[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018093033A1 - L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법 - Google Patents

L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법 Download PDF

Info

Publication number
WO2018093033A1
WO2018093033A1 PCT/KR2017/010243 KR2017010243W WO2018093033A1 WO 2018093033 A1 WO2018093033 A1 WO 2018093033A1 KR 2017010243 W KR2017010243 W KR 2017010243W WO 2018093033 A1 WO2018093033 A1 WO 2018093033A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
seq
microorganism
producing
sequence
Prior art date
Application number
PCT/KR2017/010243
Other languages
English (en)
French (fr)
Inventor
변효정
김형준
배현원
유송기
최향
문준옥
이경창
최윤정
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to RU2019114675A priority Critical patent/RU2720522C1/ru
Priority to MYPI2019002766A priority patent/MY189749A/en
Priority to BR112019009942-5A priority patent/BR112019009942B1/pt
Priority to CN201780077451.7A priority patent/CN110268046B/zh
Priority to EP17871177.6A priority patent/EP3543329A4/en
Priority to JP2019525939A priority patent/JP6859437B2/ja
Priority to US16/461,327 priority patent/US10787690B2/en
Publication of WO2018093033A1 publication Critical patent/WO2018093033A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • C12R2001/16Corynebacterium diphtheriae

Definitions

  • the present application relates to the genus Corynebacterium microorganism producing L-lysine, and a method for producing L-lysine using the same.
  • L-lysine is used in the animal feed, human pharmaceutical and cosmetic industries, and is mainly produced by fermentation using Corynebacterium strains or strains of Escherichia.
  • Corynebacterium strains or strains of Escherichia various studies have been conducted for the development of high efficiency production strain and fermentation process technology.
  • target substance specific approaches such as increasing the expression of genes encoding enzymes involved in L-lysine biosynthesis or removing genes unnecessary for biosynthesis are mainly used (Korea Patent No. 10-0838038). number).
  • the present inventors have randomly introduced genes related to high concentrations of lysine by randomly introducing endogenous genes of Corynebacterium microorganisms to search for effective traits that can increase lysine production ability. Increasing the expression level of the gene was confirmed to increase the production capacity of L- lysine completed the present application.
  • One object of the present application is to provide a genus Corynebacterium microorganism producing L-lysine comprising a protein consisting of the amino acid sequence of SEQ ID NO: 1 having increased activity compared to endogenous activity.
  • Another object of the present application is to provide a method for producing L-lysine using the microorganism.
  • the genus Corynebacterium producing L- lysine comprising a protein consisting of the amino acid sequence of SEQ ID NO: 1 having increased activity compared to the intrinsic activity ) Microorganisms.
  • the protein consisting of the amino acid sequence of SEQ ID NO: 1 can be used interchangeably with "HM1524 protein”. It can also be used interchangeably with "protein encoded by the HM1524 gene.” In addition, it can be used interchangeably with the expression protein consisting essentially of the amino acid sequence of SEQ ID NO: 1, or protein consisting of the amino acid sequence of SEQ ID NO: 1.
  • the protein may comprise a polypeptide having at least 80%, 90%, 95%, 97% or 99% homology with the amino acid sequence of SEQ ID NO: 1.
  • the amino acid sequence having such homology and exhibiting efficacy corresponding to the protein consisting of the amino acid sequence of SEQ ID NO: 1 even if some of the sequence has an amino acid sequence deleted, modified, substituted or added within the scope of the present application Inclusion is self-evident.
  • homologous sequences thereof having the same or similar activity as a given amino acid sequence or base sequence are designated as "% homology".
  • % homology For example, using standard software that calculates parameters such as score, identity and similarity, in particular BLAST 2.0, or by hybridization experiments used under defined stringent conditions Appropriate hybridization conditions, which are defined within the scope of the art, are well known to those skilled in the art, and are well known to those skilled in the art (e.g., J. Sambrook et al. Cold Spring Harbor, New York, 1989; FM Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York.
  • the gene encoding the protein consisting of the amino acid sequence of SEQ ID NO: 1, but is not limited thereto, may be a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 2, at least 80%, 90% of the nucleotide sequence of SEQ ID NO: , 95%, 97% or 99% homology. It is apparent that polynucleotides can also be included which can be translated into codon degeneracy by a protein consisting of the amino acid sequence of SEQ ID NO: 1 or a protein having homology thereto.
  • a protein having the activity of a protein consisting of the amino acid sequence of SEQ ID NO: 1 by hydriding under a strict condition with a complementary sequence to all or a portion of the nucleotide sequence for example, a probe that can be prepared from a known gene sequence Any sequence encoding a can be included without limitation.
  • stringent conditions refers to conditions that enable specific hybridization between polynucleotides. Such conditions are described specifically in the literature (eg, J. Sambrook et al., Homology).
  • genes with high homology 80% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, particularly specifically 99% or more homologous genes 60 ° C., 1 ⁇ SSC, 0.1% SDS, specifically 60 ° C., 0.1 ⁇ SSC, 0.1, which is a condition for hybridizing with each other and not having homologous genes with each other, or washing conditions for normal Southern hybridization.
  • a salt concentration and temperature corresponding to% SDS more specifically 68 ° C., 0.1 ⁇ SSC, and 0.1% SDS, the conditions for washing once, specifically, two to three times can be enumerated.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of the hybridization.
  • complementary is used to describe the relationship between nucleotide bases that can hybridize with each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present disclosure may also include isolated nucleic acid fragments that are complementary to the entire sequence as well as substantially similar nucleic acid sequences.
  • polynucleotides having homology can be detected using hybridization conditions including hybridization steps at Tm values of 55 ° C. and using the conditions described above.
  • the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • Appropriate stringency to hybridize polynucleotides depends on the length and degree of complementarity of the polynucleotides and variables are well known in the art.
  • the probe used for hybridization may be part of the complementary sequence of the nucleotide sequence.
  • a probe can be constructed by PCR using an oligonucleotide made based on a known sequence as a primer as a template of a gene fragment containing such a nucleotide sequence.
  • the gene fragment may be, for example, at least about 50 nucleotides, 60 nucleotides, 70 nucleotides, 80 nucleotides, 90 nucleotides, or at least 100 nucleotides.
  • those skilled in the art can adjust the temperature and wash solution salt concentration as needed depending on factors such as the length of the probe.
  • intrinsic activity refers to the activity of a particular protein originally possessed by the parent strain before transformation, when the microorganism's trait changes due to genetic variation by natural or artificial factors.
  • the term "increased activity of a protein relative to endogenous activity” means that the activity is enhanced compared to the endogenous activity or activity before modification of the protein possessed by the microorganism.
  • the increase in activity may include introducing foreign HM1524 and inherently enhancing the activity of HM1524.
  • the increase in the number of copies of the polynucleotide 1) is not particularly limited thereto, but may be performed in a form operably linked to a vector or by insertion into a chromosome in a host cell.
  • a polynucleotide encoding a protein of the present disclosure may be operatively linked to a vector capable of replicating and functioning independently of the host and introduced into the host cell, or the polynucleotide may be inserted into a chromosome in the host cell.
  • the polynucleotide may be operably linked to a vector which can be introduced into the host cell, thereby increasing the copy number of the polynucleotide in the chromosome of the host cell.
  • 2) modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited, but deletion, insertion, non-conservative or conservative substitution of these nucleic acid sequences to further enhance the activity of the expression control sequence or these It can be carried out by inducing a variation in the sequence in combination with or by replacing with a nucleic acid sequence having a stronger activity.
  • the expression control sequence may include, but is not particularly limited to, a promoter, an operator sequence, a sequence encoding a ribosomal binding site, a sequence that controls the termination of transcription and translation, and the like.
  • a strong heterologous promoter may be linked to the top of the polynucleotide expression unit instead of the original promoter.
  • the strong promoter include CJ7 promoter (Korean Patent No. 0620092 and WO2006 / 065095), lysCP1 promoter (WO2009 / 096689), and EF. -Tu promoter, groEL promoter, aceA or aceB promoter and the like, but is not limited thereto.
  • 3) modification of the polynucleotide sequence on the chromosome is not particularly limited, and expression control sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further enhance the activity of the polynucleotide sequence. This can be done by inducing a phase shift or by replacing with a polynucleotide sequence that has been modified to have stronger activity.
  • introduction of a foreign polynucleotide sequence may be performed by introducing a foreign polynucleotide encoding a protein exhibiting the same / similar activity as the protein, or a codon-optimized variant polynucleotide thereof, into the host cell.
  • the foreign polynucleotide can be used without limitation in its origin or sequence as long as it exhibits the same / similar activity as the protein.
  • the foreign polynucleotide introduced may be introduced into the host cell by optimizing its codons so that optimized transcription and translation is performed in the host cell. The introduction can be carried out by a person skilled in the art appropriately selected for known transformation methods, the expression of the introduced polynucleotide in the host cell can be produced by the protein to increase its activity.
  • the term "vector” refers to a DNA preparation containing a polynucleotide sequence encoding said target protein operably linked to a suitable regulatory sequence to enable expression of the target protein in a suitable host.
  • the regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. After being transformed into a suitable host cell, the vector can be replicated or function independent of the host genome and integrated into the genome itself.
  • a polynucleotide encoding a target protein in a chromosome can be replaced with a mutated polynucleotide through an intracellular chromosome insertion vector. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, such as, but not limited to, homologous recombination.
  • the vector used herein is not particularly limited, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector
  • pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used.
  • transformation herein means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotides may include all of them, as long as they can be expressed in the host cell, either inserted into the chromosome of the host cell or located outside the chromosome.
  • the polynucleotide also includes DNA and RNA encoding the target protein.
  • the polynucleotide may be introduced in any form as long as it can be expressed by being introduced into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal, which are typically operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that the gene sequence is functionally linked with a promoter sequence for initiating and mediating the transcription of a polynucleotide encoding a protein of interest herein.
  • Methods for transforming a vector herein include any method for introducing nucleic acids into cells, and can be carried out by selecting appropriate standard techniques as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and Lithium acetate-DMSO method and the like, but is not limited thereto.
  • electroporation calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and Lithium acetate-DMSO method and the like, but is not limited thereto.
  • the host cell it is preferable to use a host having high DNA introduction efficiency and a high expression efficiency of the introduced DNA.
  • the host cell may be a microorganism of the genus Corynebacterium.
  • L-lysine is an essential amino acid that is one of the basic ⁇ -amino acids that is not synthesized in the body, and the chemical formula means a kind of L-amino acid that is NH 2 (CH 2 ) 4 CH (CH 2 ) COOH.
  • all of the L- lysine may be included in the scope of the present application even when present in the form of a salt.
  • the term “microorganism that produces L-lysine” refers to a microorganism strain capable of producing L-lysine for the purpose of the present application, specifically, a strain capable of producing L-lysine at a high concentration by the operation according to the present application. do. Therefore, the microorganism is not particularly limited to the kind of the parent strain, as long as it can produce L-lysine. That is, the parent strain herein may include both strains having no L-lysine producing ability and strains having L-lysine producing ability.
  • the L-lysine production capacity may include both naturally occurring and artificially manipulated ones.
  • a microorganism having an artificially engineered L-lysine producing ability may be mutated by a substance causing mutation, such as NTG (nitrosoguanidine), to have L-lysine producing ability, or to express the expression level or activity of a specific target protein. It may be adjusted to have the ability to produce L- lysine, but is not limited thereto.
  • the specific target protein may include all proteins that directly or indirectly act on the L-lysine biosynthetic pathway, and may be mutated to have L-lysine production ability by increasing or decreasing their expression level or activity.
  • the amino acid sequence or nucleotide sequence may be induced to have variations in L-lysine production ability. Artificial manipulation of microorganisms including random mutation induction and regulation of expression of specific target proteins using NTG and the like described above can be appropriately performed by those skilled in the art as known techniques.
  • the microorganism may be a microorganism of the genus Corynebacterium.
  • Corynebacterium glutamicum Corynebacterium glutamicum
  • Corynebacterium ammoniagenes's Ness Corynebacterium ammoniagenes
  • Corynebacterium Thermo Amino's Ness Corynebacterium thermoaminogenes
  • Brevibacterium Playa boom Brevibacterium flavum
  • Brevibacterium lactofermentum Pere Bactas subtilis subtilis
  • Brevibacterium fermentum Brevibacterium fermentum
  • the microorganism of the genus Corynebacterium is Corynebacterium glutamicum ( Corynebacterium glutamicum ) can be used.
  • Corynebacterium glutamicum Corynebacterium glutamicum
  • Examples of microorganisms of the genus Corynebacterium having known L-lysine production capacity include Korean Patent No. 10-0397322 (or US Patent Publication No. 2003-0124688), Korean Patent No. 10-0924065 (or US Publication Patent No. 2010-0143984), Republic of Korea Patent No. 10-0073610, or / and Binder et al., Genome Biology 2012, 13: R40, the contents of which are incorporated herein by reference in their entirety. Full text is included.
  • Another embodiment provides a method of culturing the genus Corynebacterium microorganism producing L-lysine in a medium comprising a protein consisting of the amino acid sequence of SEQ ID NO. 1 having increased activity compared to endogenous activity. step; And recovering L-lysine from the cultured microorganism or its medium.
  • microorganisms of the genus Corynebacterium producing L-lysine are as described above.
  • the term "culture” means growing the microorganisms in suitably controlled environmental conditions. Cultivation process of the present application can be made according to the appropriate medium and culture conditions known in the art. This culture process can be easily adjusted and used by those skilled in the art according to the strain selected. In the above method, the step of culturing the microorganism is not particularly limited thereto, and may be performed by a known batch culture method, continuous culture method, fed-batch culture method, or the like.
  • the culture conditions are not particularly limited thereto, but using a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid), an appropriate pH (eg, pH 5 to 9, specifically, PH 6 to 8, most specifically pH 6.8) can be adjusted.
  • a basic compound eg, sodium hydroxide, potassium hydroxide or ammonia
  • an acidic compound eg, phosphoric acid or sulfuric acid
  • pH eg, pH 5 to 9, specifically, PH 6 to 8, most specifically pH 6.8
  • antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble formation, and in order to maintain the aerobic state of the culture, oxygen or oxygen-containing gas is injected into the culture, or anaerobic and microaerobic conditions are maintained. To maintain, it can be injected with no gas or with nitrogen, hydrogen or carbon dioxide gas.
  • the culture temperature can be maintained at 20 to 45 °C, specifically 25 to 40 °C, the incubation period can be continued until the desired amount of useful material is obtained, specifically can be incubated for about 10 to 160 hours have. But it is not limited thereto. L-lysine produced by the culture may be secreted into the medium or remain in the cell.
  • the culture medium used includes sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seeds
  • fatty acids e.g. palmitic acid, stearic acid and linoleic acid
  • alcohols e.g. glycerol and ethanol
  • organic acids e.g. acetic acid
  • Nitrogen sources include nitrogen-containing organic compounds (eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds (eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination, but is not limited thereto.
  • organic compounds eg peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea
  • inorganic compounds eg ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • As a source of phosphorus, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like may be used individually or in combination, but is not limited thereto.
  • the medium may also contain essential growth-promoting substances such as other metal salts (eg magnesium sul
  • the method for recovering the L-lysine produced in the culturing step of the present application may collect the desired amino acid from the culture using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, and the desired L-lysine can be recovered from the medium or microorganism using any suitable method known in the art.
  • the recovery step may include a purification process.
  • L-lysine can be produced with high efficiency using the microorganism having the L-lysine production ability of the present application.
  • Genomic DNA was extracted from Corynebacterium glutamicum ATCC13032, treated with restriction enzyme Sau3AI, and DNA fragments of 3-4 kb were selectively obtained by separating DNA fragments by electrophoresis on agarose gel.
  • the colony was transformed into a LB solid medium containing kanamycin (25 mg / L) after linking it with a pECCG117 (Republic of Korea Patent No. 10-0057684) vector having the restriction enzyme BamHI terminal and introducing into E. coli DH5 ⁇ . Obtained.
  • PCR was performed using the primers of SEQ ID NOs: 3 and 4 from 100 random colonies, and it was confirmed that the ratio of colonies including the vector into which the DNA fragment of about 3-4 kb was inserted was 90% or more.
  • Example 2 introduced the wild-type library Lysine Production and Evaluation of Production Microorganisms
  • the genomic DNA library prepared in Example 1 was subjected to the electrolytical method using lysine-producing strain Corynebacterium glutamicum KCCM11016P (The microorganism was released as KFCC10881 and re-deposited to the International Depository of Budapest Treaty to KCCM11016P. Received the accession number, Republic of Korea Patent Registration No. 10-0159812), and then plated on the composite plate medium containing kanamycin (25 mg / L), incubated for 24 hours at 30 °C about 2000 colonies Obtained.
  • Glucose 20 g (NH 4) 2 SO 4 50 g, peptone 10 g, yeast extract 5 g, urea 1.5 g, KH 2 PO 4 5 g, K 2 HPO 4 10 g, MgSO 4 ⁇ 7H 2 O 0.5 g, 100 ⁇ g biotin, 1000 ⁇ g thiamine hydrochloride, 2000 ⁇ g calcium-pantothenic acid, 2000 ⁇ g nicotinamide, 20 g agar, 25 mg kanamycin (based on 1L of distilled water)
  • Each well of the 96-well cell culture dish was dispensed with 200 ⁇ l of the complex liquid medium and inoculated with the obtained colonies, respectively, and then cultured with shaking at 30 ° C. and 1200 rpm for 24 hours.
  • the culture solution was centrifuged to separate the cells and the supernatant, and 50 ⁇ l of the supernatant was mixed with the reaction solution containing lysine oxydase.
  • Glucose 20 g Peptone 10 g, Yeast extract 5 g, Urea 1.5 g, KH 2 PO 4 4 g, K 2 HPO 4 8 g, MgSO 4 7H 2 O 0.5 g, Biotin 100 ⁇ g, Thiamine HCl 1000 ⁇ g, Calcium 2000 ⁇ g pantothenic acid, 2000 ⁇ g nicotinamide, kanamycin 25 mg per liter of distilled water
  • Lysine oxidase (Sigma-Aldrich) 0.02 unit, peroxidase (peroxidase, Sigma-Aldrich) 0.2 unit, ABTS 2 mg (based on 1 ml of potassium phosphate buffer)
  • each strain was inoculated into a 250 ml corner-baffle flask containing 25 ml of species medium containing kanamycin (25 mg / L), and the conditions at 30 ° C. and 200 rpm. Shaking culture for 20 hours. A 250 ml corner-baffle flask containing 24 ml of production medium containing kanamycin (25 mg / L) was inoculated with 1 ml of the culture medium and incubated for 96 hours at 37 ° C. and 200 rpm. After incubation, L-lysine concentration was analyzed using HPLC (Table 1).
  • Glucose 20 g (NH 4 ) 2 SO 4 5 g, peptone 10 g, yeast extract 5 g, urea 1.5 g, KH 2 PO 4 4 g, K 2 HPO 4 8 g, MgSO 4 7H 2 O 0.5 g, 100 ⁇ g biotin, 1000 ⁇ g thiamine HCl, 2000 ⁇ g calcium-pantothenic acid, 2000 ⁇ g nicotinamide (based on 1 liter of distilled water)
  • KCCM11016P / H15 and KCCM11016P / M24 which show an effect of increasing lysine production compared to the control, were selected, and plasmids were extracted using a commonly known plasmid extraction method. Plasmids derived from KCCM11016P / H15 were named pEC-H15 and plasmids derived from KCCM11016P / M24 were designated as pEC-M24. Thereafter, sequencing was performed using the primers of SEQ ID NOs: 3 and 4.
  • plasmid pEC-H15 contained the nucleotide sequence of SEQ ID NO: 15
  • plasmid pEC-M24 contained the nucleotide sequence of SEQ ID NO: 16.
  • the two plasmids commonly include the nucleotide sequence of SEQ ID NO: 2 encoding the amino acid sequence of SEQ ID NO: 1.
  • the amino acid sequence coding gene of SEQ ID NO: 1 was named HM1524, hereinafter referred to as HM1524.
  • Example 2 To confirm the effect of HM1524 identified in Example 2, a vector for overexpressing the gene was produced.
  • Primer designed to insert a Xho I restriction enzyme site at the 5 'end to obtain a DNA fragment containing about 50 bp of stop codon from the top of the HM1524 start codon about 200 bp based on the reported nucleotide sequence (SEQ ID NO: 5)
  • a primer designed to insert the XhoI restriction enzyme site at the 3 'end, and PCR was performed using genomic DNA of Corynebacterium glutamicum as a template.
  • PCR conditions were modified for 5 minutes at 94 °C, 94 °C 30 seconds denaturation, 56 °C 30 seconds annealing, 72 °C 90 seconds polymerization was repeated 30 times, and then polymerization was carried out at 72 °C 7 minutes.
  • the pECCG117 vector was linked to a DNA fragment obtained by treatment with restriction enzyme XhoI, transformed into E. coli DH5 ⁇ , and plated on LB solid medium containing kanamycin (25 mg / L). It was. Colonies transformed with the vector into which the gene of interest was selected by PCR (SEQ ID NOs: 3 and 4), and then plasmids were obtained using a commonly known plasmid extraction method, and the plasmid was named pECCG-HM1524.
  • the vector pECCG-HM1524 prepared in Example 3 was introduced into Corynebacterium glutamicum KCCM11016P, a lysine producing strain using an electric pulse method, and then smeared on a composite flat medium containing kanamycin (25 mg / L). And incubated at 30 ° C. for 24 hours to obtain colonies.
  • the obtained strain was named KCCM11016P / pECCG-HM1524, and cultured 3 batches in the same manner as the flask culture method shown in Example 2 to analyze the L-lysine concentration in the culture (Table 2).
  • Example 5 Vector construction for chromosomal addition of HM1524 gene
  • a vector was prepared to further insert the gene on the chromosome of Corynebacterium.
  • Primer (SEQ ID NO: 10) designed to insert was synthesized.
  • PCR was performed using primers (SEQ ID NOS: 7 and 8, SEQ ID NOs: 9 and 10) synthesized using genomic DNA of Corynebacterium ammonia genes as a template.
  • Pcj7 promoter DNA fragments containing restriction enzyme sites and Pcj7 promoter DNA fragments containing Spe I restriction enzyme sites at the 5 'end and Sal I restriction enzyme sites at the 3' end were obtained, respectively.
  • PCR conditions were modified for 5 minutes at 94 °C, 94 °C 30 seconds denaturation, 56 °C 30 seconds annealing, 72 °C 30 seconds polymerization was repeated 30 times, and then polymerization was carried out at 72 °C 7 minutes.
  • a primer designed to insert an Nde I restriction enzyme site at the start codon position to amplify the ORF of the HM1524 gene based on the reported nucleotide sequence (SEQ ID NO: 11) and a primer designed to insert the Spe I restriction enzyme site at the bottom of the stop codon ( SEQ ID NO: 12) was synthesized.
  • PCR of the primers of SEQ ID NOS: 11 and 12 using the genomic DNA of Corynebacterium glutamicum ATCC13032 as a template showed that HM1524 including an Nde I restriction enzyme site at the start codon and a Spe I restriction enzyme site at the bottom of the stop codon. Genetic DNA fragments were obtained.
  • PCR conditions were modified for 5 minutes at 94 °C, 94 °C 30 seconds denaturation, 56 °C 30 seconds annealing, 72 °C 90 seconds polymerization was repeated 30 times, and then polymerization was carried out at 72 °C 7 minutes.
  • the pDZ vector (Korean Patent No. 10-0924065) was connected to a DNA fragment obtained by treatment with restriction enzymes EcoR I and Sal I, and then pDZ-Pcj7. -HM1524 vector was constructed.
  • the vector pDZ-Pcj7-HM1524 prepared in Example 5 was introduced into Corynebacterium glutamicum KCCM11016P using an electropulse method, and the colony transformed by homologous recombination at the bottom of the termination codon of the HM1524 gene on the chromosome. Colonies containing the HM1524 gene were selected. Primers of SEQ ID NOs: 13 and 14 were used to select colonies by the PCR method. The selected strains were named KCCM11016P :: Pcj7-HM1524, and cultured in the same manner as in the flask culture method shown in Example 2 to analyze the L-lysine concentration in the culture (Table 3).
  • KCCM11016P :: Pcj7-HM1524 was found to increase about 6% lysine production capacity compared to the parent strain KCCM11016P.
  • the strain KCCM11016P :: Pcj7-HM1524 was designated as CA01-2297, and was deposited on August 2, 2016 to the Korea Culture Center of Microorganisms (KCCM), an international depository under the Treaty of Budapest, and assigned accession number KCCM11876P. received.
  • Example 7 HM1524 gene is additionally inserted KCCM10770P Lysine Production Using Derived Microorganisms
  • the vector pDZ-Pcj7-HM1524 prepared in Example 5 was transformed into lysine producing strain Corynebacterium glutamicum KCCM10770P (Korean Patent No. 10-0924065).
  • Corynebacterium glutamicum KCCM10770P is characterized in that the L-lysine biosynthesis pathway-related gene 7 species is inserted into the chromosome. Colonies were selectively isolated by PCR, and the strain into which the HM1524 gene was introduced was named Corynebacterium glutamicum KCCM10770P :: Pcj7-HM1524. Then, the culture was carried out in the same manner as the flask culture method shown in Example 2 to analyze the L- lysine concentration in the culture (Table 4).
  • Corynebacterium glutamicum KCCM10770P :: Pcj7-HM1524 strain increased about 5% of the lysine production capacity compared to the parent strain.
  • Example 8 HM1524 gene additionally inserted CJ3P Using derived microorganisms Lysine production
  • the vector pDZ-Pcj7-HM1524 prepared in Example 5 was transformed into a lysine producing strain Corynebacterium glutamicum CJ3P (Binder et al. Genome Biology 2012, 13: R40).
  • Corynebacterium glutamicum CJ3P is characterized in that the L-lysine production-related gene 3 species inserted into the chromosome. Colonies were selectively isolated by PCR, and the strain into which the HM1524 gene was introduced was named Corynebacterium glutamicum CJ3P :: Pcj7-HM1524. Cultured in the same manner as in the flask culture shown in Example 2, the concentration of L-lysine in the culture was analyzed (Table 5).
  • Example 9 HM1524 gene additionally inserted KCCM11347P Lysine Production Using Derived Microorganisms
  • the vector pDZ-Pcj7-HM1524 prepared in Example 5 was lysine-producing strain Corynebacterium glutamicum KCCM11347P (The microorganism was released as KFCC10750 and re-deposited to the International Depository under the Treaty of Budapest, and was given KCCM11347P. Korean Patent Registration No. 10-0073610).
  • Corynebacterium glutamicum KCCM11347P is characterized by inserting three genes related to L-lysine production capacity into the chromosome. Colonies were selectively isolated by PCR, and the strain into which the HM1524 gene was introduced was named Corynebacterium glutamicum KCCM11347P :: Pcj7-HM1524. Cultured in the same manner as in the flask culture shown in Example 2, the concentration of L-lysine in the culture was analyzed (Table 6).
  • Corynebacterium glutamicum KCCM11347P :: Pcj7-HM1524 strain increased about 10% lysine production capacity compared to the parent strain.
  • strains with increased activity of the HM1524 gene compared to endogenous activity increase lysine production capacity, which can increase the activity of the protein encoded by the gene in the microorganism to mass produce lysine. It suggests that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본원은 L-라이신을 생산하는 미생물 및 이를 이용한 L-라이신의 생산 방법에 관한 것이다.

Description

L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 L-라이신의 생산방법
본원은 L-라이신을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물, 및 이를 이용한 L-라이신의 생산 방법에 관한 것이다.
L-라이신은 동물사료, 사람의 의약품 및 화장품 산업에 사용되고 있으며, 주로 코리네박테리움 속 균주나 에세케리키아 속 균주를 이용한 발효에 의해 생산되고 있다. L-라이신의 생산을 위하여, 고효율 생산균주 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있다. 구체적으로, L-라이신 생합성에 관여하는 효소를 코딩하는 유전자의 발현을 증가시키거나 또는 생합성에 불필요한 유전자를 제거하는 것과 같은 목적 물질 특이적 접근 방법이 주로 이용되고 있다 (대한민국 등록특허 제10-0838038호).
본 발명자들은 라이신 생산능을 증가시킬 수 있는 유효 형질을 탐색하고자 코리네박테리움 속 미생물의 내재적 유전자를 무작위적으로 도입시킴으로써 라이신의 고농도 생산과 관련된 유전자를 발굴하였으며, 코리네박테리움 속 미생물에서 상기 유전자의 발현량을 증가시킬 경우 L-라이신 생산능이 증가한다는 사실을 확인하여 본원을 완성하였다.
본원의 하나의 목적은 내재적 활성에 비하여 증가된 활성을 가지는 서열번호 1의 아미노산 서열로 이루어진 단백질을 포함하는 L-라이신을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물을 제공하는 것이다.
본원의 다른 목적은 상기 미생물을 이용한 L-라이신의 생산 방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본원의 하나의 양태는, 내재적 활성에 비하여 증가된 활성을 가지는 서열번호 1의 아미노산 서열로 이루어진 단백질을 포함하는, L-라이신을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본원에서 개시된 다양한 요소들의 모든 조합이 본원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본원의 범주가 제한된다고 볼 수 없다.
본원에서, 상기 서열번호 1의 아미노산 서열로 이루어진 단백질은 “HM1524 단백질”과 혼용되어 사용될 수 있다. 또한 이는 “HM1524 유전자에 의해 코딩되는 단백질”과 혼용되어 사용될 수 있다. 또한, 서열번호 1의 아미노산 서열로 필수적으로 구성되는 단백질, 혹은 서열번호 1의 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
또한, 상기 단백질은 서열번호 1의 아미노산 서열과 적어도 80 %, 90 %, 95 %, 97 % 또는 99 % 상동성을 가지는 폴리펩티드를 포함할 수 있다. 예를 들어, 이러한 상동성을 가지며, 상기 서열번호 1의 아미노산 서열로 이루어진 단백질과 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본원의 범위 내에 포함됨은 자명하다.
또한, 서열번호 1의 아미노산 서열로 이루어진 단백질과 상응하는 활성을 가지는 경우라면 서열번호 1의 아미노산 서열 앞뒤의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 잠재성 돌연변이 (silent mutation)를 제외하는 것이 아니며, 서열번호 1의 아미노산 서열을 가지는 단백질 또한 본원의 범위 내에 속한다.
본원에서 용어, "상동성"은 두 개의 폴리뉴클레오티드 또는 폴리펩티드 모이어티 사이의 동일성의 퍼센트를 말한다. 주어진 아미노산 서열 또는 염기 서열과 일치하는 정도를 의미하며 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 염기 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
상기 서열번호 1의 아미노산 서열로 이루어진 단백질을 코딩하는 유전자는, 이에 제한되는 것은 아니나, 서열번호 2의 염기 서열을 포함하는 폴리뉴클레오티드일 수 있고, 서열번호 2의 염기 서열과 적어도 80 %, 90 %, 95 %, 97 % 또는 99 % 상동성을 가지는 폴리뉴클레오티드일 수 있다. 코돈 축퇴성 (codon degeneracy)에 의해 상기 서열번호 1의 아미노산 서열로 이루어진 단백질 또는 이와 상동성을 가지는 단백질로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다. 또는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열로 이루어진 단백질의 활성을 가지는 단백질을 암호화하는 서열이라면 제한없이 포함될 수 있다. 상기 “엄격한 조건”이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성이 높은 유전자끼리, 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1×SSC, 0.1% SDS, 구체적으로는 60℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다.
상기 하이브리드화에 사용된 프로브는, 염기서열의 상보 서열의 일부일 수 있다. 이러한 프로브는, 공지 서열에 근거하여 만들어진 올리고뉴클레오타이드를 프라이머로 하여, 이러한 염기 서열을 포함하는 유전자 단편을 주형으로 하는 PCR에 의해 작제될 수 있다. 상기 유전자 단편은 예를 들면, 적어도 약 50 뉴클레오티드, 60 뉴클레오티드, 70 뉴클레오티드, 80 뉴클레오티드, 90 뉴클레오티드, 또는 적어도 100 뉴클레오티드일 수 있다. 또한, 당업자는 온도 및 세척 용액 염 농도를 프로브의 길이와 같은 요소에 따라 필요할 경우 조절할 수 있다.
본원에서, 용어, “내재적 활성”은, 자연적 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 말한다.
본원에서, 용어, “단백질의 활성이 내재적 활성에 비하여 증가”한다는 것은, 미생물이 가진 단백질의 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 활성 증가는 외래의 HM1524를 도입하는 것과, 내재적으로 HM1524의 활성을 강화하는 것을 모두 포함할 수 있다.
구체적으로, 본원에서 활성 증가는,
1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형,
4) 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드의 도입, 또는
5) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 숙주와 무관하게 복제되고 기능할 수 있는 벡터에 본원의 단백질을 암호화하는 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 수행될 수 있거나, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터에 상기 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 상기 숙주세포의 염색체 내 상기 폴리뉴클레오티드의 카피수를 증가하는 방법으로 수행될 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터(대한민국 등록특허 제0620092호 및 WO2006/065095), lysCP1 프로모터(WO2009/096689), EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있으나, 이에 한정되지 않는다. 아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
또한, 4) 외래 폴리뉴클레오티드 서열의 도입은, 상기 단백질과 동일/유사한 활성을 나타내는 단백질을 암호화하는 외래 폴리뉴클레오티드, 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 단백질과 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 또한 도입된 상기 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화하여 숙주세포 내로 도입할 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 단백질이 생성되어 그 활성이 증가될 수 있다.
마지막으로, 5) 상기 1) 내지 4)의 조합에 의해 강화되도록 변형하는 방법은, 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 하나 이상의 방법을 함께 적용하여 수행될 수 있다.
본원에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드 서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다. 일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다.
본원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
본원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본원의 벡터를 형질전환 시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌 글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
상기 숙주 세포로는 DNA의 도입효율이 높고, 도입된 DNA의 발현 효율이 높은 숙주를 사용하는 것이 좋은데, 예를 들어 코리네박테리움 속 미생물일 수 있다.
본원에서 용어, “L-라이신”이란 염기성 α-아미노산의 하나로 체내에서 합성되지 않는 필수 아미노산이며, 화학식은 NH2(CH2)4CH(CH2)COOH인 L-아미노산의 일종을 의미한다. 또한, 상기 L-라이신은 염의 형태로 존재하는 경우에도 모두 본원의 범위에 포함될 수 있다.
본원에서 용어, “L-라이신을 생산하는 미생물”은 본원의 목적상 L-라이신을 생산할 수 있는 미생물 균주로서, 구체적으로는 본원에 따른 조작에 의해 L-라이신을 고농도로 생산할 수 있는 균주를 의미한다. 따라서, 상기 미생물은 L-라이신을 생산할 수 있는 한, 그 모균주의 종류에 특별히 제한되지 않는다. 즉 본원에서 모균주는 L-라이신 생산능이 없는 균주 및 L-라이신 생산능이 있는 균주를 모두 포함할 수 있다. 상기 L-라이신 생산능은 자연적으로 발생한 것 또는 인위적으로 조작된 것을 모두 포함할 수 있다. 인위적으로 조작된 L-라이신 생산능을 갖는 미생물은, 예컨대 NTG (nitrosoguanidine) 등 돌연변이를 유발하는 물질에 의해 변이되어 L-라이신 생산능을 갖는 것일 수 있고, 또는 특정 목적 단백질의 발현 정도 또는 활성을 조절하여 L-라이신 생산능을 갖는 것일 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 특정 목적 단백질은 L-라이신 생합성 경로에 직접/간접적으로 작용하는 모든 단백질이 포함될 수 있으며, 이들의 발현 정도 또는 활성을 증가시키거나 감소시킴으로써 L-라이신 생산능을 갖도록 변이된 것일 수 있고, 또한 이들의 아미노산 서열 또는 염기서열상의 변이를 유도하여 L-라이신 생산능을 갖도록 한 것일 수도 있다. 상술한 NTG 등을 이용한 무작위 돌연변이 유도 및 특정 목적 단백질의 발현 조절을 포함하는 미생물의 인위적 조작은 공지된 기술로서 당업자에 의해 적절히 수행될 수 있다.
상기 미생물은, 구체적으로는 코리네박테리움 속 미생물일 수 있다. 그 예로 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 코리네박테리움 암모니아게네스 (Corynebacterium ammoniagenes), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 브레비박테리움 플라붐 (Brevibacterium flavum), 또는 브레비박테리움 페르멘툼 (Brevibacterium fermentum) 등이 사용될 수 있으나, 이에 제한되지는 않는다. 그 한 예로, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 사용할 수 있다. 그러나 이들 예에 한정되는 것은 아니며, 이 외에도 공지된 L-라이신 생산능을 갖는 코리네박테리움 속 미생물이 사용될 수 있다.
공지된 L-라이신 생산능을 갖는 코리네박테리움 속 미생물의 예로는 대한민국 등록특허 제10-0397322호 (또는 미국 공개특허 제2003-0124688호), 대한민국 등록특허 제10-0924065호 (또는 미국 공개특허 제2010-0143984호), 대한민국 등록특허 제10-0073610호, 또는/및 Binder et al., Genome Biology 2012, 13:R40에 기술된 미생물이 있으며, 상기 문헌의 내용 전체는 본원에 참고자료로서 전문이 포함된다.
다른 하나의 양태는, 내재적 활성에 비하여 증가된 활성을 가지는 서열번호 1의 아미노산 서열로 이루어진 단백질을 포함하는, L-라이신을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물을 배지에서 배양하는 단계; 및 상기 배양된 미생물 또는 이의 배지로부터 L-라이신을 회수하는 단계를 포함하는, L-라이신의 생산 방법이다.
L-라이신을 생산하는 코리네박테리움 속 미생물에 대해서는 상기 설명한 바와 같다.
본원에서 용어, "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있고, 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다. 배양온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 배양기간은 원하는 유용 물질의 생산량이 수득될 때까지 계속될 수 있으며, 구체적으로는 약 10 내지 160 시간 동안 배양할 수 있다. 그러나 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 L-라이신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본원의 상기 배양 단계에서 생산된 L-라이신을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 수집할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-라이신을 회수 할 수 있다. 또한, 상기 회수 단계는 정제 공정을 포함할 수 있다.
본원의 L-라이신 생산능을 갖는 미생물을 이용하여 L-라이신을 높은 효율로 생산할 수 있다.
이하 본원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본원을 예시적으로 설명하기 위한 것으로 본원의 범위가 이들 실시예에 국한되는 것은 아니다.
실시예 1: 코리네박테리움 속 미생물의 야생형 라이브러리 제작
코리네박테리움 글루타미쿰 ATCC13032로부터 유전체 DNA를 추출한 후 제한효소 Sau3AI를 처리하고, 아가로스 겔 상에서 전기영동을 통해 DNA 절편을 크기에 따라 분리하여 3 ~ 4 kb의 DNA 절편들을 선택적으로 획득하였다. 이를 제한효소 BamHI 말단을 가지는 pECCG117 (대한민국 등록특허 제10-0057684호) 벡터와 연결한 후 대장균 DH5α에 도입하고, 카나마이신 (25 mg/L)이 포함된 LB 고체배지에 도말하여 형질전환된 콜로니를 획득하였다. 무작위의 100 개의 콜로니로부터 서열번호 3 및 4의 프라이머 이용하여 PCR을 수행하고, 이를 통해 목적한 3 ~ 4 kb 가량의 DNA 절편이 삽입된 벡터를 포함하는 콜로니의 비율이 90 % 이상임을 확인하였다. 획득한 모든 콜로니를 카나마이신 (25 mg/L)이 포함된 LB 액체배지에 접종하여 혼합 배양하고, 통상적으로 알려진 플라스미드 추출법을 이용해 플라스미드를 추출하여 코리네박테리움 글루타미쿰 ATCC13032 유전체 DNA 라이브러리를 완성하였다.
서열번호 3 : 5'-ACGACGGGATCAGTACCGA-3'
서열번호 4 : 5'-AGCTATCTGTCGCAGCGCC-3'
실시예 2 : 야생형 라이브러리를 도입한 라이신 생산 미생물의 제작 및 평가
실시예 1에서 제작한 유전체 DNA 라이브러리를 전기펄스법을 이용하여 라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM11016P (상기 미생물은 KFCC10881로 공개되었다가, 부다페스트 조약하인 국제기탁기관에 재기탁되어 KCCM11016P로 기탁번호를 부여받음, 대한민국 등록특허 제10-0159812호)에 도입한 후, 카나마이신 (25 mg/L) 이 포함된 복합평판 배지에 도말하고, 30 ℃에서 24 시간 동안 배양하여 콜로니 약 2000 개를 획득하였다.
<복합평판배지>
포도당 20 g, (NH4)2SO4 50 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 5 g, K2HPO4 10 g, MgSO4 ·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍, 한천 20 g, 카나마이신 25 mg (증류수 1L 기준)
96-웰 세포 배양접시의 각 웰에 복합액체배지 200 μl를 분주하고 획득한 콜로니를 각각 접종한 후 30 ℃, 1200 rpm의 조건으로 24 시간 진탕 배양하였다. 배양액을 원심분리하여 균체와 상등액을 분리하고, 상등액 50 μl를 라이신 옥시다제 (lysine oxydase)를 함유하는 반응액에 혼합하였다.
<복합액체배지>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍, 카나마이신 25 mg (증류수 1 리터 기준)
<반응액>
라이신 옥시다제 (Sigma-Aldrich) 0.02 unit, 페록시다제 (peroxidase, Sigma-Aldrich) 0.2 unit, ABTS 2 mg (인산칼륨 완충용액 1 ml 기준)
그 다음, 30 분간 OD405에서의 흡광도를 분석하여 대조구 (KCCM11016P/pECCG117)보다 높은 흡광도를 나타내는 15 종의 실험구를 선별하였다. 각 형질전환체의 라이신 생산능을 확인하기 위해, 카나마이신 (25 mg/L)이 포함된 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주를 접종하고, 30 ℃, 200 rpm의 조건으로 20 시간 동안 진탕 배양하였다. 카나마이신 (25 mg/L)이 포함된 생산배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종배양액을 접종하고, 37 ℃, 200 rpm에서 96 시간 동안 진탕 배양하였다. 배양을 종료한 후, HPLC를 이용하여 L-라이신 농도를 분석하였다 (표 1).
<종배지>
포도당 20 g, (NH4)2SO4 5 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 7.0)>
포도당 100 g, (NH4)2SO4 40 g, 대두 단백질 2.5 g, 옥수수 침지 고형분 (Corn Steep Solids) 5 g, 요소 3 g, KH2PO4 1 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g (증류수 1 리터 기준)
Figure PCTKR2017010243-appb-T000001
상기 결과로부터 대조구 대비 라이신 생산능이 증가한 효과를 보이는 KCCM11016P/H15와 KCCM11016P/M24를 선택하고, 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 추출하였다. KCCM11016P/H15에서 유래된 플라스미드는 pEC-H15, KCCM11016P/M24에서 유래된 플라스미드는 pEC-M24로 명명하였다. 그 후, 서열번호 3 및 4의 프라이머를 이용하여 염기서열 분석을 실시하였다. 그 결과, 플라스미드 pEC-H15는 서열번호 15의 뉴클레오티드 서열이 포함되고, 플라스미드 pEC-M24는 서열번호 16의 뉴클레오티드 서열이 포함되어 있었다. 이를 통해 상기 2 종의 플라스미드에는 서열번호 1의 아미노산 서열을 코딩하는 서열번호 2의 뉴클레오티드 서열이 공통적으로 포함되어 있음을 확인하였다. 이에, 서열번호 1의 아미노산 서열 코딩 유전자를 HM1524로 명명하였고, 이하 HM1524로 표기하였다.
실시예 3 : HM1524 유전자의 과발현 벡터 제작
상기 실시예 2로부터 확인된 HM1524의 효과를 확인하고자 해당 유전자를 과발현하기 위한 벡터를 제작하였다.
보고된 염기서열에 근거하여 HM1524 개시 코돈 상단 약 200 bp 부위로부터 종결 코돈 하단 약 50 bp를 포함하는 DNA 단편을 획득하기 위해 5' 말단에 XhoⅠ 제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 5) 및 3' 말단에 XhoⅠ 제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 6)를 합성하고 코리네박테리움 글루타미쿰의 유전체 DNA를 주형으로 하여 PCR을 수행하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 90 초 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
서열번호 5 : 5'-TCACTCGAGTGATGGCCAGGTTGTTGTC-3'
서열번호 6 : 5'-TCACTCGAGTTAGTCATAGGTACTAGTTT-3'
상기의 PCR 증폭 산물을 제한효소 XhoⅠ으로 처리한 후, pECCG117 벡터를 제한효소 XhoⅠ으로 처리하여 얻은 DNA 절편과 연결하여 대장균 DH5α에 형질전환하고 카나마이신 (25 mg/L)이 포함된 LB 고체배지에 도말하였다. PCR (서열번호 3 및 4)을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드를 pECCG-HM1524 라 명명하였다.
실시예 4 : HM1524 유전자 과발현 벡터 도입 균주의 라이신 생산능 분석
상기 실시예 3에서 제조한 벡터 pECCG-HM1524를 전기펄스법을 이용하여 라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM11016P에 도입한 후, 카나마이신 (25 mg/L)이 포함된 복합평판 배지에 도말하고, 30 ℃에서 24 시간 동안 배양하여 콜로니를 획득하였다. 획득한 균주는 KCCM11016P/pECCG-HM1524로 명명하였고, 실시예 2에 나타낸 플라스크 배양법과 동일한 방법으로 3 batch를 배양하여 배양액 중의 L-라이신 농도를 분석하였다 (표 2).
Figure PCTKR2017010243-appb-T000002
그 결과, 상기 HM1524 유전자가 과발현된 균주, KCCM11016P/pECCG-HM1524는 모균주인 KCCM11016P 대비 라이신 생산능이 6 % 증가된 것을 확인하였다.
실시예 5 : HM1524 유전자의 염색체 추가 삽입을 위한 벡터 제작
상기 실시예 4로부터 확인된 HM1524 유전자의 효과를 확인하고자 해당 유전자를 코리네박테리움의 염색체상에 추가 삽입하기 위한 벡터를 제작하였다.
코리네박테리움 암모니아게네스 유래의 Pcj7 프로모터 (대한민국 등록특허 제10-0620092호)를 증폭하기 위해 Pcj7 프로모터의 5' 말단에 EcoRⅠ 제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 7) 및 3' 말단에 Nde Ⅰ제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 8)와 Pcj7 프로모터의 5' 말단에 SpeⅠ 제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 9) 및 3' 말단에 SalⅠ 제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 10)를 합성하였다. 코리네박테리움 암모니아게네스의 유전체 DNA를 주형으로 하여 합성한 프라이머 (서열번호 7 및 8, 서열번호 9 및 10)로 PCR을 수행한 결과 5' 말단에 EcoRⅠ 제한효소 부위와 3' 말단에 NdeⅠ 제한효소 부위를 포함하는 Pcj7 프로모터 DNA 단편과 5' 말단에 SpeⅠ 제한효소 부위와 3' 말단에 Sal Ⅰ제한효소 부위를 포함하는 Pcj7 프로모터 DNA 단편을 각각 획득하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 30 초 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
보고된 염기서열에 근거하여 HM1524 유전자의 ORF를 증폭하기 위해 개시코돈 위치에 NdeⅠ 제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 11)와 종결코돈 하단에 SpeⅠ 제한효소 부위가 삽입되도록 고안한 프라이머 (서열번호 12)를 합성하였다. 코리네박테리움 글루타미쿰 ATCC13032의 유전체 DNA를 주형으로 하여 서열번호 11 및 12의 프라이머로 PCR을 수행한 결과 개시코돈 위치에 NdeⅠ 제한효소 부위와 종결코돈 하단에 Spe Ⅰ제한효소 부위를 포함하는 HM1524 유전자 DNA 단편을 획득하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 90 초 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
서열번호 7 : 5'-TCAGAATTCTTCCTTCAGGCTAATCTTTT-3'
서열번호 8 : 5'-TCACATATGTGTTTCCTTTCGTTGGGTAC-3'
서열번호 9 : 5'-TCAACTAGTCTTCCTTCAGGCTAATCTTT-3'
서열번호 10 : 5'-TCAGTCGACTGTTTCCTTTCGTTGGGTAC-3'
서열번호 11 : 5'-TCACAT ATG CGCGTAGCTATGATTTC-3'
서열번호 12 : 5'-TCAACTAGT TTAGCCGTGATGCGTTTCAC-3'
상기 3 개의 PCR 증폭 산물을 각각 양 말단에 포함하는 제한효소로 처리한 후, pDZ 벡터 (대한민국 등록특허 제10-0924065호)를 제한효소 EcoRⅠ과 SalⅠ으로 처리하여 얻은 DNA 절편과 연결하여 pDZ-Pcj7-HM1524 벡터를 제작하였다.
실시예 6 : HM1524 유전자 염색체 추가 삽입 균주 라이신 생산능 분석
상기 실시예 5에서 제작한 벡터 pDZ-Pcj7-HM1524를 전기펄스법을 이용하여 코리네박테리움 글루타미쿰 KCCM11016P에 도입하고, 상동 재조합에 의해 형질전환된 콜로니 가운데 염색체 상의 HM1524 유전자의 종결 코돈 하단에 HM1524 유전자가 삽입된 콜로니를 선별하였다. PCR 방법으로 콜로니를 선별하기 위해 서열번호 13 및 14의 프라이머를 사용하였다. 선별된 균주는 KCCM11016P::Pcj7-HM1524로 명명하였고, 실시예 2에 나타낸 플라스크 배양법과 동일한 방법으로 배양하여 배양액 중의 L-라이신 농도를 분석하였다 (표 3).
서열번호 13 : 5'-GTCGAACACGCCAGAACATT-3'
서열번호 14 : 5'-TACTCTCACGATCTCACCCT-3'
Figure PCTKR2017010243-appb-T000003
그 결과, 상기 HM1524 유전자가 추가 삽입된 균주, KCCM11016P::Pcj7-HM1524는 모균주인 KCCM11016P 대비 라이신 생산능이 약 6 % 증가된 것을 확인하였다. 상기 KCCM11016P::Pcj7-HM1524 균주를 CA01-2297로 명명하고, 2016년 8월 2일자로 부다페스트조약하의 국제기탁기관인 한국미생물보존센터 (Korea Culture Center of Microorganisms, KCCM)에 기탁하여 수탁번호 KCCM11876P를 부여 받았다.
실시예 7 : HM1524 유전자가 추가 삽입된 KCCM10770P 유래 미생물을 이용한 라이신 생산
상기 실시예 5에서 제조한 벡터 pDZ-Pcj7-HM1524를 라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM10770P (대한민국 등록특허 제10-0924065호)에 형질전환시켰다. 상기 코리네박테리움 글루타미쿰 KCCM10770P는 L-라이신 생합성 경로 관련 유전자 7 종이 염색체에 삽입된 것을 특징으로 한다. PCR 방법으로 콜로니를 선택적으로 분리하고, HM1524 유전자가 도입된 균주를 코리네박테리움 글루타미쿰 KCCM10770P::Pcj7-HM1524로 명명하였다. 그 다음, 실시예 2에 나타낸 플라스크 배양법과 동일한 방법으로 배양하여 배양액 중의 L-라이신 농도를 분석하였다 (표 4).
Figure PCTKR2017010243-appb-T000004
그 결과, 코리네박테리움 글루타미쿰 KCCM10770P::Pcj7-HM1524 균주는 모균주 대비 라이신 생산능이 약 5 % 증가된 것을 확인하였다.
실시예 8 : HM1524 유전자가 추가 삽입된 CJ3P 유래 미생물을 이용한 라이신 생산
상기 실시예 5에서 제조한 벡터 pDZ-Pcj7-HM1524를 라이신 생산균주인 코리네박테리움 글루타미쿰 CJ3P (Binder et al. Genome Biology 2012, 13:R40)에 형질전환시켰다. 코리네박테리움 글루타미쿰 CJ3P는 L-라이신 생산능 향상 관련 유전자 3 종이 염색체에 삽입된 것을 특징으로 한다. PCR 방법으로 콜로니를 선택적으로 분리하고, HM1524 유전자가 도입된 균주를 코리네박테리움 글루타미쿰 CJ3P::Pcj7-HM1524라고 명명하였다. 실시예 2에 나타낸 플라스크 배양법과 동일한 방법으로 배양하여 배양액 중의 L-라이신 농도를 분석하였다 (표 5).
Figure PCTKR2017010243-appb-T000005
그 결과, 코리네박테리움 글루타미쿰 CJ3P::Pcj7-HM1524 균주는 모균주 대비 라이신 생산능이 약 38 % 증가된 것을 확인하였다.
실시예 9 : HM1524 유전자가 추가 삽입된 KCCM11347P 유래 미생물을 이용한 라이신 생산
상기 실시예 5에서 제조한 벡터 pDZ-Pcj7-HM1524를 라이신 생산균주인 코리네박테리움 글루타미쿰 KCCM11347P (상기 미생물은 KFCC10750으로 공개되었다가 부다페스트 조약 하의 국제기탁기관에 재기탁되어, KCCM11347P를 부여받았음. 대한민국 특허 등록번호 제10-0073610호)에 형질전환시켰다. 코리네박테리움 글루타미쿰 KCCM11347P는 L-라이신 생산능 향상 관련 유전자 3 종이 염색체에 삽입된 것을 특징으로 한다. PCR 방법으로 콜로니를 선택적으로 분리하고, HM1524 유전자가 도입된 균주를 코리네박테리움 글루타미쿰 KCCM11347P::Pcj7-HM1524라고 명명하였다. 실시예 2에 나타낸 플라스크 배양법과 동일한 방법으로 배양하여 배양액 중의 L-라이신 농도를 분석하였다 (표 6).
Figure PCTKR2017010243-appb-T000006
그 결과, 코리네박테리움 글루타미쿰 KCCM11347P::Pcj7-HM1524 균주는 모균주 대비 라이신 생산능이 약 10 % 증가된 것을 확인하였다.
상기 결과를 종합하면, HM1524 유전자의 활성이 내재적 활성에 비해 증가된 균주는, 라이신 생산능이 증가한다는 것을 알 수 있으며, 이는 미생물에서 상기 유전자가 코딩하는 단백질의 활성을 증가시켜 라이신을 대량생산할 수 있다는 것을 시사하는 것이다.
이상의 설명으로부터, 본원이 속하는 기술분야의 당업자는 본원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2017010243-appb-I000001

Claims (4)

  1. 내재적 활성에 비하여 증가된 활성을 가지는 서열번호 1의 아미노산 서열로 이루어진 단백질을 포함하는, L-라이신을 생산하는 코리네박테리움 속 (the genus Corynebacterium) 미생물.
  2. 제1항에 있어서,
    상기 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)인, L-라이신을 생산하는 코리네박테리움 속 미생물.
  3. 내재적 활성에 비하여 증가된 활성을 가지는 서열번호 1의 아미노산 서열로 이루어진 단백질을 포함하는, L-라이신을 생산하는 코리네박테리움 속 (Corynebacterium sp.) 미생물을 배지에서 배양하는 단계; 및
    상기 배양된 미생물 또는 이의 배지로부터 L-라이신을 회수하는 단계를 포함하는, L-라이신의 생산 방법.
  4. 제3항에 있어서,
    상기 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)인, L-라이신의 생산방법.
PCT/KR2017/010243 2016-11-15 2017-09-19 L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법 WO2018093033A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2019114675A RU2720522C1 (ru) 2016-11-15 2017-09-19 Микроорганизм рода Corynebacterium, продуцирующий L-лизин, и способ получения L-лизина с использованием этого микроорганизма
MYPI2019002766A MY189749A (en) 2016-11-15 2017-09-19 A microorganism of the genus corynebacterium producing l-lysine and a method for producing l-lysine using the same
BR112019009942-5A BR112019009942B1 (pt) 2016-11-15 2017-09-19 Micro-organismo do gênero corynebacterium que produz l-lisina e método para produzir l-lisina
CN201780077451.7A CN110268046B (zh) 2016-11-15 2017-09-19 产生l-赖氨酸的棒杆菌属的微生物,以及使用其产生l-赖氨酸的方法
EP17871177.6A EP3543329A4 (en) 2016-11-15 2017-09-19 GENRECORYNEBACTERIUM L-LYSINE PRODUCING MICROORGANISM
JP2019525939A JP6859437B2 (ja) 2016-11-15 2017-09-19 L‐リジンを生産するコリネバクテリウム属微生物及びそれを用いたl‐リジンの生産方法
US16/461,327 US10787690B2 (en) 2016-11-15 2017-09-19 Microorganism of the genus Corynebacterium producing l-lysine and a method for producing l-lysine using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0152037 2016-11-15
KR1020160152037A KR101863456B1 (ko) 2016-11-15 2016-11-15 L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법

Publications (1)

Publication Number Publication Date
WO2018093033A1 true WO2018093033A1 (ko) 2018-05-24

Family

ID=62145602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010243 WO2018093033A1 (ko) 2016-11-15 2017-09-19 L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법

Country Status (8)

Country Link
US (1) US10787690B2 (ko)
EP (1) EP3543329A4 (ko)
JP (1) JP6859437B2 (ko)
KR (1) KR101863456B1 (ko)
CN (1) CN110268046B (ko)
MY (1) MY189749A (ko)
RU (1) RU2720522C1 (ko)
WO (1) WO2018093033A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220275412A1 (en) * 2019-12-23 2022-09-01 Cj Cheiljedang Corporation Microorganism for producing l-amino acid having increased cytochrome c activity, and l-amino acid production method using same
KR102344057B1 (ko) * 2021-01-29 2021-12-27 씨제이제일제당 (주) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
CN114829380B (zh) * 2021-04-12 2023-05-02 Cj第一制糖株式会社 新蛋白变体及使用其生产l-赖氨酸的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
US20030124688A1 (en) 2000-12-30 2003-07-03 Seong-Jun Kim Microorganism producing l-lysine and processes for producing l-lysine using the same
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
KR100838038B1 (ko) 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR101498630B1 (ko) * 2013-10-28 2015-03-04 씨제이제일제당 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155184A (ja) * 1993-12-08 1995-06-20 Ajinomoto Co Inc 発酵法によるl−リジンの製造法
DE19931317A1 (de) * 1999-07-07 2001-01-11 Degussa L-Lysin produzierende coryneforme Bakterien und Verfahren zur Herstellung von L-Lysin
US20050244935A1 (en) 1999-06-25 2005-11-03 Basf Ag Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
JP2009060791A (ja) * 2006-03-30 2009-03-26 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法
EP2262894B1 (en) * 2008-03-03 2014-07-09 Global Bio-Chem Technology Group Company Limited Recombinant microorganism and method for producing l-lysine
RU2615454C1 (ru) * 2011-12-21 2017-04-04 СиДжей ЧеилДжеданг Корпорейшн Способ получения L-лизина с использованием микроорганизмов, обладающих способностью продуцировать L-лизин
CN104073544A (zh) * 2013-03-25 2014-10-01 上海爱启生态科技有限公司 一种有机硒化合物的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
US20030124688A1 (en) 2000-12-30 2003-07-03 Seong-Jun Kim Microorganism producing l-lysine and processes for producing l-lysine using the same
KR100397322B1 (ko) 2000-12-30 2003-09-06 씨제이 주식회사 엘-라이신의 제조방법
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
US20100143984A1 (en) 2006-09-15 2010-06-10 Cj Cheiljedang Corporation Corynebacteria having enhanced l-lysine productivity and a method of producing l-lysine using the same
KR100838038B1 (ko) 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR100930203B1 (ko) * 2008-01-28 2009-12-07 씨제이제일제당 (주) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR101498630B1 (ko) * 2013-10-28 2015-03-04 씨제이제일제당 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BINDER ET AL., GENOME BIOLOGY, vol. 13, 2012, pages R40
DATABASE NCBI [O] 3 August 2016 (2016-08-03), "glycosyltransferase [Corynebacterium glutamicum ATCC 13032", XP055486966, Database accession no. NP599648.1 *
F.M. AUSUBEL ET AL.: "Current Protocols in Molecular Biology", JOHN WILEY & SONS, INC.
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS, COLD SPRING HARBOR
VETTING, M. W. ET AL.: "Structural and Enzymatic Analysis of MshA from Corynebacterium Glutamicum", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 23, 6 June 2008 (2008-06-06), pages 15834 - 15844, XP055486970 *

Also Published As

Publication number Publication date
JP2019535271A (ja) 2019-12-12
KR20180055010A (ko) 2018-05-25
EP3543329A4 (en) 2020-06-03
CN110268046A (zh) 2019-09-20
JP6859437B2 (ja) 2021-04-14
MY189749A (en) 2022-03-02
US10787690B2 (en) 2020-09-29
EP3543329A1 (en) 2019-09-25
US20190352683A1 (en) 2019-11-21
RU2720522C1 (ru) 2020-04-30
BR112019009942A2 (pt) 2019-10-08
KR101863456B1 (ko) 2018-06-01
CN110268046B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2018043856A1 (ko) 신규 프로모터 및 이의 용도
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2012077995A2 (ko) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2013105827A2 (ko) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2018124440A2 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2014148743A1 (ko) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2022163934A1 (ko) 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2019231159A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2016148490A1 (ko) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2015064917A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2019147059A1 (ko) L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산방법
WO2017007159A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2019172702A1 (ko) 신규한 프로모터 및 이를 이용한 l-아미노산 생산 방법
WO2020218736A1 (ko) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2017034165A1 (ko) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2022231368A1 (ko) 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022005225A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2018093033A1 (ko) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019009942

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019114675

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017871177

Country of ref document: EP

Effective date: 20190617

ENP Entry into the national phase

Ref document number: 112019009942

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190515