式的に描画されており、これに限定されるものではない。例えば、ダイヤモンド1の蛍光22を検出する側とマイクロ波12を照射する側が表裏をなす構成に限定されるものではなく、また、励起光発生器20からの励起光21が斜め上方から照射されることに限定されるものではない。
 ダイヤモンドのNVセンターの蛍光は、基底状態(スピンの磁気量子数mが0の状態)から励起された場合と電子がマイクロ波で共鳴し励起された準位(スピンの磁気量子数mが-1又は+1の状態)から励起された場合とで強度が異なる。前者の場合は蛍光強度が大きく、後者の場合は蛍光強度が小さい。スピンの磁気量子数mが±1の状態から励起された場合には、蛍光が放射されない非発光の遷移により基底状態に戻るから蛍光強度が小さくなるのである。電子が励起された準位には、準位差に対応する特定のマイクロ波周波数の照射で励起されて、蛍光に寄与する基底状態の電子が減るので、この特定の周波数のマイクロ波照射で蛍光強度が小さくなる。磁場が存在する場合、励起状態はエネルギー的に分裂(ゼーマン効果)するので、蛍光強度の極小値は少なくとも2カ所存在する。磁場による分裂前に同じだった2つの準位のマイクロ波周波数差(エネルギー差)が磁場強度に比例することから、磁場強度をマイクロ波周波数差で算出できる。
 ここで、NVセンターが一つの場合は、横軸をマイクロ波周波数とする蛍光強度のグラフにおける極小値の対は一つである。NVセンターが複数ある場合でNとVの結合の方向(配位)が異なっている場合には、それぞれの方向に対して磁場強度が異なると、蛍光強度のグラフは複数の極小値を示す。一つの単結晶ダイヤモンド中においては、NとVの結合の方向は最大4つあるので、蛍光強度のグラフにおける極小値は8ケ所を超えない。極小値が複数あっても、マイクロ波周波数差を算出する極小値の対は同じ磁場強度により生じているので、他の対と区別できる。また、それぞれの対はゼロ磁場時の周波数を中心とするので(対の極小値はゼロ磁場時の周波数を中心に持つので)他の対と区別できる。
 図1において、マイクロ波発生源10から照射するマイクロ波の周波数を周波数掃引装置11によって掃引した場合を考える。図2は、NVセンターを有するダイヤモンド磁気センサーの基本原理を説明するためのグラフであり、蛍光検知器30によって検出される蛍光強度Iとマイクロ波周波数Fとの関係を模式的に描いたものである。上述の通り、蛍光強度Iの極小値が少なくとも2カ所存在し、その周波数差であるΔFが、ダイヤモンド1のNVセンターに加わっている磁場強度により決まる。この磁場強度というは、外部磁場と内部磁場を指す。外部磁場とは、ダイヤモンドの外に要因がある磁場であり、内部磁場とはダイヤモンドの内部に要因がある磁場(たとえば、13C又は15Nのような核スピンによる磁場、又は欠陥中の電子スピンによる磁場)である。
 従来研究されているこの種のダイヤモンド磁気センサーは、例えば図2におけるマイクロ波の周波数をf1に固定して、微小な磁場変化を捉えるものである。この様子を一つのNVセンターに着目して、図3を参照して説明する。図3は、従来のダイヤモンド磁気センサーにおける微小磁場変化の測定原理を説明するためのグラフである。マイクロ波周波数をf1に固定して蛍光強度Iを検出する。図3の例では、初期状態としての磁場がダイヤモンドのNVセンターに加わっていて、蛍光強度の極小値がちょうどf1の周波数に一致しているとする。蛍光強度としてI1が検出されている。ここで、磁場が僅かに変化して、蛍光強度の極小値がマイクロ波周波数f2にずれたとする。この状態では、検出しているのは固定されたマイクロ波周波数f1での蛍光強度であるので、蛍光強度がI2となる。このように、一定の周波数のマイクロ波を照射しつつ蛍光強度を測定することで、微小な磁場の変化を蛍光強度の変化として測定できる。
(ダイヤモンド磁気センサー)
 図1と図4、図5を参照して、本願発明の第1の実施形態に係るダイヤモンド磁気センサーに関して説明する。上記では、図1においてマイクロ波12の周波数を周波数掃引装置11により掃引して蛍光22の強度を蛍光検知器30で測定すると、図2のような蛍光強度の極小値が得られることを説明した。
 図4は、本願ダイヤモンド磁気センサーの一つの実施態様の測定原理を説明する図である。マイクロ波周波数の掃引を繰り返す場合に、1度目のマイクロ波周波数の掃引により、蛍光強度の極小値が2つ検出され、その周波数差がΔF1であったとする。磁場は時間と共に変化しているとする。ここで、再度マイクロ波周波数を掃引したところ、検出された蛍光強度の極小値を示す周波数差がΔF2であったとする。このように、マイクロ波周波数の掃引を時間Δt毎に繰り返し、それぞれの掃引により検出された周波数差を、時間を横軸にプロットしたものが図5である。縦軸は検出された周波数差ΔFである。予め準備した対応式又は対応付けした換算データを用いて、ΔFを磁気強度に換算できる。縦軸を磁気強度とし、横軸を時間として、磁場強度の時間変化を表したグラフを、磁場強度の時間変化パターンと呼び、当該磁場の発生源である磁気の強度としたものを、磁気強度の時間変化パターンと呼ぶ。
 なお、上記では2つの極小値の周波数差を使用する場合を説明したが、同等の変化が測定できる手法であればよい。例えば2つの極小値の中央となる周波数を既知として、いずれか一方の極小値だけを検出し、既知の中央周波数からの差を周波数差ΔF/2として検出することも可能である。この場合は周波数の掃引幅をより狭くできる。中央値は磁気がゼロの場合を表す点であり、予め評価しておけば、後で校正することができる。
 このように、本願実施形態のダイヤモンド磁気センサーでは、マイクロ波の周波数の掃引を繰り返すことによって、検出される蛍光強度の極小値を示す周波数から、磁気強度の時間変化パターンを求めることができる。より明確な磁気強度の時間変化パターンを得るためには、マイクロ波の周波数の掃引速度(1回の掃引に要する時間)は、1msecより短いことが好ましく、10μsecより短いことがより好ましく、1μsec以上がさらに好ましい。周波数の掃引速度が速いほど、短い周期の、又は複雑な波形を再現できるからである。マイクロ波の周波数掃引の範囲(周波数範囲)と周波数間隔(1回の掃引中において設定する周波数の間隔)は、蛍光強度の2つの極小値を確認できる範囲と間隔であり、少なくとも一方の極小値が確認できる範囲と間隔であることが好ましい。極小値を明確に再現できるようにするためである。検知がマイクロ波の周波数変化であるので、この周波数が大きくシフトしても磁気感度は周波数差/周波数となり、大きくは変わらない。強度の変化を信号とする場合に比較して、微小磁場を広い磁場範囲で検知することができる。すなわち、磁気強度の分解感度を高く維持できる。磁気強度の分解感度は周波数の分解能に依存する。
 すなわち、ここで提示する磁気測定方法は、少なくとも一つのNVセンターを有するダイヤモンドと、ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、ダイヤモンドのNVセンターに励起光を照射する励起光発生器と、ダイヤモンドのNVセンターから放射される蛍光を受光する蛍光検知器とを備え、蛍光強度の変化から磁気強度の時間変化パターンを測定するパターン測定装置を備えたダイヤモンド磁気センサーを用いて、マイクロ波の周波数を掃引する手順と、当該掃引において測定される前記蛍光の強度が極小値を示すマイクロ波周波数を特定する手順と、特定した周波数に基づいて磁気強度を検出する手順と、周波数の掃引を繰り返すことで磁気強度の検出を繰り返して磁気強度の時間変化パターンを測定する手順とを有する、磁気測定方法である。
 代替的な実施態様として、周波数掃引装置に変えて位相掃引装置を用いることができる。即ち、上記の周波数を掃引する手順に代えて、位相を掃引する手順を用いる磁気測定方法が実現できる。所望の周波数幅を持つマイクロ波とその位相をシフトしたマイクロ波との合成波を照射し、位相を掃引する方法とすることができる。この場合、位相のシフト量に対する蛍光強度の変化量は、フーリエ変換を用いることにより、周波数に対する蛍光強度の変化としてスペクトルを得ることで、磁気強度を知ることができるからである。位相シフト量の掃引を繰り返すことで、磁気強度の検出を繰り返して、磁気強度の時間変化パターンを測定することができる。
 図3を参照して説明した従来の手法では、マイクロ波周波数を固定して蛍光強度の変化を見ることで非常に微弱な磁場変化を捉えることができるが、大きな磁場変化には対応できなかった。これに対して、本願の手法では、周波数の掃引範囲に入る蛍光強度の極小値変化の幅を限度として、微小な検知でありながら、検出磁場の範囲を桁違いに広く取ることが可能となる。
 なお、従来の蛍光強度変化を検知する手法を用いても、蛍光強度検知器の出力をデジタル化することによって磁気強度の時間変化パターンを取得することができる。この場合、時間応答は蛍光強度検知器の応答速度及びサンプリングの時間間隔によって決まり、非常に高速の応答が期待できる。一方で、図4及び図5を用いて説明した手法においては、マイクロ波周波数の掃引毎に磁気強度を取得するので、データサンプリングの間隔(複数回の掃引中の1回の掃引から次の掃引までの時間)はマイクロ波周波数掃引の速度に左右される。好ましい掃引速度などは前述した通りである。さらに、背景となる、又は環境となる磁気強度の変化パターンは、100Hz以下、又は1000Hz以下であることが好ましく、その中で捕えたい磁気強度の変化パターンは、1kHzより大きいことが好ましく、100kHzより大きいことがより好ましく、1MHzより大きいことがさらに好ましい。しかし、環境磁気強度中の捕えたい磁気強度を、解析上うまく環境磁気強度から分離できればこの限りではない。時間変化パターンを解析する場合において、環境磁気強度を差し引いて捕えたい磁気強度のみを残すことは有効であり、70Hzより低い周波数をカットすることが好ましく、1kHzより低い周波数をカットすることがより好ましく、10kHzより低い周波数をカットすることがさらに好ましい。
 さらに上述の位相シフトを用いる態様においては、位相シフト量の掃引毎に磁気強度を取得するので、データサンプリングの間隔はマイクロ波の位相シフト量掃引の速度に左右される。
<第2の実施形態>
(ダイヤモンド磁気センサー)
 図6は、本発明の第2の実施形態に係るダイヤモンド磁気センサーの基本的な構成を示す模式図である。ダイヤモンド2は、平面視において複数のNVセンター領域を有する板状のダイヤモンドである。板状をなす主面(最も広い面積を有し、表裏をなす面の一方面)からダイヤモンドを見ることを平面視とする。ダイヤモンド2は、複数のNVセンターが存在する領域を有しており、各NVセンター領域は一つ又は複数のNVセンターが集合した領域である。平面視において複数のNVセンター領域は規則的に配列されていてもよいし、ランダムに配置されていてもよい。ただし、各NVセンター領域の場所は予め特定できることが必要である。ダイヤモンド2のNVセンターがアレイ状に配置されたものを形成する方法に関しては、フォトリソグラフィーで形成したマスクを通して、電子線照射などでアレイ状に局部的に空孔(V)を作ることで、NVセンターをアレイ状に形成することができるし、同じフォトリソグラフィーの手法で、アレイ状にNVセンターのあるダイヤモンド中の空間をボックス状に加工することもできる。また、NVセンターを有する単体のダイヤモンドを異種基板に並べることでも実現できる。
 複数のNVセンター領域に対応して、磁場発生器としての磁気アレイ3が配置される。磁気アレイ3は、ダイヤモンド2の主面又はその裏面に配置される。磁気アレイ3には、ダイヤモンド2に存在する複数のNVセンター領域の場所に対応した位置に複数の磁気発生部材が配置されている。従って、ランダムな配置よりも規則的な配置の方が、作製(対応させて配置すること)が容易である。磁気発生部材は、一般的には磁性体(強磁性体)であって、既知の磁気を持ち、配置可能な微小なものであればよい。磁性材料をパターニングしてもよいし、磁気模様のある磁性材料のシートを用いることも出来る。磁性体により個々のNVセンター領域に形成される磁場の強さは、磁性体の体積(量)で制御可能であり、その強さは、磁場の無い環境で予め空間分布を測定しておけば、把握できる。
 前述したNVセンター領域は、究極的には単一のNVであってもよく、磁気発生源は究極的にはダイヤモンド中の同位体元素の13C又は15Nの核磁気であってもよい。NVに与える異なる磁場強度は、13C又は15NとNVとの最近接距離の違いによって、自動的にランダムに発生することとなる。NVセンターを顕微鏡で個々に観察できれば、その一つ一つがランダムに配置した複数のNVセンター領域に対応する。
 本実施形態は、つまり異なる磁気アレイとNVセンター領域のアレイとを一つのダイヤモンド2に配する形態は、種々のゼーマン分裂を起こしたNVセンターを空間的に分離して把握できるようにすることが最大の特徴である。分離して把握できるということは、瞬時にして異なるマイクロ波の周波数を変えた状態を把握することになり、マイクロ波周波数を掃引する助けとなる一つの形態である。磁気強度とマイクロ波周波数との関係はどのNVセンター領域も同じであることが好ましいが、違っていても最初に個々に校正されていれば、特に問題はない。
 図6を参照して、ダイヤモンド2にマイクロ波を照射するマイクロ波発生器は、少なくともマイクロ波発生源10と好ましくは周波数掃引装置11とから構成される。マイクロ波12はダイヤモンド2の全体に一様に照射されるように構成される。ダイヤモンド2に励起光21を照射する励起光発生器20が設けられる。励起光21はダイヤモンド2内のNVセンター全体に照射される。励起光発生器は例えば一つのレーザー光源の光を光学系によって拡げてもよいし、複数の光源を用いてもよい。複数のNVセンター領域からそれぞれ生じる蛍光22を個別に受光するために、ダイヤモンド2の主面又はその裏面に対向した位置に蛍光検知器アレイ31が設けられる。蛍光検知器アレイ31は、受光素子を複数配置したものであればよい。蛍光検知器アレイ31としては、複数の個々に独立した受光素子を、ダイヤモンド2のNVセンター領域に対向した位置に配置したものでもよいし、CMOS(Complementary metal-oxide-semiconductor)センサー又はCCD素子(Charge Coupled Device)のように微細な受光素子が多数配列されたものでもよい。また、レンズ系を介して、拡大して受光素子に投影してもよい。
 マイクロ波の周波数を制御すると共に、受光された蛍光強度を測定して時間変化パターンを得るために、パターン測定装置40が設けられる。
 なお、ここでの説明は全て、複数のNVセンターが一つのダイヤモンド基板中にある場合を示している。しかし、複数のNVセンターが複数のダイヤモンド基板に存在しており、それら複数のダイヤモンド基板を複合して形成してもよい。一つのダイヤモンドの方が、センサー全体がコンパクトになり、同一磁場環境内での測定が行いやすい点で好ましい。NVセンターをダイヤモンド内に形成する方法は、例えば窒素を結晶格子に含むダイヤモンドに、電子線照射によって空孔を形成した後、アニールしてN-V欠陥を形成するなどの既知の方法を用いることができる。
 図7A、図7B及び図7Cを参照して、ダイヤモンド2のNVセンター領域と、磁気アレイ3及び蛍光検知器アレイ31の関係をさらに説明する。
 図7Aは、ダイヤモンド2と磁気アレイ3とが重ね合わされるように配置された状態を模式的に示す斜視図である。平板状のダイヤモンド2の一方の主面に対向して磁気アレイ3が配置されている。ダイヤモンド2には、NVセンターを含む5つの領域があるとし、それぞれの領域をa~eと呼ぶことにする。なお、領域の数は必要に応じて任意に決めることができ、また配置も特に限定はされない。一つの領域に含まれるNVセンターの数は一つでもよいし、複数でもよい。複数の方が検出される蛍光強度を大きくでき、また極小値を示す強度分布がブロードになりやすい。
 磁気アレイには、平面視においてダイヤモンド2のaからeの各領域に対応した場所に、既知の磁気を生じる磁性体が配置されている。図7Aの領域a及び領域bを含むように主面に垂直に切断した断面C1を模式的に表した図が、図7Bである。このように、領域aに対応して磁性体3aが、領域bに対応して磁性体3bが埋め込まれている。以下この例では、a,b,c,d,eの順に等間隔で強い磁気を生じるものとして説明する。
 図7Cは、図7Bにおいてさらに蛍光検知器アレイ31を配置した状態を模式的に示す断面図である。ここでは、蛍光検知器アレイとしてCMOSセンサー又はCCDのような受光素子アレイを例示する。蛍光検知器アレイ31は一方表面に受光素子が二次元的に配置されている。図7Cでは、領域aに対応した場所に位置する受光素子32aと、領域bに対応した場所に位置する受光素子32bとを示している。NVセンター領域以外に対応した場所に存在する受光素子の出力は利用しないが、バックグラウンドノイズの測定用として利用することも可能である。蛍光検知器アレイとしては、このような汎用の受光素子アレイの他に、NVセンター領域の場所に合わせて配置された受光素子を用いてもよい。
 NVセンターと受光素子の間には、励起光を遮断するフィルターは適宜配置可能である。NVセンターの部位をレンズで拡大、集光し、受光素子に導くことも適宜行える。励起光発生器とNVセンターのあるダイヤモンドとの間には励起光を閉じ込め、外部には出にくい工夫も適宜行うことができる。
 このようなセンサーによって検出される信号について以下説明する。図8は、マイクロ波周波数を掃引した場合に、領域aから領域eに対応した蛍光強度を測定した場合の信号の違いを説明するためのグラフである。既に説明したように、蛍光強度はマイクロ波周波数に応じて2つの極小値を持ち、当該極小値間の周波数差は磁場強度に依存する。本例では、領域aから領域eの各NVセンターには磁気アレイ3によって個々に既知の磁場が加えられており、その磁場はa,b,c,d,eの順に等間隔(差が一定)で強くなっているとする。
 領域aに印加された磁場に対応して生じる蛍光強度の極小値間の周波数差をΔFa、領域bに印加された磁場に対応して生じる蛍光強度の極小値間の周波数差をΔFb、領域cに印加された磁場に対応して生じる蛍光強度の極小値間の周波数差をΔFc、領域dに印加された磁場に対応して生じる蛍光強度の極小値間の周波数差をΔFd、領域eに印加された磁場に対応して生じる蛍光強度の極小値間の周波数差をΔFeとする。この場合、各領域に対応して検知される蛍光強度を、マイクロ波周波数を横軸に表したものが図8である。図8では、領域a~eのそれぞれに関して得られる測定波形(プロフィール)を、対応する符号を付して縦方向に並べて示している。各波形の縦方向が蛍光強度の軸であるが、蛍光強度の軸は共通ではなく、各波形におけるフラット部分がほぼ同じ蛍光強度である。このように、磁場の強さに従って極小値の間隔が拡がっている。以下の説明では、理解を容易にするために好ましい態様として次の前提とする。すなわち、図8の各領域に対応する蛍光強度のプロフィールにおいて、(i)極小値を示す蛍光強度の谷の幅に相当する周波数幅が、2×ΔF1であり(以下、谷の幅に相当する周波数幅の1/2を周波数半値幅という)、また、(ii)隣り合う領域の周波数差は等間隔2×ΔF1である。具体的には、2×ΔF1=ΔFb-ΔFa=ΔFc-ΔFb=ΔFd-ΔFc=ΔFe-ΔFdである。
 このように設定された状態で、センサーに検出したい磁場が印加された場合、それぞれのNVセンター領域には元々磁気アレイにより印加されている磁場に検出対象となる磁場が加算されることになる。よって、各領域からの蛍光強度のマイクロ波周波数に対する極小値の間隔は、初期状態から加算された磁場分だけ一様に変化した間隔になる。変化の幅をFxとすると、領域aから領域eに対応する周波数差が、それぞれΔFa+Fx、ΔFb+Fx、ΔFc+Fx、ΔFd+Fx、ΔFe+Fxと変化する。
 次に、このセンサーにおける磁気強度の時間変化パターン測定について説明する。図8の初期状態を確認した後、測定するためのマイクロ波周波数を図8に示すfeに固定したとする。つまり、外部磁場が加わる前には、図8のように周波数feで検出される蛍光強度は、領域eのみが極小値であって、領域a,b,c,dからの蛍光強度は磁場が無い場合と同じであることが判っている。この状態で、上述のように、一定の外部磁場が加わって全領域からの蛍光強度が周波数間隔をFxだけシフトした状態の例を図9に示す。図9では横軸を周波数にとって各領域の蛍光強度を図示しているが、実際の測定は周波数feに固定した状態で、各領域からの蛍光強度を検出する。よって、領域a,b,cの蛍光強度は初期値と同じで、領域eの蛍光強度は磁場がゼロの状態に変化しており、領域dの蛍光強度が変化していることが検出できる。各領域間に設定された差は2×ΔF1であったから、加わっている磁場FxはΔF1±ΔF1/2の範囲にあることが判る。そして、検出される領域dからの蛍光強度を時間変化として測定すると、例えば図10のように、時間変化パターンを得ることができるのである。図10は領域dから検出される蛍光強度の変化のみを示したものである。蛍光強度はFxに相当する磁場付近にて変化する。さらに磁気強度の変化が大きくなると、領域dからの蛍光強度は一定値になるとともに、隣の領域である領域cからの蛍光強度が変化を始めることから、各領域から検出される蛍光強度を合成することによって、さらに大きな変化幅での磁気強度の時間変化パターンを求めることができる。
 NVセンター領域の数を増やして、さらに初期状態で印加する磁場の数を増やして行くことによって、検出できる磁場の幅を拡げることが可能である。このことは、周波数を固定した測定であっても、マイクロ波周波数の掃引を行うことなく、測定範囲を桁違いに広い磁場範囲にまで拡げられることを意味している。したがって、図5に示したデータのようにマイクロ波周波数の掃引の時間間隔Δtに制約されずに、比較的大きな磁気の時間変化パターンを測定することができるのである。そのための領域(NVセンター領域)の数は1000個以上であることが好ましく、1万個以上であることがより好ましく、16万個以上含めることがさらに好ましい。領域の数が増えるにしたがって、領域の面積は小さくなる傾向となるため、領域の大きさ(例えば最大径)は、100μm以下とすることが好ましく、50μm以下とすることがより好ましく、20μm以下とすることがさらに好ましい。また、各々の領域の間隔(最近接間隔)は、100μm以下とすることが好ましく、50μm以下とすることがより好ましく、20μm以下とすることがさらに好ましい。このとき、領域の大きさ(例えば最大径)は領域の間隔より小さいことが好ましい。これらの大きさを実現することは微細加工技術などを利用すればそれほど難しいものではなく、これらの大きさは光学的に検知しやすい大きさの目安として好適である。
 すなわち、ここで提示する磁気測定方法は、平面視において複数のNVセンター領域を有する板状のダイヤモンドと、NVセンター領域に対応して配置された磁気アレイと、ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、ダイヤモンドに励起光を照射する励起光発生器と、複数のNVセンター領域からそれぞれ生じる蛍光を個別に受光する蛍光検知器アレイとを備えるダイヤモンド磁気センサーを用いて、蛍光の強度をNVセンター領域毎に測定する手順と、個別の蛍光の変化(ゼロ磁場時から低減)のある位置と蛍光強度の変化から磁気強度の時間変化パターンを測定する手順とを有する、磁気測定方法である。第1の実施形態と同様、ここにおいても、背景となる、又は環境となる磁気強度の変化パターンは、100Hz以下、又は1000Hz以下であることが好ましく、その中で捕えたい磁気強度の変化パターンは、1kHzより大きいことが好ましく、100kHzより大きいことがより好ましく、1MHzより大きいことがさらに好ましい。しかし、環境磁気強度中の捕えたい磁気強度を、環境磁気強度からうまく分離して解析できればこの限りではない。時間変化パターンを解析する場合において、環境磁気強度を差し引いて捕えたい磁気強度のみを残すことは有効であり、70Hzより低い周波数をカットすることが好ましく、1kHzより低い周波数をカットすることがより好ましく、10kHzより低い周波数をカットすることがさらに好ましい。
<第3の実施形態>
(ダイヤモンド磁気センサー)
 前述のように、第2の実施形態として、複数のNVセンター領域、磁気アレイ及び蛍光検知器アレイを備えたダイヤモンド磁気センサーにおいて、各NVセンター領域から検出される蛍光を空間的に分離して測定することによって、マイクロ波周波数の掃引をしなくても、広いレンジでの測定が可能であることを述べた。マイクロ波周波数の掃引と合わせて測定することもできる。また、これらをさらに発展させることができる。すなわち、第3の実施形態に係るダイヤモンド磁気センサーでは、マイクロ波周波数の掃引を必要とせず、しかも空間的に分離したNVセンターの個々の蛍光を把握することなく、各NVセンター領域から検出される全体の蛍光強度の変化をもとに、磁気強度の時間変化パターンを測定する。
 ここで提示する磁気測定方法は、ダイヤモンド磁気センサーにおいて、複数のNVセンター領域からそれぞれ生じる蛍光を個別に受光する蛍光検知器アレイを用いずに、全体の蛍光の強度を測定する手順と、全体の蛍光強度の変化から磁気強度の時間変化パターンを測定する手順とを有する、磁気測定方法である。
 本実施形態では、平面視において複数のNVセンター領域を有する板状のダイヤモンドと、NVセンター領域に対応して配置された磁気アレイと、ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、ダイヤモンドに励起光を照射する励起光発生器と、ダイヤモンドのNVセンターから生じる蛍光を受光する蛍光検知器とを備え、照射するマイクロ波の周波数及び磁気アレイによる磁場に応じて、複数のNVセンター領域から生じる蛍光強度の極小値の大きさが、NVセンター領域毎に異なるように重み付されたダイヤモンド磁気センサーを用いる。
 後述するように、複数のNVセンター領域から生じる、重み付された蛍光強度の極小値を含む谷を同時に重ね合せることにより、マイクロ波周波数に対する蛍光強度の最大値から極小値までの変化が緩やかな曲線となるので、周波数が広い範囲で変化する場合でも、周波数を掃引することなく特定の周波数に固定して測定することで、その特定の周波数における蛍光強度の時間変化をマイクロ波周波数の時間変化に換算できる。すなわち、磁気強度の時間変化パターンに換算できる。さらには、一部が測定可能なレンジをオーバーしても、少なくとも一部が測定可能な範囲内にあれば、有効なデータを取得することができる。
 一例を示せば、図7Aの領域aと同じNVセンター領域を10個、領域bと同じNVセンター領域を8個、領域cと同じNVセンター領域を6個、領域dと同じNVセンター領域を4個、領域eと同じNVセンター領域を2個含む磁気アレイを作製する。ここで、個数は、それぞれのNVセンター領域からの蛍光の強度に関する重み付けの数値(重み)である。各蛍光強度の谷の周波数半値幅(以下、単に半値幅ともいう)は、図8に示したΔF1のものを作製する。なお、個数及び半値幅は一例であり、個数はより多い方が好ましい。また、谷の半値幅は、それぞれのNVセンター領域の極小値の間隔(例えば、ΔFb-ΔFa(図8参照))以上であることが好ましく、それにより精度が高くなる。また、重みを表す個数は2個ずつ異なっていなくてよく、各個数(重み)が異なる整数値であればよい。即ち、NVセンター領域毎に異なる重み付けがされていれば、効果を発揮する。但し、近い特性の領域同士には近い数字を選び、離れた特性になるほど離れた数字を順次変化(単調増加、単調減少、又はそれらの組合せ(例えば単調増加してから単調減少する))するように選ぶのが好ましい。
 図11~図16を参照して、上記に関するシミュレーション結果を示す。図11~16においては、グラフの横軸がマイクロ波周波数に対応し、縦軸が蛍光強度に対応する。図11のグラフは、蛍光強度の7つのプロフィール(図3の波形に対応)をシンボルで示したものであり、各谷の半値幅は“5”である。隣接する極小値の点の間隔(以下、谷の間隔ともいう)は全て等しく“4”である。各シンボルの意味は、図11の右端に示す。
 図11に示した7つのプロフィールを前提として、それらを重み付して加算して得られたグラフを図12に示す。ここでは、第1~7プロフィールの重みを、それぞれ“2”、“4”、“6”、“8”、“6”、“4”及び“2”とし、第1~7プロフィールの蛍光強度をP~Pとして、重み付けした蛍光強度Pを、P=2P+4P+6P+8P+6P+4P+2P により算出した。
 また、各谷の半値幅を“5”に固定し、隣接する谷の間隔が“4”とは異なるプロフィールに関して、上記と同様にして重み付けした蛍光強度Pを算出した結果のグラフを図13~図16に示す。図13~16は、7つのプロフィールの隣接する谷の間隔を、それぞれ“3”、“2”、“5”及び“7”に設定した場合の結果を示す。図12~図15から分かるように、蛍光強度のプロフィールを重み付けして加算することにより、幅の広い1つの谷を有する波形を得ることができる。谷の半値幅が、隣接する谷の間隔と等しい場合(図15)には、単調減少する値と単調増加する値とにより形成された、1つの極小値を有する1つの谷が得られた。谷の半値幅が、隣接する谷の間隔よりも大きい場合(図12~図14)には、単調減少ではないがほぼ単調減少する値と、単調増加ではないがほぼ単調増加する値とにより形成される1つ谷が得られた。谷の半値幅が、隣接する谷の間隔よりも小さい場合(図16)にも、明確ではないが概1つの谷が得られた。
 したがって、全体の蛍光強度の総計の数値で、マイクロ波周波数の数値を判定することができる。各NVセンター領域の谷の半値幅は各NVセンター領域の極小値の間隔よりも小さい(図16参照)と、全体の蛍光強度の総計の数値で、マイクロ波周波数の数値を判定する精度が落ちるが、この精度以下で許容することができれば判定できるので、谷の半値幅が、隣接する谷の間隔よりも小さくても問題はない。
 上記のシミュレーション結果から、複数のNVセンター領域の全体に励起光を照射し、全体の蛍光を同時に受光すると、谷の幅が、図8に示したΔFeに渡る大きな谷が得られることが推測される。多少の凹凸は無視することがきる。そうすると、蛍光強度に主として寄与しているのが領域aなのか領域bなのかは、その蛍光強度で判断できるようになる。即ち、マイクロ波周波数の精度(磁気強度の精度)を犠牲にすれば、アレイ状の受光素子なしにどの領域のマイクロ波周波数値(磁気強度値)なのかがわかる。
 このように、複数のNVセンター領域を同時にまとめて測定する方法は、個々のNVセンター領域のみを測定する場合に比べて、磁場感度は劣るが、磁場の大きさの測定範囲(レンジ)を大きくすることができるので、大きな磁場変化を測定するという観点では有効である。測定対象には、複数のNVセンターの領域を1000個以上含めることが好ましく、1万個以上含めることがより好ましく、16万個以上含めることがさらに好ましい。領域の数が多いほど、全体の曲線が滑らかになるからである。その効果は、個数の平方根に比例するから、それぞれ桁で感度が向上することとなる。また本方法のように、まとめて測定できるように作製した試料は、自からの設定磁場の効果もあって、まとめて測定した結果であるプロフィール(マイクロ波の周波数依存性を示す蛍光強度のグラフ)の極小値が2つ観察されることが好ましい。1つのままであると、外部の磁場が印加されてゆくと、しだいに極小値が2つに分離される結果となり、初期の状態と外部磁場が印加された状態とで異なった状態を反映し、解析が複雑になるからである。従って、外部磁場が無い状態において、最初から蛍光強度の極小値が2つに分かれていることが好ましい。
(環境磁場の排除機構)
 上記に第1~第3の実施形態を説明したが、実際の磁気測定においては、検出したい磁場以外に種々の磁場が存在しており、微小な磁気検出の妨げになる。このような磁場は、地磁気、装置の電流等による磁気、電波等の空間場などに起因するものであり、被測定対象以外のこれらの磁場を総称して環境磁場と呼ぶ。上記の第1~第3の実施形態に係るダイヤモンド磁気センサーの使用においては、検出したい磁場のみを測定するために環境磁場を排除することが求められる。環境磁場の排除のためには、環境磁場を遮蔽することと、環境磁場を打ち消すことが考えられる。
 環境磁場を遮蔽するには、磁気シールドが効果的である。全ての環境磁場を排除する方法として、例えばパーマロイ等の透磁率の大きい軟磁性材を、ダイヤモンド磁気センサーを囲むように配置し、センサーの位置に磁気を侵入させないことが好ましい。このようなシールド効果を備えた部材で密閉空間を形成すること、又は超電導材料のマイスナー効果を用いて磁場を排除することが考えられる。
 このように全ての環境磁場を排除した状態において、検出したい信号となる磁場のみをセンサーに導く。検出対象となる磁場が、周波数の高い変動の磁場である場合は、アンテナを上記の磁気シールド内に配置して、当該アンテナを通して電流変動として磁気シールド内部に導入することができる。
 環境磁場を打ち消す方法として、キャンセルコイルを利用することも好ましい。キャンセルコイルとは、センサーに対して、環境磁場とは向きが反転した磁場(以下、キャンセル磁場ともいう)を発生させることで環境磁場を理想的にはゼロにするものである。キャンセル磁場で全ての環境磁場をキャンセルすることは困難である。しかし、予め想定される特定の磁気パターン、又はセンサー近傍で別途検出した磁気パターンを反転させてキャンセル磁場とすることなどにより、一定のキャンセルが可能である。例えば、特定の周波数をもつ交流磁場のみキャンセルすることは比較的容易である。環境の主なる磁場パターンを含む周波数以下の周波数の磁場パターンはキャンセルして、検知しようとする磁場パターンを含むより大きな周波数の磁場パターンはキャンセルしないことなども可能である。また、キャンセルコイルと導入コイルの2重のコイルを形成して、キャンセルコイルでは全ての磁場パターンをキャンセルし、検知信号を含む周波数周辺の磁場パターンの周波数のみをアンテナとしての導入コイルから導入して、磁場を発生させるという方法も選択できる。
 ダイヤモンド中の方向の異なる複数のNVセンターを用いると、磁場の方向を検出することができる。この機能を使うと、環境磁場を打ち消すことができる場合がある。即ち、測定対象の磁場は、環境磁場とは磁場の向きも異なる場合が多い。ダイヤモンド中のNVセンターは、4通りの向きの磁場を検出するセンサーを持つように設計できるので、磁場の向きと大きさが検知でき、環境磁場と垂直の磁場の大きさと向きを出力することで、環境磁場を打ち消した情報を得ることができる。
 これらにより環境磁場を全くゼロにすることは困難である。しかし、環境磁場を極力小さくしておくことによって、後述する方法による環境磁場排除の効果を大きくすることができる。
(ダイヤモンド磁気センサーモジュール)
 上記した第1~第3の実施形態に係るダイヤモンド磁気センサーは、1枚の回路基板上に直接又は他の部材を介して部品を配置したダイヤモンド磁気センサーモジュールとして構成することが好ましい。ダイヤモンドと、マイクロ波発生器と、励起光発生器と、蛍光検知器又は蛍光検知器アレイとを1枚の回路基板上に搭載し、回路基板の配線パターンによって電力供給及び信号配線を行う。
 図17A、図17Bは、図1に示した第1の実施形態に係るダイヤモンド磁気センサーをモジュールとして1枚の回路基板上に構成する例を示す模式図である。図17Aは回路基板の主面方向に沿って見た側面図であり、図17Bは回路基板の主面に垂直な方向から見た平面図である。いずれも後述する磁気シールド部材80は枠のみを示し、その内部が見える状態の図としている。回路基板とはプリント配線板などと呼ばれる、電気配線を表面又は内部に備えたリジッド又はフレキシブルな板である。回路基板60の一方表面上に、マイクロ波発生源10、周波数掃引装置11、励起光発生器20、蛍光検知器30、及びマイクロプロセッサであるパターン測定装置40が配置され、それぞれは回路基板上の配線パターンによって結線されている。ダイヤモンド1はこの例ではマイクロ波発生源10上に配置されている。その他の電気部品及びレンズ等の光学部品は図示しないが、必要に応じて配置される。これらの配置はあくまで例示であって、図17A及び図17Bに示した配置に限定されるものではない。
 回路基板60の裏面には、ダイヤモンド1に対応した場所に、キャンセルコイル70が設けられている。キャンセルコイル70は必須ではないが、キャンセルコイル70を用いることで所望の磁場をキャンセルすることができる。キャンセルコイル70は、回路基板60上のプリント配線として形成することができ、そのように形成すれば、別途のコイル部品を必要とせずスペース効率がよい点で好ましい。
 このように部品を搭載した回路基板全体は、磁気シールド部材80で覆われている。磁気シールド部材80は必須ではないが、磁気シールド部材80により環境磁場を遮断することができる。磁気シールド部材80の一部に開口部を設けて、測定対象である磁気を近づける、又は開口部に磁場を誘導することで、測定が可能である。また、開口部を設けずに、測定対象自体を磁気シールド部材80の内部に置くことが可能であれば、そのような配置形態が望ましい。さらに、開口部を設けずに、磁気シールド部材80の内部にアンテナ(図示せず)を設けて磁場を電流として導入することもできる。
 図18A、図18Bは、図6に示した第2の実施形態に係るダイヤモンド磁気センサーをモジュールとして1枚の回路基板上に構成する例を示す模式図である。図18Aは回路基板の主面方向に沿って見た側面図であり、図18Bは回路基板の主面に垂直な方向からみた平面図である。回路基板60の一方表面上に、マイクロ波発生源10、周波数掃引装置11、励起光発生器20、及びマイクロプロセッサであるパターン測定装置40が配置されている。ダイヤモンド2は、磁気アレイ3と蛍光検知器アレイ31との積層体として、回路基板60上に配置されている。それぞれの部品は回路基板60上の配線パターン、又は個別の配線によって結線されている。その他の電気部品及びレンズ等の光学部品は図示しないが、必要に応じて配置される。これらの配置はあくまで例示であって、図18A及び図18Bに示した配置に限定されるものではない。
 キャンセルコイル70及び磁気シールド部材80については、図17A、図17Bの場合と同様である。
 各部品の駆動回路及び電源に関する付帯回路、さらには信号処理のプロセッサ等も同一の回路基板に配することもできる。しかし、電気回路を搭載することは磁気ノイズ源ともなるため、余分な電気回路及び配線は極力少なくすることが好ましい。可能である限りモジュール全体又はセンサー部分であるダイヤモンド周辺のみを磁気シールドで覆ったり、キャンセルコイルによる環境磁場排除の対象として構成したりすることが好ましい。このような1枚の回路基板上に構成されたモジュールとしてダイヤモンド磁気センサーを構成することが、環境磁場の排除の点から、又は、コンパクトで生体等の検出対象物に密接して配置しやすい点から好ましい。
 これにより、センサー全体の構成がコンパクトになる。また、光軸が安定し、励起光照射及びマイクロ波照射の効率が上がり、照射位置の安定性が増す、などのセンサーの信頼性が向上する。
(センサー部分離型ダイヤモンド磁気センサーモジュール)
 ダイヤモンド磁気センサーにおいて、センシング部であるダイヤモンド1(図1)又はダイヤモンド2(図6)とその他の電子回路(励起光発生の電子回路、蛍光受光部の電子回路、マイクロ波発生の電子回路)部とを空間的に隔てることは有効である。ただし、ダイヤモンド2に関しては、近接した受光素子アレイが無い場合の実験レイアウトに限られる。センシング部分を磁気検知したいところに近づけたいからであり、このことは、センサーの感度の良し悪しに依存することなく、距離の2乗、又は3乗に比例して有効となるからである。また、スペースに余裕のない場合でさえ、小さいセンシング部分のみを配置することもでき、検知モジュール又は検知システムの自由度を上げることともなる。さらに、その他の電子回路部から発生する微弱磁場をできるだけ排除するという点において、ダイヤモンドとその他の回路とを物理的、空間的に離した構造である装置とすることができる。これにより、ダイヤモンド磁気センサーへの余計な磁場の影響を排除することができるからである。これらのことを実現するためには、励起光が遠方からでも照射しやすいレーザー光線であることは重要である。また、受光に関しては望遠顕微鏡、又は望遠レンズなどを使用することが有効であることを見出せた。ダイヤモンドのセンシング部分の近くにレンズが設けられていることも有効であることがわかった。近接させるレンズに関してはダイヤモンドと同様絶縁体であり、劣化の無いものが必須となる。このように顕微鏡型のレンズ配置となっている場合、受光部は遠方のダイヤモンドを拡大していることになるので、受光部として受光素子アレイを設置することもできる。さらに、マイクロ波の照射を容易にすることも重要であり、パラボラアンテナを用いることが有効であり、楕円球アンテナを用いることがより有効である。それぞれマイクロ波の発振部分をアンテナの焦点に置き、照射対象のダイヤモンドをもう1つの焦点に置くと非常に効率が良くなるからである。ダイヤモンドのセンシング部分とそれ以外の電子回路部分又は、マイクロ波発振器のアンテナ部分などの最近接部との距離が10cm以上であることが好ましく、20cm以上であることがより好ましく、50cm以上であることがさらに好ましい。ダイヤモンド部分付近で高電圧を発生している場合は、最近接部分がその近くにあると、測定している人にとっても、計測機器にとっても、測定できないほどに高電圧部から放電の影響を受けるからである。それぞれのアンテナの開口部分は直径15cm以上であることが好ましく、20cm以上であることがより好ましく、30cm以上であることがさらに好ましい。マイクロ波の波長より開口部のサイズが大きくなると一方の焦点での集束が困難になるからである。
 また、ダイヤモンド磁気センサーにおいて、センシング部であるダイヤモンドとその他の電子回路部とは、可視光領域又は赤外光領域において透明である板(ガラス又は石英など)により離隔されて、それぞれが異なる環境に配置される構造のモジュール又は装置とすることができる。これにより、耐性の高いダイヤモンドを用いて、電子回路が耐えられない環境(酸性環境下、耐アルカリ環境下、耐腐食性環境下、圧力環境下、高温環境下、高湿度環境下)においても、ダイヤモンドが置かれている環境下での磁気を測定することができる。環境下というのは、ガス雰囲気、又は水、酸、アルカリなどの過酷な液体中を指している。他のセンシング材料においては、このような環境下では高い信頼性を得るのは非常に困難である。
 電子回路部から1cm以上離れると、電子回路部によるノイズが大きく低減するので、ダイヤモンドと電子回路部とは1cm以上離すことが好ましい。両者の距離は、2cm以上であることがより好ましく、5cm以上であることがさらに好ましい。
(環境磁場の分離解析)
 上記した第1~第3の実施形態に係るダイヤモンド磁気センサーは、磁気強度の時間変化パターンを測定することができるため、時間変化パターンに基づいて環境磁場の影響を除外して微小な磁場を検出することが可能である。環境磁場として、例えば複数の交流磁場を含むパターンが存在する場合、その中で最大磁場を有する磁場パターンの最大磁場に対して1/10未満の磁場を分離抽出して検知することが可能である。
 図19は、環境磁場と検知対象磁場とが合成されている様子を示すグラフである。図19を参照して、環境磁場の分離解析について説明する。図19において、(i)のグラフは環境磁場としての交流磁場を示しており、横軸を時間、縦軸を磁場強度として描画されている。(ii)のグラフは測定対象としての信号磁場を示しており、環境磁場に比べて高周波で微弱な変動である。(iii)のグラフは、実際にパターン測定装置により測定された結果としての時間変化パターンを示している。(iii)の信号は、環境磁場を表す(i)の信号と信号磁場を表す(ii)の信号とを合成した信号となっている。説明を簡単にするために、これら以外の磁場は測定環境には存在しないものと仮定する。
 環境磁場の時間パターン(i)は、測定対象が無い状態での測定によって得られる。予め測定したデータの周波数分析から、環境磁場の周波数成分が求められる。求めた周波数をf0とする。本例では単一周波数で説明するが、複数の成分が重畳している場合には複数の周波数成分を求めればよい。
 測定された時間変化パターン(iii)から信号(ii)を分離抽出する一つの方法は、フィルタリングである。信号がアナログ信号である場合は、周波数f0以下の信号を除外するハイパスフィルターを用いることができる。信号(iii)をフィルタリングすることによって信号(ii)を得ることができる。時間変化パターンは実際の装置では、デジタル処理された離散値のデータ列として得られることが一般的である。この場合でも、既知のデジタルフィルタリングの技術を用いて、任意のフィルターを実現することで信号(ii)を得ることが可能である。
 複数の周波数が混在する場合の効果的なフィルタリングはフーリエ解析を用いるものである。測定された時間変化パターン(iii)をデジタルフーリエ変換することにより、周波数成分に分離することができ、その中で環境磁場として予め特定した周波数成分、又は想定した周波数成分を除外すればよい。除外された信号を逆フーリエ変換の手法で時間変化パターンに戻すことで、信号(ii)を得ることが可能である。その他、信号の自己相関関数を利用する方法など他の信号処理手段を用いてもよい。
 上記では環境磁場として交流磁場を想定して説明したが、多くのノイズにおいても交流磁場の重畳として捉えることが可能である。また、ホワイトノイズのようなブロードな周波数成分を持つ環境磁場においても分離は可能である。即ち、測定された時間変化パターンに含まれる周波数成分を解析し、予め調査分析したノイズ成分とは異なる信号成分を抽出及び分離することで、測定対象となる信号を取り出すことができる。このように、本願のダイヤモンド磁気センサーによれば、磁気強度の時間変化パターンを得ることができるので、環境磁場を排除して微弱な磁場の測定を効率的に行うことができる。
 (断続データによる時間変化パターンの解析)
 磁場の時間変化パターンを連続的に測定することはデータの解析に有効である。しかしながら、実際の磁場変化が測定可能範囲からはみ出し、連続的なデータが得られず断続的なデータしか得られなかったとしても、測定可能範囲内での時間変化パターンを、測定可能範囲外での推測に役立てることができる。時間変化パターンが予測される又は既知であるならば、測定可能範囲外をも含めて時間変化パターンを考えると、測定可能範囲で得られた値で概要を掴むことができる。すなわち、時間変化パターンが正弦波、余弦波、又は三角波などであることが分かっているならば、一部の値から位相及び最大値を算定することが可能になる。これは第1~第3の実施様態のいずれの場合にも当てはまる。
<本発明の好ましい態様>
 以下、本発明の好ましい別の態様を付記する。
(付記1)
 N-V結合の方向が異なる少なくとも二つ以上のNVセンターを有するダイヤモンドと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドのNVセンターに励起光を照射する励起光発生器と、前記ダイヤモンドのN-V結合の方向が異なる前記NVセンターのそれぞれから生じる蛍光を個別に受光する蛍光検知器と、
 個別の前記蛍光強度の変化から、磁場強度と磁場方位の変化パターンを測定するパターン測定装置とを備える、ダイヤモンド磁気センサー。
(付記2)
 前記パターン測定装置は、各NVセンターの空間分布に対応した蛍光強度の空間分布から、磁場強度の空間方向パターンを測定する、付記1に記載のダイヤモンド磁気センサー。
(付記3)
 前記パターン測定装置は、各NVセンターの空間分布に対応した蛍光強度の空間分布から、磁場強度の空間方向パターンと、各NVセンターの蛍光強度から磁場強度の時間変化パターンとを測定する、付記1に記載のダイヤモンド磁気センサー。
(付記4)
 前記パターン測定装置は、前記マイクロ波の周波数の掃引を制御する機能と、前記蛍光強度の極小値を生じるマイクロ波周波数を特定する機能と、前記特定した周波数に基づいて磁場強度を検出する機能とを備え、
 前記周波数の掃引を繰り返して前記磁場強度の検出を繰り返すことによって、前記各NVセンターに対応した磁気強度の時間変化パターンを測定する、付記1から付記3のいずれか1つに記載のダイヤモンド磁気センサー。
(付記5)
 前記空間方向パターンに基づいて測定環境に起因する磁場強度と測定対象に起因する磁場強度を分離するためのデータ解析装置をさらに備えた、付記1から付記4のいずれか1つに記載のダイヤモンド磁気センサー。
(付記6)
 少なくとも一つのNVセンターを有するダイヤモンドと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドのNVセンターに励起光を照射する励起光発生器と、前記ダイヤモンドのNVセンターから生じる蛍光を受光する蛍光検知器と、前記蛍光検知器が検知する蛍光強度の変化から磁場強度の時間変化パターンを測定するパターン測定装置を備えるダイヤモンド磁気センサーであって、
 前記マイクロ波発生器は、所望の周波数幅を持つマイクロ波と、前記マイクロ波の位相をシフトさせたマイクロ波との合成波を発生し、
 前記パターン測定装置は、前記合成波の位相シフト量の掃引を制御する機能と、前記位相シフト量の掃引を繰り返して前記磁場強度の検出を繰り返すことによって、前記磁場強度の時間変化パターンを測定する、ダイヤモンド磁気センサー。
<実施例>
 以下に、実験結果を示す。
(センサー用サンプル準備)
 まずは、次のような単結晶ダイヤモンドのサンプルA~Dを準備した。
 (1)サンプルA
 ダイヤモンド中に含有している置換型窒素が0.1ppm以下の単結晶ダイヤモンドを高温高圧法で作製し、サンプルAとした。作製において、溶媒中に窒素ゲッターの役割の金属を添加することで、窒素の少ないサンプルを得た。
 (2)サンプルB
 ダイヤモンド中に含有している置換型窒素が60ppmに制御した単結晶ダイヤモンドを高温高圧法で作製し、サンプルBとした。作製において、溶媒中に自然に混入する窒素を排除し、溶媒中に窒化物(FeNなど)を添加する方法で窒素濃度を制御することで、不純物均一性が±25%以内の均一なサンプルを得た。
 (3)サンプルC
 (1)の単結晶ダイヤモンドのサンプルAを種基板として、CVD法によってエピタキシャル成長によって、含有窒素が20ppb以下で置換型窒素が1ppb以下のCVD単結晶ダイヤモンドを作製し、サンプルCとした。作製において、窒素不純物及びその他の不純物を低減する方法としては、高純度の種基板を使用する他に、酸素原子を適量添加する、ホルダーの周り+30mmの範囲内には高純度のダイヤモンド板材を敷き詰めるなどの不純物低減の工夫をした。
 (4)サンプルD1及びD2
 上記のサンプルA、B及びCは、同位体炭素が天然存在比で含まれるダイヤモンドであるが、13Cの存在比が5%であり、置換型窒素が50ppm及び100ppmの単結晶ダイヤモンドを高温高圧法で作製し、それぞれサンプルD1及びD2とした。不純物均一性は±25%以内の均一なサンプルであった。
 単結晶ダイヤモンドのサンプルA、B、C、D1及びD2は、その含有窒素濃度をSIMS分析によって評価した結果、置換型窒素濃度はほぼ含有窒素に一致した。単結晶ダイヤモンドのサンプルCの置換型窒素濃度は、NVの発光センターの密度、NVの発光センターの密度の合計で代用した。窒素濃度が少なく、空孔を十分導入したので、桁で違うことはないと推定できる。サンプルA、B及びCのいずれもが測定部分の濃度である。空孔(V)は電子線照射(照射条件は、エネルギー4MeV、放射線量20MGy)によって導入し、その後のアニール(1600℃で3時間)によって置換型窒素と結合した。NVセンターが形成できていることは、フォトルミネッセンスによって確認した。サンプルA及びCに関しては、NVセンターを単体で観測できた。サンプルB、D1及びD2に関しては、数えられないくらいの複数のNVセンターの集まりが観測できた。
 また、次のようなサンプルE及びFを作製した。
 (5)サンプルE1及びE2
 まずサンプルBとほぼ同等のNVセンターを有したサンプルを作製し、その裏面を100μmまで研磨し、反応性イオンエッチングで、さらにエッチングして最終的に厚さが70μmとした。その裏面に厚さ2μmのFeを蒸着し、200μm間隔の格子状に、直径が約5、8、13、20及び30μmのドットアレイを形成した。それぞれのFeドットは、ほぼ10:8:6:4:2の個数比で準備した。図20に、Feドット(斜線部分)の配置を模式的に示す。一点鎖線で区切られた4つの領域R1~R4のうち、領域R1に関して、c1列r1~r10行のドットは約5μmφ、c2列r1~r8行のドットは約8μmφ、c3列r1~r6行のドットは約13μmφ、c4列r1~r4行のドットは約20μmφ、c5列r1~r2行のドットは約30μmφにそれぞれ形成されている。領域R2のドットの配置は、領域R1を180度回転して得られる配置である。領域R3及びR4のドットの配置はそれぞれ領域R1及びR2と同じである。
 次に、その表面側にフォトリソグラフィーによって200μm間隔の格子状に20μmφのAlマスクを作製し、NVセンターを含むダイヤモンドをエッチングし(エッチング深さ40μm)、エッチングした部分がそのままのものをサンプルE1作製用の部材とした。また、エピタキシャル成長によって、エッチングした部分を埋め直したものを作製し、サンプルE2作製用の部材とした。Alマスクの位置は裏面のFeのドットアレイを形成した位置とほぼ正確に一致させたので、Feのドットアレイの上にNVセンターを有した円柱の微小ダイヤのあるサンプルE1作製用の部材と、Feのドットアレイの上にNVセンターを有した部分が点在するサンプルE2作製用の部材とが作製できた。最後に、サンプルE1作製用の部材のFeを磁化させて、磁場環境の異なるNVセンターを有するサンプルE1を作製した。また、サンプルE2作製用の部材のFeを磁化させて、磁場環境の異なるNVセンターを有するサンプルE2を作製した。本サンプルE1及びE2は、磁気アレイを有するダイヤモンド磁気センサー(磁気センサー用のダイヤモンド基板)となった。
 (6)サンプルF
 サンプルEとほとんど同じ方法で、部分的に格子状にNVセンターのあるアレイを作製し、サンプルFとした。即ち、サンプルBと同様のサンプルを準備する工程において、全体にNVセンターを作るのではなく、0.5mmの鉛の板に、200μm間隔で格子状に、40μmφの穴をあけて、それをマスクとして電子線照射し、格子状に欠陥を導入し、NVセンターのアレイを作製した。裏面の磁気アレイ(Feアレイ)の形成方法など、その他はサンプルEの作製と同じ方法である。
 図21に示す構成の実験装置を作製し、ダイヤモンドのサンプルA及びCのそれぞれを用いて実験を行った。測定系として、励起光となる緑色レーザー光(波長520nm)を出力するGaN系の半導体レーザー(レーザー光源102)とマイクロ波発生器と半導体受光素子104とを準備した。レーザー光及び観測する蛍光は、光学レンズ系106(顕微鏡レンズ108、三角プリズム110及び反射鏡112を含む)を用いて伝送した。マイクロ波発生器は周波数2.87GHz付近が掃引できるようになっており、ソレノイドコイル状のアンテナ(マイクロ波コイル114)を試作し、サンプル(ダイヤモンド100)から約5mm離して設置し、マイクロ波を照射できるようにした。
 サンプルA及びCのそれぞれに関して、レンズで各サンプルの表面像を拡大して単一の蛍光の点を探した。サンプル(ダイヤモンド100)に一番近いものは、対物レンズであり、その距離は約1mmであった。
 次に模擬磁気波形を発生する装置を準備した。0.8mmφの銅線X116を用意し、交流電流源122で銅線X116に流す交流電流を制御した。交流は60Hzとし、電流値は適宜設定した。また、銅線X116に近接させて銅線X116に平行に0.1mmφの銅線Y118を配置し、パルス電源124によりパルス電流を流せるようにした。パルス電流はパルス間隔60Hz、パルス幅1msecとした。銅線X116及び銅線Y118は、センシングするダイヤモンドのサンプルA及びCのそれぞれから最近接で0.5cmのところに配置した。交流電流源122及びパルス電源124は、検知対象として模擬的なシグナルを発生するための模擬回路を構成する。
 予備測定として、以下のような実験を行った。銅線X116に一定の直流電流を流した状態で、ダイヤモンドのサンプルA、Cに、マイクロ波を照射しつつ、波長520nmの半導体レーザー光を照射すると、波長約638nmの赤い蛍光が検出された。マイクロ波の周波数を2.87GHzの付近で掃引すると蛍光は、異なる周波数で二つの極小値(谷)を示した(図2参照)。銅線X116の電流値を変化させると、二つの極小値の周波数間隔が変化した。周波数間隔は、銅線X116に流れる電流値にほぼ比例した。二つの極小値は対称的に変化したので、一方の極小値の周波数の時間変化パターンを知ることで、全体の変化(磁気の時間変化パターン)に換算できることが確認できた。
 次に、本測定を行った。銅線X116に60Hzの交流電流(最大電流1.2A)を流した。銅線Y118の電流はゼロである。なお、地磁気の影響のない箱の中で実験を行った。ダイヤモンドを上記の半導体レーザーで励起し且つマイクロ波を照射し、波長約638nmの赤い蛍光強度を測定しつつ、マイクロ波の周波数を掃引した。マイクロ波周波数の掃引を短時間(掃引周期1msec以下)で行って、得られた蛍光強度の波形から極小値を検出し、それに対応する周波数をストレージできるようにした。これにより、極小値に対応する周波数の時間変化パターンを得た。これは磁気時間変化パターンに変換することができた。即ち、この部分は極小値に対応したマイクロ波周波数の時間変化データを取得でき、それを磁気時間変化パターンに変換する装置によって行った。
 磁場を形成する銅線X116に流した交流電流の波形を図22に示す。得られた蛍光強度のプロフィールを図23に示す。図23では、図22のt1~t5を付したタイミングで測定されたプロフィールを、対応する符号を付して縦方向に並べて示している。各プロフィールの縦方向が蛍光強度の軸であるが、蛍光強度の軸は共通ではなく、各プロフィールにおけるフラット部分がほぼ同じ蛍光強度になっている。図23ではプロフィールを実線で示しているが、実際には1msecの間隔でのデータの集まりである。この時間変化パターンにおいて、極小値の間隔Δf1~Δf5は60Hzの交流電流と同じ周期と位相で変化したので、磁場強度の変化の周期及び位相を情報として得ることができた。
 また、銅線X116に上記の交流電流を流しつつ、銅線Y118に上記したパルス電流(最大電流値が10msec)を流した。銅線X116に流した交流電流と銅線Y118に流したパルス電流の合成波形を模式的に図24に示す。一点鎖線で囲んだ部分が、銅線Y118に流したパルス電流によるものである。その他は上記と同じ条件で測定を行った。得られた蛍光強度のプロフィールを図25に示す。図25では、図23と同様に、図24のt1~t5を付したタイミングで測定されたプロフィールを、対応する符号を付して縦方向に並べて示している。図25ではプロフィールを実線で示しているが、実際には1msecの間隔でのデータの集まりである。即ち、同様に時間変化パターンが得られ、交流電流の磁気パターン及びパルス電流の磁気パターンの測定結果を得ることができた。
 図23と図25とを比較すると、t1及びt3~t5のプロフィールの極小値の間隔(Δf1及びΔf3~Δf5)は、それぞれ図23と図25とで同じ大きさであるが、t2のプロフィールの極小値の間隔Δf2は、図25のものが図23よりも大きくなっている。これは、t2のタイミングでパルス電流が流れたためである(図24参照)。したがって、極小値の間隔の変化から、交流磁場中に発生したパルス磁場を検出することができる。このように、マイクロ波周波数の掃引周期を1msecと小さく設定できたことで、大きな交流磁場中にでも小さなパルス磁場を検出でき、時間変化パターンの解析により、パルス電流は交流電流からの差を取ることで容易に確認できた。時間変化パターンの解析は、銅線X116からの大信号(交流信号)を差し引く単純な差で結果が出るが、時間変化パターンの周波数解析を行い、銅線X116からの大信号の周波数をカットすることでも得られた。即ち、データ処理にハイパスフィルターを組み込む回路構成としてもよい。ここでは、70Hzより低い周波数をカットし(銅線X116に流した交流電流の周波数である60Hzを取り除くため)、それ以上の周波数(1kHz)を残すことで成功した。
 従来のダイヤモンド磁気センサーでは、感度が高いことを(非常に小さい磁場を検知することを)主眼としているため、ベース磁界が少しある時点で計測する前にオーバーレンジとなってしまい、時間変化パターンを検知して、磁場の原因となる電流波形を知ることができなかった。本発明の一態様では周波数の掃引速度を上げて、時間変化パターンとしてデータを解釈するために、測定可能な磁場のレンジが格段に大きくなり、しかもその中で微小な磁場の変化をも確認することができるようになった。
 本方法により、周波数成分がより高いパルス電流を検出する場合には、周波数の掃引をより高速に、細かく行う必要があるが、掃引する周波数の幅が大きくなる場合には、一つの極小値の谷のみを追いかけ、時間によって予測される極小値の周波数付近を掃引することが効率的であることもわかった。
 図26に示す構成の実験装置を作製し、ダイヤモンドのサンプルB、D1及びD2のそれぞれを用いて実験を行った。励起光の半導体レーザー(520nm)(レーザー光源102)とマイクロ波発生器と半導体受光素子104は実施例1と同じものを用意した。マイクロ波の照射は、実施例1と同様にソレノイドコイル状のアンテナ(マイクロ波コイル114)を試作し、実施例1とは異なり、マイクロ波コイル114をサンプル(ダイヤモンド100)から約1cm離して設置した。
 サンプルB、D1及びD2のそれぞれに関して、レンズなどの光学系を通さずに、半導体レーザー光をサンプル中央部に照射し、倍率50倍の望遠顕微鏡(長焦点レンズ126)を用いて、サンプル中央部から放射される赤い蛍光を受光素子で検出した。受光素子にレーザー光が入射することを防止するために、緑の光をカットするフィルターを用いた。サンプル(ダイヤモンド素材)にいちばん近いものは約1cm離したマイクロ波のアンテナであった。
 次に、実施例1と同様に、模擬磁気波形を発生する装置(交流電流源122及びパルス電源124)を準備した。銅線X116及び銅線Y118は、センシングするダイヤモンドのサンプルから最近接で0.5cmのところに配置した。
 まず、以下のような準備測定を行った。ダイヤモンドのサンプルに、マイクロ波を照射しつつ、波長520nmの半導体レーザー光を照射すると、波長638nm付近の赤い蛍光が検出された。マイクロ波の周波数を2.87GHzの付近で掃引すると蛍光は、異なる周波数で二つの極小値(谷)を示した。ただし、実施例1とは違って、ブロードな谷であり、2つの谷は重なっていたが、極小値は2つあることが確認できた。これは、サンプルB、D1及びD2では、いろいろな状態のNVセンター(13C及び14Nなどの核磁気を持つ原子がNVセンターの近くに配置されている)が存在することに依る。これらの濃度が多いと分布の幅が大きくなり、ブロードになる。極小値の周波数から大きく離れた周波数のマイクロ波を照射すると、蛍光強度は最大値を示した。極小値による谷に含まれる一つの周波数にマイクロ波を固定し、マイクロ波の照射を止めても(マイクロ波出力をゼロとしても)、蛍光は最大値を示した。
 次に、以下のように本測定を行った。銅線X116に直流電流を定電流電源で流し、電流が流れていると、近くにあるダイヤモンドのサンプルにおいて、二つの極小値の周波数間隔が変化することを確認した。本実験で使用したサンプルB、D1及びD2は、磁気の変化に対して、蛍光強度の変化は比較的緩やかで、広い磁気レンジを蛍光の強度で確認することができた。
 次に、以下のような測定をした。レーザー光を、10msec(100Hz)及び0.1msec(10kHz)のそれぞれの周期で、デューティ50%(パルス幅は周期の半分)のパルス光とし、サンプルに照射し、赤い蛍光を観察した。その結果、レーザー光が照射されている間、100Hz及び10kHzのそれぞれの周期で発光していることを確認した。
 レーザー光のパルス間隔(周期)を10msec(100Hz)とし、且つ、蛍光強度の2つの極小値の一方に対応する周波数のマイクロ波を照射し、蛍光強度を極小値とした状態で、銅線X116への定電流(1A)の供給をオン(通電)、又はオフ(非通電)した。その時に観測された蛍光の強度の時間変化パターンを、図27に示す。また、銅線X116に定電流(1A)をオンし、且つ蛍光強度が極小値となる周波数のマイクロ波を照射した状態で、銅線X116への電流の供給をオフしたり、再度オンしたりした。その時に観測された蛍光強度の時間変化パターンを、図28に示す。図27及び図28は実線で示されているが、実際には10msec(100Hz)の間隔でのデータの集まりである。このように、励起レーザー光のパルス照射とそれに対する応答として蛍光強度の時間変化パターンを知ることで、測定された蛍光強度の時間変化パターンが、銅線の電流のパターンと正確に一致する(パターンが整合する)ことを、非接触で、少し離れたところで確認することができた。時間変化パターンが分からなければ、どうしても銅線X由来の電流かどうかの不確定性が残る。
 次に、レーザー光のパルス間隔(周期)を0.1msec(10kHz)とし、且つ銅線X116に1Aの電流を流した状態で、蛍光強度の2つの極小値の一方に対応する周波数のマイクロ波を照射し、蛍光強度を極小値とした状態で、銅線X116に周波数60Hz、最大値1.2Aの交流電流を流した。このとき測定された蛍光強度を、銅線X116の電流波形と共に図29に示す。任意単位(a.u.)で表した蛍光強度は電流値が1Aとなるたびに極小値を示した。図29は実線で示しているが、実際には0.1msecの間隔でのデータの集まりである。この蛍光強度の時間変化パターンを解析して、磁気の時間変化パターンを求めることができ、銅線X116に流した電流の時間変化を知ることができた。ここで、蛍光強度と磁気との関係はダイヤモンドサンプル毎に異なるために、対応関係を予め調査しておき、データベースとしておく必要がある。(サンプルB、D1、D2の順で磁気感度が緩やかになり、後者程、測定する磁気範囲を大きく取れた。)また、データ(蛍光強度)は正弦波の全ての部分で得られるわけではないが、部分的にではあっても単純な正弦波であることが分かっているので、このような条件のもとで解析すると、銅線X116に流れる電流パターンと一致することを確認できた。得られた蛍光強度のパターンから交流電流の位相も検知することができた。このような条件の仮定は、現実的にも行なわれており、データの有効な処理方法である。
 次に銅線X116と銅線Y118の設定で、銅線X116に60Hz、最大値1.05Aの交流電流を流し、銅線Y118にパルス間隔(周期)60Hz、パルス幅1msec、最大電流値1mAのパルス電流を流した。このとき測定された蛍光強度を、銅線X116及び銅線Y118に流した電流の合成波形と共に図30に示す。蛍光強度は交流電流とパルス電流の合計が1Aになるたびに極小値を示した。図30は実線で示しているが、実際には0.1msec間隔でのデータの集まりである。この蛍光強度の時間変化パターンを蓄積する機能を有する装置と、蓄積されたデータを解析する装置を設けた。蛍光強度の時間変化パターンは、サンプルのデータベースにより、磁気時間変化パターンに変換することができる。これら時間変化パターンのデータでは周波数解析によってもパルス電流を確認することができた。即ち、抽出したデータからハイパスフィルターにより70Hz以下の成分をカットし(銅線X116に流した交流電流の周波数60Hzを取り除くため)、それ以上の成分を分析すると、パルス電流の1kHzの成分が検出された。
 また、図31に示す構成の実験装置を作製して実験を行った。即ち、銅線X116と銅線Z120とを、直接接続したコンデンサ128及び抵抗130を介して並列に接続し、コンデンサ128及び抵抗130の接続ノードに交流電流源122から所定周波数の交流電流を供給する構成とした。抵抗130の抵抗値は、銅線X116及び銅線Z120に比べて無視できるように小さい値とし、コンデンサ128の容量は、そのインピーダンスが銅線X116及び銅線Z120のインピーダンスに比べて無視できるように大容量とした。これにより、銅線X116の電圧及び電流の位相と銅線Z120の電圧及び電流の位相との間には90°の位相差が生じる。また、銅線X116に近接させて配置したダイヤモンド100とは別に、銅線Z120に近接させてダイヤモンド136を配置した。レーザー光源102、マイクロ波コイル114、長焦点レンズ126及び半導体受光素子104により、ダイヤモンド100に対する測定系132を構成し、ダイヤモンド136に対する測定系134を、測定系132と同様に構成した。測定系134において、マイクロ波コイル及び長焦点レンズは図示していない。1対のサンプルは同じ方法で作製したサンプルであり、サンプルB、D1及びD2のそれぞれを使用した。いずれのサンプルを使用した場合にも、交流電流と同じ値の位相差を検知できた。
 交流電流源122から銅線X116及び銅線Z120に電流を供給した状態で、測定系132を用いて、銅線X116に近接させたダイヤモンド100にレーザー光及びマイクロ波を照射して、放射される蛍光強度を測定するのと同様に、測定系134を用いて、銅線Z120に近接させたダイヤモンド136にレーザー光及びマイクロ波を照射して、放射される蛍光強度を測定した。得られた結果を上記のように解析することにより、90°の位相差を検知することができた。
 従来のダイヤモンド磁気センサーでは、感度が高いことを(非常に小さい磁場を検知することを)主眼としているため、計測が少しずれればオーバーレンジとなってしまい、時間変化パターンを検知して、磁場の原因となる電流波形を知ることができなかった。本発明の一態様では、種々の背景磁気をNVセンターの近くに配するような単結晶ダイヤモンドを作製し、蛍光強度の2つの極小値を消失させることなく、感度を維持した。これにより、十分な蛍光強度の差(極小値と最大値との差が2%以上)と広い磁場レンジ(10nT以上)を確保できたことで時間変化パターンを得ることができた。NVセンターの濃度が200ppmより大きくなると、2つの極小値が観測できなくなり、十分な蛍光強度の差が得られなくなった。また、上記したサンプルとは別に、13Cの濃度が28%のサンプルXを試作して測定した結果、NVセンターの濃度が1ppmでも13Cの濃度が20%より大きいと、2つの極小値が観測できなくなり、十分な蛍光強度の差が得られなくなった。さらに、レーザー光のパルス間隔を1μsecとし、上記と同様な実験を行ったところ、同様な位相差を精度よく検知することができた。また、実施例1と全く同じように銅線Y118へ流したパルス電流も検知することができた。
 ダイヤモンドのサンプルA、C、E1、E2及びFのそれぞれを用いて実験を行った。まず、サンプルA及びCのそれぞれを用いて実施例1と同じ方法で実験を行ない(図21参照)、サンプルを高倍率で観察すると、いくつかの蛍光の発光点が観察された。それぞれの発光点は、異なる内部の磁場背景(核磁気)を有していたので、同じ周波数のマイクロ波を照射しても、異なる大きさの外部磁場で蛍光強度が極小値となる(以下、共鳴ともいう)条件となっていた。実施例2の図29及び図30に示したような電流を銅線X116及び銅線Y118に流して外部磁場を形成し、蛍光強度の変化を計測する実験を行った。蛍光強度の変化と蛍光位置(蛍光が観察された位置)の変化のデータを処理することで、図29及び図30のそれぞれの蛍光強度パターンに対応する磁気の時間変化パターンを得ることができた。即ち、位置の時間変化パターンにより、実施例1の周波数掃引に代わる機能を実現できる。発光点を1000個以上含めるように観察すると、発光位置と外部磁場で共鳴するマイクロ波周波数(蛍光強度が極小値となるマイクロ波周波数)とが対応するように決めることができ、外部磁場が大きく変わってもどこかに発光位置が存在する観察をすることができた。このことから、予め外部磁場との相関をデータベースに蓄積することによって、蛍光強度の極小値を示す位置によって、外部磁場を計測することができ、時間変化とともにこの蛍光強度の時間変化パターン又は位置変化パターンも得ることができ、データを処理すると、大きな磁場強度範囲で磁場の時間変化パターンを得ることができた。本手法はマイクロ波周波数の掃引を、周波数を変えたことと等価な位置データを予めデータベース化することによって代替することがポイントである。即ち、これら個々の蛍光強度の情報と蛍光位置の情報との複合情報によって磁気の時間変化パターンを得るものである。
 次に、サンプルE1及びE2のそれぞれを用いて、実施例2と同じ実験系(図26参照)において、受光素子の前に置かれた長焦点レンズで拡大して、格子状に並んだドットの蛍光を識別する実験を行った。サンプルE1及びE2のそれぞれにおいて、20μmφのNVセンターを含むエリア(NVセンター領域)が格子状に並んでいる一つの発光領域は、複数のNVセンターを有しているので、単一のNVセンターに比べて、強度の絶対値として大きな蛍光強度を得た。サンプル全体的に磁場をかけると、基板裏側のFeアレイが磁場を保持して、ほぼ各Feアレイの面積に応じた強度の磁場となった。従って、これらの複数のアレイ状のエリアは異なる磁場背景(Feアレイによる磁場)を有していることとなり、蛍光強度の極小値がマイクロ波の異なる周波数で起こることとなった。サンプルA及びCのそれぞれに関して高倍率で計測した場合に比べて、低倍率で蛍光強度が高く、周波数の範囲も広く、広い磁場レンジをカバーできた。また、Feドットが格子状に並んでおり、内部の磁場強度差を設計することができるので、測定が容易であった。実施例2の図29及び図30に示したような電流を銅線X116及び銅線Y118に流して外部磁場を形成し、蛍光強度の変化を計測する実験を行った。蛍光強度の変化と蛍光位置の変化のデータを処理することで、図29及び図30の蛍光強度パターンに対応する磁気の時間変化パターンを得ることができた。サンプルE1及びE2が、サンプルA及びCと違うのは、測定に都合のよい発光に関与するNVセンターの集団を探すのではなくて、予め設計によって、都合のよいNVセンターの集団を作り出すことができることである。
 サンプルFを用いて上記と同様に実験を行った。その結果、サンプルFのNVセンター領域の大きさは40μmφであったが、サンプルE1及びE2とほぼ同じ機能(交流電流による磁気の検知及び交流電流中のパルス電流による磁気の検知)を実現できることが確認できた。
 以上のように、サンプルA及びCのそれぞれにおいて高倍率で、NVセンター(個々がNVセンター領域と言える)が1000個以上の発光点となるように観察し、各々にアドレスを付ける方法によっても、サンプルE1、E2及びFのそれぞれにおいて低倍率で、複数のNVセンターを有する格子状のアレイ(NVセンター領域)を設計して、磁気アレイと組み合わせることで異なる背景磁気を形成する方法においても、大きな磁場範囲において、個々には小さい磁気変化を計測することができた。即ち、大磁場中の微小磁場を計測することができた。これらの時間変化パターンを計測して、磁場の原因となっているもの(電流など)を特定できた。
 上記ではサンプルE1、E2及びFを用いて個々のアレイの蛍光強度を観察したが、本実施例ではサンプル全体に励起光を照射し、サンプル全体から放射される蛍光の強度を一括して観察した。同類の特性のドット(格子状の各点)は複数個あり、異なる特性毎に数が違うように設定されている。即ち、異なる特性毎に、重み付けをしている。同類の特性とは、同じマイクロ波周波数で共鳴するNVセンターと言う意味である。異なる特性とは、共鳴するマイクロ波周波数が異なるという意味である。従って、極小値となる蛍光強度でマイクロ波周波数が分かることとなる。得られる蛍光強度全体を重ね合わせると、一つの大きな蛍光強度の変化として表されるので、蛍光強度でほぼマイクロ波周波数が決まってしまうこととなる。ここで、共鳴の周波数が小さいものほどドット数を多くし、共鳴の周波数が大きくなるほどドット数を少なくすることが必要である。そのようにすると、マイクロ波周波数に対して幅広く大きな谷を有する蛍光強度のグラフを形成することができる。蛍光強度とマイクロ波周波数との関係、即ち蛍光強度と磁気との関係は、ダイヤモンドの性能と設計の性能とで決まり、予めデータベース化しておくことができ、蛍光強度で磁気のデータを算出できた。しかも設計には任意性があるので、蛍光強度と磁気との関係を緩く設定でき、広い磁気範囲に渡って計測できるようにすることができた。同じように時間変化パターンを得ることもできた。実施例2の測定を示した図29と同様に銅線X116に電流を流したときに、測定されたサンプル全体の蛍光強度の変化で外部磁場に関する情報を時間変化パターンとして確認することができ、磁気の時間変化パターンを知ることができ、且つ、磁気の要因を交流電流と特定することができた。さらに時間変化パターンは交流波形にも合っているので、その位相を知ることもできた。これにより、実施例2のようにして(図31参照)、直交する位相差の電流波形との差も確認することができた。さらに、実施例2の測定を示した図30と同様に銅線X116に電流を流したときにも、測定されたサンプル全体の蛍光強度の変化で外部磁場に関する情報を時間変化パターンとして確認することができ、磁気の時間変化パターンを知ることができ、且つ、磁気の要因を交流電流とパルス電流とに区別して算定することも、図30の上段のグラフと同様に可能であった。
 図32に示す構成の実験装置を作製し、ダイヤモンドのサンプルE1、E2及びFのそれぞれを用いて実験を行った。ここでは、楕円球面鏡138を用いてマイクロ波をサンプルに照射した。即ち、楕円球面鏡138がその一部を構成する楕円球面(回転楕円体)の一方の焦点にサンプルを設置し、他方の焦点にソレノイドコイル状のアンテナ(マイクロ波コイル114)を配置した。楕円球面鏡138はコイル状アンテナを配置した側にしかなく、ダイヤモンド100に向かう側は開放されている。しかしながら、焦点に配置されたアンテナから放射されたマイクロ波を楕円球面鏡138により反射させ、別の焦点に配置されたダイヤモンド100に集めることができた。楕円球面鏡138の端面(開放部)の直径は30cmであり、マイクロ波コイル114を配置した焦点は楕円球面鏡138の端面から20cm離れていた。励起用レーザーをサンプル(ダイヤモンド100)から30cm離れた位置に配置したレーザー光源からサンプルに照射し、サンプルから20cm離れた位置に配置した長焦点顕微鏡で、サンプルから放射される蛍光を観察した。このような構成で、銅線X116に、実施例2の図29に示したように交流電流を流して、磁気アレイの番地とその番地での蛍光強度変化で、外部磁場に関する情報を時間変化パターンとして確認することができ、磁気の時間変化パターンを知ることができ、且つ、磁気の要因を交流電流と特定することができた。即ち、センサー部であるダイヤモンドのサンプルを、励起用半導体素子部(レーザー光源)、受光用半導体部(受光素子)、マイクロ波コイルを含むマイクロ波発生器などで構成される測定機器から遠隔に配置した場合にも、磁場及び磁気の時間パターンなどを検知し、磁場原因などを検知することができた。
 センサー部であるダイヤモンドのサンプルE1、E2及びFのそれぞれを、測定用の電子素子(励起用半導体レーザー及び半導体受光素子)から遠隔に配置することは、実施例5と同じであるが、センシング部であるダイヤモンドのサンプルを真空中(0.01気圧)、高圧水中(10気圧)、高温オイル中(200℃)などの環境に置き、石英ガラスの窓を通して、遠隔から、レーザー光及びマイクロ波を照射し、蛍光の検出を行なった。それ以外の構成、配置及び測定条件は実施例5と同様である。センシング部(ダイヤモンドのサンプル)の環境が標準状態(例えば、1気圧(101325Pa)0℃)と大きく異なっていたが、基本的には上記と同様の計測ができた。
 実施例1と同じサンプルと測定系とを採用し、センシング部であるダイヤモンドのサンプルを覆うように磁界発生用のコイルを配置した。磁界発生用コイルにより、銅線X116の交流電流によってダイヤモンドのサンプルが配置された位置に発生する交流磁場が打ち消されるように、磁場を発生させた。銅線X116及び磁界発生用コイルにより形成される合成磁場は、ダイヤモンド上で均一ではないので、厳密には磁場を打ち消せないが、観察対象部分が小さく、交流磁場が予測されていると、ほぼキャンセルされた状態となった。この状態では、キャンセルされずに残った正弦波磁場のほとんどの位相において、磁場変化を検知することができ、時間変化パターンとして検知することができ、且つ、図30(実施例2)に示したように交流磁場中のパルス磁場を検知することができた。
 実施例2と同じサンプルと測定系とを採用し、センシング部であるダイヤモンドのサンプルと、検知するための励起半導体素子及び受光素子を含む検知回路部を、同一の回路基板上に作製して、磁気及び磁気の時間変化パターンを検知できるようにした。実施例2の図29に示したような交流磁場を検知することで、同一の回路基板上に作製していない場合と、同一回路基板上に作製した場合とを比較した。交流磁場を形成するための電流値を、実施例2の1.2Aから徐々に下げて、0.12A、12mA、1.2mAとして測定した。同一回路上に作製していない場合は1.2mAの場合の測定が困難であったが、同一回路上に作製した場合、1.2mAの場合でも、交流磁場の磁気時間変化パターンを測定することができた。
 実施例7と同じサンプルと測定系とを採用し、磁界発生用コイルも実施例7と同様に配置して実験を行なった。磁界発生用コイルにより、銅線X116の交流電流によってダイヤモンドのサンプルが配置された位置に発生する交流磁場を打ち消すように、磁場を発生させるとともに、別のコイルにより、銅線Y118のパルス電流により発生する磁場を増大させた。銅線X116による交流磁場は、実施例7と同様にキャンセルすることができた上に、銅線Y118により発生する磁場を増幅してダイヤモンドに加えることができ、磁気の時間変化パターンとして検知することができた。即ち、図30(実施例2)に示した交流磁場中のパルス磁場を検知することができた。本実施例では、サンプルと検知部の回路部分を磁気シールド内に入れて、銅線Y118のパルス電流により発生する磁場を増大させるために使用したコイルの磁気(電流)のみをアンテナでダイヤモンドに照射する場合にも、同様の結果を得た。
 以上、実施の形態を説明することにより本発明を説明したが、上記した実施の形態は例示であって、本発明は上記した実施の形態のみに制限されるわけではない。本発明の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。
1、2 ダイヤモンド
3 磁気アレイ
3a、3b 磁性体
10 マイクロ波発生源
11 周波数掃引装置
12 マイクロ波
20 励起光発生器
21 励起光
22 蛍光
30 蛍光検知器
31 蛍光検知器アレイ
32a、32b 受光素子
40 パターン測定装置
60 回路基板
70 キャンセルコイル
80 磁気シールド部材
a、b、c、d、e、R1、R2、R3、R4 領域
C1 断面
100、136 ダイヤモンド(サンプル)
102 レーザー光源
104 半導体受光素子
106 光学レンズ系
108 顕微鏡レンズ
110 三角プリズム
112 反射鏡
114 マイクロ波コイル
116 銅線X
118 銅線Y
120 銅線Z
122 交流電流源
124 パルス電源
126 長焦点レンズ
128 コンデンサ
130 抵抗
132、134 測定系
138 楕円球面鏡

Claims (12)

  1.  少なくとも一つのNVセンターを有するダイヤモンドと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドのNVセンターに励起光を照射する励起光発生器と、前記ダイヤモンドのNVセンターから生じる蛍光を受光する蛍光検知器とを備えるダイヤモンド磁気センサーであって、
     前記蛍光検知器が検知する蛍光強度の変化から磁場強度の時間変化パターンを測定するパターン測定装置を備えたダイヤモンド磁気センサー。
  2.  前記パターン測定装置は、前記マイクロ波の周波数の掃引を制御する機能と、前記蛍光強度の極小値を生じるマイクロ波周波数を特定する機能と、前記特定した周波数に基づいて磁場強度を検出する機能を備え、
     前記周波数の掃引を繰り返して前記磁場強度の検出を繰り返すことによって、前記磁場強度の時間変化パターンを測定する、請求項1に記載のダイヤモンド磁気センサー。
  3.  前記時間変化パターンに基づいて測定環境に起因する磁場強度と測定対象に起因する磁場強度を分離するためのデータ解析装置をさらに備えた、請求項1又は請求項2に記載のダイヤモンド磁気センサー。
  4.  前記データ解析装置は、前記時間変化パターンの周波数に基づくフィルタリングによって前記磁場強度の分離を行う、請求項3に記載のダイヤモンド磁気センサー。
  5.  平面視において複数のNVセンター領域を有する板状のダイヤモンドと、前記NVセンター領域に対応して配置された磁気アレイと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドに励起光を照射する励起光発生器と、前記複数のNVセンター領域からそれぞれ生じる蛍光を個別に受光する蛍光検知器アレイとを備えるダイヤモンド磁気センサー。
  6.  所定の磁場を発生させることで前記ダイヤモンドに作用する環境磁場を低減するためのキャンセルコイルをさらに備えた、請求項1から請求項5のいずれか1項に記載のダイヤモンド磁気センサー。
  7.  1枚の回路基板上に直接又は他の部材を介して、前記ダイヤモンドと、前記マイクロ波発生器と、前記励起光発生器と、前記蛍光検知器又は前記蛍光検知器アレイとを搭載した、請求項1から請求項6のいずれか1項に記載のダイヤモンド磁気センサー。
  8.  前記ダイヤモンドに作用する環境磁場を遮蔽するための磁気シールドと、検知対象を含む外部信号を前記磁気シールド内に導入するためのアンテナとをさらに備えた、請求項1から請求項7のいずれか1項に記載のダイヤモンド磁気センサー。
  9.  平面視において複数のNVセンター領域を有する板状のダイヤモンドと、前記複数のNVセンター領域のそれぞれに対応して配置された磁気アレイと、前記ダイヤモンドにマイクロ波を照射するマイクロ波発生器と、前記ダイヤモンドに励起光を照射する励起光発生器と、前記複数のNVセンターから生じる蛍光を受光する蛍光検知器とを備えるダイヤモンド磁気センサーであって、
     照射するマイクロ波の周波数及び前記磁気アレイによる印加磁場に応じて、前記複数のNVセンター領域から生じる蛍光強度の極小値の大きさが、前記NVセンター領域ごとに異なるように重み付されたダイヤモンド磁気センサー。
  10.  平面視において複数のNVセンター領域を有する板状のダイヤモンドと、前記NVセンター領域のそれぞれに対応して配置された磁気アレイとを備え、前記ダイヤモンドと前記磁気アレイとが接触しているダイヤモンド磁気センサー。
  11.  前記ダイヤモンドと前記蛍光検知器を含む電子回路部との間は、1cm以上離隔されており、前記ダイヤモンドと前記電子回路部との間には、前記ダイヤモンドと前記電子回路部とを電気的に接続する部材が存在しない、請求項1から請求項6、請求項9及び請求項10のいずれか1項に記載のダイヤモンド磁気センサー。
  12.  前記蛍光検知器を含む前記電子回路部は、可視光又は赤外光を透過する固体によって前記ダイヤモンドから離隔されており、標準状態と異なる温度環境、標準状態と異なる圧力環境、及び、空気以外のガス雰囲気のうち少なくとも1つの環境下で使用され得る請求項11に記載のダイヤモンド磁気センサー。
PCT/JP2018/006280 2017-02-21 2018-02-21 ダイヤモンド磁気センサー WO2018155504A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18757691.3A EP3588117A4 (en) 2017-02-21 2018-02-21 DIAMOND MAGNET SENSOR
US16/487,166 US11181590B2 (en) 2017-02-21 2018-02-21 Diamond magnetic sensor
CN201880012808.8A CN110325869B (zh) 2017-02-21 2018-02-21 金刚石磁传感器
JP2019501383A JP7136076B2 (ja) 2017-02-21 2018-02-21 ダイヤモンド磁気センサー
EP19199655.2A EP3629044B1 (en) 2017-02-21 2018-02-21 Diamond magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-029689 2017-02-21
JP2017029689 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155504A1 true WO2018155504A1 (ja) 2018-08-30

Family

ID=63253234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006280 WO2018155504A1 (ja) 2017-02-21 2018-02-21 ダイヤモンド磁気センサー

Country Status (5)

Country Link
US (1) US11181590B2 (ja)
EP (2) EP3629044B1 (ja)
JP (1) JP7136076B2 (ja)
CN (1) CN110325869B (ja)
WO (1) WO2018155504A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136316A (ja) * 2017-02-21 2018-08-30 日新電機株式会社 検出装置及び検出方法、並びに、それを用いた電圧電流検出装置
JP2021067684A (ja) * 2019-10-28 2021-04-30 パロ アルト リサーチ センター インコーポレイテッド コンパクトダイヤモンドnv中心イメージャ
WO2021200144A1 (ja) * 2020-03-31 2021-10-07 国立大学法人東京工業大学 物理状態計測装置
JP2021165670A (ja) * 2020-04-07 2021-10-14 矢崎総業株式会社 センサ
US11156675B2 (en) 2020-03-05 2021-10-26 Honeywell International Inc. Magnetometer device based on electrical pumping in nitrogen-vacancy centers in diamond
CN113805128A (zh) * 2020-06-15 2021-12-17 国仪量子(合肥)技术有限公司 光探测磁共振谱仪的光路自动调节方法及装置
WO2022091802A1 (ja) * 2020-10-28 2022-05-05 京セラ株式会社 磁気センサ、検出ユニット、検出システム、磁気センサ用基板、磁気センサ用導波体、磁気センサ用光電気混載基板及び検出ユニット用検出基板
WO2022163679A1 (ja) * 2021-01-27 2022-08-04 日新電機株式会社 ダイヤモンドセンサユニット
JP7429621B2 (ja) 2020-08-24 2024-02-08 矢崎総業株式会社 センサ
WO2024157500A1 (ja) * 2023-01-27 2024-08-02 スミダコーポレーション株式会社 測定装置および測定方法
WO2024185825A1 (ja) * 2023-03-08 2024-09-12 京セラ株式会社 磁場検出装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114467024A (zh) * 2019-08-05 2022-05-10 金展科技有限公司 钻石认证工艺以及用于钻石认证工艺的系统
EP4014056A1 (en) 2019-10-02 2022-06-22 X Development LLC Magnetometry based on electron spin defects
DE102019219052A1 (de) * 2019-12-06 2021-06-10 Robert Bosch Gmbh Verfahren zur Ermittlung der Änderung einer Orientierung im Raum eines NMR-Gyroskops sowie ein NMR-Gyroskop
DE102021101583A1 (de) * 2020-01-30 2021-08-05 Elmos Semiconductor Se Empfänger mit NV-Zentren
DE102020204571A1 (de) * 2020-04-09 2021-10-14 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Messen von Phasenströmen eines Messobjekts, insbesondere eines Inverters
DE102020210245B3 (de) * 2020-08-12 2022-02-03 Universität Stuttgart Gradiometer zur Erfassung eines Gradientenfeldes einer physikalischen Größe
US11774526B2 (en) 2020-09-10 2023-10-03 X Development Llc Magnetometry based on electron spin defects
EP4229423A1 (en) * 2020-10-13 2023-08-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Detector array system
US11531073B2 (en) 2020-12-31 2022-12-20 X Development Llc Fiber-coupled spin defect magnetometry
US11774384B2 (en) 2021-01-15 2023-10-03 X Development Llc Spin defect magnetometry pixel array
CN117083486A (zh) * 2021-03-02 2023-11-17 港大科桥有限公司 将金刚石与led集成用于片上量子传感的方法和装置
CN113064106B (zh) * 2021-03-18 2023-02-21 北京卫星环境工程研究所 一种应用于nv色心系综磁强计荧光收集装置的微波天线
CN113176238B (zh) * 2021-04-22 2023-10-31 国网安徽省电力有限公司电力科学研究院 基于金刚石薄膜的磁成像装置
EP4099041A1 (en) 2021-06-04 2022-12-07 Humboldt-Universität zu Berlin Sensor for measuring a magnetic field
CN113447863B (zh) * 2021-06-04 2022-06-03 电子科技大学 面向高频交变磁场的金刚石nv色心磁力仪频率测量方法
EP4392174A1 (en) * 2021-08-27 2024-07-03 The University of Melbourne Determining properties of samples using quantum sensing
DE102021122993A1 (de) * 2021-09-06 2023-03-09 Endress+Hauser Flowtec Ag Vorrichtung zum Bestimmen einer strömungsgeschwindigkeitsabhängigen Größe eines fließ- und leitfähigen Mediums
DE102021122992A1 (de) * 2021-09-06 2023-03-09 Endress+Hauser Flowtec Ag Vorrichtung zum Bestimmen einer strömungsgeschwindigkeitsabhängigen Größe eines fließfähigen Mediums
CN113777540B (zh) * 2021-09-18 2024-07-09 哈尔滨工业大学 一种包含磁通聚集器的金刚石nv色心磁力仪
CN113933906B (zh) * 2021-11-15 2024-02-13 中国电子科技集团公司第十三研究所 金刚石nv色心磁力探测模块及磁力探测系统
WO2023224674A2 (en) * 2021-12-09 2023-11-23 The Regents Of The University Of California Rapidly enhanced spin polarization injection in an optically pumped spin ratchet
CN114279590A (zh) * 2021-12-28 2022-04-05 哈尔滨工业大学 一种基于金刚石nv色心的温度传感器及温度测量装置
JP2023097592A (ja) * 2021-12-28 2023-07-10 矢崎総業株式会社 センサ
EP4215928A1 (en) * 2022-01-19 2023-07-26 Rohde & Schwarz GmbH & Co. KG Microwave signal analysis based on optical pre-processing and quantum sensing
US20240219485A1 (en) * 2022-03-28 2024-07-04 University Of Science And Technology Of China Device based on ensemble nitrogen-vacancy centers
CN114858314B (zh) * 2022-05-09 2024-07-19 南京邮电大学 一种基于nv色心的金刚石应力测量系统及方法
CN116593949B (zh) * 2023-01-03 2024-05-14 中国电力科学研究院有限公司 量子高速调控磁测量方法及系统
CN116106797B (zh) * 2023-04-17 2023-08-22 中国科学技术大学 金刚石nv色心磁探测装置
CN116804722A (zh) * 2023-08-21 2023-09-26 中国电力科学研究院有限公司 一种区域定位扫频的量子高速调控磁测量方法及系统
CN117572306B (zh) * 2024-01-17 2024-05-17 中国科学技术大学 暗物质探测器中微波脉冲序列与微纳机械振子的匹配方法
CN118032733B (zh) * 2024-04-12 2024-08-09 中国科学技术大学 分子信息快速检测方法及系统

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277048A (ja) * 1987-03-28 1988-11-15 Hitachi Ltd 磁束伝達回路
JPH02284090A (ja) * 1989-04-24 1990-11-21 Hoxan Corp スクイド磁束計を用いた地下存置物探知法における雑音除去方法
JPH09133777A (ja) * 1995-11-10 1997-05-20 Kanazawa Kogyo Univ 極超低周波磁気計測システム
JPH10197567A (ja) * 1996-12-27 1998-07-31 Yupiteru Ind Co Ltd 電流測定器
JPH1138057A (ja) * 1997-07-17 1999-02-12 Ricoh Co Ltd 外来ノイズ除去装置及び該外来ノイズ除去装置を具備した輻射測定装置
JP2001112731A (ja) * 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2009297224A (ja) * 2008-06-12 2009-12-24 Sumitomo Heavy Ind Ltd 生体磁気計測装置及び脳磁計
US20100271016A1 (en) * 2009-04-24 2010-10-28 Hewlett-Packard Development Company, L.P. Microfiber Magnetometer
JP2012121748A (ja) 2010-12-07 2012-06-28 Sumitomo Electric Ind Ltd ダイヤモンド及びこれを用いた磁気センサー
WO2015107907A1 (ja) 2014-01-20 2015-07-23 独立行政法人科学技術振興機構 ダイヤモンド結晶、ダイヤモンド素子、磁気センサー、磁気計測装置、および、センサーアレイの製造方法
JP2015529328A (ja) * 2012-08-22 2015-10-05 プレジデント アンド フェローズ オブ ハーバード カレッジ ナノスケール走査センサ
JP2016008961A (ja) * 2014-06-26 2016-01-18 ルネサスエレクトロニクス株式会社 磁気計測装置
US20160146904A1 (en) * 2014-09-25 2016-05-26 Lockheed Martin Corporation Micro-dnv device
US20160223621A1 (en) * 2015-02-04 2016-08-04 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
JP2016205954A (ja) * 2015-04-21 2016-12-08 ルネサスエレクトロニクス株式会社 磁気計測装置
JP2017029689A (ja) 2015-05-28 2017-02-09 アディダス アーゲー ボールおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193808B2 (en) * 2009-09-11 2012-06-05 Hewlett-Packard Development Company, L.P. Optically integrated biosensor based on optically detected magnetic resonance
US9910105B2 (en) * 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
EP3248021A4 (en) * 2015-01-23 2018-12-12 Lockheed Martin Corporation Dnv magnetic field detector
WO2017007513A1 (en) 2015-07-08 2017-01-12 Lockheed Martin Corporation General purpose removal of geomagnetic noise

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277048A (ja) * 1987-03-28 1988-11-15 Hitachi Ltd 磁束伝達回路
JPH02284090A (ja) * 1989-04-24 1990-11-21 Hoxan Corp スクイド磁束計を用いた地下存置物探知法における雑音除去方法
JPH09133777A (ja) * 1995-11-10 1997-05-20 Kanazawa Kogyo Univ 極超低周波磁気計測システム
JPH10197567A (ja) * 1996-12-27 1998-07-31 Yupiteru Ind Co Ltd 電流測定器
JPH1138057A (ja) * 1997-07-17 1999-02-12 Ricoh Co Ltd 外来ノイズ除去装置及び該外来ノイズ除去装置を具備した輻射測定装置
JP2001112731A (ja) * 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2009297224A (ja) * 2008-06-12 2009-12-24 Sumitomo Heavy Ind Ltd 生体磁気計測装置及び脳磁計
US20100271016A1 (en) * 2009-04-24 2010-10-28 Hewlett-Packard Development Company, L.P. Microfiber Magnetometer
JP2012121748A (ja) 2010-12-07 2012-06-28 Sumitomo Electric Ind Ltd ダイヤモンド及びこれを用いた磁気センサー
JP2015529328A (ja) * 2012-08-22 2015-10-05 プレジデント アンド フェローズ オブ ハーバード カレッジ ナノスケール走査センサ
WO2015107907A1 (ja) 2014-01-20 2015-07-23 独立行政法人科学技術振興機構 ダイヤモンド結晶、ダイヤモンド素子、磁気センサー、磁気計測装置、および、センサーアレイの製造方法
JP2016008961A (ja) * 2014-06-26 2016-01-18 ルネサスエレクトロニクス株式会社 磁気計測装置
US20160146904A1 (en) * 2014-09-25 2016-05-26 Lockheed Martin Corporation Micro-dnv device
US20160223621A1 (en) * 2015-02-04 2016-08-04 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
JP2016205954A (ja) * 2015-04-21 2016-12-08 ルネサスエレクトロニクス株式会社 磁気計測装置
JP2017029689A (ja) 2015-05-28 2017-02-09 アディダス アーゲー ボールおよびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. R. MAZE ET AL.: "Nanoscale magnetic sensing with an individual electronic spin in diamond", NATURE, vol. 455, 2008, pages 644, XP055036129, doi:10.1038/nature07279
See also references of EP3588117A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225545B2 (ja) 2017-02-21 2023-02-21 日新電機株式会社 検出装置及び検出方法
JP2018136316A (ja) * 2017-02-21 2018-08-30 日新電機株式会社 検出装置及び検出方法、並びに、それを用いた電圧電流検出装置
JP2021067684A (ja) * 2019-10-28 2021-04-30 パロ アルト リサーチ センター インコーポレイテッド コンパクトダイヤモンドnv中心イメージャ
US11156675B2 (en) 2020-03-05 2021-10-26 Honeywell International Inc. Magnetometer device based on electrical pumping in nitrogen-vacancy centers in diamond
WO2021200144A1 (ja) * 2020-03-31 2021-10-07 国立大学法人東京工業大学 物理状態計測装置
JP7579005B2 (ja) 2020-03-31 2024-11-07 国立大学法人東京科学大学 物理状態計測装置
US12031929B2 (en) 2020-03-31 2024-07-09 Tokyo Institute Of Technology Physical state measurement device
JP7445502B2 (ja) 2020-04-07 2024-03-07 矢崎総業株式会社 センサ
JP2021165670A (ja) * 2020-04-07 2021-10-14 矢崎総業株式会社 センサ
CN113805128A (zh) * 2020-06-15 2021-12-17 国仪量子(合肥)技术有限公司 光探测磁共振谱仪的光路自动调节方法及装置
JP7429621B2 (ja) 2020-08-24 2024-02-08 矢崎総業株式会社 センサ
WO2022091802A1 (ja) * 2020-10-28 2022-05-05 京セラ株式会社 磁気センサ、検出ユニット、検出システム、磁気センサ用基板、磁気センサ用導波体、磁気センサ用光電気混載基板及び検出ユニット用検出基板
WO2022163679A1 (ja) * 2021-01-27 2022-08-04 日新電機株式会社 ダイヤモンドセンサユニット
WO2024157500A1 (ja) * 2023-01-27 2024-08-02 スミダコーポレーション株式会社 測定装置および測定方法
WO2024185825A1 (ja) * 2023-03-08 2024-09-12 京セラ株式会社 磁場検出装置

Also Published As

Publication number Publication date
US20200057117A1 (en) 2020-02-20
CN110325869B (zh) 2022-06-24
EP3588117A4 (en) 2020-12-23
US11181590B2 (en) 2021-11-23
JPWO2018155504A1 (ja) 2019-12-12
EP3629044B1 (en) 2021-04-28
EP3588117A1 (en) 2020-01-01
EP3629044A1 (en) 2020-04-01
CN110325869A (zh) 2019-10-11
JP7136076B2 (ja) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2018155504A1 (ja) ダイヤモンド磁気センサー
JP7225545B2 (ja) 検出装置及び検出方法
Nichol et al. Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator
JP5476206B2 (ja) 蛍光顕微鏡装置
US20200386832A1 (en) Method and apparatus for measuring magnetic field strength
US10571498B2 (en) System for analysis of a microwave frequency signal by imaging
CN109342548B (zh) 载流子浓度的测量方法及系统
US20180203080A1 (en) Magnetic resonance spectrometer
JP7066531B2 (ja) 探針製造装置、及び方法
CN108333207A (zh) 一种零场顺磁共振的测量方法以及测量系统
KR102456983B1 (ko) 전자선 장치
Chatzidrosos et al. Eddy-current imaging with nitrogen-vacancy centers in diamond
CA3051811A1 (en) Vectorial magnetometer and associated methods for sensing an amplitude and orientation of a magnetic field
US20180080885A1 (en) Cathodoluminescence-activated nanoscale imaging
EP3566066B1 (en) Instantaneous magnetic resonance spectroscopy of a sample
Zheng et al. Electrical-Readout Microwave-Free Sensing with Diamond
CN108385163A (zh) 金刚石晶体和基于金刚石量子缺陷中心的惯性运动测量装置
JP2012238370A (ja) 光パターン表示媒体、光パターン算出方法及び光認証システム
Britton et al. A microfabricated surface-electrode ion trap in silicon
CN114019429A (zh) 一种基于钙-40离子测量微弱高频交变磁场的装置及方法
JP2002296238A (ja) スクイド磁気画像化装置
Chanuntranont et al. Enhancing photon collection from single shallow nitrogen-vacancy centers in diamond nanopillars for quantum heterodyne measurements
Nakamura Plasma-related atomic physics with an electron beam ion trap
Qian et al. Ion motion above a biased wafer in a plasma etching reactor
US20240192294A1 (en) Digital lock-in for magnetic imaging with nitrogen vacancy centers in diamonds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018757691

Country of ref document: EP

Effective date: 20190923