WO2018033882A1 - Système de sécurité pour un véhicule à deux roues - Google Patents
Système de sécurité pour un véhicule à deux roues Download PDFInfo
- Publication number
- WO2018033882A1 WO2018033882A1 PCT/IB2017/055009 IB2017055009W WO2018033882A1 WO 2018033882 A1 WO2018033882 A1 WO 2018033882A1 IB 2017055009 W IB2017055009 W IB 2017055009W WO 2018033882 A1 WO2018033882 A1 WO 2018033882A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pda
- vehicle
- detection
- control system
- accelerometer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J27/00—Safety equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/10—Arrangement of audio equipment; Supports therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/40—Sensor arrangements; Mounting thereof
- B62J45/41—Sensor arrangements; Mounting thereof characterised by the type of sensor
- B62J45/414—Acceleration sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J45/00—Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
- B62J45/40—Sensor arrangements; Mounting thereof
- B62J45/42—Sensor arrangements; Mounting thereof characterised by mounting
- B62J45/422—Sensor arrangements; Mounting thereof characterised by mounting on the handlebar
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/016—Personal emergency signalling and security systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R2021/0065—Type of vehicles
- B60R2021/0088—Cycles, e.g. motorcycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/01—Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
- B60R2021/01013—Means for detecting collision, impending collision or roll-over
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62K—CYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
- B62K11/00—Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
Definitions
- This invention is a system for detecting an accident and for performing emergency control actions in a two-wheeler.
- Korean Patent KR20140106338 discloses an accident notifying apparatus for motorcycles wherein an accident recognition device is contained within a helmet, and whenever a helmet impact beyond a predetermined threshold is detected, the accident recognition device will transmit a wireless signal to a mobile phone which in turn will recognize that an accident has occurred and will dial an emergency contact number. But such a system requires the rider to be wearing a helmet including the accident recognition device.
- Taiwanese Patent TW201139192 discloses an accident detecting sensor mounted on the vehicle which upon detecting an accident will activate indicator lamps, warning alarms and will also transmit a wireless signal to a mobile phone to dial an emergency number. But such an accident detecting sensor is expensive and will increase the cost and complexity of the vehicle.
- Vehicles that include wireless connectivity modules such as Bluetooth or Wi-Fi can exchange information from the vehicle to personal digital assistants such as Smartphone or tablet PCs and will be beneficial if accident identification and emergency contact dialing can be done without using additional sensors.
- FIG. 1. shows a side view of a three-wheeled vehicle according to one embodiment of the present invention.
- Figure 1 illustrates the components of the connected two-wheeler.
- Figure 2 illustrates the steps involved in the set-up of sensor calibration.
- Figure 3 illustrates the steps of detection of Fall/ Accident.
- Figure 4 illustrates actions taken by the PDA on detection of Fall.
- Figure 5(a) and 5(b) illustrates the lean angle of the vehicle for accident detection.
- an accident is detected by a connected two-wheeler with the help of accelerometer and gyroscope sensors of a vehicle-mounted Personal Digital Assistant (PDA).
- the connected two-wheeler with the vehicle-mounted PDA triggers an emergency action as soon as the PDA detects the accident.
- the emergency action by the PDA involves sending an SMS to the emergency contact and an emergency call to the contact.
- the data acquisition for latitude and longitude of the vehicle location is performed and transmitted by the vehicle mounted PDA.
- the latitude and longitude data of the current location is fetched from the GPS device which is embedded inside the PDA.
- the emergency contact can take immediate actions to save the riderDs life after the accident.
- the invention also includes calibration of the accelerometer sensor at the time of mounting on the vehicle.
- the new design is suitable for all two-wheeled vehicles.
- Accident detection is possible with an accelerometer, gyro sensors or roll over sensor in-built in a two-wheeler.
- the connected vehicle can transmit the sensor information to the personal digital assistant (PDA) which in turn contacts the emergency person for help.
- PDA personal digital assistant
- This invention is an accident detection and control system for a two-wheeled vehicle, said accident detection and control system comprising, HMI display, atleast one GPS device, a Personal Digital Assistant (PDA), an accelerometer sensor, a gyroscope sensor, a Bluetooth device, a user interface screen, and a service system.
- the two-wheeled vehicle and the Personal Digital Assistant communicate to each other via a Bluetooth communication protocol, and a fall detection process is carried out in the Personal Digital Assistant with a service application running on background.
- the system includes at least one accelerometer sensor and at least one gyroscope sensor that are available in the PDA. For detection of fall utilizes components of the PDA for data collection and processing required actions.
- the detection of fallen state is based on a lean angle of the two-wheeled vehicle computed by the accelerometer and gyroscope sensors in the PDA.
- the PDA is a Smartphone.
- the PDA is a tablet PC.
- the GPS device and Bluetooth device is integrated with the two-wheeled vehicle either via speedometer integration or ECU integration, the user interface screen, accelerometer sensors and gyroscope sensors are included within the Personal Digital Assistant and all live data of the two-wheeled vehicle including vehicle speed, engine speed, gear position, fuel level, and odometer are shared with the PDA.
- a method of the accident detection and control system comprising the steps of, fixing the position of the PDA and capturing PDA position by an application in the PDA, Prompting for calibration of in-built sensors by the application on the PDA by pressing a button in the PDA, after mounting said PDA on the vehicle, calibrating the accelerometer and gyroscopic sensors present inside the PDA based on the mounting position, analyzing the vehicle mounted PDA and vehicle state parametersD data for fall detection, calculating a lean angle by the PDA from accelerometer and gyroscope signals if an engine is in running condition, increasing the frequency of calculation of the lean angle at the instant of the panic braking, storing the lean angle and waiting for a predetermined duration for the lean angle to exceed a predetermined threshold and if still the lean angle exceeds the predetermined threshold after the predetermined duration then detecting of a fall event, and triggering the PDA to sense the lean angle frequently after application of brake by a user.
- detecting panic braking based on deceleration rate of the vehicle speed communicating to the PDA about the panic braking detected via any wireless communication, taking required action on detection of fall includes the following steps: obtaining the latitude and longitude data from the satellite by the PDA using the GPS device, storing location data of the two-wheeled vehicle into a message, and sending an SMS to the emergency contact number, and activating an emergency call to the same number.
- the PDA is capable of sending emergency SMS to multiple emergency contact numbers and to immobilize the engine based on fall detection.
- the process involves data acquisition from vehicle mounted sensors including vehicle speed sensor and crankshaft position sensor, and sensors in-built on the PDA containing the accelerometer and gyroscope.
- Most vehicles are equipped with a brake system for slowing or stopping movement of the vehicle in a controlled manner.
- the brake system can be actuated by hydraulic, pneumatic, or mechanical pressure generated by an operator of the vehicle depressing a foot pedal, pulling a hand lever, and the like.
- Figure 1 is the two-wheeled vehicle 1 with in-built connectivity device that communicates with a Personal Digital Assistant (PDA) 3 via Bluetooth communication.
- the Personal Digital Assistant 3 shall have a Bluetooth device 6, user interface screen 25, an in-built GPS device 2, accelerometer sensors 4 and gyroscope sensors 5. There can be at least one accelerometer sensor and at least one gyroscope sensor that is available in the PDA. Detection of fall from the vehicle shall use the above-mentioned components for data collection and processing to take actions. The data from the vehicle and data from the Personal Digital Assistant 3 shall be included for detection of fall detection process. There is a two-way wireless communication between the vehicle and the Personal Digital Assistant 3 via a Bluetooth communication protocol.
- All live data of the vehicle like vehicle speed, engine speed, gear position, fuel level, odometer, shall be shared to the Personal Digital Assistant 3.
- the fall detection process shall be carried out in the Personal Digital Assistant 3 with a dedicated application running as background service software.
- the Bluetooth device 6 integrated with the vehicle can be in any form via speedometer integration or ECU integration.
- Detection of fallen state of a rider and vehicle is based on the lean angle of the two-wheeled vehicle, as in Figure 5(a) and Figure 5(b).
- Real-time calculation of lean angle is based on the accelerometer 4 and gyroscope 5 sensors in-built inside the Personal Digital Assistant (PDA) 3 that is mounted on a vehicle. Panic braking by the user triggers the PDA 3 to sense the lean angle frequently. The engine ON condition is checked so that the application confirms that the vehicle is in running condition. If the lean angle is found to exceed the threshold 24, the PDA 3 triggers an emergency call and emergency SMS to the emergency contact saved in the PDA 3.
- PDA Personal Digital Assistant
- FIG. 2 shows the set-up of the sensor calibration.
- the vehicle mounted PDA 3 and vehicle state parametersD data are analyzed for fall detection.
- the accelerometer 4 and gyroscopic sensors 5 inside the PDA 3 are calibrated based on the mounting position 10 of the PDA 3.
- an application on the PDA 3 prompts for calibration of in-built sensors 8 by the press of a button in the PDA 3.
- the position of the PDA 3 is fixed, and the PDA 3 application captures the position 11.
- the vehicle and the PDA 3 connection is established via Bluetooth or USB protocol.
- Figure 3 shows the fall/accident detection.
- the detection of an accident involves acquisition and processing of data from the vehicle-mounted sensors such as vehicle speed sensor and crankshaft position sensor, and the sensors in-built within the PDA 3 such as accelerometer 4 and gyroscope 5.
- the PDA 3 calculates the lean angle from the accelerometer and gyroscope signals and decides if the engine is found to be in running condition 13.
- Panic braking 12 is detected at the vehicle end based on the rate of deceleration of the vehicle speed.
- the vehicle communicates panic braking detection to the Personal Digital Assistant 3 via a communication means to the Personal Digital Assistant 3.
- the PDA 3 increases the frequency of calculation of the lean angle 17.
- the lean angle 17 is stored in a memory of the PDA 3 and the PDA 3 waits for a predetermined duration 16 (3s in a preferred embodiment) if the lean angle exceeds a predetermined threshold 18 during the wait time after 3s, then a fall event is detected and a fall detection trigger 14 is generated.
- FIG. 4 shows the PDA actions taken on detection of the fall 19.
- the PDA 3 uses a Global Positioning System (GPS) device to obtain the latitude and longitude data from the satellite 20.
- GPS Global Positioning System
- the location data of the vehicle is stored into a message 21. After that, an SMS is sent to the emergency contact number 22, and an emergency call is activated to the same number 23.
- GPS Global Positioning System
- the PDA 3 can be a Smartphone or a tablet PC.
- the PDA 3 can send the emergency SMS to multiple emergency contact numbers.
- the PDA 3 can also immobilize the engine based on fall detection.
- Figure 5(a) shows the normal riding posture 24 of the vehicle and posture of the vehicle between the moment before fall 25.
- the lean angle limit is tuned to a particular vehicle and programmed inside the Personal Digital Assistant 3 as a threshold value.
- the lean angle is calculated by comparing the reference position of the PDA mounting on the two wheeler as in Figure 5(a) and the position of PDA in a position as shown in Figure 5(b).
- a fall event will further trigger for necessary actions to alert emergency persons with detailed information such as a location of the vehicle or speed of the vehicle before the D FallD event etc.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Alarm Systems (AREA)
- Telephonic Communication Services (AREA)
Abstract
La présente invention concerne la détection d'un accident et les actions de commande d'urgence nécessaires pour un véhicule à deux roues. Un assistant numérique personnel (PDA) (3), qui est un smartphone ou une tablette PC, est pourvu d'un accéléromètre (4) et de capteurs de gyroscope (5) qui sont montés dans le véhicule. La détection de chute est déclenchée si l'angle d'inclinaison du véhicule dépasse un seuil lors de la détection de la rupture de panique et de l'état de fonctionnement du moteur. L'action d'urgence par le PDA (3) consiste à envoyer un SMS au contact d'urgence et un appel d'urgence au contact. Les informations envoyées par le PDA monté sur véhicule (3) contiennent des données de latitude et de longitude de l'emplacement du véhicule qui sont extraites du dispositif GPS (2) qui est intégré à l'intérieur du PDA (3). Le contact d'urgence peut entreprendre des actions immédiates pour sauver la vie du conducteur après l'accident. Ainsi, on augmente le facteur de sécurité du conducteur, pour tous les véhicules à deux roues.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201641028338 | 2016-08-19 | ||
IN201641028338 | 2016-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018033882A1 true WO2018033882A1 (fr) | 2018-02-22 |
Family
ID=61196456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2017/055009 WO2018033882A1 (fr) | 2016-08-19 | 2017-08-18 | Système de sécurité pour un véhicule à deux roues |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018033882A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111216832A (zh) * | 2020-01-19 | 2020-06-02 | 鲨港科技(上海)有限公司 | 一种起步安全控制系统、方法、装置及电动摩托车 |
DE102019108133A1 (de) * | 2019-03-28 | 2020-10-01 | Bayerische Motoren Werke Aktiengesellschaft | Einspurfahrzeug |
CN112278123A (zh) * | 2020-11-07 | 2021-01-29 | 浙江永福车业有限公司 | 一种儿童自行车翻倒报警装置及使用方法 |
CN112805760A (zh) * | 2018-11-15 | 2021-05-14 | 广东高驰运动科技有限公司 | 摔倒检测方法、装置、设备以及存储介质 |
CN113781837A (zh) * | 2021-03-19 | 2021-12-10 | 北京沃东天骏信息技术有限公司 | 骑行安全实现方法、装置、介质及电子设备 |
WO2022246623A1 (fr) * | 2021-05-25 | 2022-12-01 | Chunlong Li | Système sonore d'urgence pour véhicule général et motocyclette |
CN115862186A (zh) * | 2022-11-05 | 2023-03-28 | 重庆菜鸽途讯科技有限公司 | 摩托车安全监控系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8630768B2 (en) * | 2006-05-22 | 2014-01-14 | Inthinc Technology Solutions, Inc. | System and method for monitoring vehicle parameters and driver behavior |
US9129460B2 (en) * | 2007-06-25 | 2015-09-08 | Inthinc Technology Solutions, Inc. | System and method for monitoring and improving driver behavior |
-
2017
- 2017-08-18 WO PCT/IB2017/055009 patent/WO2018033882A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8630768B2 (en) * | 2006-05-22 | 2014-01-14 | Inthinc Technology Solutions, Inc. | System and method for monitoring vehicle parameters and driver behavior |
US9129460B2 (en) * | 2007-06-25 | 2015-09-08 | Inthinc Technology Solutions, Inc. | System and method for monitoring and improving driver behavior |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112805760A (zh) * | 2018-11-15 | 2021-05-14 | 广东高驰运动科技有限公司 | 摔倒检测方法、装置、设备以及存储介质 |
CN112805760B (zh) * | 2018-11-15 | 2022-09-06 | 广东高驰运动科技有限公司 | 摔倒检测方法、装置、设备以及存储介质 |
DE102019108133A1 (de) * | 2019-03-28 | 2020-10-01 | Bayerische Motoren Werke Aktiengesellschaft | Einspurfahrzeug |
CN111216832A (zh) * | 2020-01-19 | 2020-06-02 | 鲨港科技(上海)有限公司 | 一种起步安全控制系统、方法、装置及电动摩托车 |
CN112278123A (zh) * | 2020-11-07 | 2021-01-29 | 浙江永福车业有限公司 | 一种儿童自行车翻倒报警装置及使用方法 |
CN113781837A (zh) * | 2021-03-19 | 2021-12-10 | 北京沃东天骏信息技术有限公司 | 骑行安全实现方法、装置、介质及电子设备 |
WO2022246623A1 (fr) * | 2021-05-25 | 2022-12-01 | Chunlong Li | Système sonore d'urgence pour véhicule général et motocyclette |
CN115862186A (zh) * | 2022-11-05 | 2023-03-28 | 重庆菜鸽途讯科技有限公司 | 摩托车安全监控系统 |
CN115862186B (zh) * | 2022-11-05 | 2024-08-20 | 重庆菜鸽途讯科技有限公司 | 摩托车安全监控系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018033882A1 (fr) | Système de sécurité pour un véhicule à deux roues | |
JP6538686B2 (ja) | 非常用装置を備える衣服および関連する緊急方法 | |
US9996988B2 (en) | Intelligent tire pressure monitoring system and method | |
US9769638B2 (en) | Safety helmet and vehicle system, circuit and device | |
US10501051B2 (en) | Control device, control method, program, and control system | |
JP6638608B2 (ja) | 運転支援システム | |
KR20160144306A (ko) | 휴대 전자 장치 및 그 동작 방법 | |
US10959479B1 (en) | Apparatus and warning system for intelligent helmet | |
CN202534104U (zh) | 汽车事故自动求救装置 | |
JP2018533515A (ja) | オープンな道路車両の事故状況を識別するための装置 | |
EP3509047B1 (fr) | Système pour la détection et la notification d'accidents de motos | |
CN110395339A (zh) | 一种骑行车辆自主救援系统与方法 | |
KR101948768B1 (ko) | 헬멧과 스마트폰을 이용한 이륜차 사고 알림 시스템 | |
JP6744760B2 (ja) | 転倒警報装置、転倒事故通報システム、及び転倒警報プログラム | |
CN208985343U (zh) | 一种车辆意外的自动报警求救装置 | |
CN205862529U (zh) | 摔车侦测装置 | |
CN201540633U (zh) | 交通事故自动求救装置 | |
CN107284562A (zh) | 一种电动车防盗系统 | |
KR20170048107A (ko) | 위급상황의 자동 통지가 가능한 알림 시스템 | |
KR20180106160A (ko) | 위급상황의 자동 통지가 가능한 알림 시스템 | |
US11649001B2 (en) | Kickstand mounted alarm device | |
US20200198715A1 (en) | Lighting and a communication system for providing communication between a vehicle and a helmet | |
JP2001027647A (ja) | 二輪車の事故通報システム | |
KR20180117288A (ko) | 앱을 이용한 개인 이동수단 장착용 레이다 제어 방법 | |
Kumar et al. | Smart Helmet based Accident Detection and Notification System for Two-Wheeler Motor Cycles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17841188 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17841188 Country of ref document: EP Kind code of ref document: A1 |