WO2018155550A1 - 異方発熱性シート、合わせガラス用中間膜及び合わせガラス - Google Patents
異方発熱性シート、合わせガラス用中間膜及び合わせガラス Download PDFInfo
- Publication number
- WO2018155550A1 WO2018155550A1 PCT/JP2018/006430 JP2018006430W WO2018155550A1 WO 2018155550 A1 WO2018155550 A1 WO 2018155550A1 JP 2018006430 W JP2018006430 W JP 2018006430W WO 2018155550 A1 WO2018155550 A1 WO 2018155550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- airgel
- layer
- laminated glass
- anisotropic
- heat generating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/046—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10174—Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10174—Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
- B32B17/1022—Metallic coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10788—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/065—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
- B32B2255/102—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer synthetic resin or rubber layer being a foamed layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/06—Vegetal fibres
- B32B2262/062—Cellulose fibres, e.g. cotton
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/12—Gel
- B32B2266/126—Aerogel, i.e. a supercritically dried gel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/34—Inserts
- B32B2305/345—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/02—Noble metals
- B32B2311/08—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2315/00—Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
- B32B2315/08—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2329/00—Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
- B32B2329/06—PVB, i.e. polyinylbutyral
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/006—Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/023—Cleaning windscreens, windows or optical devices including defroster or demisting means
- B60S1/026—Cleaning windscreens, windows or optical devices including defroster or demisting means using electrical means
Definitions
- the present invention relates to an anisotropic heat-generating sheet that releases the generated heat in a specific direction and can efficiently use the energy, and is excellent in handleability, and an interlayer film for laminated glass using the anisotropic heat-generating sheet And a laminated glass.
- Laminated glass is excellent in safety because it has less scattering of glass fragments even if it is damaged by external impact. For this reason, it is widely used for automobiles and buildings. In recent years, the performance required for laminated glass has also diversified, and a technique for heating a laminated glass itself to warm a frozen window glass and melting frost and ice has been studied.
- a method for heating the laminated glass itself a method is considered in which a conductive film is formed on the glass surface of the laminated glass and the laminated glass is warmed by heat generated from resistance during energization.
- Laminated glass on which such a conductive film is formed is disclosed in, for example, Patent Document 1 and the like.
- a method of laminating a heat generating layer made of a conductive film on an interlayer film for laminated glass has been studied.
- Such an interlayer film for laminated glass is usually produced by a method of laminating a resin layer containing a thermoplastic resin such as polyvinyl acetal on the heat generating layer.
- the present inventors have examined the reason why even when laminated glass capable of generating heat is used, it is possible to efficiently heat a window glass frozen in a short time and to melt frost and ice. As a result, it was found that the heat generated from the laminated glass was released to both sides of the laminated glass and was not used efficiently. That is, in automobiles and buildings, frost and ice adhere to the outside, but when heat is generated from laminated glass, almost half of the energy is released to the outside to melt frost and ice. On the other hand, the other half is released inside and not used to melt frost or ice.
- the present inventor uses an anisotropic heat generating sheet that can release the generated heat in a specific direction and efficiently use the energy, and is excellent in handleability, and the anisotropic heat generating sheet.
- An object is to provide an interlayer film for laminated glass and laminated glass.
- the present invention has a laminate of an airgel layer containing an airgel and a heat generating layer, and the tensile fracture strain of the airgel layer obtained when a tensile test is performed in accordance with JIS C 2151 is 0.1% or more. It is an anisotropic heat generating sheet. The present invention is described in detail below.
- Aerogel is a porous substance in which the solvent contained in the gel is replaced with gas by supercritical drying, evaporation drying, freeze drying, etc.
- silica airgel there are many types such as carbon airgel and polymer airgel in recent years.
- the inventors of the present invention have an anisotropic heat generating sheet that releases heat generated in a specific direction by efficiently laminating a heat generating layer on an airgel layer containing airgel. I found that I can do it.
- the laminated glass is produced using the anisotropic heat generating sheet as an interlayer film for laminated glass, extremely high anisotropic heat generation can be exhibited.
- the solvent in the airgel can be evaporated more than usual by being in a high temperature and high pressure state in the autoclave process.
- This is considered to be an airgel having more voids.
- the airgel is less likely to absorb moisture and can maintain a state with more voids, so it is considered that heat is especially difficult to pass and heat insulation is improved.
- unit into the high temperature / high pressure state similar to an autoclave since it is difficult to leave airgel stationary from the lightness of an airgel, it is very difficult to perform the process similar to the time of laminated glass manufacture.
- the anisotropic heat generating sheet as an interlayer film for laminated glass
- impact resistance, handleability and the like are also important.
- Many aerogels have low impact resistance and are brittle, so that a new problem has arisen in that they cannot be bent in accordance with a curved surface, nor can they be wound into a roll to improve handling. Therefore, as a result of further intensive studies, the present inventors selected a highly flexible aerogel among the aerogels, and increased the flexibility as a whole, while exhibiting high anisotropic heat generation, for laminated glass. The inventors have found that impact resistance and handling properties that can also be used as an interlayer film can be imparted, and the present invention has been completed.
- the anisotropic heat generating sheet of the present invention has a laminate of an airgel layer and a heat generating layer.
- the said airgel layer can exhibit high heat insulation by containing an airgel.
- the heat generated in the heat generation layer is hindered by the airgel layer and is not easily released to the airgel layer side, but is released to the opposite side of the airgel layer, and exhibits high anisotropic heat generation. it can.
- the laminated glass is produced using the anisotropic heat generating sheet of the present invention as an interlayer film for laminated glass, higher anisotropic heat generation can be exhibited.
- the airgel means a porous substance in which a solvent contained in the gel is replaced with gas by supercritical drying, evaporation drying, freeze drying, or the like. It does not specifically limit as said airgel,
- conventionally well-known airgels such as a polymer airgel, a silica airgel, a carbon airgel, an alumina airgel, an organic inorganic hybrid airgel, can be used.
- polymer airgel is preferable because it has high flexibility and can achieve the tensile fracture strain described later.
- the polymer airgel is an airgel manufactured by a method of removing a solvent by supercritical drying, evaporation drying, freeze drying or the like after preparing a gel containing an organic polymer material. It does not specifically limit as an organic polymer material which comprises the said polymer airgel. Since aerogels exhibiting particularly high flexibility can be obtained, from resorcinol-formalin resin, cellulose nanofiber, polyimide, polyurethane, epoxy resin, polyacrylate, acrylate oligomer, polymethyl methacrylate, polyoxyalkylene, polybutadiene, polyether and chitosan At least one organic polymer material selected from the group is preferred.
- the organic-inorganic hybrid airgel is an airgel composed of an organic material and an inorganic material.
- the silica airgel and alumina airgel are classified as inorganic aerogels, but some are classified as organic-inorganic hybrid aerogels.
- silica airgel as an inorganic airgel does not contain an organic group between two Si.
- the silica airgel as an organic-inorganic hybrid airgel contains an organic group between two Si. From the viewpoint of obtaining an airgel exhibiting high flexibility, silica airgel as the organic-inorganic hybrid airgel is suitable.
- silica airgel is suitable.
- which silica airgel is used can be confirmed by performing NMR analysis, for example.
- the airgel layer is an antioxidant, an ultraviolet absorber, a light stabilizer, a flame retardant, a dye, a pigment, a plasticizer, an antistatic agent, inorganic particles, a fluorescent agent, a heat ray absorber, a heat ray reflector, You may contain additives, such as modified silicone oil, a moisture-proof agent, and an antiblocking agent, as an adhesive force regulator.
- the airgel layer may be coated with a thermosetting material. However, since the anisotropic heat generation and transparency are further improved, the airgel layer is preferably composed of only the airgel, or the content of the airgel is preferably 80% by weight or more.
- the thickness of the said airgel layer is not specifically limited, A preferable minimum is 10 micrometers and a preferable upper limit is 30 mm.
- a preferable minimum is 10 micrometers and a preferable upper limit is 30 mm.
- the thickness of the airgel layer is 10 ⁇ m or more, it is possible to exhibit high heat insulating properties that can provide high anisotropic heat generation. Further, when the thickness of the airgel layer is 30 mm or less, the bending process according to the curved surface and the handleability in the case of winding in a roll shape are improved.
- the more preferred lower limit of the thickness of the airgel layer is 50 ⁇ m, the more preferred upper limit is 15 mm, the still more preferred lower limit is 90 ⁇ m, the still more preferred upper limit is 3 mm, the particularly preferred upper limit is 1.5 mm, and the most preferred upper limit is 800 ⁇ m.
- the thickness of the airgel layer is 3 mm or less, not only the handling property is improved, but also the effect of preventing the airgel from breaking is further enhanced, and the generation of wrinkles and bending marks is further suppressed in the airgel layer. be able to.
- the thickness of the airgel layer becomes 2.0 mm or less, 1.5 mm or less, 800 ⁇ m or less, or 500 ⁇ m or less, the airgel breakage prevention effect and the effect of preventing wrinkles and bending traces increase.
- the heat generating layer generates heat by applying a voltage, and has a role of warming frozen glass and melting frost and ice.
- the heat generating layer preferably has a surface resistivity of 10 ⁇ / ⁇ or less.
- the heat generating layer having a surface resistivity of 10 ⁇ / ⁇ or less can sufficiently generate heat by applying a voltage, warm the frozen glass, and melt frost and ice. More preferably, it is 5.0 ⁇ / ⁇ or less, more preferably 3.5 ⁇ / ⁇ or less, and particularly preferably 2.5 ⁇ / ⁇ or less.
- the heat generating layer is composed of a single layer or a plurality of layers including a metal having a low electrical resistivity such as gold, silver, copper, or platinum.
- a metal having a low electrical resistivity means a metal or alloy having an electrical resistivity of 1 ⁇ 10 ⁇ 6 ⁇ m or less.
- examples of the metal or alloy having an electrical resistivity of 1 ⁇ 10 ⁇ 7 ⁇ m or more and less than 1 ⁇ 10 ⁇ 6 ⁇ m include platinum, iron, tin, chromium, lead, titanium, mercury, stainless steel, and the like.
- Examples of the metal or alloy having an electrical resistivity of less than 1 ⁇ 10 ⁇ 7 ⁇ m include gold, silver, copper, aluminum, magnesium, tungsten, cobalt, zinc, nickel, potassium, lithium, brass, and the like.
- the thickness of the heat generating layer is not particularly limited, but is preferably 10 nm or more. By setting the thickness of the heat generating layer to 10 nm or more, sufficient heat is generated by applying a voltage to the heat generating layer, and the frozen glass can be warmed or frost or ice can be melted.
- the thickness of the heat generating layer is preferably 15 nm or more, and more preferably 20 nm or more. Although the upper limit of the thickness of the heat generating layer is not particularly limited, the upper limit is substantially about 1000 nm.
- the heat generating layer may have a transparent conductive layer or a metal oxide layer laminated on at least one surface.
- a transparent conductive layer By using these transparent conductive layers and metal oxide layers, it is possible to increase the transparency of the anisotropic heat generating sheet obtained.
- the transparent conductive layer what consists of tin dope indium oxide (ITO), fluorine dope tin oxide (FTO), antimony dope tin oxide (ATO) etc. is preferable from transparency and the low electrical resistivity, for example.
- the metal oxide layer for example, titanium oxide (TiO 2), niobium oxide (Nb 2 O 5), include those consisting of such as silicon oxide (SiO 2).
- These transparent conductive layers and metal oxide layers may be used alone or in combination of two or more.
- a transparent conductive layer made of ITO or ATO, or a metal oxide layer made of at least one selected from the group consisting of titanium oxide and niobium oxide is preferable.
- the thickness of the said transparent conductive layer and a metal oxide layer is not specifically limited, A preferable minimum is 20 nm and a preferable upper limit is 300 nm. The more preferable lower limit of the thickness of the transparent conductive layer or the metal oxide layer is 25 nm, and the more preferable upper limit is 100 nm.
- the heat generating layer may be directly formed on the airgel layer, or may be laminated on the airgel layer after being formed on a substrate.
- the base material has a heat shrinkage ratio after heat treatment at 150 ° C. for 30 minutes measured in accordance with JIS C 2151 of 1.0 in both MD and TD directions. It is preferable that the content be 3.5%.
- a more preferable lower limit of the heat shrinkage rate is 1.5%, and a more preferable upper limit is 3.0%.
- MD direction Machine Direction
- TD direction Transverse Direction
- the heat shrinkage rate corresponds to the dimensional change rate in the item “21. Dimensional change” of JIS C 2151: 2006.
- the base material preferably has a Young's modulus of 1 MPa or more.
- the Young's modulus of the substrate is more preferably 10 MPa or more, and further preferably 20 MPa or more.
- a preferable upper limit of the Young's modulus of the substrate is 10 GPa.
- the Young's modulus is obtained by obtaining a strain-stress curve at 23 ° C. by a tensile test based on JIS K7127, and indicating the slope of the linear portion of the strain-stress curve.
- the Young's modulus of the resin layer mentioned later is generally less than 1 GPa.
- the base material preferably contains a thermoplastic resin.
- the thermoplastic resin contained in the base material include chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1), polyacetal, ring-opening metathesis polymers or addition polymers of norbornenes, and norbornenes.
- chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1), polyacetal, ring-opening metathesis polymers or addition polymers of norbornenes, and norbornenes.
- examples include alicyclic polyolefins such as addition copolymers with other olefins.
- biodegradable polymers such as polylactic acid and polybutyl succinate, are mentioned.
- polyamides such as nylon 6, nylon 11, nylon 12, nylon 66, and aramid are mentioned.
- polyether sulfone, polyether ether ketone, modified polyphenylene ether, polyphenylene sulfide, polyether imide, polyimide, and polyarylate are exemplified.
- thermoplastic resins examples thereof include a tetrafluoroethylene resin, a trifluoride ethylene resin, a trifluoroethylene chloride resin, a tetrafluoroethylene-6 fluoropropylene copolymer, and polyvinylidene fluoride. These thermoplastic resins are adjusted singly or in combination of two or more so that the heat shrinkage rate and Young's modulus are within the expected ranges.
- the said base material may contain conventionally well-known additives, such as a ultraviolet-ray shielding agent and antioxidant, as needed.
- a ultraviolet shielding agent conventionally well-known ultraviolet shielding agents, such as an ultraviolet shielding agent containing a metal and an ultraviolet shielding agent containing a metal oxide, can be used, for example.
- antioxidant conventionally well-known antioxidants, such as antioxidant which has a phenol structure, antioxidant containing sulfur, antioxidant containing phosphorus, can be used, for example.
- the thickness of the said base material is not specifically limited, A preferable minimum is 10 micrometers and a preferable upper limit is 500 micrometers. If the thickness of the base material is within this range, a uniform heat generation layer can be formed using a sputtering process or the like, and the heat generation layer and the surface of the resin layer are displaced during the production of laminated glass. Therefore, the adhesion between the heat generating layer and the resin layer can be further improved.
- the minimum with more preferable thickness of the said base material is 20 micrometers, and a more preferable upper limit is 300 micrometers.
- the method for forming the heat generating layer on the airgel layer or the substrate is not particularly limited.
- a conventionally known method such as a sputtering process, an ion plating process, a plasma CVD process, a vapor deposition process, a coating process, or a dip process is used.
- a sputtering process is preferable because a uniform heat generation layer can be formed.
- the heat shrinkage rate after heat treatment at 150 ° C. for 30 minutes measured according to JIS C 2151 of the resin layer in direct contact with the substrate, and the JIS of the substrate It is preferable that the absolute value of the difference from the heat shrinkage rate after heat treatment at 150 ° C. for 30 minutes measured in accordance with C 2151 is 10% or less in both MD and TD directions.
- the absolute value of the difference in thermal shrinkage between the resin layer and the substrate is more preferably 8% or less.
- the thermal shrinkage rate of the resin layer can be adjusted by the type of thermoplastic resin constituting the resin layer, the type and amount of the plasticizer, and the annealing conditions.
- the interlayer film for laminated glass of the present invention may have a resin layer containing a thermoplastic resin on one side or both sides of the laminate (hereinafter, one in the case of having a resin layer on both sides). Is also referred to as “first resin layer”, and the other is also referred to as “second resin layer”).
- first resin layer when used for an interlayer film for laminated glass, it improves the adhesion with glass and exhibits basic performance required for the interlayer film for laminated glass, such as penetration resistance. be able to.
- the first resin layer and the second resin layer may be the same or different.
- the resin layer is not a foam or a porous body because the transparency of the obtained anisotropic heat-generating sheet is improved.
- the resin layer is preferably a non-foamed material or a non-porous material.
- thermoplastic resin contained in the resin layer examples include polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, polytrifluoride ethylene, acrylonitrile-butadiene-styrene copolymer. Etc. Moreover, polyester, polyether, polyamide, polycarbonate, polyacrylate, polymethacrylate, etc. are mentioned.
- polyvinyl chloride polyethylene, polypropylene, polystyrene, polyvinyl acetal, ethylene-vinyl acetate copolymer, polyoxymethylene (or polyacetal) resin, acetoacetal resin, polyvinylbenzyl acetal resin, polyvinyl cumin acetal resin, ionomer resin, A cycloolefin etc.
- the resin layer preferably contains polyvinyl acetal or ethylene-vinyl acetate copolymer, and more preferably contains polyvinyl acetal.
- the polyvinyl acetal is not particularly limited as long as it is a polyvinyl acetal obtained by acetalizing polyvinyl alcohol with an aldehyde, but polyvinyl butyral is preferable. Moreover, you may use together 2 or more types of polyvinyl acetal as needed.
- the preferable lower limit of the degree of acetalization of the polyvinyl acetal is 40 mol%, the preferable upper limit is 85 mol%, the more preferable lower limit is 60 mol%, and the more preferable upper limit is 75 mol%.
- the polyvinyl acetal has a preferred lower limit of the amount of hydroxyl groups of 15 mol% and a preferred upper limit of 40 mol%. Adhesiveness between the interlayer film for laminated glass and the glass is increased when the amount of the hydroxyl group is 15 mol% or more. When the hydroxyl group amount is 40 mol% or less, handling of the interlayer film for laminated glass becomes easy.
- the degree of acetalization and the amount of hydroxyl groups can be measured in accordance with, for example, JIS K6728 “Testing method for polyvinyl butyral”.
- the polyvinyl acetal can be prepared by acetalizing polyvinyl alcohol with an aldehyde.
- the polyvinyl alcohol is usually obtained by saponifying polyvinyl acetate, and polyvinyl alcohol having a saponification degree of 70 to 99.9 mol% is generally used.
- the saponification degree of the polyvinyl alcohol is preferably 80 to 99.9 mol%.
- the preferable lower limit of the polymerization degree of the polyvinyl alcohol is 500, and the preferable upper limit is 4000. When the polymerization degree of the polyvinyl alcohol is 500 or more, the penetration resistance of the obtained laminated glass is increased.
- the interlayer film for laminated glass can be easily molded.
- the minimum with a more preferable polymerization degree of the said polyvinyl alcohol is 1000, and a more preferable upper limit is 3600.
- the aldehyde is not particularly limited, but generally an aldehyde having 1 to 10 carbon atoms is preferably used.
- the aldehyde having 1 to 10 carbon atoms is not particularly limited, and examples thereof include n-butyraldehyde and isobutyraldehyde.
- n-butyraldehyde, n-hexylaldehyde, and n-valeraldehyde are preferable, and n-butyraldehyde is more preferable.
- These aldehydes may be used alone or in combination of two or more.
- the resin layer preferably contains a plasticizer.
- the plasticizer is not particularly limited, and examples thereof include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, phosphoric acid plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers, and the like. Is mentioned.
- the plasticizer is preferably a liquid plasticizer.
- the said monobasic organic acid ester is not specifically limited,
- the glycol ester obtained by reaction of glycol and a monobasic organic acid etc. are mentioned.
- the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
- the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonylic acid), and decylic acid.
- triethylene glycol dicaproate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-n-octylate, triethylene glycol di-2-ethylhexylate and the like are preferable.
- the polybasic organic acid ester is not particularly limited.
- an ester compound of a polybasic organic acid such as adipic acid, sebacic acid or azelaic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
- dibutyl sebacic acid ester, dioctyl azelaic acid ester, dibutyl carbitol adipic acid ester and the like are preferable.
- the organic ester plasticizer is not particularly limited, and triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, And triethylene glycol di-n-heptanoate. Tetraethylene glycol di-n-heptanoate, tetraethylene glycol di-2-ethylhexanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3- And propylene glycol di-2-ethylbutyrate.
- 1,4-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, and dipropylene glycol di-2-ethylbutyrate can be mentioned.
- triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, and diethylene glycol dicapryate can be mentioned.
- carbon such as a mixture of phosphate ester and adipic acid ester, adipic acid ester, alkyl alcohol having 4 to 9 carbon atoms and cyclic alcohol having 4 to 9 carbon atoms, hexyl adipate, etc. Examples thereof include adipic acid esters of formula 6-8.
- the organophosphate plasticizer is not particularly limited, and examples thereof include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
- the content of the plasticizer in the resin layer is not particularly limited, but a preferable lower limit with respect to 100 parts by weight of the polyvinyl acetal is 10 parts by weight, and a preferable upper limit is 90 parts by weight.
- a preferable lower limit with respect to 100 parts by weight of the polyvinyl acetal is 10 parts by weight
- a preferable upper limit is 90 parts by weight.
- the content of the plasticizer is 10 parts by weight or more, the melt viscosity of the interlayer film for laminated glass becomes low, and the degassing property when the laminated glass is produced using this as an interlayer film for laminated glass becomes high.
- the content of the plasticizer is 90 parts by weight or less, the transparency of the interlayer film for laminated glass increases.
- the minimum with more preferable content of the said plasticizer is 25 weight part, a more preferable upper limit is 80 weight part, Furthermore, a preferable upper limit is 70 weight part.
- content of the said plasticizer shall be 55 weight part or more, the sound insulation
- the resin layer preferably contains an adhesive strength modifier.
- the adhesive strength adjusting agent By containing the adhesive strength adjusting agent, the adhesive strength to glass can be adjusted, and a laminated glass excellent in penetration resistance can be obtained.
- an adhesive force regulator at least 1 sort (s) selected from the group which consists of an alkali metal salt, alkaline-earth metal salt, and magnesium salt, for example is used suitably.
- salts such as potassium, sodium, magnesium, are mentioned, for example.
- the acid constituting the salt include organic acids of carboxylic acids such as octylic acid, hexyl acid, 2-ethylbutyric acid, butyric acid, acetic acid and formic acid, or inorganic acids such as hydrochloric acid and nitric acid.
- the resin layer may contain a heat ray absorbent.
- the said heat ray absorber will not be specifically limited if it has the performance which shields infrared rays.
- the resin layer may be a modified silicone oil, a flame retardant, an antistatic agent, a moisture resistant agent, a heat ray reflective agent, a heat ray absorbent, an anti-UV shielding agent, an antioxidant, a light stabilizer, or an adhesive strength modifier.
- You may contain conventionally well-known additives, such as a coloring agent which consists of a blocking agent, a pigment, or dye.
- the thickness of the said resin layer is not specifically limited, A preferable minimum is 10 micrometers and a preferable upper limit is 3500 micrometers. When the thickness of the resin layer is within this range, sufficient durability can be obtained, and basic qualities such as transparency and anti-penetration of the obtained laminated glass are satisfied.
- the more preferable lower limit of the thickness of the resin layer is 100 ⁇ m, the more preferable upper limit is 1200 ⁇ m, the still more preferable lower limit is 200 ⁇ m, the still more preferable upper limit is 850 ⁇ m, and the particularly preferable lower limit is 350 ⁇ m.
- the tensile fracture strain of the airgel layer obtained when a tensile test is performed in accordance with JIS C 2151 is 0.1% or more.
- the anisotropic heat-generating sheet of the present invention is excellent in flexibility and impact resistance. Therefore, it can be wound into a roll.
- the tensile fracture strain is preferably 0.2% or more, more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1.0% or more. preferable.
- the tensile fracture strain of the airgel layer is preferably measured under conditions of 23 ° C. and 30% humidity.
- JIS C 2151 refers to JIS K 7127, and in the item of tensile properties, there is a description that “tensile properties are according to JIS K 7127”. Therefore, tensile fracture strain is measured according to JIS K 7127. May be.
- a roll-shaped body obtained by winding the anisotropic heat-generating sheet of the present invention into a roll is also one aspect of the present invention.
- the method of setting the tensile fracture strain to 0.1% or more is not particularly limited, and examples thereof include a method of adopting a polymer airgel having excellent flexibility as the airgel contained in the airgel layer.
- the method for producing the anisotropic heat-generating sheet of the present invention is not particularly limited.
- a laminate in which the heat-generating layer is formed on the airgel layer by a method such as sputtering is used as the first resin layer and the second resin layer.
- a method of sandwiching the resin layer between the two resin layers and thermocompression bonding the resin layer is preferable.
- each layer was unwound from a rolled body and laminated, and the obtained laminated body was thermocompression bonded through a heated press roll to obtain an anisotropic exothermic sheet, and then obtained.
- a so-called roll-to-roll system in which the anisotropic heat generating sheet is wound into a roll shape is suitable.
- the anisotropic heat generating sheet of the present invention has the above-described configuration, the heat generated from the heat generating layer can be released in a specific direction to efficiently use the energy. Further, in addition to the airgel layer exhibiting high heat insulating properties, the heat generating layer has a property of reflecting far infrared rays, so the anisotropic heat generating sheet of the present invention has excellent heat insulating properties and far infrared reflecting properties. And exhibit high heat shielding properties. Furthermore, since the airgel layer exhibits high sound insulation, the anisotropic heat-generating sheet of the present invention can also exhibit high sound insulation.
- FIG. 1 the schematic diagram which shows an example of the cross section of the thickness direction of the anisotropic heat generating sheet
- an anisotropic heat generating sheet 1 has a laminated body of an airgel layer 2 and a heat generating layer 3 laminated on one surface side of the airgel layer 2, and the first heat generating layer 3 side of the laminated body is a first.
- the second resin layer 5 is laminated on the airgel layer 2 side.
- the anisotropic heat generating sheet 1 of FIG. 1 the heat generated from the heat generating layer 3 by applying a voltage is hindered by the airgel layer 2 and thus is not easily released to the second resin layer 5 side. To the resin layer 4 side.
- anisotropic heat generating sheet of the present invention is used alone, for example, a wet suit or a space suit having a heating function, a snow melting sheet, a dew condensation prevention sheet, a glass heating exothermic sheet, a pot cap, etc. It can be used for applications such as water tank insulation.
- the anisotropic heat generating sheet of the present invention can exhibit particularly high anisotropic heat generation when a laminated glass is produced as an interlayer film for laminated glass. This is because when the laminated glass is produced using the anisotropic heat-generating sheet of the present invention as an interlayer film for laminated glass, the solvent in the airgel can be evaporated more than usual by becoming a high temperature and high pressure state in the autoclave process. This is considered to be an airgel having more voids. Furthermore, it is considered that the laminated glass makes it difficult for the airgel to absorb moisture and maintains a state with more voids, so that heat is particularly difficult to pass and heat insulation is improved.
- the interlayer film for laminated glass comprising the anisotropic heat-generating sheet of the present invention is also one aspect of the present invention.
- the interlayer film for laminated glass of the present invention may have a wedge-shaped cross section. If the cross-sectional shape of the interlayer film for laminated glass is wedge-shaped, by adjusting the wedge angle ⁇ of the wedge-shaped according to the mounting angle of the laminated glass, the driver can simultaneously view the front field of view and instrument display without lowering the line of sight. Generation of a double image or a ghost image can be prevented when used in a head-up display that can be visually recognized.
- the preferable lower limit of the wedge angle ⁇ is 0.1 mrad
- the more preferable lower limit is 0.2 mrad
- the still more preferable lower limit is 0.3 mrad
- the preferable upper limit is 1 mrad
- the more preferable upper limit is 0.9 mrad.
- the shape at the time of manufacturing the intermediate film for laminated glasses whose cross-sectional shape is a wedge shape by the method of extruding and molding a resin composition using an extruder is also contained in a wedge shape. That is, a region slightly inside from one end of the thin side (specifically, when the distance between one end and the other end is X, 0X to 0. 2X distance region) may have a shape having a minimum thickness. Further, a region slightly inside from one end portion on the thick side (specifically, when the distance between one end and the other end is X, 0X to 0. 2X distance region) may have a maximum thickness. In the present specification, such a shape is also included in the wedge shape.
- the distance X between the one end and the other end of the interlayer film for laminated glass is preferably 3 m or less, more preferably 2 m or less, particularly preferably 1.5 m or less, preferably 0.5 m or more, more preferably 0.8 m or more, particularly preferably 1 m or more.
- the cross-sectional shape of the interlayer film for laminated glass of the present invention is a wedge shape, for example, the thickness of the airgel layer and the heat generating layer is within a certain range, while the shape of the first resin layer and / or the second resin layer is Can be adjusted so that the cross-sectional shape of the interlayer film for laminated glass as a whole becomes a wedge shape having a constant wedge angle.
- the laminated glass in which the interlayer film for laminated glass of the present invention is laminated between a pair of glass plates is also one aspect of the present invention.
- the said glass plate can use the transparent plate glass generally used. Examples thereof include inorganic glass such as float plate glass, polished plate glass, template glass, netted glass, wire-containing plate glass, colored plate glass, heat ray absorbing glass, heat ray reflecting glass, and green glass. Further, an ultraviolet shielding glass having an ultraviolet shielding coating layer on the glass surface can also be used. Furthermore, organic plastics plates such as polyethylene terephthalate, polycarbonate, and polyacrylate can also be used. Two or more types of glass plates may be used as the glass plate. For example, the laminated glass which laminated
- a conventionally well-known manufacturing method can be used. Specifically, for example, a laminate in which an interlayer film for laminated glass is laminated between at least two glass plates is handled through a nip roll (handled deaeration method), or placed in a rubber bag and sucked under reduced pressure (vacuum) Degassing method), pressure bonding while deaerating the air remaining between the glass plate and the interlayer film, and then heating and pressurizing the laminate in an autoclave, for example.
- the laminated glass system provided with the laminated glass of this invention and the voltage supply part for applying a voltage to the heat generating layer of the intermediate film for laminated glasses in this laminated glass is also one of this invention.
- the generated heat is released in a specific direction and the energy can be efficiently used, and the anisotropic heat generating sheet that is excellent in handleability, and for laminated glass using the anisotropic heat generating sheet An interlayer film and a laminated glass can be provided.
- Example 1 Preparation of airgel layer 10 mL of 0.1 M hydrochloric acid is dropped into 20 mL of a dispersion in which TEMPO-oxidized cellulose nanofibers are dispersed in pure water so as to be 0.9% by weight, and then allowed to stand at room temperature for 1 hour. To obtain a hydrogel. The obtained hydrogel was freeze-dried to obtain an airgel layer having a thickness of 250 ⁇ m made of a polymer airgel containing cellulose nanofibers. The obtained polymer aerogel containing cellulose nanofibers was subjected to a tensile test under conditions of 23 ° C. and 30% humidity in accordance with JIS C 2151, and the tensile fracture strain was determined to be 1.2%. .
- UV shielding agent 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (“Tinvin 326” manufactured by BASF) was used.
- antioxidant 2,6-di-t-butyl-p-cresol (BHT) was used.
- anisotropic exothermic sheet Two resin layers obtained were prepared, and the airgel layer on which the heat generating layer was formed was sandwiched between them, and the first resin layer / heat generating layer / airgel layer / An anisotropic exothermic sheet having a laminated structure of the second resin layer was produced.
- Thermocompression bonding is performed using a thermocompression laminator (“MRK-650Y type” manufactured by MC Corporation) under the conditions of a heating temperature of 90 ° C., a linear pressure of 0.05 kN during crimping, and a tension of 20 N during conveyance.
- the two-roll method was used.
- thermocompression bonding a laminate roll in which the upper and lower rolls are both made of rubber was used.
- the obtained anisotropic heat-generating sheet was cut into a size of 120 mm long ⁇ 100 mm wide.
- the cut anisotropically heat-generating sheet was used as an interlayer film for laminated glass and sandwiched between two clear glasses (length 100 mm ⁇ width 100 mm ⁇ thickness 2.5 mm) to obtain a laminate.
- the cut out anisotropically exothermic sheet was protruded by 10 mm from the edge of the clear glass.
- the obtained laminate was put in a rubber bag, depressurized to 0.1 MPa, held at 90 ° C. for 5 minutes, and temporarily pressure-bonded while deaeration of air remaining between the glass plate and the intermediate film.
- bonded for 20 minutes on the conditions of 150 degreeC and the pressure of 1.01 MPa using the autoclave was manufactured, and the laminated glass was manufactured. Thereafter, the resin layer of the anisotropic heat generating sheet that protruded from the glass was cut out to expose the heat generating layer.
- a single-sided copper foil tape STS-CU42S (manufactured by Sekisui Techno Shoji Nishi Nippon Co., Ltd.) is attached as an electrode so that the heat generating layer and the copper foil of the copper foil tape are in contact with each other, and then a turn clip is attached to fix the copper foil tape. did.
- Example 2 10 mL of 0.1 M hydrochloric acid was added dropwise to 20 mL of a dispersion in which TEMPO-oxidized cellulose nanofibers were dispersed in pure water so as to have a concentration of 0.6% by weight, and left at room temperature for 1 hour to obtain a hydrogel.
- the obtained hydrogel was freeze-dried to obtain an airgel layer having a thickness of 250 ⁇ m made of a polymer airgel containing cellulose nanofibers.
- the tensile fracture strain of the obtained airgel layer was 1.0%.
- An anisotropic exothermic sheet and laminated glass were obtained in the same manner as in Example 1 except that the obtained airgel layer was used.
- Example 3 A chitosan solution prepared by dissolving 1 g of chitosan 10 (manufactured by Wako Pure Chemical Industries, Ltd.) in 50 mL of a 2% by volume acetic acid aqueous solution was diluted with ultrapure water to a 10 g / L solution. 1.5 mL of a 9 wt% butyraldehyde aqueous solution was added to a 10 g / L chitosan aqueous solution, transferred to a Petri dish, sealed, and allowed to stand at 60 ° C. for 12 hours to prepare a hydrogel.
- Example 4 In the preparation of the airgel layer, an airgel layer having a thickness of 3000 ⁇ m was obtained in the same manner as in Example 3 except that the airgel drying method was changed from room temperature drying to supercritical drying with carbon dioxide. A heat insulating sheet and a laminated glass were obtained in the same manner as in Example 1 except that the obtained airgel layer was used. The tensile fracture strain of the obtained airgel layer was 1.2%.
- Example 5 A chitosan solution in which 2 g of chitosan 10 (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 100 mL of a 2% by volume acetic acid aqueous solution was diluted with ultrapure water to a 10 g / L solution. To a 10 g / L chitosan aqueous solution, 3.0 mL of a 9 wt% butyraldehyde aqueous solution was added, transferred to a Petri dish, sealed, and allowed to stand at 60 ° C. for 12 hours to prepare a hydrogel.
- chitosan 10 manufactured by Wako Pure Chemical Industries, Ltd.
- Example 6 In the preparation of the airgel layer, an airgel layer having a thickness of 2000 ⁇ m was obtained in the same manner as in Example 3 except that the drying method of the airgel was changed from room temperature drying to supercritical drying with carbon dioxide. The obtained airgel layer was used, and in the same manner as in Example 1 except that instead of polyvinyl butyral, ethylene-vinyl acetate copolymer resin (EVA, vinyl acetate content 30% by mass) was used as the resin constituting the resin layer. A heat insulating sheet and laminated glass were obtained. The tensile fracture strain of the obtained airgel layer was 1.0%.
- EVA ethylene-vinyl acetate copolymer resin
- Example 7 In the preparation of the airgel layer, an airgel layer having a thickness of 1000 ⁇ m was obtained in the same manner as in Example 3 except that the airgel was dried by supercritical drying with carbon dioxide. A heat insulating sheet and a laminated glass were obtained in the same manner as in Example 3 except that the obtained airgel layer was used and the thicknesses of the first resin layer and the second resin layer were set to 800 ⁇ m. The tensile fracture strain of the obtained airgel layer was 1.0%.
- Example 8 In 50 g of 0.01 M acetic acid solution, 2.5 g of urea and 2.5 g of a surfactant (hexadecyltrimethylammonium bromide) were dissolved. While stirring at room temperature, 5.0 g of pentaerythritol was dissolved, and then 20.0 mL of silica alkoxide (MTMS: methyltrimethoxysilane) was added. In order to proceed with hydrolysis, after stirring for 30 minutes as it is, after adjusting the height of the liquid after stirring so that the gel thickness after drying becomes 2.0 mm, it is left to stand in a 60 ° C. constant temperature bath, The solution was gelled under sealed conditions for 96 hours.
- a surfactant hexadecyltrimethylammonium bromide
- the gel was washed with methanol at a frequency of 3 times / day over 3 days, and an airgel layer (organic-inorganic hybrid silica having a thickness of 2000 ⁇ m was obtained by supercritical drying. Airgel A layer) was obtained.
- An anisotropic exothermic sheet and laminated glass were obtained in the same manner as in Example 1 except that the obtained airgel layer was used.
- the airgel layer is scraped with a sandpaper so that the airgel layer does not break, thereby being 120 mm in length and 100 mm in width.
- the tensile fracture strain of the obtained airgel layer was 0.20%.
- Example 9 In 50 g of 0.01 M acetic acid solution, 2.5 g of urea and 5.0 g of a surfactant (hexadecyltrimethylammonium bromide) were dissolved. While stirring at room temperature, 20.0 mL of silica alkoxide (MTMS: methyltrimethoxysilane) and 5.0 mL of diethylene glycol were added. In order to proceed with hydrolysis, after stirring for 30 minutes as it is, after adjusting the height of the liquid after stirring so that the gel thickness after drying becomes 2.0 mm, it is left to stand in a 60 ° C. constant temperature bath, The solution was gelled under sealed conditions for 96 hours.
- a surfactant hexadecyltrimethylammonium bromide
- the gel was washed with methanol at a frequency of 3 times / day over 3 days, and an airgel layer (organic-inorganic hybrid silica having a thickness of 2000 ⁇ m was obtained by supercritical drying. Airgel B layer) was obtained.
- a heat insulating sheet and a laminated glass were obtained in the same manner as in Example 1 except that the obtained airgel layer was used.
- the airgel layer is scraped with a sandpaper so that the airgel layer does not break, thereby being 120 mm in length and 100 mm in width. The size of.
- the tensile fracture strain of the obtained airgel layer was 0.30%.
- thermocompression bonding was performed by a roll-to-roll method using a thermocompression laminator (“MRK-650Y type” manufactured by MCK Corporation) at a heating temperature of 90 ° C., a linear pressure of 0.05 kN at the time of crimping.
- MRK-650Y type manufactured by MCK Corporation
- the cut anisotropically heat-generating sheet was used as an interlayer film for laminated glass and sandwiched between two clear glasses (length 100 mm ⁇ width 100 mm ⁇ thickness 2.5 mm) to obtain a laminate. At that time, the cut out anisotropically exothermic sheet was protruded by 10 mm from the edge of the clear glass.
- the obtained laminate was put in a rubber bag, depressurized to 0.1 MPa, held at 90 ° C. for 5 minutes, and temporarily pressure-bonded while deaerating air remaining between the glass plate and the intermediate film.
- bonded for 20 minutes on the conditions of 150 degreeC and the pressure of 1.01 MPa using the autoclave was manufactured, and the laminated glass was manufactured. Thereafter, the resin layer of the anisotropic heat generating sheet that protruded from the glass was cut out to expose the heat generating layer.
- a single-sided copper foil tape STS-CU42S (manufactured by Sekisui Techno Shoji Nishi Nippon Co., Ltd.) is attached as an electrode so that the heat generating layer and the copper foil of the copper foil tape are in contact with each other. did.
- the gel was washed with methanol at a frequency of 3 times / day over 3 days, and then an airgel layer (inorganic silica having a thickness of 2000 ⁇ m was obtained by supercritical drying.
- An airgel layer was obtained.
- a heat insulating sheet and a laminated glass were obtained in the same manner as in Example 1 except that the obtained airgel layer was used.
- the obtained anisotropic heat-generating sheet is cut into a size of 120 mm in length and 100 mm in width, the size of 120 mm in length and 100 mm in width is obtained by scraping the silica gel with a sandpaper so that the silica gel is not broken. I decided.
- the tensile fracture strain of the obtained airgel layer was 0.08%.
- the time t2 required for the side glass surface to reach 0 ° C. was measured.
- the laminated glass of Comparative Example 1 had t1 of 600 seconds and t2 of 605 seconds.
- t1 was faster than this, and t2 was slower than this, and the anisotropic heat generation of the laminated glass was confirmed.
- the t2 of the laminated glass of Comparative Example 1 has passed and sufficient. After a lapse of time, the energization was terminated, and it was determined that it was later than t2 of Comparative Example 1.
- the generated heat is released in a specific direction and the energy can be efficiently used, and the anisotropic heat generating sheet that is excellent in handleability, and for laminated glass using the anisotropic heat generating sheet An interlayer film and a laminated glass can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
近年、合わせガラスに求められる性能も多様化し、合わせガラス自体を加熱することにより、凍結した窓ガラスを暖め、霜や氷を溶かす技術が検討されている。
一方、合わせガラス自体を加熱する方法の1つとして、合わせガラス用中間膜に導電膜からなる発熱層を積層する方法も検討されている。このような合わせガラス用中間膜は、通常、発熱層上にポリビニルアセタール等の熱可塑性樹脂を含有する樹脂層を積層する方法により製造される。
しかしながら、このような発熱可能な合わせガラスを用いて凍結した窓ガラスを暖め、霜や氷を溶かそうとしても、実際には霜や氷が溶けるまでには一定以上の時間を要することから、より短時間で効率よく霜や氷を溶かすことが求められていた。
以下に本発明を詳述する。
上記エアロゲル層は、エアロゲルを含有することにより高い断熱性を発揮することができる。これにより、発熱層で発生した熱は、エアロゲル層に妨げられてエアロゲル層側には放出されにくく、エアロゲル層とは反対側に放出されるようになり、高い異方発熱性を発揮することができる。とりわけ、本発明の異方発熱性シートを合わせガラス用中間膜に用いて合わせガラスを製造したときに、より高い異方発熱性を発揮することができる。
上記エアロゲルとしては特に限定されず、例えば、ポリマーエアロゲル、シリカエアロゲル、カーボンエアロゲル、アルミナエアロゲル、有機無機ハイブリッドエアロゲル等の従来公知のエアロゲルを用いることができる。なかでも、高い柔軟性を有し、後述する引張破壊ひずみを達成することができることから、ポリマーエアロゲルが好適である。
上記ポリマーエアロゲルを構成する有機高分子材料としては特に限定されない。特に高い柔軟性を示すエアロゲルが得られることから、レゾルシノール-ホルマリン樹脂、セルロースナノファイバー、ポリイミド、ポリウレタン、エポキシ樹脂、ポリアクリレート、アクリレートオリゴマー、ポリメチルメタクリレート、ポリオキシアルキレン、ポリブタジエン、ポリエーテル及びキトサンからなる群から選択される少なくとも1種の有機高分子材料が好適である。
上記シリカエアロゲルやアルミナエアロゲルは無機エアロゲルに分類されるが、有機無機ハイブリッドエアロゲルに分類されるものもある。例えば、無機エアロゲルとしてのシリカエアロゲルは、2つのSiの間に有機基を含まない。これに対して、有機無機ハイブリッドエアロゲルとしてのシリカエアロゲルは、2つのSiの間に有機基を含む。高い柔軟性を示すエアロゲルを得る観点からは、有機無機ハイブリッドエアロゲルとしてのシリカエアロゲルが好適である。なお、いずれのシリカエアロゲルであるかは、例えば、NMR解析を行うことによって確認することができる。
ただし、異方発熱性及び透明性がより一層向上することから、上記エアロゲル層はエアロゲルのみから構成されるか、又は、エアロゲルの含有量が80重量%以上であることが好ましい。
特にエアロゲル層の厚みが3mm以下であれば、単に取り扱い性が向上するだけではなく、エアロゲルの破断防止の効果がより一層高まるとともに、エアロゲル層に皺や曲げ跡が発生することをより一層抑制することができる。エアロゲル層の厚みが2.0mm以下、1.5mm以下、800μm以下、500μm以下になるにつれて、エアロゲルの破断防止効果及び皺や曲げ跡発生の防止効果が高まる。
上記発熱層は、表面抵抗率が10Ω/□以下であることが好ましい。表面抵抗率が10Ω/□以下である発熱層は、電圧を印加することにより充分に発熱して、凍結したガラスを暖め、霜や氷を溶かすことができる。より好ましくは5.0Ω/□以下、更に好ましくは3.5Ω/□以下、特に好ましくは2.5Ω/□以下である。
本明細書において電気抵抗率が低い金属とは、電気抵抗率が1×10-6Ωm以下である金属又は合金を意味する。ここで、電気抵抗率が1×10-7Ωm以上、1×10-6Ωm未満の金属又は合金としては、例えば、白金、鉄、スズ、クロム、鉛、チタン、水銀、ステンレス等が挙げられる。また、電気抵抗率が1×10-7Ωm未満の金属又は合金としては、例えば、金、銀、銅、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、カリウム、リチウム、黄銅等が挙げられる。
上記発熱層の厚さの上限は特に限定されないが、実質的には1000nm程度が上限である。
上記透明導電層としては、例えば、透明性と、電気抵抗率の低さから、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化錫(ATO)等からなるものが好ましい。
上記金属酸化物層としては、例えば、酸化チタン(TiO2)、酸化ニオブ(Nb2O5)、酸化ケイ素(SiO2)等のからなるものが挙げられる。
これらの透明導電層や金属酸化物層は単独で用いてもよく、2種以上を併用してもよい。なかでも、ITOやATOからなる透明導電層や、酸化チタン、酸化ニオブからなる群より選択される少なくとも1種からなる金属酸化物層が好適である。
本発明の異方発熱性シートが基材を有する場合、上記基材は、JIS C 2151に準拠して測定される150℃、30分間熱処理後の熱収縮率がMD、TD方向共に1.0~3.5%であることが好ましい。このような熱収縮率を有する基材を用いることにより、スパッタプロセス等により均一な発熱層を形成できるとともに、合わせガラス製造時に熱収縮率の相違により発熱層と後述する樹脂層とにズレが生じるのを防止して、上記発熱層と樹脂層との接着性を向上させることができる。上記熱収縮率のより好ましい下限は1.5%、より好ましい上限は3.0%である。
なお、本明細書においてMD方向(Machine Direction)とは、基材をシート状に押出加工する際の押出方向をいい、TD方向(Transverse Direction)とはMD方向に対して垂直方向をいう。
また、上記熱収縮率は、JIS C 2151:2006の“21.寸法変化”の項目の寸法変化率に相当する。
なお、ヤング率は、JIS K7127に準拠した引っ張り試験によって、23℃で、歪み-応力曲線を得、該歪み-応力曲線の直線部分の傾きにより示される。
なお、後述する樹脂層のヤング率は、一般に1GPa未満であることが好ましい。
上記基材に含まれる熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ(4-メチルペンテン-1)、ポリアセタール等の鎖状ポリオレフィンや、ノルボルネン類の開環メタセシス重合体又は付加重合体、ノルボルネン類と他のオレフィン類との付加共重合体等の脂環族ポリオレフィンが挙げられる。また、ポリ乳酸、ポリブチルサクシネート等の生分解性ポリマーが挙げられる。また、ナイロン6、ナイロン11、ナイロン12、ナイロン66等のポリアミドや、アラミドが挙げられる。また、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレン共重合ポリメタクリル酸メチル、ポリカーボネート、ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステルが挙げられる。また、ポリエーテルサルフォンや、ポリエーテルエーテルケトンや、変性ポリフェニレンエーテルや、ポリフェニレンサルファイドや、ポリエーテルイミドや、ポリイミドや、ポリアリレートが挙げられる。更に、4フッ化エチレン樹脂や、3フッ化エチレン樹脂や、3フッ化塩化エチレン樹脂や、4フッ化エチレン-6フッ化プロピレン共重合体や、ポリフッ化ビニリデン等が挙げられる。これらの熱可塑性樹脂を単独、又は、2種以上を併用して、上記熱収縮率やヤング率が所期の範囲内となるように調整する。
上記紫外線遮蔽剤としては、例えば、金属を含む紫外線遮蔽剤、金属酸化物を含む紫外線遮蔽剤等の従来公知の紫外線遮蔽剤を用いることができる。また、ベンゾトリアゾール構造を有する紫外線遮蔽剤、ベンゾフェノン構造を有する紫外線遮蔽剤、トリアジン構造を有する紫外線遮蔽剤、マロン酸エステル構造を有する紫外線遮蔽剤、シュウ酸アニリド構造を有する紫外線遮蔽剤、ベンゾエート構造を有する紫外線遮蔽剤等が挙げられる。
上記酸化防止剤としては、例えば、フェノール構造を有する酸化防止剤、硫黄を含む酸化防止剤、リンを含む酸化防止剤等の従来公知の酸化防止剤を用いることができる。
なお、樹脂層の熱収縮率は、樹脂層を構成する熱可塑性樹脂の種類、可塑剤の種類や配合量のほか、アニール処理の条件によっても調整することができる。
なお、上記第1の樹脂層と第2の樹脂層は同種であってもよいし、異なっていてもよい。
上記ポリビニルアセタールは、水酸基量の好ましい下限が15モル%、好ましい上限が40モル%である。水酸基量が15モル%以上であると、合わせガラス用中間膜とガラスとの接着性が高くなる。水酸基量が40モル%以下であると、合わせガラス用中間膜の取り扱いが容易になる。
なお、上記アセタール化度及び水酸基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
上記ポリビニルアルコールは、通常、ポリ酢酸ビニルを鹸化することにより得られ、鹸化度70~99.9モル%のポリビニルアルコールが一般的に用いられる。上記ポリビニルアルコールの鹸化度は、80~99.9モル%であることが好ましい。
上記ポリビニルアルコールの重合度の好ましい下限は500、好ましい上限は4000である。上記ポリビニルアルコールの重合度が500以上であると、得られる合わせガラスの耐貫通性が高くなる。上記ポリビニルアルコールの重合度が4000以下であると、合わせガラス用中間膜の成形が容易になる。上記ポリビニルアルコールの重合度のより好ましい下限は1000、より好ましい上限は3600である。
上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等が挙げられる。また、上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等が挙げられる。
なかでも、トリエチレングリコールジカプロン酸エステル、トリエチレングリコールジ-2-エチル酪酸エステル、トリエチレングリコールジ-n-オクチル酸エステル、トリエチレングリコールジ-2-エチルヘキシル酸エステル等が好適である。
なお、上記可塑剤の含有量を55重量部以上にすると、該樹脂層に優れた遮音性を付与することができる。
上記可塑剤の含有量は、第1の樹脂層と第2の樹脂層で同じであってもよく、異なっていてもよい。
上記接着力調整剤としては、例えば、アルカリ金属塩、アルカリ土類金属塩及びマグネシウム塩からなる群より選択される少なくとも1種が好適に用いられる。上記接着力調整剤として、例えば、カリウム、ナトリウム、マグネシウム等の塩が挙げられる。
上記塩を構成する酸としては、例えば、オクチル酸、ヘキシル酸、2-エチル酪酸、酪酸、酢酸、蟻酸等のカルボン酸の有機酸、又は、塩酸、硝酸等の無機酸が挙げられる。
上記熱線吸収剤は、赤外線を遮蔽する性能を有すれば特に限定されない。具体的には例えば、錫ドープ酸化インジウム(ITO)粒子、アンチモンドープ酸化錫(ATO)粒子、アルミニウムドープ酸化亜鉛(AZO)粒子、インジウムドープ酸化亜鉛(IZO)粒子、錫ドープ酸化亜鉛粒子、珪素ドープ酸化亜鉛粒子、6ホウ化ランタン粒子及び6ホウ化セリウム粒子からなる群より選択される少なくとも1種が好適である。
なお、上記エアロゲル層の引張破壊ひずみは23℃及び湿度30%の条件にて、測定されることが好ましい。また、上記引張試験においてエアロゲル層が降伏する場合には、引張破壊呼びひずみを測定することが好ましい。
なお、JIS C 2151は、JIS K 7127を引用し、かつ、引張特性の項目に於いて”引張特性は、JIS K 7127による”旨の記載があることから、JIS K 7127に従って引張破壊ひずみを測定してもよい。
なお、上記引張破壊ひずみを0.1%以上とする方法は特に限定されないが、例えば、上記エアロゲル層に含まれるエアロゲルとして柔軟性に優れるポリマーエアロゲルを採用する方法等が挙げられる。
図1において、異方発熱性シート1は、エアロゲル層2と該エアロゲル層2の一方表面側に積層された発熱層3との積層体を有し、該積層体の発熱層3側に第1の樹脂層4が、エアロゲル層2側に第2の樹脂層5が積層されている。
図1の異方発熱性シート1において、電圧を加えることにより発熱層3から発生した熱は、エアロゲル層2に妨げられるために第2の樹脂層5側には放出されにくく、主に第1の樹脂層4側に放出される。
本発明の異方発熱性シートからなる合わせガラス用中間膜もまた、本発明の1つである。
上記ガラス板は、一般に使用されている透明板ガラスを使用することができる。例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入りガラス、線入り板ガラス、着色された板ガラス、熱線吸収ガラス、熱線反射ガラス、グリーンガラス等の無機ガラスが挙げられる。また、ガラスの表面に紫外線遮蔽コート層を有する紫外線遮蔽ガラスも用いることができる。更に、ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート等の有機プラスチックス板を用いることもできる。
上記ガラス板として、2種類以上のガラス板を用いてもよい。例えば、透明フロート板ガラスと、グリーンガラスのような着色されたガラス板との間に、本発明の合わせガラス用中間膜を積層した合わせガラスが挙げられる。また、上記ガラス板として、2種以上の厚さの異なるガラス板を用いてもよい。
(1)エアロゲル層の調製
TEMPO酸化セルロースナノファイバーを0.9重量%となるように純水に分散させた分散液20mLに、0.1M塩酸を10mL滴下後、1時間室温で静置することによってヒドロゲルを得た。得られたヒドロゲルを凍結乾燥することにより、セルロースナノファイバーを含有するポリマーエアロゲルからなる、厚み250μmのエアロゲル層を得た。
得られたセルロースナノファイバーを含有するポリマーエアロゲルについて、JIS C 2151に準拠して23℃及び湿度30%の条件下で引張試験を行い、引張破壊ひずみを求めたところ、1.2%であった。
得られたエアロゲル層に、ターゲットを銀とし、スパッタリングを行った。スパッタパワーは直流(DC)1000W、雰囲気ガスはアルゴンでガス流量は50sccm、スパッタ時圧力は0.5Paとし、銀からなる厚み20nmの発熱層を形成した。
得られた発熱層の表面抵抗率は、3.3Ω/□であった。
ポリビニルブチラール100重量部に対し、可塑剤40重量部、紫外線遮蔽剤0.5重量部、酸化防止剤0.5重量部を添加し、ミキシングロールで充分に混練し、組成物を得た。得られた組成物を押出機により押出して、厚み380μmの単層の樹脂層を得た。
なお、ポリビニルブチラールは、水酸基の含有率30モル%、アセチル化度1モル%、ブチラール化度69モル%、平均重合度1700である。可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)を用いた。紫外線遮蔽剤は、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)を用いた。酸化防止剤は、2,6-ジ-t-ブチル-p-クレゾール(BHT)を用いた。
得られた樹脂層を2枚準備し、その間に発熱層を形成したエアロゲル層を挟み込み、熱圧着することにより第1の樹脂層/発熱層/エアロゲル層/第2の樹脂層の積層構造の異方発熱性シートを製造した。熱圧着は、熱圧着ラミネーター(エム・シー・ケー社製「MRK-650Y型」)を用いて、加熱温度90℃、圧着時の線圧0.05kN、搬送時の張力20Nの条件で、ロールツーロール方式により行った。熱圧着には上下のロールがともにゴムからなるラミネートロールを用いた。
得られた異方発熱性シートを、縦120mm×横100mmの大きさに切り出した。切り出した異方発熱性シートを合わせガラス用中間膜として、2枚のクリアガラス(縦100mm×横100mm×厚さ2.5mm)で挟み込んで、積層体を得た。その際、切り出した異方発熱性シートがクリアガラス端部より縦10mmずつはみ出るようにした。得られた積層体をゴムバッグに入れて、0.1MPaに減圧した後、90℃で5分間保持しガラス板と中間膜との間に残留する空気を脱気しながら仮圧着した。次いで、オートクレーブを用いて、150℃、圧力1.01MPaの条件で、仮圧着された積層体を20分間圧着し、合わせガラスを製造した。その後、ガラスからはみ出した異方発熱性シートの樹脂層を切り取り、発熱層を露出させた。発熱層と銅箔テープの銅箔とが接するように、片面銅箔テープSTS-CU42S(積水テクノ商事西日本社製)を電極として取り付け、さらにその上からターンクリップを取り付けることで銅箔テープを固定した。
TEMPO酸化セルロースナノファイバーを0.6重量%となるように純水に分散させた分散液20mLに0.1M塩酸を10mL滴下し、1時間室温で静置しヒドロゲルを得た。得られたヒドロゲルを凍結乾燥することにより、セルロースナノファイバーを含有するポリマーエアロゲルからなる、厚み250μmのエアロゲル層を得た。得られたエアロゲル層の引張破壊ひずみは1.0%であった。
得られたエアロゲル層を用いた以外は実施例1と同様にして異方発熱性シート及び合わせガラスを得た。
キトサン10(和光純薬工業社製)1gを酢酸2容量%水溶液50mLに溶解させたキトサン溶液を、超純水にて10g/L溶液になるように希釈した。10g/Lのキトサン水溶液に9重量%のブチルアルデヒド水溶液を1.5mL加え、ペトリ皿に移し、密閉し、60℃で12時間静置し、ヒドロゲルを作製した。室温にて除冷後、ヒドロゲルに対して超純水による5時間の浸漬洗浄を5回繰り返し、メタノールで3日かけ3回/日の頻度でヒドロゲルを浸漬させ洗浄した。得られたゲルを室温にて乾燥することにより、キトサンを含有するポリマーエアロゲルからなる、厚み250μmのエアロゲル層を得た。
得られたエアロゲル層を用いた以外は実施例1と同様にして異方発熱性シート及び合わせガラスを得た。
得られたエアロゲル層の引張破壊ひずみは1.0%であった。
エアロゲル層の調製において、エアロゲルの乾燥方法を室温乾燥から二酸化炭素による超臨界乾燥とした以外は実施例3と同様の方法で厚み3000μmのエアロゲル層を得た。
得られたエアロゲル層を用いた以外は実施例1と同様にして断熱性シート及び合わせガラスを得た。
得られたエアロゲル層の引張破壊ひずみは1.2%であった。
キトサン10(和光純薬工業社製)2gを酢酸2容量%水溶液100mLに溶解させたキトサン溶液を、超純水にて10g/L溶液になるように希釈した。10g/Lのキトサン水溶液に9重量%のブチルアルデヒド水溶液を3.0mL加え、ペトリ皿に移し、密閉し、60℃で12時間静置し、ヒドロゲルを作製した。室温にて除冷後、ヒドロゲルに対して超純水による5時間の浸漬洗浄を5回繰り返し、メタノールで3日かけ3回/日の頻度でヒドロゲルを浸漬させ洗浄した。得られたゲルを二酸化炭素によって超臨界乾燥することにより、キトサンを含有するポリマーエアロゲルからなる、厚み7000μmのエアロゲル層を得た。
得られたエアロゲル層を用いた以外は実施例1と同様にして断熱性シート及び合わせガラスを得た。
得られたエアロゲル層の引張破壊ひずみは1.5%であった。
エアロゲル層の調製において、エアロゲルの乾燥方法を室温乾燥から二酸化炭素による超臨界乾燥とした以外は実施例3と同様の方法で厚み2000μmのエアロゲル層を得た。
得られたエアロゲル層を用い、樹脂層を構成する樹脂としてポリビニルブチラールに代えてエチレン-酢酸ビニル共重合体樹脂(EVA、酢酸ビニル含量30質量%)を用いた以外は実施例1と同様にして断熱性シート及び合わせガラスを得た。
得られたエアロゲル層の引張破壊ひずみは1.0%であった。
エアロゲル層の調製において、エアロゲルの乾燥方法を二酸化炭素による超臨界乾燥とした以外は実施例3と同様の方法で厚み1000μmのエアロゲル層を得た。
得られたエアロゲル層を用い、第1の樹脂層及び第2の樹脂層の厚みを800μmとした以外は実施例3と同様にして断熱性シート及び合わせガラスを得た。
得られたエアロゲル層の引張破壊ひずみは1.0%であった。
0.01M酢酸溶液50g中に尿素2.5gと界面活性剤(臭化ヘキサデシルトリメチルアンモニウム)2.5gとを溶解した。室温で攪拌しながら、ペンタエリトリトール5.0gを溶解させた後、シリカアルコキシド(MTMS:メチルトリメトキシシラン)20.0mLを加えた。加水分解を進行させるため、そのまま30min攪拌を続けた後、乾燥後のゲル厚みが2.0mmになるように攪拌後の液体の高さを調整した後、60℃の恒温槽に静置し、96時間密閉条件にて溶液をゲル化させた。その後、未反応物や界面活性剤を取り除くため、メタノールを用いて、3日以上かけて3回/日の頻度でゲルの洗浄を行い、超臨界乾燥により厚み2000μmのエアロゲル層(有機無機ハイブリッドシリカエアロゲルA層)を得た。
得られたエアロゲル層を用いた以外は実施例1と同様にして異方発熱性シート及び合わせガラスを得た。なお、得られた異方発熱性シートを、縦120mm×横100mmの大きさに切り出す際には、エアロゲル層が割れないように紙やすりを用いてエアロゲル層を削ることで、縦120mm×横100mmの大きさにした。
得られたエアロゲル層の引張破壊ひずみは0.20%であった。
0.01M酢酸溶液50g中に尿素2.5gと界面活性剤(臭化ヘキサデシルトリメチルアンモニウム)5.0gとを溶解した。室温で攪拌しながら、シリカアルコキシド(MTMS:メチルトリメトキシシラン)20.0mLとジエチレングリコール5.0mLを加えた。加水分解を進行させるため、そのまま30min攪拌を続けた後、乾燥後のゲル厚みが2.0mmになるように攪拌後の液体の高さを調整した後、60℃の恒温槽に静置し、96時間密閉条件にて溶液をゲル化させた。その後、未反応物や界面活性剤を取り除くため、メタノールを用いて、3日以上かけて3回/日の頻度でゲルの洗浄を行い、超臨界乾燥により厚み2000μmのエアロゲル層(有機無機ハイブリッドシリカエアロゲルB層)を得た。
得られたエアロゲル層を用いた以外は実施例1と同様にして断熱性シート及び合わせガラスを得た。なお、得られた異方発熱性シートを、縦120mm×横100mmの大きさに切り出す際には、エアロゲル層が割れないように紙やすりを用いてエアロゲル層を削ることで、縦120mm×横100mmの大きさにした。
得られたエアロゲル層の引張破壊ひずみは0.30%であった。
基材としてポリエチレンテレフタレート(PET)からなる厚み250μmのフィルム(TOYOBO社製、コスモシャインA4300)を用いた。上記基材に、ターゲットを銀とし、スパッタリングを行った。スパッタパワーは直流(DC)1000W、雰囲気ガスはアルゴンでガス流量は50sccm、スパッタ時圧力は0.5Paとし、銀からなる厚み20nmの発熱層を形成した。
得られた発熱層の表面抵抗率は、3.3Ω/□であった。
0.01M酢酸溶液50g中に尿素2.5gと界面活性剤(臭化ヘキサデシルトリメチルアンモニウム)5.0gとを溶解した。室温で攪拌しながら、シリカアルコキシド(MTMS:メチルトリメトキシシラン)25.0mLを加えた。加水分解を進行させるため、そのまま30min攪拌を続けた後、60℃の恒温槽に静置し、96時間密閉条件にて溶液をゲル化させた。その際、乾燥後のゲル厚みが2mmになるように攪拌後の液体の高さを調整した。その後、未反応物や界面活性剤を取り除くため、メタノールを用いて、3日以上かけて3回/日の頻度でゲルの洗浄を行った後、超臨界乾燥により厚み2000μmのエアロゲル層(無機シリカエアロゲル層)を得た。
得られたエアロゲル層を用いた以外は実施例1と同様にして断熱性シート及び合わせガラスを得た。なお、得られた異方発熱性シートを、縦120mm×横100mmの大きさに切り出す際には、シリカゲルが割れないように紙やすりを用いてシリカゲルを削ることで、縦120mm×横100mmの大きさにした。
得られたエアロゲル層の引張破壊ひずみは0.08%であった。
実施例及び比較例で得た異方発熱性シート及び合わせガラスについて、以下の方法により評価を行った。
結果を表1、2に示した。
実施例及び比較例で得られた異方発熱性シートを幅3cm、長さ30cmの長さに切断し、試験片を得た。得られた試験片を水平なテーブルの上に置き、長さ方向の一方の端部の厚み方向の中心と、他方の端部の厚み方向の中心とを直線で結び、該直線とテーブルとの成す角度が30°となるように、試験片をたわませた。その際の、異方発熱性シートの状態から、以下の基準により取り扱い性を評価した。
○○:表層及びエアロゲルが破断せず、皺の発生及び曲げ跡の発生もない
○:表層およびエアロゲルが破談しないが、皺又は曲げ跡が発生した
△:エアロゲルのみ破断
×:表層及びエアロゲルが破断
実施例及び比較例で得られた合わせガラスの電極にワニ口ケーブルを取り付け、第1の樹脂層側のガラス表面と第2の樹脂層側のガラス表面の中心部に熱電対を粘着テープで取り付けた。この状態の合わせガラスを-18℃±2℃に保った低温恒温機(エスペック株式会社製「PU-2J」)内に12時間静置し、データロガー(キーエンス株式会社製「NR-1000」)を用いてガラス表面温度を記録した。
なお、実施例の合わせガラスに於いて、第2の樹脂層側のガラス表面が0℃に達する見込みが無いと判断した場合には、比較例1の合わせガラスのt2を経過して、十分な時間が経った後に通電を終了し、比較例1のt2より遅いと判断した。
2 エアロゲル層
3 発熱層
4 第1の樹脂層
5 第2の樹脂層
Claims (9)
- エアロゲルを含むエアロゲル層と発熱層との積層体を有し、JIS C 2151に準拠して引張試験を行った際に得られる前記エアロゲル層の引張破壊ひずみが0.1%以上であることを特徴とする異方発熱性シート。
- エアロゲルは、ポリマーエアロゲルであることを特徴とする請求項1記載の異方発熱性シート。
- ポリマーエアロゲルは、レゾルシノール-ホルマリン樹脂、セルロースナノファイバー、ポリイミド、ポリウレタン及びエポキシ樹脂からなる群から選択される少なくとも1種の有機高分子材料を含有するものであることを特徴とする請求項2記載の異方発熱性シート。
- エアロゲル層の厚みが10μm以上、3mm以下であることを特徴とする請求項1、2又は3記載の異方発熱性シート。
- エアロゲル層の引張破壊ひずみが0.3%以上であることを特徴とする請求項1、2、3又は4記載の異方発熱性シート。
- 積層体の一方の面又は両方の面に、熱可塑性樹脂を含有する樹脂層を有することを特徴とする請求項1、2、3、4又は5記載の異方発熱性シート。
- 熱可塑性樹脂は、ポリビニルアセタール又はエチレン-酢酸ビニル共重合体であることを特徴とする請求項6記載の異方発熱性シート。
- 請求項1、2、3、4、5、6又は7記載の異方発熱性シートからなることを特徴とする合わせガラス用中間膜。
- 請求項7記載の合わせガラス用中間膜が、一対のガラス板の間に積層されていることを特徴とする合わせガラス。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019129516A RU2019129516A (ru) | 2017-02-22 | 2018-02-22 | Анизотропный экзотермический лист, промежуточная пленка для ламинированного стекла и ламинированное стекло |
EP18756732.6A EP3587372A4 (en) | 2017-02-22 | 2018-02-22 | ANISOTROPIC EXOTHERMAL SHEET, INTERMEDIATE FILM FOR LAMINATED GLASS AND LAMINATED GLASS |
JP2018548224A JPWO2018155550A1 (ja) | 2017-02-22 | 2018-02-22 | 異方発熱性シート、合わせガラス用中間膜及び合わせガラス |
US16/463,129 US20200061962A1 (en) | 2017-02-22 | 2018-02-22 | Anisotropic exothermic sheet, intermediate film for laminated glass, and laminated glass |
CN201880004413.3A CN109963823A (zh) | 2017-02-22 | 2018-02-22 | 各向异性发热性片、夹层玻璃用中间膜和夹层玻璃 |
KR1020197006483A KR20190122199A (ko) | 2017-02-22 | 2018-02-22 | 이방 발열성 시트, 합판 유리용 중간막 및 합판 유리 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017031098 | 2017-02-22 | ||
JP2017-031098 | 2017-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018155550A1 true WO2018155550A1 (ja) | 2018-08-30 |
Family
ID=63253357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/006430 WO2018155550A1 (ja) | 2017-02-22 | 2018-02-22 | 異方発熱性シート、合わせガラス用中間膜及び合わせガラス |
Country Status (8)
Country | Link |
---|---|
US (1) | US20200061962A1 (ja) |
EP (1) | EP3587372A4 (ja) |
JP (1) | JPWO2018155550A1 (ja) |
KR (1) | KR20190122199A (ja) |
CN (1) | CN109963823A (ja) |
RU (1) | RU2019129516A (ja) |
TW (1) | TW201836836A (ja) |
WO (1) | WO2018155550A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021184336A (ja) * | 2020-05-21 | 2021-12-02 | Agc株式会社 | 窓ガラス |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111300917B (zh) * | 2020-03-10 | 2023-11-14 | 东莞市高酷纳米科技有限公司 | 一种各向异性复合型材及其制备方法 |
CN113583302B (zh) * | 2021-08-23 | 2023-03-17 | 衢州学院 | 隔热材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02188454A (ja) * | 1988-12-08 | 1990-07-24 | Glaverbel Sa | 複合ガラスパネル |
JPH07504644A (ja) * | 1993-01-11 | 1995-05-25 | クネルト,ハインツ | 断熱性を有する安全ガラス材 |
WO2007010949A1 (ja) * | 2005-07-19 | 2007-01-25 | Dynax Corporation | アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法 |
JP2008222513A (ja) | 2007-03-14 | 2008-09-25 | Nippon Sheet Glass Co Ltd | 導電膜を有する合わせガラス、および合わせガラス用中間膜 |
WO2014089448A1 (en) * | 2012-12-06 | 2014-06-12 | Dow Corning Corporation | Construction panels |
WO2015094575A1 (en) * | 2013-12-19 | 2015-06-25 | Cabot Corporation | Self supporting aerogel insulation |
CN105082672A (zh) * | 2015-09-11 | 2015-11-25 | 合肥同益信息科技有限公司 | 一种多功能可触控玻璃 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2241468B (en) * | 1990-03-01 | 1993-12-01 | Glaverbel | Composite glazing panel |
JPH08283049A (ja) * | 1995-04-13 | 1996-10-29 | Bridgestone Corp | ガラス積層体 |
JP4279971B2 (ja) * | 1999-11-10 | 2009-06-17 | パナソニック電工株式会社 | 発光素子 |
CN102736342A (zh) * | 2011-04-01 | 2012-10-17 | 介面光电股份有限公司 | 电致变色装置 |
-
2018
- 2018-02-22 WO PCT/JP2018/006430 patent/WO2018155550A1/ja unknown
- 2018-02-22 JP JP2018548224A patent/JPWO2018155550A1/ja active Pending
- 2018-02-22 US US16/463,129 patent/US20200061962A1/en not_active Abandoned
- 2018-02-22 RU RU2019129516A patent/RU2019129516A/ru not_active Application Discontinuation
- 2018-02-22 TW TW107106270A patent/TW201836836A/zh unknown
- 2018-02-22 KR KR1020197006483A patent/KR20190122199A/ko not_active Application Discontinuation
- 2018-02-22 EP EP18756732.6A patent/EP3587372A4/en not_active Withdrawn
- 2018-02-22 CN CN201880004413.3A patent/CN109963823A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02188454A (ja) * | 1988-12-08 | 1990-07-24 | Glaverbel Sa | 複合ガラスパネル |
JPH07504644A (ja) * | 1993-01-11 | 1995-05-25 | クネルト,ハインツ | 断熱性を有する安全ガラス材 |
WO2007010949A1 (ja) * | 2005-07-19 | 2007-01-25 | Dynax Corporation | アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法 |
JP2008222513A (ja) | 2007-03-14 | 2008-09-25 | Nippon Sheet Glass Co Ltd | 導電膜を有する合わせガラス、および合わせガラス用中間膜 |
WO2014089448A1 (en) * | 2012-12-06 | 2014-06-12 | Dow Corning Corporation | Construction panels |
WO2015094575A1 (en) * | 2013-12-19 | 2015-06-25 | Cabot Corporation | Self supporting aerogel insulation |
CN105082672A (zh) * | 2015-09-11 | 2015-11-25 | 合肥同益信息科技有限公司 | 一种多功能可触控玻璃 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3587372A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021184336A (ja) * | 2020-05-21 | 2021-12-02 | Agc株式会社 | 窓ガラス |
JP7392571B2 (ja) | 2020-05-21 | 2023-12-06 | Agc株式会社 | 窓ガラス |
Also Published As
Publication number | Publication date |
---|---|
TW201836836A (zh) | 2018-10-16 |
KR20190122199A (ko) | 2019-10-29 |
JPWO2018155550A1 (ja) | 2019-12-12 |
RU2019129516A (ru) | 2021-03-23 |
CN109963823A (zh) | 2019-07-02 |
US20200061962A1 (en) | 2020-02-27 |
EP3587372A4 (en) | 2020-12-09 |
EP3587372A1 (en) | 2020-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017090712A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2018155551A1 (ja) | 断熱性シート、合わせガラス用中間膜及び合わせガラス | |
KR102307080B1 (ko) | 접합 유리용 중간막, 접합 유리용 중간막의 제조 방법 및 접합 유리 | |
WO2018143276A1 (ja) | サーモクロミック性を有する合わせガラス用中間膜、合わせガラス及び合わせガラスシステム | |
WO2017135441A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
US20230202148A1 (en) | Polyvinyl acetal resin film | |
WO2018155550A1 (ja) | 異方発熱性シート、合わせガラス用中間膜及び合わせガラス | |
KR20200128013A (ko) | 가소제 함유 시트가 겹쳐서 이루어지는 다층 구조체 | |
JP2018145068A (ja) | 合わせガラス用中間膜、合わせガラス、及び、合わせガラスシステム | |
WO2018083280A1 (en) | Fabrication process for laminated glass comprising a functional film | |
WO2017170861A1 (ja) | 合わせガラス用中間膜、合わせガラス、及び、合わせガラスシステム | |
JP2017095331A (ja) | 合わせガラス用中間膜、合わせガラス、及び、合わせガラス用中間膜の製造方法 | |
JP2017095330A (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP2018145069A (ja) | 合わせガラス用中間膜、合わせガラス、及び、合わせガラスシステム | |
JP2018145067A (ja) | 合わせガラス用中間膜、合わせガラス、及び、合わせガラスシステム | |
JP2017178756A (ja) | 合わせガラス用中間膜、合わせガラス、及び、合わせガラスシステム | |
WO2020067176A1 (ja) | ポリビニルアセタール樹脂フィルムおよびそれを含む積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018548224 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18756732 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197006483 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018756732 Country of ref document: EP Effective date: 20190923 |