[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018078207A1 - Módulos de captación de intensidad de fase y/u homopolar montados conjuntamente en un pasatapas de cables - Google Patents

Módulos de captación de intensidad de fase y/u homopolar montados conjuntamente en un pasatapas de cables Download PDF

Info

Publication number
WO2018078207A1
WO2018078207A1 PCT/ES2017/070717 ES2017070717W WO2018078207A1 WO 2018078207 A1 WO2018078207 A1 WO 2018078207A1 ES 2017070717 W ES2017070717 W ES 2017070717W WO 2018078207 A1 WO2018078207 A1 WO 2018078207A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
phase
modular system
intensity
bushing
Prior art date
Application number
PCT/ES2017/070717
Other languages
English (en)
French (fr)
Inventor
Luis RANEDO TORRES
Miguel ÁLVAREZ ESCALONA
José Luis Sabas Fernandez
Juan Antonio Sanchez Ruiz
Original Assignee
Ormazabal Protection & Automation, S.L.U.
Ormazabal Y Cia., S.L.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ormazabal Protection & Automation, S.L.U., Ormazabal Y Cia., S.L.U. filed Critical Ormazabal Protection & Automation, S.L.U.
Priority to AU2017349300A priority Critical patent/AU2017349300A1/en
Priority to US16/345,134 priority patent/US11189421B2/en
Priority to CN201780072501.2A priority patent/CN110024063A/zh
Publication of WO2018078207A1 publication Critical patent/WO2018078207A1/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/38Instruments transformers for polyphase ac
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/53Bases or cases for heavy duty; Bases or cases for high voltage with means for preventing corona or arcing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • H01F2038/305Constructions with toroidal magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0356Mounting of monitoring devices, e.g. current transformers

Definitions

  • the present invention is about a phase and / or homopolar current sensing system, for application in high voltage electrical switchgear, with the characteristic that the collection system comprises modules independent of each other, which are installed at the connection point between at least one bushing and a connector.
  • the network cables reach the cable compartment and in the same compartment they are connected to the electrical equipment or cell, establishing an isolated and shielded connection, in particular a connection is made between at least one bushing of the cell and at least one cable connector Network
  • current and / or voltage sensors are usually installed in the cable compartment, which provide low signal intensity and voltage values proportional to the amplitude of the current and voltage values of the high voltage part. These current and voltage values are conditioned and processed in an electronic data acquisition system for protection, measurement and / or control.
  • the current collection in the cable compartment is carried out by inductive toroidal sensors.
  • the phase intensity and the earth fault or homopolar intensity can be captured.
  • the phase intensity sensors are integrated directly into the connection elements, that is, the sensors are installed covering each of the phases in the connection point between the bushing of the cell and the connectors of the network cables.
  • the earth fault or homopolar intensity is obtained from a sensor also installed in the cable compartment, exactly it is installed on the network cables, covering all phases by means of a sensor (as shown in the example of the figure 1 corresponding to the state of the art). This is the disadvantage that the homopolar intensity sensors have to be installed and tested in the field to avoid any installation error.
  • WO2015064118A1 describes a support or module in which phase intensity sensors and homopolar intensity sensors can be incorporated, both sensors and the module being integrated in a insulating material as a single piece, and therefore being able to install the module at the connection point between the cell bushing and the connectors of the network cables.
  • This last example has the disadvantage that both the phase intensity sensors and the homopolar intensity sensor are integrated in the same module, which means having to replace the entire module due to the poor condition of one of the two sensors, as well as the impossibility of installing the different sensors at different times.
  • the connectors of the network cables can be of the screw or plug-in type.
  • plug-in connectors they need a fixing element that comprises at least one fork that engages in a support that at the same time is attached to the cell wall. Said fork must pass through the interior of the phase intensity sensor, which forces the toroidal phase intensity sensor to have a larger internal diameter, and therefore a larger space is necessary for the installation of the phase intensity sensors, which further complicates the installation of the homopolar intensity sensor at that same point.
  • the lack of space entails the disadvantage that the intensity sensors are less precise, that is, the transformation ratio, the measuring range, the precision power and the saturation intensity are subject to the space available for the assembly of the intensity sensors and, therefore, in the current designs the performance of the intensity sensors is limited.
  • the modular intensity capture system is intended to be installed in the connection of the network cables with the cell, in an insulated and shielded way, specifically at the connection point between at least one bushing and at least one connector of at least a network cable, solving the aforementioned problems.
  • the modular system of the present invention provides values of phase intensity and / or earth fault or homopolar.
  • the system comprises at least a first module that incorporates encapsulated in an insulating material at least one intensity sensor for the acquisition of the phase intensity, which can comprise at least one lateral output of the phase intensity signal captured, said first single-phase or three-phase module can be, that is, one module may be available for each phase or a single module for the three phases, the module having in this last case, three intensity sensors and the phases segregated from each other.
  • This modular system can also supply earth fault or homopolar intensity values, comprising at least a second module, independent of the first module, which incorporates at least one homopolar intensity sensor encapsulated in an insulating material, and covering all the phases for the acquisition of homopolar intensity. Since, if both modules are included, the first and second modules are independent of each other, this independence between modules makes it unnecessary to completely replace the modular system, if the circumstances required having to replace, add or remove any of they.
  • the first module and / or the second module are installed directly on the connection elements, that is, at the connection point between at least one bushing and at least one connector of at least one network cable.
  • the system of the present invention comprises a support at said connection point, which may be connected to the ground potential of the bushing or isolated from said ground potential.
  • the modular system of the present invention is installed, adjusted and checked at the factory, so that assembly and field connection work is eliminated, eliminating installation errors and reducing the time and cost of installation labor .
  • the first module can be monophasic, so that one module is available for each phase to capture the phase intensity.
  • the system can also comprise a second module for the acquisition of homopolar intensity, covering through this second module all phases.
  • the second module comprises an annular and inclined shape and is arranged around the at least one connector, thus allowing its installation next to the first module.
  • the network cable connectors that can be used in this case are screwable.
  • the first module can be three-phase, so that a single module can be provided that comprises a parallelogram shape, such as rectangular, where each of the phases is segregated from each other.
  • This first three-phase module may comprise three phase intensity sensors encapsulated, which may comprise independent cores or laminated cores of C-shaped plates, the three cores being assembled to each other in the latter case.
  • phase intensity sensors are integrated inside the first module so all of them are mounted in the same plane, leaving no advance or delayed sensor with respect to the rest, thus minimizing the space required for installation and, therefore, , being able to install next to the first module a second module that includes encapsulated a homopolar intensity sensor that covers all phases.
  • the transformation ratio and accuracy class can be adjusted based on the number of plates and the height of the sensor (sheet length), with what the core winding can be major or minor.
  • the core winding work is also facilitated, so that each of the sensors can be wound separately first and then carried out the assembly between sensors.
  • the modular system of the present invention makes it possible to considerably improve the transformation ratio, the measuring range, the precision power and the saturation intensity with respect to conventional designs occupying the same useful space in the cell or electrical equipment.
  • the modular system can be used with both screw-in and plug-in cable connectors, since the parallelogram shape of the first module allows the fixing element to pass through in the case of plug-in connectors .
  • the first and second modules comprising the intensity sensors integrated may consist of housings that comprise the intensity sensors encapsulated within them in an insulating material, such as epoxy resin.
  • Figure 1. Shows a perspective view of the installation of a homopolar intensity sensor according to the current state of the art.
  • Figure 2. Shows a perspective view of the modular system object of the present invention according to a first embodiment, where the network cable connectors are screwable.
  • Figure 3. Shows a perspective view of the modular system object of the present invention according to a second embodiment, where the network cable connectors are screwable.
  • Figure 4.- Shows a perspective view of the modular system of Figure 3, not including the second module, where the network cable connectors are pluggable.
  • Figure 5. Shows a perspective view of the first module and its respective phase intensity sensors according to the second embodiment of Figures 3 and 4.
  • Figure 6. Shows a perspective view of the second module, where the homopolar intensity sensor according to the second embodiment of Figures 3 and 4 is shown.
  • Figure 7. Shows a perspective view of the modular system object of the present invention according to a third embodiment, where the network cable connectors are screwable.
  • Figure 8.- Shows a perspective view of the modular system of Figure 7, not including the second module, where the network cable connectors are pluggable.
  • Figure 9. Shows a perspective view of the phase intensity sensors according to the third embodiment of Figures 7 and 8.
  • Figure 10. Shows a schematic side view of the modular system according to the first embodiment of Figure 2, where a particular inclination of the second module can be seen.
  • Figures 2-4 and 7-8 show different embodiments of the modular intensity capture system object of the present invention.
  • the modular system comprises at least one phase intensity sensor (5) for capturing the phase intensity encapsulated in at least a first module (7) and a homopolar intensity sensor (6) for capturing the homopolar intensity encapsulated in a second module (8).
  • the first module (7) is single-phase and comprises a phase intensity sensor (5) encapsulated, whereby at least one module (7) is installed for each phase (10).
  • This first module (7) can comprise a side outlet (9) to extract the captured phase intensity signal.
  • a second module (8) is installed, independent of the first module (7), which comprises an homopolar intensity sensor (6) encapsulated and that includes all the phases (10) for the collection of homopolar intensity.
  • said second module (8) has an annular and inclined shape and is arranged around the at least one connector (4), so that both modules (7, 8) can be mounted directly at the connection point between at least one bushing (2) of a compartment (1) of network cables (3) and at least one connector (4) of at least one cable (3).
  • This inclination of the second module (8) shown more clearly in Figure 10, where the upper section is in the outermost position, or if it is preferred, more advanced, with respect to the lower section, forming an angle (a) with respect to to an imaginary vertical axis, it is not a trivial or random characteristic, but pursues a specific objective well determined, allowing optimal coupling and assembly between both modules (7, 8). More particularly, in Figure 2 it can be seen that the location of the first module (7) located centrally with respect to the other two first modules (7), requires an adaptation and inclination of the second module (8).
  • the first module (7) and the second module (8) are mounted on a support (11) arranged at the connection point between the bushing (2) and the connector (4) of the screw type.
  • the first module (7) is three-phase, and has three phase intensity sensors (5) encapsulated in the same piece or block to capture the intensity of each phase (10).
  • the first module (7) can have a parallelogram shape, specifically in the examples of figures 3 and 4 the first module (7) is shown in rectangular form.
  • the three phase intensity sensors (5) are encapsulated within the first module (7) and therefore all the sensors are mounted in the same plane, unlike the first embodiment described above.
  • phase intensity sensors (5) comprise a core (12) laminated in C-arranged plates, as shown in Figure 5, whereby each of the phase intensity sensors (5) can be wound separately and then assemble between them.
  • a second module (8) shown in figures 3 and 6, comprising a homopolar intensity sensor (6) encapsulated that covers all the phases (10) for the intensity capture homopolar.
  • Both modules (7, 8) are mounted on a support (1 1) arranged at the connection point between the bushing (2) and the connectors (4), connectors (4) of the screw type in case of figure 3 and the plug-in type in the case of figure 4. It should be noted here that in figure 4 the second module (8) has not been represented, in order to better represent the special rectangular configuration of the first module (7).
  • the first module (7) is three-phase, and has three phase intensity sensors (5) encapsulated in the same piece or block to capture the intensity of each phase (10)
  • the first module (7) can have a parallelogram shape, specifically in the examples of figures 7 and 8 the first module (7) with rectangular shape is shown.
  • the three phase intensity sensors (5) are encapsulated in the first module (7) and therefore all the sensors are mounted in the same plane.
  • Said phase intensity sensors (5) comprise independent cores (12), as shown in Figure 9.
  • a second module (8) is mounted next to the first module (7) comprising a homopolar intensity sensor encapsulated (6) covering all phases (10) for the acquisition of homopolar intensity.
  • Both modules (7, 8) are mounted on a support (11) arranged at the connection point between the bushing (2) and the connectors (4), connectors (4) of the screwable type in case of figure 7, and connectors (4) of the plug-in type in the case of figure 8.
  • the second module (8) has not been represented in order to better show the particular configuration of the first module (7).
  • the support (11) where the first module (7) and the second module (8) are mounted is arranged at the connection point between the bushing (2) and the cable connectors (4) of net.
  • This support (11) may be connected to the same ground potential of the bushing (2) or it may be isolated from said ground potential.
  • the modules (7, 8) are housings comprising at least one intensity sensor (5, 6) encapsulated in an insulating material, such as epoxy resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

La presente invención se refiere a un sistema de captación de intensidad modular, que permite la captación de la intensidad de fase y/o la intensidad de falta a tierra u homopolar, y que dispone para ello de al menos un primer módulo (7) que comprende encapsulado al menos un captador de intensidad de fase (5) y un segundo módulo (8) que comprende encapsulado un captador de intensidad homopolar (6). Conforme a la invención, el primer módulo (7) es independiente del segundo módulo (8), estando ambos módulos (7, 8) instalados directamente en los elementos de conexión, es decir, en el punto de conexión entre al menos un pasatapas (2) y al menos un conector (4) de al menos un cable (3) de red.

Description

MÓDULOS DE CAPTACIÓN DE INTENSIDAD DE FASE Y/U
HOMOPOLAR MONTADOS CONJUNTAMENTE EN UN PASATAPAS DE CABLES
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La presente invención trata sobre un sistema de captación de intensidad de fase y/u homopolar, de aplicación en aparamenta eléctrica de alta tensión, con la característica de que el sistema de captación comprende módulos independientes entre sí, que se instalan en el punto de conexión entre al menos un pasatapas y un conector.
ANTECEDENTES DE LA INVENCIÓN
En la aparamenta eléctrica de alta tensión se pueden encontrar equipos eléctricos, denominados también como celdas, que están dotados de diferentes compartimentos, como por ejemplo el compartimento de barras, del interruptor, de cables, etc. Al compartimento de cables llegan los cables de red y en el mismo compartimento se conectan al equipo eléctrico o celda, estableciendo una conexión aislada y apantallada, en concreto se realiza una conexión entre al menos un pasatapas de la celda y al menos un conector del cable de red. Asimismo, en el compartimento de cables habitualmente se instalan captadores de intensidad y/o tensión, que proporcionan valores de intensidad y tensión de baja señal proporcionales a la amplitud de los valores de intensidad y tensión de la parte de alta tensión. Estos valores de intensidad y tensión son acondicionados y procesados en un sistema de adquisición de datos electrónico para protección, medida y/o control.
Generalmente, la captación de intensidad en el compartimento de cables se lleva a cabo mediante captadores toroidales inductivos. De este modo, se pueden captar la intensidad de fase y la intensidad de falta a tierra u homopolar. Los captadores de intensidad de fase se encuentran integrados directamente en los elementos de conexión, es decir, los captadores se instalan abarcando cada una de las fases en el punto de conexión entre los pasatapas de la celda y los conectores de los cables de red.
En este sentido, se pueden citar algunos documentos como por ejemplo CN203895829U, WO2004040728A1 y ES436863A1 , en donde se definen soluciones con captadores de intensidad de fase instalados sobre los elementos de conexión.
La intensidad de falta a tierra u homopolar se obtiene a partir de un captador instalado también en el compartimento de cables, exactamente se instala sobre los cables de red, abarcando mediante un captador todas las fases (tal y como se muestra en el ejemplo de la figura 1 correspondiente al estado de la técnica). Esto supone el inconveniente de que los captadores de intensidad homopolar tienen que ser instalados y probados en campo para evitar cualquier error de instalación.
Además, en caso de tener que sustituir el captador de intensidad homopolar, es necesaria primeramente la desinstalación del conector del cable, y posteriormente volver a instalarlo después una vez haya sido sustituido dicho captador de intensidad. Esto supone un consumo de tiempo elevado hasta el restablecimiento del suministro eléctrico a los consumidores, empeoramiento en la calidad de suministro, costes para la compañía suministradora, molestias a los clientes, etc.
En ocasiones, no es posible instalar el captador de intensidad homopolar en el mismo punto que los captadores de intensidad de fase, ya que estos últimos requieren un espacio determinado, no dejando espacio libre para la instalación del captador de intensidad homopolar. En este sentido se puede citar el documento DE102015104204A1 , en donde se puede observar que los tres captadores de intensidad de fase no quedan montados en el mismo plano, quedando al menos un captador adelantado respecto al plano de montaje de los otros dos captadores, por lo que el espacio que ocupa el conjunto de los tres captadores de intensidad de fase es suficientemente grande como para no dejar hueco alguno para el montaje del captador de intensidad homopolar, teniendo que ser instalado éste último sobre los mismos cables de red tal y como se muestra en la figura 1 del estado de la técnica. Existen soluciones en los que el captador de intensidad homopolar puede ser instalado junto con los captadores de intensidad de fase. De esta forma se puede citar la solución definida en el documento KR101269617B1 en donde los pasatapas se disponen a tresbolillo, pudiendo montar así los tres captadores de intensidad de fase en el mismo plano de montaje y por tanto quedando suficiente espacio como para poder instalar en el mismo punto un captador de intensidad homopolar.
Otro ejemplo del estado de la técnica se define en el documento WO2015064118A1 , el cual describe un soporte o módulo en donde se pueden incorporar los captadores de intensidad de fase y el captador de intensidad homopolar, quedando tanto los captadores como el mismo módulo integrados en un material aislante como una única pieza, y por tanto pudiendo instalar el módulo en el punto de conexión entre los pasatapas de la celda y los conectores de los cables de red. Este último ejemplo tiene el inconveniente de que tanto los captadores de intensidad de fase como el captador de intensidad homopolar se encuentran integrados en un mismo módulo, lo que supone tener que sustituir el módulo completo debido al mal estado de uno de los dos captadores, así como la imposibilidad de instalar los diferentes captadores en diferentes momentos.
Los conectores de los cables de red pueden ser del tipo atornillable o enchufable. En el caso de los conectores enchufables, estos necesitan un elemento de fijación que comprende al menos una horquilla que se acopla en un soporte que al mismo tiempo va unido a la pared de la celda. Dicha horquilla debe pasar por el interior del captador de intensidad de fase, lo cual obliga a que el captador de intensidad de fase toroidal tenga mayor diámetro interior, y por tanto sea necesario un espacio mayor para la instalación de los captadores de intensidad de fase, lo cual complica aún más la instalación del captador de intensidad homopolar en ese mismo punto.
Asimismo, la escasez de espacio conlleva el inconveniente de que los captadores de intensidad sean menos precisos, es decir, la relación de transformación, el rango de medida, la potencia de precisión y la intensidad de saturación están supeditados al espacio disponible para el montaje de los captadores de intensidad y, por lo tanto, en los diseños actuales las prestaciones de los captadores de intensidad están limitadas.
DESCRIPCIÓN DE LA INVENCIÓN El sistema modular de captación de intensidad está previsto para ser instalado en la conexión de los cables de red con la celda, de forma aislada y apantallada, en concreto en el punto de conexión entre al menos un pasatapas y al menos un conector de al menos un cable de red, resolviendo los inconvenientes anteriormente citados.
El sistema modular de la presente invención suministra valores de intensidad de fase y/o de falta a tierra u homopolar. Para ello, el sistema comprende al menos un primer módulo que incorpora encapsulado en un material aislante al menos un captador de intensidad para la captación de la intensidad de fase, que puede comprender al menos una salida lateral de la señal de intensidad de fase captada, pudiendo ser dicho primer módulo monofásico o trifásico, es decir, se puede disponer de un módulo por cada fase o un solo módulo para las tres fases, disponiendo el módulo en este último caso, tres captadores de intensidad y segregadas las fases unas de otras.
Este sistema modular también puede suministrar valores de intensidad de falta a tierra u homopolar, comprendiendo para ello al menos un segundo módulo, independiente del primer módulo, que incorpora encapsulado en un material aislante al menos un captador de intensidad homopolar, y que abarca todas las fases para la captación de la intensidad homopolar. Dado que, en caso de incluir ambos módulos, el primer y segundo módulos son independientes uno del otro, esta independencia entre módulos permite que no sea necesario reemplazar el sistema modular por completo, si las circunstancias exigieran tener que sustituir, añadir o quitar alguno de ellos.
El primer módulo y/o el segundo módulo se instalan directamente en los elementos de conexión, es decir, en el punto de conexión entre al menos un pasatapas y al menos un conector de al menos un cable de red. Para la instalación de los módulos el sistema de la presente invención comprende un soporte en dicho punto de conexión, que puede estar conectado al potencial de tierra de los pasatapas o aislado de dicho potencial de tierra. El sistema modular de la presente invención se instala, ajusta y comprueba en fábrica, de manera que se eliminan las labores de montaje y conexionado en campo, eliminando los errores de instalación y reduciendo el tiempo y el coste de la mano de obra de la instalación. El primer módulo puede ser monofásico, de forma que se dispone de un módulo por cada fase para la captación de la intensidad de fase. El sistema también puede comprender un segundo módulo para la captación de la intensidad homopolar, abarcando mediante este segundo módulo todas las fases. En este caso, el segundo módulo comprende una forma anular e inclinada y está dispuesto alrededor del al menos un conector, permitiendo así su instalación junto al primer módulo. Los conectores de cable de red que se pueden utilizar en este caso son atornillables. El primer módulo puede ser trifásico, de forma que se puede disponer de un único módulo que comprende una forma de paralelogramo, como por ejemplo rectangular, donde cada una de las fases se encuentra segregada una de la otra. Este primer módulo trifásico puede comprender encapsulados tres captadores de intensidad de fase, los cuales pueden comprender núcleos independientes o núcleos laminados de chapas dispuestas en forma de C, quedando los tres núcleos ensamblados uno al otro en este último caso. Todos los captadores de intensidad de fase quedan integrados en el interior del primer módulo por lo que todos ellos quedan montados en el mismo plano, no quedando ningún captador adelantado o retrasado respecto del resto, minimizando así el espacio necesario para su instalación y, por tanto, pudiendo instalar junto al primer módulo un segundo módulo que comprende encapsulado un captador de intensidad homopolar que abarca todas las fases.
En el caso particular de los captadores de intensidad de fase que comprenden un núcleo laminado de chapas, la relación de transformación y la clase de precisión se pueden ajusfar en base al número de chapas y la altura del captador (longitud de las chapas), con lo que el bobinado del núcleo puede ser mayor o menor. Asimismo, mediante la disposición de las chapas en C también se facilitan las labores de bobinado del núcleo, de forma que cada uno de los captadores se puede bobinar por separado primero y después llevar a cabo el ensamblado entre captadores.
En definitiva, el sistema modular de la presente invención permite mejorar considerablemente la relación de transformación, el rango de medida, la potencia de precisión y la intensidad de saturación con respecto a los diseños convencionales ocupando el mismo espacio útil en la celda o equipo eléctrico. En la realización en el que el primer módulo es trifásico, el sistema modular se puede utilizar tanto con conectores de cable atornillables como con enchufables, ya que la forma de paralelogramo del primer módulo permite el paso del elemento de fijación en el caso de conectores enchufables.
Finalmente, se ha previsto que el primer y segundo módulo que comprenden integrados los captadores de intensidad, puedan consistir en carcasas que comprenden encapsulados en su interior los captadores de intensidad en un material aislante, como por ejemplo resina epoxi.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Muestra una vista en perspectiva de la instalación de un captador de intensidad homopolar según el actual estado de la técnica.
Figura 2.- Muestra una vista en perspectiva del sistema modular objeto de la presente invención según una primera realización, donde los conectores de cable de red son atornillables.
Figura 3.- Muestra una vista en perspectiva del sistema modular objeto de la presente invención según una segunda realización, donde los conectores de cable de red son atornillables.
Figura 4.- Muestra una vista en perspectiva del sistema modular de la figura 3, sin incluir el segundo módulo, donde los conectores de cable de red son enchufables.
Figura 5.- Muestra una vista en perspectiva del primer módulo y sus respectivos captadores de intensidad de fase según la segunda realización de las figuras 3 y 4.
Figura 6.- Muestra una vista en perspectiva del segundo módulo, donde se aprecia el captador de intensidad homopolar según la segunda realización de las figuras 3 y 4. Figura 7.- Muestra una vista en perspectiva del sistema modular objeto de la presente invención según una tercera realización, donde los conectores de cable de red son atornillables.
Figura 8.- Muestra una vista en perspectiva del sistema modular de la figura 7, sin incluir el segundo módulo, donde los conectores de cable de red son enchufables.
Figura 9.- Muestra una vista en perspectiva de los captadores de intensidad de fase según la tercera realización de las figuras 7 y 8. Figura 10.- Muestra una vista lateral esquemática del sistema modular según la primera realización de la figura 2, donde se aprecia una particular inclinación del segundo módulo. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Se describen a continuación varios ejemplos de realización preferente haciendo mención a las figuras arriba citadas, sin que ello limite o reduzca el ámbito de protección de la presente invención.
En las figuras 2-4 y 7-8 se muestran diferentes ejemplos de realización del sistema modular de captación de intensidad objeto de la presente invención.
En la figura 2 se muestra una primera realización en donde el sistema modular comprende al menos un captador de intensidad de fase (5) para la captación de la intensidad de fase encapsulado en al menos un primer módulo (7) y un captador de intensidad homopolar (6) para la captación de la intensidad homopolar encapsulado en un segundo módulo (8). Según esta primera realización, el primer módulo (7) es monofásico y comprende encapsulado un captador de intensidad de fase (5), por lo que se instala al menos un módulo (7) por cada fase (10). Este primer módulo (7) puede comprender una salida lateral (9) para extraer la señal de intensidad de fase captada. Junto a este primer módulo (7) se encuentra instalado un segundo módulo (8), independiente al primer módulo (7), que comprende encapsulado un captador de intensidad homopolar (6) y que abarca todas las fases (10) para la captación de la intensidad homopolar.
Así, se ha previsto que dicho segundo módulo (8) presente una forma anular e inclinada y esté dispuesto alrededor del al menos un conector (4), de forma que ambos módulos (7, 8) puedan ser montados directamente en el punto de conexión entre al menos un pasatapas (2) de un compartimento (1) de cables de red (3) y al menos un conector (4) de al menos un cable (3). Esta inclinación del segundo módulo (8), mostrada más claramente en la figura 10, donde el tramo superior se encuentra en posición más externa, o si se prefiere, más adelantada, con respecto al tramo inferior, formando un ángulo (a) con respecto a un eje vertical imaginario, no es una característica trivial o aleatoria, sino que persigue un objetivo concreto bien determinado, permitir un óptimo acople y montaje entre ambos módulos (7, 8). Más en particular, en la figura 2 puede apreciarse que la ubicación del primer módulo (7) situado en posición central respecto de los otros dos primeros módulos (7), requiere una adecuación e inclinación del segundo módulo (8).
Por otro lado, tal y como se muestra en la figura 2, el primer módulo (7) y el segundo módulo (8) se montan sobre un soporte (11) dispuesto en el punto de conexión entre el pasatapas (2) y el conector (4) del tipo atornillable.
De acuerdo con una segunda realización posible, representada en las figuras 3 y 4, el primer módulo (7) es trifásico, y tiene encapsulados en una misma pieza o bloque tres captadores de intensidad de fase (5) para la captación de la intensidad de cada fase (10). El primer módulo (7) puede presentar una forma de paralelogramo, concretamente en los ejemplos de las figuras 3 y 4 se muestra el primer módulo (7) de forma rectangular.
De esta manera, los tres captadores de intensidad de fase (5) quedan encapsulados dentro del primer módulo (7) y por tanto todos los captadores se encuentran montados en el mismo plano, a diferencia de la primera realización arriba descrita.
Estos captadores de intensidad de fase (5) comprenden un núcleo (12) laminado en chapas dispuestas en C, tal y como se muestra en la figura 5, por lo que cada uno de los captadores de intensidad de fase (5) se puede bobinar por separado y después realizar el ensamblado entre ellos. Junto al primer módulo (7) se encuentra montado un segundo módulo (8), mostrado en las figuras 3 y 6, que comprende encapsulado un captador de intensidad homopolar (6) que abarca todas las fases (10) para la captación de la intensidad homopolar. Ambos módulos (7, 8) se montan sobre un soporte (1 1) dispuesto en el punto de conexión entre los pasatapas (2) y los conectores (4), conectores (4) del tipo atornillable en caso de la figura 3 y del tipo enchufable en el caso de la figura 4. Cabe indicar aquí que en la figura 4 no se ha representado el segundo módulo (8), en aras de representar mejor la especial configuración rectangular del primer módulo (7). Según una tercera realización posible, mostrada en las figuras 7 y 8, el primer módulo (7) es trifásico, y tiene encapsulados en una misma pieza o bloque tres captadores de intensidad de fase (5) para la captación de la intensidad de cada fase (10). El primer módulo (7) puede tener una forma de paralelogramo, concretamente en los ejemplos de las figuras 7 y 8 se muestra el primer módulo (7) con forma rectangular. Los tres captadores de intensidad de fase (5) quedan encapsulados en el primer módulo (7) y por tanto todos los captadores se encuentran montados en el mismo plano. Dichos captadores de intensidad de fase (5) comprenden núcleos (12) independientes, tal y como se aprecia en la figura 9. Junto al primer módulo (7) se encuentra montado un segundo módulo (8) que comprende encapsulado un captador de intensidad homopolar (6) que abarca todas las fases (10) para la captación de la intensidad homopolar. Ambos módulos (7, 8) se montan sobre un soporte (11) dispuesto en el punto de conexión entre los pasatapas (2) y los conectores (4), conectores (4) del tipo atornillable en caso de la figura 7, y conectores (4) del tipo enchufable en el caso de la figura 8. De forma análoga, cabe señalar que en la figura 8 no se ha representado el segundo módulo (8) para poder mostrar mejor la particular configuración del primer módulo (7).
En todas las realizaciones posibles, el soporte (11) donde van montados el primer módulo (7) y el segundo módulo (8) se encuentra dispuesto en el punto de conexión entre los pasatapas (2) y los conectores (4) de cables de red. Este soporte (11) puede estar conectado al mismo potencial de tierra de los pasatapas (2) o puede estar aislado de dicho potencial de tierra.
Por último, en todas las realizaciones posibles de la invención, los módulos (7, 8) son carcasas que comprenden encapsulados en su interior al menos un captador de intensidad (5, 6) en un material aislante, como puede ser resina epoxi.

Claims

REIVINDICACIONES
1. - Sistema modular de captación de intensidad de fase y/u homopolar, de aplicación en aparamenta eléctrica de alta tensión que comprende al menos un compartimento de cables (1) dotado de al menos un pasatapas (2) en donde se puede conectar al menos un cable (3) mediante al menos un conector (4), caracterizado por que el sistema modular comprende al menos un captador de intensidad de fase (5) para la captación de la intensidad de fase, estando dicho captador de intensidad de fase (5) encapsulado en al menos un primer módulo (7); y/o al menos un captador de intensidad homopolar (6) para la captación de la intensidad homopolar, estando dicho captador de intensidad homopolar (6) encapsulado en al menos un segundo módulo (8); donde en caso de incluir ambos módulos primero y segundo (7, 8), el primer módulo (7) es independiente del segundo módulo (8); y donde el primer módulo (7) y el segundo módulo (8) están montados directamente en un punto de conexión entre el pasatapas (2) y el conector (4).
2. - Sistema modular según reivindicación 1 , caracterizado por que el primer módulo (7) y/o el segundo módulo (8) están montados sobre un soporte (1 1) dispuesto en el punto de conexión entre el pasatapas (2) y el conector (4).
3. - Sistema modular según reivindicación 2, caracterizado por que el primer módulo (7) es monofásico, estando instalado al menos un primer módulo (7) por cada fase (10).
4. - Sistema modular según reivindicación 2, caracterizado por que el primer módulo (7) es trifásico.
5. - Sistema modular según reivindicación 3, caracterizado por que el primer módulo (7) tiene una salida lateral (9) de la señal de intensidad de fase captada.
6. - Sistema modular según cualquiera de las reivindicaciones 3 ó 4, caracterizado por que el captador de intensidad homopolar (6) del segundo módulo (8) abarca todas las fases (10).
7. - Sistema modular según reivindicación 5, caracterizado por que el segundo módulo (8) tiene una forma anular e inclinada y está dispuesto alrededor del al menos un conector (4).
8. - Sistema modular según reivindicación 4, caracterizado por que el primer módulo (7) tiene una forma de paralelogramo.
9. - Sistema modular según reivindicación 8, caracterizado por que los captadores de intensidad de fase (5) comprenden al menos un núcleo (12) laminado de chapas dispuestas en forma de "C"; estando los núcleos (12) ensamblados entre ellos.
10. - Sistema modular según reivindicación 8, caracterizado por que los captadores de intensidad de fase (5) tienen núcleos (12) independientes.
1 1. - Sistema modular según una cualquiera de las reivindicaciones 3 ó 4, caracterizado por que el conector (4) que está acoplado en el pasatapas (2) es del tipo atornillable.
12. - Sistema modular según una cualquiera de las reivindicaciones 8-10, caracterizado por que el conector (4) que está acoplado en el pasatapas (2) es del tipo enchufable.
13. - Sistema modular según cualquiera de las reivindicaciones anteriores 2-12, caracterizado por que el soporte (11) se encuentra conectado al potencial de tierra de los pasatapas (2).
14. - Sistema modular según cualquiera de las reivindicaciones 2-12, caracterizado por que el soporte (11) se encuentra aislado del potencial de tierra de los pasatapas (2).
15. - Sistema modular según cualquiera de las reivindicaciones anteriores, caracterizado por que el primer módulo (7) y el segundo módulo (8) son carcasas que tienen al menos un captador de intensidad (5, 6) encapsulado en su interior en material aislante.
PCT/ES2017/070717 2016-10-28 2017-10-26 Módulos de captación de intensidad de fase y/u homopolar montados conjuntamente en un pasatapas de cables WO2018078207A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017349300A AU2017349300A1 (en) 2016-10-28 2017-10-26 Phase and zero-sequence current sensing modules mounted together on a cable bushing
US16/345,134 US11189421B2 (en) 2016-10-28 2017-10-26 Phase and zero-sequence current sensing modules mounted together on a cable bushing
CN201780072501.2A CN110024063A (zh) 2016-10-28 2017-10-26 在电缆套管上安装在一起的相电流和零序电流感测模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16382491.5A EP3316269B1 (en) 2016-10-28 2016-10-28 Phase and zero-sequence current sensing modules mounted together on a cable bushing
EP16382491.5 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018078207A1 true WO2018078207A1 (es) 2018-05-03

Family

ID=57708478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070717 WO2018078207A1 (es) 2016-10-28 2017-10-26 Módulos de captación de intensidad de fase y/u homopolar montados conjuntamente en un pasatapas de cables

Country Status (6)

Country Link
US (1) US11189421B2 (es)
EP (1) EP3316269B1 (es)
CN (1) CN110024063A (es)
AR (1) AR109989A1 (es)
AU (1) AU2017349300A1 (es)
WO (1) WO2018078207A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780683B (zh) * 2021-04-28 2022-10-11 貿聯國際股份有限公司 電源連接器及電源連接器組件
WO2022241656A1 (en) * 2021-05-18 2022-11-24 Abb Schweiz Ag Switchgear

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES436863A1 (es) 1974-05-16 1977-01-01 Alsthom Cgee Celda para puesto electrico de alta tension.
WO2004040728A1 (ja) 2002-10-31 2004-05-13 Mitsubishi Denki Kabushiki Kaisha ガス絶縁スイッチギア
EP2402769A1 (en) * 2010-06-30 2012-01-04 ABB Technology AG Combined detection device for electrical variables
KR101269617B1 (ko) 2012-12-20 2013-06-05 (주)신성건축사사무소 전류 및 전압 감지 겸용 변류기를 구비한 지상용 개폐기
CN103578724A (zh) * 2012-07-24 2014-02-12 江苏创能电器有限公司 一种组合互感器
CN203895829U (zh) 2014-06-06 2014-10-22 亚洲电力设备(深圳)股份有限公司 用于充气柜高压开关设备的高压导管
WO2015064118A1 (ja) 2013-10-30 2015-05-07 三菱電機株式会社 変流器支持装置及びその変流器支持装置を用いたスイッチギヤ
DE102015104204A1 (de) 2014-03-21 2015-09-24 Dipl.-Ing. H. Horstmann Gmbh "Messwertgeber-Anordnung zur Kurzschlusserfassung"

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255058B2 (ja) * 1996-12-17 2002-02-12 日新電機株式会社 列盤形ガス絶縁開閉装置
US6362445B1 (en) * 2000-01-03 2002-03-26 Eaton Corporation Modular, miniaturized switchgear
CN202281794U (zh) * 2011-08-26 2012-06-20 浙江索德科技有限公司 电流采样装置
US9823637B2 (en) * 2014-09-05 2017-11-21 Southern States, Llc Fault detection and isolation using a common reference clock
WO2018064118A1 (en) 2016-09-27 2018-04-05 Rieke Packaging Systems Limited Squeeze sprayer for fluid products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES436863A1 (es) 1974-05-16 1977-01-01 Alsthom Cgee Celda para puesto electrico de alta tension.
WO2004040728A1 (ja) 2002-10-31 2004-05-13 Mitsubishi Denki Kabushiki Kaisha ガス絶縁スイッチギア
EP2402769A1 (en) * 2010-06-30 2012-01-04 ABB Technology AG Combined detection device for electrical variables
CN103578724A (zh) * 2012-07-24 2014-02-12 江苏创能电器有限公司 一种组合互感器
KR101269617B1 (ko) 2012-12-20 2013-06-05 (주)신성건축사사무소 전류 및 전압 감지 겸용 변류기를 구비한 지상용 개폐기
WO2015064118A1 (ja) 2013-10-30 2015-05-07 三菱電機株式会社 変流器支持装置及びその変流器支持装置を用いたスイッチギヤ
DE102015104204A1 (de) 2014-03-21 2015-09-24 Dipl.-Ing. H. Horstmann Gmbh "Messwertgeber-Anordnung zur Kurzschlusserfassung"
CN203895829U (zh) 2014-06-06 2014-10-22 亚洲电力设备(深圳)股份有限公司 用于充气柜高压开关设备的高压导管

Also Published As

Publication number Publication date
US20190287718A1 (en) 2019-09-19
CN110024063A (zh) 2019-07-16
US11189421B2 (en) 2021-11-30
AU2017349300A1 (en) 2019-06-06
EP3316269A1 (en) 2018-05-02
AR109989A1 (es) 2019-02-13
EP3316269B1 (en) 2024-11-13

Similar Documents

Publication Publication Date Title
ES2542899T3 (es) Transformador de corriente
ES2665172T3 (es) Módulo transformador de corriente de polo neutro para interruptor de circuito y aparato de detección de corriente de polo neutro para interruptor de circuito
ES2453383T3 (es) Poste de distribución de energía eléctrica con sistema de puesta a tierra incorporado
ES2902277T3 (es) Dispositivo aislador pasante de alta tensión
ES2564948T3 (es) Dispositivo y procedimiento de determinación de la tensión y de la potencia de cada fase en una red de media tensión
RU2011126884A (ru) Комбинированное электрическое изменяемое устройство детектирования
ES2586877T3 (es) Barra para fusibles-NH
WO2018078207A1 (es) Módulos de captación de intensidad de fase y/u homopolar montados conjuntamente en un pasatapas de cables
ES2635557T3 (es) Sistema de protección de una pluralidad de fuentes de tensión continua
ES2875027T3 (es) Base portafusibles
WO2016050994A1 (es) Adaptador aislado de alta tensión
CN105609299A (zh) 一种防水可分离式电流互感器
KR101228914B1 (ko) 누전감지기 일체형 과전류 계전기
WO2013104814A1 (es) Unidad móvil de interconexión eléctrica de alta y media tensión
KR101385778B1 (ko) 탈부착용 모듈을 구비한 변류기
CN203966813U (zh) 一种电流互感器安装用支架
JP6260823B2 (ja) 計測器付き分電盤用キャビネットおよび分電盤
JP6399431B2 (ja) 計測器付き分電盤用キャビネットおよび分電盤
JP6323778B2 (ja) 分電盤用キャビネット及びそれを用いた分電盤
CN205670485U (zh) 一种电压互感器支架
KR20200000731U (ko) 일체형 변류장치
ES2976572T3 (es) Unidad de medida de corriente y tensión
KR101712048B1 (ko) 분배전반에 적용하는 디지털 전력계측모듈을 포함한 노이즈 저감 전력분배장치
ES2628948T3 (es) Acoplador, módulo de acoplador y sistema de acoplador para la conexión de medios de medición y/o de comunicación a una red de suministro eléctrico
JP6256838B2 (ja) 計測器付き分電盤用キャビネットおよび分電盤

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17811975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017349300

Country of ref document: AU

Date of ref document: 20171026

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17811975

Country of ref document: EP

Kind code of ref document: A1