WO2017178057A1 - Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers - Google Patents
Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers Download PDFInfo
- Publication number
- WO2017178057A1 WO2017178057A1 PCT/EP2016/058281 EP2016058281W WO2017178057A1 WO 2017178057 A1 WO2017178057 A1 WO 2017178057A1 EP 2016058281 W EP2016058281 W EP 2016058281W WO 2017178057 A1 WO2017178057 A1 WO 2017178057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy storage
- energy
- input variables
- aging
- life
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method and a device for the life-optimized use of an electrochemical energy store. Moreover, the invention relates to a computer program product and a computer readable medium.
- Energy storage devices such as batteries make it possible to decouple the generation and consumption of electrical energy over time: If energy is available at low load times (low), the energy storage device should be charged. If energy is only available at high costs at a cost, then the energy storage should be discharged. Since the purchase of such charged and dischargeable energy sources is expensive (currently more than 100 euros per kWh) and such energy storage systems are subject to chemical aging processes, a resource-saving and resource-conserving operation or use of these energy storage systems is sensible in order to delay their aging as much as possible. It is possible to differentiate between calendar (ie purely temporal) and cyclic (ie operation-dependent) aging. In addition to the energy throughput, the battery temperature is a major factor influencing cyclic aging.
- Charging and discharging leads to an increase in temperature, wherein during the charging and / or discharging process of the energy store at the molecular level ei ⁇ ne activation energy is overcome.
- the influence of temperature on aging is quantified by the Arrhenius law and can, for example, at a temperature increase to 10 degrees give a more than twice as fast aging.
- the temperature-dependent factor f (T) is given by the Arrhenius law:
- the activation energy E a and the universal gas constant R are known parameters, these depending on the chemistry of the energy storage and possibly determined experimentally, and T is the temperature in Kelvin.
- the operational control of the battery or energy storage insert is optimized by mathemati ⁇ shear process.
- the method of linear ge ⁇ mixed-integer programming (MILP) can be used here- in.
- Linear optimization is concerned with optimizing linear objective functions over a set that is constrained by linear equations and inequalities. It is the basis of the solution method of (mixed) integer linear optimization (MILP).
- MILP integer linear optimization
- a so-called solver (solver) such as CPLEX, Gurobi is a collective term for special mathematical computer programs that can solve mathematical Opti ⁇ m istsprobleme numerically.
- the invention claims a method for life-optimized or resource consumption-optimized use of an electrochemical energy store, wherein the cyclic aging of the energy store in the form of a non-linear function as a function of the influenced by a charging and / or discharging process of the energy storage tempera ture (T ) and of the energy throughput ( ⁇ ) is expressed, characterized in that the non-linear function to determine the cyclic aging in each of the presettable for dividing a predetermined scheduling period time steps is linearly approximated and used to ei ⁇ ne lifetime optimizing scheduling for the use of Energy storage to calculate.
- Resource consumption-optimized concerns the resource "energy storage", whereby a lower consumption of resources usually results in an increased life of the energy storage.
- the present invention identifies suitable charging / discharging time steps. Both of these approaches can complement each other and be applied independently.
- the aforementioned depth of discharge plays no role.
- the invention contributes to determining charging and discharging periods ei ⁇ nes energy storage and the electrical power used, taking into account the temperature-dependent cyclic aging so that the life and thus the economic benefits of the energy storage can be maximized.
- This is achieved by a linear Appro ⁇ ximationsmodell for the cyclical aging behavior of an energy storage, depending on energy throughput and temperature.
- the linear approximation of the non-linear, non-convex dynamics of cyclic aging as a function of temperature and energy throughput reflects the experimentally confirmed aging processes in energy stores very well.
- the resulting model can be integrated into a ge ⁇ mixed-integer linear optimization tool for comple ⁇ xe applications.
- the invention has the advantage of better approximation of the actual
- the approach according to the invention offers greatly improved performance in complex, but time-critical applications with planning optimization at runtime.
- the nonlinear function is approximated by one or more planes, which may represent one or more tangent planes.
- the number of levels can be specified here.
- the deployment planning period for the use of the energy storage can for example be set to 24 hours.
- the Predeterminable time steps are usually discrete. In ⁇ example, the mission planning period can be divided into 1 or 2 hours time steps, the time steps can be specified by a user. The time steps can be equidistant in time.
- As input variables can be a maximum charging power and / or maximum discharge capacity of the energy storage in the
- Input values as thresholds should not be undercut or exceeded.
- Another aspect of the invention provides a device for the life-optimized or resource-optimized use of an electro-chemical energy storage, wherein the cyclic aging of the energy storage in the form of a non-linear function as a function of the loading and / or unloading of the Energyspei ⁇ chers influenceable temperature and the energy flow rate can be expressed, the device is designed to roximieren the nonlinear function for determining the cyclic aging in each of the time for the subdivision of a predeterminable use planning period time steps linearly to app ⁇ and to use a life-optimizing mission planning for the use of the energy storage device.
- the apparatus may include means and / or units or devices and / or provide modules for performing the above method which may be marked respectively as hardware and / or firmware moderately and / or software or as Computerpro ⁇ program or computer program product.
- the device can be developed according to the method described above.
- Such a device may be an energy system or an energy system.
- the energy storage can be part of an energy system or a system.
- the plant can be characterized among other things by one of the following plant types. Examples for this are:
- Another aspect of the invention is a computer program product or a computer program having means on Implementation of the above method when the program Computerpro ⁇ (product) is placed in an above-mentioned device or means in the device for execution.
- the computer program or product may be stored on a computer readable medium.
- the computer program or product can be created in a common programming language (eg C ++, Java).
- the processing device may include a commercially available computer or server with corresponding input, output and storage means. This proces ⁇ processing device may be integrated in the device or in the co-stuffs.
- the nonlinear model ⁇ function g (AE, T) can be adapted to the specific design of the battery. These parameters are usually experimentally ge ⁇ underestimated.
- the cyclic aging of the energy storage e.g. a
- a (T) A ref * exp (M / T ref -M / T) (1), where A re f is the battery cost per kilowatt hour at the reference temperature T re f.
- a re f can be calculated by the quotient of the acquisition cost of the battery in ⁇ € and energy throughput to the end of life at constant temperature T re f in kilowatt hours.
- M E a / R is the quotient
- Charging power P max charging or discharging power P max , discharged in
- Is selected which is typically 24 hours, and is decomposed in N appropriate successive time intervals.
- K n in euros per kilowatt hour.
- the nonlinear model (2) for the cyclical aging, wel ⁇ ches for discrete time steps can be specified to, now be approximated using a linear model.
- the aging time in each step or interval can be expressed by a nonlinear function in dependence on the respective Leis ⁇ tung point P n and the temperature T n.
- a plane approximation is used to linearize this nonlinear relationship with two arguments.
- FIGS. 2 and 3 show the nonlinear model function NF.
- MILP Magnetic Ink Programming
- the present MILP model is only to be regarded as a potential at ⁇ play exemplary formulation, and is not limiting for the process.
- the steps of the MILP program can be performed iteratively, and a program termination can take place if a predetermined time limit or the result of quality is achieved .
- the charge / discharge powers are given by the variables P n and the temperature of the battery by T n for each time interval ne ⁇ 1, N ⁇ .
- a positive value of P n means a charging of the battery, a negative discharging.
- P n means a charging of the battery, a negative discharging.
- Inequality (3a) describes the cyclical aging costs by loading and (3b) those for unloading.
- K is a parameter of the method and typically has a value between 0 and 10.
- T a pp, k T min + (T ma - m in) * (k-1) / K.
- Smart grid applications are illustrated without being limited to this example or application. It is considered a 24-hour time horizon in which a battery, which is connected to the mains, can remove or feed energy from the network. For this cost (English: Costs) are due or rewards paid (English: Reward). The assumed costs and rewards are shown as a time series in FIG. 6c. It is recognized that the power to Nied ⁇ riglast funded eg at night low and high load times of the day is unfavorable. The MILP program for life before leaving the optimized control of the battery pack takes advantage of this Gege ⁇ various high. During the night, the battery is charged with electricity and feeds electricity back into the grid during the day (see Power Setpoints in Fig. 6a and Battery Energy in Fig. 6b). FIGS. 7a, 7b and 7c show the corresponding charging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112016006741.0T DE112016006741A5 (de) | 2016-04-14 | 2016-04-14 | Verfahren und Vorrichtung für den lebensdauer-optimierten Einsatz eines elektro-chemischen Energiespeichers |
AU2016403117A AU2016403117B2 (en) | 2016-04-14 | 2016-04-14 | Method and device for using an electrochemical energy store so as to optimize the service life |
US16/093,241 US11108094B2 (en) | 2016-04-14 | 2016-04-14 | Method and device for using an electrochemical energy store so as to optimize the service life |
BR112018071029-6A BR112018071029A2 (pt) | 2016-04-14 | 2016-04-14 | método e dispositivo para usar um armazenamento de energia eletroquímica de modo a otimizar a vida útil |
CN201680084616.9A CN109075397A (zh) | 2016-04-14 | 2016-04-14 | 用于寿命优化地使用电化学蓄能器的方法和设备 |
PCT/EP2016/058281 WO2017178057A1 (de) | 2016-04-14 | 2016-04-14 | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2016/058281 WO2017178057A1 (de) | 2016-04-14 | 2016-04-14 | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017178057A1 true WO2017178057A1 (de) | 2017-10-19 |
Family
ID=55809091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/058281 WO2017178057A1 (de) | 2016-04-14 | 2016-04-14 | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers |
Country Status (6)
Country | Link |
---|---|
US (1) | US11108094B2 (de) |
CN (1) | CN109075397A (de) |
AU (1) | AU2016403117B2 (de) |
BR (1) | BR112018071029A2 (de) |
DE (1) | DE112016006741A5 (de) |
WO (1) | WO2017178057A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11069926B1 (en) * | 2019-02-14 | 2021-07-20 | Vcritonc Alpha, Inc. | Controlling ongoing battery system usage via parametric linear approximation |
US11193984B2 (en) | 2016-07-28 | 2021-12-07 | Siemens Aktiengesellschaft | Method and device for the service life-optimized usage of an electrochemical energy store |
DE102022107492B3 (de) | 2022-03-30 | 2023-05-17 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Abschätzen einer Bauteillebensdauer und Kraftfahrzeug |
DE102022128693A1 (de) | 2022-10-28 | 2024-05-08 | Bayerische Motoren Werke Aktiengesellschaft | Bidirektionales Laden eines Elektrofahrzeugs |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7300878B2 (ja) * | 2019-04-24 | 2023-06-30 | 株式会社日立製作所 | 電池評価システム、電池評価方法及びプログラム |
CN110780201B (zh) * | 2019-12-02 | 2021-08-17 | 苏州易来科得科技有限公司 | 一种电池最高耐受温度的确定方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024422A1 (de) * | 2009-06-09 | 2011-01-13 | Continental Automotive Gmbh | Verfahren zur Abschätzung der Lebensdauer eines Energiespeichers |
DE102014215309A1 (de) * | 2014-08-04 | 2016-02-04 | Siemens Aktiengesellschaft | Ermittlung eines Alterungszustandes eines elektrischen Energiespeichers |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135603B (zh) * | 2010-01-21 | 2013-07-10 | 财团法人工业技术研究院 | 电池循环寿命估测装置 |
FR2970123B1 (fr) * | 2010-12-31 | 2013-02-01 | St Microelectronics Tours Sas | Circuit de protection d'une batterie en couches minces |
AT515034B1 (de) | 2013-10-31 | 2016-04-15 | Bakosch Georg | Vorrichtung zur Ansteuerung elektrischer Energiespeicher |
CN105319515B (zh) * | 2015-11-18 | 2017-12-19 | 吉林大学 | 锂离子电池荷电状态和健康状态联合估算方法 |
-
2016
- 2016-04-14 BR BR112018071029-6A patent/BR112018071029A2/pt not_active IP Right Cessation
- 2016-04-14 WO PCT/EP2016/058281 patent/WO2017178057A1/de active Application Filing
- 2016-04-14 US US16/093,241 patent/US11108094B2/en active Active
- 2016-04-14 AU AU2016403117A patent/AU2016403117B2/en not_active Ceased
- 2016-04-14 DE DE112016006741.0T patent/DE112016006741A5/de active Pending
- 2016-04-14 CN CN201680084616.9A patent/CN109075397A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024422A1 (de) * | 2009-06-09 | 2011-01-13 | Continental Automotive Gmbh | Verfahren zur Abschätzung der Lebensdauer eines Energiespeichers |
DE102014215309A1 (de) * | 2014-08-04 | 2016-02-04 | Siemens Aktiengesellschaft | Ermittlung eines Alterungszustandes eines elektrischen Energiespeichers |
Non-Patent Citations (3)
Title |
---|
G.G. MOSBI; C. BOVO; A. BERIZZI: "Optimal Operational Planning for PV-Wind-Diesel-Battery Microgrid", IEEE EINDHOVEN POWERTECH, 2015 |
J. WANG; P. LIU; J. HICKS-GARNER; E. SHERMAN; S. SOUKIAZIAN; M. VERBRUGGE; H. TATARIA; J. MUSSER; P. FINAMORE: "Cycle-Life Model for Graphite-LiFeP04 Cells", JOURNAL OF POWER SOURCES, vol. 196, 2011, pages 3942 - 3948, XP028359597, DOI: doi:10.1016/j.jpowsour.2010.11.134 |
JOHN WANG ET AL: "Cycle-life model for graphite-LiFePOcells", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 196, no. 8, 23 November 2010 (2010-11-23), pages 3942 - 3948, XP028359597, ISSN: 0378-7753, [retrieved on 20101201], DOI: 10.1016/J.JPOWSOUR.2010.11.134 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11193984B2 (en) | 2016-07-28 | 2021-12-07 | Siemens Aktiengesellschaft | Method and device for the service life-optimized usage of an electrochemical energy store |
US11069926B1 (en) * | 2019-02-14 | 2021-07-20 | Vcritonc Alpha, Inc. | Controlling ongoing battery system usage via parametric linear approximation |
DE102022107492B3 (de) | 2022-03-30 | 2023-05-17 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Abschätzen einer Bauteillebensdauer und Kraftfahrzeug |
DE102022128693A1 (de) | 2022-10-28 | 2024-05-08 | Bayerische Motoren Werke Aktiengesellschaft | Bidirektionales Laden eines Elektrofahrzeugs |
Also Published As
Publication number | Publication date |
---|---|
AU2016403117B2 (en) | 2020-02-27 |
US20210218076A1 (en) | 2021-07-15 |
AU2016403117A1 (en) | 2018-11-01 |
CN109075397A (zh) | 2018-12-21 |
DE112016006741A5 (de) | 2018-12-27 |
US11108094B2 (en) | 2021-08-31 |
BR112018071029A2 (pt) | 2019-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3707798B1 (de) | Verfahren zur regelung eines elektrischen leistungstransfers sowie stromnetz | |
WO2017178057A1 (de) | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers | |
WO2020224724A1 (de) | Server-seitige charakterisierung von wiederaufladbaren batterien | |
DE102019206186A1 (de) | Elektrofahrzeugreservierungsladesystem und -verfahren | |
EP3472889A1 (de) | Verfahren und vorrichtung für den lebensdauer-optimierten einsatz eines elektro-chemischen energiespeichers | |
DE102020215297A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Systems zum Bereitstellen von prädizierten Alterungszuständen von elektrischen Energiespeichern für ein Gerät mithilfe von maschinellen Lernverfahren | |
DE102020212299A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Systems zum Bereitstellen von prädizierten Alterungszuständen von elektrischen Energiespeichern für ein Gerät mithilfe von maschinellen Lernverfahren | |
WO2021052540A1 (de) | Zustandswert für wiederaufladbare batterien | |
DE102019217299A1 (de) | Verfahren zur Prädiktion eines Alterungszustands einer Batterie | |
DE102022202882A1 (de) | Verfahren und Vorrichtung zum Bereitstellen eines prädizierten Alterungszustands einer Gerätebatterie basierend auf einem prädizierten Nutzungsmuster | |
WO2017059998A1 (de) | Ermittlung einer betriebsstrategie für einen lokalspeicher | |
DE102019126245A1 (de) | System und Verfahren zur Bestimmung des Funktionszustandes und/oder Gesundheitszustandes einer elektrischen Batterie | |
DE102017222217A1 (de) | Verfahren zum Laden einer Batterie, Auswerteeinheit eines Stromnetzes und Automobil | |
EP3482473B1 (de) | Verfahren zum ausgleichen von ladezuständen mehrerer batteriemodule einer batterie und entsprechende vorrichtung | |
DE102015222683B4 (de) | Verfahren zum rechnergestützten Ermitteln von Parametern eines elektrochemischen Energiespeichers | |
EP3759785A1 (de) | Verfahren zur echtzeitregelung eines energieversorgungs- und verteilersystems | |
DE102021211873A1 (de) | Verfahren zum Überwachen eines Energiespeichers in einem Kraftfahrzeug | |
DE102021207467A1 (de) | Verfahren und Vorrichtung zum Betreiben eines Systems zum Bereitstellen von prädizierten Konfidenzintervallen von Alterungszuständen von elektrischen Energiespeichern für mindestens ein Gerät mithilfe von maschinellen Lernverfahren | |
EP3787141A1 (de) | Verfahren zum bestimmen eines leistungsanteils, betriebsverfahren, steuereinheit, energiespeicheranordnung und stromnetz | |
BE1030866B1 (de) | Computerprogramm und Verfahren zur Analyse von Inhomogenitäten sowie Anomaliedetektion und -vorhersage von elektrischen Energiespeichern | |
Sachs et al. | Combined probabilistic and set-based uncertainties for a stochastic model predictive control of island energy systems | |
EP3664243A1 (de) | Prädiktive betriebsplanung in einem mikronetz unter berücksichtigung von hochlastzeitfenstern eines hauptstromnetzes | |
DE102023200584A1 (de) | Verfahren und Vorrichtung zur Prädiktion einer internen Batterietemperatur einer Gerätebatterie, insbesondere zur Prädiktion eines Alterungszustands der Gerätebatterie | |
DE102023202789A1 (de) | Verfahren und Vorrichtung zum Bereitstellen von geeigneten Ladeprofilen für Gerätebatterien von batteriebetriebenen Geräten | |
DE102021211870A1 (de) | Verfahren zum Überwachen eines Energiespeichers in einem Kraftfahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018071029 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016403117 Country of ref document: AU Date of ref document: 20160414 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16718632 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: R225 Ref document number: 112016006741 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 112018071029 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181011 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16718632 Country of ref document: EP Kind code of ref document: A1 |