[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018076794A1 - 电池管理系统的冗余备份控制电路 - Google Patents

电池管理系统的冗余备份控制电路 Download PDF

Info

Publication number
WO2018076794A1
WO2018076794A1 PCT/CN2017/092842 CN2017092842W WO2018076794A1 WO 2018076794 A1 WO2018076794 A1 WO 2018076794A1 CN 2017092842 W CN2017092842 W CN 2017092842W WO 2018076794 A1 WO2018076794 A1 WO 2018076794A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
circuit
control circuit
control
input
Prior art date
Application number
PCT/CN2017/092842
Other languages
English (en)
French (fr)
Inventor
苏晓越
罗宇
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018076794A1 publication Critical patent/WO2018076794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the invention relates to a battery management system, in particular to a redundant backup control circuit of a battery management system.
  • Lithium-ion batteries are more serious due to the consistency of production and use.
  • the battery management system is required to manage the use of the battery to ensure its long-term and safe use.
  • the two power supply modes are designed in the battery management system at the same time. in.
  • the two power supply modes require safe, fast, and seamless switching to ensure continuity of operation of the battery management system.
  • the input ports of the two power supply modes are the same, and the wiring harness of the input port is required to be incorrect, otherwise the internal battery management system will be damaged, causing loss or even causing safety problems. Therefore, it is necessary to improve the existing redundant backup circuit, increase the reverse connection protection function, and ensure the safe and reliable operation of the battery management system.
  • the existing reverse connection protection circuit usually uses a diode string in the main circuit or uses a relatively complicated control circuit.
  • the main drawbacks are: the diode conduction loss is large in a system with large power demand, and the long-time operation is here. The life cannot be guaranteed in the state; the use of complex control circuits will reduce the reliability of the system on the one hand, and increase the system cost on the other hand, which is not conducive to product development and promotion.
  • the present invention provides a redundant backup control circuit of a battery management system, the redundant backup control circuit includes at least two input circuits, each of which includes a port protection circuit module connected in turn, and a reverse connection Protection circuit module, unidirectional conductive circuit control module, wherein:
  • the port protection circuit module is configured to: input an input power source, filter the input power source to obtain a pure input power source, and output the signal to the reverse connection protection circuit module;
  • the reverse connection protection circuit module is configured to: reverse-protect the pure input power supply, and output to the one-way conductive circuit control module;
  • a unidirectional conductive circuit control module configured to: control the on and off of the road according to the control signal
  • the output terminals of the unidirectional conductive circuit control modules of each input circuit are connected and output power.
  • the port protection circuit module is specifically configured to: access an input power source, absorb an electrostatic interference signal from the input power source, absorb a large current signal caused by an instantaneous overvoltage, and filter out A pure input power is obtained after the noise signal.
  • the port protection circuit module comprises: a parallel electrostatic protection capacitor, a transient voltage suppression diode, at least one filter capacitor, and two ends of the electrostatic protection capacitor, transient Both ends of the voltage suppression diode and at least one filter capacitor are respectively connected to the positive and negative terminals of the input power source.
  • the reverse connection protection circuit module includes: a first field effect transistor, a first protection resistor, and a second protection resistor;
  • the source of the first FET is connected to one end of the first protection resistor, the other end of the first resistor is connected to the gate of the first FET, and the gate of the first FET is connected to one end of the second protection resistor ;
  • the drain of the first field effect transistor and the other end of the second resistor are connected to the port protection circuit module, and the source of the first field effect transistor is connected to the one-way conductive circuit control module.
  • the first field effect transistor is a PMOS transistor.
  • the reverse connection protection circuit module further includes: a Zener diode, a cathode of the Zener tube is connected to a source of the first FET, and a positive pole of the Zener tube The gate of the first field effect transistor is connected.
  • the one-way conductive circuit control module is an ORING control circuit module.
  • the unidirectional conductive circuit control module comprises: an ORING control circuit chip, an input pin of the ORING control circuit chip is connected with the reverse connection protection circuit module, and an ORING control circuit
  • the output pin of the chip is used as the output power of the output of the unidirectional conductive circuit control module, and the enable pin of the ORING control circuit chip is connected with an external control signal;
  • the unidirectional conductive circuit control module further includes: a second field effect transistor;
  • the drain of the second FET is connected to the output pin of the ORING control circuit chip, the source of the second FET is connected to the reverse protection circuit module, and the gate of the second FET is controlled by ORING The control pins of the circuit chip are connected.
  • the second field effect transistor is an NMOS transistor.
  • the redundant backup control circuit of the battery management system of the present invention is provided with a port protection circuit module, a reverse connection protection circuit module, and a unidirectional conductive circuit control module, so that the circuit can be used for redundancy backup power supply.
  • Reverse connection protection function increases system reliability, reduces system cost, and ensures system safety and stable operation.
  • FIG. 1 is a block diagram of a redundant backup control circuit of a battery management system of the present invention.
  • FIG. 2 is a circuit diagram of a redundant backup control circuit of the battery management system of the present invention.
  • the redundant backup control circuit includes at least two input circuits, and each input current includes a port protection circuit module 11 connected in turn, and reverse connection protection.
  • the circuit module 12 and the unidirectional conductive circuit control module 13 are:
  • the port protection circuit module 11 is configured to: input an input power source, filter the input power source to obtain a pure input power source, and output the signal to the reverse connection protection circuit module;
  • the reverse connection protection circuit module 12 is configured to: perform reverse connection protection on the pure input power source, and output to the one-way conductive circuit control module;
  • the unidirectional conductive circuit control module 13 is configured to: control the on and off of the circuit according to the control signal;
  • the output terminals of the unidirectional conductive circuit control module 11 of each input circuit are connected to output power.
  • the redundant backup control circuit comprises two input circuits, wherein one input circuit is connected to the battery module, the other input circuit is connected to the external power supply, and the output ends of the unidirectional conductive circuit control module 11 of the two input circuits are connected and connected together. Power the back-end circuitry.
  • each input power source is respectively connected to the reverse protection circuit module 12 through the port protection circuit module 11 to realize the reverse connection protection function of the input power source, ensuring the power supply to the back end is safe and reliable;
  • the circuit control module 13 realizes selection and redundant backup of the external input power, and each input power has the same reference ground inside the battery management system, so that when one input power is abnormal, the other input power can be safe, fast, and seamless. Switch and continue to power the back-end battery management system.
  • the port protection circuit module 11 is specifically configured to: access an input power source, absorb an electrostatic interference signal from the input power source, absorb a large current signal caused by an instantaneous overvoltage, and filter A pure input power source is obtained after the noise signal is removed.
  • the port protection circuit module 11 includes: parallel electrostatic protection capacitors C1 and C5, transient voltage suppression diodes DZ2 and DZ4, and at least one filter capacitor.
  • C2, C3, C4, C6, C7, C8, both ends of the electrostatic protection capacitors C1 and C5, two ends of the transient voltage suppression diodes DZ2 and DZ4, at least one filter capacitor C2, C3, C4, C6, C7, Both ends of C8 are respectively connected to the positive and negative terminals of the input power source.
  • the electrostatic protection (ESD) capacitor C1 in the port protection circuit module 11 can absorb the static interference signal, and the transient Transient Voltage Suppressor (TVS) diode DZ2 can quickly absorb the large current signal caused by transient overvoltage, protect the normal operation of the back-end circuit device, and the input power supply is filtered by filter capacitors C2, C3 and C4 with different capacitance values. After the noise signal, a pure power source is input to the reverse connection protection circuit module 12.
  • ESD electrostatic protection
  • TVS Transient Transient Voltage Suppressor
  • the reverse protection circuit module 12 includes: a first field effect transistor Q1, Q3, a first protection resistor R1, R4, and a second protection resistor. R2, R5;
  • the sources of the first field effect transistors Q1 and Q3 are connected to one ends of the first protection resistors R1 and R4, and the other ends of the first resistors R1 and R4 are connected to the gates of the first field effect transistors Q1 and Q3, and the first field effect is applied.
  • the gates of the tubes Q1 and Q3 are connected to one ends of the second protection resistors R2 and R5;
  • the drains of the first field effect transistors Q1, Q3 and the other ends of the second resistors R2, R5 are connected to the port guard circuit module 11, and the sources of the first field effect transistors Q1, Q3 are connected to the unidirectional conductive circuit control module 13.
  • the first FET is a PMOS transistor.
  • the PMOS is a P-type metal oxide semiconductor field effect transistor (MOS).
  • MOS metal oxide semiconductor field effect transistor
  • the first field effect transistor in the reverse connection protection module 12 is a PMOS tube, and the body diode of the PMOS tube Q1 is self-conducted due to the difference in voltage between the front and the back and the conduction voltage, and the current is from the current.
  • the body diode of the PMOS transistor Q1 flows, so that a voltage drop is formed on the first protection resistor R1 and the second protection resistor R2, and the second protection is performed after the input voltage is divided by the first protection resistor R1 and the second protection resistor R2.
  • the voltage across the resistor R2 is the same as the gate voltage of the PMOS transistor Q1, so that the PMOS transistor Q1 satisfies the conduction condition, and the PMOS transistor Q1 is switched from the off state to the on state. State, at this time, the current no longer flows through the body diode of the PMOS transistor Q1, but flows through the PMOS transistor Q1, and the conduction voltage drop of the PMOS transistor is much smaller than the conduction voltage drop of the body diode, thereby lowering the PMOS transistor Q1. The power loss, while greatly improving the working life of the PMOS tube Q1.
  • the reverse connection protection circuit module further includes: a Zener diode DZ1, DZ3, a negative pole of the Zener diode DZ1, DZ3, and a first FET.
  • the sources of Q1 and Q3 are connected, and the anodes of the Zener diodes DZ1 and DZ3 are connected to the gates of the first field effect transistors Q1 and Q3.
  • the Zener diode is added to protect the gate and the source of the first FET, so that the voltage of the gate and the source does not exceed the maximum withstand voltage of the gate and source of the first FET.
  • the one-way conductive circuit control module 13 is an ORING control circuit module.
  • the unidirectional conductive circuit control module 13 includes: an ORING control circuit chip U1, U2, Q4, and an input of the ORING control circuit chip U1, U2.
  • the pin is connected to the reverse protection circuit module 12, and the output pin of the ORING control circuit chip U1, U2 is used as the output power of the output of the unidirectional conductive circuit control module 13, and the enable pin of the ORING control circuit chip U1, U2 is External control signal connection.
  • the input circuit is selected by the ORING control circuit chip.
  • the pins 3 and 7 of the ORING control circuit chip U1 are vacant, the pin 6 is grounded, and the enable pin 5 is connected to the external control through the resistor R3 (the resistor R6 in the other input circuit). Signals are controlled to switch between different input circuits.
  • the unidirectional conductive circuit control module 13 further includes: second FETs Q2, Q4;
  • the drains of the second field effect transistors Q2 and Q4 are connected to the output pins of the ORING control circuit chips U1 and U2, and the sources of the second field effect transistors Q2 and Q4 are connected to the reverse connection protection circuit module 12, The gates of the two field effect transistors Q2 and Q4 are connected to the control pins of the ORING control circuit chips U1 and U2.
  • the second field effect transistor is an NMOS transistor.
  • the NMOS transistor is an N-type metal oxide semiconductor field effect transistor (MOS).
  • MOS metal oxide semiconductor field effect transistor
  • the second field effect transistor Q2 is an NMOS transistor.
  • the source of the PMOS transistor Q1 enters the unidirectional conductive circuit control module 13 and is connected to the source of the NMOS transistor Q2 in the unidirectional conductive circuit control module 13.
  • the source of the PMOS transistor Q1 is also connected to the ORING control circuit chip U1.
  • Input pin 2 and pin 4 the drain of the NMOS transistor Q2 is connected to the output pin 8 of the control circuit chip U1, and serves as an output power supply for the back-end circuit system.
  • the NMOS transistor Q2 body diode will conduct itself, the current flows from the body diode of the NMOS transistor Q2 and forms a voltage drop, and the ORING control circuit chip U1 can detect the source and drain voltage drop of the NMOS transistor Q2, and reach When the value is constant, the gate of the NMOS transistor Q2 is driven by the control pin 1, so that the NMOS transistor Q2 is turned on.
  • the current will no longer flow through the body diode of the NMOS transistor Q2, but flow through the NMOS transistor Q2, and the NMOS
  • the conduction voltage drop of the tube Q2 is much smaller than the conduction voltage drop of the body diode, thereby reducing the power loss of the NMOS transistor Q2 and greatly improving the working life of the NMOS transistor Q2.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

一种电池管理系统的冗余备份控制电路,冗余备份控制电路包含至少两路输入电路,每路输入电路分别包括依次连接的端口防护电路模块(11)、反接保护电路模块(12)、单向导电电路控制模块(13),其中:端口防护电路模块(11),用于:接入输入电源,对输入电源进行过滤后得到纯净输入电源并输出至反接保护电路模块(12);反接保护电路模块(12),用于:对纯净输入电源进行反接保护,并输出至单向导电电路控制模块(13);单向导电电路控制模块(13),用于:根据控制信号(Control)控制该路的通断;每路输入电路的单向导电电路控制模块(13)的输出端相连接后输出电源。上述电池管理系统的冗余备份控制电路在做冗余备份供电的同时,兼具反接保护功能,增加系统可靠性。

Description

电池管理系统的冗余备份控制电路 技术领域
本发明涉及一种电池管理系统,尤其是一种电池管理系统的冗余备份控制电路。
背景技术
随着当今社会不可再生能源的日益紧缺,以及其对环境的污染问题越来越严重,催生出以锂离子电池为主的新能源产业的迅猛发展。而锂离子电池由于生产和使用过程中的一致性问题较为严重,需要电池管理系统对电池的使用进行管理,保证其长时间、安全的使用。
电池管理系统的供电方式通常有两种,从电池模组取电,或是由外部电源系统提供电源,并且为了防止意外情况,需做冗余备份,即将两种供电方式同时设计在电池管理系统中。在发生异常时,两种供电方式需要安全、快速、无缝的切换,保证电池管理系统运行的连续性。然而,为了保持设计的一致性及通用性,两种供电方式的输入端口均是相同,并且要求输入端口的线束不能有误,否则将会损坏内部电池管理系统,造成损失甚至引起安全问题。因此需要对现有的冗余备份电路进行改进,增加反接保护功能,保证电池管理系统的安全、可靠运行。
然而,现有的反接保护电路通常使用二极管串在主回路中或使用较为复杂的控制电路,主要弊端有:在较大功率需求的系统中二极管导通损耗较大,且长时间工作在此状态下寿命无法保证;使用复杂的控制电路一方面会降低系统的可靠性,另一方面会增加系统成本,不利于产品的开发与推广。
发明内容
本发明的目的在于:提供一种具有反接保护功能的电池管理系统的冗余备份控制电路。
为了解决上述技术问题,本发明提供了电池管理系统的冗余备份控制电路,所述冗余备份控制电路包含至少两路输入电路,每路输入电流分别包括依次连接的端口防护电路模块、反接保护电路模块、单向导电电路控制模块,其中:
端口防护电路模块,用于:接入输入电源,对输入电源进行过滤后得到纯净输入电源并输出至反接保护电路模块;
反接保护电路模块,用于:对纯净输入电源进行反接保护,并输出至单向导电电路控制模块;
单向导电电路控制模块,用于:根据控制信号控制该路的通断;
每路输入电路的单向导电电路控制模块的输出端相连接后输出电源。
作为本发明冗余备份控制电路的一种改进:所述端口防护电路模块,具体用于:接入输入电源,并对输入电源吸收静电干扰信号、吸收瞬间过压造成的大电流信号、滤除噪声信号后得到纯净输入电源。
作为本发明冗余备份控制电路的一种改进:所述端口防护电路模块,包含:并联的静电保护电容、瞬变电压抑制二极管、至少一个滤波电容,所述静电保护电容的两端、瞬变电压抑制二极管的两端、至少一个滤波电容的两端分别与输入电源的正极和负极连接。
作为本发明冗余备份控制电路的一种改进:所述反接保护电路模块,包含:第一场效应管、第一保护电阻、第二保护电阻;
第一场效应管的源极与第一保护电阻的一端连接,第一电阻的另一端与第一场效应管的栅极连接,第一场效应管的栅极与第二保护电阻的一端相连;
第一场效应管的漏极、第二电阻的另一端与端口防护电路模块连接,第一场效应管的源极与单向导电电路控制模块连接。
作为本发明冗余备份控制电路的一种改进:所述第一场效应管为PMOS管。
作为本发明冗余备份控制电路的一种改进:所述反接保护电路模块,还包含:稳压管,稳压管的负极与第一场效应管的源极连接,稳压管的正极与第一场效应管的栅极连接。
作为本发明冗余备份控制电路的一种改进:所述单向导电电路控制模块为ORING控制电路模块。
作为本发明冗余备份控制电路的一种改进:所述单向导电电路控制模块,包含:ORING控制电路芯片,ORING控制电路芯片的输入引脚与所述反接保护电路模块连接,ORING控制电路芯片的输出引脚作为单向导电电路控制模块的输出端输出电源,ORING控制电路芯片的使能引脚与外部控制信号连接;
作为本发明冗余备份控制电路的一种改进:所述单向导电电路控制模块,还包含:第二场效应管;
第二场效应管的漏极与所述ORING控制电路芯片的输出引脚连接,第二场效应管的源极与所述反接保护电路模块连接,第二场效应管的栅极与ORING控制电路芯片的控制引脚连接。
作为本发明冗余备份控制电路的一种改进:所述第二场效应管为NMOS管。
相对于现有技术,本发明电池管理系统的冗余备份控制电路设置有端口防护电路模块、反接保护电路模块、单向导电电路控制模块,使电路在做冗余备份供电的同时,兼具反接保护功能,增加系统可靠性,降低系统成本,保障系统安全、稳定工作。
附图说明
下面结合附图和各个具体实施方式,对本发明及其有益技术效果进行详细说明,其中:
图1为本发明电池管理系统的冗余备份控制电路的模块示意图。
图2为本发明电池管理系统的冗余备份控制电路的电路示意图。
具体实施方式
请参阅图1,使用本发明电池管理系统的冗余备份控制电路,所述冗余备份控制电路包含至少两路输入电路,每路输入电流分别包括依次连接的端口防护电路模块11、反接保护电路模块12、单向导电电路控制模块13,其中:
端口防护电路模块11,用于:接入输入电源,对输入电源进行过滤后得到纯净输入电源并输出至反接保护电路模块;
反接保护电路模块12,用于:对纯净输入电源进行反接保护,并输出至单向导电电路控制模块;
单向导电电路控制模块13,用于:根据控制信号控制该路的通断;
每路输入电路的单向导电电路控制模块11的输出端相连接后输出电源。
优选地,冗余备份控制电路包含两路输入电路,其中一路输入电路接电池模组,另一路输入电路接外部电源,两路输入电路的单向导电电路控制模块11的输出端相连接汇合共同为后端电路系统供电。
请参阅图1,每路输入电源分别经过端口防护电路模块11后接入到反接保护电路模块12,实现对输入电源的反接保护功能,保证输出到后端的电源安全、可靠;单向导电电路控制模块13实现对外部输入电源的选择及冗余备份,每路输入电源在电池管理系统内部具有相同的参考地,实现在一路输入电源异常时,另一输入电源可以安全、快速、无缝切换,继续为后端电池管理系统供电。
本发明冗余备份控制电路的一个实施例中:所述端口防护电路模块11,具体用于:接入输入电源,并对输入电源吸收静电干扰信号、吸收瞬间过压造成的大电流信号、滤除噪声信号后得到纯净输入电源。
请参阅图2,本发明冗余备份控制电路的一个实施例中:所述端口防护电路模块11,包含:并联的静电保护电容C1、C5、瞬变电压抑制二极管DZ2、DZ4、至少一个滤波电容C2、C3、C4、C6、C7、C8,所述静电保护电容C1、C5的两端、瞬变电压抑制二极管DZ2、DZ4的两端、至少一个滤波电容C2、C3、C4、C6、C7、C8的两端分别与输入电源的正极和负极连接。
以其中一路输入电路为例,当外部电源通过输入电源正确接入到端口防护电路模块11时,端口防护电路模块11中静电保护(Electro Static discharge,ESD)电容C1可吸收静电干扰信号,瞬变电压抑制(Transient Voltage Suppressor,TVS)二极管DZ2可以快速吸收由于瞬间过压造成的大电流信号,保护后端电路器件的正常运行,输入电源再经过不同容值的滤波电容C2、C3、C4滤除噪声信号后得到纯净的电源输入到反接保护电路模块12中。
当外部电源通过输入电源反向接入到端口防护电路模块11时,由于端口防护电路11所选用的ESD电容C1、TVS管DZ2、滤波电容C2、C3、C4均是双向器件,因此不会造成此模块器件的损坏
请参阅图2,本发明冗余备份控制电路的一个实施例中:所述反接保护电路模块12,包含:第一场效应管Q1、Q3、第一保护电阻R1、R4、第二保护电阻R2、R5;
第一场效应管Q1、Q3的源极与第一保护电阻R1、R4的一端连接,第一电阻R1、R4的另一端与第一场效应管Q1、Q3的栅极连接,第一场效应管Q1、Q3的栅极与第二保护电阻R2、R5的一端相连;
第一场效应管Q1、Q3的漏极、第二电阻R2、R5的另一端与端口防护电路模块11连接,第一场效应管Q1、Q3的源极与单向导电电路控制模块13连接。
本发明冗余备份控制电路的一个实施例中:所述第一场效应管为PMOS管。
PMOS即P型的金属氧化物半导体场效应晶体管(metal oxide semiconductor,MOS)。以其中一路输入电路为例,反接保护模块12中的第一场效应管为PMOS管,PMOS管Q1的体二极管由于前后压差大于导通的压差,自行导通,此时电流均从PMOS管Q1的体二极管流过,使得第一保护电阻R1和第二保护电阻R2上形成压降,由于输入电压经第一保护电阻R1和第二保护电阻R2的分压后,在第二保护电阻R2两端的电压与PMOS管Q1的栅极电压相同,使得PMOS管Q1满足导通条件,PMOS管Q1由断开状态切换为导通状 态,此时电流不再由PMOS管Q1的体二极管流过,而是从PMOS管Q1上流过,PMOS管的导通压降远小于其体二极管的导通压降,因此降低了PMOS管Q1的功率损耗,同时大大提高了PMOS管Q1的工作寿命。
当外部电源通过输入电源反向接入时,由于输入信号反向及二极管的单向导电特性,输入信号的正极进入到反接保护模块时,电流无法从体二极管流过,因此输入电源无法在第一保护电阻R1和第二保护电阻R2上分压,无法驱动PMOS管Q1,即PMOS管Q1不导通,无法形成回路,达到反接保护的功能,同时由于不能形成回路,因此也不会对后端系统造成损坏,保护后端电路系统的安全、可靠。
请参阅图2,本发明冗余备份控制电路的一个实施例中:所述反接保护电路模块,还包含:稳压管DZ1、DZ3,稳压管DZ1、DZ3的负极与第一场效应管Q1、Q3的源极连接,稳压管DZ1、DZ3的正极与第一场效应管Q1、Q3的栅极连接。
本实施例增加稳压管,以保护第一场效应管的栅极与源极,使得栅极与源极的电压不超过第一场效应管栅极和源极的最大承受电压。
本发明冗余备份控制电路的一个实施例中:所述单向导电电路控制模块13为ORING控制电路模块。
请参阅图2,本发明冗余备份控制电路的一个实施例中:所述单向导电电路控制模块13,包含:ORING控制电路芯片U1、U2、Q4,ORING控制电路芯片U1、U2的输入引脚与所述反接保护电路模块12连接,ORING控制电路芯片U1、U2的输出引脚作为单向导电电路控制模块13的输出端输出电源,ORING控制电路芯片U1、U2的使能引脚与外部控制信号连接。
本实施例通过ORING控制电路芯片对输入电路进行选择。
以其中一路输入电路为例,ORING控制电路芯片U1的引脚3、7空接,引脚6接地,使能引脚5通过电阻R3(在另一路输入电路中为电阻R6)接外部控 制信号,以控制在不同输入电路中切换。
本发明冗余备份控制电路的一个实施例中:所述单向导电电路控制模块13,还包含:第二场效应管Q2、Q4;
第二场效应管Q2、Q4的漏极与所述ORING控制电路芯片U1、U2的输出引脚连接,第二场效应管Q2、Q4的源极与所述反接保护电路模块12连接,第二场效应管Q2、Q4的栅极与ORING控制电路芯片U1、U2的控制引脚连接。
本发明冗余备份控制电路的一个实施例中,所述第二场效应管为NMOS管。
NMOS管即N型的金属氧化物半导体场效应晶体管(metal oxide semiconductor,MOS)。以其中一路输入电路为例,第二场效应管Q2为NMOS管。PMOS管Q1源极输出后进入到单向导电电路控制模块13,与单向导电电路控制模块13中的NMOS管Q2的源极相连,PMOS管Q1的源极同时还接入ORING控制电路芯片U1的输入引脚2及引脚4,NMOS管Q2的漏极ORING控制电路芯片U1的输出引脚8相连,并作为一路输出电源为后端电路系统供电。其中,NMOS管Q2体二极管会自行导通,电流从NMOS管Q2的体二极管流过并形成压降,ORING控制电路芯片U1可以将NMOS管Q2源极与漏极压降检测出来,并在达到一定值时通过控制引脚1驱动NMOS管Q2的栅极,使得NMOS管Q2导通,此时,电流将不再由NMOS管Q2的体二极管流过,而是从NMOS管Q2上流过,NMOS管Q2的导通压降远小于其体二极管的导通压降,因此降低了NMOS管Q2的功率损耗,同时大大提高了NMOS管Q2的工作寿命。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 电池管理系统的冗余备份控制电路,其特征在于:所述冗余备份控制电路包含至少两路输入电路,每路输入电流分别包括依次连接的端口防护电路模块、反接保护电路模块、单向导电电路控制模块,其中:
    端口防护电路模块,用于:接入输入电源,对输入电源进行过滤,得到纯净输入电源并输出至反接保护电路模块;
    反接保护电路模块,用于:对纯净输入电源进行反接保护,并输出至单向导电电路控制模块;
    单向导电电路控制模块,用于:根据控制信号控制该路的通断;
    每路输入电路的单向导电电路控制模块的输出端相连接后输出至后端电路。
  2. 根据权利要求1所述的冗余备份控制电路,其特征在于:所述端口防护电路模块,具体用于:接入输入电源,并对输入电源吸收静电干扰信号、吸收瞬间过压造成的大电流信号、滤除噪声信号后得到纯净输入电源。
  3. 根据权利要求2所述的冗余备份控制电路,其特征在于:所述端口防护电路模块,包含:并联的静电保护电容、瞬变电压抑制二极管、至少一个滤波电容,所述静电保护电容的两端、瞬变电压抑制二极管的两端、至少一个滤波电容的两端分别与输入电源的正极和负极连接。
  4. 根据权利要求1所述的冗余备份控制电路,其特征在于:所述反接保护电路模块,包含:第一场效应管、第一保护电阻、第二保护电阻;
    第一场效应管的源极与第一保护电阻的一端连接,第一电阻的另一端与第一场效应管的栅极连接,第一场效应管的栅极与第二保护电阻的一端相连;
    第一场效应管的漏极、第二电阻的另一端与端口防护电路模块连接,第一场效应管的源极与单向导电电路控制模块连接。
  5. 根据权利要求4所述的冗余备份控制电路,其特征在于:所述第一场效应管为PMOS管。
  6. 根据权利要求4所述的冗余备份控制电路,其特征在于:所述反接保护电路模块,还包含:稳压管,稳压管的负极与第一场效应管的源极连接,稳压管的正极与第一场效应管的栅极连接。
  7. 根据权利要求1所述的冗余备份控制电路,其特征在于:所述单向导电电路控制模块为ORING控制电路模块。
  8. 根据权利要求7所述的冗余备份控制电路,其特征在于:所述单向导电电路控制模块,包含:ORING控制电路芯片,ORING控制电路芯片的输入引脚与所述反接保护电路模块连接,ORING控制电路芯片的输出引脚作为单向导电电路控制模块的输出端输出电源,ORING控制电路芯片的使能引脚与外部控制信号连接。
  9. 根据权利要求8所述的冗余备份控制电路,其特征在于:所述单向导电电路控制模块,还包含:第二场效应管;
    第二场效应管的漏极与所述ORING控制电路芯片的输出引脚连接,第二场效应管的源极与所述反接保护电路模块连接,第二场效应管的栅极与ORING控制电路芯片的控制引脚连接。
  10. 根据权利要求9所述的冗余备份控制电路,其特征在于:所述第二场效应管为NMOS管。
PCT/CN2017/092842 2016-10-25 2017-07-13 电池管理系统的冗余备份控制电路 WO2018076794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621160653.7 2016-10-25
CN201621160653.7U CN206135414U (zh) 2016-10-25 2016-10-25 电池管理系统的冗余备份控制电路

Publications (1)

Publication Number Publication Date
WO2018076794A1 true WO2018076794A1 (zh) 2018-05-03

Family

ID=58575288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092842 WO2018076794A1 (zh) 2016-10-25 2017-07-13 电池管理系统的冗余备份控制电路

Country Status (2)

Country Link
CN (1) CN206135414U (zh)
WO (1) WO2018076794A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416928A (zh) * 2018-05-30 2018-08-17 杭州先锋电子技术股份有限公司 一种物联网燃气表用sim卡自动切换电路
CN108803420A (zh) * 2018-06-02 2018-11-13 新乡市光明电器有限公司 军用车载设备集控电路
CN109755928A (zh) * 2019-02-19 2019-05-14 深圳市科比特航空科技有限公司 防反向电动势电路和无人机
CN110556914A (zh) * 2019-09-21 2019-12-10 温岭爱特制冷设备有限公司 一种真空泵的电源控制系统
CN113765582A (zh) * 2021-10-25 2021-12-07 江苏云涌电子科技股份有限公司 一种国产化设计的冗余光口单向传输数据实现系统和方法
CN114442723A (zh) * 2022-02-14 2022-05-06 昀迈(上海)物联网科技有限公司 一种级联信号压差纠正、自控备用电源及保护的电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206135414U (zh) * 2016-10-25 2017-04-26 宁德时代新能源科技股份有限公司 电池管理系统的冗余备份控制电路
CN108988470A (zh) * 2017-06-05 2018-12-11 深圳市道通智能航空技术有限公司 电池冗余电路、无人飞行器及其电池供电的控制方法
CN110504668A (zh) * 2019-09-27 2019-11-26 苏州浪潮智能科技有限公司 一种直流电源并机输入防反接电路及服务器
CN112202235B (zh) * 2020-09-16 2022-06-14 北京聚能合源科技有限公司 冗余电源及其输入切换控制电路
CN112600295A (zh) * 2020-12-04 2021-04-02 清华大学 冗余车载传感器供电方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095021A1 (en) * 2002-11-15 2004-05-20 Inostor Corporation Power distributor
CN1627593A (zh) * 2003-12-11 2005-06-15 上海贝尔阿尔卡特股份有限公司 一种低压电源主从供电方式的切换电路
CN101286083A (zh) * 2008-02-14 2008-10-15 浪潮电子信息产业股份有限公司 大功率服务器机柜冗余供电系统
CN201639292U (zh) * 2010-03-16 2010-11-17 青岛海信移动通信技术股份有限公司 移动终端的供电保护装置
CN103036226A (zh) * 2012-12-06 2013-04-10 南京莱斯信息技术股份有限公司 低成本低功耗供电反接保护电路及其保护方法
CN203151203U (zh) * 2012-12-21 2013-08-21 深圳市理邦精密仪器股份有限公司 一种电源切换装置
CN204156524U (zh) * 2014-08-18 2015-02-11 武汉迈威光电技术有限公司 一种mosfet管防反接电路
CN204905985U (zh) * 2015-06-11 2015-12-23 中兴通讯股份有限公司 一种oring控制电路和电源系统
CN205544927U (zh) * 2016-04-18 2016-08-31 厦门立控科技有限公司 一种分组式电源管理系统
CN206135414U (zh) * 2016-10-25 2017-04-26 宁德时代新能源科技股份有限公司 电池管理系统的冗余备份控制电路

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095021A1 (en) * 2002-11-15 2004-05-20 Inostor Corporation Power distributor
CN1627593A (zh) * 2003-12-11 2005-06-15 上海贝尔阿尔卡特股份有限公司 一种低压电源主从供电方式的切换电路
CN101286083A (zh) * 2008-02-14 2008-10-15 浪潮电子信息产业股份有限公司 大功率服务器机柜冗余供电系统
CN201639292U (zh) * 2010-03-16 2010-11-17 青岛海信移动通信技术股份有限公司 移动终端的供电保护装置
CN103036226A (zh) * 2012-12-06 2013-04-10 南京莱斯信息技术股份有限公司 低成本低功耗供电反接保护电路及其保护方法
CN203151203U (zh) * 2012-12-21 2013-08-21 深圳市理邦精密仪器股份有限公司 一种电源切换装置
CN204156524U (zh) * 2014-08-18 2015-02-11 武汉迈威光电技术有限公司 一种mosfet管防反接电路
CN204905985U (zh) * 2015-06-11 2015-12-23 中兴通讯股份有限公司 一种oring控制电路和电源系统
CN205544927U (zh) * 2016-04-18 2016-08-31 厦门立控科技有限公司 一种分组式电源管理系统
CN206135414U (zh) * 2016-10-25 2017-04-26 宁德时代新能源科技股份有限公司 电池管理系统的冗余备份控制电路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416928A (zh) * 2018-05-30 2018-08-17 杭州先锋电子技术股份有限公司 一种物联网燃气表用sim卡自动切换电路
CN108416928B (zh) * 2018-05-30 2023-11-14 杭州先锋电子技术股份有限公司 一种物联网燃气表用sim卡自动切换电路
CN108803420A (zh) * 2018-06-02 2018-11-13 新乡市光明电器有限公司 军用车载设备集控电路
CN108803420B (zh) * 2018-06-02 2024-05-10 新乡市光明电器有限公司 军用车载设备集控电路
CN109755928A (zh) * 2019-02-19 2019-05-14 深圳市科比特航空科技有限公司 防反向电动势电路和无人机
CN110556914A (zh) * 2019-09-21 2019-12-10 温岭爱特制冷设备有限公司 一种真空泵的电源控制系统
CN110556914B (zh) * 2019-09-21 2024-04-02 温岭爱特制冷设备有限公司 一种真空泵的电源控制系统
CN113765582A (zh) * 2021-10-25 2021-12-07 江苏云涌电子科技股份有限公司 一种国产化设计的冗余光口单向传输数据实现系统和方法
CN114442723A (zh) * 2022-02-14 2022-05-06 昀迈(上海)物联网科技有限公司 一种级联信号压差纠正、自控备用电源及保护的电路

Also Published As

Publication number Publication date
CN206135414U (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018076794A1 (zh) 电池管理系统的冗余备份控制电路
KR102416267B1 (ko) 스위치드 커패시터 전력 컨버터의 보호
CN110380474B (zh) 电池保护控制器及电池充放电保护电路
US9461455B2 (en) Protecting circuit
US11522363B2 (en) Supply protection circuit that protects power transistor from a supply signal of an incorrect polarity
US20080192396A1 (en) Over-voltage protection circuit and method thereof
US9722411B2 (en) Secondary power system and power supply device
CN106575865A (zh) 电压调节器的短路保护
CN105068636A (zh) 一种应用于加固计算机中的防冲击浪涌电路
CN111788752A (zh) 一种保护电路、硬盘设备的电源系统以及车载设备
CN107845998A (zh) 一种电源并联冗余系统中输入供电健康检测及管理电路
CN212751771U (zh) 一种保护电路、硬盘设备的电源系统以及车载设备
CN218866065U (zh) 故障异常状态保持电路、装置及机器人
CN110890749A (zh) 电源防反接电路和电源电路
CN115882580A (zh) 电源切换系统及双电源供电设备
CN209298948U (zh) 一种mos管驱动电路及锂电池保护ic
CN110007221A (zh) 合路开关电路及其故障检测方法
WO2023065486A1 (zh) 带有自动选择电池功能的切换电路及其供电装置
CN113131446B (zh) 电池保护电路
CN204222674U (zh) 一种过压保护电路
CN112994441A (zh) 一种车载ecu电源输入电路
CN214256133U (zh) 一种芯片稳压供电电路及芯片
CN219394430U (zh) 一种车载冗余电源低功耗防反接电路
CN111009955A (zh) 一种带保护的双电源供电电路
CN220173216U (zh) 复位电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863644

Country of ref document: EP

Kind code of ref document: A1