WO2018084330A1 - 연속식 열분해 장치 및 열분해 방법 - Google Patents
연속식 열분해 장치 및 열분해 방법 Download PDFInfo
- Publication number
- WO2018084330A1 WO2018084330A1 PCT/KR2016/012482 KR2016012482W WO2018084330A1 WO 2018084330 A1 WO2018084330 A1 WO 2018084330A1 KR 2016012482 W KR2016012482 W KR 2016012482W WO 2018084330 A1 WO2018084330 A1 WO 2018084330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pyrolysis
- unit
- reaction
- residue
- combustible material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/28—Other processes
- C10B47/32—Other processes in ovens with mechanical conveying means
- C10B47/44—Other processes in ovens with mechanical conveying means with conveyor-screws
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/07—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/143—Feedstock the feedstock being recycled material, e.g. plastics
Definitions
- the present invention relates to a pyrolysis device and a method thereof, and more particularly, to a continuous pyrolysis device and a method capable of continuously pyrolyzing a combustible material.
- Energy-saving technologies for lower fuels, waste vinyl, waste plastics or organic-inorganic flammable wastes are incineration, pyrolysis, or gasification.
- Incineration increases the size of facilities and serious air pollution due to the emission of air pollutants such as dioxins and NOX.
- Korean Patent Laid-Open Publication No. 1293272 relates to a continuous pyrolysis emulsifying apparatus and method thereof, which is capable of firstly pyrolyzing a flammable material, partially oxidizing and burning it, and discharging it into ash having a low carbon content.
- the present inventors have come to invent a process that solves the above problems of the invention and improves energy efficiency.
- Patent Document 1 Korean Registered Patent Publication No. 1293272
- Patent Document 2 Korean Patent Publication No. 1607869
- the present invention has been made to solve the above problems.
- the reactants discharged from the conventional pyrolysis device are discharged only in the gaseous phase and liquid phase, and are not continuously discharged in the form of carbon or ash solid residue, which causes difficulty in continuous operation, which can improve the continuous pyrolysis device. And a method thereof.
- the final residue discharged from the conventional pyrolysis device is to provide a continuous pyrolysis device and a method that can improve the problem because the high carbon content was not good efficiency.
- the present invention provides a continuous pyrolysis apparatus and a method for improving a problem of difficulty in utilizing a high ratio of chlorine contained in a gas phase component generated in a conventional pyrolysis reactor.
- the first reaction unit 200 includes one or more lower screw-type feeder 220
- the pyrolysis residues transported by the lower screw feeder 220 are discharged to the second reaction part 300, and the combustible material which is not sufficiently treated with any one or more of drying, preheating, and pyrolysis may be used.
- 1 provides a continuous pyrolysis device that is circulated in the reaction unit 200.
- the lower screw feeder 220 includes a lower screw 221 and the caulking removal device 224 to eccentric the lower screw 221, and the lower screw 221 and a portion of the inner surface of the first reaction unit 200 It is preferable to remove the carbon adhesive formed on the inner surface of the first reaction unit 200 by continuous contact.
- the first reaction part 200 further includes at least one upper screw feeder 210 positioned above the lower screw feeder 220, and the upper screw feeder 210 and the lower screw.
- the pyrolysis residue transferred by the mold feeder 220 is discharged to the second reaction unit 300, and the pyrolysis residue which is not sufficiently treated by any one or more of drying, preheating, and pyrolysis is transferred to the first reaction unit ( It is preferred to remain in circulation 200).
- an inner heating unit 240 located between the upper screw-type feeder 210 and the lower screw-type feeder 220.
- the present invention for solving the above problems, by treating the combustible material supplied from the supply unit 100 with any one or more of drying, preheating, and pyrolysis to generate the first gas phase component and pyrolysis residues First reaction unit 200; A second reaction part 300 which transfers the pyrolysis residues discharged from the first reaction part 200 and separates the small residues having a predetermined size or less and the excess residues exceeding the predetermined size; And a residue storage unit 400 for storing a small residue of the predetermined size or less;
- the first reaction unit 200 includes one or more cross-rotating stirring device 250, the pyrolysis residues transferred by the one or more cross-rotating stirring device 250
- the combustible material discharged to the second reaction part 300 and not sufficiently treated with at least one of drying, preheating, and pyrolysis remains in the first reaction part 200 to provide a continuous pyrolysis apparatus. .
- the cross-rotating stirring device 250 also includes a screw 251 and an eccentric caulking removal device 254, wherein the screw 251 is in continuous contact with a portion of the inner surface of the caulking removing device 254. It is preferable to remove the carbon adhesive formed on the inner surface of the first reaction unit 200.
- the first reaction unit 200 includes one or more vertical rotary stirring device 260, the pyrolysis residues transferred by the one or more vertical rotary stirring device 260
- the combustible material discharged to the second reaction part 300 and not sufficiently treated with at least one of drying, preheating, and pyrolysis remains in the first reaction part 200 to provide a continuous pyrolysis apparatus.
- the vertical rotary stirring device 260 is preferably a screw.
- Another embodiment of the present invention for solving the above problems is to treat the combustible material supplied from the supply unit 100 with any one or more of drying, preheating, and pyrolysis to generate a first gaseous component and pyrolysis residues.
- a residue storage unit 400 for storing a small residue of the predetermined size or less;
- the first reaction unit 200 includes a belt rotary stirring device 280 including a plurality of transfer plate 281, by the belt rotary stirring device 280 The transferred pyrolysis residue is discharged to the second reaction part 300, and the combustible material which is not sufficiently treated by at least one of drying, preheating, and pyrolysis remains circulated in the first reaction part 200. It provides a type of pyrolysis device.
- the plurality of transfer plates 281 are spaced apart from each other to form a space, the combustible material is preferably located in the space.
- the present invention for solving the above problems, by treating the combustible material supplied from the supply unit 100 with any one or more of drying, preheating, and pyrolysis to generate the first gas phase component and pyrolysis residues First reaction unit 200; A second reaction part 300 which transfers the pyrolysis residues discharged from the first reaction part 200 and separates the small residues having a predetermined size or less and the excess residues exceeding the predetermined size; And a residue storage unit 400 for storing a small residue of the predetermined size or less;
- the first reaction unit 200 includes a stocker type stirring device 290, the pyrolysis residue transferred by the stocker type stirring device 290 is the second reaction
- the combustible material discharged to the unit 300 and not sufficiently treated with at least one of drying, preheating, and pyrolysis remains in the first reaction unit 200 to provide a continuous pyrolysis apparatus.
- Embodiments of the present invention for solving the above problems further include a third reaction unit 500 for receiving the small residue and oxidize and burn to generate a third gas phase component and combustion residue.
- the third reaction unit 500 may be oxidized and combusted by receiving at least one of the small residue, pyrolysis oil, uncondensed gas phase component, syngas, and the second gas phase component as fuel of the third reaction unit 500. It is desirable to produce three gas phase components and combustion residues.
- the excess residue separated in the second reaction unit 300 is preferably discharged to the outside in the continuous pyrolysis device.
- the first reaction unit 200 further includes an outer heating unit 230 surrounding the outside of the first reaction unit 200, and the third gas phase generated by the third reaction unit 500. It is preferable that a component is supplied to at least one of the first reaction part 200, the outer heating part 230, and the inner heating part 240 so that the first reaction part 200 is heated.
- a chlorine removal reaction unit 600 for removing the chlorine in the gas phase component by receiving the first gaseous phase component discharged from the first reaction unit 200.
- the chlorine removal reaction unit 600 includes an oil purification reaction unit 610, the oil purification reaction unit 610 is preferably supplied with a first gas phase component to produce pyrolysis oil and non-condensing gas. .
- the chlorine removal reaction unit 600 includes a gasification reaction unit 620, it is preferable to produce a synthesis gas by gasifying the first gas phase component supplied.
- the second reaction unit 300 may further include a cooling unit 330 capable of cooling the pyrolysis residues supplied from the first reaction unit 200.
- the second reaction unit 300 is further supplied with a gasification gas to gasify while transferring the pyrolysis residues to generate a second gaseous component and gasification residues.
- Another embodiment of the present invention for solving the above problems, (a) supplying a combustible material to the supply unit 100; (b) introducing the combustible material into the first reaction part 200 and treating it with at least one of drying, preheating and pyrolysis to produce a first gaseous component and pyrolysis residue; (c) introducing the pyrolysis residue into the second reaction part 300, transporting and cooling, and separating the small residue smaller than or equal to a predetermined size and the excess residue larger than the predetermined size; (d) introducing the small residue into the residue storage unit 400; And (e) introducing one or more of the pyrolyzed oil, the non-condensed gas component, and the small residue from the first gas phase component into the third reaction unit 500, followed by oxidizing and burning to generate the third gas phase component and combustion residue.
- step (b) wherein the combustible material not dried, preheated or pyrolyzed in step (b) remains in the first reaction part 200 and circulated, and the excess residue transferred to the rear end in step (c). Provides a continuous pyrolysis method which is discharged to the outside.
- Another embodiment of the present invention for solving the above problems, (a) supplying a combustible material to the supply unit 100; (b) introducing the combustible material into the first reaction part 200 and treating it with at least one of drying, preheating and pyrolysis to produce a first gaseous component and pyrolysis residue; (c1) introducing and transferring the pyrolysis residue to the second reaction part 300 and gasifying the pyrolysis residue by receiving a gasification gas to generate a second gaseous component and gasification residue; (d1) introducing the gasification residue into a residue storage unit 400; And (e1) introducing at least one of pyrolysis oil and non-condensing gas components, second gas phase components, and gasification residues generated from the first gas phase component into the third reaction unit 500, followed by oxidation and combustion to form a third gas phase component. And generating combustion residues, wherein the combustible material that is not dried, preheated or pyrolyzed in step (b) remains in the
- continuous pyrolysis apparatus and the method according to the present invention it is possible to continuously produce gaseous fraction to produce liquid and non-condensable gaseous fuel, and at the same time to efficiently produce high calorific value solid fuel.
- the residues finally discharged can be completely burned and discharged as ash with low exhaust gas and carbon content.
- the continuous pyrolysis apparatus and the method according to the present invention can further improve the energy efficiency of the entire system by using gaseous phase and solid phase components generated in the pyrolysis apparatus.
- FIG. 1A is a perspective view of a first scheme of a pyrolysis apparatus according to a first embodiment of the present invention.
- FIG. 1B is a perspective view of a second scheme of a pyrolysis apparatus according to a first embodiment of the present invention.
- 1C is a cross-sectional view taken along line AA ′ of the pyrolysis apparatus according to the first embodiment of the present invention.
- 1D is an enlarged view of A-A 'section of the pyrolysis apparatus according to the first embodiment of the present invention.
- FIG. 2A is a perspective view of a pyrolysis apparatus according to a second embodiment of the present invention.
- FIG. 2B is a cross-sectional view taken along line AA ′ of the pyrolysis apparatus according to the second embodiment of the present invention.
- FIG. 3A is a perspective view of a first scheme of a pyrolysis apparatus according to a second embodiment of the present invention.
- 3B is a perspective view of a second scheme of a pyrolysis apparatus according to a second embodiment of the present invention.
- 3C is a cross-sectional view taken along the line A-A 'of the pyrolysis apparatus according to the third embodiment of the present invention.
- FIG. 4A is a perspective view of a pyrolysis apparatus according to a fourth embodiment of the present invention.
- 4B is a cross-sectional view taken along line AA ′ of the pyrolysis apparatus according to the fourth embodiment of the present invention.
- 5A is a perspective view of a pyrolysis apparatus according to a fifth embodiment of the present invention.
- 5B is a cross-sectional view taken along line AA ′ of the pyrolysis apparatus according to the fifth embodiment of the present invention.
- combustion materials are household waste, industrial waste, greenhouse vinyl, end product waste vinyl, waste plastic.
- Combustible waste such as waste tires and electronic waste, or lower fuel such as lignite, anthracite, pet coke, oil sand, etc. or organic-inorganic mixtures such as wood, biomass, sewage sludge, organic waste, etc.
- Other types of combustible wastes not mentioned may also be used.
- the "combustible material” may be provided in the form of a pulverized product having a size of about 0.1 to 30 cm in order to increase the efficiency of pyrolysis, but is not limited thereto.
- pyrolysis refers to a reaction that induces chemical decomposition of a combustible material by heating the combustible material in a state of limiting contact with oxygen.
- Embodiment 1 Screw Feeder Stirring Device
- FIGS. 1A to 1D An embodiment of a continuous pyrolysis apparatus according to a first embodiment will be described with reference to FIGS. 1A to 1D.
- the continuous pyrolysis apparatus is a continuous pyrolysis apparatus in which the first reaction unit 200 is a screw feeder stirring device, and the supply unit 100, the first reaction unit 200, and the second reaction unit 300 are provided. ), The residue storage unit 400, the third reaction unit 500 and the chlorine removal reaction unit 600.
- the supply unit 100 includes an input unit 110 for supplying a combustible material to the first reaction unit 200.
- the input unit 110 includes a first input unit 111 and a second input unit 112 positioned below the first input unit 111.
- first input part 111 and the second input part 112 are sequentially opened and closed, only the combustible material may be supplied to the first reaction part 200, and thus, external air may be supplied to the first reaction part 200. Supply is prevented.
- the first input unit 111 is opened and the combustible material is introduced between the input unit 110, the first input unit 111 is closed.
- the second input part 112 is then opened to supply the combustible material to the first reaction part 200.
- the supply unit 100 may further include a device such as a screw feeder, a cylinder feed feeder, and the like to prevent external air from entering the first reaction unit 200.
- a device such as a screw feeder, a cylinder feed feeder, and the like to prevent external air from entering the first reaction unit 200.
- the combustible material in the supply unit 100 when supplying the combustible material in the supply unit 100, it may be additionally supplied with calcium oxide (CaO) powder.
- CaO calcium oxide
- the first reaction unit 200 processes the combustible material supplied from the supply unit 100 at a temperature of 300 ° C to 600 ° C with any one of drying, preheating, and pyrolysis to generate a first gaseous component and pyrolysis residues.
- the internal temperature of the first reaction unit 200 is not limited to the above-mentioned example.
- the first gas phase component generated in the first reaction unit 200 is a condensation gas that condenses when the temperature is lowered and is converted into pyrolysis oil, and a synthesis gas that is not condensed (CO, CO 2 , H 2 , CH 4). Or water vapor).
- an additional input unit may be installed to block gaseous components that may be included in the discharge.
- the lower screw feeder 220 transports the supplied combustible material and includes a screw 221, a central shaft 222, a motor 223, and a caulking removal device for treating at least one of drying, preheating, and pyrolysis. 224 and support 225.
- the pyrolysis residues transported and processed by the lower screw feeder 220 are discharged to the second reaction part 300, and combustible materials which are not sufficiently treated by any one or more of drying, preheating, and pyrolysis are transferred to the first reaction part ( Remain in circulation).
- the number of the lower screw-type feeder 220 is not limited, but three or four in parallel may be configured to bring excellent circulation effect.
- the feed direction of each feeder is determined to facilitate circulation of flammable material that has not been sufficiently processed.
- the caulking removal device 224 may position the screw 221 to be eccentric with the central axis 222 of the lower screw-type feeder 220, the screw 221 eccentric with the central axis 222 is the first reaction portion Continuously contacting a portion of the inner surface of the (200) to remove the carbon adhesive formed on the inner surface (see Figure 1d).
- the support 225 may be connected to the motor 223 and control the position of the lower screw feeder 220.
- the outer heating unit 230 is positioned to surround the outside of the first reaction unit 200 to heat the first reaction unit 200.
- the outer heating unit 230 may optionally receive and use a third gaseous phase component generated by the third reaction unit 500.
- the pyrolysis vapor which is converted into gaseous components as the combustible material is pyrolyzed in the first reaction part 200, is discharged to the upper part, and the carbon powder or lumped residues, which are converted into a solid form as it is pyrolyzed, have a high specific gravity and are transferred by a screw. Descends.
- the lowered pyrolysis residue is transferred to the second reaction part 300 by the lower screwed feeder 220, and the non-pyrolyzed combustible material and the pyrolysed material remaining on the upper side or the pyrolyzed material by the lower screwed feeder 220. It is pushed back and is transferred in reverse.
- one or more upper screwed feeders 210 on top of the lower screwed feeder 220 to more efficiently transport, stir, circulate, and heat combustible materials in the first reaction section 200. ).
- the upper screwed feeder 210 includes a screw 211, a central axis 212, a motor 213 and a support 215.
- the upper screw feeder 210 has the same configuration as the lower screw feeder 220 mentioned above, repeated description thereof will be omitted.
- the number of the upper screw-type feeder 210 is not limited, but may be configured in three or four in parallel to maximize the circulation effect.
- the feed direction of each feeder is determined to facilitate circulation of flammable material that has not been sufficiently processed.
- the motors 213 and 223 of the upper screwed feeder 210 and the lower screwed feeder 220 can be driven in the same direction or in different directions, and the rotational speeds can be driven differently from each other. Accordingly, the flammable material may be prevented from adhering to the stirrer surface, and the flammable material that is not pyrolyzed may remain in the first reaction part 200 to be circulated.
- an inner heating part 240 positioned between the upper screwed feeder 210 and the lower screwed feeder 220 may be further included.
- the inner heating part 240 has the same configuration as the outer heating part 230 mentioned above, but is located between the upper screw feeder 210 and the lower screw feeder 220 inside the first reaction part 200. Repeated descriptions are omitted.
- a caulking removal method of the first reaction unit 200 according to the first embodiment of the present invention will be described in detail with reference to FIG. 1C.
- the temperature of the outer heating unit 230 is higher than the temperature of the first reaction unit 200 to maintain the internal temperature of the first reaction unit 200. Therefore, the temperature of the bottom of the first reaction part 200 is the highest. For this reason, a coking (carbon adhesive) film is formed at the bottom of the inner wall surface of the first reaction part 200 by pyrolysis residue of the combustible material, thereby lowering the heat transfer efficiency. Therefore, this caulking film must be removed continuously to maintain heat transfer efficiency.
- the screw 221 is positioned so as to be eccentric with the central axis 222 of the lower screw-type feeder 220 by the caulking removal device 224, so that the end of the screw 221 is always first
- the caulking membrane may be rubbed and removed while rubbing the bottom of the inner wall of the reaction part 200.
- the lower screw feeder 220 is rotated while the feeder circular end is in contact with the bottom of the curved surface to remove the caulking of the first reaction part 200 by rubbing the bottom caulking film (see FIG. 1D).
- one end of the lower screw feeder 220 may be connected to the motor 223 and the other end may be driven in the form of a cantilever beam.
- the screw 221 may remove the caulking film while rubbing with the cantilever force of its own weight of the lower screw-type feeder 220.
- one end of the lower screw feeder 220 is connected to the motor 223 and the support 225 and the other end is connected to the support 225, so that the left and right support parts 225 are lower
- the up, down, left, and right positions of the screw feeder 220 may be controlled, and at the same time, the driving direction and the driving speed of the motor 223 may be controlled.
- the second reaction part 300 includes a transfer part 311, a motor 313, a support part 315, a cooling part 330, and a screen filter 350.
- the second reaction unit 300 transfers the pyrolysis residues discharged from the first reaction unit 200 and separates the pyrolysis residues cooled into small residues having a predetermined size or less and excess residues having a predetermined size.
- the transfer unit 311 may be a screw feeder as an example, and may be a rotary feeder or a stocker feeder although not shown.
- the support part 315 is connected to the motor 313 to control the position of the transfer part 311.
- the cooling unit 330 cools the pyrolysis residue introduced into the second reaction unit 300, and may spray water, wax or residue containing solid powder in order to increase the cooling efficiency.
- the second reaction unit 300 is further supplied with a gasification gas to gasify the pyrolysis residue to generate a second gaseous component and gasification residue.
- the cooling unit 330 is not used.
- the amount of heat required for gasification may be partial oxidation by a gasification gas containing oxygen, or a high temperature gasification gas of 700 ° C. to 900 ° C., and any one or more of oxygen, air, steam, and synthesis gas may be used. It may be supplied from the lower or upper side of the second reaction unit 300.
- the syngas may preferably be CO, H 2 , CH 4 , CO 2 , H 2 O, and the like, but is not limited thereto.
- the gasification residue generated by gasification in the second reaction unit 300 is transferred to the residue storage unit 400.
- the amount of carbon contained in the gasification residue is minimized, and the gasification residue is introduced into the third reaction part 500 to be completely burned or discharged to the outside.
- the second reaction unit 300 When the second reaction unit 300 is operated by gasification, the second reaction unit 300 may be a screw feeder, a rotary feeder or a stocker feeder, and more preferably, a fixed bed reactor or a fluidized bed reactor.
- the residue storage unit 400 stores the small residue or gasification residue separated from the second reaction unit 300.
- the stored small residue or gasification residue is supplied to the third reaction unit 500.
- Excess residue not discharged from the second reaction unit 300 in the residue storage unit 400 may be discharged to the outside.
- the third reaction unit 500 receives the small residues of the residue storage unit 400 at a temperature of 600 ° C. or higher and oxidizes and burns them to generate a third gas phase component and combustion residues.
- the third gas phase component generated by the third reaction part 500 is supplied to any one or more of the above-described outer heating part 230 and the inner heating part 240 so that the outer heating part 230 and the inner heating part 230 are provided. At least one of them is heated. If necessary, a portion of the third gas phase component may be supplied to the first reaction unit 200.
- the combustion residue generated in the third reaction unit 500 includes ash having a low carbon content.
- the minimum standard of ash carbon content is less than 5%, which is the same as the minimum standard for landfilling.
- one or more of small residue, pyrolysis oil, non-condensing gas, syngas, and second gas phase component is supplied and oxidized and combusted to produce the third gas phase component and combustion residue. You can also create
- any one or more of the first reaction unit 200, the second reaction unit 300 and the third reaction unit 500 of the pyrolysis apparatus according to the present invention may include a direct heating device.
- the direct heating device is a burner using air, oxygen, steam and gas fuel, a lance inserted from the outside to the inside, or a plasma generator.
- the chlorine removal reaction unit 600 receives the first gas phase component to remove chlorine in the gas phase component, and includes any one or more of an oil purification reaction unit 610 and a gasification reaction unit 620.
- the oil purification reaction unit 610 receives the first gas phase component to produce pyrolysis oil and non-condensing gas.
- the gasification reaction unit 620 receives the first gaseous component and gasifies to produce a synthesis gas.
- At least one of the second gaseous components discharged from the gas may be supplied to the generator engine, oxidized and combusted to drive the generator to produce electricity.
- the first reaction unit 200 includes a cross-rotating stirring device 250.
- the cross-rotating stirring device 250 processes the combustible material supplied to the first reaction part 200 and transfers the combustible material to the second reaction part 300.
- the screw 251 is positioned in a horizontal direction perpendicular to the traveling process direction.
- the caulking removal device 254 is positioned to support the screw 251, and the center of the caulking removal device 254 is positioned to be somewhat eccentric with the screw 251 so that the screw 251 and the first reaction part 200 are provided.
- the carbon adhesive on the bottom can be removed.
- the pyrolysis residues transported and processed by the horizontal rotary agitator 250 are discharged to the second reaction unit 300, and the combustible material which is not sufficiently treated by any one or more of drying, preheating, and pyrolysis may be disposed in the first reaction unit ( Remain in circulation).
- the first reaction part 200 includes a vertical rotary stirring device 260.
- a first scheme of the pyrolysis apparatus according to the third embodiment will be described with reference to FIG. 3A.
- the vertical rotary stirring device 260 processes the combustible material supplied to the first reaction part 200 and transfers it to the second reaction part 300, and includes a blade 261, a central axis 262, a motor 263, and the like. Support 265.
- the central axis 262 is vertically positioned to penetrate the upper and lower portions of the first reaction part 200, and a plurality of wings 261 extends from the outside thereof (see the left side of FIG. 3C).
- the vertical rotary stirring device 260A processes the combustible material supplied to the first reaction part 200 and transfers the combustible material to the second reaction part 300, and includes a screw 261A, a central axis 262, a motor 263, and the like. Support 265.
- the second way of the third embodiment differs only in the wing portion from the first way of the third embodiment, and includes a screw 261A that forms a thread instead of the wing 261 connected to the central axis 262 (Fig. 3C See also right).
- Each vertical rotary agitator 260, 260A will pyrolyze while transporting the combustible material from top to bottom, and then the vertical rotary agitator 260.
- 260A transfers the flammable material from the bottom to the top while pyrolyzing the flammable material to the second reaction part 300 by the plurality of vertical rotary stirring devices 260 and 260A.
- the treated pyrolysis residues conveyed by the vertical rotary agitators 260 and 260A are discharged to the second reaction part 300, and the combustible material which is not sufficiently treated by any one or more of drying, preheating and pyrolysis is the first reaction. It remains in the unit 200 and circulated.
- the vertical rotary stirring device (260, 260A) can also be configured in one or more parallel.
- the stirring device may have a branched shape including a transfer paddle.
- the first reaction part 200 includes a belt rotary stirring device 280.
- the belt rotary stirring device 280 transfers the combustible material supplied to the first reaction part 200 to the second reaction part 300, and transfers plate 281, roller 282, motor 283, and support part ( 285).
- the plurality of transfer plates 281 extending vertically from the outside of the belt surrounding the plurality of rollers 282 are spaced apart to form a space, and are supplied to each of the spaced spaces to the first reaction unit 200. Combustible materials are located and disposed of.
- the pyrolysis residues transported and processed by the belt rotary stirring device 280 are discharged to the second reaction part 300, and the combustible material which is not sufficiently treated by any one or more of drying, preheating, and pyrolysis is transferred to the first reaction part ( Remain in circulation).
- the first reaction unit 200 includes a stocker type stirring device 290.
- the stocker type stirring device 290 processes the combustible material supplied to the first reaction part 200 using a plurality of stocker type belts and transfers the combustible material to the second reaction part 300.
- the pyrolysis residues transported and processed by the stocker type stirring device 290 are discharged to the second reaction unit 300, and the combustible material which is not sufficiently treated by any one or more of drying, preheating, and pyrolysis may be disposed in the first reaction unit ( Remain in circulation).
- Continuous pyrolysis method of the present invention comprises the steps of (a) supplying a combustible material to the supply unit (100); (b) introducing the combustible material into the first reaction part 200 and treating it with at least one of drying, preheating and pyrolysis to produce a first gaseous component and pyrolysis residue; (c) introducing the pyrolysis residue into the second reaction part 300, transporting and cooling, and separating the small residue smaller than or equal to a predetermined size and the excess residue larger than the predetermined size; (d) introducing the small residue into the residue storage unit 400; And (e) introducing one or more of the pyrolyzed oil, the non-condensed gas component, and the small residue from the first gas phase component into the third reaction unit 500, followed by oxidizing and burning to generate the third gas phase component and combustion residue.
- step (a) calcium oxide (CaO) powder may be additionally supplied, and the temperature therein may be 300 to 600 ° C. by a direct heating device (not shown), an inner heating unit 230 or an outer heating unit 240. Keep it.
- a direct heating device not shown
- an inner heating unit 230 or an outer heating unit 240 Keep it.
- step (b) The combustible material that is not dried, preheated or pyrolyzed in step (b) remains in the first reaction unit 200 and circulated.
- step (c) The excess residue conveyed to the rear end in step (c) is discharged to the outside.
- the second gas phase component generated in step (e) is introduced into at least one of the first reaction part 200 and the outer heating part 230 surrounding the outside of the first reaction part 200.
- the continuous pyrolysis method according to another embodiment differs from steps (c), (d) and (e).
- the pyrolysis residue is introduced into the second reaction unit 300 and transferred, and gasification of the pyrolysis residue is provided by gasification of the second gas phase component. And generating a gasification residue; (d1) introducing the gasification residue into a residue storage unit 400; And (e1) introducing at least one of pyrolysis oil and non-condensing gas components, second gas phase components, and gasification residues generated from the first gas phase component into the third reaction unit 500, followed by oxidation and combustion to form a third gas phase component. And generating combustion residues.
- Continuous pyrolysis apparatus in which the first reaction unit 200 and the third reaction unit 500 are stalker-type, and the first reaction unit 200 is a stalker-type and the third reaction unit 500 is a rotary kiln-type It is obvious that the continuous pyrolysis apparatus in which the first reaction part 200 is a rotary kiln type and the third reaction part 500 is a stalker type is also included in the technical scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
본 발명은 연속식 열분해 장치 및 그 방법에 관한 것으로, 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200); 상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및 상기 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서, 상기 제 1 반응부(200)는 하나 이상의 하부 스크류형 피더(220)를 포함하며, 상기 하부 스크류형 피더(220)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는 연속식 열분해 장치에 관한 것이다.
Description
본 발명은 열분해 장치 및 그 방법에 관한 것으로, 보다 상세하게는, 가연성 물질을 연속적으로 열분해할 수 있는 연속식 열분해 장치 및 그 방법에 관한 것이다.
저급연료, 폐비닐, 폐플라스틱 또는 유무기 가연성 폐기물, 등을 에너지화하는 기술은 소각, 열분해, 또는 가스화 방식이 있다.
소각의 경우 설비 규모가 커지고 다이옥신, NOX등 대기 오염물질 배출에 따른 대기 오염문제가 심각해진다.
최근에는 가연성 물질을 열분해 또는 가스화하는 기술개발이 활발하다. 특히 열분해의 경우 가연성 물질을 가열하여 기상 유분(오일)을 생산하는 기술로 생산된 에너지는 액상의 오일로 판매도 가능하다.
가스화의 경우 가연성 물질을 가열하여 기상 성분의 연료를 생산하는 기술로 가스엔진을 구동하여 전력을 생산할 수 있고 또는 이를 기반으로 하여 다른 액상연료를 합성할 수 있다.
열분해를 통해 기상 유분을 생산할 수 있는 기존의 공정은 CSTR(continuous stirred tank reactor), 스크류(screw), 로터리킬른(rotary kiln) 등의 반응기를 사용하고 있다.
이들 반응기의 문제점은 연속적인 공정이 어렵거나, 대규모 설비로 개발하기 어렵거나, 열분해시 발생하는 카본에 의해 코킹(coking)이 발생하여 장기적인 운전이 어렵거나, 배출되는 잔유물에 카본 함유량이 높아 에너지 효율이 낮은 점 등과 같은 다양한 문제점으로 인해 실제적으로 상용화가 어렵다.
관련 종래기술을 살펴본다.
한국등록특허공보 제 1293272호는 연속식 열분해 유화 장치 및 그 방법에 관한 것으로, 가연성 물질을 1차적으로 열분해하고, 2차적으로 부분산화 및 연소시켜 탄소 함유량이 적은 재로 배출할 수 있는 것이다.
그러나, 열분해는 흡열반응으로 반응시간이 길어 지속적으로 에너지를 공급하여야 하나, 이 기술은 반응시간을 충분하게 제공하지 못하므로 가연성 물질이 내부에서 충분히 열분해되지 못하고 배출하였으며, 또한 열분해된 고상 잔유물은 별도로 구분되지 않고 열분해 되지 못한 가연성 물질과 동시에 배출하므로 2차적으로 부분산화 및 연소가 되어도 탄소 함유량이 많은 재가 배출되었다.
따라서, 본 발명자들은 상기와 같은 발명의 문제를 해결하여 에너지 효율을 향상시킨 공정을 발명하기에 이르렀다.
(특허문헌 1) 한국 등록특허공보 제1293272호
(특허문헌 2) 한국 등록특허공보 제1607869호
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것이다.
종래의 열분해 장치에서는 가연성 물질의 온도를 균일하게 지속적으로 가열하기 어려워 투입한 가연성 물질의 온도 분포가 다양하게 분포되는 문제가 발생하였다.
따라서, 반응기 내의 온도를 균일하게 맞출 수 있는 연속식 열분해 장치 및 그 방법을 제공하고자 한다.
또한, 제 1 반응기에서 처리된 가연성 물질 중 일부만 제 2 반응기로 배출할 수 있도록 개선한 연속식 열분해 장치 및 그 방법을 제공하고자 한다.
또한, 종래의 열분해 장치에서 배출되는 반응물은 기상 및 액상으로만 배출되고 카본 형태 또는 ash 형태의 고상 잔유물로는 연속적으로 배출하지 못하여 연속 운전에 어려움이 발생하였는데, 이를 개선할 수 있는 연속식 열분해 장치 및 그 방법을 제공하고자 한다.
또한, 종래의 열분해 장치에서 배출되는 최종 잔유물은 카본 함유량이 높은 문제가 발생하여 효율이 좋지 못했기에 이를 개선할 수 있는 연속식 열분해 장치 및 그 방법을 제공하고자 한다.
또한, 종래의 열분해 장치에서는 반응기 내측면에 카본 침적물이 발생되어 반응기의 관리가 어려웠는데, 카본 침적물 발생을 방지할 수 있는 연속식 열분해 유화 장치 및 그 방법을 제공하고자 한다.
또한, 종래의 열분해 반응기에서 생성되는 기상 성분 내에 포함되는 염소의 비율이 높아 활용하기가 어려운 문제를 개선한 연속식 열분해 장치 및 그 방법을 제공하고자 한다.
상기와 같은 과제를 해결하기 위한 본 발명의 일 실시예는, 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200); 상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및 상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400);를 포함하는 연속식 열분해 장치에 있어서, 상기 제 1 반응부(200)는 하나 이상의 하부 스크류형 피더(220)를 포함하며, 상기 하부 스크류형 피더(220)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는 연속식 열분해 장치를 제공한다.
또한, 상기 하부 스크류형 피더(220)는 하부 스크류(221) 및 이를 편심시키는 코킹 제거 장치(224)를 포함하고, 상기 하부 스크류(221)는 상기 제 1 반응부(200)의 내측면 일부와 연속적으로 접촉하여 상기 제 1 반응부(200)의 내측면에 형성된 카본 접착물을 제거하는 것이 바람직하다.
또한, 상기 제 1 반응부(200)는 상기 하부 스크류형 피더(220)의 상부에 위치하는 하나 이상의 상부 스크류형 피더(210)를 더 포함하며, 상기 상부 스크류형 피더(210) 및 상기 하부 스크류형 피더(220)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 열분해 잔유물은 상기 제 1 반응부(200)에 남아 순환되는 것이 바람직하다.
또한, 상기 상부 스크류형 피더(210) 및 상기 하부 스크류형 피더(220)의 사이에 위치하는 내측 가열부(240)를 더 포함하는 것이 바람직하다.
상기와 같은 과제를 해결하기 위한 본 발명의 또 다른 실시예는, 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200); 상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및 상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서, 상기 제 1 반응부(200)는 하나 이상의 교차 회전식 교반장치(250)를 포함하고, 상기 하나 이상의 교차 회전식 교반장치(250)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는 연속식 열분해 장치를 제공한다.
또한, 상기 교차 회전식 교반장치(250)는 스크류(251) 및 이에 편심된 코킹 제거 장치(254)를 포함하고, 상기 스크류(251)는 상기 코킹 제거 장치(254)의 내측면 일부와 연속적으로 접촉하여 상기 제 1 반응부(200)의 내측면에 형성된 카본 접착물을 제거하는 것이 바람직하다.
상기와 같은 과제를 해결하기 위한 본 발명의 또 다른 실시예는, 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200); 상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및 상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서, 상기 제 1 반응부(200)는 하나 이상의 수직 회전식 교반장치(260)를 포함하고, 상기 하나 이상의 수직 회전식 교반장치(260)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는 연속식 열분해 장치를 제공한다.
또한, 상기 수직 회전식 교반장치(260)는 스크류인 것이 바람직하다.
*상기와 같은 과제를 해결하기 위한 본 발명의 또 다른 실시예는, 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200); 상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및 상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서, 상기 제 1 반응부(200)는 다수의 이송판(281)을 포함하는 밸트 회전식 교반장치(280)를 포함하고, 상기 밸트 회전식 교반장치(280)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는 연속식 열분해 장치를 제공한다.
또한, 상기 다수의 이송판(281)은 서로 이격되어 공간을 형성하며, 상기 공간에 상기 가연성 물질이 위치하는 것이 바람직하다.
상기와 같은 과제를 해결하기 위한 본 발명의 또 다른 실시예는, 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200); 상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및 상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서, 상기 제 1 반응부(200)는 스토커식 교반장치(290)를 포함하고, 상기 스토커식 교반장치(290)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는 연속식 열분해 장치를 제공한다.
상기와 같은 과제를 해결하기 위한 본 발명의 실시예들은 또한, 상기 소형 잔유물을 공급받아 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 제 3 반응부(500)를 더 포함하고, 상기 제 3 반응부(500)는, 상기 소형 잔유물, 열분해오일, 비 응축 기상 성분, 합성가스, 상기 제 2 기상 성분 중 하나 이상을 상기 제 3 반응부(500)의 연료로 공급받아 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 것이 바람직하다.
또한, 상기 제 2 반응부(300)에서 분리된 상기 초과 잔유물은 상기 연속식 열분해 장치에서 외부로 배출되는 것이 바람직하다.
또한, 상기 제 1 반응부(200)는, 상기 제 1 반응부(200)의 외측을 감싸는 외측 가열부(230)를 더 포함하고, 상기 제 3 반응부(500)에서 생성된 상기 제 3 기상 성분이 상기 제 1 반응부(200), 상기 외측 가열부(230), 및 내측 가열부(240) 중 어느 하나 이상으로 공급되어 상기 제 1 반응부(200)가 가열되는 것이 바람직하다.
또한, 상기 제 1 반응부(200)에서 배출되는 제 1 기상 성분을 공급받아 기상 성분 내의 염소를 제거하는 염소제거 반응부(600)을 더 포함하는 것이 바람직하다.
또한, 상기 염소제거 반응부(600)는 오일정제 반응부(610)를 포함하며, 상기 오일정제 반응부(610)는 제 1 기상 성분을 공급받아 열분해 오일과 비응축가스를 생산하는 것이 바람직하다.
또한, 상기 염소제거 반응부(600)는 가스화 반응부(620)를 포함하며, 상기 제 1 기상 성분을 공급받아 가스화하여 합성가스를 생산하는 것이 바람직하다.
또한, 상기 제 2 반응부(300)는, 상기 제 1 반응부(200)에서 공급된 상기 열분해 잔유물을 냉각할 수 있는 냉각부(330)를 더 포함하는 것이 바람직하다.
또한, 상기 제 2 반응부(300)는, 가스화 가스를 더 공급받아 상기 열분해 잔유물을 이송하면서 가스화하여 제 2 기상 성분과 가스화 잔유물을 생성하는 것이 바람직하다.
상기와 같은 과제를 해결하기 위한 본 발명의 또 다른 실시예는, (a) 가연성 물질을 공급부(100)로 공급하는 단계; (b) 상기 가연성 물질을 제 1 반응부(200)로 도입하고 건조, 예열 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 단계; (c) 상기 열분해 잔유물을 제 2 반응부(300)로 도입하고 이송 및 냉각시키며 기 설정된 크기 이하의 소형 잔유물과 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 단계; (d) 상기 소형 잔유물을 잔유물 저장부(400)로 도입하는 단계; 및 (e) 상기 제 1 기상 성분에서 생성된 열분해 오일 및 비 응축 가스 성분, 소형 잔유물 중 하나 이상을 제 3 반응부(500)로 도입한 뒤 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 단계;를 포함하며, 상기 (b) 단계에서 건조, 예열 또는 열분해되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되며, 상기 (c) 단계에서 후단까지 이송된 상기 초과 잔유물은 외부로 배출되는 연속식 열분해 방법을 제공한다.
상기와 같은 과제를 해결하기 위한 본 발명의 또 다른 실시예는, (a) 가연성 물질을 공급부(100)로 공급하는 단계; (b) 상기 가연성 물질을 제 1 반응부(200)로 도입하고 건조, 예열 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 단계; (c1) 상기 열분해 잔유물을 제 2 반응부(300)로 도입하고 이송시키며 가스화 가스를 공급받아 열분해 잔유물을 가스화하여 제 2 기상 성분 및 가스화 잔유물을 생성하는 단계; (d1) 상기 가스화 잔유물이 잔유물 저장부(400)로 도입되는 단계; 및 (e1) 상기 제 1 기상 성분에서 생성된 열분해 오일 및 비 응축 가스 성분, 제 2 기상 성분, 가스화 잔유물 중 하나 이상을 제 3 반응부(500)로 도입한 뒤 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 단계;를 포함하고, 상기 (b) 단계에서 건조, 예열 또는 열분해되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는 연속식 열분해 방법을 제공한다.
본 발명에 따른 연속식 열분해 장치 및 그 방법에 의해, 연속적으로 기상 유분을 생산하여 액상 및 비 응축성 기상의 연료를 생산하고 동시에 연속적으로 고발열량의 고체연료를 효율적으로 생산할 수 있다.
또한, 본 발명에 따른 연속식 열분해 장치 및 그 방법에 의해, 최종적으로 배출되는 잔유물은 완전 연소되어 배가스 및 탄소 함유량이 적은 재로 배출될 수 있다.
또한, 본 발명에 따른 연속식 열분해 장치 및 그 방법에 의해, 열분해 장치 내에서 발생하는 기상 및 고상 성분을 이용함으로써, 전체 시스템의 에너지 효율을 보다 향상시킬 수 있다.
또한, 본 발명에 따른 연속식 열분해 장치 및 그 방법에 의해, 카본 침적물이 반응부 내측면에 부착되는 것을 방지할 수 있어, 열분해로 인해 발생하는 코킹 문제를 해결할 수 있다.
또한, 본 발명에 따른 연속식 열분해 장치 및 그 방법에 의해, 기상 유분에 포함될 염소 함량을 감소시킬 수 있다.
또한, 본 발명에 따른 연속식 열분해 장치 및 그 방법에 의해, 기상, 액상, 고상 성분의 열분해 반응물로 전환 생산 가능하다.
도 1a는 본 발명의 제 1 실시예에 따른 열분해 장치의 제 1 방식의 사시도이다.
도 1b는 본 발명의 제 1 실시예에 따른 열분해 장치의 제 2 방식의 사시도이다.
도 1c는 본 발명의 제 1 실시예에 따른 열분해 장치의 A-A'단면도이다.
도 1d는 본 발명의 제 1 실시예에 따른 열분해 장치의 A-A'단면도의 확대도이다.
도 2a는 본 발명의 제 2 실시예에 따른 열분해 장치의 사시도이다.
도 2b는 본 발명의 제 2 실시예에 따른 열분해 장치의 A-A'단면도이다.
도 3a는 본 발명의 제 2 실시예에 따른 열분해 장치의 제 1 방식의 사시도이다.
도 3b는 본 발명의 제 2 실시예에 따른 열분해 장치의 제 2 방식의 사시도이다.
도 3c는 본 발명의제 3 실시예에 따른 열분해 장치의 A-A'단면도이다.
도 4a는 본 발명의 제 4 실시예에 따른 열분해 장치의 사시도이다.
도 4b는 본 발명의제 4 실시예에 따른 열분해 장치의 A-A'단면도이다.
도 5a는 본 발명의 제 5 실시예에 따른 열분해 장치의 사시도이다.
도 5b는 본 발명의 제 5 실시예에 따른 열분해 장치의 A-A'단면도이다.
본 발명에서 "가연성 물질"은 생활폐기물, 산업폐기물, 온실비닐, 종말품 폐비닐, 폐플라스틱. 폐타이어, 전자제품 폐기물 등의 가연성 폐기물, 또는 갈탄, 무연탄, PC(Pet coke), 오일 샌드(oil sand) 등과 같은 저급연료 또는 나무, 바이오메스, 하수 슬러지, 유기성 폐기물 등과 같은 유무기 혼합물이 이용될 수 있으며, 언급되지 않은 기타 다양한 종류의 가연성 폐기물들도 이용될 수 있다.
또한, 본 발명에서 "가연성 물질"은 열분해의 효율을 높이기 위하여 약 0.1 내지 30cm의 크기를 갖는 분쇄물 형태로 제공될 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "열분해"란 가연성 물질을 산소와의 접촉을 제한하는 상태에서 가열하여 가연성 물질의 화학적 분해를 유도하는 반응을 의미한다.
본 발명에서 "건조" 및 "예열"은 일반적으로 사용되는 의미이다.
이하, 본 발명에 따른 연속식 열분해 장치 및 그 방법의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
연속식 열분해 장치의 설명
1) 제 1 실시예: 스크류 피더 교반장치
도 1a 내지 도 1d를 참조하여 제 1 실시예에 따른 연속식 열분해 장치의 일 실시예를 설명한다.
제 1 실시예에 따른 연속식 열분해 장치는 제 1 반응부(200)가 스크류형 피더 교반장치인 연속식 열분해 장치로, 공급부(100), 제 1 반응부(200), 제 2 반응부(300), 잔유물 저장부(400), 제 3 반응부(500) 및 염소제거 반응부(600)을 포함한다.
공급부(100)는 가연성 물질을 제 1 반응부(200)로 공급하는 투입부(110)를 포함한다.
투입부(110)는 제 1 투입부(111) 및 제 1 투입부(111) 하부에 위치하는 제 2 투입부(112)를 포함한다.
제 1 투입부(111) 및 제 2 투입부(112)가 순차적으로 개폐됨으로써 가연성 물질만이 제 1 반응부(200)로 공급될 수 있으며, 이로 인해 외부 공기가 제 1 반응부(200)로 공급되는 것이 방지된다.
구체적으로, 제 1 투입부(111)가 개방되고 가연성 물질이 투입부(110) 사이로 투입되면 제 1 투입부(111)는 폐쇄된다. 그 다음 제 2 투입부(112)가 개방되어 가연성 물질이 제 1 반응부(200)로 공급된다.
도시되어있진 않지만 이 외에도 공급부(100)에는, 외부 공기가 제 1 반응부(200)로 유입되는 것을 막기 위해 스크류 피더, 실린더 이송 피더 등과 같은 장치를 더 포함할 수 있다.
한편, 공급부(100)에서 가연성 물질을 공급 시, 산화칼슘(CaO) 파우더를 추가적으로 공급할 수 있다.
산화칼슘 파우더를 추가적으로 공급할 경우, 가연성 물질에 포함된 염소가 산화칼슘에 흡착되어 염화물을 생성하며 분리되어, 제 1 기상 성분이 외부로 배출될 때 포함될 염소 함량이 감소된다.
제 1 반응부(200)는 300℃ 내지 600℃의 온도에서 공급부(100)에서 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하며, 하나 이상의 하부 스크류형 피더(220) 및 외측 가열부(230)를 포함한다.
제 1 반응부(200)의 내부 온도가 언급한 예시에 한정되지는 않는다.
제 1 반응부(200)에서 생성되는 제 1 기상 성분은 온도가 낮아질 때 응축되어 열분해 오일로 전환하는 응축가스, 응축이 되지 않는 비응축가스인 합성가스(CO, CO2, H2, CH4 등) 또는 수분증기일 수 있다.
또한, 제 1 반응부(200)에서 생성된 열분해 잔유물이 제 2 반응부(300)로 배출할 때, 추가로 투입부를 설치하여 배출시 포함될 수 있는 기상 성분을 차단할 수 있다.
하부 스크류형 피더(220)는 공급된 가연성 물질을 이송하며, 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하기 위한 스크류(221), 중심축(222), 모터(223), 코킹 제거 장치(224) 및 지지부(225)를 포함한다.
하부 스크류형 피더(220)에 의해 이송되며 처리된 열분해 잔유물은 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 가연성 물질은 제 1 반응부(200)에 남아 순환된다.
한편, 하부 스크류형 피더(220)의 개수는 한정되지 않으나, 3개 또는 4개를 병렬로 구성하여 뛰어난 순환효과를 가져올 수도 있다. 피더 각각의 이송 방향은 충분히 처리 되지 않은 가연성 물질의 순환이 용이하도록 결정한다.
코킹 제거 장치(224)는 스크류(221)를 하부 스크류형 피더(220)의 중심축(222)과 편심되도록 위치시킬 수 있으며, 중심축(222)과 편심된 스크류(221)는 제 1 반응부(200)의 내측면 일부와 연속적으로 접촉하여 내측면에 형성된 카본 접착물을 제거한다(도 1d 참조).
지지부(225)는 모터(223)와 연결되며, 하부 스크류형 피더(220)의 위치를 제어할 수 있다.
외측 가열부(230)는 제 1 반응부(200)의 외측을 감싸도록 위치하여 제 1 반응부(200)를 가열한다.
외측 가열부(230)는 선택적으로 제 3 반응부(500)에서 생성된 제 3 기상 성분을 공급받아 사용할 수 있다.
열분해 잔유물이 제 1 반응부(200)에서 제 2 반응부(300)로 분기되는 원리를 상세히 설명한다.
가연성 물질이 제 1 반응부(200) 내에서 열분해 되면서 기상 성분으로 전환되는 열분해 증기는 상부로 배출되고, 열분해 되면서 고체 형태로 전환되는 카본 분말 또는 덩어리 형태의 잔유물은 비중이 무거워져 스크류에 의해 이송되면서 하강한다. 하강된 열분해 잔유물은 하부 스크류형 피더(220)에 의해 제 2 반응부(300)로 이송되고, 상부에 남은 열분해 되지 못한 가연성 물질 및 열분해 중인 물질은 하부 스크류형 피더(220)에 의해 측면 또는 상부로 밀려가 반대로 이송된다.
도 1b를 참조하여, 제 1 실시예의 제 2 방식인 상부 스크류형 피더(210)를 포함하는 방식을 설명한다.
제 1 실시예의 제 2 방식으로, 제 1 반응부(200)에 가연성 물질을 보다 효율적으로 이송, 교반, 순환 및 가열하기 위해 하부 스크류형 피더(220)의 상부에 하나 이상의 상부 스크류형 피더(210)를 추가로 포함하는 방식이다.
상부 스크류형 피더(210)는 스크류(211), 중심축(212), 모터(213) 및 지지부(215)를 포함한다.
상부 스크류형 피더(210)는 앞서 언급한 하부 스크류형 피더(220)와 동일한 구성이므로 반복되는 설명은 생략한다.
한편, 상부 스크류형 피더(210)의 개수는 한정되지 않으나, 3개 또는 4개를 병렬로 구성하여 순환 효과를 극대화할 수도 있다. 각 피더의 이송 방향은 충분히 처리되지 않은 가연성 물질 순환에 용이하도록 결정한다.
상부 스크류형 피더(210) 및 하부 스크류형 피더(220)의 모터(213, 223)는 서로 같은 방향 또는 상이한 방향으로 구동가능하고, 회전 속도 역시 서로 상이하게 운전 가능하다. 이에 따라, 교반장치면에 가연성 물질이 점착되는 것을 방지하고 열분해 되지 못한 가연성 물질이 제 1 반응부(200)에 남아 순환될 수 있도록 운전할 수 있다.
또한, 상부 스크류형 피더(210) 및 하부 스크류형 피더(220) 사이에 위치하는 내측 가열부(240)가 더 포함될 수 있다.
내측 가열부(240)는 앞서 언급한 외측 가열부(230)와 동일한 구성이나, 제 1 반응부(200) 내부 상부 스크류형 피더(210) 및 하부 스크류형 피더(220)의 사이에 위치하는 것으로 반복되는 설명은 생략한다.
도 1c를 참조하여 본 발명의 제 1 실시예에 따른 제 1 반응부(200)의 코킹 제거 방법을 상세히 설명한다.
외측 가열부(230)의 온도는 제 1 반응부(200)의 내부온도를 유지시키기 위해 제 1 반응부(200)의 온도보다 높다. 따라서, 제 1 반응부(200) 바닥의 온도가 제일 높다. 이 때문에 제 1 반응부(200) 내벽면 바닥에 가연성 물질의 열분해 잔유물에 의한 코킹(coking: 카본 접착물) 막이 형성되고 이 때문에 열전달 효율이 낮아진다. 따라서 열전달 효율을 유지시키기 위해서는 이 코킹 막을 지속적으로 제거하여야 한다.
본 발명에서는 코킹 제거 장치(224)에 의해 스크류(221)가 하부 스크류형 피더(220)의 중심축(222)과 편심되도록 위치하게되며 그 위치에서 회전하므로 스크류(221)의 끝이 항상 제 1 반응부(200)의 내벽면 바닥을 마찰하면서 코킹 막을 문질러 제거할 수 있게된다.
즉, 하부 스크류 피더(220)는 피더 원형 끝이 곡면의 바닥에 접촉하면서 회전되어 바닥의 코킹막이 문질러짐으로써 제 1 반응부(200)의 코킹을 제거한다(도 1d 참조).
다른 예로, 하부 스크류형 피더(220)의 한쪽 끝은 모터(223)에 연결되어 있고 다른 쪽 끝은 외팔 보 형태로 운전될 수도 있다. 이 경우, 스크류(221)는 하부 스크류형 피더(220)의 자체 중량의 외팔보 힘으로 마찰하면서 코킹 막을 제거할 수 있다.
바람직하게는, 하부 스크류형 피더(220)의 한쪽 끝은 모터(223)와 지지부(225)에 연결되어 있고 반대쪽 끝은 지지부(225)에 연결되어 있어, 좌측 및 우측의 지지부(225)가 하부 스크류형 피더(220)의 상하 좌우 위치를 제어하고 동시에 모터(223)의 구동 방향 및 구동속도를 제어할 수 있다.
제 2 반응부(300)는 이송부(311), 모터(313), 지지부(315), 냉각부(330) 및 스크린 필터(350)를 포함한다.
제 2 반응부(300)는 제 1 반응부(200)에서 배출된 열분해 잔유물을 이송하고 냉각시킨 열분해 잔유물을 기 설정된 크기 이하의 소형 잔유물과 기 설정된 크기 초과의 초과 잔유물로 분리한다.
제 2 반응부(300) 후단 하부에 설치된 스크린 필터(350)에 의해 냉각된 열분해 잔유물이 후단으로 이송될 때 기 설정된 크기 이하의 소형 잔유물은 스크린 필터(350) 아래로 떨어져 잔유물 저장부(400)로 저장되고, 기 설정된 크기 초과의 초과 잔유물은 후단까지 도달하여 배출구(360)를 통해 외부로 배출된다.
이송부(311)는 바람직한 예로 스크류형 피더일 수 있으며, 도시되어있진 않으나, 로터리형 이송 또는 스토커형 피더일 수도 있다.
지지부(315)는 모터(313)와 연결되어, 이송부(311)의 위치를 제어한다.
냉각부(330)는 제 2 반응부(300) 내부로 유입되는 열분해 잔유물을 냉각시키며, 냉각 효율을 높이기 위해 물, 왁스 또는 고체분말이 함유된 잔사유 등을 분사할 수도 있다.
제 2 반응부(300)의 다른 실시예로, 제 2 반응부(300)는 가스화 가스를 더 공급받아 열분해 잔유물을 가스화하여 제 2 기상 성분과 가스화 잔유물을 생성한다.
이 실시예에서는 냉각부(330)가 사용되지 않는다.
가스화를 위해 필요한 열량은 산소를 포함하는 가스화 가스에 의한 부분산화, 또는 700℃ 내지 900℃인 고온의 가스화 가스일 수 있으며, 그 종류로는 산소, 공기, 스팀, 합성가스 중 어느 하나 이상이며, 제 2 반응부(300)의 하부 또는 상부 쪽에서 공급될 수 있다.
합성가스는 바람직하게는 CO, H2, CH4, CO2, H20 등일 수 있으며, 이에 제한되지는 않는다.
제 2 반응부(300)에서 가스화를 통해 생성된 가스화 잔유물은 잔유물 저장부(400)로 이송된다. 가스화 잔유물에 포함된 카본량은 최소화되며, 이러한 가스화 잔유물은 제 3 반응부(500)로 투입되어 완전 연소가 되거나 또는 외부로 배출된다.
제 2 반응부(300)가 가스화로 운영될 경우, 제 2 반응부(300)는 스크류피더형, 로터리형 이송 또는 스토커형 피더일 수 있으며, 더 바람직하게는 고정층 반응기 또는 유동층 반응기일 수 있다.
잔유물 저장부(400)는 제 2 반응부(300)에서 분리되어진 소형 잔유물 또는 가스화 잔유물을 저장시킨다. 저장된 소형 잔유물 또는 가스화 잔유물은 제 3 반응부(500)로 공급된다.
잔유물 저장부(400)에서 제 2 반응부(300)에서 배출되지 못한 초과 잔유물이 외부로 배출될 수도 있다.
제 3 반응부(500)는 600℃ 이상의 온도에서 잔유물 저장부(400)의 소형 잔유물을 공급받아 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성한다.
제 3 반응부(500)에서 생성된 제 3 기상 성분은 전술한 외측 가열부(230) 및 내측 가열부(240) 중 어느 하나 이상으로 공급되어 외측 가열부(230) 및 내측 가열부(230) 중 어느 하나 이상을 가열시킨다. 필요할 경우, 제 3 기상 성분의 일부를 제 1 반응부(200)에 공급할 수 있다.
제 3 반응부(500)에서 생성된 연소 잔유물은 탄소 함유량이 적은 재(ash)를 포함한다. 재(ash)의 탄소 함유량의 최소 기준은 5% 미만인데, 이는 매립을 위한 최소 기준과 동일한 것이다.
또한, 제 3 반응부(500)의 다른 실시예에서는, 소형 잔유물, 열분해 오일, 비응축가스, 합성가스 및 제 2 기상 성분 중 하나 이상을 공급받아 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성할 수도 있다.
도면에 도시되어 있지 않으나, 본 발명에 따른 열분해 장치의 제 1 반응부(200), 제 2 반응부(300) 및 제 3 반응부(500) 중 어느 하나 이상에 직접가열장치를 포함할 수 있다. 직접가열장치는 공기, 산소, 스팀 및 가스 연료를 이용하는 버너이거나, 외측에서 내측으로 삽입되는 렌스이거나, 플라즈마 발생장치이다.
염소제거 반응부(600)는 제 1 기상 성분을 공급받아 기상 성분 내의 염소를 제거하며, 오일정제 반응부(610) 및 가스화 반응부(620) 중 어느 하나 이상을 포함한다.
오일정제 반응부(610)는 제 1 기상 성분을 공급받아 열분해 오일과 비응축가스를 생산한다.
가스화 반응부(620)는 제 1 기상 성분을 공급받아 가스화하여 합성가스를 생산한다.
염소제거 반응부(600)에서 배출되는 열분해 오일, 비응축가스, 합성가스와 제 1 반응부(200)에서 배출되는 제 1 기상 성분에 의한 열분해오일 및 비응축가스, 제 2 반응부(300)에서 배출되는 제 2 기상 성분 중 어느 하나 이상을 발전기 엔진에 공급하여 산화 및 연소시켜 발전기를 구동하여 전기를 생산할 수 있다.
2) 제 2 실시예: 교차 회전식 교반장치
본 발명의 제 2 실시예는 제 1 반응부(200)가 교차 회전식 교반장치(250)를 포함하는 것이다.
따라서, 제 1 반응부(200)를 제외한 제 1 실시예와 동일한 구성의 설명은 생략한다.
도 2a 및 도 2b를 참조하여 제 2 실시예에 따른 열분해 장치를 설명한다.
교차 회전식 교반장치(250)는 제 1 반응부(200)로 공급된 가연성 물질을 처리하며 제 2 반응부(300)로 이송시키며, 스크류(251), 중심축(252), 모터(253), 코킹 제거 장치(254) 및 지지부(255)를 포함한다.
스크류(251)는 제 1 실시예의 스크류(211, 221)와 달리 진행 공정방향의 직각인 수평 방향으로 위치한다.
코킹 제거 장치(254)는 스크류(251)를 지지할 수 있도록 위치하며, 코킹 제거 장치(254)의 중심이 스크류(251)와 다소 편심되도록 위치되어 스크류(251)와 제 1 반응부(200) 바닥면의 탄소 접착물을 제거할 수 있다.
수평 회전식 교반장치(250)에 의해 이송되며 처리된 열분해 잔유물은 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 가연성 물질은 제 1 반응부(200)에 남아 순환된다.
3) 제 3 실시예: 수직 회전식 교반장치
본 발명의 제 3 실시예는 제 1 반응부(200)가 수직 회전식 교반장치(260)를 포함하는 것이다.
따라서, 제 1 반응부(200)를 제외한 제 1 실시예와 동일한 구성의 설명은 생략한다.
도 3a를 참조하여 제 3 실시예에 따른 열분해 장치의 제 1 방식을 설명한다.
수직 회전식 교반장치(260)는 제 1 반응부(200)로 공급된 가연성 물질을 처리하며 제 2 반응부(300)로 이송시키며, 날개(261), 중심축(262), 모터(263) 및 지지부(265)를 포함한다.
중심축(262)은 제 1 반응부(200)의 상부와 하부를 관통하도록 수직으로 위치하며, 그 외측에서 다수의 날개(261)가 연장된다(도 3c의 좌측 도 참조).
도 3b를 참조하여 제 3 실시예의 제 2 방식인, 수직 회전식 교반장치(260A)를 설명한다.
수직 회전식 교반장치(260A)는 제 1 반응부(200)로 공급된 가연성 물질을 처리하여 제 2 반응부(300)로 이송시키며, 스크류(261A), 중심축(262), 모터(263) 및 지지부(265)를 포함한다.
제 3 실시예의 제 2 방식은 제 3 실시예의 제 1 방식과 날개부분만 다른 것으로, 중심축(262)과 연결되는 날개(261) 대신 나사산을 형성하는 스크류(261A)를 포함한다(도 3c의 우측도 참조).
도 3c를 더 참조하여 제 3 실시예(두가지 방식)를 부연 설명하면, 각각의 수직 회전식 교반장치(260, 260A)가 가연성 물질을 상부에서 하부로 이송하면서 열분해하고 다음 수직 회전식 교반장치(260, 260A)가 가연성 물질을 하부에서 열분해하면서 상부로 이송하여 다수의 수직 회전식 교반장치(260, 260A)에 의해 가연성 물질이 제 2 반응부(300)로 이송된다.
수직 회전식 교반장치(260, 260A)에 의해 이송되며 처리된 열분해 잔유물은 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 가연성 물질은 제 1 반응부(200)에 남아 순환된다.
한편, 수직 회전식 교반장치(260, 260A)는 하나 이상의 병렬로 구성하는 것도 가능하다.
제 1 실시예와 제 2 실시예 및 제 3 실시예에 따른 교반장치의 경우 도 1(f)에 도시된 바와 같이 이송 주걱(paddle)을 포함하는 가지형으로 일 수도 있다.
4) 제 4 실시예: 밸트 회전식 교반장치
본 발명의 제 4 실시예는 제 1 반응부(200)가 밸트 회전식 교반장치(280)를 포함하는 것이다.
따라서, 제 1 반응부(200)를 제외한 제 1 실시예와 동일한 구성의 설명은 생략한다.
도 4a 및 도 4b를 참조하여 제 4 실시예에 따른 열분해 장치를 설명한다.
밸트 회전식 교반장치(280)는 제 1 반응부(200)로 공급된 가연성 물질을 제 2 반응부(300)로 이송시키며, 이송판(281), 롤러(282), 모터(283) 및 지지부(285)를 포함한다.
다수의 롤러(282)를 감싸는 밸트의 외측에서 수직으로 연장되는 다수의 이송판(281)은 이격되어 공간을 형성하며 동작되고, 이 이격된 공간들 각각에 제 1 반응부(200)로 공급된 가연성 물질들이 위치하여 처리된다.
밸트 회전식 교반장치(280)에 의해 이송되며 처리된 열분해 잔유물은 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 가연성 물질은 제 1 반응부(200)에 남아 순환된다.
5) 제 5 실시예: 스토커식 교반장치
본 발명의 제 5 실시예는 제 1 반응부(200)가 스토커식 교반장치(290)를 포함하는 것이다.
따라서, 제 1 반응부(200)를 제외한 제 1 실시예와 동일한 구성의 설명은 생략한다.
도 5a 및 도 5b를 참조하여 제 5 실시예에 따른 열분해 장치를 설명한다.
스토커식 교반장치(290)는 제 1 반응부(200)로 공급된 가연성 물질을 다수의 스토커식 밸트를 이용해 처리하여 제 2 반응부(300)로 이송시킨다.
스토커식 교반장치(290)에 의해 이송되며 처리된 열분해 잔유물은 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 가연성 물질은 제 1 반응부(200)에 남아 순환된다.
연속식 열분해 방법의 설명
본 발명의 연속식 열분해 방법은 (a) 가연성 물질을 공급부(100)로 공급하는 단계; (b) 상기 가연성 물질을 제 1 반응부(200)로 도입하고 건조, 예열 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 단계; (c) 상기 열분해 잔유물을 제 2 반응부(300)로 도입하고 이송 및 냉각시키며 기 설정된 크기 이하의 소형 잔유물과 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 단계; (d) 상기 소형 잔유물을 잔유물 저장부(400)로 도입하는 단계; 및 (e) 상기 제 1 기상 성분에서 생성된 열분해 오일 및 비 응축 가스 성분, 소형 잔유물 중 하나 이상을 제 3 반응부(500)로 도입한 뒤 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 단계;를 수행한다.
(a) 단계에서 산화칼슘(CaO) 파우더를 추가적으로 공급할 수 있으며, 그 내부의 온도는 직접가열장치(미도시), 내측 가열부(230) 또는 외측 가열부(240)에 의해 300~ 600℃를 유지한다.
(b) 단계에서 건조, 예열 또는 열분해되지 않은 상기 가연성 물질은 제 1 반응부(200)에 남아 순환된다.
(c) 단계에서 후단까지 이송된 상기 초과 잔유물은 외부로 배출된다.
(e) 단계에서 생성된 제 2 기상 성분은 제 1 반응부(200) 및 제 1 반응부(200)의 외측을 둘러싸는 외측 가열부(230) 중 어느 하나 이상으로 도입된다.
다른 실시예에 따른 연속식 열분해 방법은 (c) 단계, (d) 단계 및 (e) 단계가 상이하다.
다른 실시예에 따른 연속식 열분해 방법은 (b) 단계 이후에, (c1) 상기 열분해 잔유물을 제 2 반응부(300)로 도입하고 이송시키며 가스화 가스를 공급받아 열분해 잔유물을 가스화하여 제 2 기상 성분 및 가스화 잔유물을 생성하는 단계; (d1) 상기 가스화 잔유물이 잔유물 저장부(400)로 도입되는 단계; 및 (e1) 상기 제 1 기상 성분에서 생성된 열분해 오일 및 비 응축 가스 성분, 제 2 기상 성분, 가스화 잔유물 중 하나 이상을 제 3 반응부(500)로 도입한 뒤 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 단계;를 수행한다.
제 1 반응부(200) 및 제 3 반응부(500)가 스토커식인 연속식 열분해 장치, 제 1 반응부(200)가 스토커식이며 제 3 반응부(500)가 로터리킬른식인 연속식 열분해 장치 또는 제 1 반응부(200)가 로터리킬른식이며 제 3 반응부(500)가 스토커식인 연속식 열분해 장치도 본 발명의 기술적 범위에 포함되는 것은 자명하다.
이상, 여기에서는 본 발명을 특정 실시예에 관련하여 도시하고 설명하였지만, 본 발명이 그에 한정되는 것은 아니며, 이하의 특허청구의 범위는 본 발명의 정신과 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변형될 수 있다는 것을 당업계에서 통상의 지식을 가진 자가 용이하게 알 수 있다.
(부호의 설명)
100: 공급부
110: 투입부
111: 제 1 투입부
112: 제 2 투입부
200: 제 1 반응부
210: 상부 스크류형 피더
211: 상부 스크류
212: 상부 중심축
213: 상부 모터
215: 지지부
220: 하부 스크류형 피더
221: 하부 스크류
222: 하부 중심축
223: 하부 모터
224: 코킹 제거 장치
225: 지지부
230: 외측 가열부
240: 내측 가열부
250: 수평 회전식 교반장치
251: 스크류
252: 중심축
253: 모터
254: 코킹 제거 장치
255: 지지부
260, 260A: 수직 회전식 교반장치
261: 날개
261A: 스크류
262: 중심축
263: 모터
265: 지지부
280: 밸트 회전식 교반장치
281: 이송판
282: 이송롤러
283: 모터
285: 지지부
290: 스토커 교반장치
291: 이송밸트
300: 제 2 반응부
310: 이송장치
313: 이송장치 모터
330: 냉각부
350: 스크린 필터
360: 배출구
400: 잔유물 저장부
500: 제 3 반응부
600: 염소제거 반응부
610: 오일정제 반응부
620: 가스화 반응부
Claims (21)
- 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200);상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400);를 포함하는 연속식 열분해 장치에 있어서,상기 제 1 반응부(200)는 하나 이상의 하부 스크류형 피더(220)를 포함하며,상기 하부 스크류형 피더(220)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는,연속식 열분해 장치.
- 제 1 항에 있어서,상기 하부 스크류형 피더(220)는 하부 스크류(221) 및 이를 편심시키는 코킹 제거 장치(224)를 포함하고, 상기 하부 스크류(221)는 상기 제 1 반응부(200)의 내측면 일부와 연속적으로 접촉하여 상기 제 1 반응부(200)의 내측면에 형성된 카본 접착물을 제거하는,연속식 열분해 장치.
- 제 1 항에 있어서,상기 제 1 반응부(200)는 상기 하부 스크류형 피더(220)의 상부에 위치하는 하나 이상의 상부 스크류형 피더(210)를 더 포함하며,상기 상부 스크류형 피더(210) 및 상기 하부 스크류형 피더(220)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는,연속식 열분해 장치.
- 제 3 항에 있어서,상기 상부 스크류형 피더(210) 및 상기 하부 스크류형 피더(220)의 사이에 위치하는 내측 가열부(240)를 더 포함하는,연속식 열분해 장치.
- 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200);상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서,상기 제 1 반응부(200)는 하나 이상의 교차 회전식 교반장치(250)를 포함하고,상기 하나 이상의 교차 회전식 교반장치(250)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는,연속식 열분해 장치.
- 제 5 항에 있어서,상기 교차 회전식 교반장치(250)는 스크류(251) 및 이에 편심된 코킹 제거 장치(254)를 포함하고,상기 스크류(251)는 상기 코킹 제거 장치(254)의 내측면 일부와 연속적으로 접촉하여 상기 제 1 반응부(200)의 내측면에 형성된 카본 접착물을 제거하는,연속식 열분해 장치.
- 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200);상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서,상기 제 1 반응부(200)는 하나 이상의 수직 회전식 교반장치(260)를 포함하고,상기 하나 이상의 수직 회전식 교반장치(260)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는,연속식 열분해 장치.
- 제 7 항에 있어서,상기 수직 회전식 교반장치(260)는 스크류인,연속식 열분해 장치.
- 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200);상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서,상기 제 1 반응부(200)는 다수의 이송판(281)을 포함하는 밸트 회전식 교반장치(280)를 포함하고,상기 밸트 회전식 교반장치(280)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는,연속식 열분해 장치.
- 제 9 항에 있어서,상기 다수의 이송판(281)은 서로 이격되어 공간을 형성하며, 상기 공간에 상기 가연성 물질이 위치하는,연속식 열분해 장치.
- 공급부(100)로부터 공급되는 가연성 물질을 건조, 예열, 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 제 1 반응부(200);상기 제 1 반응부(200)로부터 배출된 열분해 잔유물을 이송하며 기 설정된 크기 이하의 소형 잔유물 및 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 제 2 반응부(300); 및상기 기 설정된 크기 이하의 소형 잔유물을 저장시키는 잔유물 저장부(400); 를 포함하는 연속식 열분해 장치에 있어서,상기 제 1 반응부(200)는 스토커식 교반장치(290)를 포함하고,상기 스토커식 교반장치(290)에 의해 이송된 상기 열분해 잔유물은 상기 제 2 반응부(300)로 배출되고, 건조, 예열, 및 열분해 중 어느 하나 이상으로 충분히 처리되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는,연속식 열분해 장치.
- 제 1 항 내지 제 11 항 중 어느 한 항에 있어서,상기 소형 잔유물을 공급받아 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 제 3 반응부(500)를 더 포함하고,상기 제 3 반응부(500)는,상기 소형 잔유물, 열분해오일, 비 응축 기상 성분, 합성가스, 상기 제 2 기상 성분 중 하나 이상을 상기 제 3 반응부(500)의 연료로 공급받아 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는,연속식 열분해 장치.
- 제 1 항 내지 제 11 항에 있어서,상기 초과 잔유물은 상기 연속식 열분해 장치에서 외부로 배출되는,연속식 열분해 장치.
- 제 12 항에 있어서,상기 제 1 반응부(200)는,상기 제 1 반응부(200)의 외측을 감싸는 외측 가열부(230)를 더 포함하고,상기 제 3 반응부(500)에서 생성된 상기 제 3 기상 성분이 상기 제 1 반응부(200), 상기 외측 가열부(230), 및 내측 가열부(240) 중 어느 하나 이상으로 공급되어 상기 제 1 반응부(200)가 가열되는,연속식 열분해 장치.
- 제 1 항 내지 제 11 항에 있어서,상기 제 1 반응부(200)에서 배출되는 상기 제 1 기상 성분을 공급받아 기상 성분 내의 염소를 제거하는 염소제거 반응부(600)를 더 포함하는,연속식 열분해 장치.
- 제 15 항에 있어서,상기 염소제거 반응부(600)는 오일정제 반응부(610)를 포함하며,상기 오일정제 반응부(610)는 상기 제 1 기상 성분을 공급받아 열분해 오일과 비응축가스를 생산하는,연속식 열분해 장치.
- 제 15 항에 있어서,상기 염소제거 반응부(600)는 가스화 반응부(620)를 포함하며,상기 제 1 기상 성분을 공급받아 가스화하여 합성가스를 생산하는,연속식 열분해 장치.
- 제 1 항 내지 제 11 항 중 어느 한 항에 있어서,상기 제 2 반응부(300)는,상기 제 1 반응부(200)에서 공급된 상기 열분해 잔유물을 냉각할 수 있는 냉각부(330)를 더 포함하는,연속식 열분해 장치.
- 제 1 항 내지 제 11 항 중 어느 한 항에 있어서,상기 제 2 반응부(300)는,가스화 가스를 더 공급받아 상기 열분해 잔유물을 이송하면서 가스화하여 제 2 기상 성분과 가스화 잔유물을 생성하는,연속식 열분해 장치.
- (a) 가연성 물질을 공급부(100)로 공급하는 단계;(b) 상기 가연성 물질을 제 1 반응부(200)로 도입하고 건조, 예열 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 단계;(c) 상기 열분해 잔유물을 제 2 반응부(300)로 도입하고 이송 및 냉각시키며 기 설정된 크기 이하의 소형 잔유물과 상기 기 설정된 크기 초과의 초과 잔유물로 분리하는 단계;(d) 상기 소형 잔유물을 잔유물 저장부(400)로 도입하는 단계; 및(e) 상기 제 1 기상 성분에서 생성된 열분해 오일 및 비 응축 가스 성분, 소형 잔유물 중 하나 이상을 제 3 반응부(500)로 도입한 뒤 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 단계;를 포함하며,상기 (b) 단계에서 건조, 예열 또는 열분해되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되며,상기 (c) 단계에서 후단까지 이송된 상기 초과 잔유물은 외부로 배출되는,연속식 열분해 방법.
- (a) 가연성 물질을 공급부(100)로 공급하는 단계;(b) 상기 가연성 물질을 제 1 반응부(200)로 도입하고 건조, 예열 및 열분해 중 어느 하나 이상으로 처리하여 제 1 기상 성분 및 열분해 잔유물을 생성하는 단계;(c1) 상기 열분해 잔유물을 제 2 반응부(300)로 도입하고 이송시키며 가스화 가스를 공급받아 열분해 잔유물을 가스화하여 제 2 기상 성분 및 가스화 잔유물을 생성하는 단계;(d1) 상기 가스화 잔유물이 잔유물 저장부(400)로 도입되는 단계; 및(e1) 상기 제 1 기상 성분에서 생성된 열분해 오일 및 비 응축 가스 성분, 제 2 기상 성분, 가스화 잔유물 중 하나 이상을 제 3 반응부(500)로 도입한 뒤 산화 및 연소시켜 제 3 기상 성분 및 연소 잔유물을 생성하는 단계;를 포함하고,상기 (b) 단계에서 건조, 예열 또는 열분해되지 않은 상기 가연성 물질은 상기 제 1 반응부(200)에 남아 순환되는,연속식 열분해 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2016/012482 WO2018084330A1 (ko) | 2016-11-01 | 2016-11-01 | 연속식 열분해 장치 및 열분해 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2016/012482 WO2018084330A1 (ko) | 2016-11-01 | 2016-11-01 | 연속식 열분해 장치 및 열분해 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018084330A1 true WO2018084330A1 (ko) | 2018-05-11 |
Family
ID=62076742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/012482 WO2018084330A1 (ko) | 2016-11-01 | 2016-11-01 | 연속식 열분해 장치 및 열분해 방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018084330A1 (ko) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108485686A (zh) * | 2018-05-28 | 2018-09-04 | 青岛伊诺威能源化工新技术有限公司 | 双列混合流程内外动态加热固体有机物热解组合装置 |
GB2574833B (en) * | 2018-06-19 | 2021-02-17 | Waste To Energy Tech Ltd | Pyrolysis system and method |
GB2587566A (en) * | 2018-06-19 | 2021-03-31 | Waste To Energy Tech Ltd | Pyrolysis system and method |
CN114455584A (zh) * | 2022-02-11 | 2022-05-10 | 河南科技大学 | 一种生物质炭的制备装置及其制备方法 |
KR20220148653A (ko) * | 2021-04-29 | 2022-11-07 | 김정희 | 폐비닐 처리장치 |
US11999920B2 (en) | 2020-09-14 | 2024-06-04 | Ecolab Usa Inc. | Cold flow additives for plastic-derived synthetic feedstock |
US12031097B2 (en) | 2021-10-14 | 2024-07-09 | Ecolab Usa Inc. | Antifouling agents for plastic-derived synthetic feedstocks |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200371773Y1 (ko) * | 2004-09-25 | 2005-01-03 | 구재완 | 폐합성 고분자화합물의 연속식 열분해 시스템 |
KR101069388B1 (ko) * | 2009-05-11 | 2011-10-04 | 주식회사 동성에코어 | 건식 열분해 카본블랙 배출장치 |
KR101131170B1 (ko) * | 2010-03-03 | 2012-03-28 | 한국생산기술연구원 | 다단계 열분해 장치 및 다단계 열분해 방법 |
KR101293272B1 (ko) * | 2010-06-18 | 2013-08-09 | 한국생산기술연구원 | 연속식 열분해 유화 장치 및 그 방법 |
KR101397378B1 (ko) * | 2013-06-27 | 2014-05-19 | 한국생산기술연구원 | 2단계 열분해 가스화 장치 및 2단계 열분해 가스화 방법 |
-
2016
- 2016-11-01 WO PCT/KR2016/012482 patent/WO2018084330A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200371773Y1 (ko) * | 2004-09-25 | 2005-01-03 | 구재완 | 폐합성 고분자화합물의 연속식 열분해 시스템 |
KR101069388B1 (ko) * | 2009-05-11 | 2011-10-04 | 주식회사 동성에코어 | 건식 열분해 카본블랙 배출장치 |
KR101131170B1 (ko) * | 2010-03-03 | 2012-03-28 | 한국생산기술연구원 | 다단계 열분해 장치 및 다단계 열분해 방법 |
KR101293272B1 (ko) * | 2010-06-18 | 2013-08-09 | 한국생산기술연구원 | 연속식 열분해 유화 장치 및 그 방법 |
KR101397378B1 (ko) * | 2013-06-27 | 2014-05-19 | 한국생산기술연구원 | 2단계 열분해 가스화 장치 및 2단계 열분해 가스화 방법 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108485686A (zh) * | 2018-05-28 | 2018-09-04 | 青岛伊诺威能源化工新技术有限公司 | 双列混合流程内外动态加热固体有机物热解组合装置 |
GB2574833B (en) * | 2018-06-19 | 2021-02-17 | Waste To Energy Tech Ltd | Pyrolysis system and method |
GB2587566A (en) * | 2018-06-19 | 2021-03-31 | Waste To Energy Tech Ltd | Pyrolysis system and method |
GB2587566B (en) * | 2018-06-19 | 2021-10-20 | Waste To Energy Tech Ltd | Pyrolysis system and method |
US11999920B2 (en) | 2020-09-14 | 2024-06-04 | Ecolab Usa Inc. | Cold flow additives for plastic-derived synthetic feedstock |
KR20220148653A (ko) * | 2021-04-29 | 2022-11-07 | 김정희 | 폐비닐 처리장치 |
KR102600143B1 (ko) | 2021-04-29 | 2023-11-09 | 김정희 | 폐비닐 처리장치 |
US12031097B2 (en) | 2021-10-14 | 2024-07-09 | Ecolab Usa Inc. | Antifouling agents for plastic-derived synthetic feedstocks |
CN114455584A (zh) * | 2022-02-11 | 2022-05-10 | 河南科技大学 | 一种生物质炭的制备装置及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018084330A1 (ko) | 연속식 열분해 장치 및 열분해 방법 | |
US8443741B2 (en) | Waste treatment process and apparatus | |
US7658155B2 (en) | Waste treatment process and apparatus | |
WO2015122688A1 (ko) | 바이오 촤 생산 시스템 및 바이오 촤 생산 방법 | |
WO2013094879A1 (ko) | 액체금속을 이용한 열분해 장치 | |
WO2012051958A1 (zh) | 废弃物处理设备 | |
WO2012091335A2 (ko) | 코크스용 석탄 건조 장치 및 건조 방법 | |
WO2013025019A2 (ko) | 중앙식 연속 아스콘 생산장치 및 그 방법 | |
WO2018048179A1 (ko) | 열매체 순환형 가연성물질 열화학적 전환 방법 및 시스템 | |
WO2013094878A1 (ko) | 액체금속을 이용한 열분해 장치 | |
WO2021145736A1 (en) | Cooking appliance | |
WO2013094859A1 (ko) | 유기물 열가수분해 시스템의 운전로직 | |
WO2017159960A1 (ko) | 엑스선관모듈의 절연유 교체장치와 절연유 교체방법 | |
JP2000296378A (ja) | 廃棄物の処理方法 | |
JP2002372216A (ja) | 廃棄物ガス化溶融炉 | |
WO2013016866A1 (en) | Novel microwave assisted flash pyrolysis system and method thereof | |
WO2010024545A2 (ko) | 수직형 소성로를 이용한 자열 소성체 제조방법 | |
WO2016006785A1 (ko) | 연소기 독립형 유동층 간접 가스화 시스템 | |
WO2024155083A1 (ko) | 고온 개질 설비 및 이를 이용한 수소 제조 방법 | |
WO2020235725A1 (ko) | 저속 열분해를 통해 생성된 바이오 오일 포집 방법 및 장치 | |
KR20110138105A (ko) | 연속식 열분해 유화 장치 및 그 방법 | |
WO2010107263A2 (ko) | 슬러지 가수분해 장치, 이를 이용한 슬러지 가수분해 방법, 슬러지 가수분해 장치에 구비되는 접촉식 열교환 유니트 및 증기식 열교환 유니트 | |
WO2021029501A1 (ko) | 고형연료를 이용한 스팀 발생 장치 | |
WO2024155084A1 (ko) | 고온 개질 설비 | |
WO2024039123A1 (ko) | 폐기물의 열분해 장치 및 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16920571 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/10/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16920571 Country of ref document: EP Kind code of ref document: A1 |