WO2018008087A1 - 導波管-平面導波路変換器 - Google Patents
導波管-平面導波路変換器 Download PDFInfo
- Publication number
- WO2018008087A1 WO2018008087A1 PCT/JP2016/069894 JP2016069894W WO2018008087A1 WO 2018008087 A1 WO2018008087 A1 WO 2018008087A1 JP 2016069894 W JP2016069894 W JP 2016069894W WO 2018008087 A1 WO2018008087 A1 WO 2018008087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide
- planar waveguide
- conductor
- converter
- planar
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 248
- 230000008878 coupling Effects 0.000 claims abstract description 79
- 238000010168 coupling process Methods 0.000 claims abstract description 79
- 238000005859 coupling reaction Methods 0.000 claims abstract description 79
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 230000007423 decrease Effects 0.000 claims description 5
- 230000005855 radiation Effects 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/107—Hollow-waveguide/strip-line transitions
Definitions
- the present invention relates to a converter that performs transmission mode conversion between a waveguide and a planar waveguide such as a microstrip line.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-56920 discloses a waveguide-microstrip line converter that couples a waveguide with a microstrip line.
- the structure of the microstrip line disclosed in Patent Document 1 includes a strip conductor and a conductor plate formed on the front surface of a dielectric substrate, a ground conductor provided on the entire back surface of the dielectric substrate, And a plurality of connecting conductors provided in the dielectric substrate and connecting between the conductor plate and the ground conductor.
- the ground conductor is connected to the end of the rectangular waveguide, and a rectangular slot for electrically coupling to the end of the rectangular waveguide is formed in the ground conductor.
- the conductor plate and the ground conductor form a coplanar line structure.
- the plurality of connection conductors are disposed so as to surround the short surface (short-circuit surface) at the end of the rectangular waveguide.
- Japanese Unexamined Patent Publication No. 2010-56920 (for example, FIGS. 1 and 2 and paragraphs 0013 to 0018 and FIGS. 12 and 13 and paragraphs 0043 to 0049)
- Patent Document 1 requires a plurality of connecting conductors for suppressing unwanted radiation, which complicates the manufacturing process of the waveguide-microstrip line converter, thereby reducing the manufacturing cost. There is a problem that increases.
- an object of the present invention is to provide a waveguide-planar waveguide converter that can reduce the manufacturing cost while suppressing unnecessary radiation.
- a waveguide-planar waveguide converter is a waveguide-planar waveguide converter that transmits a high-frequency signal, and includes a first main surface and a first main surface facing each other in the thickness direction of the waveguide-planar waveguide converter.
- a dielectric substrate having two main surfaces, one or more strip conductors formed on the first main surface so as to extend along a predetermined first in-plane direction,
- a grounding conductor formed on the main surface of 2 so as to be opposed to the one or more strip conductors in the thickness direction, and formed on the grounding conductor, and the first surface on the second main surface.
- a coupling conductor arranged, and the coupling conductor includes a main body portion that is electrically coupled to the one or more strip conductors, and a convex portion that protrudes from the main body portion in the second in-plane direction.
- the convex portion is formed so as to face an end portion of the one or more slots in the second in-plane direction in the thickness direction.
- FIG. 1 is a schematic plan view of a waveguide-planar waveguide converter according to a first embodiment of the present invention.
- FIG. 2 is a schematic sectional view taken along line II-II of the waveguide-planar waveguide converter shown in FIG. 3 is an enlarged view of a conductor portion according to Embodiment 1.
- FIG. It is a figure which shows roughly the propagation direction of a high frequency signal. It is a schematic plan view of a conventional waveguide-microstrip line converter.
- FIG. 6 is a schematic cross-sectional view taken along line VI-VI of the waveguide-planar waveguide converter shown in FIG. 5.
- FIG. 5 is a schematic plan view of a waveguide-planar waveguide converter according to a second embodiment of the present invention.
- FIG. 6 is a schematic plan view of a waveguide-planar waveguide converter according to a third embodiment of the present invention.
- FIG. 6 is a schematic plan view of a waveguide / planar waveguide converter according to a fourth embodiment of the present invention.
- FIG. 10 is a schematic sectional view taken along line XX of the waveguide-planar waveguide converter shown in FIG. 9.
- FIG. 10 is a schematic plan view of a waveguide / planar waveguide converter according to a fifth embodiment of the present invention.
- FIG. 10 is a schematic plan view of a waveguide / planar waveguide converter according to a sixth embodiment of the present invention.
- FIG. 10 is a schematic plan view of a waveguide / planar waveguide converter according to a seventh embodiment of the present invention.
- FIG. 10 is a schematic plan view of a waveguide / planar waveguide converter according to a seventh embodiment of the present invention.
- FIG. 10 is a schematic plan view of a waveguide / planar waveguide converter according to an eighth embodiment of the present invention.
- FIG. 15 is a schematic sectional view taken along line XV-XV of the waveguide-planar waveguide converter shown in FIG. 14.
- FIG. 20 is a schematic plan view of a waveguide / planar waveguide converter according to a ninth embodiment of the present invention.
- FIG. 17 is a schematic sectional view taken along line XVII-XVII of the waveguide-planar waveguide converter shown in FIG. 16.
- FIG. 1 is a diagram schematically showing a planar structure of a waveguide-planar waveguide converter 1 according to the first embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view taken along line II-II of the waveguide-planar waveguide converter 1 shown in FIG.
- the waveguide-planar waveguide converter 1 includes a planar waveguide structure 20 having input / output ends 20a and 20b used for input / output of a high-frequency signal, and this plane. And a waveguide 40 connected to the waveguide structure 20.
- the waveguide-planar waveguide converter 1 has a function of mutually converting the transmission mode (especially the transmission fundamental mode) of a high-frequency signal between the waveguide 40 and the planar waveguide structure 20.
- the wave tube 40 and the planar waveguide structure 20 have an impedance conversion function for mutually converting characteristic impedances.
- the waveguide 40 is a metal hollow waveguide having a square cross section in a plane orthogonal to the tube axis of the waveguide 40, that is, a rectangular waveguide. Although the tube thickness of the waveguide 40 shown in FIG. 2 is omitted, a tube thickness of several mm actually exists.
- the hollow path of the waveguide 40 extends along the tube axis direction (Z-axis direction).
- the transmission basic mode of the waveguide 40 is, for example, a TE 10 mode which is one of TE modes (Transverse Electric modes).
- the transmission fundamental mode of the planar waveguide structure 20 is a quasi-TEM mode (Quasi-Transverse ElectroMagnetic modes).
- the waveguide-planar waveguide converter 1 can convert the transmission fundamental mode of a high-frequency signal from one of the TE 10 mode and the quasi-TEM mode to the other.
- the planar waveguide structure 20 includes a dielectric substrate 21 having a square shape such as a square or a rectangle when viewed from the Z-axis direction, and two surfaces of the dielectric substrate 21 facing each other. And a conductor pattern 23 formed on one front surface (first main surface).
- the front surface of the dielectric substrate 21 is parallel to the XY plane including the X axis and the Y axis.
- the dielectric substrate 21 may be made of a dielectric material such as glass epoxy, polytetrafluoroethylene (PTFE), or ceramics.
- the conductor pattern 23 includes two strip conductors 23a and 23b which are linear conductors extending along a predetermined in-plane direction (X-axis direction) on the front surface of the dielectric substrate 21, and these
- the coupling conductor 24 is interposed between the strip conductors 23a and 23b and is physically connected to the strip conductors 23a and 23b.
- the planar waveguide structure 20 includes a ground conductor 22 which is a conductive film formed over the entire back surface (second main surface) of the dielectric substrate 21, and the ground conductor. And a waveguide 40 having one end connected to a predetermined region (including the slot 22 s) of the ground conductor 22.
- the back surface of the dielectric substrate 21 is parallel to the XY plane.
- the slot 22s extends along the Y-axis direction intersecting the extending direction (X-axis direction) of the strip conductors 23a and 23b, and has a rectangular shape with the Y-axis direction as the longitudinal direction. Have.
- the tube axis direction of the waveguide 40 is parallel to the Z-axis direction.
- a wall surface forming one end portion on the positive side of the Z-axis of the waveguide 40 is physically connected to the ground conductor 22 to form a short surface (short-circuit surface) SP.
- the outer shape of the waveguide 40 shown in FIG. 1 is a rectangular shape and represents the outer shape of the short surface SP.
- the other end of the waveguide 40 on the negative side in the Z-axis constitutes an input / output end 40a used for input / output of a high-frequency signal.
- the ground conductor 22 and the conductor pattern 23 can be formed by plating, for example.
- a constituent material of the conductor pattern 23 and the ground conductor 22 for example, any one of conductive materials such as copper, silver and gold, or a combination of two or more selected from these conductive materials may be used. Good.
- the coupling conductor 24 is disposed at a position facing the slot 22 s provided on the back side of the dielectric substrate 21 in the Z-axis direction (thickness direction of the dielectric substrate 21). Yes. Further, as shown in FIG. 1, the coupling conductor 24 includes a substantially rectangular main body connected to the inner ends of the strip conductors 23a and 23b, and a convex protruding from the main body in the Y-axis positive direction. And a convex portion 24b that protrudes in the negative Y-axis direction from the main body portion. Impedance adjusting portions 26a and 26b are formed near both ends in the X-axis direction of the main body portion.
- one convex portion 24a of the coupling conductor 24 is formed so as to face the end on the Y axis positive direction side of the slot 22s in the Z axis direction, and the other convex portion 24b is The end of the slot 22s on the negative Y-axis side is formed so as to face the Z-axis direction. Further, the tip of one convex portion 24a is disposed on the outer side in the Y axis positive direction with respect to one end in the longitudinal direction of the slot 22s, and the tip of the other convex portion 24b is the other end in the longitudinal direction of the slot 22s. It is arrange
- one convex-shaped part 24a has a pair of inclination part 24c, 24e which forms a taper shape. That is, the convex portion 24a has a tapered shape that changes so that the lateral width (width in the X-axis direction) of the convex portion 24a gradually decreases from the main body portion toward the tip of the convex portion 24a.
- the other convex portion 24b also has a pair of inclined portions 24d and 24f that form a tapered shape. That is, the convex portion 24b has a tapered shape that changes so that the lateral width of the convex portion 24b gradually decreases from the main body portion toward the tip of the convex portion 24b.
- the tips of the convex portions 24a and 24b have a certain lateral width.
- the width of the tip of one convex portion 24a is narrower than the width of one end of the slot 22s, and the width of the tip of the other convex portion 24b is also narrower than the width of the other end of the slot 22s.
- FIG. 3 is an enlarged view of the coupling conductor 24 shown in FIG.
- the distance d1 in the vertical direction (Y-axis direction) between the tip of one end of the slot 22s and the tip of the convex portion 24a corresponds to the center frequency of a predetermined use frequency band.
- the distance in the vertical direction between the tip of the other end of the slot 22s and the tip of the convex portion 24b is set to be ⁇ / 8 or less.
- the distance d2 in the horizontal direction between the tip of the convex portion 24a and the left end in the horizontal direction (X-axis direction) of one end of the slot 22s is 1/8 of the wavelength ⁇ . It is set to be as follows. The distance in the lateral direction between the front end of the convex portion 24a and the lateral right end of the other end of the slot 22s is also set in the same manner. Further, the distance in the lateral direction between the tip of the other convex portion 24b and the lateral left end or right end of one end of the slot 22s is also set to be equal to or less than 1/8 of the wavelength ⁇ .
- the distance in the vertical direction and the horizontal direction between the tip of the convex portion 24a and the edge of one end of the slot 22s is set to be within one-eighth of the wavelength ⁇ .
- the distance in the vertical direction and the horizontal direction between the tip of the convex portion 24b and the edge of the other end of the slot 22s is also set to be within one-eighth of the wavelength ⁇ .
- the strip conductors 23a and 23b the strip conductors 23a and 23b, the ground conductor 22 facing the strip conductors 23a and 23b, and the dielectric interposed between the ground conductor 22 and the strip conductors 23a and 23b.
- a microstrip line is formed by the body.
- a parallel plate line is formed by the coupling conductor 24, the ground conductor 22 facing the coupling conductor 24, and the dielectric interposed between the ground conductor 22 and the coupling conductor 24.
- the input high frequency signal When a high frequency signal is input to the input / output end 40a of the waveguide 40, the input high frequency signal excites the slot 22s. Since the longitudinal direction of the slot 22s intersects the longitudinal direction (extending direction) of the strip conductors 23a and 23b, the excited slot 22s and the strip conductors 23a and 23b are magnetically coupled to each other.
- the high-frequency signal propagates and is output to the input / output terminals 20a and 20b of the microstrip line via the parallel plate line. At this time, the slot 22s is excited in phase.
- the strip conductors 23a and 23b are arranged so as to extend in directions opposite to each other with respect to the slot 22s. Therefore, the input / output terminals 20a and 20b output in reverse phase. Conversely, when high-frequency signals of opposite phases are input to the input / output ends 20 a and 20 b of the planar line structure 20, these high-frequency signals are combined and then output from the input / output end 40 a of the waveguide
- the direction of the electric field formed in the slot 22s is parallel to the minor axis direction (X-axis direction) of the slot 22s, a parallel plate mode in a direction parallel to the extending direction of the strip conductors 23a and 23b is generated. .
- the electric field strength in the slot 22s is the highest at the center of the slot 22s, and is 0 at the end of the slot 22s. Therefore, the electric field strength at the end in the Y-axis direction of the parallel plate line (that is, the line portion near the tips of the convex portions 24a and 24b) becomes very weak, and the parallel plate in the direction orthogonal to the traveling direction of the high-frequency signal. The amount of unnecessary radiation from the end of the line in the Y-axis direction is reduced.
- FIG. 4 is a diagram schematically showing a propagation direction of a high-frequency signal transmitted between the coupling conductor 24 and the ground conductor 22 when viewed from the Z-axis direction.
- the high-frequency signal propagating from the waveguide 40 is distributed to the two strip conductors 23a and 23b through the slot 22s.
- the taper-shaped structure of the coupling conductor 24 can continuously and gently change the propagation direction of the high-frequency signal so that the high-frequency signal travels toward the strip conductors 23a and 23b. Thereby, it is possible to efficiently propagate the high-frequency signal to the strip conductors 23a and 23b while suppressing unnecessary radiation.
- the size of the tip of the convex portion 24a that covers one end of the slot 22s in the Y-axis direction is approximately the same as the size of one end of the slot 22s.
- the size of the tip portion covering the other end portion in the Y-axis direction of the slot 22s in the convex portion 24b is approximately the same as the size of the other end portion of the slot 22s. Therefore, at both ends of the slot 22s in the Y-axis direction, since the covering area covered with the slots 22s by the convex portions 24a and 24b is small, the parallel plate mode is hardly generated.
- the high-frequency signal is concentrated in the central portion of the slot 22s and propagates from the central portion of the slot 22s in the direction of the strip conductors 23a and 23b in the parallel plate mode, so that efficient conversion is performed while suppressing unnecessary radiation. Can be executed.
- the tip portions of the convex portions 24a and 24b covering both ends of the slot 22s in the Y-axis direction are the same size as both ends of the slot 22s, and a tapered structure is formed in the coupling conductor 24. Has been. As a result, it is possible to efficiently transmit a high-frequency signal to the strip conductors 23a and 23b while suppressing unnecessary radiation.
- FIG. 5 is a diagram schematically showing a planar waveguide structure 120 of a conventional waveguide-microstrip line converter 100 having such connection conductors 190a to 190e and 191a to 191e.
- FIG. 6 is a schematic cross-sectional view taken along line VI-VI of the waveguide-microstrip line converter 100 shown in FIG. A configuration substantially the same as that of the waveguide-microstrip line converter 100 is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2010-56920).
- the planar waveguide structure 120 of the waveguide-microstrip line converter 100 includes strip conductors 123a and 123b formed on the front surface of the dielectric substrate 121, and the front surface.
- a conductor plate 123 formed so as to be connected to the strip conductors 123a and 123b, a ground conductor 122 formed on the back surface of the dielectric substrate 121, and a rectangular slot 122S formed in the ground conductor 122; Cylindrical connection conductors 190a to 190e and 191a to 191e provided in the dielectric substrate 121 and connecting between the conductor plate 123 and the ground conductor 122 are provided.
- connection conductors 190a to 190e and 191a to 191e are disposed so as to surround the short surface SP of the rectangular waveguide 140.
- the input high frequency signal When a high frequency signal is input to the input / output end 140a of the waveguide 140, the input high frequency signal excites the slot 122S. Since the longitudinal direction of the slot 122S intersects the longitudinal direction of the strip conductors 123a and 123b, the excited slot 122S and the strip conductors 123a and 123b are magnetically coupled to each other.
- the high-frequency signal is output from the input / output ends 120a and 120b of the microstrip line formed by the strip conductors 123a and 123b and the ground conductor 122 via the parallel plate line formed by the conductor plate 123 and the ground conductor 122.
- the In the waveguide-microstrip line converter 100 unnecessary radiation from the slot 122S can be suppressed by providing the connection conductors 190a to 190e and 191a to 191e.
- connection conductors 190a to 190e and 191a to 191e for example, a step of forming a through hole penetrating between the front surface and the back surface in the dielectric substrate 121 and a conductor in the through hole are provided. And a process of forming (for example, a plating process and an etching process) are required. However, these processes complicate the manufacturing process of the waveguide-microstrip line converter 100 and increase the manufacturing cost.
- connection conductors 190a to 190e and 191a to 191e are tensioned.
- the connection conductors 190a to 190e and 191a to 191e may be broken or the characteristics of the waveguide-microstrip line converter 100 may be deteriorated.
- the waveguide-planar waveguide converter 1 of the present embodiment can suppress unnecessary radiation without the need for a connection conductor, so that it can be compared with the waveguide-microstrip line converter 100.
- a low manufacturing cost and high operational reliability can be realized.
- the coupling conductor 24 includes the convex portions 24a and 24b opposed to both ends of the slot 22s, and therefore, unwanted radiation is emitted. While suppressing, it is possible to realize a low manufacturing cost and high operational reliability.
- the structure of the present embodiment does not require the connecting conductors 190a to 190e and 191a to 191e. 1 can be miniaturized.
- Embodiment 2 has a structure in which the strip conductors 23a and 23b and the coupling conductor 23c are physically connected to each other in the impedance adjustment units 26a and 26b, the present invention is not limited to this.
- the first embodiment may be modified to include a structure having a strip conductor and a coupling conductor that are physically separated from each other.
- Embodiments 2 and 3 having such a structure will be described.
- FIG. 7 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 2 according to the second embodiment, which is a first modification of the first embodiment.
- the structure of the waveguide-planar waveguide converter 2 is the same as that of the first embodiment except that the conductor pattern 23A of FIG. 7 is provided instead of the conductor pattern 23 of FIG.
- the configuration of the converter 1 is the same.
- the process of forming the conductor pattern 23A is the same as the process of forming the conductor pattern 23.
- the waveguide-planar waveguide converter 2 of the present embodiment includes a planar waveguide structure 20A having input / output ends 20Aa and 20Ab as shown in FIG. 7, and the planar waveguide structure 20A includes: A conductive pattern 23A is provided on the front surface of the dielectric substrate 21.
- the conductor pattern 23A includes strip conductors 23aA and 23bA and a coupling conductor 25 that are physically separated in the X-axis direction.
- the coupling conductor 25 has convex portions 25a and 25b that protrude in the Y-axis direction from the main body of the coupling conductor 25.
- These convex portions 25a and 25b have inclined portions 25c, 25e, 25d, and 25f that form a tapered shape, and are disposed so as to face both ends in the Y-axis direction of the slot 22s in the Z-axis direction.
- the shape, arrangement, and function of these convex portions 25a, 25b are the same as the shape, arrangement, and function of the convex portions 24a, 24b of the first embodiment.
- the coupling conductor 25 has a recess 25g that is recessed in the X-axis negative direction and a recess 25h that is recessed in the X-axis positive direction.
- the inner end of one strip conductor 23aA is surrounded by a recess 23g, and the inner end of the other strip conductor 23bA is surrounded by a recess 23h.
- the structure of the coupling conductor 25 of the present embodiment is substantially the same as the structure in which the recesses 23g and 23h are formed by processing the coupling conductor 24 of the first embodiment.
- the impedance adjusters 26aA and 26bA of the present embodiment are formed in the vicinity of the recesses 25g and 25h.
- the coupling conductor 25 is provided with convex portions 25a and 25b facing both ends of the slot 22s. A low manufacturing cost and high operational reliability can be realized while suppressing radiation.
- FIG. FIG. 8 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 3 according to the third embodiment of the present invention.
- the structure of the waveguide-planar waveguide converter 3 is the waveguide-planar waveguide of the first embodiment except that the conductor pattern 23B of FIG. 8 is provided instead of the conductor pattern 23 of FIG.
- the configuration of the converter 1 is the same.
- the formation process of the conductor pattern 23B is the same as the formation process of the conductor pattern 23.
- the waveguide-planar waveguide converter 3 of the present embodiment includes a planar waveguide structure 20B having input / output ends 20Ba and 20Bb as shown in FIG. 8, and the planar waveguide structure 20B includes: A conductive pattern 23B is provided on the front surface of the dielectric substrate 21.
- the conductor pattern 23B includes strip conductors 23aB and 23bB, a first coupling conductor 30, and a second coupling conductor 31, which are coupled via a connection portion 23cB in the X-axis direction.
- the first coupling conductor 30 and the second coupling conductor 31 constitute the coupling conductor of the present embodiment.
- the first coupling conductor 30 has a convex portion 30a that protrudes in the Y-axis positive direction from the main body portion of the first coupling conductor 30, and the second coupling conductor 31 is And a convex portion 31b protruding in the Y-axis negative direction from the main body portion of the second coupling conductor 31.
- These convex portions 30a and 31b have inclined portions 30c, 30e, 31d, and 31f forming a tapered shape, and are disposed so as to face both ends in the Y-axis direction of the slot 22s in the Z-axis direction.
- the shape, arrangement, and function of these convex portions 30a, 31b are the same as the shape, arrangement, and function of the convex portions 24a, 24b of the first embodiment.
- first coupling conductor 30 and the second coupling conductor 30 are physically separated from each other, and the strip conductors 23aB and 23bB and the connection are formed in a region between the first coupling conductor 30 and the second coupling conductor 31.
- the part 23cB is arranged.
- the impedance adjusting units 26aB and 26bB of the present embodiment are formed near both ends in the X-axis direction of the first coupling conductor 30 and the second coupling conductor 31, respectively.
- the first coupling conductor 30 and the second coupling conductor 31 are convex portions 30a facing both ends of the slot 22s. 31b, it is possible to realize low manufacturing cost and high operational reliability while suppressing unnecessary radiation.
- Embodiment 4 FIG.
- Each of the waveguide-planar waveguide converters 1 to 3 according to the first to third embodiments described above has a single slot 22s, but the present invention is not limited to this.
- Embodiments 1 to 3 may be modified to have two or more slots.
- Embodiments 4, 5, and 6 having a plurality of slots will be described below.
- FIG. 9 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 4 according to the fourth embodiment of the present invention.
- FIG. 10 is a schematic sectional view taken along line XX of the waveguide-planar waveguide converter 4 shown in FIG.
- the waveguide-planar waveguide converter 4 of the present embodiment includes a planar line structure 20C having input / output ends 20Ca and 20Cb as shown in FIG. 9, and the planar line structure 20C is a dielectric.
- a conductive pattern 23 ⁇ / b> C is provided on the front surface of the substrate 21.
- a ground conductor 22 ⁇ / b> C is provided on the back surface of the dielectric substrate 21.
- the ground conductor 22C is formed with a slot group 22sC including rectangular slots 22s1 and 22s2 extending in the Y-axis direction.
- the conductor pattern 23C includes strip conductors 23aC and 23bC extending along the X-axis direction, and a coupling conductor 32 that is electrically coupled to the strip conductors 23aC and 23bC.
- the strip conductors 23aB and 23bB are arranged so as to extend in opposite directions (X-axis positive direction and X-axis negative direction) with respect to the slot group 22sC.
- the main body of the coupling conductor 32 of the present embodiment is physically connected to the inner ends of the strip conductors 23aC and 23bC.
- the coupling conductor 32 includes convex portions 32a and 32b that protrude in the Y-axis direction from the main body portion of the coupling conductor 32.
- These convex portions 32a and 32b Has inclined portions 32c, 32e, 32d, and 32f forming a tapered shape, and is arranged so as to face both ends in the Y-axis direction of the slot 22s in the Z-axis direction.
- the impedance adjustment portions 26 a ⁇ / i> C and 26 b ⁇ / i> C of the present embodiment are formed near both ends in the X-axis direction of the main body portion of the coupling conductor 32.
- the lateral width (width in the X-axis direction) of the tip of the convex portion 32a is narrower than the overall width of the slot group 22sC composed of the slots 22s1, 22s2, and the lateral width (width in the X-axis direction) of the convex portion 32b is also It is narrower than the entire width of the slot group 22sC composed of the slots 22s1 and 22s2. Further, the distance in the vertical direction (Y-axis direction) and the horizontal direction (X-axis direction) between the edge of one end in the Y-axis direction of the slot group 22sC and the tip of the convex portion 32a is the center frequency of the used frequency band.
- the distance in the vertical direction and the horizontal direction between the edge of the other end in the Y-axis direction of the slot group 22sC and the tip of the convex portion 32b is set to be ⁇ / 8 or less.
- the size of the tip portion of the convex portion 32a covering one end portion in the Y-axis direction of the slot group 22sC is approximately the same as the size of the one end portion of the slot group 22sC.
- the size of the tip portion of the convex portion 32b covering the other end in the Y-axis direction of the slot group 22sC is approximately the same as the size of the other end of the slot group 22sC. Therefore, the functions of such convex portions 32a and 32b are substantially the same as the functions of the convex portions 24a and 24b of the first embodiment. Therefore, a high frequency signal can be efficiently transmitted to the strip conductors 23aC and 23bC while suppressing unnecessary radiation.
- the waveguide-planar waveguide converter 4 of the present embodiment also achieves low manufacturing costs and high operational reliability while suppressing unwanted radiation, as in the first embodiment. be able to.
- FIG. 11 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 5 according to the fifth embodiment of the present invention.
- the waveguide-planar waveguide converter 5 of the present embodiment includes a planar line structure 20D having input / output ends 20Da and 20Db as shown in FIG. 11, and the planar line structure 20D is a dielectric.
- a conductive pattern 23 ⁇ / b> D is provided on the front surface of the substrate 21.
- a ground conductor 22C is provided on the back surface of the dielectric substrate 21 as in the fourth embodiment.
- the ground conductor 22C is formed with a slot group 22sC including rectangular slots 22s1 and 22s2 extending in the Y-axis direction.
- the strip conductors 23aD and 23bD are arranged so as to extend in opposite directions with respect to the slot group 22sC.
- the conductor pattern 23D includes strip conductors 23aD and 23bD and a coupling conductor 33 that are physically separated from each other in the X-axis direction.
- the coupling conductor 33 includes convex portions 33a and 33b projecting from the main body of the coupling conductor 33 in the Y-axis direction, and the convex portions 33a and 33b.
- the connecting portion 33m is disposed between the strip conductors 23aA and 23bA.
- the convex portions 33a and 33b have inclined portions 33c, 33e, 33d, and 33f that form a tapered shape, and are disposed so as to face both ends in the Y-axis direction of the slot 22s in the Z-axis direction.
- the lateral width (width in the X-axis direction) of the tip of the convex portion 33a is narrower than the entire width of the slot group 22sC composed of the slots 22s1, 22s2, and the lateral width (width in the X-axis direction) of the convex portion 33b is also It is narrower than the entire width of the slot group 22sC composed of the slots 22s1 and 22s2.
- the shape, arrangement and function of such convex portions 33a and 33b are the same as the shape, arrangement and function of the convex portions 32a and 32b of the fourth embodiment.
- the coupling conductor 33 has a recess 33g that is recessed in the X-axis negative direction and a recess 33h that is recessed in the X-axis positive direction.
- the inner end of one strip conductor 23aD is surrounded by a recess 33g, and the inner end of the other strip conductor 23bA is surrounded by a recess 33h.
- the impedance adjusters 26aD and 26bD of the present embodiment are formed in the vicinity of the recesses 33g and 33h.
- the coupling conductor 33 includes convex portions 33a and 33b facing both ends of the slots 22s1 and 22s2, as in the first embodiment.
- FIG. FIG. 12 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 6 according to the sixth embodiment which is a modification of the fifth embodiment.
- the structure of the waveguide-planar waveguide converter 6 is the same as that of the fifth embodiment except that it has a slot group 22sE in FIG. 12 instead of the slot group 22sC in FIG.
- the configuration of the vessel 5 is the same.
- the waveguide-planar waveguide converter 6 of this embodiment includes a planar line structure 20E having input / output ends 20Ea and 20Eb as shown in FIG. Similar to the fifth embodiment, the conductor pattern 23D is provided on the front surface of the dielectric substrate 21. A slot group 22sE composed of rectangular slots 22s3 and 22s4 extending in the Y-axis direction is formed on the ground conductor on the back surface of the dielectric substrate 21. As shown in FIG. 12, the interval in the X-axis direction of the slots 22s3 and 22s4 in the present embodiment is narrower than the interval in the X-axis direction of the slots 22s1 and 22s2 in the fifth embodiment.
- the convex portions 33a and 33b cover the entire slots 22s3 and 22s4 when viewed from the Z-axis direction.
- the impedance adjustment portions 26aE and 26bE are formed in the vicinity of the concave portions 33g and 33h of the coupling conductor 33, as in the fifth embodiment.
- the coupling conductor 33 includes convex portions 33a and 33b facing both ends of the slots 22s3 and 22s3, as in the fifth embodiment.
- Embodiment 7 FIG.
- the convex portions 24a, 24b, 25a, 25b, 30a, 30b, 32a, 32b, 33a, and 33b of the first to sixth embodiments are all tapered, but the invention is not limited to this. Absent.
- the convex portions of the first to sixth embodiments described above have a staircase shape in which the lateral width of each convex portion changes stepwise as it goes from the main body portion of the coupling conductor to the tip of each convex portion.
- the outer shape of 24a, 24b, 25a, 25b, 30a, 30b, 32a, 32b, 33a, 33b may be changed.
- FIG. 13 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 7 according to the seventh embodiment which is a first modification of the first embodiment.
- the structure of this waveguide-planar waveguide converter 7 is the waveguide-planar waveguide of the first embodiment except that the conductor pattern 23F of FIG. 13 is provided instead of the conductor pattern 23 of FIG.
- the configuration of the converter 1 is the same.
- the process for forming the conductor pattern 23F is the same as the process for forming the conductor pattern 23.
- the waveguide-planar waveguide converter 7 of the present embodiment includes a planar waveguide structure 20F having input / output ends 20Fa and 20Fb.
- the planar waveguide structure 20F includes: Conductive pattern 23F is provided on the front surface of dielectric substrate 21.
- the conductor pattern 23F includes strip conductors 23aF and 23bF extending in the X-axis direction, and a coupling conductor 34.
- the coupling conductor 34 has a main body portion that is electrically coupled to the strip conductors 23aF and 23bF, a convex portion 34a that projects from the main body portion in the Y-axis positive direction, and a convex shape that projects from the main body portion in the Y-axis negative direction. Part 34b.
- the one convex portion 34a has a pair of inclined portions 34c and 34e forming a staircase shape. That is, the convex portion 34a has a stepped shape that changes so that the lateral width (width in the X-axis direction) of the convex portion 34a gradually decreases from the main body portion toward the tip of the convex portion 34a. Yes.
- the other convex portion 34b also has a pair of inclined portions 34d and 34f forming a tapered shape. That is, the convex portion 34b has a stepped shape that changes so that the lateral width of the convex portion 34b gradually decreases from the main body portion toward the tip of the convex portion 34b.
- the distance in the vertical direction and the horizontal direction between the tip of the convex portion 34a and the edge of one end of the slot 22s is 1/8 of the wavelength ⁇ . It is set to be within. Similarly, the distance in the vertical direction and the horizontal direction between the tip of the convex portion 34b and the edge of the other end of the slot 22s is also set to be within one eighth of the wavelength ⁇ . As shown in FIG. 13, the impedance adjusters 26aF and 26bF of the present embodiment are formed near both ends of the coupling conductor 34 in the X-axis direction.
- the coupling conductor 34 is provided with convex portions 34a and 34b facing both ends of the slot 22s, and thus is unnecessary. A low manufacturing cost and high operational reliability can be realized while suppressing radiation.
- Embodiment 8 FIG.
- the slot 22s formed on the back surface of the dielectric substrate 21 has a rectangular shape as shown in FIG. 1, but the slot 22s is not limited to this. Absent.
- the shape of the slot may be modified so that the width of each slot in the longitudinal direction (width in the X-axis direction) is larger than the width of the central portion of each slot (width in the X-axis direction).
- FIG. 14 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 8 according to the eighth embodiment of the present invention.
- FIG. 15 is a schematic sectional view taken along line XV-XV of the waveguide-planar waveguide converter 8 shown in FIG.
- the waveguide-planar waveguide converter 8 of the present embodiment includes a planar line structure 20G having input / output ends 20Ga and 20Gb as shown in FIG. 14, and the planar line structure 20G is a dielectric.
- a conductive pattern 23G is provided on the front surface of the substrate 21.
- a ground conductor 22 ⁇ / b> G is provided on the back surface of the dielectric substrate 21.
- the ground conductor 22G is formed with a rectangular slot 22sG extending in the Y-axis direction. As shown in FIG. 14, the width of both ends in the longitudinal direction of the slot 22sG is larger than the width of the central portion of the slot 22sG.
- the conductor pattern 23G includes strip conductors 23aG and 23bG extending along the X-axis direction, and a coupling conductor 35 that is electrically coupled to the strip conductors 23aG and 23bG.
- the strip conductors 23aG and 23bG are arranged so as to extend in directions opposite to each other with respect to the slot 22sG.
- the main body of the coupling conductor 35 of the present embodiment is physically connected to the inner ends of the strip conductors 23aG and 23bG.
- the coupling conductor 35 has convex portions 35a and 35b that protrude in the Y-axis direction from the main body portion of the coupling conductor 35, and these convex portions 35a and 35b.
- the impedance adjusters 26 a ⁇ / i> G and 26 b ⁇ / i> G of the present embodiment are formed near both ends in the X-axis direction of the main body of the coupling conductor 35.
- the lateral width (width in the X-axis direction) of the tip of the convex portion 35a is narrower than the lateral width of one end in the Y-axis direction of the slot 22sG, and the lateral width (width in the X-axis direction) of the convex portion 35b is also the slot 22sG. It is narrower than the lateral width of the other end in the Y-axis direction. Further, the distance in the vertical direction (Y-axis direction) and the horizontal direction (X-axis direction) between the edge of one end in the Y-axis direction of the slot 22sG and the tip of the convex portion 35a corresponds to the center frequency of the used frequency band.
- the distance in the vertical direction and the horizontal direction between the edge of the other end in the Y-axis direction of the slot 22sG and the tip of the convex portion 35b is set to be ⁇ / 8 or less.
- the size of the tip portion of the convex portion 35a that covers one end of the slot 22sG in the Y-axis direction is approximately the same as the size of the one end of the slot 22sG.
- the size of the tip portion of the convex portion 35b covering the other end in the Y-axis direction of the slot 22sG is approximately the same as the size of the other end of the slot 22sG. Therefore, the functions of such convex portions 35a and 35b are substantially the same as the functions of the convex portions 24a and 24b of the first embodiment. Therefore, a high frequency signal can be efficiently transmitted to the strip conductors 23aG and 23bG while suppressing unnecessary radiation.
- the waveguide-planar waveguide converter 8 of the present embodiment can also realize low manufacturing cost and high operational reliability while suppressing unnecessary radiation.
- the longitudinal direction (Y-axis direction) of the slot 22sG is maintained while maintaining the same technical effect as in the first embodiment. Can be reduced (shortened). Thereby, the length L2 of the conductor pattern 23G in the Y-axis direction can be reduced (shortened). Therefore, the waveguide-planar waveguide converter 8 can be reduced in size.
- Such a slot 22sG is also applicable to the ninth embodiment described below.
- Embodiment 9 FIG.
- the number of input / output terminals of each of the planar waveguide structures 20, 20A to 20G is two, but the present invention is not limited to this.
- the planar waveguide structure of each of the above embodiments may be modified so as to have four or more input / output ends.
- FIG. 16 is a diagram schematically showing a planar structure of the waveguide-planar waveguide converter 9 according to the ninth embodiment which is a modification of the first embodiment.
- FIG. 17 is a schematic cross-sectional view taken along line XVII-XVII of the waveguide-planar waveguide converter 9 shown in FIG.
- the structure of the waveguide-planar waveguide converter 9 is the waveguide-planar waveguide of the first embodiment except that the conductor pattern 23H of FIG. 16 is provided instead of the conductor pattern 23 of FIG.
- the configuration of the converter 1 is the same.
- the process for forming the conductor pattern 23H is the same as the process for forming the conductor pattern 23.
- the waveguide-planar waveguide converter 9 of this embodiment includes a planar waveguide structure 20H having four input / output ends 20Ha, 20Hb, 20Hc, and 20Hd as shown in FIG.
- the planar waveguide structure 20H has a conductor pattern 23H on the front surface of the dielectric substrate 21.
- the conductor pattern 23H has a coupling conductor 24 as in the first embodiment.
- the conductor pattern 23H further includes strip conductors 37a, 37b, 37c, and 37d that are linear conductors extending in the X-axis direction. All of these strip conductors 37a, 37b, 37c, and 37d are connected to the coupling conductor 24.
- impedance adjusting portions 26aH and 26bH are formed in the vicinity of both ends of the coupling conductor 24 in the X-axis direction.
- the input high frequency signal When a high frequency signal is input to the waveguide 40, the input high frequency signal excites the slot 22s. Since the longitudinal direction (Y-axis direction) of the slot 22s intersects the longitudinal direction (extending direction) of the strip conductors 37a, 37b, 37c, and 37d, the excited slot 22s and the strip conductors 37a, 37b, 37c, and 37d Are magnetically coupled to each other.
- the high-frequency signal propagates and is output to the input / output terminals 20Ha, 20Hb, 20Hc, and 20Hd of the microstrip line via the parallel plate line.
- the planar waveguide structure 20H according to the ninth embodiment has the four input / output ends 20Ha, 20Hb, 20Hc, and 20Hd. Therefore, the waveguide-planar waveguide converter having the function of a multi-distributor. 9 can be realized.
- the waveguide-planar waveguide converter according to the present invention is used in a high-frequency transmission path for transmitting a high-frequency signal such as millimeter wave or microwave, for example, a high-frequency band such as millimeter wave band or microwave band.
- a high-frequency band such as millimeter wave band or microwave band.
- 1 to 9 waveguide to planar waveguide converter 20 and 20A to 20H planar waveguide structure, 20a and 20b, input / output terminals, 21 dielectric substrate, 22, 22C ground conductor, 22s slot, 23, 23A to 23D, 23G, 23H conductor pattern, 23a, 23b, 23aA, 23bA, 23ab, 23bB, 23ac, 23bc Strip conductor, 24, 25, 32, 33, 34, 35 Coupling conductor, 24a, 24b, 25a, 25b, 30a, 30b, 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b Convex part, 40 waveguide, 40a input / output end, SP short surface.
Landscapes
- Waveguides (AREA)
- Waveguide Aerials (AREA)
Abstract
導波管-平面導波路変換器(1)は、誘電体基板(21)の第1の主面に形成されているストリップ導体(23a,23b)と、ストリップ導体(23a,23b)と対向するように裏面側に形成されている接地導体と、この接地導体に形成されているスロット(22s)と、ストリップ導体(23a,23b)と電気的に結合する位置に形成されている結合導体(24)とを備える。結合導体(24)は、ストリップ導体(23a,23b)と電気的に結合する本体部と、この本体部から突出する凸状部(24a,24b)とを有する。凸状部(24a,24b)は、スロット(22s)の端部と対向するように形成されている。
Description
本発明は、導波管とマイクロストリップ線路などの平面導波路との間で伝送モードの変換を行う変換器に関する。
ミリ波帯またはマイクロ波帯などの高周波帯域で使用される高周波伝送路では、導波管と、マイクロストリップ線路またはコプレーナ線路などの平面導波路とを相互に結合するために、導波管と平面導波路との間で伝送モードを変換する変換器が広く使用されている。たとえば、特許文献1(特開2010-56920号公報)には、導波管をマイクロストリップ線路と結合する導波管-マイクロストリップ線路変換器が開示されている。
特許文献1に開示されているマイクロストリップ線路の構造は、誘電体基板のおもて面に形成されたストリップ導体及び導体板と、その誘電体基板の裏面全体に設けられた接地導体と、その誘電体基板中に設けられ且つ前記導体板と前記接地導体との間を接続する複数の接続導体とを備えている。接地導体は、方形導波管の端部と接続されており、この接地導体には、方形導波管の端部と電気的に結合するための長方形状のスロットが形成されている。また、導体板及び接地導体はコプレーナ線路構造を形成する。更に、複数の接続導体は、方形導波管の端部のショート面(短絡面)を取り囲むように配設されている。これら接続導体が設けられることで、スロットからの不要放射の抑圧が可能となる。
しかしながら、特許文献1に開示されている構造では、不要放射の抑圧のために複数の接続導体が必要となるので、導波管-マイクロストリップ線路変換器の製造工程が複雑化し、これにより製造コストが嵩むという課題がある。
上記に鑑みて本発明の目的は、不要放射を抑圧しつつ製造コストの低減を可能とする導波管-平面導波路変換器を提供することである。
本発明の一態様による導波管-平面導波路変換器は、高周波信号を伝送する導波管-平面導波路変換器であって、自己の厚み方向に互いに対向する第1の主面及び第2の主面を有する誘電体基板と、前記第1の主面上で予め定められた第1の面内方向に沿って延在して形成されている単数または複数のストリップ導体と、前記第2の主面上で前記単数または複数のストリップ導体と前記厚み方向に対向するように形成されている接地導体と、前記接地導体に形成され、前記第2の主面上で前記第1の面内方向と交差する第2の面内方向に延在する単数または複数のスロットと、前記第1の主面上で前記単数または複数のストリップ導体と電気的に結合する位置に形成され、且つ前記単数または複数のスロットと前記厚み方向に対向する位置に配置されている結合導体とを備え、前記結合導体は、前記単数または複数のストリップ導体と電気的に結合する本体部と、前記本体部から前記第2の面内方向に突出する凸状部とを有し、当該凸状部は、前記単数または複数のスロットの前記第2の面内方向における端部と前記厚み方向に対向するように形成されていることを特徴とする。
本発明によれば、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現する導波管-平面導波路変換器を提供することができる。
以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面全体において同一符号を付された構成要素は、同一構成及び同一機能を有するものとする。また、図面に示されているX軸、Y軸及びZ軸は互いに直交する。
実施の形態1.
図1は、本発明に係る実施の形態1の導波管-平面導波路変換器1の平面構造を概略的に示す図である。図2は、図1に示した導波管-平面導波路変換器1のII-II線における概略断面図である。
図1は、本発明に係る実施の形態1の導波管-平面導波路変換器1の平面構造を概略的に示す図である。図2は、図1に示した導波管-平面導波路変換器1のII-II線における概略断面図である。
この導波管-平面導波路変換器1は、図1及び図2に示されるように、高周波信号の入出力に使用される入出力端20a,20bを有する平面導波路構造20と、この平面導波路構造20に接続された導波管40とを備える。導波管-平面導波路変換器1は、導波管40と平面導波路構造20との間で高周波信号の伝送モード(特に、伝送基本モード)の変換を相互に行う機能を有し、導波管40と平面導波路構造20との間で特性インピーダンスの変換を相互に行うインピーダンス変換機能を有している。
導波管40は、当該導波管40の管軸と直交する平面において方形断面を有する金属製の中空導波管すなわち方形導波管である。図2に示した導波管40の管厚は省略されているが、実際は数mmの管厚が存在する。この導波管40の中空路は、その管軸方向(Z軸方向)に沿って延在している。導波管40の伝送基本モードは、たとえば、TEモード(Transverse Electric modes)の1つであるTE10モードである。一方、平面導波路構造20の伝送基本モードは、準TEMモード(Quasi-Transverse ElectroMagnetic modes)である。導波管-平面導波路変換器1は、高周波信号の伝送基本モードを、TE10モード及び準TEMモードのうちの一方から他方へ変換することができる。
平面導波路構造20は、図1に示されるように、Z軸方向から視たときに正方形または長方形などの四角形を有する誘電体基板21と、この誘電体基板21の互いに対向する2面のうちの一方のおもて面(第1の主面)上に形成されている導体パターン23とを備えている。ここで、誘電体基板21のおもて面は、X軸及びY軸を含むX-Y平面と平行である。誘電体基板21は、たとえば、ガラスエポキシ、ポリテトラフルオロエチレン(polytetrafluoroethylene,PTFE)またはセラミックスなどの誘電体材料で構成されればよい。
導体パターン23は、誘電体基板21のおもて面上で予め定められた面内方向(X軸方向)に沿って延在する線状導体である2個のストリップ導体23a,23bと、これらストリップ導体23a,23b間に介在し且つこれらストリップ導体23a,23bと物理的に接続されている結合導体24とを含んで構成されている。
また、平面導波路構造20は、図2に示されるように誘電体基板21の裏面(第2の主面)上に全面に亘って形成された導電膜である接地導体22と、この接地導体22に形成された結合窓であるスロット22sと、接地導体22の所定領域(スロット22sを含む。)に接続された一端部を有する導波管40とを備えている。誘電体基板21の裏面はX-Y平面と平行である。スロット22sは、図1に示されるようにストリップ導体23a,23bの延在方向(X軸方向)とは交差するY軸方向に沿って延在し、Y軸方向を長手方向とする長方形状を有している。
また、導波管40の管軸方向は、Z軸方向と平行である。導波管40のZ軸正方向側の一端部をなす壁面は、接地導体22と物理的に接続され、ショート面(短絡面)SPを形成する。図1に示される導波管40の外形状は、矩形状であり、ショート面SPの外形状を表すものである。また、導波管40のZ軸負方向側の他端部は、高周波信号の入出力に使用される入出力端40aを構成する。
接地導体22及び導体パターン23は、たとえば、めっき処理により形成可能である。導体パターン23及び接地導体22の構成材料としては、たとえば、銅、銀及び金などの導電性材料のいずれか、またはそれら導電性材料の中から選択された2種以上の組み合わせが使用されればよい。
結合導体24は、図1及び図2に示されるように、誘電体基板21の裏面側に設けられたスロット22sとZ軸方向(誘電体基板21の厚み方向)に対向する位置に配置されている。また、図1に示されるように、この結合導体24は、ストリップ導体23a,23bの内側端部に接続されている略矩形状の本体部と、この本体部からY軸正方向に突出する凸状部24aと、この本体部からY軸負方向に突出する凸状部24bとを有する。その本体部のX軸方向における両端付近にインピーダンス調整部26a,26bが形成される。
図1に示されるように、結合導体24の一方の凸状部24aは、スロット22sのY軸正方向側の端部とZ軸方向に対向するように形成され、他方の凸状部24bは、スロット22sのY軸負方向側の端部とZ軸方向に対向するように形成されている。また、一方の凸状部24aの先端は、スロット22sの長手方向一端部よりもY軸正方向外側に配置されており、他方の凸状部24bの先端は、スロット22sの長手方向他端部よりもY軸負方向外側に配置されている。
また、一方の凸状部24aは、テーパ形状を形成する一対の傾斜部24c,24eを有する。すなわち、凸状部24aは、当該凸状部24aの横幅(X軸方向の幅)が本体部から凸状部24aの先端に向かうに従って漸次小さくなるように変化するテーパ形状を有している。他方の凸状部24bも、テーパ形状を形成する一対の傾斜部24d,24fを有する。すなわち、凸状部24bは、当該凸状部24bの横幅が本体部から凸状部24bの先端に向かうに従って漸次小さくなるように変化するテーパ形状を有している。
更に、図1に示されるように凸状部24a,24bの先端は一定の横幅を有している。一方の凸状部24aの先端の横幅は、スロット22sの一端部の横幅よりも狭く、他方の凸状部24bの先端の横幅も、スロット22sの他端部の横幅よりも狭い。図3は、図1に示した結合導体24の拡大図である。図3に示されるようにスロット22sの一端部の先端と凸状部24aの先端との間の縦方向(Y軸方向)における距離d1は、予め定められた使用周波数帯域の中心周波数に対応する波長λの8分の1(=λ/8)以下となるように設定される。スロット22sの他端部の先端と凸状部24bの先端との間の縦方向における距離も、同様にλ/8以下となるように設定されている。
ここで、図3に示されるように、凸状部24aの先端とスロット22sの一端部の横方向(X軸方向)左端との間の横方向における距離d2は、波長λの8分の1以下となるように設定される。凸状部24aの先端とスロット22sの他端部の横方向右端との間の横方向における距離も、同様に設定される。また、他方の凸状部24bの先端と、スロット22sの一端部の横方向左端または右端との間の横方向における距離も、波長λの8分の1以下となるように設定されている。したがって、凸状部24aの先端とスロット22sの一端部のエッジとの間の縦方向及び横方向における距離は、それぞれ波長λの8分の1以内となるように設定されている。同様に、凸状部24bの先端とスロット22sの他端部のエッジとの間の縦方向及び横方向における距離も、それぞれ波長λの8分の1以内となるように設定されている。
次に、図1及び図2を参照しつつ、本実施の形態の導波管-平面導波路変換器1の動作について説明する。
本実施の形態の平面導波路構造20では、ストリップ導体23a,23bと、これらストリップ導体23a,23bに対向する接地導体22と、この接地導体22とストリップ導体23a,23bとの間に介在する誘電体とによって、マイクロストリップ線路が形成される。また、結合導体24と、この結合導体24に対向する接地導体22と、この接地導体22と結合導体24との間に介在する誘電体とによって、平行平板線路が形成される。
導波管40の入出力端40aに高周波信号が入力されると、この入力された高周波信号はスロット22sを励振する。スロット22sの長手方向は、ストリップ導体23a,23bの長手方向(延在方向)と交差するので、励振されたスロット22sとストリップ導体23a,23bとが互いに磁界結合する。高周波信号は、前記平行平板線路を介してマイクロストリップ線路の入出力端20a,20bに伝搬し出力される。このとき、スロット22sは同相で励振される。ストリップ導体23a,23bは、スロット22sに対して、互いに逆方向に延在するように配置されている。よって、入出力端20a,20bからは逆相での出力がなされる。逆に、平面線路構造20の入出力端20a,20bにそれぞれ逆相の高周波信号が入力されると、これら高周波信号は合成された後に、導波管40の入出力端40aから出力される。
スロット22sにおいて形成される電界の方向は、当該スロット22sの短軸方向(X軸方向)と平行となることから、ストリップ導体23a,23bの延在方向と平行な方向の平行平板モードが発生する。また、スロット22sにおける電界強度は、当該スロット22sの中心部で最も大きく、当該スロット22sの端部では0となる。そのため、前記平行平板線路のY軸方向端部(すなわち、凸状部24a,24bの先端付近の線路部)での電界強度は非常に弱くなり、高周波信号の進行方向と直交する方向における平行平板線路のY軸方向端部からの不要放射量が少なくなる。図4は、Z軸方向から視たときの結合導体24と接地導体22との間を伝送する高周波信号の伝搬方向を概略的に示す図である。図4に示されるように、導波管40から伝搬してきた高周波信号は、スロット22sを介して2つのストリップ導体23a,23bに分配される。また、結合導体24のテーパ形状の構造により、高周波信号の伝搬方向を連続的になだらかに変化させて、高周波信号の進行方向をストリップ導体23a,23b側に向かせることができる。これにより、不要放射を抑圧しつつ、高周波信号を効率良くストリップ導体23a,23bに伝搬させることが可能となる。
更に、図3に示されるように、凸状部24aのうちスロット22sのY軸方向一端部を被覆する先端部分の大きさは、当該スロット22sの一端部の大きさと同程度である。また、凸状部24bのうちスロット22sのY軸方向他端部を被覆する先端部分の大きさも、当該スロット22sの他端部の大きさと同程度である。よって、スロット22sのY軸方向両端部では、凸状部24a,24bによってスロット22sが被覆される被覆面積が小さいので、平行平板モードが発生しにくい。結果として、高周波信号は、スロット22sの中心部に集中し、スロット22sの中心部から平行平板モードでストリップ導体23a,23bの方向に伝搬していくので、不要放射を抑圧しつつ効率の良い変換を実行することが可能となる。
要するに、スロット22sのY軸方向両端部を覆う凸状部24a,24bの先端部分の大きさが当該スロット22sの両端部と同程度の大きさであり、結合導体24にテーパ形状の構造が形成されている。これにより、不要放射を抑圧しつつ高周波信号を効率良くストリップ導体23a,23bに伝送することが可能となる。
本実施の形態の導波管-平面導波路変換器1は、誘電体基板21のおもて面上の導体パターン23と、誘電体基板21の裏面上の接地導体22との間を相互に接続する接続導体を必要とせずに、不要放射を抑圧することができる。図5は、その種の接続導体190a~190e,191a~191eを有する従来の導波管-マイクロストリップ線路変換器100の平面導波路構造120を概略的に示す図である。図6は、図5に示した導波管-マイクロストリップ線路変換器100のVI-VI線における概略断面図である。この導波管-マイクロストリップ線路変換器100と実質的に同じ構成が特許文献1(特開2010-56920号公報)に開示されている。
図5に示されるように導波管-マイクロストリップ線路変換器100の平面導波路構造120は、誘電体基板121のおもて面に形成されたストリップ導体123a,123bと、当該おもて面上でストリップ導体123a,123bに接続するように形成された導体板123と、誘電体基板121の裏面に形成された接地導体122と、この接地導体122に形成された長方形状のスロット122Sと、誘電体基板121中に設けられ且つ導体板123と接地導体122との間を接続する円柱形状の接続導体190a~190e,191a~191eとを備えている。図4に示されるように方形導波管140の端部が接地導体122と接して、ショート面(短絡面)SPを形成している。接続導体190a~190e,191a~191eは、方形導波管140のショート面SPを取り囲むように配設されている。
導波管140の入出力端140aに高周波信号が入力されると、この入力された高周波信号はスロット122Sを励振する。スロット122Sの長手方向は、ストリップ導体123a,123bの長手方向と交差するので、励振されたスロット122Sとストリップ導体123a,123bとは互いに磁界結合する。高周波信号は、導体板123と接地導体122とで形成される平行平板線路を介して、ストリップ導体123a,123bと接地導体122とで形成されるマイクロストリップ線路の入出力端120a,120bから出力される。この導波管-マイクロストリップ線路変換器100では、接続導体190a~190e,191a~191eを設けることで、スロット122Sからの不要放射を抑圧することができる。
接続導体190a~190e,191a~191eを設けるには、たとえば、誘電体基板121内にそのおもて面と裏面との間を貫通するスルーホールを形成する工程と、これらスルーホール内に導電体を形成する工程(たとえば、めっき工程及びエッチング工程)とが必要となる。しかしながら、これら工程は、導波管-マイクロストリップ線路変換器100の製造工程を複雑化させ、製造コスト増大の原因となる。
また、導波管-マイクロストリップ線路変換器100の誘電体基板121が温度変化により伸縮すると、接続導体190a~190e,191a~191eにテンションがかかる。これにより、接続導体190a~190e,191a~191eが破断したり、導波管-マイクロストリップ線路変換器100の特性が劣化したりするおそれがある。
これに対し、本実施の形態の導波管-平面導波路変換器1は、接続導体を必要とせずに不要放射を抑圧することができるので、導波管-マイクロストリップ線路変換器100と比べると、低い製造コストと高い動作信頼性を実現することができる。
以上に説明したように実施の形態1の導波管-平面導波路変換器1では、結合導体24は、スロット22sの両端部と対向する凸状部24a,24bを備えることから、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。また、従来の導波管-マイクロストリップ線路変換器100と比べると、本実施の形態の構造は、接続導体190a~190e,191a~191eを必要としないので、導波管-平面導波路変換器1の小型化が可能である。
実施の形態2.
上記実施の形態1は、インピーダンス調整部26a,26bにおいてストリップ導体23a,23bと結合導体23cとが物理的に互いに接続された構造を有しているが、これに限定されるものではない。物理的に互いに分離されたストリップ導体と結合導体とを有する構造を備えるように上記実施の形態1が変形されてもよい。以下、このような構造を備えた実施の形態2,3について説明する。
上記実施の形態1は、インピーダンス調整部26a,26bにおいてストリップ導体23a,23bと結合導体23cとが物理的に互いに接続された構造を有しているが、これに限定されるものではない。物理的に互いに分離されたストリップ導体と結合導体とを有する構造を備えるように上記実施の形態1が変形されてもよい。以下、このような構造を備えた実施の形態2,3について説明する。
図7は、上記実施の形態1の第1の変形例である実施の形態2の導波管-平面導波路変換器2の平面構造を概略的に示す図である。この導波管-平面導波路変換器2の構成は、図1の導体パターン23に代えて図7の導体パターン23Aを有する点を除いて、上記実施の形態1の導波管-平面導波路変換器1の構成と同じである。また、導体パターン23Aの形成工程は、上記導体パターン23の形成工程と同じである。
本実施の形態の導波管-平面導波路変換器2は、図7に示されるように入出力端20Aa,20Abを有する平面導波路構造20Aを備えており、この平面導波路構造20Aは、誘電体基板21のおもて面上に導体パターン23Aを有する。この導体パターン23Aは、X軸方向において物理的に分離されたストリップ導体23aA,23bAと、結合導体25とを備えている。結合導体25は、実施の形態1の結合導体24と同様に、当該結合導体25の本体部からY軸方向に突出する凸状部25a,25bを有している。これら凸状部25a,25bは、テーパ形状を形成する傾斜部25c,25e,25d,25fを有し、スロット22sのY軸方向両端部とZ軸方向に対向するように配置されている。これら凸状部25a,25bの形状、配置及び機能は、実施の形態1の凸状部24a,24bの形状、配置及び機能と同じである。
また、結合導体25は、X軸負方向に凹む凹部25gと、X軸正方向に凹む凹部25hとを有する。一方のストリップ導体23aAの内側端部は、凹部23gによって取り囲まれ、他方のストリップ導体23bAの内側端部は、凹部23hによって取り囲まれている。本実施の形態の結合導体25の構造は、上記実施の形態1の結合導体24を加工することで凹部23g,23hが形成された構造と実質的に同じである。図7に示されるように本実施の形態のインピーダンス調整部26aA,26bAは、凹部25g,25h付近に形成される。
本実施の形態の導波管-平面導波路変換器2でも、実施の形態1と同様に、結合導体25は、スロット22sの両端部と対向する凸状部25a,25bを備えることから、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。
実施の形態3.
図8は、本発明に係る実施の形態3の導波管-平面導波路変換器3の平面構造を概略的に示す図である。この導波管-平面導波路変換器3の構成は、図1の導体パターン23に代えて図8の導体パターン23Bを有する点を除いて、上記実施の形態1の導波管-平面導波路変換器1の構成と同じである。また、導体パターン23Bの形成工程は、上記導体パターン23の形成工程と同じである。
図8は、本発明に係る実施の形態3の導波管-平面導波路変換器3の平面構造を概略的に示す図である。この導波管-平面導波路変換器3の構成は、図1の導体パターン23に代えて図8の導体パターン23Bを有する点を除いて、上記実施の形態1の導波管-平面導波路変換器1の構成と同じである。また、導体パターン23Bの形成工程は、上記導体パターン23の形成工程と同じである。
本実施の形態の導波管-平面導波路変換器3は、図8に示されるように入出力端20Ba,20Bbを有する平面導波路構造20Bを備えており、この平面導波路構造20Bは、誘電体基板21のおもて面上に導体パターン23Bを有する。この導体パターン23Bは、X軸方向において接続部23cBを介して連結されたストリップ導体23aB,23bBと、第1結合導体30と、第2結合導体31とを備えている。これら第1結合導体30及び第2結合導体31によって、本実施の形態の結合導体が構成される。
実施の形態1の結合導体24と同様に、第1結合導体30は、当該第1結合導体30の本体部からY軸正方向に突出する凸状部30aを有し、第2結合導体31は、当該第2結合導体31の本体部からY軸負方向に突出する凸状部31bを有している。これら凸状部30a,31bは、テーパ形状を形成する傾斜部30c,30e,31d,31fを有し、スロット22sのY軸方向両端部とZ軸方向に対向するように配置されている。これら凸状部30a,31bの形状、配置及び機能は、実施の形態1の凸状部24a,24bの形状、配置及び機能と同じである。
また、第1結合導体30及び第2結合導体30は、物理的に互いに分離されており、これら第1結合導体30と第2結合導体31との間の領域に、ストリップ導体23aB,23bB及び接続部23cBが配置されている。図8に示されるように本実施の形態のインピーダンス調整部26aB,26bBは、第1結合導体30及び第2結合導体31のX軸方向両端付近にそれぞれ形成される。
本実施の形態の導波管-平面導波路変換器3でも、実施の形態1と同様に、第1結合導体30及び第2結合導体31は、スロット22sの両端部と対向する凸状部30a,31bを備えることから、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。
実施の形態4.
以上に説明した実施の形態1~3の導波管-平面導波路変換器1~3は、いずれも、単一のスロット22sを有しているが、これに限定されるものではない。2個以上のスロットを有するように上記実施の形態1~3が変形されてもよい。以下、複数のスロットを有する実施の形態4,5,6について説明する。
以上に説明した実施の形態1~3の導波管-平面導波路変換器1~3は、いずれも、単一のスロット22sを有しているが、これに限定されるものではない。2個以上のスロットを有するように上記実施の形態1~3が変形されてもよい。以下、複数のスロットを有する実施の形態4,5,6について説明する。
図9は、本発明に係る実施の形態4の導波管-平面導波路変換器4の平面構造を概略的に示す図である。図10は、図9に示した導波管-平面導波路変換器4のX-X線における概略断面図である。
本実施の形態の導波管-平面導波路変換器4は、図9に示されるような入出力端20Ca,20Cbを有する平面線路構造20Cを備えており、この平面線路構造20Cは、誘電体基板21のおもて面上に導体パターン23Cを有する。また、図10に示されるように誘電体基板21の裏面上には接地導体22Cが設けられている。この接地導体22Cには、Y軸方向に延在する長方形状のスロット22s1,22s2からなるスロット群22sCが形成されている。
導体パターン23Cは、X軸方向に沿って延在するストリップ導体23aC,23bCと、これらストリップ導体23aC,23bCと電気的に結合する結合導体32とを備えている。ストリップ導体23aB,23bBは、スロット群22sCに対して、互いに逆方向(X軸正方向及びX軸負方向)に延在するように配置されている。本実施の形態の結合導体32の本体部は、ストリップ導体23aC,23bCの内側端部と物理的に接続されている。
結合導体32は、実施の形態1の結合導体24と同様に、当該結合導体32の本体部からY軸方向に突出する凸状部32a,32bを有しており、これら凸状部32a,32bは、テーパ形状を形成する傾斜部32c,32e,32d,32fを有し、スロット22sのY軸方向両端部とZ軸方向に対向するように配置されている。図9に示されるように本実施の形態のインピーダンス調整部26aC,26bCは、結合導体32の本体部のX軸方向両端付近に形成される。
凸状部32aの先端の横幅(X軸方向の幅)は、スロット22s1,22s2からなるスロット群22sCの全体幅よりも狭く、凸状部32bの先端の横幅(X軸方向の幅)も、スロット22s1,22s2からなるスロット群22sCの全体幅よりも狭い。また、スロット群22sCのY軸方向一端部のエッジと凸状部32aの先端との間の縦方向(Y軸方向)及び横方向(X軸方向)における距離は、使用周波数帯域の中心周波数に対応する波長λの8分の1(=λ/8)以下となるように設定される。スロット群22sCのY軸方向他端部のエッジと凸状部32bの先端との間の縦方向及び横方向における距離も、同様にλ/8以下となるように設定されている。
図9に示されるように、凸状部32aのうちスロット群22sCのY軸方向一端部を被覆する先端部分の大きさは、当該スロット群22sCの一端部の大きさと同程度である。また、凸状部32bのうちスロット群22sCのY軸方向他端部を被覆する先端部分の大きさも、当該スロット群22sCの他端部の大きさと同程度である。よって、このような凸状部32a,32bの機能は、実施の形態1の凸状部24a,24bの機能と実質的に同じである。したがって、不要放射を抑圧しつつ高周波信号を効率良くストリップ導体23aC,23bCに伝送することができる。
以上に説明したように本実施の形態の導波管-平面導波路変換器4でも、実施の形態1と同様に、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。
実施の形態5.
図11は、本発明に係る実施の形態5の導波管-平面導波路変換器5の平面構造を概略的に示す図である。本実施の形態の導波管-平面導波路変換器5は、図11に示されるような入出力端20Da,20Dbを有する平面線路構造20Dを備えており、この平面線路構造20Dは、誘電体基板21のおもて面上に導体パターン23Dを有する。また、誘電体基板21の裏面上には、上記実施の形態4と同様に接地導体22Cが設けられている。この接地導体22Cには、Y軸方向に延在する長方形状のスロット22s1,22s2からなるスロット群22sCが形成されている。ストリップ導体23aD,23bDは、このスロット群22sCに対して、互いに逆方向に延在するように配置されている。
図11は、本発明に係る実施の形態5の導波管-平面導波路変換器5の平面構造を概略的に示す図である。本実施の形態の導波管-平面導波路変換器5は、図11に示されるような入出力端20Da,20Dbを有する平面線路構造20Dを備えており、この平面線路構造20Dは、誘電体基板21のおもて面上に導体パターン23Dを有する。また、誘電体基板21の裏面上には、上記実施の形態4と同様に接地導体22Cが設けられている。この接地導体22Cには、Y軸方向に延在する長方形状のスロット22s1,22s2からなるスロット群22sCが形成されている。ストリップ導体23aD,23bDは、このスロット群22sCに対して、互いに逆方向に延在するように配置されている。
導体パターン23Dは、X軸方向において物理的に互いに分離されたストリップ導体23aD,23bDと、結合導体33とを備えている。結合導体33は、実施の形態4の結合導体32(図9)と同様に、当該結合導体33の本体部からY軸方向に突出する凸状部33a,33bと、これら凸状部33a,33bを接続する接続部33mとを有している。接続部33mは、ストリップ導体23aA,23bA間に配置されている。
凸状部33a,33bは、テーパ形状を形成する傾斜部33c,33e,33d,33fを有し、スロット22sのY軸方向両端部とZ軸方向に対向するように配置されている。凸状部33aの先端の横幅(X軸方向の幅)は、スロット22s1,22s2からなるスロット群22sCの全体幅よりも狭く、凸状部33bの先端の横幅(X軸方向の幅)も、スロット22s1,22s2からなるスロット群22sCの全体幅よりも狭い。このような凸状部33a,33bの形状、配置及び機能は、実施の形態4の凸状部32a,32bの形状、配置及び機能と同じである。
一方、結合導体33は、X軸負方向に凹む凹部33gと、X軸正方向に凹む凹部33hとを有する。一方のストリップ導体23aDの内側端部は、凹部33gによって取り囲まれ、他方のストリップ導体23bAの内側端部は、凹部33hによって取り囲まれている。図11に示されるように本実施の形態のインピーダンス調整部26aD,26bDは、凹部33g,33h付近に形成される。
本実施の形態の導波管-平面導波路変換器5でも、実施の形態1と同様に、結合導体33は、スロット22s1,22s2の両端部と対向する凸状部33a,33bを備えることから、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。
実施の形態6.
図12は、上記実施の形態5の変形例である実施の形態6の導波管-平面導波路変換器6の平面構造を概略的に示す図である。この導波管-平面導波路変換器6の構成は、図11のスロット群22sCに代えて図12のスロット群22sEを有する点を除いて、実施の形態5の導波管-平面導波路変換器5の構成と同じである。
図12は、上記実施の形態5の変形例である実施の形態6の導波管-平面導波路変換器6の平面構造を概略的に示す図である。この導波管-平面導波路変換器6の構成は、図11のスロット群22sCに代えて図12のスロット群22sEを有する点を除いて、実施の形態5の導波管-平面導波路変換器5の構成と同じである。
本実施の形態の導波管-平面導波路変換器6は、図12に示されるような入出力端20Ea,20Ebを有する平面線路構造20Eを備えており、この平面線路構造20Eは、実施の形態5と同様に、誘電体基板21のおもて面上に導体パターン23Dを有する。また、誘電体基板21の裏面上の接地導体には、Y軸方向に延在する長方形状のスロット22s3,22s4からなるスロット群22sEが形成されている。図12に示されるように本実施の形態のスロット22s3,22s4のX軸方向の間隔は、実施の形態5のスロット22s1,22s2のX軸方向の間隔よりも狭い。このため、凸状部33a,33bは、Z軸方向から視たときにスロット22s3,22s4の全体を被覆する。本実施の形態でも、上記実施の形態5と同様に、インピーダンス調整部26aE,26bEは、結合導体33の凹部33g,33h付近に形成される。
本実施の形態の導波管-平面導波路変換器6でも、実施の形態5と同様に、結合導体33は、スロット22s3,22s3の両端部と対向する凸状部33a,33bを備えることから、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。
実施の形態7.
上記実施の形態1~6の凸状部24a,24b,25a,25b,30a,30b,32a,32b,33a,33bは、いずれもテーパ形状を有しているが、これに限定されるものではない。各凸状部の横幅が結合導体の本体部から当該各凸状部の先端に向かうに従って段階的に小さくなるように変化する階段形状を有するように、上記実施の形態1~6の凸状部24a,24b,25a,25b,30a,30b,32a,32b,33a,33bの外形状が変更されてもよい。
上記実施の形態1~6の凸状部24a,24b,25a,25b,30a,30b,32a,32b,33a,33bは、いずれもテーパ形状を有しているが、これに限定されるものではない。各凸状部の横幅が結合導体の本体部から当該各凸状部の先端に向かうに従って段階的に小さくなるように変化する階段形状を有するように、上記実施の形態1~6の凸状部24a,24b,25a,25b,30a,30b,32a,32b,33a,33bの外形状が変更されてもよい。
図13は、上記実施の形態1の第1の変形例である実施の形態7の導波管-平面導波路変換器7の平面構造を概略的に示す図である。この導波管-平面導波路変換器7の構成は、図1の導体パターン23に代えて図13の導体パターン23Fを有する点を除いて、上記実施の形態1の導波管-平面導波路変換器1の構成と同じである。また、導体パターン23Fの形成工程は、上記導体パターン23の形成工程と同じである。
本実施の形態の導波管-平面導波路変換器7は、図13に示されるように入出力端20Fa,20Fbを有する平面導波路構造20Fを備えており、この平面導波路構造20Fは、誘電体基板21のおもて面上に導体パターン23Fを有する。この導体パターン23Fは、X軸方向に延在するストリップ導体23aF,23bFと、結合導体34とを備えている。結合導体34は、ストリップ導体23aF,23bFと電気的に結合する本体部と、この本体部からY軸正方向に突出する凸状部34aと、この本体部からY軸負方向に突出する凸状部34bとを有する。
一方の凸状部34aは、階段形状を形成する一対の傾斜部34c,34eを有する。すなわち、凸状部34aは、当該凸状部34aの横幅(X軸方向の幅)が本体部から凸状部34aの先端に向かうに従って段階的に小さくなるように変化する階段形状を有している。他方の凸状部34bも、テーパ形状を形成する一対の傾斜部34d,34fを有する。すなわち、凸状部34bは、当該凸状部34bの横幅が本体部から凸状部34bの先端に向かうに従って段階的に小さくなるように変化する階段形状を有している。
本実施の形態においても、実施の形態1と同様に、凸状部34aの先端とスロット22sの一端部のエッジとの間の縦方向及び横方向における距離は、それぞれ波長λの8分の1以内となるように設定されている。同様に、凸状部34bの先端とスロット22sの他端部のエッジとの間の縦方向及び横方向における距離も、それぞれ波長λの8分の1以内となるように設定されている。図13に示されるように本実施の形態のインピーダンス調整部26aF,26bFは、結合導体34のX軸方向両端付近に形成される。
本実施の形態の導波管-平面導波路変換器7でも、実施の形態1と同様に、結合導体34は、スロット22sの両端部と対向する凸状部34a,34bを備えることから、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。
実施の形態8.
上記実施の形態1の平面導波路構造20では、図1に示したように誘電体基板21の裏面上に形成されたスロット22sは長方形状を有しているが、これに限定されるものではない。各スロットの長手方向両端部の幅(X軸方向の幅)が当該各スロットの中央部の幅(X軸方向の幅)よりも大きくなるようにスロットの形状が変形されてもよい。
上記実施の形態1の平面導波路構造20では、図1に示したように誘電体基板21の裏面上に形成されたスロット22sは長方形状を有しているが、これに限定されるものではない。各スロットの長手方向両端部の幅(X軸方向の幅)が当該各スロットの中央部の幅(X軸方向の幅)よりも大きくなるようにスロットの形状が変形されてもよい。
図14は、本発明に係る実施の形態8の導波管-平面導波路変換器8の平面構造を概略的に示す図である。図15は、図14に示した導波管-平面導波路変換器8のXV-XV線における概略断面図である。
本実施の形態の導波管-平面導波路変換器8は、図14に示されるような入出力端20Ga,20Gbを有する平面線路構造20Gを備えており、この平面線路構造20Gは、誘電体基板21のおもて面上に導体パターン23Gを有する。また、図15に示されるように誘電体基板21の裏面上には接地導体22Gが設けられている。この接地導体22Gには、Y軸方向に延在する長方形状のスロット22sGが形成されている。図14に示されるように、このスロット22sGの長手方向両端部の幅は、スロット22sGの中央部の幅よりも大きい。
導体パターン23Gは、X軸方向に沿って延在するストリップ導体23aG,23bGと、これらストリップ導体23aG,23bGと電気的に結合する結合導体35とを備えている。ストリップ導体23aG,23bGは、スロット22sGに対して、互いに逆方向に延在するように配置されている。本実施の形態の結合導体35の本体部は、ストリップ導体23aG,23bGの内側端部と物理的に接続されている。
結合導体35は、実施の形態1の結合導体24と同様に、当該結合導体35の本体部からY軸方向に突出する凸状部35a,35bを有しており、これら凸状部35a,35bは、テーパ形状を形成する傾斜部35c,35e,35d,35fを有し、スロット22sGのY軸方向両端部とZ軸方向に対向するように配置されている。図14に示されるように本実施の形態のインピーダンス調整部26aG,26bGは、結合導体35の本体部のX軸方向両端付近に形成される。
凸状部35aの先端の横幅(X軸方向の幅)は、スロット22sGのY軸方向一端部の横幅よりも狭く、凸状部35bの先端の横幅(X軸方向の幅)も、スロット22sGのY軸方向他端部の横幅よりも狭い。また、スロット22sGのY軸方向一端部のエッジと凸状部35aの先端との間の縦方向(Y軸方向)及び横方向(X軸方向)における距離は、使用周波数帯域の中心周波数に対応する波長λの8分の1(=λ/8)以下となるように設定される。スロット22sGのY軸方向他端部のエッジと凸状部35bの先端との間の縦方向及び横方向における距離も、同様にλ/8以下となるように設定されている。
図14に示されるように、凸状部35aのうちスロット22sGのY軸方向一端部を被覆する先端部分の大きさは、当該スロット22sGの一端部の大きさと同程度である。また、凸状部35bのうちスロット22sGのY軸方向他端部を被覆する先端部分の大きさも、当該スロット22sGの他端部の大きさと同程度である。よって、このような凸状部35a,35bの機能は、実施の形態1の凸状部24a,24bの機能と実質的に同じである。したがって、不要放射を抑圧しつつ高周波信号を効率良くストリップ導体23aG,23bGに伝送することができる。
本実施の形態の導波管-平面導波路変換器8でも、実施の形態1と同様に、不要放射を抑圧しつつ、低い製造コストと高い動作信頼性とを実現することができる。本実施の形態では、更に、スロット22sGの両端部の幅が中央部のそれに比べて大きいので、実施の形態1と同様の技術的効果を維持しつつ、スロット22sGの長手方向(Y軸方向)の長さL1を小さく(短く)することができる。これにより、導体パターン23GのY軸方向における長さL2を小さく(短く)することができる。したがって、導波管-平面導波路変換器8の小型化を実現することができる。
なお、このようなスロット22sGは、下記の実施の形態9にも適用可能である。
なお、このようなスロット22sGは、下記の実施の形態9にも適用可能である。
実施の形態9.
上記実施の形態1~8では、平面導波路構造20,20A~20Gの各平面導波路構造の入出力端の個数は2個であるが、これに限定されるものではない。4個以上の入出力端を有するように上記各実施の形態の平面導波路構造が変形されてもよい。
上記実施の形態1~8では、平面導波路構造20,20A~20Gの各平面導波路構造の入出力端の個数は2個であるが、これに限定されるものではない。4個以上の入出力端を有するように上記各実施の形態の平面導波路構造が変形されてもよい。
図16は、上記実施の形態1の変形例である実施の形態9の導波管-平面導波路変換器9の平面構造を概略的に示す図である。図17は、図16に示した導波管-平面導波路変換器9のXVII-XVII線における概略断面図である。この導波管-平面導波路変換器9の構成は、図1の導体パターン23に代えて図16の導体パターン23Hを有する点を除いて、上記実施の形態1の導波管-平面導波路変換器1の構成と同じである。また、導体パターン23Hの形成工程は、上記導体パターン23の形成工程と同じである。
本実施の形態の導波管-平面導波路変換器9は、図16に示されるような4個の入出力端20Ha,20Hb,20Hc,20Hdを有する平面導波路構造20Hを備えており、この平面導波路構造20Hは、誘電体基板21のおもて面上に導体パターン23Hを有する。この導体パターン23Hは、上記実施の形態1と同様に結合導体24を有する。この導体パターン23Hは、更に、X軸方向に延在する線状導体であるストリップ導体37a,37b,37c,37dを含んで構成されている。これらストリップ導体37a,37b,37c,37dは、いずれも、結合導体24に接続されている。図16に示されるように結合導体24のX軸方向両端付近にインピーダンス調整部26aH,26bHが形成されている。
導波管40に高周波信号が入力されると、この入力された高周波信号はスロット22sを励振する。スロット22sの長手方向(Y軸方向)は、ストリップ導体37a,37b,37c,37dの長手方向(延在方向)と交差するので、励振されたスロット22sとストリップ導体37a,37b,37c,37dとが互いに磁界結合する。そして、高周波信号は、平行平板線路を介してマイクロストリップ線路の入出力端20Ha,20Hb,20Hc,20Hdに伝搬し出力される。逆に、平面導波路構造20Hの入出力端20Ha,20Hb,20Hc,20Hdにそれぞれ高周波信号が入力されると、これら高周波信号は合成された後に、導波管40の入出力端40aから出力される。
以上に説明したように実施の形態9の平面導波路構造20Hは、4個の入出力端20Ha,20Hb,20Hc,20Hdを有するので、多分配器の機能を併せ持つ導波管-平面導波路変換器9を実現することができる。
以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これら実施の形態は本発明の例示であり、これら実施の形態以外の様々な形態を採用することもできる。なお、本発明の範囲内において、上記実施の形態1~9の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。
本発明に係る導波管-平面導波路変換器は、ミリ波またはマイクロ波などの高周波信号を伝送する高周波伝送路で使用されることから、たとえば、ミリ波帯またはマイクロ波帯などの高周波帯域で動作する、アンテナ装置、レーダ装置及び通信装置での利用に適している。
1~9 導波管-平面導波路変換器、20,20A~20H 平面導波路構造、20a,20b 入出力端、21 誘電体基板、22,22C 接地導体、22s スロット、23,23A~23D,23G,23H 導体パターン、23a,23b,23aA,23bA,23ab,23bB,23ac,23bc ストリップ導体、24,25,32,33,34,35 結合導体、24a,24b,25a,25b,30a,30b,31a,31b,32a,32b,33a,33b,34a,34b,35a,35b 凸状部、40 導波管、40a 入出力端、SP ショート面。
Claims (11)
- 高周波信号を伝送する導波管-平面導波路変換器であって、
自己の厚み方向に互いに対向する第1の主面及び第2の主面を有する誘電体基板と、
前記第1の主面上で予め定められた第1の面内方向に沿って延在して形成されている単数または複数のストリップ導体と、
前記第2の主面上で前記単数または複数のストリップ導体と前記厚み方向に対向するように形成されている接地導体と、
前記接地導体に形成され、前記第2の主面上で前記第1の面内方向と交差する第2の面内方向に延在する単数または複数のスロットと、
前記第1の主面上で前記単数または複数のストリップ導体と電気的に結合する位置に形成され、且つ前記単数または複数のスロットと前記厚み方向に対向する位置に配置されている結合導体と
を備え、
前記結合導体は、前記単数または複数のストリップ導体と電気的に結合する本体部と、前記本体部から前記第2の面内方向に突出する凸状部とを有し、当該凸状部は、前記単数または複数のスロットの前記第2の面内方向における端部と前記厚み方向に対向するように形成されていることを特徴とする導波管-平面導波路変換器。 - 請求項1記載の導波管-平面導波路変換器であって、
前記厚み方向から視たときの前記凸状部の先端は、前記単数または複数のスロットの当該端部よりも前記第2の面内方向外側に配置されており、
前記凸状部の先端の前記第1の面内方向における幅は、前記第1の面内方向における前記単数または複数のスロットの全体幅よりも狭い、
ことを特徴とする導波管-平面導波路変換器。 - 請求項1記載の導波管-平面導波路変換器であって、前記凸状部は、前記第1の面内方向における当該凸状部の幅が前記本体部から前記凸状部の先端に向かうに従って漸次小さくなるように変化するテーパ形状を有することを特徴とする導波管-平面導波路変換器。
- 請求項1記載の導波管-平面導波路変換器であって、前記凸状部は、前記第1の面内方向における当該凸状部の幅が前記本体部から前記凸状部の先端に向かうに従って段階的に小さくなるように変化する階段形状を有することを特徴とする導波管-平面導波路変換器。
- 請求項1記載の導波管-平面導波路変換器であって、前記単数または複数のスロットの当該端部のエッジと前記凸状部の先端との間の前記第2の面内方向における距離は、前記高周波信号の予め定められた使用周波数帯域の中心周波数に対応する波長の8分の1以下であることを特徴とする導波管-平面導波路変換器。
- 請求項1記載の導波管-平面導波路変換器であって、前記接地導体における前記単数または複数のスロットを含む領域に接続された一端部を有する導波管を更に備えることを特徴とする導波管-平面導波路変換器。
- 請求項5記載の導波管-平面導波路変換器であって、前記導波管の管軸方向と前記第2の主面とが互いに直交することを特徴とする導波管-平面導波路変換器。
- 請求項1記載の導波管-平面導波路変換器であって、前記本体部は、前記単数または複数のストリップ導体と物理的に接続されていることを特徴とする導波管-平面導波路変換器。
- 請求項1記載の導波管-平面導波路変換器であって、前記本体部は、前記単数または複数のストリップ導体と物理的に分離されて配置されていることを特徴とする導波管-平面導波路変換器。
- 請求項9記載の導波管-平面導波路変換器であって、
前記複数のストリップ導体は、互いに分離して配置された第1のストリップ導体及び第2のストリップ導体を含み、
前記結合導体は、前記第1のストリップ導体の前記結合導体側の一端部を取り囲む第1の凹部と、前記第2のストリップ導体の前記結合導体側の一端部を取り囲む第2の凹部とを有することを特徴とする導波管-平面導波路変換器。 - 請求項1記載の導波管-平面導波路変換器であって、前記各スロットの両端部の幅は、当該各スロットの中央部の幅よりも大きいことを特徴とする導波管-平面導波路変換器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680087081.0A CN109328417B (zh) | 2016-07-05 | 2016-07-05 | 波导管-平面波导转换器 |
PCT/JP2016/069894 WO2018008087A1 (ja) | 2016-07-05 | 2016-07-05 | 導波管-平面導波路変換器 |
DE112016006961.8T DE112016006961B4 (de) | 2016-07-05 | 2016-07-05 | Hohlwellenleiter-zu-planarwellenleiter-übergangsschaltung |
US16/306,422 US11069949B2 (en) | 2016-07-05 | 2016-07-05 | Hollow-waveguide-to-planar-waveguide transition circuit comprising a coupling conductor disposed over slots in a ground conductor |
JP2018525861A JP6448864B2 (ja) | 2016-07-05 | 2016-07-05 | 導波管−平面導波路変換器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/069894 WO2018008087A1 (ja) | 2016-07-05 | 2016-07-05 | 導波管-平面導波路変換器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018008087A1 true WO2018008087A1 (ja) | 2018-01-11 |
Family
ID=60912572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/069894 WO2018008087A1 (ja) | 2016-07-05 | 2016-07-05 | 導波管-平面導波路変換器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11069949B2 (ja) |
JP (1) | JP6448864B2 (ja) |
CN (1) | CN109328417B (ja) |
DE (1) | DE112016006961B4 (ja) |
WO (1) | WO2018008087A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11515646B2 (en) * | 2019-10-24 | 2022-11-29 | Massachusetts Institute Of Technology | Integrated circuit-to-waveguide slot array coupler |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010056920A (ja) * | 2008-08-28 | 2010-03-11 | Mitsubishi Electric Corp | 導波管マイクロストリップ線路変換器 |
WO2010098191A1 (ja) * | 2009-02-27 | 2010-09-02 | 三菱電機株式会社 | 導波管マイクロストリップ線路変換器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4441073C1 (de) | 1994-11-18 | 1996-01-18 | Ant Nachrichtentech | Übergang von einer Microstrip-Leitung auf einen Hohlleiter |
EP1346431A1 (en) | 2000-12-21 | 2003-09-24 | Paratek Microwave, Inc. | Waveguide to microstrip transition |
JP2002198742A (ja) | 2000-12-25 | 2002-07-12 | New Japan Radio Co Ltd | 逓倍器 |
JP5705035B2 (ja) * | 2011-06-07 | 2015-04-22 | 三菱電機株式会社 | 導波管マイクロストリップ線路変換器 |
JP5680497B2 (ja) | 2011-07-29 | 2015-03-04 | 日本ピラー工業株式会社 | 進行波励振アンテナ及び平面アンテナ |
JP5991225B2 (ja) | 2013-02-15 | 2016-09-14 | 日立金属株式会社 | 移相回路およびアンテナ装置 |
DE112016006883B4 (de) * | 2016-07-05 | 2024-05-29 | Mitsubishi Electric Corporation | Hohlwellenleiter-Schichtwellenleiter-Übergangsschaltung |
-
2016
- 2016-07-05 JP JP2018525861A patent/JP6448864B2/ja active Active
- 2016-07-05 DE DE112016006961.8T patent/DE112016006961B4/de active Active
- 2016-07-05 CN CN201680087081.0A patent/CN109328417B/zh active Active
- 2016-07-05 WO PCT/JP2016/069894 patent/WO2018008087A1/ja active Application Filing
- 2016-07-05 US US16/306,422 patent/US11069949B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010056920A (ja) * | 2008-08-28 | 2010-03-11 | Mitsubishi Electric Corp | 導波管マイクロストリップ線路変換器 |
WO2010098191A1 (ja) * | 2009-02-27 | 2010-09-02 | 三菱電機株式会社 | 導波管マイクロストリップ線路変換器 |
Also Published As
Publication number | Publication date |
---|---|
DE112016006961B4 (de) | 2024-05-29 |
US20200235454A1 (en) | 2020-07-23 |
JP6448864B2 (ja) | 2019-01-09 |
JPWO2018008087A1 (ja) | 2018-10-18 |
CN109328417B (zh) | 2021-01-05 |
DE112016006961T5 (de) | 2019-03-07 |
US11069949B2 (en) | 2021-07-20 |
CN109328417A (zh) | 2019-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4568235B2 (ja) | 伝送路変換器 | |
JP5172481B2 (ja) | ポスト壁導波路によるショートスロット方向性結合器とこれを用いたバトラーマトリクス及び車載レーダアンテナ | |
US7148765B2 (en) | Waveguide/microstrip line converter with multi-layer waveguide shorting portion | |
JP5566169B2 (ja) | アンテナ装置 | |
US20090224857A1 (en) | High frequency device equipped with rectangular waveguide | |
JP6415790B2 (ja) | 導波管−平面導波路変換器 | |
US4970522A (en) | Waveguide apparatus | |
JP6448864B2 (ja) | 導波管−平面導波路変換器 | |
JP2000244212A (ja) | 導波管・伝送線路変換器 | |
JP3204241B2 (ja) | 導波管接続パッケージ | |
WO2019244567A1 (ja) | 高周波線路接続構造 | |
CN113924691A (zh) | 模式转换器、rf模块以及便携式终端 | |
JP7420217B2 (ja) | アンテナモジュール | |
US20230016951A1 (en) | Waveguide arrangement | |
WO2017033436A1 (ja) | ミリ波半導体装置 | |
WO2024009339A1 (ja) | マイクロストリップ線路-導波管変換器 | |
JP2006081160A (ja) | 伝送路変換器 | |
JP2005130406A (ja) | 導波管部材および導波管ならびに高周波モジュール | |
WO2020004522A1 (ja) | 高周波受動部品 | |
JP2024096576A (ja) | 高周波回路 | |
EP0357233A2 (en) | Waveguide apparatus | |
JP2023136491A (ja) | 平面線路・導波管変換器 | |
JP2005286435A (ja) | 高周波線路−導波管変換器 | |
JP2004166077A (ja) | 伝送線路および送受信装置 | |
JP2003163502A (ja) | 伝送線路および送受信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018525861 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16908131 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16908131 Country of ref document: EP Kind code of ref document: A1 |