[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018074247A1 - 熱伝導性シリコーン組成物 - Google Patents

熱伝導性シリコーン組成物 Download PDF

Info

Publication number
WO2018074247A1
WO2018074247A1 PCT/JP2017/036305 JP2017036305W WO2018074247A1 WO 2018074247 A1 WO2018074247 A1 WO 2018074247A1 JP 2017036305 W JP2017036305 W JP 2017036305W WO 2018074247 A1 WO2018074247 A1 WO 2018074247A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
average particle
silicone composition
thermally conductive
mass
Prior art date
Application number
PCT/JP2017/036305
Other languages
English (en)
French (fr)
Inventor
靖久 石原
晃洋 遠藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020197013932A priority Critical patent/KR102384193B1/ko
Priority to JP2018546243A priority patent/JP6947186B2/ja
Priority to US16/342,785 priority patent/US11248154B2/en
Priority to CN201780064047.6A priority patent/CN109844030B/zh
Priority to EP17862226.2A priority patent/EP3530702B1/en
Publication of WO2018074247A1 publication Critical patent/WO2018074247A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention generally relates to a heat transfer material that can be interposed at an interface between a heat boundary surface of a heat-generating electronic component and a heat dissipation member such as a heat sink or a circuit board for cooling the electronic component by heat conduction.
  • LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video disks, and mobile phones are becoming more and more themselves as performance, speed, size, and integration increase. Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipating methods for suppressing the temperature rise of the chip during operation and heat dissipating members used therefor have been proposed.
  • a heat sink using a metal plate having high thermal conductivity such as aluminum or copper is used in order to suppress a temperature rise of a chip during operation.
  • the heat sink conducts heat generated by the chip and releases the heat from the surface due to a temperature difference from the outside air.
  • the heat sink In order to efficiently transfer the heat generated from the chip to the heat sink, the heat sink needs to be in close contact with the chip, but because there is a difference in the height of each chip and tolerance due to assembly processing, a flexible sheet or grease is used. It is interposed between the chip and the heat sink, and heat conduction from the chip to the heat sink is realized through this sheet or grease.
  • the sheet is easier to handle than grease, and a heat conductive sheet (heat conductive silicone rubber sheet) formed of a heat conductive silicone rubber or the like is used in various fields.
  • the heat conductive sheet is often used particularly when there is a certain amount of space between the heat generating element and a cooling part such as a heat sink or a housing. In many cases, it is necessary to ensure an electrically insulated state between the heat generating element and the heat sink or the housing, and the heat conductive sheet is often required to have an insulating property. That is, metal particles such as aluminum, copper, and silver cannot be used as the heat conductive filler, and insulative heat conductive fillers such as aluminum hydroxide and aluminum oxide are often used.
  • thermal conductivity of the thermally conductive silicone composition using these as a thermally conductive filler is lowered.
  • the amount of heat generated by heating elements has been increasing, and the thermal conductivity required for thermally conductive sheets has also increased, making it impossible to use aluminum hydroxide or aluminum oxide as a thermally conductive filler. ing.
  • the present inventors have found that the heat conductive filler accounts for 60 to 85% by volume, and 40-60% by volume of the heat conductive filler has an average particle size of 50 ⁇ m or more. It has been found that by using aluminum nitride which is a heat-conductive silicone composition to be a cured product having high thermal conductivity, the present invention has been made.
  • a thermally conductive silicone composition comprising an organopolysiloxane as a base polymer and containing (B) a thermally conductive filler, wherein (B) the thermally conductive filler is 60 to 85 in the thermally conductive silicone composition.
  • a thermally conductive silicone composition wherein 40% by volume to 40% by volume of the thermally conductive filler is aluminum nitride having an average particle size of 50 ⁇ m or more.
  • the volume ratio of aluminum nitride having an average particle size of 50 ⁇ m or more and less than 70 ⁇ m is 0.5 to 0.6 with respect to the total amount of aluminum nitride as the heat conductive filler, and the average particle size of aluminum nitride of 70 to 90 ⁇ m
  • B-III Aluminum oxide having an average particle diameter of 5 to 15 ⁇ m: 650 to 800 parts by mass
  • Aluminum hydroxide The heat conductive silicone composition according to [1], comprising 1,300 to 1,700 parts by mass.
  • the component (BI) is non-sintered crushed aluminum nitride having an average particle size of 50 ⁇ m or more and less than 70 ⁇ m, and the component (BI) is a non-sintered crushed aluminum nitride having an average particle size of 70 to 90 ⁇ m.
  • sintered spherical aluminum nitride having an average particle size of 70 to 90 ⁇ m the component (B-III) is spherical aluminum oxide having an average particle size of 5 to 15 ⁇ m, and the component (B-IV) has an average particle size of 0
  • the heat conductive silicone composition according to [6] which is crushed aluminum oxide having a particle size of 5 ⁇ m or more and less than 5 ⁇ m or aluminum hydroxide having an average particle size of 0.5 ⁇ m or more and less than 5 ⁇ m. [8].
  • the heat conductive silicone composition in any one.
  • R 1 is an alkyl group having 6 to 15 carbon atoms independently
  • R 2 is a monovalent hydrocarbon radical unsubstituted or substituted with 1 to 8 carbon atoms independently
  • R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.
  • R 4 is independently an alkyl group having 1 to
  • cured material of the heat conductive silicone composition in any one of [1]-[8] whose heat conductivity is 8 W / mK or more. [10]. Hardened
  • Aluminum hydroxide A method for producing a thermally conductive silicone composition according to [1] or [6], comprising a step of mixing 1,300 to 1,700 parts by mass.
  • thermally conductive silicone composition of the present invention a thermally conductive silicone composition that becomes a cured product having high thermal conductivity can be obtained.
  • the present invention relates to a thermally conductive silicone composition
  • a thermally conductive silicone composition comprising an organopolysiloxane as a base polymer and including a thermally conductive filler, wherein the thermally conductive filler is 60 to 85% by volume in the thermally conductive silicone composition
  • This is a heat conductive silicone composition in which 40 to 60% by volume of the heat conductive filler is aluminum nitride having an average particle size of 50 ⁇ m or more.
  • the type of the base polymer organopolysiloxane used in the present invention is not particularly limited, but usually the main chain portion is basically composed of repeating diorganosiloxane units, and this has a molecular structure. May include a branched structure in a part thereof, or may be a ring. From the viewpoint of physical properties such as mechanical strength of the cured product, linear diorganopolysiloxane is preferable. Note that the end of the organopolysiloxane may be blocked with a triorganosilyl group or may be blocked with a diorganohydroxysilyl group. These organopolysiloxanes may be used alone or in combination of two or more having different kinematic viscosities.
  • monohydric hydrocarbon group which may interpose an oxygen atom can be illustrated, specifically, a methyl group, an ethyl group, Propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl and other alkyl groups, cyclopentyl, cyclohexyl Cycloalkyl groups such as cycloheptyl group, vinyl groups, allyl groups, propenyl groups, isopropenyl groups, alkenyl groups such as butenyl groups, hexenyl groups, cyclohexenyl groups, phenyl groups, tolyl groups, xyly
  • carbon such as methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group, etc.
  • Unsubstituted or substituted alkyl group of children having 1-3 a vinyl group, a lower alkenyl group such as allyl group and a phenyl group, chlorophenyl group, an unsubstituted or substituted phenyl groups such as fluorophenyl group.
  • all of the organic groups bonded to the silicon atom may be the same or different.
  • Kinematic viscosity at 25 ° C. of the organopolysiloxane is preferably 10 ⁇ 30,000mm 2 / s, more preferably 50 ⁇ 1,000mm 2 / s. If an organopolysiloxane having a high kinematic viscosity is used, the fluidity of the resulting composition may be deteriorated, and it may be difficult to fill the thermally conductive filler. In the present invention, the kinematic viscosity can be measured with an Ostwald viscometer (hereinafter the same).
  • the blending amount of the component (A) is preferably 3 to 30% by volume in the thermally conductive silicone composition, and more preferably 5 to 20% by volume.
  • Thermally conductive fillers include nonmagnetic metals such as copper and aluminum, metal oxides such as aluminum oxide, silica, magnesia, bengara, beryllia, titania and zirconia, and metal nitrides such as aluminum nitride, silicon nitride and boron nitride.
  • a material generally used as a heat conductive filler such as metal hydroxide such as magnesium hydroxide, artificial diamond, or silicon carbide, can be used.
  • the particle diameter may be 0.1 to 200 ⁇ m, and may be used alone or in combination of two or more in a range that satisfies the prescribed requirements.
  • the particle size of the thermally conductive filler is measured using a laser diffraction / scattering particle size distribution measuring device, for example, Microtrac MT3300EX (Nikkiso), and the average particle size is a volume-based value (volume distribution of particles).
  • a laser diffraction / scattering particle size distribution measuring device for example, Microtrac MT3300EX (Nikkiso)
  • the average particle size is a volume-based value (volume distribution of particles).
  • the heat conductive filler 40 to 60% by volume, preferably 45 to 55% by volume, of the heat conductive filler is aluminum nitride having an average particle size of 50 ⁇ m or more.
  • the average particle size of aluminum nitride is 50 ⁇ m or more, preferably 50 ⁇ m or more and 200 ⁇ m or less, and more preferably 60 ⁇ m or more and 200 ⁇ m or less.
  • filling becomes difficult.
  • the thermal conductivity of the composition obtained with a larger particle size becomes higher, so particles having an average particle size as large as possible are used.
  • the average particle size exceeds 200 ⁇ m, the fluidity when added to the composition may be impaired. If it is the said average particle diameter, it may be a crushed shape or a spherical shape, and a crushed shape is preferable. In addition, a well-known thing can be used for a crushed shape and a spherical thing.
  • Aluminum nitride is roughly classified into sintered bodies and non-sintered bodies. Since the sintered body is a spherical particle, the filling property to the organopolysiloxane is better than that of a non-sintered body that is crushed. On the other hand, when sintering, rare earth element oxide such as yttria is added as a sintering aid by several percent, so the phase of aluminum nitride and the phase of sintering aid are mixed, and in terms of thermal conductivity Inferior to non-sintered body. Furthermore, since the sintering process is performed, it becomes very expensive. Therefore, non-sintered aluminum nitride is preferred for use as a thermally conductive filler.
  • the volume ratio of aluminum nitride having an average particle size of 50 ⁇ m or more and less than 70 ⁇ m is preferably 0.5 to 0.6, more preferably 0.52 to 0.62, with respect to the total amount of aluminum nitride as the heat conductive filler. .
  • the volume ratio of aluminum nitride having an average particle diameter of 70 to 90 ⁇ m is preferably 0.4 to 0.5, and more preferably 0.42 to 0.48.
  • Aluminum oxide (alumina) may be spherical or non-spherical.
  • Non-spherical aluminum oxide includes crushed and round shapes, and is less expensive than spherical aluminum oxide. Therefore, non-spherical aluminum oxide is more preferable from the viewpoint of imparting price competitiveness to the resulting composition.
  • the thermally conductive filler is a thermally conductive filler having an average particle size of 5 ⁇ m or less.
  • the heat conductive filler having an average particle size of 5 ⁇ m or less is preferably aluminum oxide, and more preferably non-spherical aluminum oxide.
  • the blending amount of the component (B) is 60 to 85% by volume in the thermally conductive silicone composition, and preferably 75 to 85% by volume. If the blending amount is too small, sufficient thermal conductivity cannot be obtained, and if it is too large, blending itself becomes difficult. For example, it is appropriately selected in the range of 1,000 to 8,000 parts by weight and 3,000 to 6,000 parts by weight with respect to 100 parts by weight of component (A).
  • More specific examples of the combination of the component (A) and the component (B) include the following.
  • B-III Aluminum oxide having an average particle diameter of 5 to 15 ⁇ m: 650 to 800 parts by mass
  • Aluminum hydroxide a thermally conductive silicone composition containing 1,300 to 1,700 parts by mass.
  • non-sintered crushed aluminum nitride having an average particle size of 70 to 90 ⁇ m is preferable, and as the component (B-IV), crushed aluminum oxide having an average particle size of 0.5 ⁇ m or more and less than 5 ⁇ m. Is preferred. In this case, the amount of component (B-IV) is more preferably 1,500 to 1,700 parts by mass.
  • the component (A) is preferably a component (AI) or (A-II) described later.
  • the heat conductive filler is hydrophobized during preparation of the composition to improve wettability with the organopolysiloxane (A), and (B) heat conductive filling.
  • a surface treatment agent (C) can be blended.
  • the component (C) the following components (C-1) and (C-2) are preferable, and one or more selected from these can be used in combination.
  • (C-1) Alkoxysilane compound represented by the following general formula (1) R 1 a R 2 b Si (OR 3 ) 4-ab (1) Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
  • examples of the alkyl group represented by R 1 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group.
  • the number of carbon atoms of the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (C) is sufficiently improved, the handleability is good, and the low temperature characteristics of the resulting composition are good. It becomes.
  • Examples of the unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group.
  • One kind alone or two or more kinds can be appropriately selected and used. .
  • those having 1 to 6 carbon atoms are preferable, and those having 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group and the like.
  • unsubstituted or substituted alkyl groups and unsubstituted or substituted phenyl groups such as phenyl group, chlorophenyl group, and fluorophenyl group are preferred.
  • Preferable specific examples of the component (C-1) include the following. C 6 H 13 Si (OCH 3 ) 3 C 10 H 21 Si (OCH 3 ) 3 C 12 H 25 Si (OCH 3 ) 3 C 12 H 25 Si (OC 2 H 5 ) 3 C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 C 10 H 21 Si (C 6 H 5 ) (OCH 3 ) 2 C 10 H 21 Si (CH 3 ) (OC 2 H 5 ) 2 C 10 H 21 Si (CH ⁇ CH 2 ) (OCH 3 ) 2 C 10 H 21 Si (CH 2 CH 2 CF 3 ) (OCH 3 ) 2
  • C-2 Dimethylpolysiloxane in which one molecular chain end represented by the following general formula (2) is blocked with a trialkoxy group (In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
  • examples of the alkyl group represented by R 4 include those having 1 to 6 carbon atoms among the alkyl groups represented by R 2 in the general formula (1).
  • component (C-2) include the following.
  • the component (C) is preferably 10 to 160 parts by mass, more preferably 50 to 160 parts by mass with respect to 100 parts by mass of the component (A).
  • the type of the (A) organopolysiloxane that is the base polymer used in the present invention is not particularly limited, but when it is set as a curable thermally conductive silicone composition, the following three forms are mentioned, As the base polymer organopolysiloxane (A), the organopolysiloxanes (AI) to (A-III) described later are used, respectively, and the above-mentioned thermally conductive filler (B) is blended. be able to.
  • each composition is demonstrated concretely.
  • Addition reaction curable heat conductive silicone composition When the composition is an addition reaction curable heat conductive silicone composition that is cured by a hydrosilylation reaction, as the above-mentioned base polymer organopolysiloxane (A) It is preferable that the component (AI) shown below is used, the heat conductive filler (B) is blended, and the component shown below is further contained. Preferred amounts are also shown below.
  • Organopolysiloxane having at least two alkenyl groups in the molecule
  • the main chain portion is basically composed of repeating diorganosiloxane units.
  • the part may contain a branched structure or may be a cyclic body, but a linear diorganopolysiloxane is preferred from the viewpoint of physical properties such as mechanical strength of the cured product.
  • alkenyl group bonded to the silicon atom examples include those having usually about 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group and cyclohexenyl group. Of these, lower alkenyl groups such as vinyl group and allyl group are preferable, and vinyl group is particularly preferable.
  • the alkenyl group bonded to the silicon atom may be present at either the molecular chain terminal or the molecular chain non-terminal (that is, the molecular chain side chain) in the organopolysiloxane molecule of the component (AI), or although it may exist in both of these, it is preferable that it exists at both molecular chain both ends.
  • the organic group bonded to the silicon atom other than the alkenyl group is an unsubstituted or substituted monovalent hydrocarbon group which may intervene an oxygen atom, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group.
  • Alkyl group such as butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, etc.
  • Aryl groups such as cycloalkyl group, phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group, and carbon atoms in these groups
  • halogens such as fluorine, chlorine, bromine
  • a group substituted with a cyano group such as a chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3 , 3,4,4,5,5,6,6,6-nonafluorohexyl group, alkoxy groups such as methoxy group, ethoxy group, propoxy group and the like.
  • To 10 and particularly representative are those having 1 to 6 carbon atoms, preferably methyl, ethyl, propyl, chloromethyl, bromoethyl, 3,3,3-trifluoropropyl
  • An unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a cyanoethyl group, an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group or a fluorophenyl group, and Shi alkoxy groups such as.
  • the functional groups other than the alkenyl group bonded to the silicon atom are not limited to being the same.
  • the component (B) used in the addition reaction curable heat conductive silicone composition is the above-described heat conductive filler (B).
  • the compounding quantity of a component is suitably selected within the range prescribed
  • Component (D) is an organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms, and is bonded directly to an average of 2 or more, preferably 2 to 100 silicon atoms in one molecule.
  • An organohydrogenpolysiloxane having a hydrogen atom (Si—H group) is preferred, and is a component that acts as a crosslinking agent for the component (AI).
  • the organohydrogenpolysiloxane as component (D) is preferably represented by the following general formula (3).
  • R 5 independently represents an unsubstituted or substituted monovalent hydrocarbon group or hydrogen atom that does not contain an aliphatic unsaturated bond, provided that at least two are hydrogen atoms.
  • D is an integer of 1 or more. (It is preferably an integer of 1 to 100, more preferably an integer of 2 to 50.)
  • examples of the unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond other than the hydrogen atom of R 5 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl Group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclodecyl group such as cyclopentyl group, cyclohexyl group, etc.
  • An aryl group such as an alkyl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a biphenylyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group, and a methylbenzyl group, and a carbon atom bonded to these groups
  • Some or all of the hydrogen atoms are substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc.
  • Group for example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4, 5,5,6,6,6-nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms,
  • an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group, and the like
  • An unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group, and a fluorophenyl group.
  • R 5 does not limit that all but the hydrogen
  • R 5 is at least 2, preferably 2 to 100, more preferably 2 to 50 hydrogen atoms, and the hydrogen atom is either a molecular chain terminal or a molecular chain non-terminal (ie, molecular chain side chain). May be present in both or both.
  • the amount of component (D) added is preferably such that the Si—H group derived from component (D) is 0.1 to 8 moles per mole of alkenyl group derived from component (AI). Is an amount of 0.5 to 5 mol, more preferably 1 to 4 mol.
  • the amount of Si-H groups derived from the component (D) is less than 0.1 mol relative to 1 mol of the alkenyl groups derived from the component (AI)
  • the cured product is not cured or the strength of the cured product is insufficient. The shape cannot be maintained, making it difficult to handle.
  • it exceeds 8 mol the flexibility of the cured product is lost, and the thermal resistance may be remarkably increased.
  • the platinum group metal curing catalyst of component (E) is an addition reaction catalyst for promoting the addition reaction of the alkenyl group derived from component (AI) and the Si—H group derived from component (D).
  • Known catalysts can be used as the catalyst used in the reaction. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 ⁇ nH 2 O, H 2 PtCl 6 ⁇ nH 2 O, NaHPtCl 6 ⁇ nH 2 O.
  • n is an integer of 0 to 6, preferably 0 or 6
  • platinum chloride chloroplatinic acid and chloroplatinate
  • alcohol-modified chloroplatinic acid see US Pat. No. 3,220,972
  • a complex of chloroplatinic acid and olefin see US Pat. Nos.
  • platinum black platinum black
  • Platinum group metals such as palladium Supported on a carrier such as aluminum oxide, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane
  • a complex with a vinyl group-containing cyclic siloxane may be mentioned.
  • the amount of component (D) used may be a so-called catalyst amount, and is usually about 0.1 to 2,000 ppm in terms of platinum group metal element mass relative to component (AI).
  • an addition reaction control agent (F) can be used as necessary.
  • the addition reaction control agent all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. Examples thereof include acetylene compounds such as ethynylmethylidenecarbinol, 1-ethynyl-1-hexanol, and 3-butyn-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds.
  • the use amount of the addition reaction control agent is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the component (AI).
  • Organic peroxide-curing heat conductive silicone composition When the present composition is an organic peroxide-curing heat conductive silicone composition that is cured by a free radical reaction with an organic peroxide, It is preferable that (A-II) shown below is used as the organopolysiloxane (A) as the base polymer, the heat conductive filler (B) is blended, and further the components shown below are contained. .
  • (A-II) Organopolysiloxane having an alkenyl group bonded to at least two silicon atoms in one molecule
  • (B) Thermally conductive filler: as described above
  • (G) Organic peroxide
  • Organopolysiloxane [(A-II) Organopolysiloxane]
  • An organopolysiloxane having an alkenyl group bonded to at least two silicon atoms in one molecule is not particularly limited, but at least two alkenyl in one molecule of the component (AI) It is preferable to use the same organopolysiloxane having a group.
  • the component (B) used in the organic peroxide curable thermally conductive silicone composition is the above-described thermally conductive filler (B).
  • the compounding quantity of a component is suitably selected within the range prescribed
  • the organic peroxide as the component (G) is an organic peroxide that decomposes under specific conditions to generate a free radical, and can be used alone or in combination of two or more.
  • peroxyketals such as 1,1-di (tert-butylperoxy) cyclohexane and 2,2-di (4,4-di- (tert-butylperoxy) cyclohexyl) propane, p-menthane Hydroperoxides such as hydroperoxide, diisopropylbenzene hydroperoxide, dialkyl peroxides such as dicumyl peroxide, tert-butylcumyl peroxide, diacyl peroxides such as dibenzoyl peroxide, disuccinic acid peroxide, tert-butyl Peroxyesters such as peroxyacetate and tert-butylperoxybenzoate, and peroxydicarbonates such as diisopropylper
  • peroxyketals such as 1,
  • peroxyketals In particular, the use of peroxyketals, hydroperoxides, dialkyl peroxides, and peroxyesters having a relatively high decomposition temperature is preferred from the viewpoints of handleability and storage stability.
  • organic peroxides may be diluted with any organic solvent, hydrocarbon, liquid paraffin, inert solid or the like.
  • the compounding amount of the component (G) is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the component (A-II).
  • Condensation reaction curable heat conductive silicone composition When the present composition is a condensation reaction curable heat conductive silicone composition that is cured by a condensation reaction, the base polymer organopolysiloxane (A It is preferable that the component (A-III) shown below is used as a component, the thermal conductive filler (B) is blended, and the component shown below is further contained. (A-III) The following general formula (4) Wherein R 6 is the same or different unsubstituted or halogen atom-substituted or cyano group-substituted alkyl group having 1 to 5 carbon atoms or aryl group having 6 to 8 carbon atoms.
  • the component (A-III) is used as a base polymer when the silicone composition of the present invention is a condensation-cured product, and is represented by the following general formula (4) and has a kinematic viscosity at 25 ° C. of 10 to 100,000 mm. 2 / s is an organopolysiloxane having both ends blocked with hydroxyl groups.
  • R 6 is the same or different unsubstituted or halogen atom-substituted or cyano group-substituted alkyl group having 1 to 5 carbon atoms or aryl group having 6 to 8 carbon atoms. (It is an integer.)
  • R 6 specifically, an alkyl group having 1 to 7 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, phenyl group, etc.
  • Examples include a halogen atom-substituted alkyl group or aryl group such as methyl group, 3-chloropropyl group, trifluoromethyl group, cyanoethyl group, cyano group-substituted alkyl group or aryl group. These can be used individually by 1 type or in combination of 2 or more types. e is an integer of 1 or more, preferably 100 to 1,000.
  • the component (B) used in the addition reaction curable heat conductive silicone composition is the above-described heat conductive filler (B).
  • the compounding quantity of a component is suitably selected within the range prescribed
  • R 7 is unsubstituted or halogen-substituted or cyano-substituted, methyl group, ethyl group having 1 to 3 carbon atoms, alkyl group, vinyl group and propyl group is phenyl group.
  • X is a hydrolyzable group, and examples thereof include an alkoxy group, an alkoxyalkoxy group, an alkenyloxy group, a ketoxime group, an acyloxy group, an amino group, an amide group, and an aminoxy group.
  • the alkoxy group and alkoxyalkoxy group may be substituted with a halogen atom.
  • alkenyloxy group include an isopropenoxy group.
  • Examples of the ketoxime group include a dimethyl ketoxime group, a methyl ethyl ketoxime group, and a diethyl ketoxime group.
  • Examples of the acyloxy group include an acetoxy group and a propionyloxy group.
  • Examples of the amino group include a dimethylamino group, a diethylamino group, an n-butylamino group, and a cyclohexylamino group.
  • Examples of the amide group include an N-methylacetamide group, an N-ethylacetamide group, an N-butylacetamide group, an N-cyclohexylacetamide group, and the like.
  • Examples of the aminoxy group include N, N-dimethylaminoxy group, N, N-diethylaminoxy group and the like.
  • X is particularly preferably an alkenyloxy group.
  • b is 0 or 1.
  • silane compounds their (partial) hydrolysates or (partial) hydrolysis condensates include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, vinyltrimethoxysilane, 3, 3,3-trifluoropropyltrimethoxysilane, ⁇ -cyanoethyltrimethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, phenyltrimethoxysilane, tetra ( ⁇ -chloroethoxy) silane, tetra (2,2,2-tri Alkoxysilanes such as fluoroethoxy) silane, propyltris ( ⁇ -chlorobutoxy) silane, methyltris (methoxyethoxy) silane, alkoxysiloxanes such as ethylpolysilicate, dimethylte
  • the blending amount of the component (H) is preferably 1 to 40 parts by mass, more preferably 2 to 30 parts by mass with respect to 100 parts by mass of the component (A-III).
  • (I) Curing catalyst for condensation reaction (I) Component is alkyl tin ester compound, titanate ester, titanium chelate compound, organic zinc compound, organic iron compound, organic cobalt compound, organic manganese compound, organic aluminum compound, hexylamine, dodecylamine phosphate, quaternary It is a curing catalyst for condensation reaction selected from ammonium salts, lower fatty acid salts of alkali metals, dialkylhydroxylamine, and silanes and siloxanes containing guanidyl groups, and is a condensation catalyst for curing the silicone composition of the present invention. These can be used individually by 1 type or in combination of 2 or more types.
  • alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, and dibutyltin dioctoate; tetraisopropoxytitanium, tetran-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, dipropoxybis (acetylacetona) ) Titanic acid esters such as titanium and titanium isopropoxyoctylene glycol; diisopropoxybis (ethylacetoacetate) titanium, diisopropoxybis (methylacetoacetate) titanium, diisopropoxybis (acetylacetonate) titanium, dibutoxybis ( Titanium chelate compounds such as ethyl acetoacetonate) titanium and dimethoxybis (ethylacetoacetonate) titanium; zinc naphthenate, zinc stearate, zinc-2-ethyl octoate , Organic metals such as
  • silane or siloxane containing a guanidyl group such as tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane, or the like is preferably used. .
  • the compounding amount of the component (I) is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the component (A-III).
  • the heat-conductive silicone composition of the present invention may further contain other components such as an internal release agent, a colorant, and an antioxidant as long as the object of the present invention is not impaired.
  • the heat conductive silicone composition of this invention can be prepared by mixing the predetermined amount of said each component.
  • Aluminum hydroxide A method for producing a thermally conductive silicone composition, which includes a step of mixing 1,300 to 1,700 parts by mass.
  • non-sintered crushed aluminum nitride having an average particle size of 70 to 90 ⁇ m is preferable, and as the component (B-IV), crushed aluminum oxide having an average particle size of 0.5 ⁇ m or more and less than 5 ⁇ m. Is preferred. In this case, the amount of component (B-IV) is more preferably 1,500 to 1,700 parts by mass.
  • the curing conditions for the addition reaction curable heat conductive silicone composition are 100 to 140 ° C., particularly 110 to 130 ° C., 5 to 30 minutes, especially 10 Can be up to 20 minutes.
  • a condensation reaction curable heat conductive silicone composition it can be set to 40 ° C. or less, particularly 0 to 40 ° C. for 0.5 to 30 days, particularly 1 to 15 days.
  • the temperature can be set at 110 to 190 ° C., particularly 120 to 170 ° C. for 5 to 30 minutes, particularly 10 to 20 minutes.
  • the cured product of the thermally conductive silicone composition preferably has the following properties.
  • Thermal conductivity of the cured product of the thermally conductive silicone composition is preferably 8 W / mK or more, more preferably 9 W / mK or more.
  • the thermal conductivity is lower than 8 W / mK, it can be achieved even when aluminum nitride having an average particle size of less than 50 ⁇ m is used.
  • the upper limit is not particularly limited and may be high, but may be, for example, 15 W / mK or less.
  • the thermal conductivity is measured using TPA-501 (Kyoto Electronics).
  • the hardness of the cured product of the thermally conductive silicone composition is preferably 50 or less in terms of Asker C hardness, more preferably 40 or less and 5 or more. When the Asker C hardness exceeds 50, stress is applied to the heat-generating component during mounting, and it may not follow the fine unevenness of the heat-generating component or the cooling component, leading to deterioration of contact thermal resistance.
  • the dielectric breakdown voltage of 1 mm thickness of the cured product of the heat conductive silicone composition is preferably 6 kV or more. By setting it to 6 kV or more, more insulating properties can be obtained.
  • the upper limit is not particularly limited, but can be 25 kV or less.
  • Component (C) dimethylpolysiloxane in which one end represented by the following formula is blocked with a trimethoxysilyl group (specific gravity: 1.0)
  • Component (F) addition reaction control agent (specific gravity: 1.0) Ethynyl methylidene carbinol.
  • Examples 1 to 6 Comparative Examples 1 to 4
  • a composition was prepared by the method described below, and a thermally conductive molded product was obtained using the composition. Using these, evaluation was carried out by the method shown below. The results are shown in Tables 1 and 2.
  • Thermal conductivity The obtained composition was cured into a sheet having a thickness of 6 mm, two sheets were used, and the heat of the sheet was measured using a thermal conductivity meter (TPA-501, trade name, manufactured by Kyoto Electronics Industry Co., Ltd.). Conductivity was measured.
  • hardness The obtained composition was cured into a sheet having a thickness of 6 mm, and the two sheets were stacked and measured with an Asker C hardness meter.
  • Dielectric breakdown voltage The obtained composition was cured on a 1 mm thick sheet, and the dielectric breakdown voltage was measured based on JIS K 6249.
  • the cured product has a proportion of 57.8% by volume of thermally conductive filler in the composition. Insufficient thermal conductivity is obtained. Further, when the proportion of aluminum nitride in the thermally conductive filler is 38% by volume as in Comparative Example 2, even when the volume percent occupied by the thermally conductive filler is 82.9%, aluminum nitride is used. Compared to the above, the thermal conductivity becomes small. When aluminum nitride having an average particle size of 40 ⁇ m used as in Comparative Example 4 was used, it was difficult to prepare the heat conductive silicone composition itself.
  • the average particle diameter of aluminum nitride used as in the examples is 50 ⁇ m or more, the volume% occupied by the heat conductive filler, and the volume% occupied by aluminum nitride in the heat conductive filler are adequate, A cured product of a thermally conductive silicone composition having high thermal conductivity while having insulating properties is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)オルガノポリシロキサンをベースポリマーとし、(B)熱伝導性充填材を含む熱伝導性シリコーン組成物であって、熱伝導性充填材が熱伝導性シリコーン組成物中60~85体積%であり、熱伝導性充填材中40~60体積%が平均粒径50μm以上の窒化アルミニウムである熱伝導性シリコーン組成物。

Description

熱伝導性シリコーン組成物
 本発明は、広くは、熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の発熱散部材との界面に介在し得る熱伝達材料に関する。
 パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。
 従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。チップから発生する熱をヒートシンクに効率良く伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、このシート又はグリースを介してチップからヒートシンクへの熱伝導を実現している。
 シートはグリースに比べ、取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導性シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。熱伝導性シートは、特に発熱素子とヒートシンクや筐体等の冷却部位の間にある程度空間がある場合によく用いられる。また発熱素子とヒートシンクや筐体との間は電気的に絶縁状態を確保しなければならない場合が多く、熱伝導性シートにも絶縁性が求められることが多い。つまり、熱伝導性充填材としてアルミニウムや銅、銀等の金属粒子を用いることができず、多くは水酸化アルミニウム、酸化アルミニウム等の絶縁性熱伝導性充填材が用いられる。
 しかしながら、水酸化アルミニウムや酸化アルミニウムは、それ自体の熱伝導率が低いために、これらを熱伝導性充填材として用いた熱伝導性シリコーン組成物の熱伝導率が低くなってしまう。一方、近年発熱素子の発熱量は増加の一途をたどり、熱伝導性シートに求められる熱伝導率も上がっており、水酸化アルミニウムや酸化アルミニウムを熱伝導性充填材として用いては対応ができなくなっている。
特許第3256587号公報 特許第3957596号公報 特開平6-164174号公報 特許第4357064号公報
 そこで、さらなる高熱伝導化のために近年、窒化ホウ素や窒化アルミニウムに注目が集まっている。窒化ホウ素は熱伝導率が非常に高いが、粒子が偏平形をしており、かつ厚み方向と長さ方向で熱伝導率が異なるため、シリコーンポリマーに充填し組成物とした時に、熱伝導性に異方性が生じてしまう。一方、窒化アルミニウムは、粒子は偏平形をしていないために組成物とした場合にでも熱伝導性に異方性は生じにくい。また、窒化ホウ素に比べてシリコーンポリマーへの充填が容易であることが知られている。
 本発明者らは、上記目的を達成するため鋭意検討した結果、熱伝導性充填材が60~85体積%を占め、熱伝導性充填材の内40~60体積%を平均粒径が50μm以上である窒化アルミニウムを用いることで、高熱伝導性を有する硬化物となる熱伝導性シリコーン組成物が得られることを知見し、本発明をなすに至ったものである。
 従って、本発明は下記発明を提供する。
[1].(A)オルガノポリシロキサンをベースポリマーとし、(B)熱伝導性充填材を含む熱伝導性シリコーン組成物であって、(B)熱伝導性充填材が熱伝導性シリコーン組成物中60~85体積%であり、熱伝導性充填材中40~60体積%が平均粒径50μm以上の窒化アルミニウムである熱伝導性シリコーン組成物。
[2].窒化アルミニウムが非焼結の破砕状窒化アルミニウムである[1]記載の熱伝導性シリコーン組成物。
[3].熱伝導性充填材としての窒化アルミニウムの総量1に対して、平均粒径50μm以上70μm未満の窒化アルミニウムの体積比が0.5~0.6であり、平均粒径70~90μmの窒化アルミニウムの体積比が0.4~0.5である[1]又は[2]記載の熱伝導性シリコーン組成物。
[4].熱伝導性充填材中25~45体積%が平均粒径5μm以下の熱伝導性充填材である[1]~[3]のいずれかに記載の熱伝導性シリコーン組成物。
[5].平均粒径5μm以下の熱伝導性充填材が、非球状酸化アルミニウムである[4]記載の熱伝導性シリコーン組成物。
[6].(A)オルガノポリシロキサン:100質量部、
(B-I)平均粒径50μm以上70μm未満の窒化アルミニウム:1,100~1,400質量部、
(B-II)平均粒径70~90μmの窒化アルミニウム:900~1,200質量部、
(B-III)平均粒径5~15μmの酸化アルミニウム:650~800質量部、及び
(B-IV)平均粒径0.5μm以上5μm未満の酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部
を含む[1]記載の熱伝導性シリコーン組成物。
[7].(B-I)成分が、平均粒径50μm以上70μm未満の非焼結の破砕状窒化アルミニウムであり、(B-II)成分が、平均粒径70~90μmの非焼結の破砕状窒化アルミニウム又は平均粒径70~90μmの焼結の球状窒化アルミニウムであり、(B-III)成分が、平均粒径5~15μmの球状酸化アルミニウムであり、(B-IV)成分が、平均粒径0.5μm以上5μm未満の破砕状酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウムである[6]記載の熱伝導性シリコーン組成物。
[8].さらに、(C):下記(C-1)及び(C-2)から選ばれる1種以上:(A)成分100質量部に対して10~160質量部を含む[1]~[7]のいずれかに記載の熱伝導性シリコーン組成物。
 (C-1)下記一般式(1)で表されるアルコキシシラン化合物
 R1 a2 bSi(OR34-a-b    (1)
(式中、R1は独立に炭素原子数6~15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、R3は独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
(C-2)成分下記一般式(2)で表される分子鎖片末端がトリアルコキシ基で封鎖されたジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000002
(式中、R4は独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
[9].熱伝導率が8W/mK以上である[1]~[8]のいずれかに記載の熱伝導性シリコーン組成物の硬化物。
[10].硬度がアスカーC硬度で50以下である[9]記載の熱伝導性シリコーン組成物の硬化物。
[11].1mm厚の絶縁破壊電圧が6kV以上である[9]又は[10]記載の熱伝導性シリコーン組成物の硬化物。
[12].(A)オルガノポリシロキサン:100質量部、
(B-I)平均粒径50μm以上70μm未満の窒化アルミニウム:1,100~1,400質量部、
(B-II)平均粒径70~90μmの窒化アルミニウム:900~1,200質量部、
(B-III)平均粒径5~15μmの酸化アルミニウム:650~800質量部、及び
(B-IV)平均粒径0.5μm以上5μm未満の酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部
を混合する工程を含む、[1]又は[6]記載の熱伝導性シリコーン組成物を製造する方法。
 本発明の熱伝導性シリコーン組成物によれば、高熱伝導性を有する硬化物となる熱伝導性シリコーン組成物を得ることができる。
 以下、本発明について詳細に説明する。本発明は、オルガノポリシロキサンをベースポリマーとし、熱伝導性充填材を含む熱伝導性シリコーン組成物であって、熱伝導性充填材が熱伝導性シリコーン組成物中60~85体積%であり、熱伝導性充填材中40~60体積%が平均粒径50μm以上の窒化アルミニウムである熱伝導性シリコーン組成物である。
[(A)オルガノポリシロキサン]
 本発明に用いられるベースポリマーのオルガノポリシロキサンは、その種類は特に限定されないが、通常は、主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるものが一般的であり、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよい。硬化物の機械的強度等、物性の点から、直鎖状のジオルガノポリシロキサンであることが好ましい。なお、オルガノポリシロキサンの末端は、トリオルガノシリル基で封鎖されていても、ジオルガノヒドロキシシリル基で封鎖されていてもよい。このオルガノポリシロキサンは、1種単独でも動粘度が異なる2種以上を組み合わせて用いてもよい。
 また、オルガノポリシロキサン中のケイ素原子に結合する有機基としては、酸素原子を介在してもよい非置換又は置換の1価炭化水素基が例示でき、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、ならびにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、ビニル基、アリル基等の低級アルケニル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、ケイ素原子に結合した有機基は全てが同一であっても、異なっていてもよい。
 オルガノポリシロキサンの25℃における動粘度は、10~30,000mm2/sが好ましく、50~1,000mm2/sがより好ましい。動粘度が高いオルガノポリシロキサンを用いると、得られる組成物の流動性が悪くなり、熱伝導性充填材の充填が難しくなるおそれがある。なお、本発明において、動粘度は、オストワルド粘度計により測定することができる(以下、同じ)。
 (A)成分の配合量は、熱伝導性シリコーン組成物中3~30体積%が好ましく、5~20体積%がより好ましい。
[(B)熱伝導性充填材]
 熱伝導性充填材は、非磁性の銅やアルミニウム等の金属、酸化アルミニウム、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンド、炭化珪素等一般に熱伝導充填材とされる物質を用いることができる。また粒径は0.1~200μmを用いることができ、規定する要件を満たす範囲で1種又は2種以上複合して用いてもよい。なお熱伝導性充填材の粒径は、レーザー回折・散乱式の粒子径分布測定装置、例えばマイクロトラックMT3300EX(日機装)を用いて測定され、平均粒径は体積基準の値(粒体の体積分布を測定した際、この平均粒径を境に2つに分けた時、大きい側と小さい側が等量になる径を指す。以下、同様)である。
[窒化アルミニウム]
 本発明においては、熱伝導性充填材中40~60体積%、好適には45~55体積%が平均粒径50μm以上の窒化アルミニウムである。窒化アルミニウムの平均粒径は、50μm以上であり、50μm以上200μm以下が好ましく、より好ましくは60μm以上200μm以下である。平均粒径50μm以下の窒化アルミニウムを多量に用いると、充填が困難になってしまう。さらに前述の通り、充填する量が同じであれば、粒径が大きい方が得られる組成物の熱伝導率は高くなるので、出来るだけ平均粒径の大きい粒子を用いる。しかしながら、平均粒径が200μmを超えると組成物へ添加した際の流動性が損なわれてしまうおそれがある。上記平均粒径であれば、破砕状であっても、球状であってもよく、破砕状のものが好ましい。なお、破砕状、球状のものは公知のものを使用することができる。
 窒化アルミニウムは大別すると、焼結体と非焼結体がある。焼結体は球状粒子であるので、オルガノポリシロキサンへの充填性は、破砕状である非焼結体と比べると良い。一方、焼結させるときに、イットリア等の希土類元素酸化物を焼結助剤として数%添加するため、窒化アルミニウムの相と焼結助剤の相が混在することになり、熱伝導性においては、非焼結体に劣る。さらに焼結工程を行うため非常に高価になる。そのため、熱伝導性充填材として用いるには、非焼結体の窒化アルミニウムが好ましい。
 熱伝導性充填材としての窒化アルミニウムの総量1に対して、平均粒径50μm以上70μm未満の窒化アルミニウムの体積比は0.5~0.6が好ましく、0.52~0.62がより好ましい。また、平均粒径70~90μmの窒化アルミニウムの体積比が0.4~0.5が好ましく、0.42~0.48がより好ましい。
 [酸化アルミニウム]
 酸化アルミニウム(アルミナ)は球状でも、非球状でもよい。非球状酸化アルミニウムには破砕状、丸み状等が挙げられ、球状酸化アルミニウムに比べて安価であるので、得られる組成物に価格競争力を付与できる点から、非球状酸化アルミニウムがより好ましい。
 なお、熱伝導性充填材中25~45体積%、好ましくは30~45体積%が、平均粒径5μm以下の熱伝導性充填材であることが好ましい。特に、平均粒径5μm以下の熱伝導性充填材が酸化アルミニウムであることが好ましく、非球状酸化アルミニウムがより好ましい。
 (B)成分の配合量は、熱伝導性シリコーン組成物中60~85体積%であり、75~85体積%が好ましい。配合量が少なすぎると、十分な熱伝導性が得られず、多すぎると 配合自体が困難になる。例えば、(A)成分100質量部に対して1,000~8,000質量部、3,000~6,000質量部の範囲で適宜選定される。
 より具体的な(A)成分と(B)成分との組み合わせとしては、下記が挙げられる。
(A)オルガノポリシロキサン:100質量部、
(B-I)平均粒径50μm以上70μm未満の窒化アルミニウム:1,100~1,400質量部、
(B-II)平均粒径70~90μmの窒化アルミニウム:900~1,200質量部、
(B-III)平均粒径5~15μmの酸化アルミニウム:650~800質量部、及び
(B-IV)平均粒径0.5μm以上5μm未満の酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部
を含む熱伝導性シリコーン組成物。
 中でも、下記(A)成分と(B)成分との組み合わせが好ましい。
 (A)オルガノポリシロキサン:100質量部、
(B-I)平均粒径50μm以上70μm未満の非焼結の破砕状窒化アルミニウム:1,100~1,400質量部、
(B-II)平均粒径70~90μmの非焼結の破砕状窒化アルミニウム又は平均粒径70~90μmの焼結の球状窒化アルミニウム:900~1,200質量部、
(B-III)平均粒径5~15μmの球状酸化アルミニウム:650~800質量部、及び
(B-IV)平均粒径0.5μm以上5μm未満の破砕状酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部
を含む熱伝導性シリコーン組成物。
 (B-II)成分としては、平均粒径70~90μmの非焼結の破砕状窒化アルミニウムが好ましく、(B-IV)成分としては、平均粒径0.5μm以上5μm未満の破砕状酸化アルミニウムが好ましい。この場合(B-IV)成分の配合量は、1,500~1,700質量部がより好ましい。また、(A)成分は、後述する(A-I)又は(A-II)成分が好ましい。
[(C)成分]
 本発明の熱伝導性シリコーン組成物には、組成物調製時に熱伝導性充填材を疎水化処理し、(A)成分であるオルガノポリシロキサンとの濡れ性向上させ、(B)熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(C)表面処理剤を配合することができる。(C)成分としては、下記(C-1)及び(C-2)成分が好ましく、これらから選ばれる1種又は2種以上を組み合わせて用いることができる。
(C-1)下記一般式(1)で表されるアルコキシシラン化合物
 R1 a2 bSi(OR34-a-b    (1)
(式中、R1は独立に炭素原子数6~15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、R3は独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
 上記一般式(1)において、R1で表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このR1で表されるアルキル基の炭素原子数が6~15の範囲を満たすと(C)成分の濡れ性が十分向上し、取り扱い性がよく、得られる組成物の低温特性が良好なものとなる。
 R2で表される非置換又は置換の炭素原子数1~8の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、ならびにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、1種単独で又は2種以上を適宜選択して用いることができる。中でも、炭素原子数1~6のものが好ましく、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が好ましい。
 上記(C-1)成分の好適な具体例としては、下記のものを挙げることができる。
  C613Si(OCH33
  C1021Si(OCH33
  C1225Si(OCH33
  C1225Si(OC253
  C1021Si(CH3)(OCH32
  C1021Si(C65)(OCH32
  C1021Si(CH3)(OC252
  C1021Si(CH=CH2)(OCH32
  C1021Si(CH2CH2CF3)(OCH32
(C-2)下記一般式(2)で表される分子鎖片末端がトリアルコキシ基で封鎖されたジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000003
(式中、R4は独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
 上記一般式(2)において、R4で表されるアルキル基は上記一般式(1)中のR2で表されるアルキル基の中で、炭素原子数1~6のものが挙げられる。
 上記(C-2)成分の好適な具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 (C-1)成分と(C-2)成分のいずれか一方でも両者を組み合わせてもよい。この場合、(C)成分としては(A)成分100質量部に対して10~160質量部が好ましく、50~160質量部がより好ましい。
 上記のように、本発明に用いられるベースポリマーである(A)オルガノポリシロキサンの種類は特に限定されないが、硬化性熱伝導性シリコーン組成物とする際には、以下の3形態が挙げられ、ベースポリマーであるオルガノポリシロキサン(A)として、それぞれ後述する(A-I)~(A-III)成分のオルガノポリシロキサンを用い、上述した熱伝導性充填材(B)を配合したものとすることができる。以下、それぞれの組成物について具体的に説明する。
[1]付加反応硬化型熱伝導性シリコーン組成物
[2]有機過酸化物硬化型熱伝導性シリコーン組成物
[3]縮合反応硬化型熱伝導性シリコーン組成物
[1]付加反応硬化型熱伝導性シリコーン組成物
 組成物がヒドロシリル化反応により硬化する付加反応硬化型熱伝導性シリコーン組成物である場合には、上記ベースポリマーであるオルガノポリシロキサン(A)として下記に示す(A-I)成分を用い、上記熱伝導性充填材(B)を配合し、更に下記に示す成分を含有するものであることが好ましい。以下に好ましい配合量も併記する。
(A-I)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン
(B)熱伝導性充填材:上記に記載した通り
(D)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン
(E)白金族金属系硬化触媒
(F)付加反応制御剤
 さらに、(C):上記(C-1)及び(C-2)から選ばれる1種以上:(A)成分100質量部に対して10~160質量部を配合してもよい。
 (A-I)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン
 通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
 ケイ素原子に結合したアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常、炭素原子数2~8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、ビニル基が特に好ましい。ケイ素原子に結合したアルケニル基は、(A-I)成分のオルガノポリシロキサンの分子中において、分子鎖末端及び分子鎖非末端(即ち、分子鎖側鎖)のいずれかに存在しても、あるいはこれらの両方に存在してもよいが、少なくとも分子鎖両末端に存在することが好ましい。
 また、アルケニル基以外のケイ素原子に結合する有機基としては、酸素原子を介在してもよい非置換又は置換の1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、ならびにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、フェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基、及びメトキシ基等のアルコキシ基である。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることに限定するものではない。
[(B)熱伝導性充填材]
 付加反応硬化型熱伝導性シリコーン組成物に用いる(B)成分は、上述した熱伝導性充填材(B)である。(B)成分の配合量は上記で規定された範囲内で適宜選定される。例えば、(A-I)成分100質量部に対して1,000~8,000質量部、3,000~6,000質量部の範囲で適宜選定される。
[(D)オルガノハイドロジェンポリシロキサン]
 (D)成分は、ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンであり、1分子中に平均で2個以上、好ましくは2~100個のケイ素原子に直接結合する水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサンが好ましく、(A-I)成分の架橋剤として作用する成分である。即ち、(D)成分中のSi-H基と(A-I)成分中のアルケニル基との後述する(E)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。また、Si-H基の数が2個未満の場合、硬化しないおそれがある。
 (D)成分のオルガノハイドロジェンポリシロキサンは、下記一般式(3)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R5は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基あるいは水素原子であり、但し、少なくとも2個は水素原子である。dは1以上の整数、好ましくは1~100の整数、より好ましくは2~50の整数である。)
 上記式(3)中、R5の水素原子以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、ならびにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2-ブロモエチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1~10、特に代表的なものは炭素原子数が1~6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等の炭素原子数1~3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R5は水素原子以外の全てが同一であることを限定するものではない。
 R5は、少なくとも2個、好ましくは2~100個、より好ましくは2~50個は水素原子であり、該水素原子は分子鎖末端及び分子鎖非末端(即ち、分子鎖側鎖)のいずれかに存在しても、あるいはこれらの両方に存在してもよい。
 これら(D)成分の添加量は、(D)成分由来のSi-H基が(A-I)成分由来のアルケニル基1モルに対して0.1~8モルとなる量が好ましく、より好ましくは0.5~5モルとなる量、さらに好ましくは1~4モルとなる量である。(D)成分由来のSi-H基量が(A-I)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は硬化物の強度が不十分で成型物としての形状を保持できず取扱いづらくなる。また8モルを超えると硬化物の柔軟性がなくなり、熱抵抗が著しく上昇してしまうおそれがある。
[(E)白金族金属系硬化触媒]
 (E)成分の白金族金属系硬化触媒は、(A-I)成分由来のアルケニル基と、(D)成分由来のSi-H基の付加反応を促進するための付加反応触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KaHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0~6の整数であり、好ましくは0又は6である)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属を酸化アルミニウム、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。
 (D)成分の使用量は、所謂触媒量でよく、通常、(A-I)成分に対する白金族金属元素質量換算で0.1~2,000ppm程度がよい。
[(F)付加反応制御剤]
 付加反応硬化型熱伝導性シリコーン組成物には、必要に応じて(F)付加反応制御剤を用いることができる。付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、エチニルメチリデンカルビノール、1-エチニル-1-ヘキサノール、3-ブチン-1-オール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。付加反応制御剤の使用量としては、(A-I)成分100質量部に対して0.01~1質量部が好ましい。
[2]有機過酸化物硬化型熱伝導性シリコーン組成物
 また、本組成物が有機過酸化物によるフリーラジカル反応により硬化する有機過酸化物硬化型熱伝導性シリコーン組成物である場合には、上記ベースポリマーであるオルガノポリシロキサン(A)として下記に示す(A-II)を用い、上記熱伝導性充填材(B)を配合し、更に下記に示す成分を含有するものであることが好ましい。
(A-II)1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサン
(B)熱伝導性充填材:上記に記載した通り
(G)有機過酸化物
 さらに、(C):上記(C-1)及び(C-2)から選ばれる1種以上:(A)成分100質量部に対して10~160質量部を配合してもよい。
[(A-II)オルガノポリシロキサン]
 (A-II)1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンであれば特に限定されないが、前記(A-I)成分の1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンと同様のものを用いることが好ましい。
[(B)熱伝導性充填材]
 有機過酸化物硬化型熱伝導性シリコーン組成物に用いる(B)成分は、上述した熱伝導性充填材(B)である。(B)成分の配合量は上記で規定された範囲内で適宜選定される。例えば、(A-II)成分100質量部に対して1,000~8,000質量部、3,000~6,000質量部の範囲で適宜選定される。
[(G)有機過酸化物]
 (G)成分である有機過酸化物は、特定の条件下で分解して遊離ラジカルを生じる有機過酸化物であり、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 具体的には、1,1-ジ(tert-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(tert-ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等のハイドロパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド等のジアルキルパーオキサイド、ジベンゾイルパーオキサイド、ジスクシン酸パーオキサイド等のジアシルパーオキサイド、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシベンゾエート等のパーオキシエステル、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネートが好適に用いられる。特には、分解温度が比較的高いパーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステルの使用が、取扱い性や保存安定性の観点から好ましい。また、これらの有機過酸化物は、任意の有機溶剤や炭化水素、流動パラフィンや不活性固体等で希釈されたものを用いてもよい。
 (G)成分の配合量は、(A-II)成分100質量部に対して0.01~10質量部が好ましく、0.1~5質量部であることがより好ましい。
[3]縮合反応硬化型熱伝導性シリコーン組成物
 また、本組成物が縮合反応により硬化する縮合反応硬化型熱伝導性シリコーン組成物である場合には、上記ベースポリマーであるオルガノポリシロキサン(A)成分として下記に示す(A-III)成分を用い、上記熱伝導性充填材(B)を配合し、更に下記に示す成分を含有するものであることが好ましい。
(A-III)下記一般式(4)
Figure JPOXMLDOC01-appb-C000006
(式中、R6は互いに同一又は異種の非置換又はハロゲン原子置換もしくはシアノ基置換の炭素原子数1~5のアルキル基又は炭素原子数6~8のアリール基である。eは1以上の整数である。)
で示され、両末端が水酸基で封鎖されたオルガノポリシロキサン、
(B)上記熱伝導性充填材、
(H)下記一般式(5)
  R7 f-SiX(4-f)     (5)
(式中、R7は非置換又はハロゲン原子置換もしくはシアノ基置換の、炭素原子数1~3のアルキル基、ビニル基又はフェニル基であり、Xは加水分解性基であり、fは0又は1である。)
で示されるシラン化合物、その(部分)加水分解物及び(部分)加水分解縮合物から選ばれる1種以上、
(I)縮合反応用硬化触媒として、アルキル錫エステル化合物、チタン酸エステル、チタンキレート化合物、有機亜鉛化合物、有機鉄化合物、有機コバルト化合物、有機マンガン化合物、有機アルミニウム化合物、ヘキシルアミン、リン酸ドデシルアミン、第4級アンモニウム塩、アルカリ金属の低級脂肪酸塩、ジアルキルヒドロキシルアミン、ならびにグアニジル基を含有するシラン及びシロキサンから選ばれる縮合触媒
 さらに、(C):上記(C-1)及び(C-2)から選ばれる1種以上:(A)成分100質量部に対して10~160質量部を配合してもよい。
[(A-III)両末端水酸基封鎖オルガノポリシロキサン]
 (A-III)成分は、本発明のシリコーン組成物を縮合硬化物とする際の、ベースポリマーとして使用され、下記一般式(4)で示され、25℃における動粘度が10~100,000mm2/sである両末端が水酸基で封鎖されたオルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000007
(式中、R6は互いに同一又は異種の非置換又はハロゲン原子置換もしくはシアノ基置換の炭素原子数1~5のアルキル基又は炭素原子数6~8のアリール基である。eは1以上の整数である。)
 上記式(4)中、R6として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等の炭素原子数1~7のアルキル基、フェニル基、トリル基等の炭素原子数6~8のアリール基、これらアルキル基又はアリール基の水素原子の一部又は全部が塩素原子、フッ素原子、臭素原子等のハロゲン原子、シアノ基で置換されたクロロメチル基、3-クロロプロピル基、トリフルオロメチル基、シアノエチル基等のハロゲン原子置換アルキル基又はアリール基、シアノ基置換アルキル基又はアリール基が挙げられる。これらは1種単独で又は2種以上を適宜組み合わせて用いることができる。eは1以上の整数であり、100~1,000が好ましい。
[(B)熱伝導性充填材]
 付加反応硬化型熱伝導性シリコーン組成物に用いる(B)成分は、上述した熱伝導性充填材(B)である。(B)成分の配合量は上記で規定された範囲内で適宜選定される。例えば、(A-III)成分100質量部に対して1,000~8,000質量部、3,000~6,000質量部の範囲で適宜選定される。
[(H)成分]
 (H)下記一般式(5)
  R7 f-SiX(4-f)     (5)
(式中、R7は非置換又はハロゲン原子置換もしくはシアノ基置換の、炭素原子数1~3のアルキル基、ビニル基又はフェニル基であり、Xは加水分解性基であり、fは0又は1である。)
で示されるシラン化合物、その(部分)加水分解物及び(部分)加水分解縮合物から選ばれる1種以上、
 (H)成分は、本組成物を縮合反応にて硬化する際に架橋剤として作用する。
 上記式(5)中、R7は非置換又はハロゲン原子置換もしくはシアノ基置換の、炭素原子数1~3のメチル基、エチル基、プロピル基等のアルキル基、ビニル基又はフェニル基である。
 Xは加水分解性基であり、アルコキシ基、アルコキシアルコキシ基、アルケニルオキシ基、ケトオキシム基、アシロキシ基、アミノ基、アミド基、アミノキシ基等が例示される。アルコキシ基、アルコキシアルコキシ基としては、ハロゲン原子置換のものであってもよく、例えば、メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基、β-クロロエトキシ基、2,2,2-トリフルオロエトキシ基、δ-クロロブトキシ基、メトキシエトキシ基等が挙げられる。アルケニルオキシ基としては、例えば、イソプロペノキシ基等が挙げられる。ケトオキシム基としては、例えば、ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等が挙げられる。アシロキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基等が挙げられる。アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、n-ブチルアミノ基、シクロヘキシルアミノ基等が挙げられる。アミド基としては、例えば、N-メチルアセトアミド基、N-エチルアセトアミド基、N-ブチルアセトアミド基、N-シクロヘキシルアセトアミド基等が挙げられる。アミノキシ基としては、例えば、N,N-ジメチルアミノキシ基、N,N-ジエチルアミノキシ基等が挙げられる。Xとしては、特にアルケニルオキシ基が好ましい。bは0又は1である。
 これらシラン化合物、その(部分)加水分解物あるいは(部分)加水分解縮合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、ビニルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、β-シアノエチルトリメトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、フェニルトリメトキシシラン、テトラ(β-クロロエトキシ)シラン、テトラ(2,2,2-トリフルオロエトキシ)シラン、プロピルトリス(δ-クロロブトキシ)シラン、メチルトリス(メトキシエトキシ)シラン等のアルコキシシラン類、エチルポリシリケート、ジメチルテトラメトキシジシロキサン等のアルコキシシロキサン類、メチルトリス(メチルエチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シラン、フェニルトリス(メチルエチルケトオキシム)シラン、メチルトリス(ジエチルケトオキシム)シラン、テトラ(メチルエチルケトオキシム)シラン等のケトオキシムシラン類、メチルトリス(シクロヘキシルアミノ)シラン、ビニルトリス(n-ブチルアミノ)シラン等のアミノシラン類、メチルトリス(N-メチルアセトアミド)シラン、メチルトリス(N-ブチルアセトアミド)シラン、メチルトリス(N-シクロヘキシルアセトアミド)シラン等のアミドシラン類、メチルトリス(N,N-ジエチルアミノキシ)シラン等のアミノキシシラン類、メチルトリ(イソプロペノキシ)シラン、ビニルトリ(イソプロペノキシ)シラン、フェニルトリ(イソプロペノキシ)シラン等のアルケニルオキシシラン類、メチルトリアセトキシシラン、ビニルトリアセトキシシラン等のアシロキシシラン類等、これらシラン類の(部分)加水分解物及び(部分)加水分解縮合物が挙げられる。
 (H)成分の配合量は、(A-III)成分100質量部に対して1~40質量部が好ましく、2~30質量部がより好ましい。
[(I)縮合反応用硬化触媒]
 (I)成分は、アルキル錫エステル化合物、チタン酸エステル、チタンキレート化合物、有機亜鉛化合物、有機鉄化合物、有機コバルト化合物、有機マンガン化合物、有機アルミニウム化合物、ヘキシルアミン、リン酸ドデシルアミン、第4級アンモニウム塩、アルカリ金属の低級脂肪酸塩、ジアルキルヒドロキシルアミン、ならびにグアニジル基を含有するシラン及びシロキサンから選ばれる縮合反応用硬化触媒であり、本発明のシリコーン組成物を硬化させるための縮合触媒である。これらは、1種単独で又は2種以上を適宜組み合わせて用いることができる。
 具体的には、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート等のアルキル錫エステル化合物;テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナ)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル;ジイソプロポキシビス(エチルアセトアセテート)チタン、ジイソプロポキシビス(メチルアセトアセテート)チタン、ジイソプロポキシビス(アセチルアセトネート)チタン、ジブトキシビス(エチルアセトアセトネート)チタン、ジメトキシビス(エチルアセトアセトネート)チタン等のチタンキレート化合物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、アルコキシアルミニウム化合物等の有機金属(亜鉛、鉄、コバルト、マンガン、アルミニウム)化合物;3-アミノプロピルトリエトキシシラン;ヘキシルアミン;リン酸ドデシルアミン;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;酢酸カリウム、酢酸ナトリウム、蓚酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン等が例示される。中でも、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン等が好適に用いられる。
 (I)成分の配合量は、(A-III)成分100質量部に対して0.01~20質量部が好ましく、0.1~5質量部がより好ましい。
[製造方法]
 本発明の熱伝導性シリコーン組成物には、更に、内添離型剤、着色材、酸化防止剤等のその他の成分を本発明の目的を損なわない範囲で配合することができる。本発明の熱伝導性シリコーン組成物は、上記各成分の所定量を混合することにより調製できる。
 より具体的には、
(A)オルガノポリシロキサン:100質量部、
(B-I)平均粒径50μm以上70μm未満の窒化アルミニウム:1,100~1,400質量部、
(B-II)平均粒径70~90μmの窒化アルミニウム:900~1,200質量部、
(B-III)平均粒径5~15μmの酸化アルミニウム:650~800質量部、及び
(B-IV)平均粒径0.5μm以上5μm未満の酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部
を混合する工程を含む熱伝導性シリコーン組成物の製造方法が挙げられる。
 さらに、(A)オルガノポリシロキサン:100質量部と、(B-I)平均粒径50μm以上70μm未満の非焼結の破砕状窒化アルミニウム:1,100~1,400質量部と、(B-II)平均粒径70~90μmの非焼結の破砕状窒化アルミニウム又は平均粒径70~90μmの焼結の球状窒化アルミニウム:900~1,200質量部と、(B-III)平均粒径5~15μmの球状酸化アルミニウム:650~800質量部と、(B-IV)平均粒径0.5μm以上5μm未満の破砕状酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部とを混合する工程を含む熱伝導性シリコーン組成物の製造方法が挙げられる。
 (B-II)成分としては、平均粒径70~90μmの非焼結の破砕状窒化アルミニウムが好ましく、(B-IV)成分としては、平均粒径0.5μm以上5μm未満の破砕状酸化アルミニウムが好ましい。この場合(B-IV)成分の配合量は、1,500~1,700質量部がより好ましい。
 また、上述した硬化性シリコーン組成物とした場合、その硬化条件としては、付加反応硬化型熱伝導性シリコーン組成物の場合、100~140℃、特に110~130℃で5~30分間、特に10~20分間とすることができる。また、縮合反応硬化型熱伝導性シリコーン組成物の場合、40℃以下、特に0~40℃にて0.5~30日間、特に1~15日間とすることができる。更に、有機過酸化物硬化型熱伝導性シリコーン組成物の場合、110~190℃、特に120~170℃で5~30分間、特に10~20分間とすることができる。
[硬化物]
 熱伝導性シリコーン組成物の硬化物は以下の性質を有することが好ましい。
[1]熱伝導率
 熱伝導性シリコーン組成物の硬化物の熱伝導率は、8W/mK以上が好ましく、より好ましくは9W/mK以上である。8W/mKよりも熱伝導率が低い場合は、平均粒径が50μm未満の窒化アルミニウム用いた場合でも達成できる。上限は特に限定されず、高くてもよいが、例えば、15W/mK以下とすることもできる。なお、熱伝導率はTPA-501(京都電子製)を用いて測定する。
[2]硬度
 熱伝導性シリコーン組成物の硬化物の硬度は、アスカーC硬度で50以下が好ましく、より好ましくは40以下5以上である。アスカーC硬度で50を超えると、実装する際に発熱部品に応力が掛かってしまうし、発熱部品や冷却部品の微細な凸凹に追従せず、接触熱抵抗の悪化を招くおそれがある。
[絶縁破壊電圧]
 熱伝導性シリコーン組成物の硬化物の1mm厚の絶縁破壊電圧は6kV以上が好ましい。6kV以上とすることで、より絶縁性を得ることができる。上限は特に限定されないが、25kV以下とすることもできる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 下記実施例及び比較例に用いられている(A)~(F)成分を下記に示す。
(A)成分:下記式で表されるオルガノポリシロキサン(比重:1.0)
Figure JPOXMLDOC01-appb-C000008
(A-1)粘度:100mm2/s
(A-2)粘度:500mm2/s
(式中、Viはビニル基であり、gは上記粘度になる値である。)
(B)成分:熱伝導性充填材
(B-1)平均粒径:60μm:非焼結の破砕状窒化アルミニウム(比重:3.26):(B-I)
(B-2)平均粒径:80μm:非焼結の破砕状窒化アルミニウム(比重:3.26):(B-II)
(B-3)平均粒径:10μm:球状酸化アルミニウム(比重:3.98):(B-III)
(B-4)平均粒径:1μm:破砕状酸化アルミニウム(比重:3.98):(B-IV)
(B-5)平均粒径:80μm:焼結の球状窒化アルミニウム(比重:3.26):(B-II)
(B-6)平均粒径:40μm:非焼結の球状窒化アルミニウム(比重:3.26)
(B-7)平均粒径:80μm:球状酸化アルミニウム(比重:3.98)
(B-8)平均粒径:1μm:水酸化アルミニウム(比重:2.42):(B-IV)
(C)成分:下記式で表される片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン(比重:1.0)
Figure JPOXMLDOC01-appb-C000009
(D)成分:下記式で示される平均重合度が下記の通りであるメチルハイドロジェンポリシロキサン(比重:1.0)
Figure JPOXMLDOC01-appb-C000010
(平均重合度:h=27、i=3)
(E)成分:白金族金属系硬化触媒(比重:1.0)
 5質量%塩化白金酸2-エチルヘキサノール溶液
(F)成分:付加反応制御剤(比重:1.0)
 エチニルメチリデンカルビノール。
(G)成分:過酸化物系硬化剤
 オルトメチルベンゾイルパーオキサイド(C-23N(信越化学工業製))(比重:1.0)
[実施例1~6、比較例1~4]
 上記成分を用い、下記に示す方法で組成物を調製し、該組成物を用いて熱伝導性成型物を得た。これらを用いて下記に示す方法により評価した。結果を表1,2に示す。
[シリコーン組成物の調製]
 (A)~(C)成分を所定の量を加え、プラネタリーミキサーで60分間混練した。そこにさらに(D)~(G)成分を添加しさらに30分間混練し、熱伝導性シリコーン組成物を得た。
[成形方法]
 得られた組成物を金型に流し込みプレス成形機を用い120℃、10分間で成形した。
[評価方法]
熱伝導率:
 得られた組成物を6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(TPA-501、京都電子工業株式会社製の商品名)を用いて、該シートの熱伝導率を測定した。
硬度:
 得られた組成物を6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
絶縁破壊電圧:
 得られた組成物を1mm厚のシート上に硬化させ、JIS K 6249に基づき、絶縁破壊電圧を測定した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 比較例1のように熱伝導性充填材中の窒化アルミニウムの割合が48体積%であったとしても、組成物中の熱伝導性充填材の割合が57.8体積%であると、硬化物の熱伝導率が十分得られない。また、比較例2のように熱伝導性充填材中の窒化アルミニウムの割合が38体積%であると、熱伝導性充填材の占める体積%を82.9%としても、窒化アルミニウムを用いた場合に比べて熱伝導率が小さくなってしまう。比較例4のように用いる平均粒径が40μmの窒化アルミニウムを用いると、熱伝導性シリコーン組成物の調製自体が困難になった。一方、実施例のように用いる窒化アルミニウムの平均粒径を50μm以上とし、熱伝導性充填材の占める体積%、熱伝導性充填材の内の窒化アルミニウムが占める体積%を適切にすると、十分な絶縁性を有しつつも、高い熱伝導率を有する熱伝導性シリコーン組成物の硬化物を与える。

Claims (12)

  1.  (A)オルガノポリシロキサンをベースポリマーとし、(B)熱伝導性充填材を含む熱伝導性シリコーン組成物であって、(B)熱伝導性充填材が熱伝導性シリコーン組成物中60~85体積%であり、熱伝導性充填材中40~60体積%が平均粒径50μm以上の窒化アルミニウムである熱伝導性シリコーン組成物。
  2.  窒化アルミニウムが非焼結の破砕状窒化アルミニウムである請求項1記載の熱伝導性シリコーン組成物。
  3.  熱伝導性充填材としての窒化アルミニウムの総量1に対して、平均粒径50μm以上70μm未満の窒化アルミニウムの体積比が0.5~0.6であり、平均粒径70~90μmの窒化アルミニウムの体積比が0.4~0.5である請求項1又は2記載の熱伝導性シリコーン組成物。
  4.  熱伝導性充填材中25~45体積%が、平均粒径5μm以下の熱伝導性充填材である請求項1~3のいずれか1項記載の熱伝導性シリコーン組成物。
  5.  平均粒径5μm以下の熱伝導性充填材が、非球状酸化アルミニウムである請求項4記載の熱伝導性シリコーン組成物。
  6.  (A)オルガノポリシロキサン:100質量部、
    (B-I)平均粒径50μm以上70μm未満の窒化アルミニウム:1,100~1,400質量部、
    (B-II)平均粒径70~90μmの窒化アルミニウム:900~1,200質量部、
    (B-III)平均粒径5~15μmの酸化アルミニウム:650~800質量部、及び
    (B-IV)平均粒径0.5μm以上5μm未満の酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部
    を含む請求項1記載の熱伝導性シリコーン組成物。
  7.  (B-I)成分が、平均粒径50μm以上70μm未満の非焼結の破砕状窒化アルミニウムであり、(B-II)成分が、平均粒径70~90μmの非焼結の破砕状窒化アルミニウム又は平均粒径70~90μmの焼結の球状窒化アルミニウムであり、(B-III)成分が、平均粒径5~15μmの球状酸化アルミニウムであり、(B-IV)成分が、平均粒径0.5μm以上5μm未満の破砕状酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウムである請求項6記載の熱伝導性シリコーン組成物。
  8.  さらに、(C):下記(C-1)及び(C-2)から選ばれる1種以上:(A)成分100質量部に対して10~160質量部を含む請求項1~7のいずれか1項記載の熱伝導性シリコーン組成物。
     (C-1)下記一般式(1)で表されるアルコキシシラン化合物
     R1 a2 bSi(OR34-a-b    (1)
    (式中、R1は独立に炭素原子数6~15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1~8の1価炭化水素基であり、R3は独立に炭素原子数1~6のアルキル基であり、aは1~3の整数、bは0~2の整数であり、但しa+bは1~3の整数である。)
    (C-2)成分下記一般式(2)で表される分子鎖片末端がトリアルコキシ基で封鎖されたジメチルポリシロキサン
    Figure JPOXMLDOC01-appb-C000001
    (式中、R4は独立に炭素原子数1~6のアルキル基であり、cは5~100の整数である。)
  9.  熱伝導率が8W/mK以上である請求項1~8のいずれか1項記載の熱伝導性シリコーン組成物の硬化物。
  10.  硬度がアスカーC硬度で50以下である請求項9記載の熱伝導性シリコーン組成物の硬化物。
  11.  1mm厚の絶縁破壊電圧が6kV以上である請求項9又は10記載の熱伝導性シリコーン組成物の硬化物。
  12.  (A)オルガノポリシロキサン:100質量部、
    (B-I)平均粒径50μm以上70μm未満の窒化アルミニウム:1,100~1,400質量部、
    (B-II)平均粒径70~90μmの窒化アルミニウム:900~1,200質量部、
    (B-III)平均粒径5~15μmの酸化アルミニウム:650~800質量部、及び
    (B-IV)平均粒径0.5μm以上5μm未満の酸化アルミニウム又は平均粒径0.5μm以上5μm未満の水酸化アルミニウム:1,300~1,700質量部
    を混合する工程を含む、請求項1又は6記載の熱伝導性シリコーン組成物を製造する方法。
PCT/JP2017/036305 2016-10-18 2017-10-05 熱伝導性シリコーン組成物 WO2018074247A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197013932A KR102384193B1 (ko) 2016-10-18 2017-10-05 열전도성 실리콘 조성물
JP2018546243A JP6947186B2 (ja) 2016-10-18 2017-10-05 熱伝導性シリコーン組成物
US16/342,785 US11248154B2 (en) 2016-10-18 2017-10-05 Thermoconductive silicone composition
CN201780064047.6A CN109844030B (zh) 2016-10-18 2017-10-05 导热性有机硅组合物
EP17862226.2A EP3530702B1 (en) 2016-10-18 2017-10-05 Thermoconductive silicone composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-204276 2016-10-18
JP2016204276 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074247A1 true WO2018074247A1 (ja) 2018-04-26

Family

ID=62018611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036305 WO2018074247A1 (ja) 2016-10-18 2017-10-05 熱伝導性シリコーン組成物

Country Status (7)

Country Link
US (1) US11248154B2 (ja)
EP (1) EP3530702B1 (ja)
JP (1) JP6947186B2 (ja)
KR (1) KR102384193B1 (ja)
CN (1) CN109844030B (ja)
TW (1) TWI753029B (ja)
WO (1) WO2018074247A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018074247A1 (ja) * 2016-10-18 2019-01-17 信越化学工業株式会社 熱伝導性シリコーン組成物
JP6692512B1 (ja) * 2018-12-25 2020-05-13 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
JP2020073626A (ja) * 2019-08-01 2020-05-14 昭和電工株式会社 無機粒子分散樹脂組成物及び無機粒子分散樹脂組成物の製造方法
WO2020116057A1 (ja) * 2018-12-04 2020-06-11 信越化学工業株式会社 熱伝導性シリコーン組成物の硬化物
WO2020129335A1 (ja) * 2018-12-21 2020-06-25 富士高分子工業株式会社 熱伝導性シリコーンゴム組成物とそのシート及びその製造方法
WO2020137086A1 (ja) 2018-12-25 2020-07-02 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
WO2020137970A1 (ja) * 2018-12-28 2020-07-02 信越化学工業株式会社 シリコーン組成物及びその製造方法
WO2020261647A1 (ja) 2019-06-24 2020-12-30 富士高分子工業株式会社 耐熱性熱伝導性組成物及び耐熱性熱伝導性シート
JP2021176945A (ja) * 2020-05-08 2021-11-11 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2021256391A1 (ja) * 2020-06-18 2021-12-23 信越化学工業株式会社 シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
US20220081531A1 (en) * 2019-01-25 2022-03-17 Denka Company Limited Filler composition, silicone resin composition and heat dissipation element
WO2022075434A1 (ja) * 2020-10-09 2022-04-14 ダウ・東レ株式会社 熱伝導性シリコーン組成物および熱伝導性部材
WO2022249754A1 (ja) * 2021-05-26 2022-12-01 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2023080234A1 (ja) * 2021-11-05 2023-05-11 積水ポリマテック株式会社 熱伝導性シート
WO2024150726A1 (ja) * 2023-01-13 2024-07-18 信越化学工業株式会社 熱軟化性熱伝導性部材
WO2024195569A1 (ja) * 2023-03-22 2024-09-26 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805334B (zh) * 2018-11-07 2023-08-04 陶氏环球技术有限责任公司 导热组合物以及使用所述组合物的方法和装置
JP7136065B2 (ja) * 2019-11-14 2022-09-13 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シリコーンシート
EP4069781A4 (en) * 2019-12-05 2023-08-23 Dow Silicones Corporation HIGH HEAT CONDUCTIVE, FLOWABLE SILICONE COMPOSITION
KR102403680B1 (ko) * 2020-07-13 2022-05-31 한국세라믹기술원 다양한 크기의 세라믹 비드를 포함하는 폴리실록산 복합체 및 이의 제조방법
US20230374363A1 (en) * 2020-10-05 2023-11-23 Denka Company Limited Thermally conductive resin composition and electronic device
CN113004793B (zh) 2021-03-25 2022-03-29 江西蓝星星火有机硅有限公司 一种导热相变材料及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086213A (ja) * 1998-09-16 2000-03-28 Toyo Alum Kk 窒化アルミニウム系粉末
JP2001028414A (ja) * 1999-07-14 2001-01-30 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2002299533A (ja) * 2001-03-29 2002-10-11 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2009179771A (ja) * 2008-02-01 2009-08-13 Panasonic Corp 熱伝導性樹脂ペーストおよびそれを用いた光ディスク装置
JP2011249682A (ja) * 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp 熱伝導性シート及び半導体装置
WO2013145961A1 (ja) * 2012-03-30 2013-10-03 昭和電工株式会社 硬化性放熱組成物
JP2015090897A (ja) * 2013-11-05 2015-05-11 東京エレクトロン株式会社 熱伝導性シリコーンシート及びその製造方法及びこれを用いたプラズマ処理装置
JP2015201573A (ja) * 2014-04-09 2015-11-12 富士高分子工業株式会社 放熱シート
WO2016190189A1 (ja) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性組成物
WO2017126608A1 (ja) * 2016-01-19 2017-07-27 株式会社トクヤマ 熱伝導性フィラー組成物、その利用および製法
JP2017210518A (ja) * 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP6246986B1 (ja) * 2016-07-22 2017-12-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292225A (en) * 1980-01-04 1981-09-29 Ford Motor Company Highly filled thermally conductive elastomers IV
US5011870A (en) * 1989-02-08 1991-04-30 Dow Corning Corporation Thermally conductive organosiloxane compositions
EP0555184B1 (de) 1992-02-07 1996-07-17 Ciba-Geigy Ag Füllstoff für wärmeleitende Kunststoffe
JP3256587B2 (ja) 1992-02-21 2002-02-12 株式会社東芝 高熱伝導性放熱体およびその製造方法
JPH06164174A (ja) 1992-11-25 1994-06-10 Toshiba Corp 放熱シート
US6255738B1 (en) * 1996-09-30 2001-07-03 Tessera, Inc. Encapsulant for microelectronic devices
US6136758A (en) * 1998-08-17 2000-10-24 Shin-Etsu Chemical Co., Ltd. Aluminum nitride powder and thermally conductive grease composition using the same
JP4357064B2 (ja) 2000-02-17 2009-11-04 電気化学工業株式会社 放熱部材
JP3957596B2 (ja) 2002-09-04 2007-08-15 電気化学工業株式会社 熱伝導性グリース
JP2004296787A (ja) * 2003-03-27 2004-10-21 Nitto Shinko Kk 放熱シート
CN100477016C (zh) * 2003-04-02 2009-04-08 珠海粤科京华电子陶瓷有限公司 高导热绝缘硅脂及其制造方法
US20050049350A1 (en) * 2003-08-25 2005-03-03 Sandeep Tonapi Thin bond-line silicone adhesive composition and method for preparing the same
JP2005228955A (ja) 2004-02-13 2005-08-25 Denki Kagaku Kogyo Kk 放熱部材、その製造方法及び用途
TWI385246B (zh) * 2004-05-21 2013-02-11 Shinetsu Chemical Co 聚矽氧烷潤滑油組成物
JP4933094B2 (ja) * 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5233325B2 (ja) * 2008-02-29 2013-07-10 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP4993135B2 (ja) * 2008-07-08 2012-08-08 信越化学工業株式会社 熱伝導性シリコーン組成物
JP5651676B2 (ja) * 2009-03-16 2015-01-14 ダウ コーニング コーポレーションDow Corning Corporation 熱伝導性グリース、並びに、該グリースを用いる方法及びデバイス
JP5574532B2 (ja) 2009-10-08 2014-08-20 信越化学工業株式会社 熱伝導性シリコーンゴム複合シート
JP6087518B2 (ja) * 2012-05-14 2017-03-01 信越化学工業株式会社 熱伝導性シート供給体及び熱伝導性シートの供給方法
KR102192489B1 (ko) * 2013-02-11 2020-12-17 다우 실리콘즈 코포레이션 열 전도성 열 라디칼 경화 실리콘 조성물을 형성하는 원 위치 방법
CN105264039B (zh) * 2013-12-11 2019-05-07 富士高分子工业株式会社 蓄热性组合物
JP6375140B2 (ja) * 2014-04-30 2018-08-15 日東電工株式会社 熱伝導性ポリマー組成物及び熱伝導性成形体
JP6214094B2 (ja) * 2014-06-10 2017-10-18 信越化学工業株式会社 熱伝導性シート
JP6202475B2 (ja) 2014-06-27 2017-09-27 信越化学工業株式会社 熱伝導性複合シリコーンゴムシート
CN104151836A (zh) * 2014-07-25 2014-11-19 深圳新宙邦科技股份有限公司 一种导热硅脂及其制备方法
JP6194861B2 (ja) * 2014-07-28 2017-09-13 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シリコーン成型物
CN104610864B (zh) * 2015-01-13 2018-03-09 航天材料及工艺研究所 一种适用于多种基材的绝缘高辐射散热涂层的制备方法
WO2016204064A1 (ja) * 2015-06-15 2016-12-22 株式会社ラヴォックス 機器の放熱方法
TWI744361B (zh) * 2016-07-22 2021-11-01 日商邁圖高新材料日本合同公司 熱傳導性聚矽氧烷組成物
EP3493254B1 (en) * 2016-07-26 2022-10-26 Shin-Etsu Chemical Co., Ltd. Heat conductive sheet
JP6662458B2 (ja) * 2016-08-05 2020-03-11 信越化学工業株式会社 熱伝導性シリコーンゴム複合シート
EP3530709B1 (en) * 2016-10-14 2022-11-02 Shin-Etsu Chemical Co., Ltd. Thermally conductive composite silicone rubber sheet and method for manufacturing same
WO2018074247A1 (ja) * 2016-10-18 2018-04-26 信越化学工業株式会社 熱伝導性シリコーン組成物
CN111032665A (zh) * 2017-08-10 2020-04-17 信越化学工业株式会社 有机硅化合物及固化性导热性硅酮组合物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086213A (ja) * 1998-09-16 2000-03-28 Toyo Alum Kk 窒化アルミニウム系粉末
JP2001028414A (ja) * 1999-07-14 2001-01-30 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2002299533A (ja) * 2001-03-29 2002-10-11 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2009179771A (ja) * 2008-02-01 2009-08-13 Panasonic Corp 熱伝導性樹脂ペーストおよびそれを用いた光ディスク装置
JP2011249682A (ja) * 2010-05-28 2011-12-08 Sony Chemical & Information Device Corp 熱伝導性シート及び半導体装置
WO2013145961A1 (ja) * 2012-03-30 2013-10-03 昭和電工株式会社 硬化性放熱組成物
JP2015090897A (ja) * 2013-11-05 2015-05-11 東京エレクトロン株式会社 熱伝導性シリコーンシート及びその製造方法及びこれを用いたプラズマ処理装置
JP2015201573A (ja) * 2014-04-09 2015-11-12 富士高分子工業株式会社 放熱シート
WO2016190189A1 (ja) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性組成物
WO2017126608A1 (ja) * 2016-01-19 2017-07-27 株式会社トクヤマ 熱伝導性フィラー組成物、その利用および製法
JP2017210518A (ja) * 2016-05-24 2017-11-30 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP6246986B1 (ja) * 2016-07-22 2017-12-13 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 熱伝導性ポリシロキサン組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3530702A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018074247A1 (ja) * 2016-10-18 2019-01-17 信越化学工業株式会社 熱伝導性シリコーン組成物
CN113166542A (zh) * 2018-12-04 2021-07-23 信越化学工业株式会社 导热性有机硅组合物的固化物
CN113166542B (zh) * 2018-12-04 2022-12-30 信越化学工业株式会社 导热性有机硅组合物的固化物
JP7082563B2 (ja) 2018-12-04 2022-06-08 信越化学工業株式会社 熱伝導性シリコーン組成物の硬化物
WO2020116057A1 (ja) * 2018-12-04 2020-06-11 信越化学工業株式会社 熱伝導性シリコーン組成物の硬化物
JP2020090584A (ja) * 2018-12-04 2020-06-11 信越化学工業株式会社 熱伝導性シリコーン組成物の硬化物
CN112074572A (zh) * 2018-12-21 2020-12-11 富士高分子工业株式会社 导热性硅橡胶组合物和其片材及其制造方法
WO2020129335A1 (ja) * 2018-12-21 2020-06-25 富士高分子工業株式会社 熱伝導性シリコーンゴム組成物とそのシート及びその製造方法
KR20200125685A (ko) 2018-12-25 2020-11-04 후지고분시고오교오가부시끼가이샤 열전도성 조성물 및 이것을 사용한 열전도성 시트
CN112041411A (zh) * 2018-12-25 2020-12-04 富士高分子工业株式会社 导热性组合物及使用了其的导热性片材
JP6692512B1 (ja) * 2018-12-25 2020-05-13 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
WO2020137086A1 (ja) 2018-12-25 2020-07-02 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
US11781053B2 (en) 2018-12-25 2023-10-10 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and thermally conductive sheet using the same
JP7205554B2 (ja) 2018-12-28 2023-01-17 信越化学工業株式会社 シリコーン組成物及びその製造方法
WO2020137970A1 (ja) * 2018-12-28 2020-07-02 信越化学工業株式会社 シリコーン組成物及びその製造方法
JPWO2020137970A1 (ja) * 2018-12-28 2021-11-04 信越化学工業株式会社 シリコーン組成物及びその製造方法
US20220081531A1 (en) * 2019-01-25 2022-03-17 Denka Company Limited Filler composition, silicone resin composition and heat dissipation element
WO2020261647A1 (ja) 2019-06-24 2020-12-30 富士高分子工業株式会社 耐熱性熱伝導性組成物及び耐熱性熱伝導性シート
KR20210009370A (ko) 2019-06-24 2021-01-26 후지고분시고오교오가부시끼가이샤 내열성 열전도성 조성물 및 내열성 열전도성 시트
JP7395111B2 (ja) 2019-08-01 2023-12-11 株式会社レゾナック 無機粒子分散樹脂組成物及び無機粒子分散樹脂組成物の製造方法
JP2020073626A (ja) * 2019-08-01 2020-05-14 昭和電工株式会社 無機粒子分散樹脂組成物及び無機粒子分散樹脂組成物の製造方法
JP2021176945A (ja) * 2020-05-08 2021-11-11 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
JP7285231B2 (ja) 2020-05-08 2023-06-01 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2021256391A1 (ja) * 2020-06-18 2021-12-23 信越化学工業株式会社 シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
JP7303159B2 (ja) 2020-06-18 2023-07-04 信越化学工業株式会社 シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
JP2021195499A (ja) * 2020-06-18 2021-12-27 信越化学工業株式会社 シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物
WO2022075434A1 (ja) * 2020-10-09 2022-04-14 ダウ・東レ株式会社 熱伝導性シリコーン組成物および熱伝導性部材
WO2022249754A1 (ja) * 2021-05-26 2022-12-01 信越化学工業株式会社 熱伝導性シリコーン組成物
JP7530864B2 (ja) 2021-05-26 2024-08-08 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2023080234A1 (ja) * 2021-11-05 2023-05-11 積水ポリマテック株式会社 熱伝導性シート
WO2024150726A1 (ja) * 2023-01-13 2024-07-18 信越化学工業株式会社 熱軟化性熱伝導性部材
WO2024195569A1 (ja) * 2023-03-22 2024-09-26 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法

Also Published As

Publication number Publication date
KR102384193B1 (ko) 2022-04-07
EP3530702B1 (en) 2024-02-21
KR20190069495A (ko) 2019-06-19
JPWO2018074247A1 (ja) 2019-01-17
TWI753029B (zh) 2022-01-21
JP6947186B2 (ja) 2021-10-13
CN109844030B (zh) 2022-04-26
EP3530702A4 (en) 2020-05-20
US11248154B2 (en) 2022-02-15
TW201823362A (zh) 2018-07-01
US20190256756A1 (en) 2019-08-22
CN109844030A (zh) 2019-06-04
EP3530702A1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6947186B2 (ja) 熱伝導性シリコーン組成物
JP6610429B2 (ja) 熱伝導性シリコーン組成物、その硬化物及びその製造方法
JP4727017B2 (ja) 熱伝導性シリコーンゴム組成物
JP4646357B2 (ja) 熱伝導性シリコーンゴム組成物
JP6075261B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
CN113166542B (zh) 导热性有机硅组合物的固化物
CN112867765B (zh) 导热性有机硅组合物及其固化物
JP6137037B2 (ja) 熱伝導性シリコーン組成物
TW202200710A (zh) 矽酮組成物及具有高熱傳導性的熱傳導性矽酮硬化物
KR20240047480A (ko) 열전도성 실리콘 조성물 및 상기 조성물을 사용하여 갭 충전제를 제조하는 방법
TWI860145B (zh) 聚矽氧烷組合物及其用途
JP2023049417A (ja) 熱伝導性シリコーン組成物の製造方法
TW202419576A (zh) 聚矽氧烷組合物及其用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018546243

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197013932

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017862226

Country of ref document: EP

Effective date: 20190520