WO2018019381A1 - Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers - Google Patents
Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers Download PDFInfo
- Publication number
- WO2018019381A1 WO2018019381A1 PCT/EP2016/068090 EP2016068090W WO2018019381A1 WO 2018019381 A1 WO2018019381 A1 WO 2018019381A1 EP 2016068090 W EP2016068090 W EP 2016068090W WO 2018019381 A1 WO2018019381 A1 WO 2018019381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aging
- energy storage
- temperature
- level
- dependent
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/374—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method and a device for the life-optimized use of an electrochemical energy store. Moreover, the invention relates to a computer program product and a computer readable medium.
- Energy storage such. Batteries make it possible to decouple the generation and consumption of electrical energy in terms of time. If energy is available at low load times (cheap), the energy storage device should be charged. If energy is only available at high costs at a cost, then the energy storage should be discharged. Since the purchase of such charged and dischargeable energy sources is expensive (currently more than 100 euros per kWh) and such energy storage systems are subject to chemical aging processes, an effort-avoiding and resource-saving operation or use of these energy storage systems is sensible in order to delay their aging as far as possible. It can be distinguished between calendar (i.e., purely temporal) and cyclic (i.e., operational) aging.
- a method has already been proposed in PCT / EP2016 / 058281 in which a non-linear function for determining the cyclical aging is linearly approximated in each of the time steps predeterminable for the subdivision of a predefinable application planning period and used to calculate a life-cycle time. to calculate optimizing resource planning for the use of energy storage.
- DE 102015205171.4 has already proposed a method for charging or discharging an electrochemical energy store, which slows down the aging of the energy store by intelligently interrupting the charging or discharging cycles. While the cyclic battery aging of temperature and
- the activation energy E a and the universal gas constant R are known parameters, these depending on the chemistry of the energy storage and possibly determined experimentally, and T is the temperature in Kelvin.
- the functional relationship between the level and Kalenda ⁇ -driven aging is usually determined experimentally and un ⁇ differs is possibly high for batteries of different types.
- the results from [2, Chapter 4] show that with lithium-ion batteries, medium levels lead to an increased capacity loss and thus shorten the lifetime.
- the formula g (SoC) is the lifetime or duration of the battery in years depending on the level of, that is determined at a Refe ⁇ ence temperature T ref experimentally, when the loss of capacity of the battery exceeds a certain threshold value, and it is useless with it.
- the initial cost of the battery per hour of operation is then multiplied by the formula f (T), which quantifies the influence of temperature according to the Arrhenius law.
- M E a / R quotient of the activation energy and universal Gaskonstan ⁇ te in the Arrhenius law. This quotient is usually determined by measuring aging at two different temperatures.
- Sensible use of a battery requires cost trade-offs between time-dependent energy costs versus Batteriealterungs- and should it consider the physical limitations and resul ⁇ animal end filling level and temperature profiles.
- MILP linear ge ⁇ mixed-integer programming
- Linear optimization deals with the optimization of linear objective functions over a set that is constrained by linear equations and inequalities. It is the basis of the solution method of (mixed) integer linear optimization (MILP).
- a so-called solver such as CPLEX, Gurobi is a collective term for special mathematical computer programs that can solve mathematical Opti ⁇ m istsprobleme numerically.
- CPLEX CPLEX
- Gurobi is a collective term for special mathematical computer programs that can solve mathematical Opti ⁇ m istsprobleme numerically.
- For MILP-based approaches to life-optimized mission planning of batteries have been used so far mostly very simplistic battery models to reduce the complexity of the occurring optimization problems.
- simplifications result in the modeling of the batteries which aging dynamics either completely vernachlässi ⁇ gene or simplify inadequate, often large discrepancies between the predicted and the actual per- battery formanz in durability and the resulting costs.
- the invention claims a method of life-opti ⁇ -programmed use of an electro-chemical energy storage device within a predetermined scheduling period, the calendrical aging represents a service life of the energy storage quantity influencing that in the form of a non-linear function depending on the level and temperature of the energy store, which can be influenced by at least one charging and / or discharging process, is expressed, characterized in that
- a) is formed in a first step, the logarithm of the ⁇ -linear function to determine pronounceli the calendar aging, b) wherein in a second step, the formed by the arguments level and temperature, formed logarithmic function is converted into an addition of a first level-dependent logarithmic term and a second temperature-dependent logarithmic term, c) wherein in a third step both logarithmic terms in each of the time steps that can be predetermined for the subdivision of the deployment planning period are linearly approximated independently of each other,
- Lifetime-optimized can also mean resource consumption-optimized, whereby the resource concerns "energy storage.” A lower consumption of resources usually leads to an increased life of the energy storage.
- the nonlinear function can be approximated by one or more lines.
- These one or more straight lines can be formed as Regressionsgera ⁇ the.
- the exponential function from the above-mentioned fourth step d) can be piecewise linearly approximated.
- the number of sections for the linear approximation can be specified.
- the first level-dependent logarithmic term and the second of the temperature-dependent logarithmic term Ki ⁇ nen is respectively approximated piecewise linear.
- the linear approximation of the temperature-dependent logarithmic term can be performed by means of one or more straight lines.
- These one or more straight lines can be designed as tangential straight lines.
- a level of fastest calendar aging can be determined, which is used as a base for the piecewise linear approximation of the level dependent logarithmic term.
- the number of different straight lines can be specified in each case.
- the deployment planning period for the use of the energy storage can for example be set to 24 hours.
- the predeterminable time steps are usually discrete.
- the mission planning period can be divided into 1 or 2 hours time steps, the time steps can be specified by a user.
- the time steps can be equidistant in time.
- a minimum and / or maximum level of the energy storage can be included in the calculation, these variables should not be undershot and / or exceeded as thresholds.
- a minimum and / or maximum temperature of the energy store may be included in the calculation as further variables, wherein these values should not be undershot and / or exceeded as threshold values.
- the invention helps to determine charging and discharging periods ei ⁇ ner battery and the electrical power used, taking into account the level and temperature-dependent calendar aging so that the life and thus the economic benefits of the battery is maximized. Due to the flexibility of the method according to the invention, the calendar aging of batteries of different types can be modeled with the same approach.
- the mission planning for the lifetime-optimized deployment can be determined by means of calculation by integer linear programming ⁇ tion.
- this approach provides greatly improved performance in complex but time-critical applications with scheduling optimization at run-time.
- a further aspect of the invention provides a device for determining the life-optimized use of an electrochemical energy store within a predefinable use planning period, wherein the calendar aging represents a quantity influencing the life of the energy store, which quantity takes the form of a nonlinear function Dependence on the level and the temperature of the energy ⁇ memory, which by at least one charging and / or
- the apparatus may include means and / or units or devices and / or provide modules for performing the above method which may be marked respectively as hardware and / or firmware moderately and / or software or as Computerpro ⁇ program or computer program product.
- the device can be developed according to the method described above.
- Such a device may be an energy system or an energy system.
- the energy storage can be part of an energy system or a system.
- the plant can be characterized among other things by one of the following plant types. Examples for this are:
- Another aspect of the invention is a computer program product or a computer program having means for performing the above method when the program Computerpro ⁇ (product) is placed in an above-mentioned device or means in the device for execution.
- the Computer program or product may be stored on a computer readable medium.
- the computer program or product can be created in a common programming language (eg C ++, Java).
- the processing device may include a commercially available computer or server with corresponding input, output and storage means. This proces ⁇ processing device may be integrated in the device or in the means.
- FIG. 4 shows the lifetime of the energy store as a function of the fill level
- FIG. 5 shows the linear approximation of the aging factor with two straight lines R 1 and R 2,
- Fig. 7 shows three graphs as a function of level, Tempe ⁇ temperature and from the calendrical aging resulting cost as well as their linear approximation,
- SoC m ax in percent which should not be exceeded.
- SoC m is the level at which the battery has the least life expectancy. This depends on the respective type of battery. For lithium-ion batteries, for example, the SoC m is typically between 60 and 80 percent (cf.
- a preview horizon H is selected, which is typically 24 hours and is divided into N suitable successive time ⁇ intervals. Let the length of the nth time interval be At n . Is for each of these time intervals a power ⁇ price forecast K n in euros per kilowatt hour before.
- MILP Mixed Integer Linear Programming
- the steps of the MILP program can be performed iteratively and a program abort can occur when a predetermined time limit or result quality is reached.
- the model described below is to be regarded as a Moegli ⁇ che exemplary formulation and is not a limitation for the method.
- the level and temperature of the battery are expressed by the variables SoC n and T n for each time interval ne ⁇ 1, N ⁇ .
- an additional Liehe battery cost variable C Ca i, n: F (n SoC, T n) * At n generated for each time interval and the sum of C Ca i, i + C Ca i, 2 + ⁇ + Ccai, N added to the cost function.
- Each of these cost ⁇ variables is subject to K linear conditions of the form C Ca i, n> a k + b k * SoC n + c k * T n , ke ⁇ 1, K ⁇ (2) which ensure that the calendar aging costs after (1) approximated and taken into account in cost accounting.
- Step 1 Logarithm the calendar aging costs according to (1):
- Step 2 Linearization of the logarithmic calendar aging costs per hour L Ca i, n: Step 2a: linear approximation T of the function log (f (T n )) (see FIG. 2, reference A)): log (f (T n )) * fconst + ffact * n (4)
- Equation (6a) describes the calendar aging at levels less than or equal to SoC m and (6b) those for levels greater than SoC m .
- binary variables are used to decide in which of these two states the battery is located.
- Substituting the functions (6a) and (6b) in (5) gives directly: log (h (SoCn)) * log (C Ba t / (365 * 24)) + g 0 , const + go, fact * SoC n if SoCn ⁇ SoC m , (7a) log (h (SoCn)) * log (C Ba t / (365 * 24)) + gi, const + gi, fact * SoC n if SoCn> SoC m (7b)
- L Ca i, n follows from (4), (5), (7a) and (7b):
- SoC m is very close to SoC m i n or SoC max (this depends on the type of battery), then the function becomes
- a k: s k * At n + r k * At n * [log (C Ba t / (365 * 24)) + gi, const + fconst] if SoC n > SoC m , r k * At n * go, fact
- the implementation of the processes and procedures described above may be based on instructions SUC ⁇ gen, which (collectively referred to as computer-readable storage) on computer readable storage media or in volatile computer memories.
- Computer-readable memory for example, volatile storage such as caches, buffers, or RAM and non-volatile memory as Kirda ⁇ pinion carrier, hard disks, etc.
- the functions or steps described above may be present in / on a computer-readable storage case in the form of at least one instruction set.
- the functions or steps are not related to a specific instruction or linked to a particular form of instruction set or to a particular storage medium or to a particular processor or to particular execution schemes, and may be executed by software, firmware, microcode, hardware, processors, integrated circuits, etc., alone or in any combination , It can be used a variety of processing strategies, such as serial processing by a single processor or multiprocessing or multitasking or parallel processing, etc.
- the instructions may be stored in local memories, but it is also possible to store the instructions on a remote system and access them via network.
- processor central signal processing
- Control unit or “data evaluation means” as here USAGE ⁇ det, processing means includes in the broad sense, that is, for example, servers, general purpose processors, Gardnerrako- reindeer, digital signal processors, application specific inte ⁇ grated circuits (ASICs), programmable logic circuits, such as FPGAs, discrete analog or digital circuits and be ⁇ undesirables combinations thereof, and any other processing known in the art or developed in the future processing medium.
- Processors can consist of one or more devices or devices or units. If a processor consists of several devices, these can be designed or configured for the parallel or sequential processing or execution of instructions. references
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016007012.8T DE112016007012A5 (de) | 2016-07-28 | 2016-07-28 | Verfahren und Vorrichtung für den lebensdauer-optimierten Einsatz eines elektro-chemischen Energiespeichers |
EP16753841.2A EP3472889A1 (de) | 2016-07-28 | 2016-07-28 | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers |
BR112019001443-8A BR112019001443A2 (pt) | 2016-07-28 | 2016-07-28 | método e dispositivo para uso otimizado em período de serviço útil de um armazenamento de energia ele-troquímica |
AU2016416626A AU2016416626B2 (en) | 2016-07-28 | 2016-07-28 | Method and device for the use of an electrochemical energy storage device so as to optimize the service life |
US16/320,498 US11193984B2 (en) | 2016-07-28 | 2016-07-28 | Method and device for the service life-optimized usage of an electrochemical energy store |
PCT/EP2016/068090 WO2018019381A1 (de) | 2016-07-28 | 2016-07-28 | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2016/068090 WO2018019381A1 (de) | 2016-07-28 | 2016-07-28 | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018019381A1 true WO2018019381A1 (de) | 2018-02-01 |
Family
ID=56740191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/068090 WO2018019381A1 (de) | 2016-07-28 | 2016-07-28 | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers |
Country Status (6)
Country | Link |
---|---|
US (1) | US11193984B2 (de) |
EP (1) | EP3472889A1 (de) |
AU (1) | AU2016416626B2 (de) |
BR (1) | BR112019001443A2 (de) |
DE (1) | DE112016007012A5 (de) |
WO (1) | WO2018019381A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109298348A (zh) * | 2018-11-30 | 2019-02-01 | 北京长城华冠汽车科技股份有限公司 | 电池的寿命估算方法 |
CN112100832A (zh) * | 2020-09-03 | 2020-12-18 | 浙大城市学院 | 一种锂电池非线性退化模型的构建及工作方法 |
DE102022128693A1 (de) | 2022-10-28 | 2024-05-08 | Bayerische Motoren Werke Aktiengesellschaft | Bidirektionales Laden eines Elektrofahrzeugs |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190137956A1 (en) * | 2017-11-06 | 2019-05-09 | Nec Laboratories America, Inc. | Battery lifetime maximization in behind-the-meter energy management systems |
ES2911469T3 (es) * | 2018-12-04 | 2022-05-19 | Siemens Ag | Planificación operativa predictiva en una microrred teniendo en cuenta ventanas horarias de carga elevada de una red eléctrica principal |
US11069926B1 (en) * | 2019-02-14 | 2021-07-20 | Vcritonc Alpha, Inc. | Controlling ongoing battery system usage via parametric linear approximation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024422A1 (de) * | 2009-06-09 | 2011-01-13 | Continental Automotive Gmbh | Verfahren zur Abschätzung der Lebensdauer eines Energiespeichers |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998040951A1 (en) * | 1997-03-12 | 1998-09-17 | Us Nanocorp. | Method for determining state-of-health using an intelligent system |
JP4015128B2 (ja) * | 2003-07-09 | 2007-11-28 | 古河電気工業株式会社 | 充電率推定方法、充電率推定装置、電池システム及び車両用電池システム |
JP5939269B2 (ja) * | 2014-03-19 | 2016-06-22 | トヨタ自動車株式会社 | 電池の劣化判定装置 |
US9535132B2 (en) * | 2014-03-20 | 2017-01-03 | GM Global Technology Operations LLC | Systems and methods for determining battery system performance degradation |
DE102015205171A1 (de) | 2015-03-23 | 2016-09-29 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Laden oder Entladen eines Energiespeichers |
US10497072B2 (en) * | 2016-03-07 | 2019-12-03 | Nec Corporation | Optimal battery sizing for behind-the-meter applications considering participation in demand response programs and demand charge reduction |
BR112018071029A2 (pt) | 2016-04-14 | 2019-02-12 | Siemens Aktiengesellschaft | método e dispositivo para usar um armazenamento de energia eletroquímica de modo a otimizar a vida útil |
-
2016
- 2016-07-28 WO PCT/EP2016/068090 patent/WO2018019381A1/de unknown
- 2016-07-28 DE DE112016007012.8T patent/DE112016007012A5/de active Pending
- 2016-07-28 EP EP16753841.2A patent/EP3472889A1/de not_active Withdrawn
- 2016-07-28 US US16/320,498 patent/US11193984B2/en active Active
- 2016-07-28 AU AU2016416626A patent/AU2016416626B2/en not_active Expired - Fee Related
- 2016-07-28 BR BR112019001443-8A patent/BR112019001443A2/pt not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024422A1 (de) * | 2009-06-09 | 2011-01-13 | Continental Automotive Gmbh | Verfahren zur Abschätzung der Lebensdauer eines Energiespeichers |
Non-Patent Citations (1)
Title |
---|
JOHN WANG ET AL: "Cycle-life model for graphite-LiFePOcells", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 196, no. 8, 23 November 2010 (2010-11-23), pages 3942 - 3948, XP028359597, ISSN: 0378-7753, [retrieved on 20101201], DOI: 10.1016/J.JPOWSOUR.2010.11.134 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109298348A (zh) * | 2018-11-30 | 2019-02-01 | 北京长城华冠汽车科技股份有限公司 | 电池的寿命估算方法 |
CN112100832A (zh) * | 2020-09-03 | 2020-12-18 | 浙大城市学院 | 一种锂电池非线性退化模型的构建及工作方法 |
DE102022128693A1 (de) | 2022-10-28 | 2024-05-08 | Bayerische Motoren Werke Aktiengesellschaft | Bidirektionales Laden eines Elektrofahrzeugs |
Also Published As
Publication number | Publication date |
---|---|
US11193984B2 (en) | 2021-12-07 |
AU2016416626A1 (en) | 2019-02-21 |
BR112019001443A2 (pt) | 2019-05-07 |
AU2016416626B2 (en) | 2020-06-11 |
US20190265308A1 (en) | 2019-08-29 |
DE112016007012A5 (de) | 2019-03-07 |
EP3472889A1 (de) | 2019-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018019381A1 (de) | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers | |
DE102019111979A1 (de) | Charakterisierung von wiederaufladbaren Batterien | |
EP3814790B1 (de) | Verfahren und batteriemanagementsystem zum ermitteln eines gesundheitszustandes einer sekundärbatterie | |
WO2017178057A1 (de) | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers | |
DE112018001790T5 (de) | Vorrichtung zur verwaltung eines energiespeichergeräts und verfahren zur ver waltung eines energiespeichergeräts | |
DE102022202882A1 (de) | Verfahren und Vorrichtung zum Bereitstellen eines prädizierten Alterungszustands einer Gerätebatterie basierend auf einem prädizierten Nutzungsmuster | |
DE102019125375A1 (de) | Zustandswert für wiederaufladbare Batterien | |
DE102021002742A1 (de) | Verfahren zur Prognose des Innenwiderstands- und Kapazitätsverlaufs von elektrochemischen Systemen, wie Batterien, zur Optimierung von deren Nutzung | |
DE102019126245A1 (de) | System und Verfahren zur Bestimmung des Funktionszustandes und/oder Gesundheitszustandes einer elektrischen Batterie | |
WO2017059998A1 (de) | Ermittlung einer betriebsstrategie für einen lokalspeicher | |
DE102022200008A1 (de) | Verfahren und System zum effizienten Überwachen von Batteriezellen einer Gerätebatterie in einer geräteexternen Zentraleinheit mithilfe eines digitalen Zwillings | |
WO2022058416A1 (de) | Bestimmung eines alterungszustands eines energiespeichers | |
DE102018108184A1 (de) | Verfahren und Einrichtung zur Bestimmung des Zustands eines Akkumulators sowie Computerprogramm | |
EP3356834B1 (de) | Verfahren zum rechnergestützten ermitteln von parametern eines elektrochemischen energiespeichers | |
DE102021213057A1 (de) | Verfahren zum Betreiben einer Nutzerschnittstelle zum Auswählen einer Ladestrategie für eine Gerätebatterie und zum Betrieb der Gerätebatterie sowie eine Nutzerschnittstelle | |
DE102021207467A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Systems zum Bereitstellen von prädizierten Konfidenzintervallen von Alterungszuständen von elektrischen Energiespeichern für mindestens ein Gerät mithilfe von maschinellen Lernverfahren | |
DE102021211873A1 (de) | Verfahren zum Überwachen eines Energiespeichers in einem Kraftfahrzeug | |
BE1030866B1 (de) | Computerprogramm und Verfahren zur Analyse von Inhomogenitäten sowie Anomaliedetektion und -vorhersage von elektrischen Energiespeichern | |
DE102015204242A1 (de) | Fehler-Analyse und/oder Optimierung eines Energiebordnetzes eines Kraftfahrzeugs | |
DE102019212762A1 (de) | Verfahren zum Bestimmen eines Leistungsanteils, Betriebsverfahren, Steuereinheit, Energiespeicheranordnung und Stromnetz | |
DE102021212689A1 (de) | Verfahren und Vorrichtung zum Bereitstellen eines prädizierten Alterungszustands einer Gerätebatterie basierend auf einem prädizierten Nutzungsmuster | |
DE102023200584A1 (de) | Verfahren und Vorrichtung zur Prädiktion einer internen Batterietemperatur einer Gerätebatterie, insbesondere zur Prädiktion eines Alterungszustands der Gerätebatterie | |
WO2023012143A1 (de) | Nutzungsabhängige alterung einer batterie | |
DE102022206225A1 (de) | Verfahren zur Überwachung und Nachverfolgung von Energiespeichern technischer Geräte mithilfe einer Distributed-Ledger-Technologie | |
EP4184189A1 (de) | Computergestütztes verfahren zum bestimmen eines kapazitätsverlusts eines batteriespeichers, computerprogrammprodukt und batteriespeicher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16753841 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016753841 Country of ref document: EP Effective date: 20190118 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019001443 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016416626 Country of ref document: AU Date of ref document: 20160728 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: R225 Ref document number: 112016007012 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 112019001443 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190124 |