[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018000969A1 - 有机发光二极管及其制造方法和显示装置 - Google Patents

有机发光二极管及其制造方法和显示装置 Download PDF

Info

Publication number
WO2018000969A1
WO2018000969A1 PCT/CN2017/084155 CN2017084155W WO2018000969A1 WO 2018000969 A1 WO2018000969 A1 WO 2018000969A1 CN 2017084155 W CN2017084155 W CN 2017084155W WO 2018000969 A1 WO2018000969 A1 WO 2018000969A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
emitting diode
carrier transport
organic light
Prior art date
Application number
PCT/CN2017/084155
Other languages
English (en)
French (fr)
Inventor
吴长晏
尤娟娟
宋莹莹
闫光
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/569,100 priority Critical patent/US10714702B2/en
Publication of WO2018000969A1 publication Critical patent/WO2018000969A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an organic light emitting diode, a method of fabricating the same, and a display device including the same.
  • the organic light emitting diode includes an anode layer, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode layer which are sequentially stacked.
  • the cathode layer, the electron injecting layer, the electron transporting layer, and the light emitting layer can be formed by a vacuum evaporation method while forming a hole transporting layer and a hole injecting layer by a solution method.
  • a tie layer is also formed by an evaporation process between the two layers.
  • the presence of the connection layer causes the carriers in the light-emitting process to be difficult to balance.
  • connection layer is too thin, since the carrier is quenched to lower the luminous efficiency, in the case where the connection layer is too thick, the phenomenon of "expected external light emission” is likely to occur, that is, the light emitting diode emits an unnecessary color. Light (as shown in Figure 5).
  • An object of the present invention is to provide an organic light emitting diode capable of solving the above technical problems, a method of manufacturing the organic light emitting diode, and a display device including the organic light emitting diode.
  • an organic light emitting diode includes a first portion and a second portion which are manufactured by different processes and are sequentially stacked, wherein
  • the first portion may include a first carrier transport layer and a first light emitting layer which are sequentially stacked, and a connection layer between the first light emitting layer and the second portion,
  • the second portion may include a second carrier transport layer
  • the first light emitting layer may include an N type base material and a P type base material, and
  • connection layer includes a material corresponding to carriers in the first carrier transport layer.
  • the second portion may further include a second luminescent layer and a third luminescent layer disposed between the connection layer and the second carrier transport layer.
  • the second luminescent layer and the third luminescent layer may be arranged side by side.
  • connection layer may have a thickness between 1 nm and 5 nm.
  • connection layer may have a thickness between 2 nm and 3 nm.
  • the first luminescent layer may be a blue luminescent layer.
  • carriers in the first carrier transport layer may be electrons, and the connection layer may include the same material as the P-type base material.
  • carriers in the first carrier transport layer may be holes, and the connection layer may include the same material as the N-type base material.
  • the triplet level of the connection layer may be greater than 2.1 eV.
  • the first portion may be formed by a vacuum evaporation method
  • the second portion may be formed by a solution method
  • the organic light emitting diode may further include a first electrode, the first electrode, the first portion, the second portion, and the second electrode are sequentially stacked.
  • a method of manufacturing an organic light emitting diode includes:
  • the method includes sequentially connecting a connection layer, a first light-emitting layer, and a first carrier transport layer formed on the second portion, wherein
  • the first light emitting layer may include an N type base material and a P type base material, and
  • connection layer includes a material corresponding to carriers in the first carrier transport layer.
  • the step of forming the second portion on the substrate using the second process may include:
  • a second luminescent layer and a third luminescent layer are formed on the second carrier transport layer by a second process.
  • the second luminescent layer and the third luminescent layer may be arranged side by side.
  • the thickness of the connection layer may be between 1 nm and 5 nm.
  • connection layer may have a thickness between 2 nm and 3 nm.
  • the first luminescent layer may be a blue luminescent layer.
  • carriers in the first carrier transport layer may be electrons, and the connection layer may include the same material as the P-type base material.
  • carriers in the first carrier transport layer may be holes, and the connection layer may include the same material as the N-type base material.
  • the triplet level of the connection layer may be greater than 2.1 eV.
  • the first process may include a vacuum evaporation method
  • the second process may include a solution method
  • the step of providing a substrate may include:
  • the second portion may be formed on the second electrode
  • the manufacturing method may further include:
  • a first electrode is formed on the first carrier transport layer.
  • a display device includes an organic light emitting diode according to an embodiment of the present invention.
  • connection layer since the connection layer is provided, the interface between two adjacent layers obtained by different processes is located between the connection layer and the second carrier transport layer, thereby preventing the first A defect occurs on a light-emitting layer to improve the light-emitting efficiency of the first light-emitting layer.
  • the thickness of the connection layer can be set small.
  • the smaller the thickness of the connection layer the smaller the influence on the color of the light emitted from the first light-emitting layer, and therefore, by setting the thickness of the connection layer to be small, the influence on the color of the light emitted from the first light-emitting layer can be reduced. To prevent the phenomenon of "expected external luminescence".
  • the carrier bonding region is close to the first electrode, carriers in the organic light emitting diode are not easily quenched, so that the organic light emitting diode can be stably illuminated and kept good. Luminous efficiency.
  • the light-emitting diode according to the embodiment of the present invention can stably emit light, maintain good luminous efficiency, and can obtain light of a desired color, preventing the phenomenon of "expected external light emission".
  • FIG. 1 is a schematic diagram of an exemplary structure of an organic light emitting diode according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another exemplary structure of an organic light emitting diode according to an embodiment of the present invention.
  • 3(a) to 3(d) are diagrams showing the manufacture of organic hair according to an embodiment of the present invention. a diagram of a method of photodiodes;
  • FIG. 4 is a schematic view showing the structure of an organic light emitting diode not provided with a connection layer
  • Fig. 5 shows the normalized intensity of light emitted by the three light emitting diodes shown in Table 1.
  • an organic light emitting diode may include a first portion and a second portion which are manufactured by different processes and sequentially stacked.
  • the first portion may include a first carrier transport layer 700 and a first light emitting layer 100 stacked in sequence, and a connection layer 400 between the first light emitting layer 100 and the second portion; the second portion may include second carriers Transport layer 200.
  • the first light emitting layer 100 may include an N type base material and a P type base material.
  • the connection layer includes a material corresponding to carriers in the first carrier transport layer. For example, when the carriers in the first carrier transport layer 700 are electrons, the connection layer 400 may include the same material as the P-type base material of the first light-emitting layer 100; when in the first carrier transport layer 700 When the carriers are holes, the connection layer 400 may include the same material as the N-type base material of the first light-emitting layer 100.
  • the carriers of one of the first carrier transport layer 700 and the second carrier transport layer 200 may be electrons, and the carriers of the other may be holes.
  • the first part and the second part can be manufactured by different processes. Due to the different properties of materials manufactured by different processes, interface defects may exist at the interface between two adjacent layers fabricated in different processes. According to an embodiment of the present invention, since the connection layer 400 is provided, an interface between two adjacent layers obtained by different processes is located between the connection layer 400 and the second carrier transport layer 200, thereby preventing the first light emission A defect occurs on the layer 100 to improve the luminous efficiency of the first light-emitting layer 100.
  • Table 1 shows performance parameters of a light emitting diode provided with a connection layer and a light emitting diode not provided with a connection layer.
  • a junction of a light emitting diode provided with a connection layer As shown in FIG. 2, the structure of the light emitting diode not provided with the connection layer is as shown in FIG. It can be seen from Table 1 that the light-emitting diode provided with the connection layer has a lower operating voltage and a higher luminous flux per unit area and external quantum efficiency than the light-emitting diode without the connection layer.
  • V is the voltage applied across the organic light emitting diode
  • Cd/A represents the luminous flux per unit area
  • E.Q.E represents external quantum efficiency
  • CIEx represents color coordinates
  • CIEy represents the color coordinates.
  • connection layer In the case where the thickness of the connection layer is large, the phenomenon of "expected external light emission” is likely to occur, that is, the light emitting diode emits light of an unnecessary color. For example, as shown in FIG. 5, a green light emitting diode having a 5 nm thick connection layer emits blue light.
  • the above problem is solved by determining the material of the connection layer 400 according to the type of carriers in the first carrier transport layer 700.
  • the connection layer includes a material corresponding to carriers in the first carrier transport layer, for example, when the carriers in the first carrier transport layer 700 are electrons, the connection layer 400 may The same material as the P-type base material of the first light-emitting layer 100 is included; when the carriers in the first carrier transport layer 700 are holes, the connection layer 400 may include an N-type substrate with the first light-emitting layer 100 The same material as the material.
  • connection layer 400 when the connection layer 400 includes the same material as the P-type base material of the first light-emitting layer 100, there may be more holes in the first light-emitting layer 100; when the connection layer 400 includes N with the first light-emitting layer 100 When the type of the base material is the same, the first light-emitting layer 100 may have more electrons.
  • the first electrode 300 is a cathode
  • the connection layer 400 includes the same material as the P-type base material, so that the first light-emitting layer 100 can be made More holes, and the carrier bonding region in the first light emitting layer 100 is moved toward the first electrode 300. Since the carrier bonding region moves toward the first electrode 300, the thickness of the connection layer 400 can be set small. The smaller the thickness of the connection layer 400, the smaller the influence on the color of the light emitted from the first light-emitting layer 100, and therefore, by setting the thickness of the connection layer 400 small, the light emitted to the first light-emitting layer 100 can be reduced. The effect of the color, thus preventing the phenomenon of "expected external luminescence".
  • the first electrode 300 is an anode
  • the connection layer 400 includes the same material as the N-type base material, so that the first light can be made There are more electrons in the layer 100, and the carrier bonding region in the first light emitting layer 100 is moved toward the first electrode 300. Since the carrier bonding region moves toward the first electrode 300, the thickness of the connection layer 400 can be set small. The smaller the thickness of the connection layer 400, the smaller the influence on the color of the light emitted from the first light-emitting layer 100, and therefore, by setting the thickness of the connection layer 400 small, the light emitted to the first light-emitting layer 100 can be reduced. The effect of the color, thus preventing the phenomenon of "expected external luminescence".
  • the carrier bonding region is close to the first electrode 300, carriers in the organic light emitting diode are not easily quenched, so that the organic light emitting diode can be stably illuminated and maintained. Good luminous efficiency.
  • the light-emitting diode according to the embodiment of the present invention can stably emit light, maintain good luminous efficiency, and can obtain light of a desired color, preventing the phenomenon of "expected external light emission".
  • the organic light emitting diode may further include a first electrode 300 and a second electrode, the first electrode 300 and the second electrode being respectively located on both sides of the integral structure formed by the first portion and the second portion.
  • the first electrode 300, the first portion, the second portion, and the second electrode are sequentially stacked.
  • the organic light emitting diode may further include a first substrate formed on the first substrate and a second substrate formed on the second substrate.
  • the second portion may further include a second light emitting layer 510 and a third light emitting layer 520 disposed between the connection layer 400 and the second carrier transport layer 200.
  • the second light emitting layer 510 and the third light emitting layer 520 may respectively emit light of a color different from that of the light emitted by the first light emitting layer 100.
  • the second electrode may include a second electrode 610, a second electrode 620, and a second electrode 630 corresponding to the first light emitting layer 100, the second light emitting layer 510, and the third light emitting layer 520, respectively.
  • the second luminescent layer 510 and the third luminescent layer 520 may be arranged side by side such that different regions in the OLED may emit different colors of light to be applicable to various display devices. .
  • the first electrode 300 may be a cathode
  • the second electrodes 610 to 630 may be an anode, but the invention is not limited thereto.
  • the triplet level of the connection layer 400 can be greater than 2.1 eV.
  • Such a connection layer 400 can improve the luminous efficiency of the organic light emitting diode.
  • the thickness of the connection layer 400 is small, for example, between 1 nm and 5 nm, preferably between 2 nm and 3 nm.
  • the first portion (including the first carrier transport layer 700, the first light-emitting layer 100, and the connection layer 400) may be formed by a vacuum evaporation method, and the second portion (including the second portion) is formed by a solution method
  • the second carrier transport layer 200, the second light emitting layer 510, and the third light emitting layer 520 but the invention is not limited thereto.
  • the first light emitting layer 100 may be a blue light emitting layer
  • the second light emitting layer 510 may be a red light emitting layer
  • the third light emitting layer 520 may be a green light emitting layer, but the invention is not limited thereto.
  • a method of fabricating an organic light emitting diode includes:
  • first portion Forming a first portion on the second portion by using a first process, the first portion comprising a connection layer 400 (shown in FIG. 3(b)), which is sequentially stacked on the second portion, and a first light-emitting layer 100 (eg, Figure 3 (c) and the first carrier transport layer 700 (as shown 3(d)), wherein the first light-emitting layer 100 includes an N-type base material and a P-type base material, and the connection layer includes a material corresponding to carriers in the first carrier transport layer.
  • a connection layer 400 shown in FIG. 3(b)
  • first light-emitting layer 100 eg, Figure 3 (c) and the first carrier transport layer 700 (as shown 3(d)
  • the connection layer includes a material corresponding to carriers in the first carrier transport layer.
  • connection layer 400 when the carriers in the first carrier transport layer 700 are holes, the connection layer 400 includes the same material as the P-type base material, when carriers in the first carrier transport layer 700 When it is an electron, the connection layer 400 includes the same material as the N-type base material. It is easily understood that the carriers of one of the first carrier transport layer 700 and the second carrier transport layer 200 are electrons, and the carriers of the other are holes.
  • the substrate A may include a second substrate 800 and a second electrode disposed on the second substrate 800.
  • the step of providing the substrate A may include:
  • a second electrode is formed on the second substrate 800.
  • the step of forming the second portion on the substrate A by the second process may include:
  • the second light-emitting layer 510 and the third light-emitting layer 520 are formed on the second carrier transport layer 200 by the second process, as shown in FIG. 3(a).
  • a second light-emitting layer 510 for emitting red light and a third light-emitting layer 520 for emitting green light may be separately formed.
  • the first luminescent layer 100 may be a blue luminescent layer for emitting blue light.
  • the second electrode may include a second electrode 610 , a second electrode 620 , and a second electrode 630 .
  • the first luminescent layer 400 corresponds to the second electrode 610
  • the second luminescent layer 510 corresponds to the second electrode 620 .
  • the third light emitting layer 520 corresponds to the second electrode 630.
  • the second electrode may be formed by an evaporation process.
  • the second light emitting layer 510 and the third light emitting layer 520 may be disposed side by side.
  • the first process may include a vacuum evaporation method
  • the second process may include a solution method, but the invention is not limited thereto.
  • the triplet level of the connection layer 400 can be greater than 2.1 eV.
  • the thickness of the connection layer 400 may be between 1 nm and 5 nm. Further preferably, the connection layer 400 may have a thickness of between 2 nm and 3 nm.
  • the manufacturing method may further include forming a first electrode on the first carrier transport layer.
  • the manufacturing method may further include: packaging using the first substrate.
  • the light-emitting diode manufactured by the method for manufacturing a light-emitting diode according to the embodiment of the present invention can stably emit light, maintain good light-emitting efficiency, and can obtain light of a desired color, preventing the phenomenon of "expected external light emission".
  • a display device including an organic light emitting diode according to an embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管及其制造方法和显示装置,有机发光二极管包括通过不同的工艺制造且依次层叠的第一部分和第二部分,第一部分包括依次层叠的第一载流子传输层(700)和第一发光层(100)、以及位于第一发光层(100)和第二部分之间的连接层(400),第二部分包括第二载流子传输层(200),第一发光层(100)包括N型基体材料和P型基体材料,并且连接层(400)包括与第一载流子传输层中的载流子相对应的材料。有机发光二极管既能够稳定发光,保持良好的发光效率,又可以获得理想颜色的光线,防止"预期外发光"的现象。

Description

有机发光二极管及其制造方法和显示装置 技术领域
本发明涉及显示技术领域,具体地,涉及一种有机发光二极管、该有机发光二极管的制造方法和包括所述有机发光二极管的显示装置。
背景技术
有机发光二极管包括依次层叠设置的阳极层、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阴极层。
在现有技术中,通常采用不同的工艺来制备包括多层的有机发光二极管。例如,可以利用真空蒸镀法形成阴极层、电子注入层、电子传输层和发光层,同时利用溶液法形成空穴传输层和空穴注入层。为了提高通过不同工艺形成的两个层(例如,发光层和空穴传输层)之间的界面性能,还会在所述两层之间通过蒸镀工艺形成连接层。但是,在这种发光二极管中,连接层的存在会导致发光过程中的载子难以平衡。因此,在连接层太薄的情况下,由于载子被焠熄而降低发光效率,在连接层太厚的情况下,容易出现“预期外发光”的现象,即,发光二极管发出不需要的颜色的光(如图5所示)。
发明内容
在保持良好的发光效率的同时消除上述“预期外发光”的现象,成为本领域亟待解决的技术问题。
本发明的目的在于提供一种能够解决上述技术问题的有机发光二极管、该有机发光二极管的制造方法和一种包括所述有机发光二极管的显示装置。
作为本发明的一个方面,一种有机发光二极管包括通过不同的工艺制造且依次层叠的第一部分和第二部分,其中,
所述第一部分可以包括依次层叠的第一载流子传输层和第一发光层、以及位于第一发光层和第二部分之间的连接层,
所述第二部分可以包括第二载流子传输层,
所述第一发光层可以包括N型基体材料和P型基体材料,并且
所述连接层包括与第一载流子传输层中的载流子相对应的材料。
根据本发明的实施例,所述第二部分还可以包括设置在连接层和第二载流子传输层之间的第二发光层和第三发光层。
根据本发明的实施例,所述第二发光层与所述第三发光层可以并排设置。
根据本发明的实施例,所述连接层的厚度可以在1nm至5nm之间。
根据本发明的实施例,所述连接层的厚度可以在2nm至3nm之间。
根据本发明的实施例,所述第一发光层可以为蓝色发光层。
根据本发明的实施例,所述第一载流子传输层中的载流子可以为电子,并且所述连接层可以包括与所述P型基体材料相同的材料。
根据本发明的实施例,所述第一载流子传输层中的载流子可以为空穴,并且所述连接层可以包括与所述N型基体材料相同的材料。
根据本发明的实施例,所述连接层的三线态能级可以大于2.1eV。
根据本发明的实施例,所述第一部分可以由真空蒸镀法形成,所述第二部分可以由溶液法制成。
根据本发明的实施例,所述有机发光二极管还可以包括第一电极和第二电极,所述第一电极、所述第一部分、所述第二部分、所述第二电极依次层叠设置。
作为本发明的另一方面,一种有机发光二极管的制造方法包括:
提供衬底;
利用第二工艺在所述衬底上形成第二部分,所述第二部分包括第二载流子传输层;以及
利用第一工艺在所述第二部分上形成第一部分,所述第一部分 包括依次层叠形成在所述第二部分上的连接层、第一发光层和第一载流子传输层,其中,
所述第一发光层可以包括N型基体材料和P型基体材料,并且
所述连接层包括与第一载流子传输层中的载流子相对应的材料。
根据本发明的实施例,利用第二工艺在所述衬底上形成第二部分的步骤可以包括:
利用第二工艺在所述衬底上形成所述第二载流子传输层;
利用第二工艺在所述第二载流子传输层上形成第二发光层和第三发光层。
根据本发明的实施例,所述第二发光层和所述第三发光层可以并排设置。
根据本发明的实施例,所述连接层的厚度的可以在1nm至5nm之间。
根据本发明的实施例,所述连接层的厚度可以在2nm至3nm之间。
根据本发明的实施例,所述第一发光层可以为蓝色发光层。
根据本发明的实施例,所述第一载流子传输层中的载流子可以为电子,并且所述连接层可以包括与所述P型基体材料相同的材料。
根据本发明的实施例,所述第一载流子传输层中的载流子可以为空穴,并且所述连接层可以包括与所述N型基体材料相同的材料。
根据本发明的实施例,所述连接层的三线态能级可以大于2.1eV。
根据本发明的实施例,所述第一工艺可以包括真空蒸镀法,所述第二工艺可以包括溶液法。
根据本发明的实施例,提供衬底的步骤可以包括:
提供第二基板;以及
在第二基板上形成第二电极,
其中,所述第二部分可以形成在所述第二电极上,并且
所述制造方法还可以包括:
在所述第一载流子传输层上形成第一电极。
作为本发明的另一方面,一种显示装置包括根据本发明的实施例的有机发光二极管。
在根据本发明的实施例的发光二极管中,由于设置了连接层,通过不同工艺获得的两个相邻层之间的界面位于连接层与第二载流子传输层之间,从而可以防止第一发光层上出现缺陷,提高第一发光层的发光效率。
在根据本发明的实施例的发光二极管中,可以将连接层的厚度设置的较小。连接层的厚度越小,对第一发光层发出的光线的颜色的影响越小,因此,通过将连接层的厚度设置的较小,可以减小对第一发光层发出的光线的颜色的影响,从而防止“预期外发光”的现象。
在根据本发明的实施例的发光二极管中,由于载流子结合区靠近第一电极,因此,有机发光二极管中的载流子不容易被淬熄,从而可以使得有机发光二极管稳定发光,保持良好的发光效率。
由此可知,根据本发明的实施例的发光二极管既能够稳定发光,保持良好的发光效率,又可以获得理想颜色的光线,防止“预期外发光”的现象。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是根据本发明的实施例的有机发光二极管的一种示例性结构的示意图;
图2是根据本发明的实施例的有机发光二极管的另一种示例性结构的示意图;
图3(a)至图3(d)是示出根据本发明的实施例的制造有机发 光二极管的方法的示图;
图4是未设置有连接层的有机发光二极管的结构的示意图;
图5示出了表1中示出的三个发光二极管发出的光的归一化强度。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
如图1所示,根据本发明的实施例的有机发光二极管(OLED)可以包括通过不同的工艺制造且依次层叠的第一部分和第二部分。
第一部分可以包括依次层叠的第一载流子传输层700和第一发光层100、以及位于第一发光层100和第二部分之间的连接层400;第二部分可以包括第二载流子传输层200。第一发光层100可以包括N型基体材料和P型基体材料。所述连接层包括与第一载流子传输层中的载流子相对应的材料。例如,当第一载流子传输层700中的载流子为电子时,连接层400可以包括与第一发光层100的P型基体材料相同的材料;当第一载流子传输层700中的载流子为空穴时,连接层400可以包括与第一发光层100的N型基体材料相同的材料。
本领域技术人员应当理解的是,第一载流子传输层700和第二载流子传输层200中的一者的载流子可以为电子,另一者的载流子可以为空穴。
如上所述,第一部分和第二部分可以是通过不同的工艺制造的。由于通过不同的工艺制造的材料的特性不同,因此,在以不同的工艺制造的两个相邻的层之间的界面上可能存在界面缺陷。根据本发明的实施例,由于设置了连接层400,通过不同工艺获得的两个相邻层之间的界面位于连接层400与第二载流子传输层200之间,从而可以防止第一发光层100上出现缺陷,提高第一发光层100的发光效率。
例如,下面的表1示出了设置有连接层的发光二极管和未设置有连接层的发光二极管的性能参数。设置有连接层的发光二极管的结 构如图2所示,未设置有连接层的发光二极管的结构如图4所示。根据表1可以看出,设置有连接层的发光二极管相比无连接层的发光二极管具有更低的操作电压以及更高的单位面积光通量和外部量子效率。
表1
Figure PCTCN2017084155-appb-000001
其中,V表示:施加在有机发光二极管两端的电压
Cd/A表示单位面积光通量;
E.Q.E表示外部量子效率;
CIEx表示色坐标;
CIEy表示色坐标。
然而,在连接层的厚度较大的情况下,容易出现“预期外发光”的现象,即,发光二极管发出不需要的颜色的光。例如,如图5所示,具有5nm厚度连接层的绿色发光二极管会发出蓝光。
在本发明的实施例中,通过根据第一载流子传输层700中的载流子的类型来确定连接层400的材料,来解决上述问题。具体地,所述连接层包括与第一载流子传输层中的载流子相对应的材料,例如,当第一载流子传输层700中的载流子为电子时,连接层400可以包括与第一发光层100的P型基体材料相同的材料;当第一载流子传输层700中的载流子为空穴时,连接层400可以包括与第一发光层100的N型基体材料相同的材料。因此,当连接层400包括与第一发光层100的P型基体材料相同的材料时,第一发光层100中可以具有更多的空穴;当连接层400包括与第一发光层100的N型基体材料相同的材料时,第一发光层100中可以具有更多的电子。
当第一载流子传输层700中的载流子为电子时,第一电极300为阴极,连接层400包括与所述P型基体材料相同的材料,从而可以使得第一发光层100中具有更多的空穴,并且使得第一发光层100中的载流子结合区朝向第一电极300移动。由于载流子结合区朝向第一电极300移动,因此,可以将连接层400的厚度设置的较小。连接层400的厚度越小,对第一发光层100发出的光线的颜色的影响越小,因此,通过将连接层400的厚度设置的较小,可以减小对第一发光层100发出的光线的颜色的影响,从而防止“预期外发光”的现象。
类似地,当第一载流子传输层700中的载流子为空穴时,第一电极300为阳极,连接层400包括与所述N型基体材料相同的材料,从而可以使得第一发光层100中具有更多的电子,并且使得第一发光层100中的载流子结合区朝向第一电极300移动。由于载流子结合区朝向第一电极300移动,因此,可以将连接层400的厚度设置的较小。连接层400的厚度越小,对第一发光层100发出的光线的颜色的影响越小,因此,通过将连接层400的厚度设置的较小,可以减小对第一发光层100发出的光线的颜色的影响,从而防止“预期外发光”的现象。
在根据本发明的实施例的发光二极管中,由于载流子结合区靠近第一电极300,因此,有机发光二极管中的载流子不容易被淬熄,从而可以使得有机发光二极管稳定发光,保持良好的发光效率。
由此可知,根据本发明的实施例的发光二极管既能够稳定发光,保持良好的发光效率,又可以获得理想颜色的光线,防止“预期外发光”的现象。
参照图1,所述有机发光二极管还可以包括第一电极300和第二电极,第一电极300和第二电极分别位于由第一部分和第二部分形成的整体结构的两侧。换言之,第一电极300、第一部分、第二部分、和第二电极依次层叠设置。
所述有机发光二极管还可以包括第一基板和第二基板,第一电极300形成在第一基板上,第二电极形成在第二基板上。
根据本发明实施例,如图2所示,第二部分还可以包括设置在连接层400和第二载流子传输层200之间的第二发光层510和第三发光层520。第二发光层510和第三发光层520可以分别发出颜色不同于第一发光层100所发出的光的颜色的光。相应地,第二电极可以包括分别与第一发光层100、第二发光层510和第三发光层520对应的第二电极610、第二电极620和第二电极630。
在图2所示的实施例中,第二发光层510和第三发光层520可以并排设置,从而使得有机发光二极管中的不同区域可以发出不同颜色的光,以可应用于各种显示装置中。
在本发明的实施例中,第一电极300可以为阴极,第二电极610至630可以为阳极,但本发明不限于此。
根据本发明的实施例,连接层400的三线态能级可以大于2.1eV。这样的连接层400可以提高所述有机发光二极管的发光效率。
如上所述,连接层400的厚度较小,例如在1nm至5nm之间,优选地,在2nm至3nm之间。
根据本发明的实施例,例如,可以利用真空蒸镀法形成第一部分(包括第一载流子传输层700、第一发光层100和连接层400),并且利用溶液法形成第二部分(包括第二载流子传输层200、第二发光层510和第三发光层520),但本发明不限于此。
根据本发明的实施例,第一发光层100可以为蓝色发光层,第二发光层510可以为红色发光层,第三发光层520可以为绿色发光层,但本发明不限于此。
作为本发明的另一个方面,提供一种有机发光二极管的制造方法,包括:
提供衬底A;
利用第二工艺在衬底A上形成第二部分,所述第二部分包括第二载流子传输层200,如图3(a)所示;
利用第一工艺在第二部分上形成第一部分,所述第一部分包括依次层叠设置在所述第二部分上的连接层400(如图3(b)所示)、第一发光层100(如图3(c)所示)和第一载流子传输层700(如图 3(d)所示),其中,第一发光层100包括N型基体材料和P型基体材料,并且所述连接层包括与第一载流子传输层中的载流子相对应的材料。例如,当第一载流子传输层700中的载流子为空穴时,连接层400包括与所述P型基体材料相同的材料,当第一载流子传输层700中的载流子为电子时,连接层400包括与所述N型基体材料相同的材料。容易理解的是,第一载流子传输层700和第二载流子传输层200中的一者的载流子为电子,另一者的载流子为空穴。
在本发明的实施例中,衬底A可以包括第二基板800以及设置在第二基板800上的第二电极。
例如,优选地,如图3(a)所示,提供所述衬底A的步骤可以包括:
提供第二基板800;以及
在第二基板800上形成第二电极。
为了便于根据需要控制发光二极管发出的光线的颜色,根据本发明的实施例,利用第二工艺在衬底A上形成第二部分的步骤可以包括:
利用第二工艺在衬底A上形成第二载流子传输层200;
利用第二工艺在第二载流子传输层200上形成第二发光层510和第三发光层520,如图3(a)所示。
在图3(c)所示,可以分别形成用于发出红光的第二发光层510和用于发出绿光的第三发光层520。
如上文中所述,第一发光层100可以为蓝色发光层,用于发出蓝光。
如图3(a)所示,第二电极可以包括第二电极610、第二电极620和第二电极630,第一发光层400对应第二电极610,第二发光层510对应第二电极620,第三发光层520对应第二电极630。
根据本发明的实施例,可以通过蒸镀工艺形成第二电极。
根据本发明的实施例,第二发光层510和第三发光层520可以并排设置。
根据本发明的实施例,第一工艺可以包括真空蒸镀法,第二工艺可以包括溶液法,但本发明不限于此。
根据本发明的实施例,连接层400的三线态能级可以大于2.1eV。
根据本发明的实施例,连接层400的厚度的可以在1nm至5nm之间。进一步优选地,连接层400的厚度可以在2nm至3nm之间。
根据本发明的实施例,所述制造方法还可以包括:在第一载流子传输层上形成第一电极。
根据本发明的实施例,所述制造方法还可以包括:利用第一基板进行封装。
如上所述,利用根据本发明的实施例的发光二极管的制造方法制造的发光二极管,既能够稳定发光,保持良好的发光效率,又可以获得理想颜色的光线,防止“预期外发光”的现象。
作为本发明的另一个方面,提供一种显示装置,所述显示装置包括根据本发明的实施例的有机发光二极管。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (23)

  1. 一种有机发光二极管,包括通过不同的工艺制造且依次层叠的第一部分和第二部分,其中,
    所述第一部分包括依次层叠的第一载流子传输层和第一发光层、以及位于第一发光层和第二部分之间的连接层,
    所述第二部分包括第二载流子传输层,
    所述第一发光层包括N型基体材料和P型基体材料,并且
    所述连接层包括与第一载流子传输层中的载流子相对应的材料。
  2. 根据权利要求1所述的有机发光二极管,其中,所述第二部分还包括设置在连接层和第二载流子传输层之间的第二发光层和第三发光层。
  3. 根据权利要求2所述的有机发光二极管,其中,所述第二发光层与所述第三发光层并排设置。
  4. 根据权利要求1所述的有机发光二极管,其中,所述连接层的厚度在1nm至5nm之间。
  5. 根据权利要求4所述的有机发光二极管,其中,所述连接层的厚度在2nm至3nm之间。
  6. 根据权利要求1所述的有机发光二极管,其中,所述第一发光层为蓝色发光层。
  7. 根据权利要求1所述的有机发光二极管,其中,所述第一载流子传输层中的载流子为电子,并且所述连接层包括与所述P型基体材料相同的材料。
  8. 根据权利要求1所述的有机发光二极管,其中,所述第一载流子传输层中的载流子为空穴,并且所述连接层包括与所述N型基体材料相同的材料。
  9. 根据权利要求1至8中任意一项所述的有机发光二极管,其中,所述连接层的三线态能级大于2.1eV。
  10. 根据权利要求1至8中任意一项所述的有机发光二极管,其中,所述第一部分由真空蒸镀法形成,所述第二部分由溶液法制成。
  11. 根据权利要求1至8中任意一项所述的有机发光二极管,还包括第一电极和第二电极,所述第一电极、所述第一部分、所述第二部分、所述第二电极依次层叠设置。
  12. 一种有机发光二极管的制造方法,包括:
    提供衬底;
    利用第二工艺在所述衬底上形成第二部分,所述第二部分包括第二载流子传输层;以及
    利用第一工艺在所述第二部分上形成第一部分,所述第一部分包括依次层叠形成在所述第二部分上的连接层、第一发光层和第一载流子传输层,其中,
    所述第一发光层包括N型基体材料和P型基体材料,并且
    所述连接层包括与第一载流子传输层中的载流子相对应的材料。
  13. 根据权利要求12所述的制造方法,其中,利用第二工艺在所述衬底上形成第二部分的步骤包括:
    利用第二工艺在所述衬底上形成所述第二载流子传输层;
    利用第二工艺在所述第二载流子传输层上形成第二发光层和第 三发光层。
  14. 根据权利要求13所述的制造方法,其中,所述第二发光层和所述第三发光层并排设置。
  15. 根据权利要求12所述的制造方法,其中,所述连接层的厚度在1nm至5nm之间。
  16. 根据权利要求12所述的制造方法,其中,所述连接层的厚度在2nm至3nm之间。
  17. 根据权利要求12所述的制造方法,其中,所述第一发光层为蓝色发光层。
  18. 根据权利要求12所述的制造方法,其中,所述第一载流子传输层中的载流子为电子,并且所述连接层包括与所述P型基体材料相同的材料。
  19. 根据权利要求12所述的制造方法,其中,所述第一载流子传输层中的载流子为空穴,并且所述连接层包括与所述N型基体材料相同的材料。
  20. 根据权利要求12至19中任意一项所述的制造方法,其中,所述连接层的三线态能级大于2.1eV。
  21. 根据权利要求12至19中任意一项所述的制造方法,其中,所述第一工艺包括真空蒸镀法,所述第二工艺包括溶液法。
  22. 根据权利要求12至19中任意一项所述的制造方法,其中,提供衬底的步骤包括:
    提供第二基板;以及
    在第二基板上形成第二电极,
    其中,所述第二部分形成在所述第二电极上,并且
    所述制造方法还包括:
    在所述第一载流子传输层上形成第一电极。
  23. 一种显示装置,包括根据权利要求1至8中任意一项所述的有机发光二极管。
PCT/CN2017/084155 2016-07-01 2017-05-12 有机发光二极管及其制造方法和显示装置 WO2018000969A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/569,100 US10714702B2 (en) 2016-07-01 2017-05-12 Organic light emitting diode having connecting layer including material corresponding to carriers in carrier transport layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610515760.5 2016-07-01
CN201610515760.5A CN105895821B (zh) 2016-07-01 2016-07-01 有机发光二极管及其制造方法和显示装置

Publications (1)

Publication Number Publication Date
WO2018000969A1 true WO2018000969A1 (zh) 2018-01-04

Family

ID=56718568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084155 WO2018000969A1 (zh) 2016-07-01 2017-05-12 有机发光二极管及其制造方法和显示装置

Country Status (3)

Country Link
US (1) US10714702B2 (zh)
CN (1) CN105895821B (zh)
WO (1) WO2018000969A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895821B (zh) * 2016-07-01 2017-12-29 京东方科技集团股份有限公司 有机发光二极管及其制造方法和显示装置
CN106409879B (zh) * 2016-11-30 2018-03-09 京东方科技集团股份有限公司 一种oled单元、器件及显示装置
CN113826231B (zh) * 2020-04-09 2024-03-15 京东方科技集团股份有限公司 显示基板与显示装置
CN111682125A (zh) * 2020-07-06 2020-09-18 武汉华星光电半导体显示技术有限公司 有机发光二极管显示器件、其制造方法以及显示面板
CN115477939A (zh) * 2022-09-28 2022-12-16 京东方科技集团股份有限公司 有机电致发光组合物、有机电致发光器件以及包含其的显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655164A (zh) * 2011-03-04 2012-09-05 索尼公司 有机电致发光显示装置及其制造方法
CN102694127A (zh) * 2011-03-23 2012-09-26 株式会社东芝 有机电场发光元件、显示装置和照明装置
CN103682116A (zh) * 2013-12-02 2014-03-26 京东方科技集团股份有限公司 一种oled器件及显示装置
CN105895821A (zh) * 2016-07-01 2016-08-24 京东方科技集团股份有限公司 有机发光二极管及其制造方法和显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118110A1 (en) * 2001-02-01 2006-01-27 Semiconductor Energy Lab Organic light emitting element and display device using the element
DE112012001504B4 (de) 2011-03-30 2017-09-21 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
CN103887435A (zh) 2012-12-21 2014-06-25 厦门天马微电子有限公司 一种有机发光二极管
KR102053443B1 (ko) * 2013-10-23 2019-12-06 엘지디스플레이 주식회사 유기전계발광소자
KR102104978B1 (ko) * 2013-12-02 2020-04-27 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN103730585B (zh) * 2013-12-26 2016-08-31 京东方科技集团股份有限公司 一种有机发光器件及其制作方法、显示装置
KR102126544B1 (ko) * 2013-12-30 2020-06-24 엘지디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 표시 장치
KR102129266B1 (ko) * 2014-04-30 2020-07-03 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105185917B (zh) * 2015-08-07 2017-12-08 京东方科技集团股份有限公司 一种有机电致发光显示器件及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655164A (zh) * 2011-03-04 2012-09-05 索尼公司 有机电致发光显示装置及其制造方法
CN102694127A (zh) * 2011-03-23 2012-09-26 株式会社东芝 有机电场发光元件、显示装置和照明装置
CN103682116A (zh) * 2013-12-02 2014-03-26 京东方科技集团股份有限公司 一种oled器件及显示装置
CN105895821A (zh) * 2016-07-01 2016-08-24 京东方科技集团股份有限公司 有机发光二极管及其制造方法和显示装置

Also Published As

Publication number Publication date
US10714702B2 (en) 2020-07-14
US20180226602A1 (en) 2018-08-09
CN105895821A (zh) 2016-08-24
CN105895821B (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2018000969A1 (zh) 有机发光二极管及其制造方法和显示装置
US9583726B2 (en) Light-emitting diode and electronic device
KR101135541B1 (ko) 유기 발광 장치
US20140014896A1 (en) Light emitting diode device using charge accumulation and method of manufacturing the same
CN105185917B (zh) 一种有机电致发光显示器件及显示装置
KR102156760B1 (ko) 양자 발광 표시 장치 및 이의 제조 방법
WO2017206216A1 (zh) Oled显示装置
JP2017513225A (ja) 半導体画素、このような画素のマトリクス、このような画素を製造するための半導体構造、およびそれらの製作方法
WO2019000492A1 (zh) 量子点电致发光器件及其制作方法
TWI499355B (zh) 具有可調電荷載體注入的有機發光裝置
KR20170069353A (ko) 지연형광-양자점 전계발광다이오드
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2017128635A1 (zh) 一种量子点电致发光器件及显示装置
WO2016155147A1 (zh) 蓝光有机电致发光器件及制备方法、显示面板和显示装置
WO2016201726A1 (zh) 一种基于量子点的电致发光器件及显示装置
US10797114B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
US20190006437A1 (en) Light emitting device
WO2016188095A1 (zh) 有机发光显示器件及其制作方法和显示装置
US8405120B2 (en) Organic light emitting diode device
US9444067B2 (en) Organic light-emitting diode fluorescent device and method for producing same
TWI556486B (zh) 白光有機發光二極體
JP2015056652A (ja) 窒化物半導体発光装置
KR101759294B1 (ko) 탠덤형 유기발광소자
CN109671854B (zh) 显示装置、有机电致发光显示器件及其制造方法
US20220344550A1 (en) Light-emitting element, light-emitting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15569100

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818966

Country of ref document: EP

Kind code of ref document: A1