[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023065486A1 - 带有自动选择电池功能的切换电路及其供电装置 - Google Patents

带有自动选择电池功能的切换电路及其供电装置 Download PDF

Info

Publication number
WO2023065486A1
WO2023065486A1 PCT/CN2021/136964 CN2021136964W WO2023065486A1 WO 2023065486 A1 WO2023065486 A1 WO 2023065486A1 CN 2021136964 W CN2021136964 W CN 2021136964W WO 2023065486 A1 WO2023065486 A1 WO 2023065486A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
module
pin
terminal
input
Prior art date
Application number
PCT/CN2021/136964
Other languages
English (en)
French (fr)
Inventor
张华国
Original Assignee
东莞市创汇原电源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市创汇原电源技术有限公司 filed Critical 东莞市创汇原电源技术有限公司
Publication of WO2023065486A1 publication Critical patent/WO2023065486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits

Definitions

  • the present application relates to the technical field of power supply circuits, in particular to a switching circuit with automatic battery selection function and a power supply device thereof.
  • two sets of batteries are generally installed inside the device for powering electric products, one of which is used as the main battery for power supply, and the other set of batteries is used as a backup battery.
  • the conventional method is to manually switch the battery used for power supply, that is, replace the battery with a relatively low voltage with a battery with a relatively high voltage, and the replaced battery continues to supply power to the electric product.
  • this method has the following defects: before manual switching, the electric product needs to be powered off first, which will cause the electric product to be temporarily unusable; and manual switching is generally implemented by a toggle switch, and the current is too large at the moment of the toggle switch. It is easy to generate electric sparks, which not only shortens the service life of the battery and the toggle switch, but also poses a safety hazard to the subsequent use of the battery.
  • the battery can be switched without manual operation when the power-consuming products are not powered on, so as to meet the power supply life of the power-consuming products, prolong the service life of the batteries and improve the safety of battery power supply.
  • the present application now proposes a switching circuit with automatic battery selection function and its power supply device.
  • the present application provides a switching circuit with automatic battery selection function, including a common output module and at least two groups of battery discharge modules, at least two groups of the battery discharge modules are coupled in parallel with the common output module;
  • Each set of battery discharge modules includes: a battery input sub-module for connecting external batteries; an automatic identification sub-module for identifying whether there is a reverse current: if it is recognized that there is a reverse current, the output is disconnected and driven signal; if it is recognized that there is no reverse current, it will output a turn-on drive signal; the switch sub-module is used to perform the operation of disconnecting the battery input sub-module from the common output module according to the received disconnection drive signal, or according to The received turn-on drive signal performs the conduction operation of the battery input sub-module and the common output module.
  • the user connects at least two external batteries to the corresponding battery input sub-modules respectively. If there is a voltage difference between the batteries connected to the battery discharge module, at the moment of power-on, the automatic identification sub-module corresponding to the battery judges whether there is a reverse current. If it exists, it proves that the voltage of the above-mentioned batteries is relatively low.
  • the sub-module controls the corresponding switch sub-module to be disconnected, so that the battery is disconnected from the common output module, and the power supply is stopped. This protects the battery with relatively low voltage and prolongs the service life of the battery. For the remaining batteries with relatively high voltage, their voltage gradually decreases during discharge.
  • the automatic identification sub-module of the battery with relatively low original voltage at this time judges that there is no reverse Current, and control the conduction of the corresponding switch sub-modules, automatically select multiple batteries with the same voltage to continuously supply power to the power-consuming products, and realize switching batteries without manual operation when the power-consuming products are not powered on, meeting the needs of power-consuming products Power supply and battery life, and help prevent safety hazards caused by manual switching.
  • the battery input sub-module includes a positive input terminal and a negative input terminal;
  • the automatic identification sub-module includes an identification controller, and the identification controller includes a first input pin, a second input pin and an output pin
  • the switch sub-module includes a switch element, and the switch element includes a control terminal, a first access terminal and a second access terminal;
  • the common output module includes a common positive output terminal and a common negative output terminal;
  • the second An input pin is coupled to the positive input terminal, and the positive input terminal is coupled to the common positive output terminal;
  • the negative input terminal is coupled to the second input pin, and the output pin is coupled to the second input pin.
  • the control terminal is coupled; the negative input terminal and the second input pin are both coupled to the first access terminal, the second access terminal is grounded, and the second access terminal is connected to the The common negative output terminal is coupled.
  • the identification controller can effectively determine whether there is a reverse current, and send a control signal to the switching element in time according to the judgment result, so that the switching element performs a corresponding operation, thereby improving the degree of automation.
  • the identification controller adopts a JW3332 chip
  • the first input pin is the first pin of the JW3332 chip
  • the fourth pin of the JW3332 chip is connected to the first pin of the JW3332 chip Coupling
  • the second input pin is the fifth pin of the JW3332 chip
  • the output pin is the eighth pin of the JW3332 chip
  • the sixth pin of the JW3332 chip is grounded.
  • the switching sub-module includes several switching elements, and the several switching elements all use first NMOS transistors, the control terminal is the gate of the first NMOS transistor, and the first access terminal is the gate of the first NMOS transistor.
  • the drain of the first NMOS transistor, the second access terminal is the source of the first NMOS transistor; several of the first NMOS transistors are connected in parallel.
  • the internal resistance of the NMOS transistor is low and the power is large, which can effectively reduce power loss during the switching operation.
  • the number of the battery discharge modules is at least three groups, and at least three groups of the battery discharge modules are all coupled in parallel with the common output module.
  • a filter element is connected in parallel between the common positive output terminal and the common negative output terminal.
  • a first current limiting element is connected between the first pin of each JW3332 chip and the corresponding first input pin, and the first pin of each JW3332 chip and the JW3332
  • a second current limiting element is connected between the fourth pins of the chip.
  • a third current limiting element is connected between the eighth pin of each JW3332 chip and the corresponding control terminal.
  • a fourth current limiting element is connected between the fifth pin of each JW3332 chip and the corresponding first access terminal.
  • the present application provides a power supply device, including a battery and any of the above-mentioned switching circuits with the function of automatically selecting batteries, and the number of groups of the battery discharge modules of the switching circuit is the same as the number of the batteries , the output terminal of one battery is connected to the battery input sub-module of a corresponding group of the battery discharge modules.
  • the present application includes at least one of the following beneficial technical effects:
  • the application provides a switching circuit with the function of automatically selecting batteries, and the user connects at least two external batteries to the corresponding battery input sub-modules. If there is a voltage difference between the batteries connected to the battery discharge module, the automatic identification sub-module corresponding to the battery with relatively low voltage will switch off the control switch sub-module to disconnect the battery from the common output module and stop power supply. This protects the battery with relatively low voltage and prolongs the service life of the battery.
  • the automatic identification sub-module corresponding to the battery with a relatively low original voltage controls the corresponding switch.
  • the sub-module is turned on, and multiple batteries with the same voltage are automatically selected to continuously supply power to the power-consuming product.
  • the battery can be switched without manual operation, which meets the power supply and battery life of the power-consuming product, and helps Prevent security risks caused by manual switching.
  • a power supply device provided by this application can provide multiple batteries for external power consumption products, effectively satisfying the battery life of power consumption products, and when there is a voltage difference between multiple batteries, the voltage can be automatically selected to make the voltage relative to the battery.
  • the high battery charges the electric product to protect the battery; if multiple batteries have the same voltage, multiple batteries can be automatically selected to supply power to the electric product together.
  • FIG. 1 is an overall module block diagram of a switching circuit with an automatic battery selection function according to Embodiment 1 of the present application.
  • FIG. 2 is a detailed module block diagram of a switching circuit with an automatic battery selection function according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic circuit diagram of a switching circuit including two sets of battery discharge modules according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic circuit diagram of the switching circuit in Embodiment 1 of the present application including three sets of battery discharge modules.
  • FIG. 5 is an equivalent principle block diagram of the recognition controller in Embodiment 1 of the present application.
  • FIG. 6 is a module block diagram of the switching circuit according to Embodiment 2 of the present application and also includes a protection module.
  • FIG. 7 is a schematic circuit diagram of a protection module according to Embodiment 2 of the present application.
  • FIG. 8 is a schematic circuit diagram of a protection module according to Embodiment 3 of the present application.
  • FIG. 9 is a schematic circuit diagram of a protection module according to Embodiment 4 of the present application.
  • each group of battery discharge modules 2 includes: a battery input sub-module 3 for connecting external batteries; an automatic identification sub-module 4 for identifying whether there is a reverse current: if it is recognized that there is a reverse current If there is no reverse current, output a turn-on drive signal to the switch submodules in the battery discharge module 2 that has a reverse current; if it is recognized that there is no reverse current, then output a turn-on drive signal to all switch submodules in the battery discharge module 2 ;
  • the switch sub-module 5 is used to perform the operation of disconnecting the battery input sub-module 3 from the common output module 1 according to the received disconnection drive signal, or execute the battery input sub-module according to the received conduction drive signal 3 Conducted operation with common output
  • At least two external batteries are respectively connected to the corresponding battery input sub-module 3, so that the electric energy of the battery can reach the public output module 1 through the automatic identification sub-module 4 and the switch sub-module 5 in turn, so as to realize external power supply .
  • the automatic identification sub-module 4 corresponding to the battery with a relatively low voltage will recognize that there is a reverse current at the moment the battery is powered on, The reverse current triggers the automatic identification sub-module 4 to output a disconnection driving signal, and the disconnection driving signal is sent to the switch sub-module 5 to make the switch sub-module 5 perform a disconnection operation.
  • the switch sub-module 5 realizes that the battery with a relatively low voltage is cut off from the common output module 1, so that the battery with a relatively high voltage continues to provide output power supply, while the battery with a relatively low voltage stops supplying power, which helps to prevent reverse current from feeding The battery is reverse charged, which protects the battery with relatively low voltage and prolongs the service life of the battery.
  • the automatic identification sub-module 4 corresponding to the battery with a relatively low voltage will recognize that it is not There is a reverse current, which then triggers the automatic identification sub-module 4 to output a conduction drive signal, and the conduction drive signal is sent to the switch sub-module 5, so that the switch sub-module 5 performs a conduction operation, thereby realizing the parallel output of batteries with the same voltage selection Power supply, effectively prolonging the battery life of electric products. And when switching, the electric product does not need to be powered off. No need for manual switching, which helps to prevent sparks and/or excessive current problems during switching, eliminating potential safety hazards.
  • the battery input sub-module 3 includes a positive input terminal and a negative input terminal;
  • the automatic identification sub-module 4 includes an identification controller 6, and the identification controller 6 includes a first input pin, a second input pin and an output pin
  • the switch sub-module 5 includes a switch element, and the switch element includes a control terminal, a first access terminal and a second access terminal;
  • the public output module 1 includes a common positive output terminal and a common negative output terminal; the first input pin and the positive input The positive input terminal is coupled to the common positive output terminal; the negative input terminal is coupled to the second input pin, and the output pin is coupled to the control terminal; both the negative input terminal and the second input pin are connected to the first terminal The input end is coupled, the second access end is grounded, and the second access end is coupled to the common negative output end.
  • each set of battery input sub-modules 3 is respectively connected to the positive pole of the battery through the positive input terminal, and connected to the negative pole of the battery through the negative pole input terminal.
  • the electric energy in the two groups of batteries passes through their corresponding automatic identification sub-module 4 and switch sub-module 5 in sequence.
  • the second input pin of the identification controller 6 corresponding to the battery with a relatively low voltage flows into the Reverse current, the voltage corresponding to the reverse current is compared with the battery voltage connected to the first input pin of the identification controller 6, and it is concluded that there is a reverse current.
  • the identification controller 6 outputs a disconnection drive signal through the output pin according to the situation, and the disconnection drive signal is sent to the control terminal of the switch element, and the switch element drives the first access terminal and the second access terminal to disconnect according to the disconnection drive signal. In this way, the battery with a relatively low voltage is temporarily disconnected from the output power.
  • the battery with a relatively high voltage continues to output electric energy to the outside.
  • the second input pin of the recognition controller 6 corresponding to the battery with relatively low voltage does not have an inflow reverse.
  • the identification controller 6 finds that there is no reverse current, and outputs a conduction drive signal through the output pin according to the situation, and the conduction drive signal is sent to the control terminal of the switch element, and the switch element is based on the conduction
  • the driving signal drives the first access terminal and the second access terminal to conduct. At this time, two batteries with the same voltage are connected in parallel with the common output module 1 and supply power to the outside at the same time.
  • the number of battery discharge modules 2 is at least three groups, and at least three groups of battery discharge modules 2 are all coupled in parallel with the common output module 1 .
  • each set of battery discharge modules 2 is connected to the battery.
  • the three batteries when the three batteries are powered on, if there is a voltage difference between the three batteries, the one with the highest voltage will continue to be connected to the outside.
  • the other two batteries with lower voltage temporarily cut off the output power until the voltage of the battery with the highest voltage drops to the same voltage as one of the batteries, then the two batteries are automatically selected to supply power to the outside world at the same time according to the above working principle, the same reason Until the voltage of two batteries with the same voltage drops to the same voltage as the third battery, three batteries are automatically selected to supply power to the outside at the same time.
  • the voltage of the battery with the highest voltage drops to the same voltage as the other two batteries with the same voltage, then three batteries are automatically selected to supply power to the outside at the same time.
  • the principle of automatic selection and external power supply is consistent with the above, and will not be repeated here.
  • the application realizes the effect of parallel connection and integrated output of multiple batteries.
  • the identification controller 6 will automatically select the battery with high voltage for external power supply, so as to meet the requirements for continuous operation of power-consuming products.
  • the problem of battery life, and because the batteries are connected in parallel it helps to reduce mutual interference.
  • the external power supply is convenient for maintenance.
  • it can play the role of increasing the output current.
  • the output operating current range is 15A-100A.
  • the identification controller 6 can use JW3332 chip, JW3332 chip is a chip with eight pins, the first input pin is the first pin of JW3332 chip, the fourth pin of JW3332 chip is connected with JW3332 chip The first pin of the chip is coupled; the second input pin is the fifth pin of the JW3332 chip, the output pin is the eighth pin of the JW3332 chip, and the sixth pin of the JW3332 chip is grounded.
  • the JW3332 chip is used as a recognition controller 6, and its interior is equivalent to including a voltage stabilizing unit 7, a first comparator unit 8, a second comparator unit 9 and a logic control unit 10, and the voltage stabilizing unit 7 includes Stable voltage input terminal, first regulated voltage output terminal and second regulated voltage output terminal, the logic control unit 10 includes a first logic control input terminal, a second logic control input terminal and a logic control output terminal.
  • the first pin of the JW3332 chip is connected to the input terminal of the voltage stabilizing unit 7 .
  • the positive input terminal is coupled to the voltage regulator input terminal through the first pin of the JW3332 chip.
  • the first regulated output terminal is connected to the positive terminal of the first comparator unit 8 .
  • the fourth pin of the JW3332 chip is connected to the positive terminal of the first comparator unit 8, the negative terminal of the first comparator unit 8 is connected to a 1V voltage, and the output terminal of the first comparator unit 8 is connected to the first terminal of the logic control unit 10.
  • Logic control input connection The second regulated voltage output terminal is connected with the second logic control input terminal.
  • the logic control output terminal is connected to the pull-up voltage terminal of the second comparator unit 9, and the sixth pin of the JW3332 chip is connected to the positive terminal of the second comparator unit 9, that is, the positive terminal of the second comparator unit 9 is grounded.
  • the fifth pin of the JW3332 chip is connected to the negative terminal of the second comparator unit 9
  • the eighth pin of the JW3332 chip is connected to the output terminal of the second comparator unit 9 .
  • the battery voltage is connected to the first pin and the fourth pin of the JW3332 chip through the positive input terminal, and the fourth pin is the start pin.
  • the negative terminal of the first comparator unit 8 is connected to a voltage of 1V, which triggers the logic control unit 10 to be turned on.
  • the battery voltage is input to the pull-up voltage terminal of the second comparator unit 9 through the logic control unit 10 that has been turned on. If there is no obvious reverse current in the process, the second comparator unit 9 will The voltage corresponding to the eight-pin output pull-up voltage terminal is to output a high potential signal.
  • the voltage corresponding to the reverse current is connected to the negative terminal of the second comparator unit 9 through the fifth pin of the JW3332 chip, because the positive terminal of the second comparator unit 9 Grounded, the second comparator unit 9 will quickly output a low potential through the eighth pin of the JW3332 chip without voltage output, thereby quickly disconnecting the switching element.
  • the switch sub-module 5 includes several switch elements, and the several switch elements all adopt the first NMOS transistor, the control terminal is the gate of the first NMOS transistor, and the first access terminal is the gate of the first NMOS transistor.
  • the drain, and the second access terminal is the source of the first NMOS transistor; several first NMOS transistors are connected in parallel.
  • the NMOS tube has the advantages of high power and low internal resistance, which helps to reduce power loss. That is, when the eighth pin of the JW3332 chip outputs a high potential, it is a conduction drive signal. At this time, the gate of the first NMOS transistor receives a high potential to realize the conduction of its drain and source, and let the corresponding battery pass through the public output. Module 1 provides external power supply. When the eighth pin of the JW3332 chip outputs a low potential, it is a disconnection drive signal. At this time, the gate of the first NMOS transistor receives a low potential to realize the disconnection of its drain and source, so that the corresponding battery and the common output module 1 disconnected.
  • the number of the first NMOS transistors is several and connected in parallel, so that the channel resistance of the first NMOS transistors is greatly reduced, and the output current is increased at the same rated junction temperature.
  • each first NMOS transistor are equivalently connected in parallel with a first reverse diode, the anode of the first reverse diode is connected to the source of the first NMOS transistor, and the cathode of the first reverse diode is connected to the first reverse diode.
  • the drain connection of the NMOS transistor is equivalently connected in parallel with a first reverse diode, the anode of the first reverse diode is connected to the source of the first NMOS transistor, and the cathode of the first reverse diode is connected to the first reverse diode.
  • a filter element is connected in parallel between the common positive output terminal and the common negative output terminal. This setting plays a role in filtering and eliminating noise.
  • the filter element adopts a capacitor, and the quantity of the filter element can be set to multiple according to the number of groups of the battery discharge module 2. Specifically, when the number of groups of the battery discharge module 2 is two groups, one filter element can be set; When the number is three groups, two filter elements can be set in parallel.
  • a first current limiting element is connected between the first pin of each JW3332 chip and the corresponding first input pin, and a second current limiting element is connected between the first pin of each JW3332 chip and the fourth pin of the JW3332 chip. current limiting element.
  • This setting acts as a current limiter and protects the JW3332 chip.
  • both the first current limiting element and the second current limiting element use resistors.
  • a third current limiting element is connected between the eighth pin of each JW3332 chip and the control terminal of the corresponding switching element. This setting acts as a current limiter and protects the JW3332 chip. Specifically, the third current limiting elements all use resistors.
  • a fourth current limiting element is connected between the fifth pin of each JW3332 chip and the first access end of the corresponding switching element. This setting acts as a current limiter and protects the JW3332 chip. Specifically, the fourth current limiting elements all use resistors.
  • the switching circuit further includes a protection module 11 , and each battery discharge module 2 is coupled to the common output module 1 through the protection module 11 .
  • the safety of the power supply is improved by setting the protection module 11, and the battery is also guaranteed not to be damaged.
  • the protection module 11 includes an anti-reverse connection sub-module
  • the anti-reverse connection sub-module includes a second NMOS transistor Q1 and a first resistor R1
  • the source of the second NMOS transistor Q1 is connected to the common negative output terminal
  • each The second access terminals of the group switch sub-module 5 are all connected to the drain of the second NMOS transistor Q1
  • the gate of the second NMOS transistor Q1 is connected to one end of the first resistor R1
  • the positive input of each group of battery input sub-modules 3 terminal and the other terminal of the first resistor R1 are both connected to the common positive output terminal.
  • the reverse connection causes the Vgs of the second NMOS transistor Q1 to fail to meet the requirements at the moment of power-on, the second NMOS transistor Q1 is disconnected, and there is no current loop in the circuit, which realizes the circuit breaker. Function, electric products will not work with electricity, protect both batteries and electric products, and help prevent burnout. Further, a regulator transistor can be connected between the gate and the source to reduce the possibility of burning out the second NMOS transistor Q1 due to the voltage exceeding the maximum withstand voltage value of Vgs of the second NMOS transistor Q1 .
  • the protection module 11 includes an anti-overvoltage sub-module, and the anti-overvoltage sub-module includes a PMOS transistor Q2, a transistor K1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5 and a Zener diode D1, and the PMOS transistor
  • the source of Q2 is connected to one end of the second resistor R2, the other end of the second resistor R2 is connected to the cathode of the Zener diode D1, and the anode of the Zener diode D1 is connected to the second access end of each switch sub-module 5,
  • the negative pole of the Zener diode D1 is connected to one end of the third resistor R3, the other end of the third resistor R3 is connected to the base of the triode K1, the emitter of the triode K1 is connected to the source of the PMOS transistor Q2, and each battery
  • the common output module 1 When the voltage input from the battery to the common output module 1 is the normal input voltage, the Vbc of the transistor K1 is 0, the transistor K1 is not conducting, and the Vgs of the PMOS transistor Q2 is divided by the fourth resistor R4 and the fifth resistor R5 determined, and then the PMOS transistor Q2 is turned on, and the common output module 1 supplies power to the outside normally.
  • the Zener diode D1 When the voltage input from the battery to the common output module 1 is greater than the normal input voltage, the voltage is greater than Vbc at this time, the Zener diode D1 is broken down, and the triode K1 is turned on, that is, Vce ⁇ 0, and then the Vgs ⁇ 0 of the PMOS transistor Q2, and then the PMOS The tube Q2 is not conducting, and the circuit is disconnected to realize overvoltage protection.
  • the drain and source of the first NMOS transistor are equivalently connected in parallel with a second reverse diode, the anode of the second reverse diode is connected to the drain of the first NMOS transistor, and the cathode of the second reverse diode is connected to the first reverse diode.
  • the source connection of the NMOS transistor is equivalently connected in parallel with a second reverse diode, the anode of the second reverse diode is connected to the drain of the first NMOS transistor, and the cathode of the second reverse diode is connected to the first reverse diode.
  • Embodiment 11 includes an anti-reverse connection sub-module and an anti-overvoltage sub-module, and each battery discharge module 2 is sequentially connected with the anti-reverse connection sub-module and the over-voltage prevention sub-module , and the public output module 1 is coupled.
  • the electronic components and related circuit principles included in the anti-reverse connection sub-module are the same as those described above, the electronic components included in the anti-overvoltage sub-module and related circuit principles are the same as those described above, and each set of battery discharge modules 2 are sequentially connected to the
  • the specific connection mode of the anti-reverse sub-module, the anti-overvoltage sub-module and the common output module 1 is shown in FIG. 9 , and will not be repeated here. This setting can realize the dual protection functions of anti-reverse connection and anti-overvoltage.
  • a power supply device including a battery and the switching circuit with the function of automatically selecting the battery provided by the above embodiment, the number of groups of battery discharge modules 2 is the same as the number of batteries, and the output terminal of one battery discharges the corresponding group of batteries
  • the battery input sub-module 3 of the module 2 is electrically connected.
  • the battery electric energy of the power supply device is transmitted to the public output module 1 through the respective automatic identification sub-modules 4 , and then supplies power to external electric products.
  • the automatic identification sub-module 4 corresponding to the battery with a relatively low voltage will recognize that there is a reverse current, and the reverse current triggers the automatic identification sub-module 4 to output a disconnection drive signal,
  • the disconnect driving signal is sent to the switch sub-module 5 to allow the switch sub-module 5 to perform a disconnect operation.
  • the switch sub-module 5 realizes that the battery with a relatively low voltage is cut off from the common output module 1, so that the battery with a relatively high voltage continues to provide output power supply, while the battery with a relatively low voltage stops supplying power, which helps to prevent reverse current from feeding
  • the battery with relatively low voltage is reverse charged, which plays a protective role, prolongs the service life of the battery, and helps to eliminate potential safety hazards.
  • the output voltage of each battery is 20V-60V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及电源电路技术领域,尤其是涉及一种带有自动选择电池功能的切换电路及其供电装置。切换电路包括公共输出模块和至少两组电池放电模块,至少两组电池放电模块均与公共输出模块并联耦接;每组电池放电模块均包括:电池输入子模块,用于接入外界电池;自动识别子模块,用于识别是否存在反向电流:若识别到存在反向电流,则输出断开驱动信号;若识别到不存在反向电流,则输出导通驱动信号;开关子模块,用于依据所接收到的断开驱动信号,执行电池输入子模块与公共输出模块断开操作,或者依据所接收到的导通驱动信号,执行电池输入子模块与公共输出模块导通操作。本申请在用电产品不断电时可以无需手动就切换电池,能够满足用电产品供电续航。

Description

带有自动选择电池功能的切换电路及其供电装置 技术领域
本申请涉及电源电路技术领域,尤其是涉及一种带有自动选择电池功能的切换电路及其供电装置。
背景技术
随着技术水平的不断发展,用电产品的用途和性能逐步升级与优化。在日常生活中,人们所使用的用电产品的种类和频率也逐渐增多。相应地,用电产品对电能的需求也越来越高。
为了满足用电产品的用电需求,一般会在为用电产品供电的装置内部设置两组电池,其中一组电池会作为主电池进行供电,另外一组电池会作为备用电池。
实际使用时,主电池和备用电池这两者在一定程度上会存在有压差的情况,若将此情况下的两组电池同时给用电产品进行供电,两者中电压相对高的那组电池会对电压相对低的那组电池进行反充电,这样会导致电压相对低的那组电池损坏。
因此,常规手段是手动切换供电用的电池,即用电压相对高的电池替换电压相对低的电池,替换后的电池再继续给用电产品进行供电。但是这样的手段存在以下缺陷:在手动切换前,用电产品需要先断电,会导致用电产品暂时无法使用;而且手动切换一般采用拨动开关实施,在拨动开关的瞬间电流过大,容易产生电火花,既缩短了电池、拨动开关的使用寿命,又会对电池的后续使用造成安全隐患。
针对上述相关技术,发明人认为如何在不影响用电产品连续使用的情况下,安全、有效地满足用电产品的续航这个问题亟待解决。
发明内容
为克服相关技术的不足,在用电产品不断电的情况下,实现无需手动就能切换电池,满足用电产品的供电续航,延长电池的使用寿命和提高电池供电的安全性。本申请现提出一种带有自动选择电池功能的切换电路及其供电装置。
第一方面,本申请提供一种带有自动选择电池功能的切换电路,包括公共输出模块和至少两组电池放电模块,至少两组所述电池放电模块均与所述公共输出模块并联耦接;每组所述电池放电模块均包括:电池输入子模块,用于接入外界的电池;自动识别子模块,用于识别是否存在反向电流:若识别到存在反向电流,则输出断开驱动信号;若识别到不存在反向电流,则输出导通驱动信号;开关子模块,用于依据所接收到的断开驱动信号,执行电池输入子模块与公共输出模块断开的操作,或者依据所接收到的导通驱动信号,执行电池输入子模块与公共输出模块导通的操作。
通过采用上述方案,用户将外界的至少两个电池分别接入对应的电池输入子模块。若所接入到电池放电模块的电池之间存在电压差,在通电的瞬间,电池对应的自动识别子模块判断是否存在反向电流,若存在则证明上述电池的电压相对低,此时自动识别子模块控制对应的开关子模块断开,让该电池与公共输出模块断路,停止供电。这样对电压相对低电池起到保护作用,延长电池使用寿命。对于电压相对高的其余电池,其电压在放电时逐渐降低,当其余电池的电压降低至与原电压相对低的电池一致,此时原电压相对低的电池对应自动识别子模块判断不存在反向电流,并控制对应的开关子模块导通,自动选择多个电压一致的电池给用电产品持续供电,在用电产品不断电的情况下,实现无需手动就能切换电池,满足用电产品的供电续航,以及有助于防止手动切换所带来的安全隐患。
可选的,所述电池输入子模块包括正极输入端和负极输入端;所述自动识别子模块包括识别控制器,所述识别控制器包括第一输入引脚、第二输入引脚和输出引脚;所述开关子模块包括开关元件,所述开关元件包括控制端、第一接入端和第二接入端;所述公共输出模块包括公共正极输出端和公共负极输出端;所述第一输入引脚与所述正极输入端耦接,所述正极输入端与所述公共正极输出端耦接;所述负极输入端与所述第二输入引脚耦接,所述输出引脚与所述控制端耦接;所述负极输入端、所述第二输入引脚均与所述第一接入端耦接,所述第二接入端接地,且所述第二接入端与所述公共负极输出端耦接。
通过采用上述方案,识别控制器可以有效判断出是否存在反向电流,以及及时依据判断结果对开关元件发送控制信号,让开关元件执行对应操作,提高自动化程度。
可选的,所述识别控制器采用JW3332芯片,所述第一输入引脚为所述JW3332芯片的第一引脚,所述JW3332芯片的第四引脚与所述JW3332芯片的第一引脚耦接;所述第二输入引脚为所述JW3332芯片的第五引脚,所述输出引脚为JW3332芯片的第八引脚,所述JW3332芯片的第六引脚接地。
通过采用上述方案,有助于确保识别控制器具有判断是否存在反向电流的功能。
可选的,开关子模块包括若干个开关元件,若干个所述开关元件均采用第一NMOS管,所述控制端为所述第一NMOS管的栅极,所述第一接入端为所述第一NMOS管的漏极,所述第二接入端为所述第一NMOS管的源极;若干个所述第一NMOS管并联连接。
通过采用上述方案,NMOS管的内阻低,功率大,可以在执行开关操作的过程中,有效减少电能损耗。
可选的,所述电池放电模块的数量为至少三组,至少三组所述电池放电模块均与所述公共输出模块并联耦接。
通过采用上述方案,多个电池互为备用,可以提高供电性能。
可选的,所述公共正极输出端和所述公共负极输出端之间并联连接有滤波元件。
可选的,每个所述JW3332芯片的第一引脚和对应的所述第一输入引脚之间连接有第一限流元件,每个所述JW3332芯片的第一引脚和所述JW3332芯片的第四引脚之间连接有第二限流元件。
可选的,每个所述JW3332芯片的第八引脚和对应的所述控制端之间连接有第三限流元件。
可选的,每个所述JW3332芯片的第五引脚和对应的所述第一接入端之间连接有第四限流元件。
第二方面,本申请提供一种供电装置,包括电池和上述任一项带有自动选择电池功能的切换电路,所述切换电路的所述电池放电模块的组数与所述电池的个数相同,一个所述电池的输出端与对应的一组所述电池放电模块的所述电池输入子模块连接。
综上所述,本申请包括以下至少一种有益技术效果:
本申请提供的一种带有自动选择电池功能的切换电路,用户将外界的至少两个电池分别接入对应的电池输入子模块。若所接入到电池放电模块的电池之间存在电压差,电压相对低的电池对应的自动识别子模块控制开关子模块断开,让电池与公共输出模块断路,停止供电。这样对电压相对低电池起到保护作用,延长电池使用寿命。
对于电压相对高的其余电池,其电压在放电时逐渐降低,当其余电池的电压降低至与原电压相对低的电池一致,此时原电压相对低的电池对应的自动识别子模块控制对应的开关子模块导通,自动选择多个电压一致的电池给用电产品持续供电,在用电产品不断电的情况下,实现无需手动就能切换电池,满足用电产品的供电续航,以及有助于防止手动切换所带来的安全隐患。
本申请提供的一种供电装置,能给外界的用电产品提供多个电池供电,有效满足用电产品的续航,并且在多个电池存在电压差时,可以通过自动选择的方式,让电压相对高的电池给用电产品充电,起到保护电池的作用;若多个电池电压一致,则可以自动选择多个电池一同给用电产品供电。
附图说明
图1为本申请实施例1的一种带有自动选择电池功能的切换电路的整体模块框图。
图2为本申请实施例1的一种带有自动选择电池功能的切换电路的细化模块框图。
图3为本申请实施例1的包括两组电池放电模块的切换电路的电路原理图。
图4为本申请实施例1的切换电路包括三组电池放电模块的电路原理图。
图5为本申请实施例1的识别控制器的等效原理方框图。
图6为本申请实施例2的切换电路还包括保护模块的模块框图。
图7为本申请实施例2的保护模块的电路原理图。
图8为本申请实施例3的保护模块的电路原理图。
图9为本申请实施例4的保护模块的电路原理图。
附图标记:1、公共输出模块;2、电池放电模块;3、电池输入子模块;4、自动识别子模块;5、开关子模块;6、识别控制器;7、稳压单元;8、第一比较器单元;9、第二比较器单元;10、逻辑控制单元;11、保护模块。
具体实施方式
以下结合附图1-9对本申请作进一步详细说明。
实施例1:
参照图1和图2所示,本申请公开了一种带有自动选择电池功能的切换电路,包括公共输出模块1和至少两组电池放电模块2,至少两组电池放电模块2均与公共输出模块1并联耦接;每组电池放电模块2均包括:电池输入子模块3,用于接入外界的电池;自动识别子模块4,用于识别是否存在反向电流:若识别到存在反向电流,则向存在反向电流的电池放电模块2中的开关子模块输出断开驱动信号;若识别到不存在反向电流,则向所有电池放电模块2中的开关子模块输出导通驱动信号;开关子模块5,用于依据所接收到的断开驱动信号,执行电池输入子模块3与公共输出模块1断开的操作,或者依据所接收到的导通驱动信号,执行电池输入子模块3与公共输出模块1导通的操作。
实际使用时,将外界的至少两个电池分别接入所对应的电池输入子模块3,让电池的电能能够依次通过自动识别子模块4、开关子模块5到达公共输出模块1,从而实现对外供电。在此过程中,若所接入到电池放电模块2的电池之间存在电压差,在电池通电的瞬间,其中电压相对低的电池所对应的自动识别子模块4会识别到存在反向电流,反向电流触发该自动识别子模块4输出断开驱动信号,断开驱动信号发送到开关子模块5,让开关子模块5执行断开操 作。从而通过开关子模块5实现让电压相对低的电池切断与公共输出模块1的连接,使电压相对高的电池继续进行输出供电,而电压相对低的电池停止供电,有助于防止反向电流给该电池反充电,对电压相对低的电池起到保护作用,延长电池的使用寿命。
另外,当电压相对高的电池由于对外输出电能,使得其电压逐渐降低至与电压相对低的电池电压一致时,此时,原来电压相对低的电池所对应的自动识别子模块4会识别到不存在反向电流,进而触发该自动识别子模块4输出导通驱动信号,导通驱动信号发送到开关子模块5,让开关子模块5执行导通操作,从而实现选择电压一致的电池并联对外输出供电,有效延长用电产品的续航。并且在切换时,用电产品无需断电。无需通过手动切换,有助于防止切换时产生电火花和/或过大电流的问题,消除安全隐患。
本实施例中,电池输入子模块3包括正极输入端和负极输入端;自动识别子模块4包括识别控制器6,识别控制器6包括第一输入引脚、第二输入引脚和输出引脚;开关子模块5包括开关元件,开关元件包括控制端、第一接入端和第二接入端;公共输出模块1包括公共正极输出端和公共负极输出端;第一输入引脚与正极输入端耦接,正极输入端与公共正极输出端耦接;负极输入端与第二输入引脚耦接,输出引脚与控制端耦接;负极输入端、第二输入引脚均与第一接入端耦接,第二接入端接地,且第二接入端与公共负极输出端耦接。
参照图3,以两组电池放电模块2为例,其中每组电池输入子模块3分别通过正极输入端与电池的正极连接,负极输入端与电池的负极连接。在两组电池的电能依次通过其对应的自动识别子模块4和开关子模块5。若两组电池存在电压差,由于两组电池放电模块2共用公共输出模块1的公共正极输出端和公共负极输出端,电压相对低的电池所对应的识别控制器6的第二输入引脚流入反向电流,该反向电流所对应的电压与该识别控制器6的第一输入引脚接入的电池电压进行比较,得出存在反向电流的情况。识别控制器6依据情况通过输出引脚输出断开驱动信号,断开驱动信号发送到开关元件的控制端,开关元件依据断开驱动信号驱动第一接入端和第二接入端断开。从而实现电压相对低 的电池暂时断开输出电能。电压相对高的电池继续对外输出电能。
当电压相对高的电池由于输出电能,导致其电压逐渐降低至与电压相对低的电池的电压一致时,原电压相对低的电池所对应的识别控制器6的第二输入引脚不存在流入反向电流,通过比较,识别控制器6得出不存在反向电流的情况,并依据情况通过输出引脚输出导通驱动信号,导通驱动信号发送到开关元件的控制端,开关元件依据导通驱动信号驱动第一接入端和第二接入端导通。此时两个电压一致的电池与公共输出模块1并联连接且同时对外供电。
参照图4,进一步的,电池放电模块2的数量为至少三组,至少三组电池放电模块2均与公共输出模块1并联耦接。
以三组电池放电模块2为例,每组电池放电模块2均接入电池,依据上述工作原理,在三个电池对外通电瞬间,若三个电池之间存在电压差,其中电压最高的继续对外供电,其余电压较低的两个电池暂时断开输出电能,直至电压最高的电池的电压下降至与其中一个电池的电压一致,则依据上述工作原理自动选择至两个电池同时对外供电,同理直至两个相同电压的电池电压下降至与第三个电池的电压一致,则自动选择至三个电池同时对外供电。或者电压最高的电池的电压下降至与其余两个电压相同的电池的电压一致,则自动选择至三个电池同时对外供电。以三组以上电池放电模块2为例,其自动选择和对外供电的原理与上述一致,在此不再赘述。通过上述方式,本申请实现多个电池并联和集成输出的效果,当电池之间的电压不一致时,识别控制器6会自动选择电压高的电池进行对外供电,以此满足对用电产品进行连续续航的问题,且电池之间由于是并联连接,有助于减少互相干扰的情况,当其中一个电池出现损坏时,用户只需将损坏的电池进行替换即可克服损坏情况,且不影响其他电池的对外供电,方便维护。另外,可以起到增大输出电流的作用。具体地,输出工作电流范围为15A-100A。
作为其中一种实施方式,识别控制器6可采用JW3332芯片,JW3332芯片为具有八个引脚的芯片,第一输入引脚为JW3332芯片的第一引脚,JW3332芯片的第四引脚与JW3332芯片的第一引脚耦接;第二输入引脚为JW3332芯片 的第五引脚,输出引脚为JW3332芯片的第八引脚,JW3332芯片的第六引脚接地。
参照图5,JW3332芯片作为一种识别控制器6,其内部等效于包括有稳压单元7、第一比较器单元8、第二比较器单元9和逻辑控制单元10,稳压单元7包括稳压输入端、第一稳压输出端和第二稳压输出端,逻辑控制单元10包括第一逻辑控制输入端,第二逻辑控制输入端和逻辑控制输出端。JW3332芯片的第一引脚与稳压单元7的输入端连接。正极输入端通过JW3332芯片的第一引脚与稳压输入端耦接。第一稳压输出端与第一比较器单元8的正极端连接。JW3332芯片的第四引脚与第一比较器单元8的正极端连接,第一比较器单元8的负极端接入1V电压,第一比较器单元8的输出端与逻辑控制单元10的第一逻辑控制输入端连接。第二稳压输出端与第二逻辑控制输入端连接。逻辑控制输出端与第二比较器单元9的上拉电压端连接,JW3332芯片的第六引脚与第二比较器单元9的正极端连接,即第二比较器单元9的正极端接地。JW3332芯片的第五引脚与第二比较器单元9的负极端连接,JW3332芯片的第八引脚与第二比较器单元9的输出端连接。
识别控制器6的工作原理:在电池对外通电的瞬间,电池电压通过正极输入端接入到JW3332芯片的第一引脚和第四引脚,其第四引脚为启动pin脚,此时第四引脚为高电位,则配合第一比较器单元8的负极端接入1V电压,触发开启逻辑控制单元10开启。另外电池电压通过已开启的逻辑控制单元10输入至第二比较器单元9的上拉电压端,在此过程中若不存在明显的反向电流,则第二比较器单元9通过JW3332芯片的第八引脚输出上拉电压端所对应的电压即输出高电位信号。
在此过程中若存在明显的反向电流,则反向电流对应的电压通过JW3332芯片的第五引脚接入到第二比较器单元9的负极端,由于第二比较器单元9的正极端接地,第二比较器单元9会迅速通过JW3332芯片的第八引脚无电压输出即输出低电位,从而迅速让开关元件断开。
作为其中一种实施方式,开关子模块5包括若干个开关元件,若干个开关 元件均采用第一NMOS管,控制端为第一NMOS管的栅极,第一接入端为第一NMOS管的漏极,第二接入端为第一NMOS管的源极;若干个第一NMOS管并联连接。
NMOS管具有大功率和低内阻的优点,有助于减少电能损耗。即当JW3332芯片的第八引脚输出高电位即为导通驱动信号,此时第一NMOS管的栅极接收到高电位,实现其漏极和源极的导通,让对应电池通过公共输出模块1对外供电。当JW3332芯片的第八引脚输出低电位即为断开驱动信号,此时第一NMOS管的栅极接收到低电位,实现其漏极和源极的断开,让对应电池与公共输出模块1断开。
进一步的,第一NMOS管的数量为若干个且并联连接,使得第一NMOS管的沟道电阻大幅度减少,在同样的额定结温下,起到增大输出电流的作用。
每个第一NMOS管的漏极和源极等效并联连接有第一反向二极管,第一反向二极管的正极与第一NMOS管的源极连接,第一反向二极管的负极与第一NMOS管的漏极连接。
公共正极输出端和公共负极输出端之间并联连接有滤波元件。这样设置起到滤波、消除噪音的作用。滤波元件采用电容,滤波元件的数量可以依据电池放电模块2的组数设置为多个,具体地,电池放电模块2的组数为两组时,可设置一个滤波元件;电池放电模块2的组数为三组时,可并联设置两个滤波元件。
每个JW3332芯片的第一引脚和对应的第一输入引脚之间连接有第一限流元件,每个JW3332芯片的第一引脚和JW3332芯片的第四引脚之间连接有第二限流元件。这样设置起到限流的作用,对JW3332芯片达到保护的效果。具体地,第一限流元件和第二限流元件均采用电阻。
每个JW3332芯片的第八引脚和对应的开关元件的控制端之间连接有第三限流元件。这样设置起到限流的作用,对JW3332芯片达到保护的效果。具体地,第三限流元件均采用电阻。
每个JW3332芯片的第五引脚和对应的开关元件的第一接入端之间连接有 第四限流元件。这样设置起到限流的作用,对JW3332芯片达到保护的效果。具体地,第四限流元件均采用电阻。
实施例2:
参照图6和图7,与实施例1的不同之处在于,该切换电路还包括保护模块11,每组电池放电模块2均通过保护模块11与公共输出模块1耦接。
在电池对外供电的过程中,通过设置保护模块11提高供电时的安全性,也确保电池不会被损坏。
作为其中一种实施方式,保护模块11包括防反接子模块,防反接子模块包括第二NMOS管Q1和第一电阻R1,第二NMOS管Q1的源极与公共负极输出端连接,每组开关子模块5的第二接入端均与第二NMOS管Q1的漏极连接,第二NMOS管Q1的栅极与第一电阻R1的一端连接,每组电池输入子模块3的正极输入端、第一电阻R1的另一端均与公共正极输出端连接。
当外界电池接反时,由于第二NMOS管Q1的存在,反接导致刚通电瞬间第二NMOS管Q1的Vgs不符合要求,第二NMOS管Q1断开,电路中没有电流回路,实现断路的功能,用电产品不会得电工作,对电池和用电产品均起到保护,有助于防止烧坏的作用。进一步的,可以在栅极和源极之间跨接一个稳压管,减少因电压超过第二NMOS管Q1的Vgs最大耐压值而导致第二NMOS管Q1烧坏的可能性。
实施例3:
参照图8,与实施例2的不同之处在于,保护模块11的内部电路结构不同。保护模块11包括防过压子模块,防过压子模块包括PMOS管Q2、三极管K1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5和稳压二极管D1,PMOS管Q2的源极与第二电阻R2的一端连接,第二电阻R2的另一端与稳压二极管D1的负极连接,稳压二极管D1的正极与每组开关子模块5的第二接入端连接,稳压二极管D1的负极与第三电阻R3的一端连接,第三电阻R3的另一端与三极管K1的基极连接,三极管K1的发射极与PMOS管Q2的源极连接,每组电池输入子模块3的正极输入端均与PMOS管Q2的源极连接,第 四电阻R4的一端与三极管K1的集电极连接,第四电阻R4的另一端与三极管K1的发射极连接;PMOS管Q2的漏极与公共正极输出端连接,PMOS管Q2的栅极与第五电阻R5的一端连接,三极管K1的集电极与第五电阻R5的一端连接,第五电阻R5的另一端与公共负极输出端连接;每组开关子模块5的第二接入端、第五电阻R5的另一端均与公共负极输出端连接。
当电池输入到公共输出模块1的电压为正常输入电压时,此时三极管K1的Vbc为0,三极管K1不导通,而PMOS管Q2的Vgs由电阻第四电阻R4和第五电阻R5分压决定,进而PMOS管Q2导通,公共输出模块1正常对外供电。
当电池输入到公共输出模块1的电压大于正常输入电压,此时电压大于Vbc,稳压二极管D1被击穿,三极管K1导通,即Vce≈0,进而PMOS管Q2的Vgs≈0,进而PMOS管Q2不导通,电路断路,实现过压保护。
其中,第一NMOS管的漏极和源极等效并联连接有第二反向二极管,第二反向二极管的正极与第一NMOS管的漏极连接,第二反向二极管的负极与第一NMOS管的源极连接。
实施例4:
与实施例2和实施例3的不同之处在于,保护模块11包括防反接子模块和防过压子模块,每组电池放电模块2均依次与防反接子模块、防过压子模块、公共输出模块1耦接。
其中防反接子模块所包括的电子元件、相关的电路原理与上述的相同,防过压子模块所包括的电子元件、相关的电路原理与上述的相同,每组电池放电模块2均依次与防反接子模块、防过压子模块与公共输出模块1的具体连接方式如图9所示,在此不再赘述。这样设置可以实现防反接和防过压的双重保护功能。
实施例5:
一种供电装置,包括电池和上述实施例提供的带有自动选择电池功能的切换电路,电池放电模块2的组数与电池的个数相同,一个电池的输出端与所对 应的一组电池放电模块2的电池输入子模块3电性连接。
供电装置的电池电能通过各自对应的自动识别子模块4传送到公共输出模块1,进而对外界的用电产品进行供电。在通电瞬间,若电池之间存在电压差,其中电压相对低的电池所对应的自动识别子模块4会识别到存在反向电流,反向电流触发该自动识别子模块4输出断开驱动信号,断开驱动信号发送到开关子模块5,让开关子模块5执行断开操作。从而通过开关子模块5实现让电压相对低的电池切断与公共输出模块1的连接,使电压相对高的电池继续进行输出供电,而电压相对低的电池停止供电,有助于防止反向电流给电压相对低的电池反充电,对其起到保护作用,延长电池的使用寿命,有助于消除安全隐患。每一个电池的输出电压为20V-60V。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种带有自动选择电池功能的切换电路,其特征在于,包括公共输出模块(1)和至少两组电池放电模块(2),至少两组所述电池放电模块(2)均与所述公共输出模块(1)并联耦接;
    每组所述电池放电模块(2)均包括:
    电池输入子模块(3),用于接入外界的电池;
    自动识别子模块(4),用于识别是否存在反向电流:若识别到存在反向电流,则输出断开驱动信号;若识别到不存在反向电流,则输出导通驱动信号;
    开关子模块(5),用于依据所接收到的断开驱动信号,执行电池输入子模块(3)与公共输出模块(1)断开的操作,或者依据所接收到的导通驱动信号,执行电池输入子模块(3)与公共输出模块(1)导通的操作。
  2. 根据权利要求1所述的一种带有自动选择电池功能的切换电路,其特征在于,所述电池输入子模块(3)包括正极输入端和负极输入端;
    所述自动识别子模块(4)包括识别控制器(6),所述识别控制器(6)包括第一输入引脚、第二输入引脚和输出引脚;
    所述开关子模块(5)包括开关元件,所述开关元件包括控制端、第一接入端和第二接入端;
    所述公共输出模块(1)包括公共正极输出端和公共负极输出端;
    所述第一输入引脚与所述正极输入端耦接,所述正极输入端与所述公共正极输出端耦接;
    所述负极输入端与所述第二输入引脚耦接,所述输出引脚与所述控制端耦接;
    所述负极输入端、所述第二输入引脚均与所述第一接入端耦接,所述第二接入端接地,且所述第二接入端与所述公共负极输出端耦接。
  3. 根据权利要求2所述的一种带有自动选择电池功能的切换电路,其特征在于,所述识别控制器(6)采用JW3332芯片,所述第一输入引脚为所述JW3332芯片的第一引脚,所述JW3332芯片的第四引脚与所述JW3332芯片的第一引脚耦接;
    所述第二输入引脚为所述JW3332芯片的第五引脚,所述输出引脚为JW3332芯片的第八引脚,所述JW3332芯片的第六引脚接地。
  4. 根据权利要求2所述的一种带有自动选择电池功能的切换电路,其特征在于,开关子模块(5)包括若干个开关元件,若干个所述开关元件均采用第一NMOS管,所述控制端为所述第一NMOS管的栅极,所述第一接入端为所述第一NMOS管的漏极,所述第二接入端为所述第一NMOS管的源极;若干个所述第一NMOS管并联连接。
  5. 根据权利要求1所述的一种带有自动选择电池功能的切换电路,其特征在于,所述电池放电模块(2)的数量为至少三组,至少三组所述电池放电模块(2)均与所述公共输出模块(1)并联耦接。
  6. 根据权利要求2所述的一种带有自动选择电池功能的切换电路,其特征在于,所述公共正极输出端和所述公共负极输出端之间并联连接有滤波元件。
  7. 根据权利要求3所述的一种带有自动选择电池功能的切换电路,其特征在于,每个所述JW3332芯片的第一引脚和对应的所述第一输入引脚之间连接有第一限流元件,每个所述JW3332芯片的第一引脚和所述JW3332芯片的第四引脚之间连接有第二限流元件。
  8. 根据权利要求3所述的一种带有自动选择电池功能的切换电路,其特征在于,每个所述JW3332芯片的第八引脚和对应的所述控制端之间连接有第三限流元件。
  9. 根据权利要求3所述的一种带有自动选择电池功能的切换电路,其特征在于,每个所述JW3332芯片的第五引脚和对应的所述第一接入端之间连接有第四限流元件。
  10. 一种供电装置,其特征在于,包括电池和如权利要求1-9任一项所述带有自动选择电池功能的切换电路,所述电池放电模块(2)的组数与所述电池的个数相同,一个所述电池的输出端与对应的一组所述电池放电模块(2)的所述电池输入子模块(3)连接。
PCT/CN2021/136964 2021-10-22 2021-12-10 带有自动选择电池功能的切换电路及其供电装置 WO2023065486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111235179.5 2021-10-22
CN202111235179.5A CN114172258A (zh) 2021-10-22 2021-10-22 带有自动选择电池功能的切换电路及其供电装置

Publications (1)

Publication Number Publication Date
WO2023065486A1 true WO2023065486A1 (zh) 2023-04-27

Family

ID=80477169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136964 WO2023065486A1 (zh) 2021-10-22 2021-12-10 带有自动选择电池功能的切换电路及其供电装置

Country Status (2)

Country Link
CN (1) CN114172258A (zh)
WO (1) WO2023065486A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115085342B (zh) * 2022-08-18 2022-11-08 深圳市德兰明海科技有限公司 一种储能系统及逆变器与电池包连接接口识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716771A (zh) * 2016-09-22 2017-05-24 深圳市大疆创新科技有限公司 电池组的控制方法、控制系统、存储介质及无人飞行器
JP2017112802A (ja) * 2015-12-18 2017-06-22 パナソニックIpマネジメント株式会社 充放電ユニット、及びこれを用いた電源ユニット、充放電システム、電源システム
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
JP2020054169A (ja) * 2018-09-28 2020-04-02 工機ホールディングス株式会社 電気機器
CN214176930U (zh) * 2020-10-09 2021-09-10 王声镇 一种多电源切换电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914872A (zh) * 2016-06-28 2016-08-31 瑞立集团瑞安汽车零部件有限公司 一种用于新能源汽车的双电源控制装置
CN211655737U (zh) * 2020-03-09 2020-10-09 浙江阿尔郎科技有限公司 一种电池保护电路
CN113131076A (zh) * 2021-04-13 2021-07-16 深圳市圭石南方科技发展有限公司 一种可并联扩容的电池系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112802A (ja) * 2015-12-18 2017-06-22 パナソニックIpマネジメント株式会社 充放電ユニット、及びこれを用いた電源ユニット、充放電システム、電源システム
CN106716771A (zh) * 2016-09-22 2017-05-24 深圳市大疆创新科技有限公司 电池组的控制方法、控制系统、存储介质及无人飞行器
JP2020054169A (ja) * 2018-09-28 2020-04-02 工機ホールディングス株式会社 電気機器
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统
CN214176930U (zh) * 2020-10-09 2021-09-10 王声镇 一种多电源切换电路

Also Published As

Publication number Publication date
CN114172258A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN113056058A (zh) 用于驱动led装置的驱动电路及led电路
CN210405079U (zh) 一种保护电路及电源输入模块
CN110994774A (zh) 电源切换电路
CN113472032A (zh) 一种充电控制电路、充电控制系统与充电器
WO2023065486A1 (zh) 带有自动选择电池功能的切换电路及其供电装置
WO2023016574A1 (zh) 开关电路、电池管理系统、电池包、用电设备及控制方法
CN210640722U (zh) 一种电池开关电路以及包含该电路的供电管理系统
CN108880230A (zh) 基于开关电源斩波电压的电源并联控制模块及并联系统
CN216774311U (zh) 一种负载驱动芯片
CN211509375U (zh) 用于驱动led装置的驱动电路及led电路
CN209375126U (zh) 一种浪涌电流抑制电路
CN218300991U (zh) 防反接的电池充电电路和防反接充电器
CN112653115B (zh) 防反接、过欠压保护与隔离开关机多模块并联输入电路
CN106992501B (zh) 一种防输出误接电源的直流电源及其led灯具和控制系统
CN106849926B (zh) 一种宽压nmos开关控制电路
CN215835153U (zh) 一种充电控制电路、充电控制系统与充电器
CN209787072U (zh) 一种外接开关自锁后直流上电保护控制器
CN210724282U (zh) 一种蓄电池过充保护电路
CN114430228A (zh) 一种并联供电保护电路和电子设备
CN113872292A (zh) 一种负载驱动芯片
CN112217179A (zh) 一种用于外骨骼机器人的开关及保护电路
CN215990559U (zh) 一种防过冲电路
CN217956749U (zh) 开关控制电路、电池管理系统、电池包及用电设备
CN217522734U (zh) 一种启动电路、电源电路及电子设备
KR200498026Y1 (ko) 교류 송전 회로 및 소켓

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE