[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018030356A1 - 気体分離用膜モジュール - Google Patents

気体分離用膜モジュール Download PDF

Info

Publication number
WO2018030356A1
WO2018030356A1 PCT/JP2017/028630 JP2017028630W WO2018030356A1 WO 2018030356 A1 WO2018030356 A1 WO 2018030356A1 JP 2017028630 W JP2017028630 W JP 2017028630W WO 2018030356 A1 WO2018030356 A1 WO 2018030356A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas separation
membrane module
separation membrane
membrane
Prior art date
Application number
PCT/JP2017/028630
Other languages
English (en)
French (fr)
Inventor
泰孝 栗下
美河 正人
公也 村上
あずさ 山中
川島 政彦
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201780042195.8A priority Critical patent/CN109475810B/zh
Priority to KR1020197003528A priority patent/KR102175623B1/ko
Priority to JP2018533465A priority patent/JP6678242B2/ja
Priority to US16/323,666 priority patent/US11628394B2/en
Publication of WO2018030356A1 publication Critical patent/WO2018030356A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4288Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/023Dense layer within the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a gas separation membrane module exhibiting excellent practicality in the long term.
  • the gas separation membrane module of the present invention exhibits particularly excellent performance for olefin separation.
  • Gas separation / concentration using a gas separation membrane is superior in energy efficiency, energy saving, and high safety compared to distillation, high pressure adsorption, and the like.
  • Examples of pioneering practical applications in this field include separation and concentration of gas using a gas separation membrane, hydrogen separation in an ammonia production process, and the like.
  • Recently, studies on gas separation membranes targeting hydrocarbon gases such as separation of olefin gas and paraffin gas have been actively conducted.
  • a gas separation membrane module for separating hydrocarbon gas is composed of a porous membrane, a housing, and an adhesive.
  • a gas separation active layer may be disposed on the surface of the porous membrane (Patent Documents 1 and 2).
  • the gas separation active layer may optionally contain a metal species (for example, a metal salt) (Patent Documents 3 and 4).
  • each component of the module has chemical resistance.
  • High-purity gas obtained by purification with a gas separation membrane may be used for electronic material applications such as in the semiconductor field.
  • the purity of the gas is required to be high.
  • gas purification by a distillation method, an absorption method, an adsorption method, a membrane separation method or the like is known.
  • the distillation method when the difference in boiling point from impurities is close, for example, in the case of propylene and propane (boiling point difference: 4.9 ° C.), it is necessary to repeat distillation in multiple stages for the separation. Therefore, it is necessary to set a large-scale facility and precise distillation conditions, which constitutes a great barrier for practical use (for example, Patent Document 1).
  • it is theoretically possible to achieve the target purity by increasing the number of stages in the distillation column it is scarce from the standpoint of practical benefits.
  • the absorption method since the separation performance depends on the separation property of the absorbent carrier, it is necessary to set precise operating conditions (for example, Patent Document 2). Furthermore, since a large heat source is required at the time of diffusion, this is a technology that requires a large-scale facility. Also, the amount of gas used in the semiconductor field is small. Therefore, the absorption method is not suitable for an apparatus for producing a small amount of gas as used in the semiconductor field.
  • Non-Patent Document 1 Various attempts have been made for the adsorption method. However, since the separation property is poor, it is difficult to selectively adsorb the target gas and efficiently produce a desired high-purity gas (for example, Non-Patent Document 1).
  • the membrane separation method is a preferable method from the viewpoints of separability, continuous productivity, and energy saving as compared with the distillation method, absorption method, and adsorption method. That is, according to the membrane separation method, a high-purity gas can be supplied without cutting the piping, so that a product with a constant quality can be obtained in a subsequent step.
  • the gas separation membrane can supply a gas having a desired purity in a desired amount by designing a separation performance and a permeation performance by selecting a material. Further, the membrane separation method can supply a high-purity gas continuously in one pass. Further, unlike the distillation method and the absorption method, since a heat source is not required, the space occupied by the gas purification equipment can be reduced.
  • the adhesive when the durability of the adhesive is low, the adhesive may be peeled off from the porous membrane or the housing over time, or the adhesive may shrink or swell, resulting in damage to the housing and accompanying purification within the housing.
  • Long-term stable use that may cause mixing of gas and raw material gas, leakage of gas out of the housing, and dissolution due to deterioration of the adhesive, causing contamination in the housing and contamination of purified gas It becomes difficult.
  • purifying the purity of the purified gas if the adhesive is slightly deteriorated, the purified gas purity is not satisfied, and the continuous use of the gas separation membrane module becomes difficult.
  • PTFE polytetrafluoroethylene
  • PVDF Polyvinylidene fluoride
  • PSU polysulfone
  • PES polyethersulfone
  • PE polyethylene
  • PVDF fluorine-based thermoplastic resins
  • PTFE polytetrafluoroethylene
  • the gas separation membrane when the practical application of the gas separation membrane is considered, it is necessary to make the bonded portion a preferable form in consideration of both the material and the manufacturing method.
  • gas separations when separating hydrocarbon gases such as olefins or when containing a metal salt in the gas separation active layer, the gas or metal salt easily promotes deterioration of the adhesive, It has been difficult to conceive and realize an adhesive that can achieve both the ease of handling at the time, the performance of the membrane module for gas separation, and the long-term stability of the membrane module for gas separation.
  • gas separation membrane modules that are highly practical in the long term, especially gas separation membrane modules for separation of hydrocarbon gases, especially for gas separation containing metal species in the gas separation active layer It has been difficult to provide membrane modules.
  • an object of the present invention is to provide a gas separation membrane module that is highly practical in the long term, in particular, a gas separation membrane module that separates hydrocarbon-based gas.
  • the present inventors have intensively studied in order to achieve the above object.
  • a gas separation membrane module having the following configuration, it is possible to provide a continuous gas supply system capable of continuously supplying the required high-purity gas with a small space, and inorganic impurities and It has been found that a membrane module unit that can effectively remove both organic impurities over a long period of time can be provided. That is, the present invention includes the following aspects.
  • a gas separation membrane module having a housing, a gas separation membrane disposed in the housing, and an adhesive portion for fixing the gas separation membrane to the housing,
  • the gas separation membrane is composed of a porous membrane;
  • the adhesive portion is the following 1) to 6): 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • the following formula: W [(I1-I2) / I1] ⁇ 100 ⁇ wherein I1 is the signal intensity at the start of measurement in pulse NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement. Is the signal strength at.
  • Attenuation rate W (%) represented by 30 ⁇ W ⁇ 100; 3)
  • the following formula: X [(V2 ⁇ V1) / V1] ⁇ 100 ⁇ wherein V1 and V2 are obtained when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded part is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded part (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D;
  • a membrane module for gas separation satisfying at least one of the following.
  • the bonded part is a cured product of an adhesive, and when the bonded part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane for 1 month at 25 ° C., the film is immersed in the bending Young's modulus before immersion.
  • the change rate of the bending Young's modulus and the change rate of the bending strength after immersion with respect to the bending strength before immersion are in the range of ⁇ 30% or more and + 30% or less, respectively.
  • Membrane module for gas separation is in the range of ⁇ 30% or more and + 30% or less, respectively.
  • the adhesive part is a cured product of an adhesive, and the mass change per surface area of the test piece after the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for 1 month, compared to before the immersion, -30mg / cm in 2 or more + 30 mg / cm 2 within the range, the gas separation membrane module according to any of the above embodiments 1 to 14.
  • the adhesive part is a cured product of an adhesive, and the thickness change rate of the test piece after immersion of the adhesive part in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C.
  • a gas mixture of 40% by mass of propane and 60% by mass of propylene is used for the gas separation membrane module, the supply gas flow rate per 2 cm 2 of the membrane area is 190 cc / min, and the permeate gas flow rate is 50 cc / min.
  • the propylene gas permeation rate measured at 30 ° C. in a humidified atmosphere at 30 ° C. is 10 GPU to 3,000 GPU and the propylene / propane separation factor is 50 to 1,000.
  • the membrane module for gas separation according to any one of 19.
  • a gas flow type continuous gas supply system including a raw material gas inlet, a raw material gas purification unit that purifies the raw material gas to produce a purified gas, and a purified gas outlet, wherein the purity of the purified gas is 99. 5% by mass or more, and the raw material gas purification unit is composed of a module selected from the group consisting of an adsorbate filling module, an absorbent filling module, and a gas separation membrane module having a gas separation membrane.
  • Continuous gas supply system [22] The continuous gas supply system according to aspect 21, wherein the source gas purification unit is configured by the gas separation membrane module, and the gas separation membrane is configured by a porous membrane.
  • a gas flow type continuous gas supply system including a raw material gas inlet, a raw material gas purification unit that purifies the raw material gas to generate a purified gas, and a purified gas outlet, 21.
  • a continuous gas supply system wherein the source gas purification unit is constituted by the gas separation membrane module according to any one of the above aspects 1 to 20.
  • the continuous gas supply system according to the above aspect 23 wherein the purity of the purified gas is 99.5% by mass or more.
  • the continuous gas supply system according to aspect 26 wherein the olefin gas is ethylene or propylene.
  • the hydrocarbon gas is an aliphatic hydrocarbon having 1 to 4 carbon atoms.
  • the purified gas contains non-hydrocarbon gas in a total amount of 5000 ppm or less.
  • the purified gas contains a non-hydrocarbon gas, and the non-hydrocarbon gas is one or more kinds of gases selected from the group consisting of oxygen, nitrogen, water, carbon monoxide, carbon dioxide, and hydrogen. 29.
  • the gas separation membrane is a composite membrane having a porous membrane and a gas separation active layer.
  • a mixed gas composed of 40% by mass of propane and 60% by mass of propylene, with a supply side gas flow rate of 190 cc / min and a permeation side gas flow rate of 50 cc / min per 2 cm 2 of membrane area,
  • the gas separation membrane has a porous membrane, and a gas separation active layer disposed on the porous membrane, At the interface between the porous membrane and the gas separation active layer, there is no dense layer, or it is substantially parallel to the interface and has a dense layer having a thickness of less than 1 ⁇ m, The dense layer has an average pore size of less than 0.01 ⁇ m, and When the average pore diameter in the depth range from the gas separation active layer to 2 ⁇ m depth of the porous membrane is A and the average pore diameter in the depth range up to 10 ⁇ m depth is B, A is 0.05 ⁇ m or more and 0.5 ⁇ m.
  • a housing a gas separation membrane having a porous membrane disposed in the housing and a gas separation active layer disposed on the porous membrane, and an adhesive portion for fixing the gas separation membrane to the housing.
  • a gas separation membrane module A humidifying mechanism for humidifying the source gas supplied to the gas separation membrane; and a dehydrating mechanism for dehydrating the gas purified by the gas separation membrane;
  • a membrane module unit A dense layer is not present at the boundary surface between the porous membrane and the gas separation active layer, or is substantially parallel to the boundary surface, and has a thickness of less than 1 ⁇ m and an average pore diameter of less than 0.01 ⁇ m.
  • A When there is a dense layer, and the average pore diameter in the depth range from the gas separation active layer side of the porous membrane to a depth of 2 ⁇ m is A, and the average pore diameter in the depth range to a depth of 10 ⁇ m is B
  • A is 0.05 ⁇ m or more and 0.5 ⁇ m or less, and A / B is greater than 0 and 0.9 or less.
  • the membrane module unit according to the above aspect 38 or 39 which is configured to give an olefin gas having a purity of 99.9% by mass or more as a purified gas.
  • the membrane module unit according to any one of aspects 38 to 40 further comprising a gas purity detection system.
  • the gas separation active layer is an amino group, pyridyl group, imidazolyl group, indolyl group, hydroxyl group, phenol group, ether group, carboxyl group, ester group, amide group, carbonyl group, thiol group, thioether group, sulfone.
  • the membrane module unit according to any one of aspects 38 to 41, which is composed of a polymer containing one or more types of functional groups selected from the group consisting of a group, a sulfonyl group, and a sulfonamide group.
  • the membrane module according to aspect 42 wherein the gas separation active layer is composed of a polymer including one or more functional groups selected from the group consisting of an amino group, a sulfone group, and a hydroxyl group. unit.
  • the polymer is a polyamine.
  • the polyamine is chitosan.
  • the gas separation membrane contains monovalent Ag and / or monovalent Cu.
  • the porous membrane contains a fluororesin.
  • a gas separation membrane module capable of maintaining a high permeation rate and high separation performance for a long period of time, particularly in separation of hydrocarbon gases such as olefins.
  • FIG. 3 is a diagram showing SEM images obtained in Examples 2-1, 2-7, 2-9, 2-10, 2-13, 3-1, 3-7, 3-9, 3-10, 3-13. is there.
  • FIG. 3 is a diagram showing SEM images obtained in Examples 2-1, 2-7, 2-9, 2-10, 2-13, 3-1, 3-7, 3-9, 3-10, 3-13. is there.
  • FIG. 3 is a diagram showing SEM images obtained in Examples 2-1, 2-7, 2-9, 2-10, 2-13, 3-1, 3-7, 3-9, 3-10, 3-13. is there. It is a figure which shows the SEM image obtained in Example 2-2, 3-2.
  • FIG. 6 is a view showing SEM images obtained in Examples 2-3, 2-4, 2-5, 3-3, 3-4, and 3-5.
  • FIG. 4 is a view showing SEM images obtained in Examples 2-8, 2-11, 3-8, and 3-11.
  • the gas separation membrane module of the present embodiment is a gas separation membrane module having a housing, a gas separation membrane disposed in the housing, and an adhesive portion that fixes the gas separation membrane to the housing.
  • the gas separation membrane is composed of a porous membrane;
  • the adhesive part is the following 1) to 6): 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • the following formula: W [(I1-I2) / I1] ⁇ 100 ⁇ where I1 is the signal intensity at the start of measurement in pulsed NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement. Is the signal strength at.
  • Attenuation rate W (%) represented by 30 ⁇ W ⁇ 100; 3)
  • the following formula: X [(V2 ⁇ V1) / V1] ⁇ 100 ⁇ wherein V1 and V2 are obtained when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D;
  • a membrane module for gas separation that satisfies at least one of the following.
  • FIG. 1 is a schematic cross-sectional view showing an example of a gas separation membrane module in which a housing has a cylindrical shape and a gas separation membrane has a hollow fiber shape.
  • the membrane module 100 of FIG. 1 is a schematic cross-sectional view showing an example of a gas separation membrane module in which a housing has a cylindrical shape and a gas separation membrane has a hollow fiber shape.
  • a hollow fiber-like gas separation membrane 6 comprising a gas separation active layer 5 on the outer surface of the hollow fiber-like porous membrane 1 is housed,
  • the gas separation membrane 6 is bonded and fixed to the housing 2 by the bonding portion 10, and
  • Both ends of the gas separation membrane 6 are not closed, and the permeate gas inlet 31, the hollow portion of the gas separation membrane 6, and the separation gas outlet 41 are configured to allow fluid to flow therethrough.
  • fluid can also flow between the gas supply port 21 and the processing gas outlet 22.
  • the hollow portion of the gas separation membrane 6 and the external space of the gas separation membrane 6 are blocked except for contact with the gas separation membrane.
  • a separation target gas for example, a mixture of olefin and paraffin
  • a component for example, a mixture of olefin and paraffin
  • a component having a high affinity with at least one of the porous membrane 1 and the gas separation active layer 5 among the gas components to be separated passes through the outer wall of the gas separation membrane 6 and the gas It is released into the space in the separation membrane 6.
  • the separation target gas components the components having low affinity with both the porous membrane 1 and the gas separation active layer 5 are discharged from the processing gas outlet 22 as purified gas.
  • the permeate gas may be supplied from the permeate gas inlet 31 of the housing 2.
  • the permeated gas is a gas having a function of allowing the separation gas to be recovered by being discharged from the separation gas outlet 41 together with the component released into the space in the gas separation membrane 6 among the gas components to be separated.
  • the housing 2, the bonding portion 4, the gas separation membrane 6, and a gas that does not react with the separation gas are suitable.
  • an inert gas can be used.
  • nitrogen etc. other than rare gases, such as helium and argon can be used, for example.
  • FIG. 2 is a schematic cross-sectional view showing an example of a gas separation membrane module in which the housing is cylindrical and the gas separation membrane is a flat membrane
  • FIG. 2 (A) is a cross-sectional view
  • FIG. 2 (B) is a longitudinal section. Is a plan view).
  • the membrane module 200 of FIG. In the cylindrical housing 2 including the permeated gas inlet 21 and the separation gas outlet 22, the gas supply port 31 and the processing gas outlet 41, and the plate member 11 for fixing the gas separation membrane 6, A flat membrane-like gas separation membrane 6 having a gas separation active layer 5 on one side of the flat membrane-like porous membrane 1 is housed.
  • the gas separation membrane 6 is bonded and fixed to the housing 2 via a plate-like member 11 by an adhesive portion 10.
  • a space through which a fluid can flow is formed between the gas supply port 21 and the processing gas outlet 22, and the space is in contact with the surface of the gas separation membrane 6 where the gas separation active layer 5 exists.
  • a space through which fluid can flow is formed between the permeate gas inlet 31 and the separation gas outlet 41, but the space is in contact with the surface of the gas separation membrane 6 where the gas separation active layer 5 does not exist.
  • the gas to be separated is introduced into the first space of the module from the gas supply port 21 and contacts the surface of the gas separation membrane 6, and the porous membrane 1 and the gas separation active layer 5. Only the separation gas having a high affinity with at least one of them passes through the gas separation membrane 6 and is released into the second space.
  • the separation target gas components the components having low affinity with both the porous membrane 1 and the gas separation active layer 5 pass through the first space as they are and are discharged from the processing gas outlet 22.
  • the permeate gas may be supplied from the permeate gas inlet 31 of the housing 2. The permeated gas is discharged from the separation gas outlet 41 together with the components released into the space in the gas separation membrane 6 among the separation target gas components.
  • the other aspect may be the same as that of the membrane module 100 of FIG.
  • the source gas in the present embodiment is a mixed gas of two or more kinds of gas components including a gas component for separation purposes.
  • Gas components for separation purposes include methane, ethane, ethylene, propane, propylene, butane, 1-butene, 2-butene, isobutane, isobutene, butadiene, monosilane, arsine, phosphine, diborane, germane, dichlorosilane, hydrogen selenide , Silicon tetrachloride, disilane, boron trifluoride, boron trichloride, hydrogen chloride, ammonia, nitrogen trifluoride, silicon tetrafluoride, Freon-218, hydrogen bromide, chlorine, chlorine trifluoride, Freon-14, CFC-23, CFC-116, CFC-32, nitrous oxide, trichlorosilane, titanium tetrachloride, hydrogen fluoride, phosphorus trifluoride, phosphorus
  • the source gas contains 50% by mass or more of a gas component for separation purpose.
  • the gas component for separation purposes is 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, and most preferably 99.5% by mass or more.
  • the purified gas in the present embodiment has a concentration of a gas component for separation of preferably 99.5% by mass or more, more preferably 99.9% by mass or more, further preferably 99.99% by mass or more, and most preferably.
  • the gas is 99.999 mass% or more.
  • the gas component for separation purposes include hydrocarbon gas.
  • the hydrocarbon gas include paraffin gas such as methane, ethane, propane, butane, and isobutane, and olefin gas such as ethylene, propylene, 1-butene, 2-butene, isobutene, and butadiene.
  • the hydrocarbon gas is an aliphatic hydrocarbon having 1 to 4 carbon atoms.
  • the main component of the purified gas is hydrocarbon gas.
  • the main component of the purified gas means the gas contained in the purified gas in the largest amount (on a mass basis).
  • the hydrocarbon gas is an olefin gas.
  • the olefin gas is ethylene or propylene.
  • the hydrocarbon gas is a gas having both carbon atoms and hydrogen atoms in the molecule.
  • the paraffin gas is a gas having no C—C unsaturated bond in the molecule.
  • the olefin gas here is a gas having a C—C unsaturated bond in the molecule.
  • Non-hydrocarbon gases such as monosilane, monosilane, arsine, phosphine, diborane, germane, dichlorosilane, hydrogen selenide, silicon tetrachloride, disilane, boron trifluoride, boron trichloride, hydrogen chloride, ammonia, nitrogen trifluoride , Silicon tetrafluoride, Freon-218, hydrogen bromide, chlorine, chlorine trifluoride, Freon-14, Freon-23, Freon-116, Freon-32, nitrous oxide, trichlorosilane, titanium tetrachloride, fluoride Examples thereof include hydrogen, phosphorus trifluoride, phosphorus pentafluoride, tungsten hexafluoride, Freon-22, Freon-123, oxygen, nitrogen, water, carbon monoxide, carbon dioxide, and hydrogen.
  • the non-hydrocarbon gas here is a gas that does not have any or both of carbon atoms and hydrogen atoms in the molecule.
  • the non-hydrocarbon gas is one or more gases selected from the group consisting of oxygen, nitrogen, water, carbon monoxide, carbon dioxide and hydrogen.
  • the non-hydrocarbon gas is water.
  • the concentration of the gas component other than the separation purpose is preferably 5000 ppm by mass or less, more preferably 1000 ppm by mass or less, still more preferably 100 ppm by mass or less, and most preferably 10 ppm by mass or less. From the viewpoint of increasing the yield of the process using the purified gas, the smaller the gas components other than the separation purpose, the better. However, substantially zero is not preferable from the viewpoint of safety.
  • hydrocarbon gas containing olefin gas is a flammable gas
  • hydrocarbon gas containing olefin gas is a flammable gas
  • the generation of static electricity that serves as an ignition source can be suppressed by containing water in addition to the hydrocarbon gas that is the gas for separation.
  • the gas component other than the separation purpose may be a gas substantially different from the separation purpose gas.
  • the gas component other than for separation purposes is a non-hydrocarbon gas.
  • the bonding portion in the gas separation membrane module of this embodiment has a function of bonding and fixing the gas separation membrane in the housing in such a manner that the gas supplied to the module can pass through the gas separation membrane. .
  • an adhesion portion in a gas separation membrane module may be deteriorated by a separation target gas (particularly a hydrocarbon-based gas) and a metal species (particularly a metal salt) that is arbitrarily added to the gas separation active layer.
  • the adhesion part in the membrane module for gas separation of this embodiment is 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • W [(I1-I2) / I1] ⁇ 100 ⁇ where I1 is the signal intensity at the start of measurement in pulsed NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement. Is the signal strength at.
  • Attenuation rate W (%) represented by 30 ⁇ W ⁇ 100; 3)
  • the following formula: X [(V2 ⁇ V1) / V1] ⁇ 100 ⁇ wherein V1 and V2 are obtained when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D;
  • the “low mobility component” of the bonded portion means a component represented by a Lorentz function as described later in the pulse NMR measurement.
  • the low mobility component is, for example, a crystalline component, a component in a glass state, or the like.
  • the inventors have shown that ordinary commercial adhesives used in the industry have a low motility component composition ratio of less than 30% and a signal strength decay rate of less than 30%.
  • the composition ratio and the attenuation rate of each of the above may cause swelling by hydrocarbon gas and penetration of metal salt, and as a result, the adhesive part swells and dissolves during use of the membrane module, and the adhesive part and We focused on the fact that separation from the gas separation membrane, collapse of the adhesion part, destruction of the housing, etc. may occur, resulting in mixing of source gas (separation target gas) and purified gas (separation gas or processing gas). .
  • setting the composition ratio V and / or the signal intensity attenuation rate W of the low mobility component in the bonded portion to 30% or more is advantageous in that the above-described problem can be avoided.
  • the composition ratio V and the attenuation factor W are preferably as high as possible.
  • the change rate X of the composition ratio V and / or the change rate Y of the attenuation rate W when the bonded portion is immersed in an aqueous silver nitrate solution or heptane is within a predetermined range. This is advantageous in that the bonded portion has good durability.
  • the composition ratio (V) of the low mobility component calculated by the pulse NMR is preferably 30% or more and 100% or less, more preferably 50% or more and 100% or less, and further 70% or more and 100% or less. Preferably, it is 90% or more and 100% or less.
  • the attenuation rate (W) with respect to the signal intensity (I1) at the start of measurement of the signal intensity (I2) at 0.05 msec after the start of measurement calculated by the pulse NMR is preferably 30% or more and 100% or less, and 60% or more and 100 % Or less is more preferable, and 90% or more and 100% or less is more preferable. Since the adhesion part where V and / or W satisfy the above values has high durability against the gas to be separated and the metal species, a highly practical gas separation membrane module can be provided.
  • the bonded portion in the gas separation membrane module is 3)
  • the rate of change X (%) when the bonded part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane is in the range of ⁇ 50% to 50%, preferably in the range of ⁇ 25% to 25%.
  • the rate of change Y (%) when the bonded portion is immersed in a 7 mol / L silver nitrate aqueous solution or heptane is in the range of ⁇ 120% to 120%, preferably in the range of ⁇ 60% to 60%. Being in; At least one, preferably both.
  • each of the change rate X and the change rate Y is within the above range both in immersion in a 7 mol / L silver nitrate aqueous solution and in heptane.
  • the composition ratio (V,%) of the low mobility component obtained by pulse NMR can be calculated by the following method.
  • a measurement apparatus for pulse NMR Minispec MQ20 manufactured by Bruker BioSpin Corporation is used, and measurement is performed with a measurement nuclide of 1H, a measurement method of a solid echo method, and an integration count of 256.
  • a glass tube with an outer diameter of 10 mm containing a measurement sample cut to a height of 1.5 cm was placed in an apparatus controlled at 190 ° C., and solid echo was detected when 5 minutes passed after installation.
  • the T2 relaxation time of 1H is measured by the method.
  • the repetition waiting time between the measurements is set to be 5 times or more of the T1 relaxation time of the sample.
  • an equation 1 consisting of a Weibull function and a Lorentz function: Perform fitting using.
  • a component expressed using the Weibull function is a low mobility component
  • a component expressed using the Lorentz function is a high mobility component.
  • M (t) is the signal intensity at a certain time t
  • Cs and Cl are the composition ratio (%) of the low motility component and the high motility component
  • Wa is the Weibull coefficient
  • Ts and Tl are the low motion. Represents relaxation times for sex and high motility components.
  • the initial value is set to 2.0, and fitting is performed so as to be 1.2 or more and 2.0 or less.
  • the composition ratio (%) of the low motility component to the sum of the low motility component and the high motility component in the above formula is defined as the composition ratio V (%) of the low motility component in the present embodiment.
  • the method for obtaining the bonded portion in which the composition ratio V and / or the attenuation factor W of the present embodiment satisfies the above values is not limited, a preferable means is to make the method for manufacturing the bonded portion appropriate. For example, if a urethane resin adhesive or an epoxy adhesive widely used in the industry is used for the adhesion part of the membrane module by a method usually used in the industry, V and / or W is the above value. It is generally difficult to satisfy the value.
  • a urethane resin adhesive usually comprises a main agent composed of a compound having a hydroxyl group and a curing agent composed of a compound having an isocyanate
  • an epoxy adhesive comprises a main agent and a curing agent composed of a compound having an epoxy group.
  • the mixing ratio of the main agent and the curing agent, the temperature rising time, and the temperature rising rate are set. It has been found that control is advantageous for the production of adhesives where V and / or W satisfy the above values. Furthermore, even in room temperature curing type and medium temperature curing type adhesives, the mixing ratio of the main agent and the curing agent, the temperature rising time, and the temperature rising rate can be controlled, or a plurality of compounds can be combined as the main agent and / or the curing agent. It has been found that the use is advantageous for the production of an adhesive part in which V and / or W satisfy the above values.
  • the structure (such as the degree of crosslinking) of the product is controlled by the above-described method, and desired V and / or W is realized.
  • the bonded portion of the gas separation membrane module is 5)
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%). Is 0.0010 ⁇ C S ⁇ 0.01; Meet.
  • an adhesion portion in a gas separation membrane module may be deteriorated by a separation target gas (particularly a hydrocarbon-based gas) and a metal species (particularly a metal salt) that is arbitrarily added to the gas separation active layer.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10
  • the sulfur atom content (C S , mass%) is 0.0010 ⁇ C S.
  • the bonded portion satisfying ⁇ 0.01 has high durability against the gas to be separated and the metal species.
  • the nitrogen atom and the sulfur atom in the bonded part are derived from at least one of the curing agent and additive of the adhesive used.
  • Ordinary commercial adhesives used in the industry contain about 10% by mass or more of nitrogen atoms and about 0.12% by mass or more of sulfur atoms.
  • the nitrogen atom and the sulfur atom may coordinate with the metal salt, respectively, and may cause a collapse of the bonded portion and eventually a housing portion. Therefore, the lower the nitrogen atom content ratio C N and the sulfur atom content ratio C s , the better.
  • the degradation activity of sulfur atoms in the bonded portion is much greater than that of nitrogen atoms. Accordingly, the content C S of sulfur atoms in bonded joints, preferably as low. However, since even reduce the value of C S too, the increase in the durability due to the reduction has a certain limit, which does not unduly to soaring manufacturing costs of the gas separation membrane module of the present embodiment, C The actual benefits of reducing the value of S to less than 0.0010% are poor.
  • the nitrogen atom content (C N ) is more preferably 0.0010% by mass to 4.0% by mass, and particularly preferably 0.0010% by mass to 0.30% by mass.
  • the content ratio of sulfur atoms (C S) is preferably 0.0010 mass% or more 0.0070% by weight or less. Since the bonding portion where C N and C S have the above values has high durability with respect to the separation target gas and the metal species, a highly practical gas separation membrane module can be provided.
  • the ratio (C N / C S ) of the nitrogen atom content ratio (C N ) and the sulfur atom content ratio (C S ) in the bonded portion is 30 or more, 600 or less is preferable.
  • the value of this ratio C N / C S is 30 or more, the content ratio of sulfur atoms in the bonded portion can be made relatively low so that intensive attacks on this portion can be made difficult. Good durability against target gas and metal species.
  • this ratio (C N / C S ) is 1,600 or less, the durability against the gas to be separated and the metal species is good.
  • the value of the ratio (C N / C S ) is more preferably 400 or less, 200 or less, or 100 or less from the viewpoint of imparting higher durability.
  • the bonded part is There is no need to be limited to specific materials.
  • fills the said value can be obtained by making the manufacturing method of an adhesion part appropriate, for example.
  • an acid anhydride epoxy resin that is not normally used in the industry can be used for the bonding portion.
  • the acid anhydride epoxy resin is a high-temperature curable resin, if it is used in an adhesive part, there are problems such as cracks due to thermal shrinkage during production and a decrease in the mechanical strength of the resin due to abnormal heat generation.
  • the acid anhydride epoxy resin is used for the bonding portion of the gas separation membrane module by examining the mixing ratio of the main agent and the curing agent, the temperature rising time at the time of curing, the temperature rising speed, and the like. As a result, it was found that the above C N , C S and C N / C S can be realized.
  • urethane resin adhesives having a high nitrogen atom content ratio (C N ) and sulfur atom content ratio (C S ) adhesives other than urethane resin adhesives and urethane resin adhesives C N , C S and C N / C described above are formed by combining a plurality of main agents and a curing agent, or by adjusting a mixing ratio of the main agent and the curing agent. S can be realized.
  • the content ratio (C N ) of nitrogen in the bonded portion is obtained by analyzing a sample of the bonded portion collected from the gas separation membrane module by a CHN coder (carbon hydrogen nitrogen simultaneous determination apparatus) method. Can be calculated.
  • the sulfur content ratio (C S ) in the bonded part can be calculated by analyzing a sample of the bonded part collected from the gas separation membrane module by an ion chromatogram method.
  • the bonded portion in the gas separation membrane module has a hardness K of 10D ⁇ K ⁇ 90D (the measurement method of hardness conforms to JISK6253 and ISO7619. The same applies to the following description in this specification. ).
  • Such an adhesion part has high durability with respect to said separation object gas and metal seed
  • the hardness K is 10D ⁇ K ⁇ 90D, preferably 30D ⁇ K ⁇ 90D, and more preferably 50D ⁇ K ⁇ 90D.
  • the hardness K is 10D or more
  • the mechanical strength is good, and the fixing between the bonded portion and the housing is good. Therefore, mixing of the raw material gas and the purified gas in the housing or the outside of the module is performed. The possibility of causing gas leakage is reduced.
  • the adhesive part rubs against the porous membrane during operation, thereby causing defects on the porous membrane and the gas separation active layer, and continuous use of the gas separation membrane module. The problem of difficulty can be avoided.
  • the bonded portion need not be limited to a specific material.
  • fills the said value can be obtained by making the manufacturing method of an adhesion part appropriate, for example.
  • urethane resin adhesives and epoxy adhesives that are widely used in the industry tend to be difficult to satisfy the above values if they are simply cured by a room temperature curing method that is a normal method in the industry.
  • Heat curing is mentioned as a method for satisfying the above values.
  • a rapid temperature increase may cause cracks in the bonded portion or abnormal decrease in the mechanical strength of the bonded portion due to abnormal heat generation.
  • the hardness K value can be satisfied by examining the mixing ratio of the main agent and the curing agent, the temperature rising time at the time of curing, the temperature rising speed, and the like, and the high temperature curable adhesive It has been found that an agent can be used as an adhesive part of a membrane module for gas separation.
  • the adhesive part is preferably formed using an adhesive having at least one of the following properties (1) to (3). More preferably, the adhesive part is formed using an adhesive having at least two physical properties of the following (1) to (3), and particularly preferably all of the physical properties of the following (1) to (3): It is formed using the adhesive agent which satisfies these.
  • the bending Young's modulus and bending strength change rate of the test piece after dipping the test piece of the bonded portion in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for 1 month are as follows. Within the range of -30% to + 30% of the value, (2) The mass change per surface area of the test piece after being immersed in a 7 mol / L silver nitrate aqueous solution or heptane for 1 month at 25 ° C. was ⁇ 30 mg as compared to that before immersion.
  • the adhesive part where the bending Young's modulus change rate and bending strength change rate after dipping the test piece of the adhesive part in a 7 mol / L silver nitrate aqueous solution or heptane is less than ⁇ 30% or greater than + 30% is in use of the membrane module. May swell, elute, or deteriorate. When deterioration of the bonded portion occurs, peeling between the bonded portion and the gas separation membrane, collapse of the bonded portion, destruction of the housing, etc. occur, and the source gas (separation target gas) and the purified gas (separation gas or processing gas) There is a risk of causing mixing.
  • an adhesive portion in which the bending Young's modulus change rate and bending strength change rate after immersion are -30% or more and + 30% or less, respectively. It is more preferable to use an adhesive portion that is ⁇ 10% or more and + 10% or less.
  • An adhesive part having a mass change per surface area larger than +30 mg / cm 2 after the test piece of the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane may swell during use of the membrane module. If swelling of the bonded portion occurs, there is a risk of peeling between the bonded portion and the gas separation membrane, collapse of the bonded portion, destruction of the housing, and the like.
  • an adhesive portion formed from an adhesive having a mass change per surface area after immersion of less than ⁇ 30 mg / cm 2 may be eluted during use of the membrane module. If the bonded portion is eluted, there is a risk that it is difficult to strictly separate the source gas and the purified gas.
  • the weight change per area to use the adhesive portion is -30mg / cm 2 or more + 30 mg / cm 2 or less, -10mg / cm 2 or more It is more preferable to use an adhesive part that is +10 mg / cm 2 or less.
  • Adhesives formed from adhesives that have a thickness change rate greater than + 5% after the test piece of the adhesive is immersed in a 7 mol / L silver nitrate aqueous solution or heptane may swell during use of the membrane module There is.
  • an adhesive part formed from an adhesive having a thickness change rate of less than ⁇ 5% after immersion may cause elution during use of the membrane module.
  • the adhesion part in the gas separation membrane module of the present embodiment preferably contains one or more selected from a cured product of an epoxy resin adhesive and a cured product of a urethane resin adhesive.
  • the said epoxy resin adhesive contains the main ingredient which consists of a compound which has an epoxy group, and a hardening
  • This epoxy resin adhesive may further contain a curing accelerator in addition to the main agent and the curing agent.
  • the urethane resin-based adhesive includes a main agent composed of a compound having a hydroxyl group and a curing agent composed of a compound having isocyanates. By curing the adhesive, an adhesive part in the membrane module of this embodiment can be obtained.
  • Examples of the epoxy group-containing compound that is the main component of the epoxy resin-based adhesive include, for example, bisphenol-based epoxy resins such as bisphenol A-type epoxy resin and bisphenol F-type epoxy resin; novolac-based epoxy resins, trisphenolmethane-based epoxy resins , Naphthalene-based epoxy resins, phenoxy-based epoxy resins, alicyclic epoxy resins, glycidylamine-based epoxy resins, glycidyl ester-based epoxy resins, and the like.
  • bisphenol-based epoxy resins are preferable from the viewpoint that the interaction between molecular chains is strong and swelling and deterioration due to the separation target gas and metal salt can be suppressed. A mixture of these resins may be used.
  • the curing agent in the epoxy resin adhesive examples include amines, polyaminoamides, phenols, and acid anhydrides. Of these, it is more preferable to use an acid anhydride. This is because a cured product of an epoxy resin adhesive obtained by using an acid anhydride as a curing agent has a strong interaction between molecular chains, and is unlikely to swell and deteriorate due to a gas to be separated and a metal salt. is there. When an acid anhydride is used as the curing agent, an acid anhydride epoxy resin is contained in the bonded portion in the obtained gas separation membrane module.
  • Acid anhydrides used as curing agents in epoxy resin adhesives include, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, glycerol tristrimethyl.
  • Aromatic acid anhydrides such as tate; Methyl-5-norbornene-2,3-dicarboxylic acid anhydride (methyl nadic anhydride), dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanic acid) anhydride Products, aliphatic acid anhydrides such as poly (phenylhexadecanic acid) anhydride; Examples include alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, hexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, and methylcyclohexene dicarboxylic acid anhydride. Any of these can be used alone, or a mixture thereof may be used.
  • Curing accelerators optionally used in epoxy resin adhesives include conventional compounds such as tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo [5,4,0] undecene-7 (DBU). And tertiary amines such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO); imidazoles, Lewis acids And Bronsted acid. Any of these can be used alone or a mixture thereof may be used.
  • DBU 1,8-diazabicyclo [5,4,0] undecene-7
  • tertiary amines such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO); imidazoles, Lewis acids And Bronsted acid. Any of these can be used alone or a mixture thereof may be used.
  • the main component of epoxy resin adhesive and the type of curing agent used are, for example, infrared spectroscopic analysis (IR), pyrolysis GC / IR, pyrolysis GC / MS, elemental analysis, time of flight. This can be confirmed by measuring by secondary ion mass spectrometry (TOF-SIMS), solid nuclear magnetic resonance analysis (solid NMR), X-ray photoelectron spectroscopy (XPS), or the like.
  • IR infrared spectroscopic analysis
  • pyrolysis GC / IR pyrolysis GC / MS
  • elemental analysis time of flight.
  • TOF-SIMS secondary ion mass spectrometry
  • solid NMR solid nuclear magnetic resonance analysis
  • XPS X-ray photoelectron spectroscopy
  • an alicyclic epoxy resin a bisphenol A epoxy resin, or a naphthalene epoxy resin
  • an alicyclic It is preferable to use a formula acid anhydride epoxy.
  • the compound having hydroxyl group is mainly composed of polyester polyol, polyether polyol, polycarbonate polyol, polybutadiene glycol, hydrocarbon polyol such as polyacryl polyol and polyisoprene polyol, and castor oil-based polyol. Including. Among these, polyacryl polyol and castor oil-based polyol are preferable from the viewpoint that interaction between molecular chains is strong and swelling and deterioration due to separation target gas and metal salt can be suppressed. Moreover, you may use the mixture of these compounds.
  • Examples of compounds having isocyanates as curing agents for urethane resin adhesives include 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as MDI), polymethylene polyphenylene polyisocyanate (hereinafter abbreviated as polymeric MDI), Aromatic polyisocyanates such as diisocyanates, or aliphatic polyisocyanates such as hexamethylene diisocyanate, and alicyclic polyisocyanates such as isophorone diisocyanate and 4,4′-methylenebis (cyclohexane isocyanate) as main components. Is mentioned.
  • MDI 4,4′-diphenylmethane diisocyanate
  • polymeric MDI polymethylene polyphenylene polyisocyanate
  • Aromatic polyisocyanates such as diisocyanates, or aliphatic polyisocyanates such as hexamethylene diisocyanate
  • alicyclic polyisocyanates such as iso
  • aliphatic polyisocyanates such as hexamethylene diisocyanate are preferable from the viewpoint that interaction between molecular chains is strong and swelling and deterioration due to the separation target gas and metal salt can be suppressed. Moreover, you may use these mixtures.
  • a catalyst used in a normal urethanization reaction may be used as necessary.
  • the catalyst include amine catalysts [triethylamine, N-ethylmorpholine, triethylenediamine, and cycloamidines described in US Pat. No.
  • the stabilizer is not particularly limited, and a known antioxidant and / or ultraviolet absorber can be used, and is usually 0 to 5% by weight, preferably 0.1 to 3% by weight based on the weight of the polyurethane resin. %used.
  • Antioxidants include phenol-based [2,6-di-t-butyl-p-cresol and butylated hydroxyanisole, etc.]; bisphenol-based [2,2′-methylenebis (4-methyl-6-t-butylphenol) Etc.]; phosphorus-based [triphenyl phosphite and diphenylisodecyl phosphite etc.] and the like.
  • ultraviolet absorbers examples include benzophenone series [2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone etc.]; benzotriazole series [2- (2′-hydroxy-5′-methylphenyl) benzotriazole etc.]; Salicylic acid type [phenyl salicylate and the like]; hindered amine type [bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and the like] and the like.
  • Other additives include anti-fusing agents and flame retardants.
  • the main component of the urethane resin adhesive and the type of curing agent used are, for example, infrared spectroscopic analysis (IR), pyrolysis GC / IR, pyrolysis GC / MS, elemental analysis, and flight time. This can be confirmed by measuring by secondary ion mass spectrometry (TOF-SIMS), solid nuclear magnetic resonance analysis (solid NMR), X-ray photoelectron spectroscopy (XPS), or the like.
  • IR infrared spectroscopic analysis
  • pyrolysis GC / IR pyrolysis GC / MS
  • elemental analysis pyrolysis GC / MS
  • flight time flight time.
  • TOF-SIMS secondary ion mass spectrometry
  • solid NMR solid nuclear magnetic resonance analysis
  • XPS X-ray photoelectron spectroscopy
  • the adhesive portion in the gas separation membrane module of the present embodiment is a material that does not substantially contain a cured product of a fluorine-based thermoplastic resin.
  • substantially does not contain means that the mass ratio of the cured product of the fluorine-based thermoplastic resin in the bonded portion is 5% by mass or less, preferably 3% by mass or less, More preferably, it is 1 mass% or less, More preferably, it is 0.1 mass% or less.
  • fluorine-based thermoplastic resin in the present embodiment examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). , Tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and the like.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • the adhesive used in the present embodiment (therefore, the bonded portion in the gas separation membrane module of the present embodiment) is further added with various additives such as a filler, an anti-aging agent, and a reinforcing agent as necessary. It may be included.
  • the gas separation membrane in the gas separation membrane module of the present embodiment has a porous membrane.
  • This gas separation membrane may have a gas separation active layer on the porous membrane, and may contain a metal salt containing monovalent Ag or monovalent Cu.
  • these metal salts are preferably present in the gas separation active layer.
  • the gas separation membrane 700 in the present embodiment includes a porous membrane 7 (which has a large number of holes 74) and a gas separation active layer 73 disposed on the porous membrane 7. And a dense layer having an average pore diameter of less than 0.01 ⁇ m is not present at the boundary surface between the porous membrane 7 and the gas separation active layer 73 or is substantially parallel to the boundary surface and has a thickness of 1 ⁇ m. There is a dense layer that is less than.
  • A is good
  • A is preferably 0.05 ⁇ m or more
  • A is preferably 0.5 ⁇ m or less.
  • the ratio A / B is larger than 0 and is preferably 0.9 or less from the viewpoint of separation performance. It is preferable from the viewpoint of separation performance that the porous membrane has a relatively small average pore diameter in a region close to the gas separation active layer side (such as the depth range 71).
  • the porous membrane in the gas separation membrane has a dense layer having a small pore diameter or a dense layer having a small pore size at the boundary surface with the gas separation active layer.
  • the layer is preferably substantially parallel to the boundary surface and has a thickness of less than 1 ⁇ m.
  • the average pore diameter of the dense layer is less than 0.01 ⁇ m.
  • the dense layer is not present on the surface of the porous membrane on the side having the gas separation active layer, or if present, the thickness of the dense layer is less than 1 ⁇ m, thereby reducing the thickness of the liquid-sealed layer. Suppressing and maintaining a high gas transmission rate.
  • the dense layer may exist on the boundary surface between the porous membrane and the gas separation active layer, or may exist on the inside of the porous membrane or on the surface opposite to the gas separation active layer.
  • the thickness of the dense layer if present, is preferably less than 1 ⁇ m.
  • the thickness of the dense layer can be determined, for example, by combining a transmission electron microscope (TEM) or a gas cluster ion gun mounted X-ray photoelectron spectroscopy (GCIB-XPS) and a scanning electron microscope (SEM). It can. Specifically, for example, the following method can be used.
  • TEM transmission electron microscope
  • GCIB-XPS gas cluster ion gun mounted X-ray photoelectron spectroscopy
  • SEM scanning electron microscope
  • the thickness of the gas separation active layer is measured.
  • TEM When using TEM, for example, the film thickness of the gas separation active layer is evaluated under the following conditions.
  • Preprocessing A gas separation membrane, for example, freeze-fractured is used as a measurement sample, and the outer surface of the sample is coated with Pt and embedded in an epoxy resin.
  • An ultrathin section is prepared by cutting with an ultramicrotome (for example, “UC-6”, manufactured by LEICA), and then stained with phosphotungstic acid, which is used as a spectroscopic sample.
  • the measurement can be performed using, for example, Hitachi TEM, type “S-5500”, at an acceleration voltage of 30 kV.
  • GCIB-XPS When GCIB-XPS is used, the film thickness of the gas separation active layer can be known from the obtained distribution curve of relative element concentration.
  • GCIB-XPS can be performed under the following conditions using, for example, the format “VersaProbeII” manufactured by ULVAC-PHI. (GCIB conditions) Acceleration voltage: 15 kV Cluster size: Ar 2500 Cluster range: 3mm x 3mm Sample rotation during etching: Exist Etching interval: 3 minutes / level Sample current: 23 nA Total etching time: 69 minutes (XPS conditions) X-ray: 15kV, 25W Beam size: 100 ⁇ m
  • the thickness of the dense layer is evaluated.
  • the thickness of the dense layer can be evaluated from the thickness of the gas separation active layer determined in (i) above and the SEM image.
  • the SEM is evaluated under the following conditions.
  • a gas separation membrane freeze-fractured on a surface substantially perpendicular to the boundary surface between the porous membrane and the gas separation active layer is used as a measurement sample, and a platinum coating is applied to the cross section of the sample to obtain a sample for a speculum.
  • the measurement is performed at an acceleration voltage of 20 kV using, for example, SEM, “Carry Scope (JCM-5100)” manufactured by JEOL. On the observation screen with a magnification of 10,000 times, the pore diameters other than the gas separation active layer determined in (i) are observed, and the thickness of the layer composed of pores of less than 0.01 ⁇ m is determined.
  • the average pore diameter of the porous membrane from the boundary surface between the porous membrane and the gas separation active layer to the depth of 2 ⁇ m in the vertical direction is A and the average pore diameter of the porous membrane up to the depth of 10 ⁇ m is B
  • A is 0.
  • the ratio A / B is greater than 0 and less than or equal to 0.9.
  • the porous membrane is preferably as large as possible.
  • the pore diameter exceeds 0.5 ⁇ m, it becomes difficult to form the gas separation active layer without defects.
  • the average pore diameter A is preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more.
  • the gas separation active layer can be formed without defects by setting the average pore diameter A to 0.5 ⁇ m or less.
  • the average pore diameter B may be 0.06 ⁇ m or more and 5 ⁇ m or less. Preferably, it is 0.1 ⁇ m or more and 3 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 1 ⁇ m or less.
  • a / B is more preferably 0.6 or less. More preferably, it is 4 or less.
  • the average pore diameters A and B can be determined by the following evaluation, for example.
  • the number of holes traversed by the 10 lines in the vertical and horizontal directions is 20 or more.
  • the average pore diameter B in the depth range (reference numeral 72 in FIG. 3) from the boundary surface between the porous membrane and the gas separation active layer to the depth of the porous membrane of 10 ⁇ m is calculated.
  • the calculation of the average pore diameter B can be performed by the same method as the above (ii) except that the measurement range is changed.
  • the material of the porous film is not particularly limited as long as it has sufficient corrosion resistance to the source gas and sufficient durability at the operation temperature and operation pressure, but it is preferable to use an organic material.
  • the organic material constituting the porous film examples include polyethersulfone, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), homopolymers such as polyimide, polybenzoxazole, and polybenzimidazole, or these A copolymer or the like is preferable, and any of these can be used alone or those formed from a mixture thereof can be preferably used.
  • the fluorine-based resin has high durability in a hydrocarbon atmosphere, and the resulting porous film has good workability. From these viewpoints, PVDF is most preferable.
  • the shape of the porous membrane may be a flat membrane shape, a hollow fiber shape, or a pleated shape.
  • the inner diameter is appropriately selected depending on the amount of the raw material gas.
  • the inner diameter of the hollow fiber support is generally selected between 0.1 mm and 20 mm. .
  • the inner diameter of the hollow fiber support is preferably 0.2 mm to 15 mm.
  • the outer diameter of the hollow fiber support is not particularly limited, but can be appropriately selected in consideration of the inner diameter of the hollow fiber support from the viewpoint of ensuring a thickness that can withstand the pressure difference between the inside and outside of the hollow fiber.
  • the gas separation active layer is disposed on the porous membrane in order to improve gas separation performance.
  • the gas separation active layer has at least an amino group, a pyridyl group, a group having an imidazole skeleton, a group having an indole skeleton, a hydroxyl group, a hydroxyphenyl group, a group having an ether structure, a carboxyl group, and an ester in a repeating unit in the molecule.
  • a gas-separable polymer containing at least one of a group having a structure, an amide group, a carbonyl group, a thiol group, a group having a thioether structure, a sulfonyl group, a sulfonamide group and the like.
  • the metal species (especially metal salt) optionally contained in the gas separation active layer can be dispersed at a high concentration, and the resulting gas separation membrane Can be suitably applied to, for example, separation of olefin and paraffin.
  • the presence or absence of the functional group can be confirmed by elemental analysis, time-of-flight secondary ion mass spectrometry (TOF-SIMS), solid nuclear magnetic resonance analysis (solid NMR), X-ray photoelectron spectroscopy (XPS), or the like.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • solid NMR solid nuclear magnetic resonance analysis
  • XPS X-ray photoelectron spectroscopy
  • the gas separation active layer is preferably composed of at least a polymer having a repeating unit containing an amino group, and more preferably composed of polyamines. This is because the amino group of polyamines has a relatively weak interaction with the metal species (especially metal salts) optionally contained in the gas separation active layer, so the metal species and the gas to be separated (especially olefins). This is because it is possible to suppress a decrease in the interaction between and.
  • the presence of amino groups in the gas separation active layer can be confirmed by, for example, infrared spectroscopy.
  • the polyamine is preferably a gel polymer, and more preferably a crystalline polymer.
  • Polyamines which are crystalline polymers, can uniformly disperse metal species (especially metal salts) optionally contained in the gas separation active layer at a high concentration and impart good durability to the gas separation membrane. This is because it can.
  • Such polyamines include chitosan. Chitosan here is composed of ⁇ -1,4-N-glucosamine and ⁇ -1,4-N-acetylglucosamine having repeating units, and the proportion of ⁇ -1,4-N-glucosamine in the repeating units is 70 mol% or more.
  • the polyamine may be chemically modified with a functional group.
  • the functional group is preferably at least one group selected from the group consisting of, for example, an imidazolyl group, an isobutyl group, and a glyceryl group.
  • the number average molecular weight of the polyamine is preferably 100,000 or more and 3,000,000 or less, and more preferably 300,000 or more and 1,500,000 or less, from the viewpoint of achieving a good balance between gas separation performance and permeability.
  • the number average molecular weight is a value obtained by measuring by size exclusion chromatography using pullulan as a standard substance.
  • the presence of chitosan in the gas separation active layer can be confirmed by, for example, time-of-flight secondary ion mass spectrometry (TOF-SIMS), argon gas cluster ion gun mounted X-ray photoelectron spectroscopy (GCIB-XPS), or the like.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • GCIB-XPS argon gas cluster ion gun mounted X-ray photoelectron spectroscopy
  • the gas separation active layer in the membrane module for gas separation of the present embodiment may contain a substance having an affinity for the separation target gas (particularly olefin).
  • the obtained gas separation membrane can be applied to, for example, separation of olefin and paraffin.
  • the substance having affinity for olefins include metal salts.
  • this metal salt a metal ion selected from the group consisting of monovalent silver (Ag + ) and monovalent copper (Cu + ), or a metal salt containing a complex ion thereof is preferable.
  • Ag + or Cu + or a complex ion thereof and F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CN ⁇ , NO 3 ⁇ , SCN ⁇ , ClO 4 ⁇ , CF 3 SO 3 ⁇ , BF 4 ⁇ , and PF 6 - is comprised metal salt and an anion selected from the group consisting of.
  • the concentration of the metal salt in the gas separation active layer is preferably 10% by mass to 70% by mass, more preferably 30% by mass to 70% by mass, and still more preferably 50% by mass to 70% by mass. If the concentration of the metal salt is too low, practical gas separation performance cannot be obtained, and if the concentration of the metal salt is too high, the manufacturing cost of the membrane module for gas separation increases. The above concentration is preferable in consideration of the balance between the two.
  • the gas separation active layer may be on both sides of the porous membrane or only on one side.
  • the gas separation active layer may be only on the outer surface of the hollow fiber, may be only on the inner surface, or both the outer surface and the inner surface. It may be on the surface.
  • the membrane module for gas separation of this embodiment is provided with a housing.
  • the housing may have any structure and shape as long as it can house at least a gas separation membrane.
  • a cylindrical shape or a box shape is possible.
  • the housing preferably has a gas inlet and a gas outlet for allowing a gas to flow in each of the space to which the surface side of the porous membrane belongs and the space to which the back side of the porous membrane belongs, separated by the adhesive layer.
  • the material which comprises a housing has sufficient corrosion resistance with respect to separation object gas, and has sufficient durability in an operating temperature and an operating pressure, it can select and use without being specifically limited. Examples of such materials include metals and synthetic resins.
  • the size of the housing can be appropriately set according to the size of the gas separation membrane housed therein, the gas separation processing capacity, and the like.
  • the membrane module for gas separation of this embodiment as described above can be suitably used for separation of olefin and paraffin, for example.
  • a mixed gas composed of 40% by mass of propane and 60% by mass of propylene is used, the supply side gas flow rate per 2 cm 2 of the membrane area is 190 cc / min, the permeation side gas flow rate is 50 cc / min, and the humidified atmosphere.
  • the permeation rate of propylene gas measured at 30 ° C. by the lower isobaric formula is preferably 10 GPU or more and 3,000 or less, more preferably 50 GPU or more and 2,000 GPU or less, and further preferably 100 GPU or more and 2,000 GPU or less. is there.
  • the separation factor of propylene / propane is preferably 50 or more and 1,000 or less, more preferably 100 or more and 1,000 or less, and further preferably 150 or more and 1,000 or less. These values are measured under conditions of a propylene partial pressure of 1 atm or less, specifically 0.6 atm.
  • the manufacturing method of the membrane module for gas separation of this embodiment is: A method for producing a membrane module for gas separation, comprising adhering and fixing a gas separation membrane having a porous membrane in a housing with an adhesive, 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • the following formula: W [(I1-I2) / I1] ⁇ 100 ⁇ where I1 is the signal intensity at the start of measurement in pulsed NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement. Is the signal strength at.
  • Attenuation rate W (%) represented by 30 ⁇ W ⁇ 100; 3)
  • the following formula: X [(V2 ⁇ V1) / V1] ⁇ 100 ⁇ wherein V1 and V2 are obtained when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D; It is a manufacturing method of the membrane module for gas separation which satisfy
  • the manufacturing method of the gas separation membrane module of the present embodiment will be described in more detail below, taking as an example the case of using a hollow fiber gas separation membrane.
  • the gas separation membrane module of this embodiment includes the following steps: A porous membrane production process for producing a porous membrane; A coating liquid production process for producing a coating liquid comprising an aqueous solution containing a gas separating polymer that forms the gas separation active layer; A coating step of coating the coating liquid on the surface of the porous membrane; And a step of immersing a part of the porous film in the adhesive and then curing the adhesive to produce an adhesive part that is a cured product of the adhesive; including. Before the coating step, an impregnation step of impregnating the porous membrane into the viscous aqueous solution may be included. You may perform the drying process for drying and removing the solvent in a coating liquid from the porous film after the said coating.
  • porous membrane manufacturing process First, a method for producing a porous membrane preferably used in this embodiment will be described.
  • the porous membrane can be obtained by a non-solvent induced phase separation method or a thermally induced phase separation method.
  • the case where the PVDF hollow fiber membrane is manufactured by the non-solvent induced phase separation method will be described.
  • PVDF is dissolved in a solvent to prepare a PVDF solution.
  • the molecular weight of PVDF used in the present embodiment is preferably 2,000 or more and 100,000 or less, more preferably 10,000 or more and 50,000, as the number average molecular weight in terms of polystyrene measured by size exclusion chromatography. It is as follows. If the molecular weight is too low, it may cause problems such as not exhibiting high practical durability; conversely, if the molecular weight is too large, the production of the porous film becomes difficult. This is because it may occur.
  • the concentration of PVDF in the PVDF solution is preferably 15% by mass or more and 50% by mass or less, and more preferably 20% by mass or more and 35% by mass or less. If the concentration of PVDF is too low, it may cause problems such as not showing durability with high practicality; conversely, if the concentration of PVDF is too high, the production of the porous film becomes difficult. This is because problems such as the above may occur.
  • the solvent for the PVDF solution examples include good solvents such as N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, and dimethyl sulfoxide; poor solvents such as glycerin, ethylene glycol, triethylene glycol, polyethylene glycol, and nonionic surfactants.
  • a solvent is used.
  • the mass ratio of the good solvent / the poor solvent in the PVDF solution is from 97/3 to 40 / in consideration of increasing the stability when the PVDF solution is used as a spinning dope, making it easy to obtain a homogeneous membrane structure, and the like. 60 is preferable.
  • the PVDF solution is discharged from the outer slit of the double tubular nozzle, and the core liquid is discharged from the center hole.
  • the core liquid water or a mixed liquid of water and a good solvent can be used.
  • the discharge amount of the core liquid is preferably 0.1 times or more and 10 times or less, more preferably 0.2 times or more and 8 times or less, with respect to the discharge amount of the PVDF solution that is the spinning raw solution.
  • the spinning dope discharged from the nozzle is passed through the aerial traveling section, and then immersed in a coagulation tub to cause coagulation and phase separation to form a hollow fiber membrane.
  • a coagulation liquid in the coagulation layer for example, water can be used.
  • the wet hollow fiber membrane pulled up from the coagulation tub is washed with a washing tub in order to remove the solvent and the like, and then dried through a dryer.
  • a hollow fiber-like porous membrane can be obtained as described above.
  • the porous membrane obtained as described above may be used as it is for the next coating step, or after being subjected to an impregnation step for impregnating the porous membrane in a viscous aqueous solution. Also good.
  • the viscosity of the viscous aqueous solution is preferably 1 cP or more and 200 cP or less, more preferably 5 cP or more and 150 cP or less, and further preferably 10 cP or more and 100 cP or less. If the viscosity of the viscous aqueous solution is less than 1 cP, there may be a problem that the effect of using the viscous aqueous solution is not achieved. Conversely, if the viscosity of the viscous aqueous solution exceeds 200 cP, the viscous aqueous solution becomes porous. This is because problems such as insufficient impregnation of the membrane may occur.
  • a substance mixed with water at an arbitrary ratio can be used.
  • glycol, glycol ether and the like are preferably used.
  • the glycol include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, and polyethylene glycol.
  • the glycol ether include ethylene glycol monomethyl ether and ethylene glycol monoethyl ether.
  • Ethylene glycol monobutyl ether ethylene glycol isopropyl ether, ethylene glycol dimethyl ether, 3-methyl 3-methoxybutanol, ethylene glycol t-butyl ether, 3-methyl 3-methoxybutanol, 3-methoxybutanol, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, Triethylene glycol Methyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol propyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, and the like, respectively.
  • it is at least one selected from glycerin, ethylene glycol, and propylene glycol. These solutes may be used alone or in combination.
  • the concentration of the solute in the viscous aqueous solution is preferably 10% by mass or more and 90% by mass or less, and more preferably 20% by mass or more and 80% by mass or less.
  • a viscous aqueous solution can be prepared by mixing the solute with water in this range and adjusting to the above viscosity range.
  • the pH of the viscous aqueous solution is preferably 4 or more and 10 or less, and more preferably 5 or more and 9 or less. This is because the porous membrane may not be sufficiently impregnated with the viscous aqueous solution even when the pH of the viscous aqueous solution is too low or too high.
  • the immersion temperature when the porous membrane is immersed in the viscous aqueous solution is preferably 0 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 80 ° C. or lower. If the immersion temperature is less than 0 ° C., there may be a problem that the porous membrane is not sufficiently impregnated with the viscous aqueous solution; conversely, if the immersion temperature exceeds 100 ° C., the viscous aqueous solution is used during the immersion. This is because the solvent (water) inside may cause problems such as excessive volatilization.
  • the immersion time is preferably 15 minutes to 5 hours, more preferably 30 minutes to 3 hours. If the immersion time is less than 15 minutes, the porous membrane may not be sufficiently impregnated. If the immersion time exceeds 5 hours, the production efficiency of the gas separation membrane may be reduced. It may cause problems such as falling.
  • the gas separation active layer can be formed by bringing the coating liquid into contact with the porous membrane.
  • Examples of the contact method include coating by a dip coating method (dipping method), a doctor blade coating method, a gravure coating method, a die coating method, a spray coating method, and the like. The case where a gas separation active layer is formed by bringing chitosan into contact by the dip coating method will be described below.
  • a chitosan coating solution is prepared. Chitosan is dissolved in an aqueous solvent to obtain a chitosan coating solution.
  • the concentration of chitosan is preferably 0.2% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 5% by mass or less. When the chitosan concentration is less than 0.2% by mass, a highly practical gas separation membrane may not be obtained.
  • the chitosan used in this embodiment may be chemically modified.
  • the chitosan coating liquid may contain an organic solvent in a range of 80% by mass or less with respect to the total amount of the solvent.
  • organic solvent used here include alcohols such as methanol, ethanol and propanol, polar solvents such as acetonitrile, acetone, dioxane and tetrahydrofuran. These organic solvents may be used alone or in combination of two or more.
  • the chitosan coating solution may contain 10% by mass or less of a surfactant with respect to the total amount of the solution in order to improve the wettability to the porous film.
  • the surfactant is a nonionic surfactant from the viewpoint of not electrostatically repelling with the material forming the gas separation active layer, and being uniformly dissolved in any of acidic, neutral, and basic aqueous solutions. Is preferably used.
  • nonionic surfactants include long-chain fatty acid esters of polyoxyethylene, fluorine surfactants having a perfluoro group, and the like. Specific examples thereof include polyoxyethylene long-chain fatty acid esters such as Tween 20 (polyoxyethylene sorbitan monolaurate), Tween 40 (polyoxyethylene sorbitan monopalmitate), Tween 60 (polyoxyethylene sorbitan monostearate).
  • fluorine surfactants having a perfluoro group include fluorine-based compounds Surfactants FC-4430, FC-4432 (above 3M), S-241, S-242, S-243 (above AGC Seimi Chemical), F-444, F-477 (above, DIC) Etc.); It can be mentioned are.
  • a viscous solute of 20% by mass or less may be added to the chitosan coating solution with respect to the total amount of the solution.
  • the viscous solute glycol, glycol ether or the like is preferably used.
  • the glycol include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, and polyethylene glycol.
  • the glycol ether include ethylene glycol monomethyl ether and ethylene glycol monoethyl ether.
  • Ethylene glycol monobutyl ether ethylene glycol isopropyl ether, ethylene glycol dimethyl ether, 3-methyl 3-methoxybutanol, ethylene glycol t-butyl ether, 3-methyl 3-methoxybutanol, 3-methoxybutanol, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, Triethylene glycol Methyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol propyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, and the like, respectively.
  • it is at least one selected from glycerin, ethylene glycol, and propylene glycol. These solutes may be used alone or in combination of two or more.
  • the temperature of the coating liquid when contacting with the porous membrane is preferably 0 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 80 ° C. or lower. If the contact temperature is less than 0 ° C, the coating solution may not be uniformly coated on the porous membrane; conversely, if the contact temperature exceeds 100 ° C, coating may occur during contact. There may be a problem that the solvent of the liquid (for example, water) volatilizes excessively.
  • the contact time is preferably 15 minutes to 5 hours, more preferably 30 minutes to 3 hours. If the contact time is less than 15 minutes, problems such as insufficient coating on the porous membrane may occur; conversely, if the contact time exceeds 5 hours, the production efficiency of the gas separation membrane May cause problems such as falling.
  • a drying step may optionally be provided after the coating step.
  • the porous film after coating is preferably 80 ° C. or higher and 160 ° C. or lower, more preferably 120 ° C. or higher and 160 ° C. or lower, preferably 5 minutes or longer and 5 hours or shorter, more preferably 10 ° C.
  • it can be carried out by a method of standing for 3 to 3 hours. This is because when the drying temperature is excessively low (less than 80 ° C.), the drying time is excessively short (less than 5 minutes), or both, the solvent cannot be sufficiently removed by drying. Conversely, if the drying temperature is too high (above 160 ° C.) or the drying time is too long (over 5 hours) or both, This is because problems such as an increase and a decrease in production efficiency may occur.
  • the gas separation membrane in which the gas separation active layer contains a metal salt can be produced by further contacting the gas separation membrane obtained as described above with a metal salt aqueous solution containing a desired metal salt. . Thereafter, a drying step may optionally be performed.
  • the concentration of the metal salt in the metal salt aqueous solution is preferably 0.1 mol / L or more and 50 mol / L or less.
  • concentration of the metal salt in the metal salt aqueous solution is less than 0.1 mol / L, the obtained gas separation membrane may not exhibit a highly practical separation performance when used for separation of olefin and paraffin. .
  • this concentration exceeds 50 mol / L, inconveniences such as an increase in raw material cost occur.
  • the contact treatment of the gas separation membrane with the aqueous metal salt solution is preferably performed by an immersion method.
  • the aqueous solution temperature during immersion is preferably 10 ° C. or higher and 90 ° C. or lower, and more preferably 20 ° C. or higher and 80 ° C. or lower. If the immersion temperature is less than 10 ° C., there may be a problem that the metal separation in the gas separation active layer is not sufficiently impregnated; conversely, if the immersion temperature exceeds 90 ° C., Problems such as excessive volatilization of the solvent (water) of the metal salt aqueous solution may occur.
  • the gas separation membrane of this embodiment can be manufactured by the above manufacturing conditions.
  • the gas separation membrane module of the present embodiment only one hollow fiber gas separation membrane may be used, or a plurality of them may be used collectively. In the case of using a plurality of pieces collectively, the number used is preferably 10 or more and 100,000 or less, and more preferably 10,000 or more and 50,000 or less. When the number is 10 or more, the productivity of the gas separation membrane module is high.
  • the structure and shape of the hollow fiber bundle can be appropriately designed according to the purpose.
  • Adhesion production process After the hollow fiber or hollow fiber bundle manufactured as described above is housed in the housing, a predetermined amount of adhesive is injected into both ends of the yarn or thread bundle and cured to form an adhesive portion.
  • the adhesive for example, a two-component adhesive (for example, the above-described epoxy resin adhesive or urethane resin adhesive) can be used.
  • the weight ratio of the main agent to be mixed and the curing agent is preferably 30/70 or more and 70/30 or less, more preferably 40/60 or more and 60/40 or less, and still more preferably 45 / It is 55 or more and 55/45 or less. This is because if either the ratio of the main agent and the curing agent is too low, curing failure or abnormal heat generation during curing occurs. Further, since the main agent or the curing agent volatilizes during the curing, it is desirable to set the ratio in consideration of the curing temperature and the heating rate. Moreover, you may use a main ingredient and a hardening
  • the mixed liquid of the main agent and the curing agent which has been degassed, is poured into the end of the yarn or yarn bundle and heated. By heating, the mixed solution is cured to form a cured portion.
  • the hardened portion has a structure that can withstand the continuous use of the gas separation membrane module (for example, it is cross-linked).
  • the injection may be performed at once or divided into a plurality of times. By injecting a plurality of times, abnormal heat generation during curing can be suppressed.
  • the hardened portion may be divided by a partition plate.
  • the mixed solution may be preheated in advance. Preheating may be performed in an air atmosphere or in an inert atmosphere (for example, in a nitrogen atmosphere). Moreover, in order to prevent decomposition
  • the rate of temperature rise after injection is preferably 0.5 ° C./min or more and 20 ° C./min or less, and more preferably 1 ° C./min or more and 10 ° C./min or less. If the rate of temperature increase is too fast, cracks may occur due to abnormal heat generation.
  • the curing temperature may be controlled by stepwise temperature increase and stepwise temperature decrease.
  • the gas separation membrane module in the present embodiment can be obtained by cutting the end portion of the bonded portion of the yarn or yarn bundle. And it can use for an actual use by mounting
  • the present embodiment also includes a continuous gas supply system 800 including at least a raw material gas inlet 81, a raw material gas purification unit 8 that purifies the raw material gas to generate a purified gas, and a purified gas outlet 82.
  • the raw material gas purification unit 8 includes at least one selected from the group consisting of a gas separation membrane module, an adsorbate filling module, and an absorbent filling module.
  • the raw material gas introduced into the continuous gas supply system from the raw material gas inlet 81 is refined to a desired purity (preferably 99.5% by mass or more) by the raw material gas refining unit 8, and then passes through a purified gas outlet 82.
  • the purified gas outlet 82 is also a high purity gas supply port.
  • the gas supply port of the housing may be used as the raw material gas inlet, and the separation gas outlet of the housing may be used as the purified gas outlet.
  • the gas purification unit 8 in the present embodiment includes at least one of a gas separation membrane module, an adsorbate filling module, and an absorbent filling module.
  • any mechanism module may be used as long as the raw material gas is purified while flowing, and is taken out and supplied as a purified gas. Is preferred.
  • the membrane module for gas separation those disclosed in the present disclosure can be suitably used.
  • a membrane module unit may be used instead of the gas separation membrane module.
  • the adsorbate filling module in this embodiment has at least an adsorption tank.
  • the adsorption tank in this embodiment has at least a gas introduction pipe and a gas lead-out pipe, and adsorbs a gas for separation purpose on the adsorbent.
  • An adsorbent is received inside the adsorption tank.
  • the introduced gas is purified to a desired purity while repeating the steps of adsorption, pressure equalization, desorption, washing, and pressure increase.
  • the gas introduction pipe is open in the adsorption tank, and introduces the pressurized source gas into the tank.
  • the gas outlet pipe leads the purified gas out of the tank.
  • the adsorbent include alumina, silica, zeolite, and porous MOF (Metal Organic Framework) in which metal ions and organic ligands are combined.
  • the absorbent filling module in the present embodiment includes an absorption tower and a diffusion tower.
  • the absorption tower in the present embodiment has at least a tower body, a gas introduction pipe, an absorption liquid outlet pipe, and a gas outlet pipe, and contacts and absorbs the raw material gas with an absorbent (typically an absorption liquid).
  • the tower body is a sealed container in which an absorbent (typically an absorbing liquid) is received.
  • Absorbents when the separation target gas is an olefin include metal salt aqueous solutions, polyethylene glycol solutions, cuprous chloride aqueous solutions, and ionic liquids such as imidazolium compounds and pyridinium compounds.
  • Metal salts are preferred.
  • a metal ion selected from the group consisting of monovalent silver (Ag + ) and monovalent copper (Cu + ), or a metal salt containing a complex ion thereof is preferable.
  • Ag + or Cu + or a complex ion thereof and F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CN ⁇ , NO 3 ⁇ , SCN ⁇ , ClO 4 ⁇ , CF 3 SO 3 ⁇ , BF 4 ⁇ , and PF 6 - is comprised metal salt and an anion selected from the group consisting of.
  • Ag (NO 3 ) is particularly preferable from the viewpoint of availability and product cost.
  • Examples of the absorbent when the separation target gas is carbon dioxide include compounds containing nitrogen atoms in the molecule (for example, monoethanolamine) and solutions thereof, and ionic liquids such as imidazolium compounds and pyridinium compounds. .
  • the open end of the gas introduction pipe is open at the lower part of the absorbent in the tower body, and the raw material gas is introduced into the absorption tower.
  • the end part of the absorbent outlet part is open in the absorbent in the tower body, and the absorbent in the absorbent tower is led out of the tower.
  • the gas that has not been absorbed is led out of the tower through a gas lead-out pipe in the gas layer inside the tower body.
  • the diffusion tower in this embodiment has at least a tower body, an absorption liquid introduction pipe, a gas extraction pipe, and an absorption liquid extraction pipe, and diffuses the gas absorbed in the absorption liquid.
  • the stripping tower is equipped with a temperature maintaining device in order to maintain the absorbing liquid at a desired temperature.
  • the end of the absorption liquid introduction pipe is open at the lower part of the diffusion tower, and the absorption liquid derived from the absorption tower is introduced into the diffusion tower.
  • the end portion of the gas outlet pipe is opened at the inner layer of the diffusion tower, and the purified gas released from the absorbent is led out of the tower.
  • the end of the absorption liquid outlet pipe is opened at the lower part inside the diffusion tower, and the absorption liquid from which the purified gas has been released is led out of the tower.
  • a suitable example of the continuous gas supply system of the present embodiment includes a raw material gas inlet, a raw material gas purification unit that purifies the raw material gas to generate a purified gas, and a purified gas outlet, and the purified gas purity is 99.5% by mass.
  • the above is a continuous gas supply system in which the raw material gas purification unit is constituted by a gas separation membrane module, and the gas separation membrane module has the following requirements a) and / or b): a) In a gas separation membrane having a porous membrane and a gas separation active layer on the porous membrane, there is no dense layer at the boundary surface between the porous membrane and the gas separation active layer, or the boundary A dense layer that is substantially parallel to the surface and has a thickness of less than 1 ⁇ m, the average pore diameter of the dense layer is less than 0.01 ⁇ m, and from the gas separation active layer side of the porous membrane to a depth of 2 ⁇ m When the average pore diameter in the depth range of A is A and the average pore diameter in the depth range up to 10 ⁇ m is B, A is 0.05 ⁇ m or more and 0.5 ⁇ m or less, and the ratio A / B is greater than 0 and less than 0.
  • the adhesion part in the membrane module for gas separation is 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • the following formula: W [(I1-I2) / I1] ⁇ 100 ⁇ where I1 is the signal intensity at the start of measurement in pulsed NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement. Is the signal strength at.
  • Attenuation rate W (%) represented by 30 ⁇ W ⁇ 100; 3)
  • the following formula: X [(V2 ⁇ V1) / V1] ⁇ 100 ⁇ wherein V1 and V2 are obtained when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D; Satisfying at least one of And the following mechanisms c) and d): c) a humidifying mechanism for humidifying the source gas supplied to the membrane module; d) Dehydration mechanism installed at the rear stage of the membrane module; A continuous gas supply system.
  • this embodiment also provides a membrane module unit comprising the membrane module for gas separation of the present disclosure.
  • the membrane module unit 900 of this embodiment includes the following mechanisms a), b), and c), and satisfies the requirements of at least one of d) and e). Organic impurities can be effectively removed over a long period of time.
  • Gas separation membrane module 9 having a housing, a gas separation membrane having a porous membrane and a gas separation active layer disposed on the porous membrane, and an adhesive portion for fixing the gas separation membrane to the housing , b) a humidifying mechanism 91 for humidifying the source gas supplied to the gas separation membrane; c) a dehydration mechanism 92 for dehydrating the gas purified by the gas separation membrane; d)
  • the gas separation membrane constituting the membrane module for gas separation is a gas separation membrane having a gas separation active layer on a porous membrane, and a dense surface is formed on the boundary surface between the porous membrane and the gas separation active layer.
  • A is 0.05 ⁇ m or more and 0.5 ⁇ m or less
  • the ratio A / B is greater than 0 and 0 .9 or less
  • the adhesion part in the membrane module for gas separation is 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • W [(I1-I2) / I1] ⁇ 100 ⁇ where I1 is the signal intensity at the start of measurement in pulsed NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D; Satisfy at least one of the following.
  • the membrane module unit of this embodiment includes a humidification mechanism. It is preferable that the humidification mechanism is placed in front of the gas separation membrane module or inside the gas separation membrane module.
  • An example of a humidifying mechanism placed in front of the gas separation membrane module is a bubbler. By bubbling the raw material gas into water, moisture at a temperature corresponding to the bubbler temperature is entrained in the gas.
  • Examples of the humidifying mechanism placed inside the gas separation membrane module include a mechanism in which an aqueous solution is filled on the gas separation active layer side of the gas separation membrane, and a mechanism in which a spray nozzle that supplies a mist shower to the housing is provided. By providing the humidification mechanism, inorganic impurities in the raw material gas can be dissolved in water.
  • the membrane module unit of this embodiment includes a dehydrating mechanism at the rear stage of the gas separation membrane module.
  • the dehydration mechanism include mist separators and adsorbents such as alumina and zeolite.
  • the membrane module unit of the present embodiment preferably includes a gas purity detection system capable of measuring purified gas purity online in the system.
  • gas purity detection system include a gas chromatograph mass spectrometer, a gas chromatograph hydrogen flame ionization detector, a gas chromatograph thermal conductivity detector, a gas chromatograph flame photometric detector, and an ion chromatography.
  • a preferred example of the membrane module unit of the present embodiment is a gas purification system having a gas separation membrane module, a humidifying mechanism, and a dehydrating mechanism, is a gas flow type, and has a purified gas purity of 99.5% by mass or more.
  • the membrane module unit is a membrane module unit that satisfies the following requirements a) and / or b).
  • A is 0.05 ⁇ m or more and 0.5 ⁇ m or less
  • the ratio A / B is greater than 0 and less than 0.
  • the adhesion part in the membrane module for gas separation is 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • the following formula: W [(I1-I2) / I1] ⁇ 100 ⁇ where I1 is the signal intensity at the start of measurement in pulsed NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement. Is the signal strength at.
  • Attenuation rate W (%) represented by 30 ⁇ W ⁇ 100; 3)
  • the following formula: X [(V2 ⁇ V1) / V1] ⁇ 100 ⁇ wherein V1 and V2 are obtained when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D; Satisfy at least one of the following.
  • the membrane module unit is configured to give an olefin gas having a purity of 99.9% by mass or more as a purified gas.
  • Preferred embodiments of the membrane module unit include an amino group, pyridyl group, imidazolyl group, indolyl group, hydroxyl group, phenol group, ether group, carboxyl group, ester group, amide group, carbonyl group, thiol group, thioether group, sulfone group, It has a gas separation active layer composed of a polymer containing one or more functional groups selected from the group consisting of a sulfonyl group and a sulfonamide group.
  • the gas separation active layer is composed of a polymer containing one or more functional groups selected from the group consisting of amino groups, sulfone groups, and hydroxyl groups.
  • the polymer is a polyamine.
  • the polyamine is chitosan.
  • the membrane module unit of a preferred embodiment has a gas separation membrane containing monovalent Ag and / or monovalent Cu.
  • Preferred embodiments of the membrane module unit have a porous membrane containing a fluororesin.
  • the fluororesin is preferably PVDF.
  • a mixed gas composed of 40% by mass of propane and 60% by mass of propylene is used, the supply side gas flow rate per 2 cm 2 of membrane area is 190 cc / min, and the permeation side gas flow rate is set.
  • the propylene / propane separation factor is preferably 50 or more and 100,000 or less, measured at 30 ° C. at 50 cc / min and isobaric under a humidified atmosphere.
  • the present embodiment also provides a method for producing an olefin gas having a purity of 99.5% by mass or more using the continuous gas supply system or the membrane module unit described above.
  • the olefin gas may be propylene for CVD supply, for example.
  • Adhesives A to N were used as the adhesives, respectively, and the mixing ratio of the main agent and the curing agent and the curing conditions were as shown in Table 1 to prepare a plate-like body made of a cured product of each adhesive.
  • the adhesives A, B, C, and F used are the product names HV / ME-562 manufactured by Bernox, D is the product name HV / ME-541 manufactured by Bernox, and E is EPH-01X manufactured by Muromachi Chemical Co., and adhesives G and H are trade names 193316/193317 manufactured by Henkel Co., Ltd., and adhesive I is a product name E-90FL manufactured by Henkel Co., Ltd. , K, L, and N are trade names SA-7702A / 7702B2 manufactured by San-Yurek Co., Ltd., and the adhesive M was trade names SA-6333A2 / B5 manufactured by San-Yurek Co., Ltd. These plate-like bodies were cut into a length of 70 mm, a width of 5 mm, and a thickness of 1 mm, respectively, to prepare adhesive test pieces for immersion tests. The implementation conditions of each test were as follows.
  • Unimmersed product The sample was allowed to stand for 24 hours in a constant temperature and humidity chamber at 25 ° C. and a relative humidity of 40% RH, and then subjected to pulse NMR measurement.
  • a silver nitrate aqueous solution After immersing the test piece in a 7 mol / L silver nitrate aqueous solution (using silver nitrate conforming to JIS K 8550) at a liquid temperature of 25 ° C. for one month, the silver nitrate aqueous solution was wiped off and washed with distilled water, and then pulsed NMR It used for the measurement.
  • After immersion in heptane The test piece was immersed in heptane at a liquid temperature of 25 ° C. for 1 month, wiped off the heptane, and then subjected to pulse NMR measurement.
  • the execution conditions of pulse NMR were as follows. First, a measurement sample cut to a height of 1.5 cm was placed in a glass tube having an outer diameter of 10 mm. Next, using a Minispec MQ20 manufactured by Bruker BioSpin Corporation, a glass tube containing a test piece was placed in a device whose temperature was controlled at 190 ° C., and when 5 minutes had elapsed, the T2 relaxation time of 1H was measured by the solid echo method. did. During measurement, the repetition waiting time between measurements was set to be 5 times or more of the T1 relaxation time of the sample. The magnetization decay curve obtained as described above was fitted using Equation 1 consisting of a Weibull function and a Lorentz function.
  • a component expressed using the Weibull function is a low mobility component
  • a component expressed using the Lorentz function is a high mobility component.
  • Igor Pro6 was used as fitting software. With respect to the Weibull coefficient, the initial value was set to 2.0, and fitting was performed so as to be 1.2 or more and 2.0 or less. For the relaxation time Ts of the low mobility component, the initial value was 0.02 msec, and for the relaxation time Tl of the high mobility component, the initial value was 0.1 msec. The fitting range was 0 msec to 0.4 msec.
  • Table 2 shows the results of pulse NMR analysis of each adhesive.
  • Adhesives A to N were used as adhesives, respectively, and the mixing ratio of the main agent and the curing agent and the curing conditions were as shown in Table 1 to prepare cured products of the respective adhesives. These plate-like bodies were each dried under reduced pressure at 50 ° C. for 24 hours, and then analyzed by methods according to JISK6253 and ISO7619. Table 4 shows the obtained results.
  • Adhesive A (Test Example 1), Adhesive D (Test Example 2), E (Test Example 3), and J (Test Example 4) were used as the adhesive, respectively, and the mixing ratio of the main agent and the curing agent, and The plate-like body which consists of the hardened
  • These plate-like bodies were cut into a length of 70 mm, a width of 5 mm, and a thickness of 1 mm, respectively, to prepare adhesive test pieces for immersion tests.
  • test pieces were prepared in the number necessary for measuring the bending Young's modulus and bending strength after the heptane immersion, the silver nitrate aqueous solution immersion, and the non-immersed product in the following N number. About mass and thickness, the following N number measured the same sample twice before immersion and after immersion.
  • the implementation conditions of each test were as follows.
  • Unimmersed product The sample was allowed to stand for 24 hours in a constant temperature and humidity room at 25 ° C. and a relative humidity of 40% RH, and then subjected to each analysis.
  • a silver nitrate aqueous solution After immersing the test piece in a 7 mol / L silver nitrate aqueous solution (using silver nitrate compliant with JIS K 8550) at a liquid temperature of 25 ° C. for one month, the silver nitrate aqueous solution was wiped off, washed with distilled water, and then analyzed. It was used for.
  • Table 5 shows the chemical resistance test results of each adhesive.
  • FIG. 1 A gas separation membrane module as shown in FIG. 1 was produced.
  • the gas separation membrane a hollow fiber membrane made of the resin shown in Table 1 having an inner diameter of 0.7 mm, an outer diameter of 1.2 mm, and a length of 7.1 cm, or on the inner surface of the hollow fiber membrane, 10 of the gas separation active layers described above are used;
  • the housing a cylindrical container 2 (inner diameter 2 cm) having a permeate gas inlet 21 and a separation gas outlet 22, a footer portion 3 having a gas supply port 31, and a header portion 4 having a process gas outlet 41 are used in combination. It was.
  • Ten gas separation membranes 6 are put in a cylindrical container 2 and the adhesive shown in Table 1 is used and cured under the conditions shown in Table 1 to bond the gas separation membrane to the container 2. Adhesive sealing was performed at both ends. After the adhesive was completely cured, both ends of the cylinder were cut 1 cm each. Furthermore, the membrane module 100 for gas separation was manufactured by attaching the footer part 3 having the gas supply port 31 and the header part 4 having the processing gas outlet 41 to the container 2.
  • Propane and propylene permeation rates were measured using the gas separation membrane module 100 described above.
  • helium is supplied to the permeation fluid inlet 21
  • the supply gas flow rate is set to 190 cc / min.
  • the permeating gas flow rate was 50 cc / min, and the measurement was performed at a measurement temperature of 30 ° C. by an isobaric method in a humidified atmosphere.
  • PVDF Polyvinylidene fluoride
  • PSU Polysulfone
  • PES Polyethersulfone
  • Examples 2-1 to 2-6 and 2-8 and 2-11 were measured by measuring 99.5% by mass of propylene (propane and impurities as impurities) containing water vapor in a bubbler mode at 28.5 ° C. (Including carbon, carbon dioxide, ammonia, oxygen, nitrogen, NOx, etc.) was supplied to the gas separation membrane module at 190 cc / min and 30 ° C., and was performed using a gas purification system that dehydrated with an alumina adsorbent. The measurement in Examples 2-7 and 2-12 was performed by measuring 99.5% by mass of propylene (including propane and carbon monoxide, carbon dioxide, ammonia, oxygen, nitrogen, NOx, etc.
  • Example 2-13 was performed by directly measuring 99.5% by mass of propylene (including propane and carbon monoxide, carbon dioxide, ammonia, oxygen, nitrogen, NOx, etc. as impurities) at 190 cc / min and 30 ° C. This was performed using a gas purification system supplied to the membrane module for separation.
  • the result calculated from the composition of the gas discharged from the gas purification system 3 hours after supplying the raw material gas is taken as the result of the first day of measurement, and the result obtained 7 days after the start of the supply is measured 7 As a result of the day.
  • Example 2-1 A hollow fiber made of polyvinylidene fluoride was used as the porous membrane.
  • the outer diameter and inner diameter, and the average pore diameters A and B are as shown in Table 9, respectively.
  • the above hollow fiber support was made 25 cm long, both ends were sealed with heat seal, and immersed in coating liquid A (liquid temperature 25 ° C.) having the following composition at a rate of 1 cm / sec. The whole body is immersed in the aqueous solution and left to stand for 5 seconds, then pulled up at a speed of 1 cm / sec and heated at 120 ° C. for 10 minutes to form a gas separation active layer on the outer surface of the hollow fiber support.
  • a hollow fiber gas separation membrane was produced.
  • a cross-sectional SEM image of the gas separation membrane produced in Example 2-1 is shown in FIG. The results are shown in Table 10.
  • Examples 2-2 to 2-13 were also carried out in the same manner as Example 2-1 using the coating liquids shown in Table 6 and the conditions shown in Table 9. SEM images and results are shown in FIGS. 7 to 11 and Table 10, respectively.
  • FC-4430 in the table is a fluorosurfactant having a perfluoroalkyl group manufactured by 3M, trade name “Novec FC-4430”, and “Nafion” is a registered trademark (the same applies hereinafter). ).
  • Examples 3-1 to 3-6 and 3-8 and 3-11 were measured by measuring 99.5% propylene (propane and carbon monoxide as impurities) containing water vapor in a bubbler mode at 28.5 ° C. , Carbon dioxide, ammonia, oxygen, nitrogen, NOx, etc.) was supplied to the gas separation membrane module at 190 cc / min and 30 ° C., and degassing was performed using an alumina adsorbent. The measurement in Examples 3-7 and 3-12 was carried out using 99.5% by mass of propylene (including propane and carbon monoxide, carbon dioxide, ammonia, oxygen, nitrogen, NOx, etc.
  • Example 3-13 was performed by measuring 99.5% by mass of propylene (including propane and carbon monoxide, carbon dioxide, ammonia, oxygen, nitrogen, NOx, etc. as impurities) at 190 cc / min and 30 ° C. directly. This was performed using a gas purification system supplied to the membrane module for separation. The result calculated from the composition of the gas discharged from the gas purification system 3 hours after supplying the raw material gas is taken as the result of the first day of measurement, and the result obtained 7 days after the start of the supply is measured 7 As a result of the day.
  • propylene including propane and carbon monoxide, carbon dioxide, ammonia, oxygen, nitrogen, NOx, etc.
  • Example 3-1 A hollow fiber made of polyvinylidene fluoride was used as the porous membrane.
  • the outer diameter and inner diameter, and the average pore diameters A and B are as shown in Table 11, respectively.
  • the above hollow fiber support was made 25 cm long, both ends were sealed with heat seal, and immersed in coating liquid A (liquid temperature 25 ° C.) having the following composition at a rate of 1 cm / sec. The whole body is immersed in the aqueous solution and left to stand for 5 seconds, then pulled up at a speed of 1 cm / sec and heated at 120 ° C. for 10 minutes to form a gas separation active layer on the outer surface of the hollow fiber support.
  • a hollow fiber gas separation membrane was produced.
  • a cross-sectional SEM image of the gas separation membrane produced in Example 3-1 is shown in FIG. The results are shown in Table 12.
  • Examples 3-2 to 3-13 were also carried out in the same manner as in Example 3-1, using the coating solutions described in Table 6 and under the conditions described in Table 11. The results are shown in Table 12.
  • Adhesive A (Analysis Example 4-1), Adhesive D (Analysis Example 4-2), and Adhesive E (Analysis Example 4-3) were respectively used as the adhesive, and the mixing ratio of the main agent and the curing agent, And the plate-like body (70 mm x 5 mm x 1 mm) which consists of the hardened
  • Each plate-like body obtained was dried under reduced pressure at 50 ° C. for 24 hours and then subjected to infrared spectroscopic analysis. Infrared spectroscopic analysis was performed under the following conditions.
  • IR device manufactured by Bruker, model “LUMOS” Measuring method: ATR method (Ge crystal) Wave number resolution: 4cm -1 Integration count: 64 times Measurement area: 50 ⁇ m ⁇ 50 ⁇ m Analysis depth: less than 1 ⁇ m The obtained infrared ATR chart is shown in FIG.
  • the bonding part in the membrane module for gas separation is 1)
  • the composition ratio V (%) of the low mobility component of the bonded portion measured by pulse NMR is 30 ⁇ V ⁇ 100; 2)
  • the following formula: W [(I1-I2) / I1] ⁇ 100 ⁇ where I1 is the signal intensity at the start of measurement in pulsed NMR measurement of the bonded portion, and I2 is 0.05 msec after the start of measurement. Is the signal strength at.
  • Attenuation rate W (%) represented by 30 ⁇ W ⁇ 100; 3)
  • the following formula: X [(V2 ⁇ V1) / V1] ⁇ 100 ⁇ wherein V1 and V2 are obtained when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the change rate X (%) represented by -50 ⁇ X ⁇ 50; 4)
  • the following formula: Y [(W2-W1) W1] ⁇ 100 ⁇ where W1 and W2 are immersions when the adhesive part is immersed in a 7 mol / L silver nitrate aqueous solution or heptane at 25 ° C. for one month.
  • the nitrogen atom content (C N , mass%) in the bonded portion is 0.0010 ⁇ C N ⁇ 10, and the sulfur atom content in the bonded portion (C S , mass%).
  • the hardness K of the bonded portion is 10D ⁇ K ⁇ 90D; It was confirmed that the gas separation membrane module satisfying at least one of the above has permeation performance and separation performance that are highly practical in the long term. The reason for this is that swelling and deterioration due to the separation target gas, metal salt, etc.
  • an energy-saving and highly safe gas separation method (particularly a separation method for olefin gas or the like) is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本開示は、長期的に実用性の高い気体分離用膜モジュールを提供する。本開示は、ハウジングと、該ハウジング内に配置された気体分離膜と、該ハウジングに該気体分離膜を固定する接着部と、を有する気体分離用膜モジュールであって、該気体分離膜が、多孔質膜で構成されており、該接着部が、1)パルスNMRにより測定される低運動性成分の組成比Vが特定範囲であること;2)パルスNMR測定における減衰率Wが特定範囲であること;3)接着部を硝酸銀水溶液若しくはヘプタン中に浸漬したときの組成比Vの変化率Xが特定範囲であること;4)接着部を硝酸銀水溶液若しくはヘプタン中に浸漬したときの減衰率Wの変化率Yが特定範囲であること;5)窒素原子の含有割合が特定範囲であり、かつ硫黄原子の含有割合が特定範囲であること;及び6)硬度Kが特定範囲であること;の少なくとも1つを満たす、気体分離用膜モジュールを提供する。

Description

気体分離用膜モジュール
 本発明は、長期的に優れた実用性を示す気体分離用膜モジュールに関する。本発明の気体分離用膜モジュールは、特にオレフィンの分離に優れた性能を示す。
 気体分離膜による気体の分離・濃縮は、蒸留法、高圧吸着法等と比べた場合にエネルギー効率に優れ、省エネルギーであり、且つ安全性の高い方法である。この分野における先駆的な実用例としては、例えば、気体分離膜による気体の分離濃縮、アンモニア製造プロセスにおける水素分離等が挙げられる。最近では、オレフィンガスとパラフィンガスとの分離等、炭化水素系ガスを対象にした気体分離膜に関する検討が盛んにおこなわれている。
 炭化水素系ガスを分離するための気体分離用膜モジュールは、多孔質膜、ハウジング、及び接着剤から構成される。膜モジュールの気体分離性能を高める目的で、上記多孔質膜の表面上に、気体分離活性層を配置することもある(特許文献1及び2)。この気体分離活性層には、任意的に金属種(例えば金属塩等)を含有させることもある(特許文献3及び4)。
 気体分離用膜モジュールの実用性を高めるためには、該モジュールの構成部材を、それぞれ耐薬品性のあるものとすることが望まれる。
 気体分離膜で精製して得られる高純度ガスは、半導体分野などの電子材料用途で使用される場合がある。この用途では、ガスの純度は高純度であることが要求される。この要求を満足するために、例えば、蒸留法、吸収法、吸着法、膜分離法などによるガス精製が知られている。蒸留法は、不純物との沸点差が近い場合、例えばプロピレンとプロパンの場合(沸点差4.9℃)、その分離に多段階で蒸留を繰り返す必要がある。したがって、大規模な設備と精密な蒸留条件の設定が必要であり、実用化するうえで多大な障壁となっている(例えば特許文献1)。蒸留塔の段数を増やすことなどにより、目的とする純度に到達させることは理論上可能であるが、実益の面から乏しい。
 吸収法は、分離性能が吸収担体の分離性に依存するため、精密な運転条件の設定が必要である(例えば特許文献2)。さらに、放散時に多大な熱源を要することから、大規模な設備が必要な技術である。また、半導体分野で使用されるガス量は少ない。それゆえ、吸収法は半導体分野で使用するような少量ガスを製造する装置に適していない。
 吸着法は、種々の試みがなされている。しかし、分離性に乏しいため、目的とするガスを選択的に吸着させ、所望の高純度ガスを効率的に製造することは困難である(例えば非特許文献1)。
 一方で膜分離法は、蒸留法、吸収法、吸着法と比べた場合に、分離性、連続生産性、省エネ性の観点から好ましい方法である。すなわち、膜分離法によれば、配管を縁切りすることなく、高純度ガスを供給することができるため、一定した品質の製品を後段工程において得ることができる。気体分離膜は、素材の選択により分離性能や透過性能を設計することで、所望の純度のガスを所望の量で供給することが可能である。さらに、膜分離法は、ワンパスで連続的に高純度のガスを供給することも可能である。また、蒸留法や吸収法のように、熱源を必要としないため、ガス精製設備の占有する空間を小さくすることもできる。
国際公開第2015/141686号 米国特許出願公開第2015/0025293号明細書 国際公開第2009/093666号 特許第4469635号公報 Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states, Salil U. Rege1, Ralph T. Yang, Chemical Engineering Science, 2002, 57, 1139-1149.
 気体分離用膜モジュールの多孔質膜及びハウジングは、様々な耐薬品性を有する素材があり、これらを利用することができる。しかし、接着剤については、その選択の範囲が狭いのが現状である。なぜなら、製造時の取り扱いやすさ、気体分離用膜モジュールの性能、及び気体分離用膜モジュールの長期安定性を両立させることが困難だからである。
 例えば、接着剤の耐久性が低い場合、継時的に接着剤と多孔質膜やハウジングの剥離を生じる可能性や、接着剤の収縮や膨潤によって、ハウジングの破損やそれに伴ってハウジング内で精製ガスと原料ガスの混合やガスのハウジング外への漏えいを生じる可能性や、接着剤の劣化による溶解が起こり、ハウジング内の汚染や精製ガスの汚染を引き起こす可能性があり、長期安定的な使用が困難となる。特に、精製ガスの純度を追及する場合、接着剤がわずかにでも劣化すると、精製ガス純度を満足しなくなり、気体分離用膜モジュールの継続的な使用が困難になる。
 逆に、耐久性の高い接着剤を用いると、製造時の取り扱いやすさに困難が生じる。たとえば、ポリテトラフルオロエチレン(PTFE)等のフッ素系の熱可塑性樹脂は、耐薬品性に優れていることが知られている。しかし、PTFEは軟化温度が高いので、該PTFEを接着剤として使用する場合に使用する多孔質膜としては、PTFEの軟化温度において十分な耐久性を有するものを選ぶ必要があり、利用できる多孔質膜が極端に限定されるという問題を生じる。多孔質膜に汎用される、ポリフッ化ビニリデン(PVDF)、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリエチレン(PE)は、ポリテトラフルオロエチレン(PTFE)等のフッ素系の熱可塑性樹脂を接着剤として用いることができない。更に、PTFE等のフッ素系樹脂は、高価という問題もある。
 すなわち、気体分離膜の実用化を考えた場合、接着部を材質及び製造方法の双方に鑑みて、好ましい形態にする必要がある。気体分離の中でも、オレフィンのような炭化水素系ガスを分離する場合や気体分離活性層に金属塩を含有させる場合には、該ガスや金属塩が容易に接着剤の劣化を促進するため、製造時の取り扱いやすさ、気体分離用膜モジュールの性能、気体分離用膜モジュールの長期安定性を両立させることができる接着剤を着想及び実現することは困難であった。
 以上の背景から、長期的に実用性の高い気体分離用膜モジュール、特に炭化水素系ガスを分離対象にした気体分離用膜モジュール、とりわけ気体分離活性層内に金属種が含有された気体分離用膜モジュールを提供することは、これまで困難であった。
 本発明は、上記の事情に鑑みてなされたものである。従ってその目的は、長期的に実用性の高い気体分離用膜モジュール、特に、炭化水素系ガスを分離対象とする気体分離用膜モジュールを提供することである。
 本発明者らは、上記の目的を達成するために、鋭意検討を行った。その結果、以下の構成を有する気体分離用膜モジュールを用いることにより、占有する空間を小さく、かつ要求される高純度ガスを連続的に供給できる連続ガス供給システムを提供できること、並びに、無機不純物及び有機不純物の双方を長期に渡り効果的に除去できる膜モジュールユニットを提供できることを見出した。すなわち、本発明は以下の態様を包含する。
[1] ハウジングと、前記ハウジング内に配置された気体分離膜と、前記ハウジングに前記気体分離膜を固定する接着部と、を有する気体分離用膜モジュールであって、
 前記気体分離膜が、多孔質膜で構成されており、
 前記接着部が、下記1)~6):
1)パルスNMRにより測定される、前記接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
2)下記式:W=[(I1-I2)/I1]×100{式中、I1は前記接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の前記組成比V(V1(%))及び浸漬後の前記組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の前記減衰率W(W1(%))及び浸漬後の前記減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
5)前記接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ前記接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
6)前記接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たす、気体分離用膜モジュール。
[2] 前記接着部の前記組成比Vが、50≦V≦100である、上記態様1に記載の気体分離用膜モジュール。
[3] 前記接着部の前記組成比Vが、70≦V≦100である、上記態様2に記載の気体分離用膜モジュール。
[4] 前記接着部の前記組成比Vが、90≦V≦100である、上記態様3に記載の気体分離用膜モジュール。
[5] 前記接着部の前記減衰率Wが、60≦W≦100である、上記態様1~4のいずれかに記載の気体分離用膜モジュール。
[6] 前記接着部の前記減衰率Wが、90≦W≦100である、上記態様1~5のいずれかに記載の気体分離用膜モジュール。
[7] 前記接着部の前記変化率Xが、-25≦X≦25である、上記態様1~6のいずれかに記載の気体分離用膜モジュール。
[8] 前記接着部の前記変化率Yが、-60≦Y≦60である、上記態様1~7のいずれかに記載の気体分離用膜モジュール。
[9] 前記接着部中の前記窒素原子の含有割合CNが、0.0010≦CN≦4.0である、上記態様1~8のいずれかに記載の気体分離用膜モジュール。
[10] 前記接着部中の前記窒素原子の含有割合CNが、0.0010≦CN≦0.30である、上記態様1~9のいずれかに記載の気体分離用膜モジュール。
[11] 前記接着部中の前記硫黄原子の含有割合CSが、0.0010≦CS≦0.0070である、上記態様1~10のいずれかに記載の気体分離用膜モジュール。
[12] 前記接着部の前記硬度Kが、30D≦K≦90Dである、上記態様1~11のいずれかに記載の気体分離用膜モジュール。
[13] 前記接着部の前記硬度Kが、50D≦K≦90Dである、上記態様1~12のいずれかに記載の気体分離用膜モジュール。
[14] 前記接着部が、接着剤の硬化物であり、前記接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の曲げヤング率に対する浸漬後の曲げヤング率の変化率、及び浸漬前の曲げ強度に対する浸漬後の曲げ強度の変化率が、それぞれ、-30%以上+30%以下の範囲内にある、上記態様1~13のいずれかに記載の気体分離用膜モジュール。
[15] 前記接着部が、接着剤の硬化物であり、前記接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬した後の該試験片の表面積あたりの質量変化が、浸漬前と比較して、-30mg/cm2以上+30mg/cm2以下の範囲内にある、上記態様1~14のいずれかに記載の気体分離用膜モジュール。
[16] 前記接着部が、接着剤の硬化物であり、前記接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬した後の該試験片の厚さ変化率が、浸漬前と比較して、-5%以上+5%以下の範囲内にある、上記態様1~15のいずれかに記載の気体分離用膜モジュール。
[17] 前記接着部が、エポキシ樹脂系接着剤若しくはウレタン樹脂系接着剤の硬化物を含有する、上記態様1~16のいずれかに記載の気体分離用膜モジュール。
[18] 前記接着部が、フッ素系熱可塑性樹脂の硬化物を実質的に含有しない、上記態様1~17のいずれかに記載の気体分離用膜モジュール。
[19] 前記気体分離膜が、1価のAg及び/又は1価のCuを含む金属塩を含有する、上記態様1~18のいずれかに記載の気体分離用膜モジュール。
[20] 前記気体分離用膜モジュールに対し、プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm2当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定されたプロピレン気体の透過速度が10GPU以上3,000GPU以下であり、プロピレン/プロパンの分離係数が50以上1,000以下である、上記態様1~19のいずれかに記載の気体分離用膜モジュール。
[21] 原料ガス受入口、原料ガスを精製して精製ガスを生成する原料ガス精製部、及び精製ガス出口を備えるガス流動式の連続ガス供給システムであって、前記精製ガスの純度が99.5質量%以上であり、かつ、前記原料ガス精製部が、吸着物充填モジュール、吸収剤充填モジュール、及び気体分離膜を有する気体分離用膜モジュールからなる群から選択されるモジュールで構成されている、連続ガス供給システム。
[22] 前記原料ガス精製部が、前記気体分離用膜モジュールで構成されており、前記気体分離用膜が、多孔質膜で構成されている、上記態様21に記載の連続ガス供給システム。
[23] 原料ガス受入口、原料ガスを精製して精製ガスを生成する原料ガス精製部、及び精製ガス出口を備えるガス流動式の連続ガス供給システムであって、
 前記原料ガス精製部が、上記態様1~20のいずれかに記載の気体分離用膜モジュールで構成されている、連続ガス供給システム。
[24] 前記精製ガスの純度が99.5質量%以上である、上記態様23に記載の連続ガス供給システム。
[25] 前記精製ガスの主成分がハイドロカーボンガスである、上記態様21~24のいずれかに記載の連続ガス供給システム。
[26] 前記ハイドロカーボンガスがオレフィンガスである、上記態様25に記載の連続ガス供給システム。
[27] 前記オレフィンガスがエチレン、又はプロピレンである、上記態様26に記載の連続ガス供給システム。
[28] 前記ハイドロカーボンガスが炭素数1~4の脂肪族炭化水素である、上記態様25に記載の連続ガス供給システム。
[29] 前記精製ガスが、非ハイドロカーボンガスを合計5000ppm以下の量で含有する、上記態様21~28のいずれかに記載の連続ガス供給システム。
[30] 前記精製ガスが、非ハイドロカーボンガスを含有し、前記非ハイドロカーボンガスが、酸素、窒素、水、一酸化炭素、二酸化炭素及び水素からなる群から選択される1種類以上のガスである、上記態様21~28のいずれかに記載の連続ガス供給システム。
[31] 前記非ハイドロカーボンガスが水からなる、上記態様30に記載の連続ガス供給システム。
[32] 前記気体分離膜が、多孔質膜及び気体分離活性層を有する複合膜である、上記態様1~31のいずれかに記載の連続ガス供給システム。
[33] プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm2当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定された、プロピレン/プロパンの分離係数が50以上100,000以下である、上記態様21~32のいずれかに記載の連続ガス供給システム。
[34] 前記気体分離膜が、多孔質膜と、前記多孔質膜上に配置された気体分離活性層とを有し、
 前記多孔質膜と前記気体分離活性層との境界面に、緻密層が存在しないか、又は前記境界面と略平行であり、厚みが1μm未満である緻密層を有し、
 前記緻密層の平均孔径は0.01μm未満であり、そして、
 前記多孔質膜の前記気体分離活性層から2μm深さまでの深さ範囲の平均孔径をAとし、10μm深さまでの深さ範囲の平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、比A/Bが0より大きく0.9以下である、上記態様21~33のいずれかに記載の連続ガス供給システム。
[35] 前記気体分離用膜モジュールが、1価のAg及び/又は1価のCuを含有する、上記態様21~34のいずれかに記載の連続ガス供給システム。
[36] 上記態様21~35のいずれかに記載の連続ガス供給システムを用いた、純度99.5質量%以上のオレフィンガスの製造方法。
[37] 前記オレフィンガスがCVD供給用のプロピレンである、上記態様36に記載のオレフィンガスの製造方法。
[38] ハウジング、前記ハウジング内に配置され多孔質膜と前記多孔質膜上に配置された気体分離活性層とを有する気体分離膜、及び前記ハウジングに前記気体分離膜を固定する接着部、を有する気体分離用膜モジュール、
 前記気体分離膜に供給する原料ガスを加湿する為の加湿機構、並びに
 前記気体分離膜で精製されたガスを脱水する為の脱水機構、
を備える、膜モジュールユニット。
[39] 前記多孔質膜と前記気体分離活性層との境界面に、緻密層が存在しないか、又は前記境界面と略平行であり、かつ厚みが1μm未満で平均孔径が0.01μm未満である緻密層を有し、そして、前記多孔質膜の前記気体分離活性層側から2μm深さまでの深さ範囲の平均孔径をAとし、10μm深さまでの深さ範囲の平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、かつA/Bが0より大きく0.9以下である、上記態様38に記載の膜モジュールユニット。
[40] 精製ガスとして純度99.9質量%以上のオレフィンガスを与えるように構成されている、上記態様38又は39に記載の膜モジュールユニット。
[41] ガス純度検知システムをさらに備える、上記態様38~40のいずれかに記載の膜モジュールユニット。
[42] 前記気体分離活性層が、アミノ基、ピリジル基、イミダゾリル基、インドリル基、ヒドロキシル基、フェノール基、エーテル基、カルボキシル基、エステル基、アミド基、カルボニル基、チオール基、チオエーテル基、スルホン基、スルホニル基及びスルホンアミド基からなる群から選択される1種類以上の官能基を含む重合体で構成されている、上記態様38~41のいずれかに記載の膜モジュールユニット。
[43] 前記気体分離活性層が、アミノ基、スルホン基、及びヒドロキシル基からなる群から選択される1種類以上の官能基を含む重合体で構成されている、上記態様42に記載の膜モジュールユニット。
[44] 前記重合体がポリアミンである、上記態様42又は43に記載の膜モジュールユニット。
[45] 前記ポリアミンがキトサンである、上記態様44に記載の膜モジュールユニット。
[46] 前記気体分離膜が、1価のAg及び/又は1価のCuを含有する、上記態様38~45のいずれかに記載の膜モジュールユニット。
[47] 前記多孔質膜がフッ素系樹脂を含有する、上記態様38~46のいずれかに記載の膜モジュールユニット。
[48] 前記フッ素系樹脂がPVDFである、上記態様47に記載の膜モジュールユニット。
[49] プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm2当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定された、前記気体分離膜のプロピレン/プロパンの分離係数が50以上100,000以下である、上記態様38~48のいずれかに記載の膜モジュールユニット。
[50] 上記態様38~49のいずれかに記載の膜モジュールユニットを用いた、純度99.9質量%以上のオレフィンガスの製造方法。
[51] 前記オレフィンガスがCVD供給用のプロピレンである、上記態様50に記載のオレフィンガスの製造方法。
 本発明によると、特にオレフィン等の炭化水素系ガスの分離において、高い透過速度及び高い分離性能を長期間維持できる、気体分離用膜モジュールが提供される。
本実施態様の気体分離用膜モジュールの構成の一例を示す概略断面図である。 本実施態様の気体分離用膜モジュールの構成の別の一例を示す概略断面図である。 本実施形態の分離膜を説明するための模式図である。 本実施形態の連続ガス供給システムの構成の一例を示す概略図である。 本実施形態の膜モジュールユニットの構成の一例を示す概略図である。 分析例4-1~4-3で測定した赤外ATRチャートを示す図である。 実施例2-1、2-7、2-9、2-10、2-13、3-1、3-7、3-9、3-10、3-13で得たSEM像を示す図である。 実施例2-1、2-7、2-9、2-10、2-13、3-1、3-7、3-9、3-10、3-13で得たSEM像を示す図である。 実施例2-2、3-2で得たSEM像を示す図である。 実施例2-3、2-4、2-5、3-3、3-4、3-5で得たSEM像を示す図である。 実施例2-8、2-11、3-8、3-11で得たSEM像を示す図である。
 以下、本発明について、その好ましい実施形態(本開示で、「本実施形態」ともいう。)を中心に、必要に応じて図面を参照しながら詳細を説明する。
<気体分離用膜モジュール>
 本実施形態の気体分離用膜モジュールは、ハウジングと、該ハウジング内に配置された気体分離膜と、該ハウジングに該気体分離膜を固定する接着部と、を有する気体分離用膜モジュールであって、
 該気体分離膜が、多孔質膜で構成されており、
 該接着部が、下記1)~6):
1)パルスNMRにより測定される、該接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
2)下記式:W=[(I1-I2)/I1]×100{式中、I1は該接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該組成比V(V1(%))及び浸漬後の該組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該減衰率W(W1(%))及び浸漬後の該減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
6)該接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たす、気体分離用膜モジュールである。
 以下、本実施形態の気体分離用膜モジュールの例示の具体的態様について、図面を参照しつつ説明する。
 図1及び図2に、本実施態様の気体分離用膜モジュールの構成の例を示す。図1は、ハウジングが円筒状であり、気体分離膜が中空糸状である気体分離用膜モジュールの一例を示す概略断面図である。
 図1の膜モジュール100は、
 ガス供給口21及び処理ガス出口22を備える円筒状のハウジング2内に、
 中空糸状の多孔質膜1の外表面上に気体分離活性層5を備える、中空糸状の気体分離膜6が収納されており、
 上記気体分離膜6は、接着部10によりハウジング2に接着固定されており、更に、
 透過ガス入口31を有するフッタ部3、及び分離ガス出口41を有するヘッダ部4を備える。
 気体分離膜6の両端は閉塞されておらず、透過ガス入口31と、気体分離膜6の中空部分と、分離ガス出口41とは、流体が流通可能なように構成されている。一方、ガス供給口21と処理ガス出口22との間も、流体の流通が可能である。そして、気体分離膜6の中空部分と、該気体分離膜6の外部空間とは、該気体分離膜を介して接する以外は遮断されている。
 図1の膜モジュール100において、原料ガスとしての分離対象ガス(例えばオレフィンとパラフィンとの混合物)は、ガス供給口21から該モジュールに導入されて気体分離膜6の表面に接触する。このとき、分離対象ガス成分のうち、多孔質膜1及び気体分離活性層5のうちの少なくとも一方との親和性の高い成分(分離ガス)は気体分離膜6の外壁を通過して、該気体分離膜6内の空間に放出される。分離対象ガス成分のうち、多孔質膜1及び気体分離活性層5の双方との親和性の低い成分は、精製ガスとして処理ガス出口22から排出される。
 一方、ハウジング2の透過ガス入口31からは、透過ガスを供給してもよい。透過ガスは、分離対象ガス成分のうちの気体分離膜6内の空間に放出された成分とともに分離ガス出口41から排出されることにより、分離ガスの回収を可能とする機能を有するガスである。
 透過ガスとしては、ハウジング2、接着部4、及び気体分離膜6、並びに分離ガスと反応しないガスが好適であり、例えば不活性ガスを使用することができる。不活性ガスとしては、例えば、ヘリウム、アルゴン等の希ガスの他、窒素等を使用することができる。
 図2は、ハウジングが円筒状であり、気体分離膜が平膜状である気体分離用膜モジュールの一例を示す概略断面図(図2(A)は横断面図、図2(B)は縦断面図)である。
 図2の膜モジュール200は、
 透過ガス入口21及び分離ガス出口22、ガス供給口31及び処理ガス出口41、並びに気体分離膜6を固定するための板状部材11を備える円筒状のハウジング2内に、
 平膜状の多孔質膜1の片面上に気体分離活性層5を備える、平膜状の気体分離膜6が収納されており、
 上記気体分離膜6は、接着部10により、板状部材11を介してハウジング2に接着固定されている。
 ガス供給口21と処理ガス出口22との間には流体が流通可能な空間が形成されており、該空間は気体分離膜6のうちの気体分離活性層5が存在する面と接している。一方、透過ガス入口31と分離ガス出口41との間も流体が流通可能な空間が形成されているが、該空間は気体分離膜6のうちの気体分離活性層5が存在しない面と接している。そして、気体分離膜6のうちの気体分離活性層5が存在する面に接する第1の空間と、気体分離活性層5が存在しない面に接する第2の空間とは、前記気体分離膜を介して接する以外は遮断されている。
 図2の膜モジュール200において、分離対象ガスは、ガス供給口21から該モジュールの第1の空間内に導入されて気体分離膜6の表面に接触し、多孔質膜1及び気体分離活性層5のうちの少なくとも一方との親和性の高い分離ガスのみが気体分離膜6を通過して第2の空間に放出される。分離対象ガス成分のうち、多孔質膜1及び気体分離活性層5の双方との親和性の低い成分は、そのまま第1の空間を通過して処理ガス出口22から排出される。
 一方、ハウジング2の透過ガス入口31からは、透過ガスを供給してもよい。透過ガスは、分離対象ガス成分のうちの気体分離膜6内の空間に放出された成分とともに分離ガス出口41から排出される。
 その余の態様は、図1の膜モジュール100の場合と同様であってよい。
[原料ガス]
 本実施形態における原料ガスとは、分離目的のガス成分を含む、2種類以上のガス成分の混合ガスである。分離目的のガス成分としては、メタン、エタン、エチレン、プロパン、プロピレン、ブタン、1-ブテン、2-ブテン、イソブタン、イソブテン、ブタジエン、モノシラン、アルシン、ホスフィン、ジボラン、ゲルマン、ジクロロシラン、セレン化水素、四塩化ケイ素、ジシラン、三フッ化ホウ素、三塩化ホウ素、塩化水素、アンモニア、三フッ化窒素、四フッ化珪素、フロン-218、臭化水素、塩素、三フッ化塩素、フロン-14、フロン-23、フロン-116、フロン-32、亜酸化窒素、トリクロルシラン、四塩化チタン、弗化水素、三フッ化リン、五フッ化リン、六フッ化タングステン、フロン-22、フロン-123、酸素、窒素、水、一酸化炭素、二酸化炭素、水素等が挙げられる。原料ガスは、分離目的のガス成分を50質量%以上含む。好ましくは分離目的のガス成分を90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、最も好ましくは99.5質量%以上含む。
[精製ガス]
 本実施形態における精製ガスとは、分離目的のガス成分の濃度が、好ましくは99.5質量%以上、より好ましくは99.9質量%以上、さらに好ましくは99.99質量%以上、もっとも好ましくは99.999質量%以上のガスである。分離目的のガス成分としては、ハイドロカーボンガスが挙げられる。ハイドロカーボンガスとして例えば、メタン、エタン、プロパン、ブタン、イソブタン等のパラフィンガス等、エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、ブタジエン等のオレフィンガス等が挙げられる。例示の態様において、ハイドロカーボンガスは、炭素数1~4の脂肪族炭化水素である。
 典型的な態様においては、精製ガスの主成分がハイドロカーボンガスである。ここで、精製ガスの主成分とは、精製ガス中に最も多量(質量基準で)に含まれるガスを意味する。
 一態様において、上記ハイドロカーボンガスはオレフィンガスである。また、一態様において、オレフィンガスはエチレン又はプロピレンである。
 ここでのハイドロカーボンガスとは、分子内に炭素原子と水素原子をいずれをも有するガスである。ここでのパラフィンガスとは、分子内にC-C不飽和結合を有さないガスである。ここでのオレフィンガスとは、分子内にC-C不飽和結合を有するガスである。
 非ハイドロカーボンガスとして例えば、モノシラン、モノシラン、アルシン、ホスフィン、ジボラン、ゲルマン、ジクロロシラン、セレン化水素、四塩化ケイ素、ジシラン、三フッ化ホウ素、三塩化ホウ素、塩化水素、アンモニア、三フッ化窒素、四フッ化珪素、フロン-218、臭化水素、塩素、三フッ化塩素、フロン-14、フロン-23、フロン-116、フロン-32、亜酸化窒素、トリクロルシラン、四塩化チタン、弗化水素、三フッ化リン、五フッ化リン、六フッ化タングステン、フロン-22、フロン-123、酸素、窒素、水、一酸化炭素、二酸化炭素、水素等が挙げられる。ここでの非ハイドロカーボンガスとは、分子内に炭素原子と水素原子のいずれか若しくはいずれをも有さないガスである。一態様において、非ハイドロカーボンガスは、酸素、窒素、水、一酸化炭素、二酸化炭素及び水素からなる群から選択される1種類以上のガスである。一態様において、非ハイドロカーボンガスは水である。
 精製ガス中、分離目的以外のガス成分の濃度は、好ましくは5000質量ppm以下、より好ましくは1000質量ppm以下、さらに好ましくは100質量ppm以下、最も好ましくは10質量ppm以下である。精製ガスを使用するプロセスの歩留り率を高める観点から、分離目的以外のガス成分は少ないほど好ましい。しかし、実質的にゼロにすることは、安全性の観点などから好ましくない。
 例えば、オレフィンガスを含むハイドロカーボンガスは可燃性ガスであるので、潜在的に引火爆発の懸念を有している。引火爆発の危険性を低減し、安全性を高めるためには、可燃物、支燃物、若しくは着火源のいずれかを除去する必要がある。そこで、例えば分離目的のガスであるハイドロカーボンガス以外に、水を含有させることにより、着火源となる静電気の発生を抑制できるという効果があると期待される。
 分離目的以外のガス成分は、分離目的ガスと実質的に異なるガスであればよい。典型的な態様において、分離目的以外のガス成分は、非ハイドロカーボンガスである。
[接着部]
 本実施形態の気体分離用膜モジュールにおける接着部は、該モジュールに供給される気体が気体分離膜を通過することができるような態様で、該気体分離膜をハウジング中に接着固定する機能を有する。
 一般に、気体分離用膜モジュールにおける接着部は、分離対象ガス(特に炭化水素系ガス)、及び気体分離活性層に任意に添加される金属種(特に金属塩)によって、劣化する可能性がある。一方、本実施形態の気体分離用膜モジュールにおける接着部は、
1)パルスNMRにより測定される、該接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
2)下記式:W=[(I1-I2)/I1]×100{式中、I1は該接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該組成比V(V1(%))及び浸漬後の該組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該減衰率W(W1(%))及び浸漬後の該減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
6)該接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たすことにより、上記の分離対象ガス及び金属種に対して、高い耐久性を有する。
 本実施形態において、接着部の「低運動性成分」は、パルスNMR測定において後述のようにローレンツ関数で表される成分を意味する。低運動性成分は、例えば、結晶性成分、ガラス状態にある成分、等である。本発明者らは、当業界で使用される通常の市販の接着剤が、30%未満の低運動性成分の組成比及び30%未満以下の信号強度の減衰率を有していること、これらの組成比及び減衰率は、それぞれ、炭化水素系ガスによる膨潤や金属塩の侵入を引き起こす場合があること、その結果、膜モジュールの使用中に接着部が膨潤や溶出を起こし、該接着部と気体分離膜との剥離、接着部の崩壊、ハウジングの破壊等が発生し、原料ガス(分離対象ガス)と精製ガス(分離ガス又は処理ガス)との混合等を生じる場合があることに着目した。
 本実施形態の一態様において、接着部中の低運動性成分の組成比V及び/又は信号強度の減衰率Wを30%以上とすることは、上記の問題を回避できる点で有利である。上記組成比V及び減衰率Wは、それぞれ高いほど好ましい。
 また、本実施形態の別の態様において、接着部を硝酸銀水溶液若しくはヘプタン中に浸漬したときの、組成比Vの変化率X及び/又は減衰率Wの変化率Yが所定範囲内であることは、接着部が良好な耐久性を有する点で有利である。
 一態様において、上記パルスNMRで算出される低運動性成分の組成比(V)は、30%以上100%以下が好ましく、50%以上100%以下がより好ましく、70%以上100%以下がさらに好ましく、90%以上100%以下が最も好ましい。上記パルスNMRで算出される測定開始後0.05msecにおける信号強度(I2)の測定開始時の信号強度(I1)に対する減衰率(W)は、30%以上100%以下が好ましく、60%以上100%以下がより好ましく、90%以上100%以下がさらに好ましい。V及び/又はWが上記の値を満たす接着部は、分離対象ガス及び金属種に対して高い耐久性を有するため、実用性の高い気体分離用膜モジュールを提供することができる。
 本実施形態の別の態様において、気体分離用膜モジュールにおける接着部は、
3)7mol/L硝酸銀水溶液若しくはヘプタン中に接着部を浸漬したときの上記変化率X(%)が、-50%以上50%以下の範囲内に、好ましくは-25%以上25%以下の範囲内にあること;
4)7mol/L硝酸銀水溶液若しくはヘプタン中に接着部を浸漬したときの上記変化率Y(%)が、-120%以上120%以下の範囲内、好ましくは-60%以上60%以下の範囲内にあること;
のうち少なくとも1つ、好ましくは両者を満足する。変化率X及び/又は変化率Yが上記の値を満たす接着部は、分離対象ガス及び金属種に対して高い耐久性を有するため、実用性の高い気体分離用膜モジュールを提供することができる。好ましい態様において、上記の変化率X及び変化率Yの各々は、7mol/L硝酸銀水溶液中への浸漬、及びヘプタン中への浸漬の両者において上記範囲内となる。
 本実施形態において、パルスNMRにより得られる低運動性成分の組成比(V、%)は以下の方法により算出できる。パルスNMRの測定装置として、ブルカーバイオスピン社製のMinispec MQ20を用い、測定核種を1H、測定法をソリッドエコー法、積算回数を256回、として測定を行う。具体的には、高さ1.5cmになるように切削した測定試料を入れた外径10mmのガラス管を190℃に温度制御した装置内に設置し、設置後5分経過した時点でソリッドエコー法により1HのT2緩和時間を測定する。測定に際しては測定の間の繰り返し待ち時間を試料のT1緩和時間の5倍以上とるように設定する。上記のようにして得られた磁化減衰曲線(磁化強度の経時変化を示す曲線)について、ワイブル関数とローレンツ関数からなる式1:
Figure JPOXMLDOC01-appb-M000001
を用いてフィッティングを行う。ワイブル関数を用いて表現される成分を低運動性成分、ローレンツ関数を用いて表現される成分を高運動性成分とする。
 上記の式中、M(t)はある時間tにおける信号強度、Cs及びClは低運動性成分と高運動性成分の組成比(%)を、Waはワイブル係数を、Ts及びTlは低運動性成分と高運動性成分の緩和時間を表す。ワイブル係数については初期値を2.0としたうえで1.2以上2.0以下となるようにフィッティングを行う。上記式における低運動性成分と高運動性成分との合計に対する低運動性成分の組成比(%)を、本実施形態における低運動性成分の組成比V(%)とする。
 上記手順にてパルスNMRを用いて得られる磁化減衰曲線から、取り込み開始時点での測定開始時の信号強度を100%とした際の0.05msecでの信号強度の減衰率(W、%)を算出することができる。
 本実施形態の組成比V及び/又は減衰率Wが上記の値を満たす接着部を得る方法は限定されないが、好ましい手段は、接着部の製造方法を適正にすることである。例えば、膜モジュールの接着部に当業界で汎用されるウレタン樹脂系接着剤やエポキシ系接着剤を、当業界で通常に行われている方法で製造するだけでは、V及び/又はWが上記の値を満たすようにすることは一般に困難である。例えば、通常、ウレタン樹脂系接着剤は、水酸基を有する化合物から成る主剤と、イソシアネート類を有する化合物から成る硬化剤とから成り、エポキシ系接着剤は、エポキシ基を有する化合物から成る主剤と硬化剤とから成るが、主剤と硬化剤との混合比率、並びに硬化時の昇温時間及び昇温速度に関して、深く思慮されていない場合が多い。そのため、膜モジュール用として一般的な接着剤を単純に用いるのみでは、十分な長期安定性を有する気体分離用膜モジュールを得ることが困難であった。
 一方、本発明においては、これまで気体分離用膜モジュールの接着剤として用いてこられてなかった高温硬化型の接着剤において、主剤と硬化剤との混合比率、昇温時間、及び昇温速度を制御することが、V及び/又はWが上記の値を満たす接着剤の製造に有利であることを見出した。さらに、室温硬化型や中温硬化型の接着剤においても、主剤と硬化剤の混合比率、昇温時間、及び昇温速度を制御することや、主剤及び/又は硬化剤として複数の化合物を組合せて用いることが、V及び/又はWが上記の値を満たす接着部の製造に有利であることを見出した。上記のような手法によって生成物の構造(架橋度等)が制御され、所望のV及び/又はWが実現される。
 本実施形態の別の態様において、気体分離用膜モジュールの接着部は、
5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
を満たす。
 一般に、気体分離用膜モジュールにおける接着部は、分離対象ガス(特に炭化水素系ガス)、及び気体分離活性層に任意に添加される金属種(特に金属塩)によって、劣化する可能性がある。しかしながら、接着部中の窒素原子の含有割合(C、質量%)が、0.0010≦C≦10、及び硫黄原子の含有割合(C、質量%)が、0.0010≦C≦0.01である接着部は、上記の分離対象ガス及び金属種に対して、高い耐久性を有する。
 上記接着部中の窒素原子及び硫黄原子は、それぞれ、使用する接着剤の硬化剤及び添加剤のうちの少なくとも一方に由来すると考えられる。当業界で使用される通常の市販の接着剤には、10質量%程度以上の窒素原子及び0.12質量%程度以上の硫黄原子が含有されている。この窒素原子及び硫黄原子は、それぞれ、金属塩と配位して、接着部の崩壊、ひいてはハウジング部の破損等を引き起こす場合がある。従って、接着部中の窒素原子の含有割合C及び硫黄原子の含有割合Cは、それぞれ、低いほど好ましい。
 しかしながら、本発明者らの検討によると、Cの値を過度に減少しても、該減少に伴う耐久性の増加には一定の限界があり、本実施形態の気体分離用膜モジュールの製造コストを過度に高沸させないため、Cの値を0.0010%未満にまで減少させる実益は乏しい。
 一方、接着部中の硫黄原子の劣化活性は、窒素原子よりも格段に大きいものと考えられる。従って、接着部中の硫黄原子の含有割合Cは、低いほど好ましい。しかしながら、Cの値を過度に減少しても、該減少に伴う耐久性の増加には一定の限界があり、本実施形態の気体分離用膜モジュールの製造コストを過度に高騰させないため、Cの値を0.0010%未満にまで減少させる実益は乏しい。
 上記窒素原子の含有割合(C)は、0.0010質量%以上4.0質量%以下であることがより好ましく、0.0010質量%以上0.30質量%以下であることが特に好ましい。上記硫黄原子の含有割合(C)は、0.0010質量%以上0.0070質量%以下が好ましい。C及びCが上記の値である接着部は、分離対象ガス及び金属種に対して高い耐久性を有するため、実用性の高い気体分離用膜モジュールを提供することができる。
 本実施形態の気体分離用膜モジュールにおいて、接着部中の窒素原子の含有割合(C)と硫黄原子の含有割合(C)との比(C/C)は、30以上1,600以下が好ましい。この比C/Cの値が30以上である場合には、接着部中の硫黄原子の含有割合を相対的に低くして、この部分への集中的な攻撃を生じにくくできるため、分離対象ガス及び金属種に対する耐久性が良好である。一方でこの比(C/C)が1,600以下である場合にも、分離対象ガス及び金属種に対する耐久性が良好である。比(C/C)の値は、400以下、200以下、又は100以下であることが、より高い耐久性を付与する観点から、より好ましい。
 接着部中の、窒素原子の含有割合(C)、硫黄原子の含有割合(C)、又はそれらの比(C/C)が上記の値を満たすことができれば、接着部は、特定の材質に限定される必要はない。上記値を満たす接着部は、例えば接着部の製造方法を適正にすることによって得ることができる。上記、C、C及びC/Cを実現するためには、例えば当業界で通常は用いられない酸無水物エポキシ樹脂を接着部に用いることが挙げられる。酸無水物エポキシ樹脂は、高温硬化型の樹脂のため、接着部に用いると、製造時の熱収縮によるひび割れ、異常発熱による樹脂の機械的強度の低下といった問題が起こる。しかし、本実施形態においては、主剤と硬化剤との混合比率、硬化時の昇温時間及び昇温速度等を検討することにより、酸無水物エポキシ樹脂を気体分離用膜モジュールの接着部に用いることができ、結果として上記のC、C及びC/Cを実現できることを見出した。
 また、窒素原子の含有割合(C)と硫黄原子の含有割合(C)とが元来高いウレタン樹脂系接着剤においても、ウレタン樹脂系接着剤以外の接着剤とウレタン樹脂系接着剤とを組み合わせて接着部を形成することや、主剤と硬化剤との混合比率を調整すること、複数の主剤と硬化剤とを混合すること等によって、上記のC、C及びC/Cを実現できる。
 本実施形態において、接着部中の窒素の含有割合(C)は、気体分離用膜モジュールより採取した接着部の試料を、CHNコーダー(炭素水素窒素同時定量装置)法によって分析することにより、算出することができる。接着部中の硫黄の含有割合(C)は、気体分離用膜モジュールより採取した接着部の試料をイオンクロマトグラム法によって分析することにより、算出することができる。
 本実施形態の別の態様において、気体分離用膜モジュールにおける接着部は、硬度Kが10D≦K≦90D(硬度の測定方法はJISK6253、ISO7619に準じる。本明細書における以下の記載においても同様。)である。このような接着部は、上記の分離対象ガス及び金属種に対して、高い耐久性を有する。硬度Kが上記値をみたせば、機械的強度が良好であり、多孔質膜と接着部との固定化状態を長期にわたり良好に保つことができる。上記硬度Kは、一態様において10D≦K≦90Dであり、30D≦K≦90Dが好ましく、50D≦K≦90Dがさらに好ましい。硬度Kが10D以上であると、機械的強度が良好であるため、接着部とハウジングとの固定が良好であるために、原料ガスと精製ガスとのハウジング内での混合や、モジュールの外へのガス漏れを引き起こす可能性が低減される。また、90D以下であると、運転中に、接着部が多孔質膜と擦過することにより、多孔質膜や気体分離活性層上に、欠陥を生じ、気体分離用膜モジュールの継続的な使用が困難になるという問題の回避が可能である。
 接着部の硬度Kが上記の値を満たすことができれば、接着部は、特定の材質に限定される必要はない。上記値を満たす接着部は、例えば接着部の製造方法を適正にすることによって得ることができる。例えば、当業界で汎用されるようなウレタン樹脂系接着剤やエポキシ系接着剤を、単に当業界の通常の方法である室温硬化方法で硬化させると、上記値を満足させることが困難である傾向がある。上記値を満足させるための方法としては、加熱硬化が挙げられる。しかし、急激な昇温は、接着部のひび割れや、異常発熱による接着部の機械強度の異常低下を引き起こす場合がある。本実施形態においては、硬化を段階的に行うこと、昇温速度を緩やかにすること、温度を上げすぎずに長時間加熱すること、等により、大容量のモジュールに用いる接着部であっても、上記値を満足できることを見出した。
 また、製造時の取り扱いにくさから、当業界で用いられることがあまりない高温硬化型の接着剤は、硬度Kが上記値を満足することができるが、高温硬化であるために、大容量を硬化させることが困難である。しかし、本実施形態においては、主剤と硬化剤との混合比率、硬化時の昇温時間及び昇温速度等を検討することにより、上記硬度Kの値を満たすことができ、高温硬化型の接着剤を気体分離用膜モジュールの接着部として用いることができることを見出した。
 接着部が接着剤の硬化物である態様において、接着部は、下記(1)~(3)のうちの少なくとも1つの物性を有する接着剤を用いて形成されることが好ましい。接着部としてより好ましくは下記(1)~(3)のうちの少なくとも2つの物性を有する接着剤を用いて形成されることであり、特に好ましくは下記(1)~(3)の物性のすべてを満足する接着剤を用いて形成されることである。
 (1) 接着部の試験片を、7mol/L硝酸銀水溶液又はヘプタン中に、25℃において1ヶ月間浸漬した後の該試験片の曲げヤング率及び曲げ強度の変化率が、浸漬前のそれぞれの値に対して、-30%以上+30%以下の範囲内にあること、
 (2) 接着部の試験片を、7mol/L硝酸銀水溶液又はヘプタン中に、25℃において1ヶ月間浸漬した後の該試験片の表面積あたりの質量変化が、浸漬前と比較して、-30mg/cm以上+30mg/cm以下の範囲内にあること、及び
 (3) 接着部の試験片を、7mol/L硝酸銀水溶液又はヘプタン中に、25℃において1ヶ月間浸漬した後の該試験片の厚さ変化率が、浸漬前と比較して、-5%以上+5%以下の範囲内にあること。
 接着部の試験片を7mol/L硝酸銀水溶液又はヘプタン中に浸漬した後の曲げヤング率変化率と曲げ強度変化率が-30%未満又は+30%より大である接着部は、膜モジュールの使用中に膨潤、溶出、又は劣化が起こる可能性がある。接着部の劣化が起こると、該接着部と気体分離膜との剥離、接着部の崩壊、ハウジングの破壊等が発生し、原料ガス(分離対象ガス)と精製ガス(分離ガス又は処理ガス)との混合等を生じる危険がある。実用性の高い気体分離用膜モジュールを提供するためには、浸漬後の曲げヤング率変化率及び曲げ強度変化率が、それぞれ、-30%以上+30%以下である接着部を使用することが好ましく、-10%以上+10%以下である接着部を使用することがより好ましい。
 接着部の試験片を7mol/L硝酸銀水溶液又はヘプタン中に浸漬した後の表面積当りの質量変化が+30mg/cmよりも大きい接着部は、膜モジュールの使用中に膨潤が起こる可能性がある。接着部の膨潤が起こると、該接着部と気体分離膜との剥離、接着部の崩壊、ハウジングの破壊等を生じる危険がある。一方、浸漬後の表面積当りの質量変化が-30mg/cm未満である接着剤から形成された接着部は、膜モジュールの使用中に溶出する可能性がある。接着部が溶出すると、原料ガスと精製ガスとを厳密に仕切ることが困難になる危険がある。実用性の高い気体分離用膜モジュールを提供するためには、表面積当りの質量変化が-30mg/cm以上+30mg/cm以下である接着部を使用することが好ましく、-10mg/cm以上+10mg/cm以下である接着部を使用することがより好ましい。
 接着部の試験片を7mol/L硝酸銀水溶液又はヘプタン中に浸漬した後の厚さ変化率が+5%よりも大きい接着剤から形成された接着部は、膜モジュールの使用中に膨潤が起こる可能性がある。一方、浸漬後の厚さ変化率が-5%未満の接着剤から形成された接着部は、膜モジュールの使用中に溶出が起こる可能性がある。実用性の高い気体分離用膜モジュールを提供するためには、浸漬後の厚さ変化率が-5%以上+5%以下である接着部を使用することが好ましく、-2%以上+2%以下である接着部を使用することがより好ましい。
 本実施形態の気体分離用膜モジュールにおける接着部は、エポキシ樹脂系接着剤の硬化物及びウレタン樹脂系接着剤の硬化物から選択される1種以上を含有することが好ましい。
 上記エポキシ樹脂系接着剤は、エポキシ基を有する化合物から成る主剤と、硬化剤とを含む。該接着剤を硬化させることにより、本実施形態の膜モジュールにおける接着部とすることができる。このエポキシ樹脂系接着剤は、主剤及び硬化剤の他に、硬化促進剤を更に含んでいてもよい。
 上記ウレタン樹脂系接着剤は、水酸基を有する化合物から成る主剤と、イソシアネート類を有する化合物から成る硬化剤とを含む。該接着剤を硬化させることにより、本実施形態の膜モジュールにおける接着部とすることができる。
 エポキシ樹脂系接着剤の主剤であるエポキシ基を有する化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール系エポキシ樹脂の他;ノボラック系エポキシ樹脂、トリスフェノールメタン系エポキシ樹脂、ナフタレン系エポキシ樹脂、フェノキシ系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられる。この中でも、ビスフェノール系エポキシ樹脂は、分子鎖間の相互作用が強く、分離対象ガス及び金属塩による膨潤及び劣化が抑制できるという観点から好ましい。これらの樹脂の混合物を用いても構わない。
 エポキシ樹脂系接着剤における硬化剤としては、例えば、アミン類、ポリアミノアミド類、フェノール類、酸無水物等が挙げられる。これらのうち、酸無水物を用いることがより好ましい。何故なら、硬化剤として酸無水物を使用して得られたエポキシ樹脂系接着剤の硬化物は、分子鎖間の相互作用が強く、分離対象ガス及び金属塩による膨潤及び劣化が起こり難いためである。硬化剤として酸無水物を用いた場合、得られる気体分離用膜モジュールにおける接着部には、酸無水物エポキシ樹脂が含有されることになる。
 エポキシ樹脂系接着剤における硬化剤として使用される酸無水物としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート、グリセロールトリストリメテート等の芳香族酸無水物;
メチル-5-ノルボルネン-2,3-ジカルボン酸無水物(無水メチルナジック酸)、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカンニ酸)無水物、ポリ(フェニルヘキサデカンニ酸)無水物等の脂肪族酸無水物;
メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物等の脂環式酸無水物等が挙げられる。これらのうちのいずれかを単独で使用することができ、又はこれらの混合物を用いても構わない。
 エポキシ樹脂系接着剤において任意的に使用される硬化促進剤としては、慣用の化合物、例えば、トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等の第3級アミンの他;イミダゾール類、ルイス酸、ブレンステッド酸等が挙げられる。これらのうちのいずれかを単独で使用することができ、又はこれらの混合物を用いてもよい。
 使用したエポキシ樹脂系接着剤の主剤及び硬化剤の種類は、膜モジュールの接着部を、例えば、赤外分光分析(IR)、熱分解GC/IR、熱分解GC/MS、元素分析、飛行時間型二次イオン質量分析(TOF-SIMS)、固体核磁気共鳴分析(固体NMR)、X線光電子分光分析(XPS)等によって測定することにより、確認することができる。
 製造される気体分離用膜モジュールの耐久性の観点から、用いる主剤としては、脂環式エポキシ樹脂、ビスフェノールA系エポキシ樹脂、ナフタレン系エポキシ樹脂を用いることが好ましく、用いる硬化剤としては、脂環式酸無水物エポキシを用いることが好ましい。
 ウレタン樹脂系接着剤の主剤である、水酸基を有する化合物としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリブタジエングリコール、ポリアクリルポリオールやポリイソプレンポリオール等の炭化水素ポリオール、ひまし油系ポリオールを主成分に含むものが挙げられる。この中でも、ポリアクリルポリオールとひまし油系ポリオールは、分子鎖間の相互作用が強く、分離対象ガス及び金属塩による膨潤及び劣化が抑制できるという観点から好ましい。また、これらの化合物の混合物を用いても構わない。
 ウレタン樹脂系接着剤の硬化剤であるイソシアネート類を有する化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート(以後、MDIと略す)やポリメチレンポリフェニレンポリイソシアネート(以後、ポリメリックMDIと略す)、トリレンジイソシアネート等の芳香族系ポリイソシアネート、或いは、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネート、イソホロンジイソシアネートや4,4’-メチレンビス(シクロヘキサンイソシアネート)等の脂環族系ポリイソシアネートを主成分として含むものが挙げられる。この中でも、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートは、分子鎖間の相互作用が強く、分離対象ガス及び金属塩による膨潤及び劣化が抑制できるという観点から好ましい。また、これらの混合物を用いても構わない。
 前記ウレタン化反応においては反応を促進させるため、必要により通常のウレタン化反応に使用される触媒を使用してもよい。触媒としては、アミン触媒〔トリエチルアミン、N-エチルモルホリン、トリエチレンジアミン及び米国特許第4524104号明細書に記載のシクロアミジン類[1,8-ジアザ-ビシクロ[5.4.0]-7-ウンデセン{サンアプロ(株)製「DBU」}等]〕;錫系触媒(ジブチル錫ジラウレート、ジオクチル錫ジラウレート及びオクチル酸錫);チタン系触媒(テトラブチルチタネート等);ビスマス系触媒(トリオクチル酸ビスマス等);等が挙げられる。また、これらの化合物の混合物を用いても構わない。
 安定剤としては特に限定されず公知の酸化防止剤及び/又は紫外線吸収剤等を使用することができ、ポリウレタン樹脂の重量を基準として、通常0~5重量%、好ましくは0.1~3重量%使用される。
 酸化防止剤としては、フェノール系[2,6-ジ-t-ブチル-p-クレゾール及びブチル化ヒドロキシアニソール等];ビスフェノール系[2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等];リン系[トリフェニルフォスファイト及びジフェニルイソデシルフォスファイト等]等が挙げられる。
 紫外線吸収剤としては、ベンゾフェノン系[2,4-ジヒドロキシベンゾフェノン及び2-ヒドロキシ-4-メトキシベンゾフェノン等];ベンゾトリアゾール系[2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール等];サリチル酸系[フェニルサリシレート等];ヒンダードアミン系[ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート等]等が挙げられる。
 その他の添加剤としては、融着防止剤及び難燃剤等が挙げられる。
 使用したウレタン樹脂系接着剤の主剤及び硬化剤の種類は、膜モジュールの接着部を、例えば、赤外分光分析(IR)、熱分解GC/IR、熱分解GC/MS、元素分析、飛行時間型二次イオン質量分析(TOF-SIMS)、固体核磁気共鳴分析(固体NMR)、X線光電子分光分析(XPS)等によって測定することにより、確認することができる。
 本実施形態の気体分離用膜モジュールにおける接着部は、フッ素系熱可塑性樹脂の硬化物を実質的に含有しないものであることが好ましい。ここで、「実質的に含有しない」とは、接着部中に占めるフッ素系熱可塑性樹脂の硬化物の質量割合が、5質量%以下であることをいい、好ましくは3質量%以下であり、より好ましくは1質量%以下であり、更に好ましくは0.1質量%以下である。
 本実施形態におけるフッ素系熱可塑性樹脂には、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)等が包含される。
 本実施形態で使用される接着剤は(従って、本実施形態の気体分離用膜モジュールにおける接着部は)、必要に応じて、充填剤、老化防止剤、補強剤等の種々の添加剤を更に含んでいても構わない。
[気体分離膜]
 本実施形態の気体分離用膜モジュールにおける気体分離膜は、多孔質膜を有する。この気体分離膜は、多孔質膜上に気体分離活性層を有していてもよく、1価のAg又は1価のCuを含む金属塩を含有していてもよい。気体分離膜が1価のAg又は1価のCuを含む金属塩を含有する場合、これらの金属塩は気体分離活性層中に存在することが好ましい。
 また、例えば図3を参照し、本実施形態における気体分離膜700は、多孔質膜7(これは多数の孔74を有する)と、該多孔質膜7上に配置された気体分離活性層73とを有し、多孔質膜7と気体分離活性層73との境界面に、平均孔径が0.01μm未満である緻密層が存在しないか、又は該境界面と略平行であり、厚みが1μm未満である緻密層が存在する。また、多孔質膜7の気体分離活性層73側から2μm深さまでの深さ範囲71における平均孔径をAとし、10μm深さまでの深さ範囲72における平均孔径をBとしたとき、Aは、良好なガス透過速度を得る観点から、好ましくは0.05μm以上であり、良好な分離性能を得る観点から、好ましくは0.5μm以下である。また、比A/Bは、0より大きく、分離性能の観点から、好ましくは0.9以下である。多孔質膜が、気体分離活性層側に近い領域(上記深さ範囲71のような)において、比較的小さい平均孔径を有することは、分離性能の観点から好ましい。
(多孔質膜)
 加湿機構を備えたシステムで利用する気体分離膜では、多孔質膜内に水が侵入し、孔を塞ぐ液封状態となり、ガス透過速度が著しく低下することがある。多孔質膜の孔が小さいほど短時間で液封状態となり、ガス透過性が低下し易く、分離選択性も低下する。そこで、本実施形態の気体分離膜における多孔質膜は、気体分離活性層との境界面に、孔径の小さな緻密層が存在しないか、或いは孔径の小さな緻密層が存在する場合には、該緻密層は、前記の境界面と略平行であり、厚みを1μm未満とすることが好ましい。上記緻密層の平均孔径は、0.01μm未満である。多孔質膜の、気体分離活性層を有する側の面に、緻密層を存在させないか、或いは存在する場合には緻密層の厚みを1μm未満とすることにより、液封される層の厚みを薄く抑え、高いガス透過速度を維持することができる。
 なお緻密層は、多孔質膜と気体分離活性層との境界面に存在する場合の他、多孔質膜内部又は気体分離活性層とは逆の表面に存在する場合もある。いずれの場合も、存在する場合の緻密層の厚みは1μm未満であることが好ましい。
 緻密層の厚みは、例えば、透過型電子顕微鏡(TEM)又はガスクラスターイオン銃搭載X線光電子分光分析(GCIB-XPS)と、走査型電子顕微鏡(SEM)とを組み合わせることにより、決定することができる。具体的には、例えば、以下の手法によることができる。
(i)気体分離活性層の膜厚を測定する。
 ・TEMを用いる場合
 TEMを用いる場合には、例えば以下の条件で気体分離活性層の膜厚を評価する。
(前処理)
 気体分離膜を、例えば凍結破砕したものを測定試料とし、該試料の外表面にPtコーティングを施したうえでエポキシ樹脂に包埋する。そしてウルトラミクロトーム(例えば、LEICA社製、形式「UC-6」)による切削により超薄切片を作製した後、リンタングステン酸染色を行い、これを検鏡用試料とする。
(測定)
 測定は、例えば日立製のTEM、形式「S-5500」を用いて、加速電圧:30kVにて行うことができる。
 ・GCIB-XPSを用いる場合
 GCIB-XPSを用いる場合には、得られた相対元素濃度の分布曲線から、気体分離活性層の膜厚を知ることができる。
 GCIB-XPSは、例えばアルバック・ファイ社製の形式「VersaProbeII」を用いて、以下の条件下に行うことができる。
(GCIB条件)
  加速電圧:15kV
  クラスターサイズ:Ar2500
  クラスター範囲:3mm×3mm
  エッチング中の試料回転:有
  エッチング間隔:3分/レベル
  試料電流:23nA
  トータルエッチング時間:69分
(XPS条件)
  X線:15kV、25W
  ビームサイズ:100μm
(ii)緻密層の厚みを評価する。
 上記(i)で決定した気体分離活性層の膜厚と、SEM画像とから、緻密層の厚みを評価できる。SEMは、例えば以下の条件で評価する。
(前処理)
 気体分離膜を、多孔質膜と気体分離活性層との境界面に略垂直な面で凍結破砕したものを測定試料とし、該試料の断面に白金コーティングを施し検鏡用試料とする。
(測定)
 測定は、例えばJEOL社製のSEM、「Carry Scope(JCM-5100)」を用いて、加速電圧20kVにて行う。
 倍率10,000倍の観察画面において、(i)で決定した気体分離活性層以外の孔径を観察し、0.01μm未満の孔からなる層の厚みを決定する。
 本実施形態では、多孔質膜と気体分離活性層との境界面から垂直方向に2μm深さまでの多孔質膜の平均孔径をAとし、10μm深さまでの平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、比A/Bが0より大きく0.9以下であることが好ましい。多孔質膜は、液封状態を抑制するために孔径が大きいほど好ましい。しかし、孔径が0.5μmを超えると気体分離活性層を欠陥なく形成させることが困難になる。平均孔径Aを0.05μm以上とすることで液封状態を抑制でき、高いガス透過性が維持できる。液封抑制の観点から平均孔径Aは0.1μm以上とすることが好ましく、0.3μm以上とすることがより好ましい。一方で、平均孔径Aを0.5μm以下とすることで欠陥なく気体分離活性層を形成することができる。
 平均孔径Aと同様の観点、すなわち、液封状態の抑制と、欠陥のない気体分離活性層を形成することとを両立させる観点から、平均孔径Bは、0.06μm以上5μm以下であることが好ましく、0.1μm以上3μm以下であることがより好ましく、0.5μm以上1μm以下であることが更に好ましい。
 更に、平均孔径の比A/Bを0.9以下とすることにより、液封抑制と気体分離活性層の無欠陥塗工性とを両立できる。液封抑制と気体分離活性層の無欠陥塗工性とを両立し、高いガス透過速度と透過選択性とを得るためには、A/Bは0.6以下とすることがより好ましく、0.4以下とすることがさらに好ましい。
 平均孔径A及びBは、例えば以下の評価で決定できる。
(i)前述した緻密層の測定と同様に、多孔質膜と気体分離活性層との境界面に略垂直な断面を測定試料とし、SEMの加速電圧20kV、倍率10,000倍にて、多孔質膜と気体分離活性層との境界部分を測定する。
(ii)多孔質膜と気体分離活性層との境界面から多孔質膜の深さ2μmまでの深さ範囲(図3の符号71)における平均孔径Aを算出する。境界面から深さ2μmの範囲で、縦横方向に直交するように各5本の線をほぼ均等な間隔で引き、それらの線が写真中の孔を横切る長さを測定する。そして、それらの測定値の算術平均値を求め、これを平均孔径とする。孔径測定の精度を上げるために、縦横計10本の線が横切る孔の数は20個以上とすることが好ましい。多孔質膜の中に一部気体分離活性層が浸み込んでいる場合には、中空糸膜の、気体分離活性層が浸み込んでいない部分と気体分離活性層が浸み込んだ部分との境界面を基準として、平均孔径を測定する。
(iii)多孔質膜と気体分離活性層との境界面から多孔質膜の深さ10μmまでの深さ範囲(図3の符号72)における平均孔径Bを算出する。この平均孔径Bの算出は、測定範囲を変更する以外は上記(ii)と同様の手法により、行うことができる。
 多孔質膜の材質は、原料ガスに対する十分な耐食性と、操作温度及び操作圧力における十分な耐久性とを有していれば特に限定されないが、有機材料を用いることが好ましい。多孔質膜を構成する有機材料としては、例えば、ポリエーテルサルホン、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール等のホモポリマー、又はこれらのコポリマー等が好ましく、これらのうちのいずれか単独、又はこれらの混合物から形成されるものを好ましく使用することができる。特に、フッ素系樹脂は炭化水素雰囲気における耐久性が高く、得られる多孔質膜の加工性が良好である。これらの観点から、PVDFが最も好ましい。
 多孔質膜の形状は、平膜状でも中空糸状でもプリーツ状でも構わない。多孔質膜が中空糸である場合、その内径は、原料ガスの処理量により適宜選択される、中空糸支持体の内径は、一般的には、0.1mm以上20mm以下の間で選択される。原料ガス中に含まれる目的のガス成分との接触性をより高くするためには、中空糸支持体の内径は、0.2mm~15mmであることが好ましい。中空糸支持体の外径は、特に限定されないが、中空糸内外の圧力差に耐え得る厚みを確保するとの観点から、中空糸支持体の内径を考慮して適宜選択することができる。
(気体分離活性層)
 気体分離活性層は、本実施形態の気体分離用膜モジュールにおいて、気体分離性能を高めるために、上記の多孔質膜上に配置されるものである。
 気体分離活性層は、分子内の繰り返し単位に、少なくとも、アミノ基、ピリジル基、イミダゾール骨格を有する基、インドール骨格を有する基、ヒドロキシル基、ヒドロキシフェニル基、エーテル構造を有する基、カルボキシル基、エステル構造を有する基、アミド基、カルボニル基、チオール基、チオエーテル構造を有する基、スルホニル基、スルホンアミド基等のうち少なくとも1種を含む気体分離性重合体から成ることが好ましい。気体分離活性層がこのような基を含む繰り返し単位を有することにより、該気体分離活性層に任意的に含有される金属種(特に金属塩)を高濃度で分散できることとなり、得られる気体分離膜を、例えばオレフィンとパラフィンとの分離に好適に適用することができることとなる。
 前記官能基の存否は、元素分析、飛行時間型二次イオン質量分析(TOF-SIMS)、固体核磁気共鳴分析(固体NMR)、X線光電子分光分析(XPS)等によって確認することができる。
 気体分離活性層は、少なくとも、アミノ基を含有する繰り返し単位を有する重合体からなることが好ましく、ポリアミン類から成ることがより好ましい。これは、ポリアミン類が有するアミノ基が、気体分離活性層に任意的に含有される金属種(特に金属塩)との相互作用が比較的弱いため、該金属種と分離対象ガス(特にオレフィン)と間の相互作用の低下を抑制できるためである。気体分離活性層におけるアミノ基の存在は、例えば赤外分光分析によって確認することができる。
 ポリアミン類は、ゲル性重合体であることが好ましく、結晶性重合体であることがより好ましい。結晶性重合体であるポリアミン類は、気体分離活性層に任意的に含有される金属種(特に金属塩)を高濃度で均一に分散でき、気体分離膜に良好な耐久性を付与することができるためである。
 このようなポリアミン類として、キトサンが挙げられる。ここでのキトサンとは、繰返し単位がβ-1,4-N-グルコサミン及びβ-1,4-N-アセチルグルコサミンから形成され、該繰り返し単位におけるβ-1,4-N-グルコサミンの割合が70モル%以上のものである。
 ポリアミンは、官能基によって化学修飾されていても構わない。この官能基としては、例えば、イミダゾリル基、イソブチル基、及びグリセリル基からなる群から選ばれる少なくとも1種の基であることが好ましい。
 ポリアミンの数平均分子量は、気体分離性能と透過性とのバランスを良好とする観点から、10万以上300万以下であることが好ましく、30万以上150万以下であることがさらに好ましい。この数平均分子量は、プルランを標準物質とし、サイズ排除クロマトグラフィーによって測定して得られた値である。
 気体分離活性層におけるキトサンの存在は、例えば、飛行時間型二次イオン質量分析(TOF-SIMS)、アルゴンガスクラスターイオン銃搭載X線光電子分光分析(GCIB―XPS)等によって確認することができる。
 本実施形態の気体分離用膜モジュールにおける気体分離活性層は、分離対象ガス(特にオレフィン)と親和性のある物質を含んでいても構わない。その場合、得られる気体分離膜を、例えばオレフィンとパラフィンの分離に適用することができる。
 オレフィンと親和性のある物質として、例えば、金属塩が挙げられる。この金属塩としては、一価の銀(Ag)及び一価の銅(Cu)からなる群より選ばれる金属イオン、又はその錯イオンを含む金属塩が好ましい。より好ましくは、Ag若しくはCu又はその錯イオンと、F、Cl、Br、I、CN、NO 、SCN、ClO 、CFSO 、BF 、及びPF からなる群より選ばれるアニオンとから構成される金属塩である。
 気体分離活性層における金属塩の濃度は、10質量%以上70質量%以下が好ましく、30質量%以上70質量%以下がより好ましく、50質量%以上70質量%以下が更に好ましい。金属塩の濃度が低すぎると実用性の高い気体分離性能が得られないことと、金属塩の濃度が高すぎると気体分離用膜モジュールの製造コストが高くなる等の不都合があることから、これら双方のバランスを考慮し、上記の濃度が好ましい。
 気体分離活性層は、多孔質膜の両面にあってもよいし、片面上のみにあってもよい。
 気体分離膜が中空糸である場合には、気体分離活性層は、該中空糸の外側表面のみにあってもよいし、内側表面のみにあってもよいし、外側表面及び内側表面の双方の面上にあってもよい。
[ハウジング]
 本実施形態の気体分離用膜モジュールは、ハウジングを備える。ハウジングは、少なくとも気体分離膜を内装することができるものであれば、どのような構造及び形状であっても構わない。例えば、円筒状、箱状等の形状が可能である。
 ハウジングは、接着層によって分離された、多孔質膜の表面側が属する空間、及び多孔質膜の裏面側が属する空間のそれぞれに、気体を流通させるためのガス入り口及びガス出口を有することが好ましい。
 ハウジングを構成する材料は、分離対象ガスに対して十分な耐食性を有し、稼働温度及び稼働圧力において十分な耐久性を有していれば、特に限定されずに選択使用することができる。そのような材料として、例えば、金属、合成樹脂等を例示することができる。
 ハウジングのサイズは、これに内装される気体分離膜のサイズ、気体分離処理能力等に応じて、適宜に設定することができる。
<気体分離用膜モジュールの性能>
 上記のような本実施形態の気体分離用膜モジュールは、例えば、オレフィンとパラフィンとの分離に好適に用いることができる。具体的には、例えば、プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定されたプロピレンガスの透過速度は、好ましくは10GPU以上3,000以下であり、より好ましくは50GPU以上2,000GPU以下であり、更に好ましくは100GPU以上2,000GPU以下である。プロピレン/プロパンの分離係数は、好ましくは50以上1,000以下であり、より好ましくは100以上1,000以下であり、更に好ましくは150以上1,000以下である。
 これらの値は、プロピレン分圧1気圧以下、具体的には0.6気圧の条件で測定される。
<気体分離用膜モジュールの製造方法>
 本実施形態の気体分離用膜モジュールの製造方法は、
 多孔質膜を有する気体分離膜を、接着剤によってハウジング中に接着固定することを含む、気体分離用膜モジュールの製造方法であって、
1)パルスNMRにより測定される、該接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
2)下記式:W=[(I1-I2)/I1]×100{式中、I1は該接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該組成比V(V1(%))及び浸漬後の該組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該減衰率W(W1(%))及び浸漬後の該減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
6)該接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たす、気体分離用膜モジュールの製造方法である。
 本実施形態の気体分離用膜モジュールの製造方法について、中空糸状の気体分離膜を用いる場合を例として、以下により詳細に説明する。
 本実施形態の気体分離用膜モジュールは、下記工程;
 多孔質膜を製造する多孔質膜製造工程;
 気体分離活性層を形成する気体分離性重合体を含有する水溶液からなる塗工液を製造する塗工液製造工程;
 上記多孔質膜の表面に上記塗工液を塗工する塗工工程;
 及び
 接着剤中に多孔質膜の一部を浸漬した後、接着剤を硬化させて、当該接着剤の硬化物である接着部を製造する工程;
を含む。
 上記塗工工程の前に、多孔質膜を粘性水溶液中に含浸させる含浸工程を有していてもよい。
 上記塗工後の多孔質膜から、塗工液中の溶媒を乾燥除去するための乾燥工程を行ってもよい。
[多孔質膜製造工程]
 先ず、本実施形態に好ましく使用される多孔質膜の製造方法について記載する。
 多孔質膜は、非溶媒誘起相分離法又は熱誘起相分離法により得ることができる。
 以下に、非溶媒誘起相分離法によってPVDFの中空糸膜を製造する場合について説明する。
 先ず、PVDFを溶媒に溶解させ、PVDF溶液を準備する。本実施形態で使用されるPVDFの分子量は、サイズ排除クロマトグラフィーによって測定したポリスチレン換算の数平均分子量として、好ましくは2,000以上100,000以下であり、より好ましくは10,000以上50,000以下である。これは、分子量が低すぎると、実用性の高い耐久性を示さない等の問題を生じる場合があり;逆に、分子量が大きすぎると、該多孔質膜の製造が困難になる等の問題を生じる場合があるためである。
 本実施の形態において、上記PVDF溶液中のPVDFの濃度は、15質量%以上50質量%以下が好ましく、20質量%以上35質量%以下がより好ましい。これは、PVDFの濃度が低すぎると、実用性の高い耐久性を示さない等の問題を生じる場合があり;逆に、PVDFの濃度が高すぎると、該多孔質膜の製造が困難になる等の問題を生じる場合があるためである。
 PVDF溶液の溶媒としては、例えば、N―メチル―2―ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の良溶媒;グリセリン、エチレングリコール、トリエチレングリコール、ポリエチレングリコール、ノニオン系界面活性剤等の貧溶媒が用いられる。PVDF溶液中の良溶媒/貧溶媒の質量比は、該PVDF溶液を紡糸原液として用いる場合の安定性を高めること、均質膜構造を得易くすること等を考慮して、97/3から40/60とするのが好ましい。
 次いで、上記で得られたPVDF溶液を紡糸原液として用いて紡糸を行う。二重管状ノズルの外側スリットから該PVDF溶液を、中心孔から芯液を、それぞれ吐出する。芯液には、水や水と良溶媒の混合液を用いることができる。
 芯液の吐出量は、紡糸原液であるPVDF溶液の吐出量に対して、0.1倍以上10倍以下とすることが好ましく、0.2倍以上8倍以下とすることがより好ましい。芯液の吐出量と、紡糸原液であるPVDF溶液の吐出量とを、上記範囲で適当に制御することにより、好ましい形状の多孔質膜を製造できる。
 ノズルから吐出された紡糸原液は、空中走行部を通過させた後、凝固漕に浸漬させて、凝固及び相分離を行わせることにより、中空糸膜が形成される。凝固層中の凝固液としては、例えば水を用いることができる。
 凝固漕から引き上げられた湿潤状態の中空糸膜は、溶媒等を除去するために洗浄漕で洗浄した後、ドライヤーに通して乾燥させる。
 上記のようにして、中空糸状の多孔質膜を得ることができる。
 本実施形態における多孔質膜としては、市販の多孔性膜の中から、本実施形態所定のパラメータを有するものを選択して用いてもよい。
[含浸工程]
 上記のように得られる多孔質膜は、これをそのまま次の塗工工程に供してもよいし、該多孔質膜を粘性水溶液中に含浸させる含浸工程を行ったうえで塗工工程に供してもよい。
 本実施形態では、粘性水溶液の粘度は1cP以上200cP以下が好ましく、5cP以上150cP以下がより好ましく、10cP以上100cP以下が更に好ましい。これは、粘性水溶液の粘度が1cP未満であると、粘性水溶液を用いる効果が出ない等の問題を生じる場合があり、逆に、粘性水溶液の粘度が200cPを超えると、該粘性水溶液が多孔質膜に十分に含浸されない等の問題を生じる場合があるためである。
 本実施形態における粘性水溶液の溶質としては、水と任意の割合で混合する物質を用いることができる。例えば、グリコール、グリコールエーテル等が好適に用いられる。グリコールとしては、例えば、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール等が、グリコールエーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールジメチルエーテル、3-メチル3-メトキシブタノール、エチレングリコールt-ブチルエーテル、3-メチル3-メトキシブタノール、3-メトキシブタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル等がそれぞれ挙げられる。好ましくは、グリセリン、エチレングリコール、及びプロピレングリコールから選択される1種以上である。これらの溶質は、単独で使用しても混合して使用してもよい。
 粘性水溶液における溶質の濃度は、10質量%以上90質量%以下が好ましく、20質量%以上80質量%以下が好ましい。溶質をこの範囲で水と混合し、上記の粘度範囲に調整することにより、粘性水溶液を調製することができる。
 粘性水溶液のpHとしては、4以上10以下が好ましく、5以上9以下がより好ましい。粘性水溶液のpHが低すぎても高すぎても、該粘性水溶液の多孔質膜への含浸が十分に起こらない場合があるためである。
 多孔質膜を粘性水溶液に浸漬させる場合の浸漬温度は、0℃以上100℃以下とすることが好ましく、20℃以上80℃以下とすることがより好ましい。浸漬温度が0℃未満であると、粘性水溶液の多孔質膜への含浸が十分に起こらない等の問題を生じる場合があり;逆に、浸漬温度が100℃を超えると、浸漬中に粘性水溶液中の溶媒(水)が過度に揮発する等の問題を生じる場合があるためである。
 浸漬時間は、15分以上5時間以下とすることが好ましく、30分以上3時間以下とすることがより好ましい。浸漬時間が15分未満であると、多孔質膜への含浸が十分に起こらない等の問題を生じるばあいがあり;逆に、浸漬時間が5時間を超えると、気体分離膜の製造効率が落ちる等の問題を生じる場合がある。
[塗工液製造工程]
 気体分離活性層は、多孔質膜へ塗工液を接触させることにより、形成することができる。接触方法としては、例えば、ディップ塗工法(浸漬法)、ドクターブレード塗工法、グラビア塗工法、ダイ塗工法、噴霧塗工法等による塗工がある。
 以下ディップ塗工法によってキトサンを接触させ気体分離活性層を形成する場合について説明する。
 先ず、キトサン塗工液を調製する。キトサンを水性溶媒に溶解させてキトサン塗工液とする。キトサンの濃度は、0.2質量%以上10質量%以下が好ましく、0.5質量%以上5質量%以下がより好ましい。キトサン濃度が0.2質量%未満であると、実用性の高い気体分離膜を得られない場合がある。本実施形態において用いるキトサンは、化学修飾されていても構わない。
 キトサン塗工液には、溶媒の全量に対して80質量%以下の範囲で有機溶媒が含まれていても構わない。ここで使用される有機溶媒としては、例えば、メタノール、エタノール、プロパノール等のアルコール、アセニトリル、アセトン、ジオキサン、テトラヒドロフラン等の極性溶媒等が用いられる。これらの有機溶媒は単独で使用しても2種以上を混合して使用してもよい。
 キトサン塗工液には、多孔質膜への濡れ性を向上させるため、溶液の全量に対して10質量%以下の界面活性剤が含まれていても構わない。界面活性剤は、気体分離活性層を形成する素材と静電反発しないこと、酸性、中性、及び塩基性のいずれの水溶液にも均一に溶解すること、等の観点から、ノニオン性界面活性剤を用いることが好ましい。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンの長鎖脂肪酸エステル、パーフルオロ基を有するフッ素界面活性剤等が挙げられる。その具体例としては、ポリオキシエチレンの長鎖脂肪酸エステルとして、例えば、Tween20(ポリオキシエチレンソルビタンモノラウレート)、Tween40(ポリオキシエチレンソルビタンモノパルミテート)、Tween60(ポリオキシエチレンソルビタンモノステアレート)、Tween80(ポリオキシエチレンソルビタンモノオレエート)(以上、東京化成工業社製)、トリトン-X100、プルロニック-F68、プルロニック-F127等を;パーフルオロ基を有するフッ素界面活性剤として、例えば、フッ素系界面活性剤FC-4430、FC-4432(以上、3M社製)、S-241、S-242、S-243(以上、AGCセイミケミカル社製)、F-444、F-477(以上、DIC社製)等を;それぞれ挙げることができる。
 キトサン塗工液には、気体分離活性層の柔軟性を向上させるために、溶液の全量に対して20質量%以下の粘性溶質を添加しても構わない。粘性溶質としては、グリコール、グリコールエーテル等が好適に用いられる。グリコールとしては、例えば、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール等が、グリコールエーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールジメチルエーテル、3-メチル3-メトキシブタノール、エチレングリコールt-ブチルエーテル、3-メチル3-メトキシブタノール、3-メトキシブタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル等がそれぞれ挙げられる。好ましくは、グリセリン、エチレングリコール、及びプロピレングリコールから選択される1種以上である。これらの溶質は、単独で使用しても2種以上を混合して使用してもよい。
[塗工工程]
 多孔質膜と接触させる際の塗工液の温度は、0℃以上100℃以下とすることが好ましく、20℃以上80℃以下とすることがより好ましい。接触温度が0℃未満であると、塗工液が多孔質膜上に均一に塗工されない等の問題を生じる場合があり;逆に、接触温度が100℃を超えると、接触中に塗工液の溶媒(例えば水)が過度に揮発する等の問題を生じる場合がある。
 接触を浸漬法によって行う場合の接触時間(浸漬時間)は、15分以上5時間以下とすることが好ましく、30分以上3時間以下とすることがより好ましい。接触時間が15分未満であると、多孔質膜上への塗工が不十分になる等の問題を生じる場合があり;逆に、接触時間が5時間を超えると、気体分離膜の製造効率が落ちる等の問題を生じる場合がある。
[乾燥工程]
 上記塗工工程の後、任意的に乾燥工程(溶媒除去工程)を設けてもよい。この乾燥工程は、塗工後の多孔質膜を、好ましくは80℃以上160℃以下、より好ましくは120℃以上160℃以下の環境下に、好ましくは5分以上5時間以下、より好ましくは10分以上3時間以下、例えば静置する方法により行うことができる。これは、乾燥温度が過度に低い場合(80℃未満)若しくは乾燥時間が過度に短い(5分未満)場合又はこれらの双方である場合には、溶媒を十分に乾燥除去することができない等の問題を生じる場合があり;逆に、乾燥温度が過度に高い(160℃を超える)場合若しくは乾燥時間が過度に長い(5時間を超える)場合又はこれらの双方である場合には、製造コストの増加、製造効率の低下等の問題を生じる場合があるためである。
[金属塩を含有する気体分離活性層を有する気体分離膜の製造方法]
 気体分離活性層が金属塩を含有する気体分離膜は、上記のようにして得られた気体分離膜を、所望の金属塩を含有する金属塩水溶液と更に接触させることにより、製造することができる。その後、任意的に乾燥工程を行ってもよい。
 上記金属塩水溶液中の金属塩の濃度は、0.1モル/L以上50モル/L以下が好ましい。金属塩水溶液中の金属塩の濃度が0.1モル/L未満であると、得られる気体分離膜をオレフィンとパラフィンとの分離に使用したときに実用性の高い分離性能を示さない場合がある。この濃度が50モル/Lを超えると、原料コストの増加につながる等の不都合が生じる。
 気体分離膜の、金属塩水溶液との接触処理は、浸漬法によることが好ましい。浸漬時の水溶液温度は、10℃以上90℃以下とすることが好ましく、20℃以上80℃以下とすることがより好ましい。この浸漬温度が10℃未満であると、気体分離活性層への金属塩の含浸が十分に起こらない等の問題を生じる場合があり;逆に、浸漬温度が90℃を超えると、浸漬中に金属塩水溶液の溶媒(水)が過度に揮発する等の問題を生じる場合がある。
 以上の製造条件により、本実施形態の気体分離膜を製造することができる。
 本実施形態の気体分離用膜モジュールにおいて、中空糸状の気体分離膜は、1本のみを使用してもよく、複数本をまとめて使用してもよい。複数本をまとめて使用する場合の使用本数としては、10本以上100,000本以下とすることが好ましく、10,000本以上50,000本以下とすることがより好ましい。本数が10本以上の場合、気体分離用膜モジュールの生産性が高い。中空糸束の構造及び形状は目的に応じて適宜設計できる。
[接着部製造工程]
 上記のように製造された中空糸又は中空糸束を、ハウジング内に収納した後、糸又は糸束の両端に接着剤の所定量を注入し、硬化して接着部を形成する。接着剤は、例えば二液系接着剤(例えば前述したエポキシ樹脂系接着剤やウレタン樹脂系接着剤)を用いることができる。
 まず、主剤と硬化剤を混合脱泡させる。混合する主剤と硬化剤との重量比率(主剤/硬化剤)は、好ましくは30/70以上70/30以下であり、より好ましくは40/60以上60/40以下であり、さらに好ましくは45/55以上55/45以下である。これは、主剤と硬化剤とのいずれか一方の比率が低すぎると、硬化不良や、硬化時の異常発熱が起こるためである。また、硬化時に主剤若しくは硬化剤の揮発が起こるため、硬化温度や昇温速度も加味して、比率を設定することが望ましい。また、主剤及び硬化剤は、それぞれ、複数種類を混合して用いても構わない。
 次いで、混合脱泡した、主剤と硬化剤の混合液を、糸又は糸束の端部に注入し、加熱する。加熱することによって、混合液が硬化して硬化部を形成する。硬化部は、気体分離用膜モジュールの継時的使用に耐え得る構造になっている(例えば、架橋されている)と推測できる。注入は、一度に行っても、複数回に分けて行っても構わない。複数回に分けて注入することで、硬化時の異常発熱を抑制することができる。また、異常発熱を避けるために、硬化部を仕切り板で分けても構わない。
 ここで、注入から硬化までの時間を調整するために、予め混合液を予熱しておいても良い。予熱は、大気雰囲気下、又は不活性雰囲気下(例えば窒素雰囲気下)のいずれでも構わない。また、主剤や硬化剤の分解を防ぐために、湿度は、相対湿度30%RH以下であることが好ましい。注入後の昇温速度は、0.5℃/分以上20℃/分以下であることが好ましく、1℃/分以上10℃/分以下であることがさらに好ましい。昇温速度が速すぎると、異常発熱により、ひび割れ等が起こる場合がある。逆に昇温速度が遅すぎると、主剤若しくは硬化剤の分解、揮発により、満足できる物性の接着部を得ることが困難になる傾向がある。また、段階的昇温、段階的降温によって、硬化温度を制御しても構わない。
 このように、主剤と硬化剤の混合比率、種類、硬化温度、昇温温度を、制御することにより、満足できる物性を有する接着部を容易に形成でき、ひいては性能の経時的な低下がなく使用可能な気体分離用膜モジュールを得ることができる。
 接着剤が硬化した後、糸又は糸束のうちの接着部における末端部を切断することにより、本実施形態における気体分離用膜モジュールを得ることができる。そして、ハウジング、並びに必要に応じてヘッダ部及びフッタ部等をそれぞれ装着することにより、実使用に供することができる。
<連続ガス供給システム>
 図4を参照し、本実施形態はまた、原料ガス受入口81、原料ガスを精製して精製ガスを生成する原料ガス精製部8、及び精製ガス出口82を少なくとも具備する連続ガス供給システム800を提供する。原料ガス精製部8は、気体分離用膜モジュール、吸着物充填モジュール、及び吸収剤充填モジュールからなる群から選択される少なくとも1つを具備する。
 原料ガス受入口81から連続ガス供給システム内に導入された原料ガスは、原料ガス精製部8で所望の純度(好ましくは99.5質量%以上)まで精製されたのち、精製ガス出口82を経て高純度ガスを使用する現場へと直接供給される。すなわち、精製ガス出口82は高純度ガスの供給口ともなる。ここで、ハウジングのガス供給口を原料ガス受入口として、ハウジングの分離ガス出口を精製ガス出口として用いても構わない。
[原料ガス精製部]
 本実施形態におけるガス精製部8は、気体分離用膜モジュール、吸着物充填モジュール、若しくは吸収剤充填モジュールの少なくともいずれかを具備する。本実施形態においては原料ガスが流動しながら精製されて精製ガスとして取出し供給される限りにおいて、どのような機構のモジュールを用いても構わないが、占有する空間を小さくできることから気体分離用膜モジュールが好ましい。気体分離用膜モジュールとしては本開示のものを好適に使用できる。気体分離用膜モジュールの代わりに、膜モジュールユニットを用いても構わない。
{吸着物充填モジュール}
 本実施形態における吸着物充填モジュールは、少なくとも吸着槽を有する。
(吸着槽)
 本実施形態における吸着槽は、少なくともガス導入管及びガス導出管を有しており、分離目的のガスを吸着剤に吸着させる。吸着槽内部には、吸着剤が受容されている。導入されたガスは、吸着、均圧、脱着、洗浄、昇圧の工程を繰り返しながら、所望の純度まで精製される。ガス導入管は吸着槽内において開放しており、昇圧した原料ガスを槽内へと導入する。ガス導出管は、精製ガスを槽外へと導出する。
 吸着剤としては、アルミナ、シリカ、ゼオライト、金属イオンと有機配位子を組み合わせた多孔体MOF(Metal Organic Framework)等が挙げられる。
{吸収剤充填モジュール}
 本実施形態における吸収剤充填モジュールは、吸収塔と放散塔を有する。
(吸収塔)
 本実施形態における吸収塔は、少なくとも塔本体、ガス導入管、吸収液導出管、及びガス導出管を有しており、原料ガスを吸収剤(典型的には吸収液)に接触、吸収させる。塔本体は密閉容器であり、その内部には吸収剤(典型的には吸収液)が受容されている。
 分離目的のガスがオレフィンの場合の吸収剤としては、金属塩水溶液、ポリエチレングリコールなどの溶液、塩化第一銅の水溶液、並びに、イミダゾリウム系化合物及びピリジニウム系化合物などのイオン液体が挙げられ、中でも金属塩が好ましい。
 この金属塩としては、一価の銀(Ag)及び一価の銅(Cu)からなる群より選ばれる金属イオン、又はその錯イオンを含む金属塩が好ましい。より好ましくは、Ag若しくはCu又はその錯イオンと、F、Cl、Br、I、CN、NO 、SCN、ClO 、CFSO 、BF 、及びPF からなる群より選ばれるアニオンとから構成される金属塩である。これらのうち、入手の容易性及び製品コストの観点から、特に好ましくはAg(NO)である。
 分離目的のガスが二酸化炭素の場合の吸収剤としては、分子内に窒素原子を含む化合物(例えばモノエタノールアミン)及びその溶液、並びに、イミダゾリウム系化合物及びピリジニウム系化合物などのイオン液体が挙げられる。
 ガス導入管の開放端部は、塔本体内の吸収剤内下部において開放しており、吸収塔内へと原料ガスを導入する。吸収剤導出部は、その端部が塔本体内の吸収剤内において開放しており、吸収塔内の吸収剤を塔外へ導出する。吸収されなかったガスは、塔本体内気層部のガス導出管から塔外へと導出される。
(放散塔)
 本実施形態における放散塔は、少なくとも塔本体、吸収液導入管、ガス導出管、吸収液導出管を有しており、吸収液中に吸収したガスを放散させる。放散塔は、吸収液を所望の温度に維持するために温度維持装置が取り付けられている。
 吸収液導入管はその端部が放散塔内下部で開放しており、吸収塔より導出された吸収液を放散塔内に導入する。ガス導出管はその端部が放散塔内気層部で開放されており、吸収液から放散された精製ガスを塔外へと導出する。吸収液導出管はその端部が放散塔内下部で開放されており、精製ガスを放散した吸収液を塔外へと導出する。
[連続ガス供給システムの好適例]
 本実施形態の連続ガス供給システムの好適例は、原料ガス受入口、原料ガスを精製して精製ガスを生成する原料ガス精製部、及び精製ガス出口を備え、精製ガス純度が99.5質量%以上であり、原料ガス精製部が気体分離用膜モジュールで構成される連続ガス供給システムであって、気体分離用膜モジュールが以下の要件a)及び/又はb):
 a)多孔質膜と該多孔質膜上の気体分離活性層とを有する気体分離膜において、該多孔質膜と該気体分離活性層との境界面に、緻密層が存在しないか、又は該境界面と略平行であり、厚みが1μm未満である緻密層を有し、該緻密層の平均孔径は0.01μm未満であり、そして、該多孔質膜の該気体分離活性層側から2μm深さまでの深さ範囲の平均孔径をAとし、10μm深さまでの深さ範囲の平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、比A/Bが0より大きく0.9以下であること;
 b)気体分離用膜モジュールにおける接着部が、
  1)パルスNMRにより測定される、該接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
  2)下記式:W=[(I1-I2)/I1]×100{式中、I1は該接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
  3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該組成比V(V1(%))及び浸漬後の該組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
  4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該減衰率W(W1(%))及び浸漬後の該減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
  5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
  6)該接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たすこと、
を満たし、かつ、以下のc)及びd)の機構:
 c)膜モジュールに供給する原料ガスを加湿するための加湿機構;
 d)膜モジュール後段に設置する脱水機構;
を備えている、連続ガス供給システムである。
<膜モジュールユニット>
 図5を参照し、本実施形態はまた、本開示の気体分離用膜モジュールを備える膜モジュールユニットを提供する。本実施形態の膜モジュールユニット900は、以下に示すa)、b)、c)の機構を備え、かつ、d)又はe)の少なくともいずれか一方の要件を満足する膜モジュールユニットによって無機不純物、有機不純物を長期に渡り効果的に除去できる。
a)ハウジング、多孔質膜と該多孔質膜上に配置された気体分離活性層とを有する気体分離膜、及び該ハウジングに該気体分離膜を固定する接着部、を有する気体分離用膜モジュール9、
b)該気体分離膜に供給する原料ガスを加湿する為の加湿機構91、
c)該気体分離膜で精製されたガスを脱水する為の脱水機構92、
d)気体分離用膜モジュールを構成する気体分離膜が、多孔質膜上に気体分離活性層を有する気体分離膜であって、該多孔質膜と該気体分離活性層との境界面に、緻密層が存在しないか、又は該境界面と略平行であり、厚みが1μm未満で平均孔径が0.01μm未満である緻密層を有し、該多孔質膜の該気体分離活性層側から2μm深さまでの深さ範囲の平均孔径をAとし、10μm深さまでの深さ範囲の平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、比A/Bが0より大きく0.9以下であること、
e)気体分離用膜モジュールにおける接着部が、
1)パルスNMRにより測定される、該接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
2)下記式:W=[(I1-I2)/I1]×100{式中、I1は該接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該組成比V(V1(%))及び浸漬後の該組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該減衰率W(W1(%))及び浸漬後の該減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
6)該接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たすこと。
[加湿機構]
 本実施形態の膜モジュールユニットは加湿機構を備える。加湿機構は気体分離用膜モジュール前段又は、気体分離用膜モジュール内部に置かれることが好ましい。気体分離用膜モジュール前段に置かれる加湿機構としては、例えばバブラーが挙げられる。原料ガスを水中にバブリングすることで、バブラー温度に準じた温度の水分がガス中に同伴される。気体分離用膜モジュール内部に置かれる加湿機構としては、気体分離膜の気体分離活性層側に水溶液を満たした機構や、ハウジングにミストシャワーを供給するスプレーノズルを設けた機構などが挙げられる。加湿機構を備えることで、原料ガス中の無機不純物を水中に溶解させることができる。
[脱水機構]
 本実施形態の膜モジュールユニットは気体分離用膜モジュール後段に脱水機構を備える。脱水機構としては、例えばミストセパレーターや、アルミナ、ゼオライト等の吸着剤が挙げられる。脱水機構を備えることで、水中に溶け込んだ無機不純物を水とともに除去できる。
[ガス純度検知システム]
 本実施形態の膜モジュールユニットは、システム内にオンラインで精製ガス純度を測定できるガス純度検知システムを備えることが好ましい。ガス純度検知システムとしては、ガスクロマトグラフ質量分析計、ガスクロマトグラフ水素炎イオン化検出器、ガスクロマトグラフ熱伝導度検出器、ガスクロマトグラフフレーム光度検出器、イオンクロマトグラフィーなどが挙げられる。
[膜モジュールユニットの好適例]
 本実施形態の膜モジュールユニットの好適例は、気体分離用膜モジュールと加湿機構と脱水機構を有し、ガス流動式であり、精製ガス純度が99.5質量%以上であるガス精製システムを構成する、膜モジュールユニットであって、気体分離用膜モジュールが以下の要件a)及び/又はb)を満たす、膜モジュールユニットである。
 a)多孔質膜と該多孔質膜上の気体分離活性層とを有する気体分離膜において、該多孔質膜と該気体分離活性層との境界面に、緻密層が存在しないか、又は該境界面と略平行であり、厚みが1μm未満である緻密層を有し、該緻密層の平均孔径は0.01μm未満であり、そして、該多孔質膜の該気体分離活性層側から2μm深さまでの深さ範囲の平均孔径をAとし、10μm深さまでの深さ範囲の平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、比A/Bが0より大きく0.9以下であること;
 b)気体分離用膜モジュールにおける接着部が、
  1)パルスNMRにより測定される、該接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
  2)下記式:W=[(I1-I2)/I1]×100{式中、I1は該接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
  3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該組成比V(V1(%))及び浸漬後の該組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
  4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該減衰率W(W1(%))及び浸漬後の該減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
  5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
  6)該接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たすこと。
 特に好ましい態様において、膜モジュールユニットは、精製ガスとして純度99.9質量%以上のオレフィンガスを与えるように構成されている。
 好ましい態様の膜モジュールユニットは、アミノ基、ピリジル基、イミダゾリル基、インドリル基、ヒドロキシル基、フェノール基、エーテル基、カルボキシル基、エステル基、アミド基、カルボニル基、チオール基、チオエーテル基、スルホン基、スルホニル基及びスルホンアミド基からなる群から選択される1種類以上の官能基を含む重合体で構成されている気体分離活性層を有する。更に好ましい態様において、気体分離活性層は、アミノ基、スルホン基、及びヒドロキシル基からなる群から選択される1種類以上の官能基を含む重合体で構成されている。更に好ましい態様において、該重合体はポリアミンである。更に好ましい態様において、該ポリアミンはキトサンである。
 好ましい態様の膜モジュールユニットは、1価のAg及び/又は1価のCuを含有する気体分離膜を有する。
 好ましい態様の膜モジュールユニットは、フッ素系樹脂を含有する多孔質膜を有する。該フッ素系樹脂は好ましくはPVDFである。
 好ましい態様の連続ガス供給システム又は膜モジュールユニットにおいては、プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm2当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定された、プロピレン/プロパンの分離係数が、好ましくは50以上100,000以下である。
 本実施形態は、上記の連続ガス供給システム又は膜モジュールユニットを用いた、純度99.5質量%以上のオレフィンガスの製造方法も提供する。オレフィンガスは、例えばCVD供給用のプロピレンであってよい。
 以下に、本発明について、実施例等を用いて更に具体的に説明する。しかしながら本発明は、これらの実施例等に何ら限定されるものではない。
<接着剤>
 以下の実施例及び比較例においては、以下の表1に示した2液系のエポキシ樹脂系接着剤及びウレタン樹脂系接着剤を用い、各主剤と硬化剤とを該表1に記載の混合比で混合し、該表1に記載の条件で硬化させて、接着部として使用した。
Figure JPOXMLDOC01-appb-T000002
<接着剤硬化物のパルスNMR測定>
[分析例1-1~1-14]
 接着剤として、接着剤A~Nをそれぞれ用い、主剤と硬化剤との混合比、及び硬化条件を、それぞれ、表1に示すとおりとして各接着剤の硬化物から成る板状体を作製した。
 尚、用いた接着剤A、B、C、Fは、ベルノックス社製、商品名HV/ME―562であり、Dは、ベルノックス社製、商品名HV/ME-541であり、Eは、室町ケミカル社製EPH-01Xであり、接着剤G、Hは、ヘンケル社製、商品名193316/193317であり、接着剤Iは、ヘンケル社製、商品名E-90FLであり、接着剤J、K、L、Nは、サンユレック社製、商品名SA-7702A/7702B2であり、接着剤Mは、サンユレック社製、商品名SA-6333A2/B5であった。
 これらの板状体を、それぞれ、長さ70mm、幅5mm、及び厚さ1mmに切断し、浸漬試験用の接着剤試験片を作製した。
 各試験の実施条件は、以下のとおりとした。
 未浸漬品:25℃及び相対湿度40%RHの恒温恒湿室中に24時間静置して状態調節を行った後にパルスNMR測定に供した。
 硝酸銀水溶液浸漬後:試験片を、液温25℃の7mol/L硝酸銀水溶液(JIS K 8550準拠の硝酸銀を使用)中に1ヶ月間浸漬した後、硝酸銀水溶液を拭き取り蒸留水で洗浄後、パルスNMR測定に供した。
 ヘプタン浸漬後:試験片を、液温25℃のヘプタン中に1ヶ月間浸漬した後、ヘプタンを拭き取った後、パルスNMR測定に供した。
 パルスNMRの実施条件は、以下のとおりとした。まず、高さ1.5cmになるように切削した測定試料を外径10mmのガラス管に入れた。次いで、ブルカーバイオスピン社製のMinispec MQ20を用い、190℃に温度制御した装置内に試験片の入ったガラス管を設置して5分経過した時点でソリッドエコー法により1HのT2緩和時間を測定した。測定に際しては測定の間の繰り返し待ち時間を試料のT1緩和時間の5倍以上となるように設定した。上記のようにして得られた磁化減衰曲線について、ワイブル関数とローレンツ関数からなる式1を用いてフィッティングを行った。ワイブル関数を用いて表現される成分を低運動性成分、ローレンツ関数を用いて表現される成分を高運動性成分とした。フィッティング用のソフトウェアとしてはIgor Pro6を用いた。ワイブル係数については初期値を2.0としたうえで1.2以上2.0以下となるようにフィッティングを行った。低運動性成分の緩和時間Tsについては初期値を0.02msec、高運動性成分の緩和時間Tlについては初期値を0.1msecとしてフィッティングした。フィッティング範囲は0msecから0.4msecの範囲とした。
 上記手順にてパルスNMRを用いて得られる磁化減衰曲線から、取り込み開始時点での初期信号強度(I1)と0.05msecでの信号強度(I2)を得た。I1とI2を用い、数式2:
Figure JPOXMLDOC01-appb-M000003
 を用いることで0.05msec時点での減衰率(W、%)を算出した。
 各接着剤のパルスNMRでの分析結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
<接着剤硬化物中のN含量及びS含量の測定>
[分析例2-1~2-14]
 接着剤として、接着剤A~Nをそれぞれ用い、主剤と硬化剤との混合比、及び硬化条件を、それぞれ、表1に示すとおりとして、各接着剤の硬化物から成る板状体を作製した。これらの板状体を、それぞれ、50℃において24時間減圧乾燥した後、CHNコーダー(炭素水素窒素同時定量装置)にて窒素(N)含量CN(質量%)を、イオンクロマトグラム法にて硫黄(S)含量CS(質量%)を、それぞれ分析した。
 得られた結果を、両者の比CN/CSとともに表3に示す。
 なお、表2中のN含量欄における「<0.30」の表記は、当該N含量がCHNコーダーのN含量検出限界(0.30質量%)を下回ったことを示す。
Figure JPOXMLDOC01-appb-T000005
<接着剤硬化物の硬度の測定>
[分析例3-1~3-14]
 接着剤として、接着剤A~Nをそれぞれ用い、主剤と硬化剤との混合比、及び硬化条件を、それぞれ、表1に示すとおりとして、各接着剤の硬化物を作製した。
これらの板状体を、それぞれ、50℃において24時間減圧乾燥した後、JISK6253、ISO7619に準じた方法で、それぞれ分析した。
 得られた結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000006
<接着剤硬化物の耐薬品性試験>
[試験例1~3]
 接着剤として、接着剤A(試験例1)、接着剤D(試験例2)、E(試験例3)、及びJ(試験例4)をそれぞれ用い、主剤と硬化剤との混合比、及び硬化条件を、それぞれ、表1に示すとおりとして各接着剤の硬化物から成る板状体を作製した。これらの板状体を、それぞれ、長さ70mm、幅5mm、及び厚さ1mmに切断し、浸漬試験用の接着剤試験片を作製した。
 試験片は、曲げヤング率及び曲げ強度を、ヘプタン浸漬後及び硝酸銀水溶液浸漬後、並びに未浸漬品の3つの場合について下記のN数にて測定するのに必要な数だけ準備した。質量及び厚さについては、下記のN数にて、同一のサンプルについて浸漬前及び浸漬後の2回、測定を行った。
 各試験の実施条件は、以下のとおりとした。
  未浸漬品:25℃及び相対湿度40%RHの恒温恒湿室中に24時間静置して状態調節を行った後に各分析に供した。
  硝酸銀水溶液浸漬後:試験片を、液温25℃の7mol/L硝酸銀水溶液(JIS K 8550準拠の硝酸銀を使用)中に1ヶ月間浸漬した後、硝酸銀水溶液を拭き取り蒸留水で洗浄後、各分析に供した。
  ヘプタン浸漬後:試験片を、液温25℃のヘプタン中に1ヶ月間浸漬した後、ヘプタンを拭き取った後、各分析に供した。
  曲げヤング率及び曲げ強度:ミネベア社製、形式「TG-1KN」を用い、3点曲げ試験法により、試験温度:25℃、試験速度5mm/秒、N数=5にて行った。
  質量:分析用電子天秤を用い、N数=5にて測定した。
  厚さ:1試料の厚さ測定は、ランダムに設定した5点の測定点について行い、その平均値をとった。
 各接着剤の耐薬品性試験結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
<気体分離用膜モジュールの性能試験>
[実施例1-1~1-20及び比較例1-1~1-2]
 図1に示すような気体分離用膜モジュールを作製した。
 気体分離膜としては、表1に示した樹脂から成る内径0.7mm、外径1.2mm、及び長さ7.1cmの中空糸膜、又は該中空糸膜の内表面上に、表1に記載の気体分離活性層を配置したものを10本使用し;
 ハウジングとしては、透過ガス入口21及び分離ガス出口22を有する円筒状容器2(内径2cm)と、ガス供給口31を有するフッタ部3及び処理ガス出口41を有するヘッダ部4とを、組み合わせて用いた。
 上記の気体分離膜6の10本を円筒状容器2に入れ、表1記載の接着剤を使用し、表1記載の条件で硬化させて得た接着部10により、気体分離膜を容器2の両端部に接着封止した。接着剤が完全に硬化した後、円筒両端部を各1cm切断した。更に、容器2に、ガス供給口31を有するフッタ部3及び処理ガス出口41を有するヘッダ部4を装着することにより、気体分離用膜モジュール100を製造した。
 上記の気体分離用膜モジュール100を用いて、プロパン及びプロピレンの透過速度を測定した。
 測定は、ガス供給口31にプロパン及びプロピレンから成る混合ガス(プロパン:プロピレン=40:60(質量比))を、透過流体入口21にヘリウムを、それぞれ供給し、供給ガス流量を190cc/min、透過ガス流量を50cc/minとして、加湿雰囲気下等圧式により、測定温度30℃において行った。
 プロパン及びプロピレンから成る混合ガスの供給を開始してから3時間後に、気体分離用膜モジュール100を透過して分離ガス出口22から排出されたガスの組成から算出された結果を測定1日目の結果とし、供給を開始してから7日後に得られた結果を測定7日目の結果とした。分離ガスの分析は、ガスクロマトグラフィー(GC)を用いて行った。
 分析結果を表7及び8に示す。
 実施例1-2~1-20及び比較例1-1~1-2も、表6の記載の塗工液を用い、表7の記載の条件で、実施例1-1と同様に行った。結果を表7及び8に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表中、多孔質膜種類欄の成分略称は、それぞれ、以下の意味である(以下同じ。)。
  PVDF:ポリフッ化ビニリデン
  PSU:ポリスルフォン
  PES:ポリエーテルスルフォン
<膜モジュールユニットの性能試験>
 気体分離膜を、0.8M水酸化ナトリウム溶液(溶媒=エタノール:水(体積比80:20))に1日間浸漬した後、蒸留水で5回洗浄した。上記気体分離膜を15cmにカットし10本を一束にして表3に示す接着剤を使用して気体分離膜モジュールを作製した。
その後、7M硝酸銀水溶液に24時間浸漬することにより、銀塩を含有する気体分離膜を得た。この銀塩を含有する気体分離膜を用いて、プロパン及びプロピレンの透過速度を測定した。
 実施例2-1~2-6及び2-8、2-11の測定は、28.5℃でバブラー式にて水蒸気を含ませた99.5質量%のプロピレン(不純物としてプロパン及び、一酸化炭素、二酸化炭素、アンモニア、酸素、窒素、NOxなどを含む)を190cc/min、30℃で気体分離用膜モジュールに供給し、アルミナ吸着剤で脱水するガス精製システムを用いて行った。
 実施例2-7、2-12の測定は、99.5質量%のプロピレン(不純物としてプロパン及び、一酸化炭素、二酸化炭素、アンモニア、酸素、窒素、NOxなどを含む)を190cc/min、30℃で7Mの硝酸銀水溶液が充填された気体分離用膜モジュールに供給し、アルミナ吸着剤で脱水するガス精製システムを用いて行った。実施例2-13の測定は、99.5質量%のプロピレン(不純物としてプロパン及び、一酸化炭素、二酸化炭素、アンモニア、酸素、窒素、NOxなどを含む)を190cc/min、30℃で直接気体分離用膜モジュールに供給するガス精製システムを用いて行った。
 原料ガスを供給してから3時間後にガス精製システムから排出されたガスの組成から算出された結果を測定1日目の結果とし、供給を開始してから7日後に得られた結果を測定7日目の結果とした。
[実施例2-1]
 多孔質膜として、ポリフッ化ビニリデン製の中空糸を用いた。外径及び内径、並びに平均孔径A及びBは、それぞれ、表9に示したとおりである。
 上記の中空糸支持体を、25cm長さにしたうえで両端をヒートシールで封止し、下記組成の塗工液A(液温25℃)中に、1cm/secの速度で浸漬させ、支持体の全部が上記水溶液中に没し、5秒間静置した後、1cm/secの速度で引上げ、120℃において10分加熱することにより、中空糸支持体の外表面上に気体分離活性層を形成して、中空糸状の気体分離膜を製造した。
 実施例2-1で製造された気体分離膜の断面SEM像を図7に示す。結果を表10に示す。
 実施例2-2~2-13も、表6の記載の塗工液を用い、表9の記載の条件で、実施例2-1と同様に行った。SEM像及び結果を図7~11及び表10にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表中の「FC-4430」は、3M社製の、パーフルオロアルキル基を有するフッ素系界面活性剤、商品名「Novec FC-4430」であり、「ナフィオン」は登録商標である(以下同じ。)。
[比較例2-1]
 ガス精製システムを用いず、市販の高純度プロピレンガスシリンダを用いて、測定を実施した。
 ガスシリンダから高純度プロピレンガスの供給を開始してから3時間後の組成から算出された結果を測定1日目の結果とし、供給を開始してから7日後に得られた結果を測定7日目の結果とした。また、ガスシリンダ交換直後の組成から算出された結果を取得した。分離ガスの分析は、ガスクロマトグラフィー(GC)を用いて行った。
 分析結果を表4に示す。
 ガスシリンダ交換直後は、精製ガスの純度が大きく低下した。再び99.99質量%以上に精製するために、約15時間要した。
<オンサイト高純度ガス供給システムの性能試験>
 気体分離膜を、0.8M水酸化ナトリウム溶液(溶媒=エタノール:水(体積比80:20))に1日間浸漬した後、蒸留水で5回洗浄した。上記気体分離膜を15cmにカットし10本を一束にして表3に示す接着剤を使用して気体分離膜モジュールを作製した。その後、7M硝酸銀水溶液に24時間浸漬することにより、銀塩を含有する気体分離膜を得た。この銀塩を含有する気体分離膜を用いて、プロパン及びプロピレンの透過速度を測定した。
 実施例3-1~3-6及び3-8、3-11の測定は、28.5℃でバブラー式にて水蒸気を含ませた99.5%のプロピレン(不純物としてプロパン及び、一酸化炭素、二酸化炭素、アンモニア、酸素、窒素、NOxなどを含む)を190cc/min、30℃で気体分離用膜モジュールに供給し、アルミナ吸着剤で脱水するガス精製システムを用いて行った。
 実施例3-7、3-12の測定は、99.5質量%のプロピレン(不純物としてプロパン及び、一酸化炭素、二酸化炭素、アンモニア、酸素、窒素、NOxなどを含む)を190cc/min、30℃で7Mの硝酸銀水溶液が充填された気体分離用膜モジュールに供給し、アルミナ吸着剤で脱水するガス精製システムを用いて行った。実施例3-13の測定は、99.5質量%のプロピレン(不純物としてプロパン及び、一酸化炭素、二酸化炭素、アンモニア、酸素、窒素、NOxなどを含む)を190cc/min、30℃で直接気体分離用膜モジュールに供給するガス精製システムを用いて行った。
 原料ガスを供給してから3時間後にガス精製システムから排出されたガスの組成から算出された結果を測定1日目の結果とし、供給を開始してから7日後に得られた結果を測定7日目の結果とした。
[実施例3-1]
 多孔質膜として、ポリフッ化ビニリデン製の中空糸を用いた。外径及び内径、並びに平均孔径A及びBは、それぞれ、表11に示したとおりである。
 上記の中空糸支持体を、25cm長さにしたうえで両端をヒートシールで封止し、下記組成の塗工液A(液温25℃)中に、1cm/secの速度で浸漬させ、支持体の全部が上記水溶液中に没し、5秒間静置した後、1cm/secの速度で引上げ、120℃において10分加熱することにより、中空糸支持体の外表面上に気体分離活性層を形成して、中空糸状の気体分離膜を製造した。
 実施例3-1で製造された気体分離膜の断面SEM像を図7に示す。結果を表12に示す。
 実施例3-2~3-13も、表6の記載の塗工液を用い、表11の記載の条件で、実施例3-1と同様に行った。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
[比較例3-1]
 ガス精製システムを用いず、市販の高純度プロピレンガスシリンダを用いて、測定を実施した。
 ガスシリンダから高純度プロピレンガスの供給を開始してから3時間後の組成から算出された結果を測定1日目の結果とし、供給を開始してから7日後に得られた結果を測定7日目の結果とした。また、ガスシリンダ交換直後の組成から算出された結果を取得した。分離ガスの分析は、ガスクロマトグラフィー(GC)を用いて行った。
 分析結果を表12に示す。
 ガスシリンダ交換直後は、精製ガスの純度が大きく低下した。再び99.99質量%以上に精製するために、約15時間要した。
<接着剤硬化物の赤外分光分析>
[分析例4-1~4-3]
 接着剤として、接着剤A(分析例4-1)、接着剤D(分析例4-2)、及び接着剤E(分析例4-3)をそれぞれ用い、主剤と硬化剤との混合比、及び硬化条件を、それぞれ、表1に示すとおりとして、各接着剤の硬化物から成る板状体(70mm×5mm×1mm)を作製した。得られた各板状体につき、50℃において24時間減圧乾燥した後に、赤外分光分析を行った。赤外分光分析は、以下の条件下に実施した。
  IR装置:Bruker社製、形式「LUMOS」
  測定法:ATR法(Ge結晶)
  波数分解能:4cm-1
  積算回数:64回
  測定領域:50μm×50μm
  分析深さ:1μm未満
 得られた赤外ATRチャートを図6に示す。
 以上の実施例から、気体分離用膜モジュールにおける接着部が、
1)パルスNMRにより測定される、該接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
2)下記式:W=[(I1-I2)/I1]×100{式中、I1は該接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該組成比V(V1(%))及び浸漬後の該組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の該減衰率W(W1(%))及び浸漬後の該減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
5)該接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ該接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
及び
6)該接着部の硬度Kが、10D≦K≦90Dであること;
の少なくとも1つを満たす気体分離用膜モジュールは、長期的に実用性が高い透過性能と分離性能とを有することが確認された。その理由は、分離対象ガス、金属塩等による膨潤及び劣化が抑制され、接着部の崩壊、使用ガスの漏えい、原料ガスと精製ガスの混合、ハウジング部の破損、接着部と多孔質膜や気体分離活性層との剥離等が起こらないためと推察される。
 本実施形態の気体分離用膜モジュールを用いると、省エネルギー且つ安全性の高いガス分離方法(特にオレフィンガス等の分離方法)が提供される。
 1  多孔質膜
 2  ハウジング
 3  フッタ部
 4  ヘッダ部
 5  気体分離活性層
 6  気体分離膜
 10  接着部
 11  板状部材
 21  ガス供給口
 22  処理ガス出口
 31  透過ガス入口
 41  分離ガス出口
 7  多孔質膜
 71  平均孔径Aを決定する深さ範囲
 72  平均孔径Bを決定する深さ範囲
 73  気体分離活性層
 74  孔
 8  原料ガス精製部
 81  原料ガス受入口
 82  精製ガス出口
 9  気体分離用膜モジュール
 91  加湿機構
 92  脱水機構
 100,200  気体分離用膜モジュール
 700  気体分離膜
 800  連続ガス供給システム
 900  膜モジュールユニット

Claims (51)

  1.  ハウジングと、前記ハウジング内に配置された気体分離膜と、前記ハウジングに前記気体分離膜を固定する接着部と、を有する気体分離用膜モジュールであって、
     前記気体分離膜が、多孔質膜で構成されており、
     前記接着部が、下記1)~6):
    1)パルスNMRにより測定される、前記接着部の低運動性成分の組成比V(%)が、30≦V≦100であること;
    2)下記式:W=[(I1-I2)/I1]×100{式中、I1は前記接着部のパルスNMR測定における測定開始時の信号強度であり、そしてI2は測定開始後0.05msecにおける信号強度である。}で表される減衰率W(%)が、30≦W≦100であること;
    3)下記式:X=[(V2-V1)/V1]×100{式中、V1及びV2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の前記組成比V(V1(%))及び浸漬後の前記組成比V(V2(%))である。}で表される変化率X(%)が、-50≦X≦50であること;
    4)下記式:Y=[(W2-W1)W1]×100{式中、W1及びW2は、接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の前記減衰率W(W1(%))及び浸漬後の前記減衰率W(W2(%))である。}で表される変化率Y(%)が、-120≦Y≦120であること;
    5)前記接着部中の窒素原子の含有割合(CN、質量%)が、0.0010≦CN≦10であり、かつ前記接着部中の硫黄原子の含有割合(CS、質量%)が、0.0010≦CS≦0.01であること;
    及び
    6)前記接着部の硬度Kが、10D≦K≦90Dであること;
    の少なくとも1つを満たす、気体分離用膜モジュール。
  2.  前記接着部の前記組成比Vが、50≦V≦100である、請求項1に記載の気体分離用膜モジュール。
  3.  前記接着部の前記組成比Vが、70≦V≦100である、請求項2に記載の気体分離用膜モジュール。
  4.  前記接着部の前記組成比Vが、90≦V≦100である、請求項3に記載の気体分離用膜モジュール。
  5.  前記接着部の前記減衰率Wが、60≦W≦100である、請求項1~4のいずれか一項に記載の気体分離用膜モジュール。
  6.  前記接着部の前記減衰率Wが、90≦W≦100である、請求項1~5のいずれか一項に記載の気体分離用膜モジュール。
  7.  前記接着部の前記変化率Xが、-25≦X≦25である、請求項1~6のいずれか一項に記載の気体分離用膜モジュール。
  8.  前記接着部の前記変化率Yが、-60≦Y≦60である、請求項1~7のいずれか一項に記載の気体分離用膜モジュール。
  9.  前記接着部中の前記窒素原子の含有割合CNが、0.0010≦CN≦4.0である、請求項1~8のいずれか一項に記載の気体分離用膜モジュール。
  10.  前記接着部中の前記窒素原子の含有割合CNが、0.0010≦CN≦0.30である、請求項1~9のいずれか一項に記載の気体分離用膜モジュール。
  11.  前記接着部中の前記硫黄原子の含有割合CSが、0.0010≦CS≦0.0070である、請求項1~10のいずれか一項に記載の気体分離用膜モジュール。
  12.  前記接着部の前記硬度Kが、30D≦K≦90Dである、請求項1~11のいずれか一項に記載の気体分離用膜モジュール。
  13.  前記接着部の前記硬度Kが、50D≦K≦90Dである、請求項1~12のいずれか一項に記載の気体分離用膜モジュール。
  14.  前記接着部が、接着剤の硬化物であり、前記接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬したときの、浸漬前の曲げヤング率に対する浸漬後の曲げヤング率の変化率、及び浸漬前の曲げ強度に対する浸漬後の曲げ強度の変化率が、それぞれ、-30%以上+30%以下の範囲内にある、請求項1~13のいずれか一項に記載の気体分離用膜モジュール。
  15.  前記接着部が、接着剤の硬化物であり、前記接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬した後の該試験片の表面積あたりの質量変化が、浸漬前と比較して、-30mg/cm2以上+30mg/cm2以下の範囲内にある、請求項1~14のいずれか一項に記載の気体分離用膜モジュール。
  16.  前記接着部が、接着剤の硬化物であり、前記接着部を7mol/L硝酸銀水溶液若しくはヘプタン中に25℃において1ヶ月間浸漬した後の該試験片の厚さ変化率が、浸漬前と比較して、-5%以上+5%以下の範囲内にある、請求項1~15のいずれか一項に記載の気体分離用膜モジュール。
  17.  前記接着部が、エポキシ樹脂系接着剤若しくはウレタン樹脂系接着剤の硬化物を含有する、請求項1~16のいずれか一項に記載の気体分離用膜モジュール。
  18.  前記接着部が、フッ素系熱可塑性樹脂の硬化物を実質的に含有しない、請求項1~17のいずれか一項に記載の気体分離用膜モジュール。
  19.  前記気体分離膜が、1価のAg及び/又は1価のCuを含む金属塩を含有する、請求項1~18のいずれか一項に記載の気体分離用膜モジュール。
  20.  前記気体分離用膜モジュールに対し、プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm2当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定されたプロピレン気体の透過速度が10GPU以上3,000GPU以下であり、プロピレン/プロパンの分離係数が50以上1,000以下である、請求項1~19のいずれか一項に記載の気体分離用膜モジュール。
  21.  原料ガス受入口、原料ガスを精製して精製ガスを生成する原料ガス精製部、及び精製ガス出口を備えるガス流動式の連続ガス供給システムであって、前記精製ガスの純度が99.5質量%以上であり、かつ、前記原料ガス精製部が、吸着物充填モジュール、吸収剤充填モジュール、及び気体分離膜を有する気体分離用膜モジュールからなる群から選択されるモジュールで構成されている、連続ガス供給システム。
  22.  前記原料ガス精製部が、前記気体分離用膜モジュールで構成されており、前記気体分離用膜が、多孔質膜で構成されている、請求項21に記載の連続ガス供給システム。
  23.  原料ガス受入口、原料ガスを精製して精製ガスを生成する原料ガス精製部、及び精製ガス出口を備えるガス流動式の連続ガス供給システムであって、
     前記原料ガス精製部が、請求項1~20のいずれか一項に記載の気体分離用膜モジュールで構成されている、連続ガス供給システム。
  24.  前記精製ガスの純度が99.5質量%以上である、請求項23に記載の連続ガス供給システム。
  25.  前記精製ガスの主成分がハイドロカーボンガスである、請求項21~24のいずれか一項に記載の連続ガス供給システム。
  26.  前記ハイドロカーボンガスがオレフィンガスである、請求項25に記載の連続ガス供給システム。
  27.  前記オレフィンガスがエチレン、又はプロピレンである、請求項26に記載の連続ガス供給システム。
  28.  前記ハイドロカーボンガスが炭素数1~4の脂肪族炭化水素である、請求項25に記載の連続ガス供給システム。
  29.  前記精製ガスが、非ハイドロカーボンガスを合計5000ppm以下の量で含有する、請求項21~28のいずれか一項に記載の連続ガス供給システム。
  30.  前記精製ガスが、非ハイドロカーボンガスを含有し、前記非ハイドロカーボンガスが、酸素、窒素、水、一酸化炭素、二酸化炭素及び水素からなる群から選択される1種類以上のガスである、請求項21~28のいずれか一項に記載の連続ガス供給システム。
  31.  前記非ハイドロカーボンガスが水からなる、請求項30に記載の連続ガス供給システム。
  32.  前記気体分離膜が、多孔質膜及び気体分離活性層を有する複合膜である、請求項1~31のいずれか一項に記載の連続ガス供給システム。
  33.  プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm2当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定された、プロピレン/プロパンの分離係数が50以上100,000以下である、請求項21~32のいずれか一項に記載の連続ガス供給システム。
  34.  前記気体分離膜が、多孔質膜と、前記多孔質膜上に配置された気体分離活性層とを有し、
     前記多孔質膜と前記気体分離活性層との境界面に、緻密層が存在しないか、又は前記境界面と略平行であり、厚みが1μm未満である緻密層を有し、
     前記緻密層の平均孔径は0.01μm未満であり、そして、
     前記多孔質膜の前記気体分離活性層から2μm深さまでの深さ範囲の平均孔径をAとし、10μm深さまでの深さ範囲の平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、比A/Bが0より大きく0.9以下である、請求項21~33のいずれか一項に記載の連続ガス供給システム。
  35.  前記気体分離用膜モジュールが、1価のAg及び/又は1価のCuを含有する、請求項21~34のいずれか一項に記載の連続ガス供給システム。
  36.  請求項21~35のいずれか一項に記載の連続ガス供給システムを用いた、純度99.5質量%以上のオレフィンガスの製造方法。
  37.  前記オレフィンガスがCVD供給用のプロピレンである、請求項36に記載のオレフィンガスの製造方法。
  38.  ハウジング、前記ハウジング内に配置され多孔質膜と前記多孔質膜上に配置された気体分離活性層とを有する気体分離膜、及び前記ハウジングに前記気体分離膜を固定する接着部、を有する気体分離用膜モジュール、
     前記気体分離膜に供給する原料ガスを加湿する為の加湿機構、並びに
     前記気体分離膜で精製されたガスを脱水する為の脱水機構、
    を備える、膜モジュールユニット。
  39.  前記多孔質膜と前記気体分離活性層との境界面に、緻密層が存在しないか、又は前記境界面と略平行であり、かつ厚みが1μm未満で平均孔径が0.01μm未満である緻密層を有し、そして、前記多孔質膜の前記気体分離活性層側から2μm深さまでの深さ範囲の平均孔径をAとし、10μm深さまでの深さ範囲の平均孔径をBとしたとき、Aが0.05μm以上0.5μm以下であり、かつA/Bが0より大きく0.9以下である、請求項38に記載の膜モジュールユニット。
  40.  精製ガスとして純度99.9質量%以上のオレフィンガスを与えるように構成されている、請求項38又は39に記載の膜モジュールユニット。
  41.  ガス純度検知システムをさらに備える、請求項38~40のいずれか一項に記載の膜モジュールユニット。
  42.  前記気体分離活性層が、アミノ基、ピリジル基、イミダゾリル基、インドリル基、ヒドロキシル基、フェノール基、エーテル基、カルボキシル基、エステル基、アミド基、カルボニル基、チオール基、チオエーテル基、スルホン基、スルホニル基及びスルホンアミド基からなる群から選択される1種類以上の官能基を含む重合体で構成されている、請求項38~41のいずれか一項に記載の膜モジュールユニット。
  43.  前記気体分離活性層が、アミノ基、スルホン基、及びヒドロキシル基からなる群から選択される1種類以上の官能基を含む重合体で構成されている、請求項42に記載の膜モジュールユニット。
  44.  前記重合体がポリアミンである、請求項42又は43に記載の膜モジュールユニット。
  45.  前記ポリアミンがキトサンである、請求項44に記載の膜モジュールユニット。
  46.  前記気体分離膜が、1価のAg及び/又は1価のCuを含有する、請求項38~45のいずれか一項に記載の膜モジュールユニット。
  47.  前記多孔質膜がフッ素系樹脂を含有する、請求項38~46のいずれか一項に記載の膜モジュールユニット。
  48.  前記フッ素系樹脂がPVDFである、請求項47に記載の膜モジュールユニット。
  49.  プロパン40質量%及びプロピレン60質量%から成る混合ガスを用い、膜面積2cm2当たりの供給側ガス流量を190cc/min、透過側ガス流量を50cc/minとし、加湿雰囲気下等圧式によって30℃において測定された、前記気体分離膜のプロピレン/プロパンの分離係数が50以上100,000以下である、請求項38~48のいずれか一項に記載の膜モジュールユニット。
  50.  請求項38~49のいずれか一項に記載の膜モジュールユニットを用いた、純度99.9質量%以上のオレフィンガスの製造方法。
  51.  前記オレフィンガスがCVD供給用のプロピレンである、請求項50に記載のオレフィンガスの製造方法。
PCT/JP2017/028630 2016-08-08 2017-08-07 気体分離用膜モジュール WO2018030356A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780042195.8A CN109475810B (zh) 2016-08-08 2017-08-07 气体分离膜用组件
KR1020197003528A KR102175623B1 (ko) 2016-08-08 2017-08-07 기체 분리용 막 모듈
JP2018533465A JP6678242B2 (ja) 2016-08-08 2017-08-07 気体分離用膜モジュール
US16/323,666 US11628394B2 (en) 2016-08-08 2017-08-07 Gas separation membrane module

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016-155856 2016-08-08
JP2016155856 2016-08-08
JP2016169557 2016-08-31
JP2016-169557 2016-08-31
JP2017-026214 2017-02-15
JP2017026214 2017-02-15
JP2017040889 2017-03-03
JP2017040880 2017-03-03
JP2017-040889 2017-03-03
JP2017-040880 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018030356A1 true WO2018030356A1 (ja) 2018-02-15

Family

ID=61162223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028630 WO2018030356A1 (ja) 2016-08-08 2017-08-07 気体分離用膜モジュール

Country Status (6)

Country Link
US (1) US11628394B2 (ja)
JP (1) JP6678242B2 (ja)
KR (1) KR102175623B1 (ja)
CN (1) CN109475810B (ja)
TW (1) TWI710401B (ja)
WO (1) WO2018030356A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002146A1 (en) * 2021-07-23 2023-01-26 Mexichem Fluor S.A. De C.V. Method for the separation of phosphorus pentafluoride from hydrogen chloride
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant
US11994063B2 (en) 2019-10-16 2024-05-28 Richard Alan Callahan Turbine powered electricity generation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216152B1 (ko) 2019-10-23 2021-02-16 박성훈 올인원 독서대
JP2022045188A (ja) 2020-09-08 2022-03-18 キオクシア株式会社 ガス回収装置、半導体製造システムおよびガス回収方法
CN116059796A (zh) * 2021-10-30 2023-05-05 中国石油化工股份有限公司 磁法膜分离设备、富氧供气系统及富氧燃烧方法
CN116351265B (zh) * 2022-01-17 2024-06-07 中国科学院过程工程研究所 一种基于离子液体配位作用的高性能混合基质气体分离膜的制备及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691130A (ja) * 1990-04-09 1994-04-05 Standard Oil Co:The 選択分離用高圧促進膜及びその使用法
WO2006043386A1 (ja) * 2004-10-19 2006-04-27 Nippon Polyurethane Industry Co., Ltd. ポリウレタン樹脂形成性組成物、シール材の製造方法、及び中空糸膜モジュールの製造方法
JP2007203298A (ja) * 2000-07-10 2007-08-16 Asahi Kasei Chemicals Corp 中空糸膜カートリッジ、並びにそれを用いた中空糸膜モジュール及びタンク型濾過装置
JP2010162447A (ja) * 2009-01-14 2010-07-29 Sanyo Chem Ind Ltd 膜モジュールのシール材用ポリウレタン樹脂形成性組成物
JP2014533193A (ja) * 2011-06-07 2014-12-11 イムテックス メンブレインズ コーポレイション 膜への液体材料の補給

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844735A (en) 1972-09-13 1974-10-29 Standard Oil Co Process
JPH02268815A (ja) * 1989-04-07 1990-11-02 Mitsubishi Rayon Co Ltd 膜モジユール
CN1102425C (zh) * 1995-09-21 2003-03-05 旭化成株式会社 中空纤维膜组件
US5818228A (en) * 1997-04-28 1998-10-06 Xxsys Technologies, Inc. Measurement of the resin content of a composite material by nuclear magnetic resonance
US6290756B1 (en) * 1997-12-03 2001-09-18 Praxair Technology, Inc. Hollow fiber membrane tubesheets of variable epoxy composition and hardness
WO2000059614A1 (en) * 1999-04-02 2000-10-12 Mitsubishi Rayon Co., Ltd. Hollow yarn membrane module, potting agent therefor and method for deaeration of liquid chemicals
AU2001269498B2 (en) * 2000-07-10 2004-04-22 Asahi Kasei Kabushiki Kaisha Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
US20040000231A1 (en) 2002-07-01 2004-01-01 Benjamin Bikson Composite gas separation membranes from perfluoropolymers
JP4469635B2 (ja) 2004-03-03 2010-05-26 正明 寺本 ガス分離方法およびガス分離装置
CN101234294B (zh) * 2006-11-14 2010-11-10 旭化成化学株式会社 过滤膜组件
CN103432910A (zh) 2008-01-24 2013-12-11 株式会社新生能源研究 Co2促进输送膜及其制造方法
WO2010055631A1 (ja) * 2008-11-11 2010-05-20 三洋化成工業株式会社 膜モジュールのウレタン樹脂シール材用ポリマーポリオール
JP4967034B2 (ja) 2010-01-27 2012-07-04 株式会社日立製作所 グラフェン膜と金属電極とが電気的接合した回路装置
CN102212330A (zh) * 2010-04-07 2011-10-12 深圳市诚德来实业有限公司 一种中空纤维膜端封用环氧树脂胶及其制备和应用方法
JP6188731B2 (ja) 2012-03-02 2017-08-30 サウジ アラビアン オイル カンパニー 非芳香族から芳香族を分離するための促進輸送膜
US20150053601A1 (en) * 2012-03-30 2015-02-26 Asahi Kasei Chemicals Corporation Membrane module and process for producing same
JP6071004B2 (ja) 2013-03-29 2017-02-01 富士フイルム株式会社 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
CA2918287C (en) 2013-07-18 2021-05-04 Compact Membrane Systems, Inc. Membrane separation of olefin and paraffin mixtures
JP6364790B2 (ja) 2014-01-30 2018-08-01 株式会社リコー ポインティングデバイス
JP6389625B2 (ja) * 2014-03-18 2018-09-12 Jxtgエネルギー株式会社 オレフィンの分離方法およびゼオライト膜複合体
US9637586B2 (en) * 2015-02-12 2017-05-02 Uop Llc High temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications
US10428009B2 (en) * 2015-12-22 2019-10-01 Eastman Chemical Company Methods of making compounds and mixtures having antidegradant and antifatigue efficacy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691130A (ja) * 1990-04-09 1994-04-05 Standard Oil Co:The 選択分離用高圧促進膜及びその使用法
JP2007203298A (ja) * 2000-07-10 2007-08-16 Asahi Kasei Chemicals Corp 中空糸膜カートリッジ、並びにそれを用いた中空糸膜モジュール及びタンク型濾過装置
WO2006043386A1 (ja) * 2004-10-19 2006-04-27 Nippon Polyurethane Industry Co., Ltd. ポリウレタン樹脂形成性組成物、シール材の製造方法、及び中空糸膜モジュールの製造方法
JP2010162447A (ja) * 2009-01-14 2010-07-29 Sanyo Chem Ind Ltd 膜モジュールのシール材用ポリウレタン樹脂形成性組成物
JP2014533193A (ja) * 2011-06-07 2014-12-11 イムテックス メンブレインズ コーポレイション 膜への液体材料の補給

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Material Evaluation Technology with 1-20,23-37 Pulse NMR", NMR RICOH TECHNICAL REPORT NO. 40, February 2015 (2015-02-01), pages 136 - 143, XP055603003 *
AL-JUAIED MOHAMMED ET AL.: "Performance of natural gas membranes in the presence of heavy hydrocarbons", JOURNAL OF MEMBRANE SCIENCE, vol. 274, no. 1-2, 5 April 2006 (2006-04-05), pages 227 - 243, XP024931394, DOI: doi:10.1016/j.memsci.2005.08.013 *
HIDETO MATSUYAMA,: "Shinki Ion Ekitai o Mochiiru Membrane·Contactor-ho Oyobi Ekimakuho ni yoru Propylene/Propane no Bunri ni Kansuru Kenkyu", SEKIYU ENERGY GIJUTSU CENTER GIJUTSU KAIHATSU· CHOSA JIGYO SEIKA HAPPYOKAI YOSHISHU, vol. 2012, June 2012 (2012-06-01), pages 322 - 332 *
LEE JONG SUK ET AL.: "Antiplasticization and plasticization of Matrimid asymmetric hollow fiber membranes-Part A, Experimental", JOURNAL OF MEMBRANE SCIENCE, vol. 350, no. 1-2, 15 March 2010 (2010-03-15), pages 232 - 241, XP026915567, DOI: doi:10.1016/j.memsci.2009.12.034 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994063B2 (en) 2019-10-16 2024-05-28 Richard Alan Callahan Turbine powered electricity generation
WO2023002146A1 (en) * 2021-07-23 2023-01-26 Mexichem Fluor S.A. De C.V. Method for the separation of phosphorus pentafluoride from hydrogen chloride
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant

Also Published As

Publication number Publication date
TWI710401B (zh) 2020-11-21
CN109475810B (zh) 2022-03-15
KR102175623B1 (ko) 2020-11-06
US20210283550A1 (en) 2021-09-16
JPWO2018030356A1 (ja) 2019-04-25
KR20190028464A (ko) 2019-03-18
TW201815460A (zh) 2018-05-01
US11628394B2 (en) 2023-04-18
JP6678242B2 (ja) 2020-04-08
CN109475810A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP6678242B2 (ja) 気体分離用膜モジュール
CN109475823B (zh) 气体分离膜
Kouketsu et al. PAMAM dendrimer composite membrane for CO2 separation: Formation of a chitosan gutter layer
JP6228033B2 (ja) 気体分離膜及び製造方法
KR102205760B1 (ko) 가스 분리용 모듈 및 가스 분리 방법
Kaviani et al. Enhanced solubility of carbon dioxide for encapsulated ionic liquids in polymeric materials
US20150053601A1 (en) Membrane module and process for producing same
Hua et al. Teflon AF2400/Ultem composite hollow fiber membranes for alcohol dehydration by high‐temperature vapor permeation
Doosti et al. Polyethyleneglycol-modified cellulose acetate membrane for efficient olefin/paraffin separation
JP6279317B2 (ja) ゲル状薄膜、複合膜、気体分離膜及び製造方法
KR102326780B1 (ko) 약액의 정제 방법
JP6613112B2 (ja) 気体分離膜
KR20160098978A (ko) 분리막 접촉기용 물리적 흡수제 및 이를 이용한 이산화탄소의 분리방법
KR20240108019A (ko) 공비 혼합 폐냉매의 분리정제시스템 및 이를 이용한 공비 혼합 폐냉매 분리정제방법
EP4450150A1 (en) Separation functional layer, separation membrane, and method for producing separation functional layer
JP7390470B2 (ja) 薬液の精製方法、薬液の製造方法、薬液
JP7349886B2 (ja) ガス分離膜
JP2019018169A (ja) 複合分離膜
Karthika et al. Latest Development of Ionic Liquid Membranes and Their Applications
Zhang Layer-by-layer Self-assembly Membranes for Solvent Dehydration by Pervaporation
KR20200038702A (ko) 분리막, 수처리 모듈, 분리막의 제조 방법 및 분리막의 활성층 개질용 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533465

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003528

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839427

Country of ref document: EP

Kind code of ref document: A1