[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018059967A1 - Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle - Google Patents

Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle Download PDF

Info

Publication number
WO2018059967A1
WO2018059967A1 PCT/EP2017/073254 EP2017073254W WO2018059967A1 WO 2018059967 A1 WO2018059967 A1 WO 2018059967A1 EP 2017073254 W EP2017073254 W EP 2017073254W WO 2018059967 A1 WO2018059967 A1 WO 2018059967A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
grooves
battery cell
anode
cathodic
Prior art date
Application number
PCT/EP2017/073254
Other languages
English (en)
French (fr)
Inventor
Thomas Juestel
Thomas Kretschmar
Johannes Proell
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US16/336,143 priority Critical patent/US10985427B2/en
Priority to KR1020197011819A priority patent/KR102411957B1/ko
Priority to JP2019516385A priority patent/JP6788106B2/ja
Priority to CN201780059203.XA priority patent/CN109792071B/zh
Publication of WO2018059967A1 publication Critical patent/WO2018059967A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing an electrode stack for a battery cell by cutting band-shaped elements
  • the invention also relates to a battery cell having an electrode stack, which is produced by the method according to the invention.
  • Electrical energy can be stored by means of batteries. Batteries convert chemical reaction energy into electrical energy. Here are batteries.
  • Primary batteries and secondary batteries distinguished. Primary batteries are only functional once, while secondary batteries, also referred to as accumulators, are rechargeable. In particular, so-called lithium-ion battery cells are used in an accumulator. These are characterized among other things by high energy densities, thermal stability and extremely low self-discharge.
  • Lithium-ion battery cells have a positive electrode, also referred to as a cathode, and a negative electrode, also referred to as an anode.
  • the cathode and the anode each include one
  • the electrodes of the battery cell are formed like a film and with the interposition of a
  • Separator which separates the anode from the cathode, for example, stacked into an electrode stack.
  • the electrodes can also become one
  • the battery cell further comprises a cell housing, which is made of aluminum, for example.
  • the cell housing is usually prismatic, in particular cuboid, designed and pressure-resistant. But other forms of housing, such as circular cylindrical, or flexible pouch cells are known.
  • the electrode stack has proven to be the most suitable design of an electrode unit for maximizing the useful volume, since it can be produced both prismatically and in any other geometry.
  • lithium-ion battery cells it can be used to metallize the for
  • a battery with an electrode unit which comprises a negative electrode foil and a positive electrode foil.
  • the negative electrode film has a greater width than the positive
  • US 2011/0039140 discloses a battery having an electrode unit comprising a negative electrode and a positive electrode.
  • the positive electrode has a current collector coated on both sides with active material. In the active material grooves are introduced.
  • CN 203932198 a lithium-ion battery is disclosed which has a
  • Electrode unit with electrode films.
  • One of the electrode films has a current collector coated with active material. In the active material grooves are introduced by means of a laser.
  • a belt-shaped anode element which comprises an anodic current collector on which an anodic active material is applied. Also provided is a belt-shaped cathode element comprising a cathodic current collector on which a cathodic active material is applied. Furthermore, at least one band-shaped separator element is provided.
  • Separator element are present flat and band-shaped. This means in this context that an expansion of said elements in a longitudinal direction is much greater, in particular at least ten times greater, than an extension of said elements in a transverse direction, which is oriented at right angles to the longitudinal direction.
  • the grooves are preferably introduced into the cathodic active material such that the
  • Segmentation lines are centered in the grooves.
  • the grooves preferably pass completely through the cathodic active material and thus preferably extend as far as the cathodic current conductor.
  • Cathode element produced on the anode element with the interposition of the at least one separator The cathode element, the at least one separator element and the anode element are preferably connected to one another, in particular laminated. Subsequently, the composite element is cut into plate-shaped composite segments on the segmentation lines of the cathodic
  • the composite segments thus produced each comprise a cathode segment, an anode segment and at least one separator segment, which are preferably connected to one another.
  • the composite segments as well as the cathode segments, the anode segments and the Separatorsegmente are present flat and plate-shaped.
  • this means that an extension of the said segments in the longitudinal direction is approximately the same size, in particular at least half as large and at most twice as large, as an extension of the said segments in the transverse direction.
  • the anode element has a width in the transverse direction, which is greater than a width of the cathode element in the transverse direction.
  • the anode member within the composite member projects transversely across the cathode member.
  • the anode segments within the composite segments also protrude transversely across the cathode segments.
  • the segmentation lines and the grooves introduced into the cathodic active material extend in the transverse direction and thus perpendicular to the longitudinal direction.
  • the cathodic active material is applied to both sides of the cathodic current collector.
  • the grooves are preferably introduced into the cathodic active material on both sides.
  • the anodic active material is preferably applied to both sides of the anodic current collector.
  • a plurality of the grooves are introduced into the cathodic active material by means of a laser.
  • a plurality of the grooves preferably all grooves, an at least approximately U-shaped cross-section.
  • a plurality of the grooves preferably all grooves, an at least approximately triangular cross section.
  • a plurality of the grooves preferably all grooves, an at least approximately rectangular cross-section.
  • Electrode stack which is produced by the process according to the invention.
  • a battery cell according to the invention advantageously finds use in an electric vehicle (EV), in a hybrid vehicle (H EV), in a plug-in hybrid vehicle (PHEV) or in a consumer electronics product.
  • Consumer electronics products are in particular mobile phones, tablet PCs or notebooks.
  • the method according to the invention produces an electrode stack in which the anode projects beyond the cathode.
  • metallization of lithium in the electrode stack is advantageously prevented or at least reduced.
  • the required process time in stacking the composite segments compared to stacking of individual electrode segments and individual Separatorsegmenten advantageously reduced.
  • the alignment of the composite segments to each other during stacking is less tolerant and thus less susceptible to errors than when stacking individual anode segments, individual cathode segments and individual Separatorsegmenten.
  • the costs for producing an electrode stack are advantageously reduced.
  • the grooves may have an approximately arbitrary cross-section, with certain cross-sectional shapes depending on the manufacturing process prove to be particularly advantageous.
  • the active material is removed locally from the current conductor. This removal of the active material can be done in several ways, for example mechanically. Preferably, however, the removal of the active material takes place by means of a laser, whereby the
  • Process time for the preparation of the electrode stack is advantageously reduced, and whereby the costs for producing an electrode stack are further reduced.
  • FIG. 1 shows a schematic illustration of a battery cell
  • Figure 2 is a schematic representation of an anode element and a
  • FIG. 3a shows a schematic sectional view of the cathode element along the section line A-A in FIG. 2 according to a first embodiment
  • FIG. 3b shows a schematic sectional view of the cathode element along the section line AA in FIG. 2 according to a second embodiment
  • 3c shows a schematic sectional view of the cathode element along the section line AA in FIG. 2 according to a third embodiment
  • Figure 4 is a schematic sectional view of a composite element
  • Figure 5 is a schematic sectional view of a composite segment.
  • FIG. 1 shows a schematic representation of a battery cell 2
  • Battery cell 2 comprises a housing 3, which is prismatic, in the present cuboid, is formed.
  • the housing 3 is designed to be electrically conductive and manufactured, for example, from aluminum.
  • the battery cell 2 comprises a negative terminal 11 and a positive terminal 12. Via the terminals 11, 12, a voltage provided by the battery cell 2 can be tapped off. Furthermore, the battery cell 2 can also be charged via the terminals 11, 12.
  • an electrode unit is arranged, which is embodied here as an electrode stack 10.
  • the electrode stack 10 has two electrodes, namely an anode 21 and a cathode 22.
  • the anode 21 and the cathode 22 are each designed like a film and separated by a separator 18 from each other.
  • the separator 18 is ionically conductive, that is permeable to lithium ions.
  • the anode 21 comprises an anodic active material 41 and an anodic current conductor 31.
  • the anodic current conductor 31 is made electrically conductive and made of a metal, for example of copper. Of the Anodic current collector 31 is electrically connected to the negative terminal 11 of the battery cell 2.
  • the cathode 22 comprises a cathodic active material 42 and a
  • the cathodic current collector 32 is made electrically conductive and made of a metal, for example
  • FIG. 1 shows a schematic representation of an anode element 45 and a
  • Cathode element 46 The anode element 45 and the cathode element 46 are formed flat and band-shaped. An extension of the anode element 45 and the cathode element 46 in a longitudinal direction x is much larger, in particular at least ten times larger, than an extension of the
  • the anode member 45 and the cathode member 46 are each wound on a roll.
  • the anode element 45 comprises an anodic current conductor 31, on which an anodic active material 41 is applied.
  • the anodic active material 41 is applied on both sides to the anodic current conductor 31.
  • Anode element 45 has a width dl in the transverse direction y.
  • the cathode element 46 comprises a cathodic current collector 32 on which a cathodic active material 42 is applied.
  • Active material 42 is on both sides of the cathodic current collector 32nd
  • the cathode element 46 has a width d2 in the transverse direction y, which is smaller than the width dl of the anode element 45.
  • grooves 70 are introduced, which are in
  • Transverse direction y extend.
  • the grooves 70 completely penetrate the cathodic active material 42 and extend as far as the cathodic current conductor 32.
  • the grooves 70 are introduced into the cathodic active material 42 on both sides. Said grooves 70 are introduced into the cathodic active material 42 by means of a laser.
  • the grooves 70 are inserted around segmentation lines S into the cathodic active material 42.
  • the segmentation lines S lie centered in the grooves 70.
  • the segmentation lines S also extend in the transverse direction y and are arranged in the longitudinal direction x at equidistant distances from one another.
  • FIG. 3a shows a schematic sectional view of the cathode element 46 along the section line A-A in FIG. 2 according to a first embodiment.
  • the grooves 70 have an approximately U-shaped cross-section. The outer walls of the grooves 70 initially extend parallel to one another in a region facing away from the cathodic current conductor 32 and go in at
  • Figure 3b shows a schematic sectional view of the cathode element 46 along the section line A-A in Figure 2 according to a second embodiment.
  • the grooves 70 have an at least approximately triangular cross section.
  • the outer walls of the grooves 70 are relatively far apart in a region facing away from the cathodic Stromableiter 32 and extend when approaching the cathodic current collector 32 inclined to each other and to each other.
  • FIG. 3c shows a schematic sectional illustration of the cathode element 46 along the section line A-A in FIG. 2 according to a third embodiment.
  • the grooves 70 have an at least approximately rectangular cross section.
  • the outer walls of the grooves 70 are in a cathodic
  • FIG. 4 shows a schematic sectional representation of a composite element 50, which comprises a cathode element 46 according to the first embodiment, as shown in FIG. 3a.
  • the composite element 50 further comprises an anode element 45 and a first separator 16 and also a second
  • the cathode element 46 is applied to the first separator element 16 and connected to the first separator 16.
  • the anode element 45 is applied and connected to the first separator element 16.
  • the second separator element 16 is applied and connected to the anode element 45.
  • the composite element 50 is formed in this case by applying the
  • Segmentation lines S cut in the grooves 70 in the cathodic active material 42.
  • Figure 5 shows a schematic sectional view of such
  • Composite segment 52 The composite segment 52 thus produced comprises a
  • a first separator segment 17 is arranged between the anode segment 55 and the cathode segment 56.
  • a second separator segment 17 is arranged on the side of the anode segment 55 facing away from the first separator segment 17.
  • the cathode segment 56, the anode segment 55 and the two separator segments 17 are connected to one another.
  • the contact lugs 35 of the anode 21 are electrically connected to each other and to the negative terminal 11 of the battery cell 2.
  • the contact lugs 36 of the cathode 22 are electrically connected to each other and to the positive terminal 12 of the battery cell 2.
  • Connection of the contact lugs with each other and with the terminals 11, 12 is preferably carried out by welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Elektrodenstapelsfür eine Batteriezelle, umfassend die Schritte: Bereitstellen eines bandförmigen Anodenelements (45), umfassend einen anodischen Stromableiter (31), auf welchen ein anodisches Aktivmaterial (41) aufgebracht ist,Bereitstellen eines bandförmigen Kathodenelements (46), umfassend einen kathodischen Stromableiter (32), auf welchen ein kathodisches Aktivmaterial (42) aufgebracht ist,Bereitstellen mindestens eines bandförmigen Separatorelements (16), Einbringen von Nuten (70) in daskathodische Aktivmaterial (42)um Segmentierungslinien (S) herum, Erzeugen eines bandförmigen Verbundelements (50) durch Aufbringen des Kathodenelements (46) auf das Anodenelement (45) unter Zwischenlage des mindestens einen Separatorelements (16),Schneiden des Verbundelements (50) zu plattenförmigen Verbundsegmenten an den Segmentierungslinien (S), und Stapeln von Verbundsegmenten. Die Erfindung betrifft auch eine Batteriezelle, die mindestens einen Elektrodenstapel umfasst, der nach dem erfindungsgemäßen Verfahren hergestellt ist.

Description

Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
Die Erfindung betrifft ein Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle durch Schneiden von bandförmigen Elementen zu
plattenförmigen Segmenten und Stapeln der Segmente. Die Erfindung betrifft auch eine Batteriezelle, die einen Elektrodenstapel aufweist, der nach dem erfindungsgemäßen Verfahren hergestellt ist.
Stand der Technik
Elektrische Energie ist mittels Batterien speicherbar. Batterien wandeln chemische Reaktionsenergie in elektrische Energie um. Hierbei werden
Primärbatterien und Sekundärbatterien unterschieden. Primärbatterien sind nur einmal funktionsfähig, während Sekundärbatterien, die auch als Akkumulator bezeichnet werden, wieder aufladbar sind. In einem Akkumulator finden insbesondere sogenannte Lithium-Ionen-Batteriezellen Verwendung. Diese zeichnen sich unter anderem durch hohe Energiedichten, thermische Stabilität und eine äußerst geringe Selbstentladung aus.
Lithium-Ionen-Batteriezellen weisen eine positive Elektrode, die auch als Kathode bezeichnet wird, und eine negative Elektrode, die auch als Anode bezeichnet wird, auf. Die Kathode sowie die Anode umfassen je einen
Stromableiter, auf den ein Aktivmaterial aufgebracht ist. Die Elektroden der Batteriezelle sind folienartig ausgebildet und unter Zwischenlage eines
Separators, welcher die Anode von der Kathode trennt, beispielsweise zu einem Elektrodenstapel gestapelt. Die Elektroden können auch zu einem
Elektrodenwickel gewunden sein oder auf eine andere Art eine Elektrodeneinheit bilden. Die beiden Elektroden der Elektrodeneinheit sind elektrisch mit Polen der Batteriezelle verbunden, welche auch als Terminals bezeichnet werden. Die Elektroden und der Separator sind von einem in der Regel flüssigen Elektrolyt umgeben. Die Batteriezelle weist ferner ein Zellengehäuse auf, welches beispielsweise aus Aluminium gefertigt ist. Das Zellengehäuse ist in der Regel prismatisch, insbesondere quaderförmig, ausgestaltet und druckfest ausgebildet. Aber auch andere Gehäuseformen, beispielsweise kreiszylindrisch, oder auch flexible Pouchzellen, sind bekannt.
Wesentliche Bestrebung bei der Entwicklung von neuen Batteriezellen ist, das elektrochemische Nutzvolumen in der Zelle zu erhöhen. Als geeignetste Bauform einer Elektrodeneinheit zur Maximierung des Nutzvolumens hat sich der Elektrodenstapel herausgestellt, da dieser sowohl ideal prismatisch als auch in einer beliebigen anderen Geometrie hergestellt werden kann.
Bei Lithium-Ionen-Batteriezellen kann es zum Metallisieren des für den
Ladungstransport vorgesehenen Lithiums kommen. Metallisiertes Lithium steht dann für den Ladungstransport nicht mehr zur Verfügung, und dadurch sinkt die Kapazität der Batteriezelle. Das Metallisieren von Lithium kann verhindert oder zumindest verringert werden, wenn die Anode in dem Elektrodenstapel über die Kathode heraus ragt.
Aus der WO 2015/015274 ist eine Batterie mit einer Elektrodeneinheit bekannt, die eine negative Elektrodenfolie und eine positive Elektrodenfolie umfasst. Die negative Elektrodenfolie weist dabei eine größere Breite auf als die positive
Elektrodenfolie.
Die US 2011/0039140 offenbart eine Batterie mit einer Elektrodeneinheit, die eine negative Elektroden und eine positive Elektrode umfasst. Die positive Elektrode weist einen Stromableiter auf, der beidseitig mit Aktivmaterial beschichtet ist. In das Aktivmaterial sind Nuten eingebracht.
In der CN 203932198 ist eine Lithium-Ionen-Batterie offenbart, die eine
Elektrodeneinheit mit Elektrodenfolien umfasst. Eine der Elektrodenfolien weist einen Stromableiter auf, der mit Aktivmaterial beschichtet ist. In das Aktivmaterial sind mittels eines Lasers Nuten eingebracht.
Offenbarung der Erfindung
Es wird ein Verfahren zur Herstellung eines Elektrodenstapels für eine
Batteriezelle vorgeschlagen. Das Verfahren umfasst dabei mindestens die nachfolgend aufgeführten Schritte. Zunächst wird ein bandförmiges Anodenelement bereitgestellt, das einen anodischen Stromableiter umfasst, auf welchen ein anodisches Aktivmaterial aufgebracht ist. Ebenfalls wird ein bandförmiges Kathodenelement bereitgestellt, das einen kathodischen Stromableiter umfasst, auf welchen ein kathodisches Aktivmaterial aufgebracht ist. Weiterhin wird mindestens ein bandförmiges Separatorelement bereitgestellt.
Das Anodenelement, das Kathodenelement und das mindestens eine
Separatorelement sind vorliegend flach und bandförmig ausgebildet. Das bedeutet in diesem Zusammenhang, dass eine Ausdehnung der besagten Elemente in eine Längsrichtung viel größer, insbesondere mindestens zehnmal größer, ist als eine Ausdehnung der besagten Elemente in eine Querrichtung, welche rechtwinklig zu der Längsrichtung orientiert ist.
Anschließend werden Nuten in das kathodische Aktivmaterial um
Segmentierungslinien herum eingebracht. Bevorzugt werden die Nuten dabei derart in das kathodische Aktivmaterial eingebracht, dass die
Segmentierungslinien zentriert in den Nuten liegen. Die Nuten durchdringen dabei das kathodische Aktivmaterial vorzugsweise vollständig und erstrecken sich somit vorzugsweise bis auf den kathodischen Stromableiter.
Danach wird ein bandförmiges Verbundelement durch Aufbringen des
Kathodenelements auf das Anodenelement unter Zwischenlage des mindestens einen Separatorelements erzeugt. Das Kathodenelement, das mindestens eine Separatorelement und das Anodenelement werden vorzugsweise miteinander verbunden, insbesondere laminiert. Anschließend erfolgt ein Schneiden des Verbundelements zu plattenförmigen Verbundsegmenten an den Segmentierungslinien des kathodischen
Aktivmaterials, um welche herum die Nuten zuvor eingebracht wurden. Diese Operation wird auch als "Vereinzelung" bezeichnet.
Das Kathodenelement, das mindestens eine Separatorelement und das
Anodenelement werden dabei gemeinsam im gleichen Arbeitsgang zu plattenförmigen Segmenten geschnitten. Die so erzeugten Verbundsegmente umfassen jeweils ein Kathodensegment, ein Anodensegment und mindestens ein Separatorsegment, welche vorzugsweise miteinander verbunden sind.
Die Verbundsegmente ebenso wie die Kathodensegmente, die Anodensegmente und die Separatorsegmente sind vorliegend flach und plattenförmig ausgebildet. Das bedeutet in diesem Zusammenhang, dass eine Ausdehnung der besagten Segmente in Längsrichtung annähernd gleich groß, insbesondere mindestens halb so groß und höchstens doppelt so groß, ist wie eine Ausdehnung der besagten Segmente in Querrichtung.
Dann erfolgt ein Stapeln von zuvor erzeugten Verbundsegmenten. Durch das Stapeln einer ausreichenden Anzahl von Verbundsegmenten entsteht der Elektrodenstapel für die Batteriezelle.
Vorteilhaft weist das Anodenelement eine Breite in Querrichtung auf, welche größer ist als eine Breite des Kathodenelements in Querrichtung. Somit ragt das Anodenelement innerhalb des Verbundelements in Querrichtung über das Kathodenelement heraus. Auch ragen somit die Anodensegmente innerhalb der Verbundsegmente in Querrichtung über die Kathodensegmente heraus.
Bevorzugt verlaufen die Segmentierungslinien und die in das kathodische Aktivmaterial eingebrachten Nuten in Querrichtung und somit rechtwinklig zu der Längsrichtung.
Vorzugsweise ist das kathodische Aktivmaterial dabei beidseitig auf den kathodischen Stromableiter aufgebracht. Dabei sind die Nuten vorzugsweise beidseitig in das kathodische Aktivmaterial eingebracht. Ebenso ist vorzugsweise das anodische Aktivmaterial beidseitig auf den anodischen Stromableiter aufgebracht.
Gemäß einer bevorzugten Ausgestaltung des Verfahrens werden mehrere der Nuten, vorzugsweise alle Nuten, mittels eines Lasers in das kathodische Aktivmaterial eingebracht.
Gemäß einer vorteilhaften Ausführungsform der Erfindung weisen mehrere der Nuten, vorzugsweise alle Nuten, einen zumindest annähernd U-förmigen Querschnitt auf.
Gemäß einer anderen vorteilhaften Ausführungsform der Erfindung weisen mehrere der Nuten, vorzugsweise alle Nuten, einen zumindest annähernd dreieckigen Querschnitt auf.
Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung weisen mehrere der Nuten, vorzugsweise alle Nuten, einen zumindest annähernd rechteckigen Querschnitt auf.
Es wird auch eine Batteriezelle vorgeschlagen, die mindestens einen
Elektrodenstapel umfasst, der nach dem erfindungsgemäßen Verfahren hergestellt ist.
Eine erfindungsgemäße Batteriezelle findet vorteilhaft Verwendung in einem Elektrofahrzeug (EV), in einem Hybridfahrzeug (H EV), in einem Plug-In- Hybridfahrzeug (PHEV) oder in einem Consumer-Elektronik-Produkt. Unter Consumer-Elektronik-Produkten sind insbesondere Mobiltelefone, Tablet-PCs oder Notebooks zu verstehen.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren entsteht ein Elektrodenstapel, in welchem die die Anode über die Kathode heraus ragt. Dadurch ist ein Metallisieren von Lithium in dem Elektrodenstapel vorteilhaft verhindert oder zumindest verringert. Auch die erforderliche Prozesszeit beim Stapeln der Verbundsegmente im Vergleich zum Stapeln von einzelnen Elektrodensegmenten und einzelnen Separatorsegmenten vorteilhaft verringert. Ferner ist die Ausrichtung der Verbundsegmente zueinander beim Stapeln weniger toleranzbehaftet und damit weniger fehleranfällig als beim Stapeln von einzelnen Anodensegmenten, einzelnen Kathodensegmenten und einzelnen Separatorsegmenten. Dadurch sind die Kosten zur Herstellung eines Elektrodenstapels vorteilhaft verringert. Die Nuten können einen annähernd beliebigen Querschnitt aufweisen, wobei sich bestimmte Querschnittsformen je nach Herstellverfahren als besonders vorteilhaft erweisen. Durch das Einbringen der Nuten wird das Aktivmaterial lokal von dem Stromableiter entfernt. Dieses Entfernen des Aktivmaterials kann auf mehrere Arten, beispielsweise mechanisch erfolgen Bevorzugt erfolgt das Entfernen des Aktivmaterials jedoch mittels eines Lasers, wodurch die
Prozesszeit zur Herstellung des Elektrodenstapels vorteilhaft verringert ist, und wodurch die Kosten zur Herstellung eines Elektrodenstapels weiter verringert sind.
Kurze Beschreibung der Zeichnungen
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Figur 1 eine schematische Darstellung einer Batteriezelle,
Figur 2 eine schematische Darstellung eines Anodenelements und eines
Kathodenelements,
Figur 3a eine schematische Schnittdarstellung des Kathodenelements entlang der Schnittlinie A-A in Figur 2 gemäß einer ersten Ausführungsform,
Figur 3b eine schematische Schnittdarstellung des Kathodenelements entlang der Schnittlinie A-A in Figur 2 gemäß einer zweiten Ausführungsform, Figur 3c eine schematische Schnittdarstellung des Kathodenelements entlang der Schnittlinie A-A in Figur 2 gemäß einer dritten Ausführungsform,
Figur 4 eine schematische Schnittdarstellung eines Verbundelements und
Figur 5 eine schematische Schnittdarstellung eines Verbundsegments.
Ausführungsformen der Erfindung
In der nachfolgenden Beschreibung der Ausführungsformen der Erfindung werden gleiche oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Elemente in Einzelfällen verzichtet wird. Die Figuren stellen den Gegenstand der Erfindung nur schematisch dar.
Figur 1 zeigt eine schematische Darstellung einer Batteriezelle 2. Die
Batteriezelle 2 umfasst ein Gehäuse 3, welches prismatisch, vorliegend quaderförmig, ausgebildet ist. Das Gehäuse 3 ist vorliegend elektrisch leitend ausgeführt und beispielsweise aus Aluminium gefertigt.
Die Batteriezelle 2 umfasst ein negatives Terminal 11 und ein positives Terminal 12. Über die Terminals 11, 12 kann eine von der Batteriezelle 2 zur Verfügung gestellte Spannung abgegriffen werden. Ferner kann die Batteriezelle 2 über die Terminals 11, 12 auch geladen werden.
Innerhalb des Gehäuses 3 der Batteriezelle 2 ist eine Elektrodeneinheit angeordnet, welche vorliegend als Elektrodenstapel 10 ausgeführt ist. Der Elektrodenstapel 10 weist zwei Elektroden, nämlich eine Anode 21 und eine Kathode 22, auf. Die Anode 21 und die Kathode 22 sind jeweils folienartig ausgeführt und durch einen Separator 18 voneinander separiert. Der Separator 18 ist ionisch leitfähig, also für Lithiumionen durchlässig.
Die Anode 21 umfasst ein anodisches Aktivmaterial 41 und einen anodischen Stromableiter 31. Der anodische Stromableiter 31 ist elektrisch leitfähig ausgeführt und aus einem Metall gefertigt, beispielsweise aus Kupfer. Der anodische Stromableiter 31 ist elektrisch mit dem negativen Terminal 11 der Batteriezelle 2 verbunden.
Die Kathode 22 umfasst ein kathodisches Aktivmaterial 42 und einen
kathodischen Stromableiter 32. Der kathodische Stromableiter 32 ist elektrisch leitfähig ausgeführt und aus einem Metall gefertigt, beispielsweise aus
Aluminium. Der kathodische Stromableiter 32 ist elektrisch mit dem positiven Terminal 12 der Batteriezelle 2 verbunden. Figur 2 zeigt eine schematische Darstellung eines Anodenelements 45 und eines
Kathodenelements 46. Das Anodenelement 45 und das Kathodenelement 46 sind flach und bandförmig ausgebildet. Eine Ausdehnung des Anodenelements 45 und des Kathodenelements 46 in eine Längsrichtung x ist viel größer, insbesondere mindestens zehnmal größer, ist als eine Ausdehnung des
Anodenelements 45 und des Kathodenelements 46 in eine Querrichtung y, welche rechtwinklig zu der Längsrichtung x orientiert ist. Das Anodenelement 45 und das Kathodenelement 46 sind jeweils auf eine Rolle gewickelt.
Das Anodenelement 45 umfasst einen anodischen Stromableiter 31, auf welchen ein anodisches Aktivmaterial 41 aufgebracht ist. Das anodische Aktivmaterial 41 ist beidseitig auf den anodischen Stromableiter 31 aufgebracht. Das
Anodenelement 45 weist in Querrichtung y eine Breite dl auf.
Das Kathodenelement 46 umfasst einen kathodischen Stromableiter 32, auf welchen ein kathodisches Aktivmaterial 42 aufgebracht ist. Das kathodische
Aktivmaterial 42 ist beidseitig auf den kathodischen Stromableiter 32
aufgebracht. Das Kathodenelement 46 weist in Querrichtung y eine Breite d2 auf, welche kleiner ist als die Breite dl des Anodenelements 45. In das kathodische Aktivmaterial 42 sind Nuten 70 eingebracht, welche sich in
Querrichtung y erstrecken. Die Nuten 70 durchdringen dabei das kathodische Aktivmaterial 42 vollständig und erstrecken sich bis auf den kathodischen Stromableiter 32. Die Nuten 70 sind beidseitig in das kathodische Aktivmaterial 42 eingebracht. Die besagten Nuten 70 werden mittels eines Lasers in das kathodische Aktivmaterial 42 eingebracht. Die Nuten 70 sind um Segmentierungslinien S herum in das kathodische Aktivmaterial 42 eingebracht. Die Segmentierungslinien S liegen dabei zentriert in den Nuten 70. Die Segmentierungslinien S erstrecken sich ebenfalls sich in Querrichtung y und sind in Längsrichtung x in äquidistanten Abständen zueinander angeordnet.
Figur 3a zeigt eine schematische Schnittdarstellung des Kathodenelements 46 entlang der Schnittlinie A-A in Figur 2 gemäß einer ersten Ausführungsform. Die Nuten 70 weisen dabei einen annähernd U-förmigen Querschnitt auf. Die Außenwände der Nuten 70 verlaufen in einem dem kathodischen Stromableiter 32 abgewandten Bereich zunächst parallel zueinander und gehen bei
Annäherung an den kathodischen Stromableiter 32 in eine halbkreisförmige Rundung über.
Figur 3b zeigt eine schematische Schnittdarstellung des Kathodenelements 46 entlang der Schnittlinie A-A in Figur 2 gemäß einer zweiten Ausführungsform. Die Nuten 70 weisen dabei einen zumindest annähernd dreieckigen Querschnitt auf. Die Außenwände der Nuten 70 sind in einem dem kathodischen Stromableiter 32 abgewandten Bereich verhältnismäßig weit voneinander beabstandet und verlaufen bei Annäherung an den kathodischen Stromableiter 32 geneigt zueinander und aufeinander zu.
Figur 3c zeigt eine schematische Schnittdarstellung des Kathodenelements 46 entlang der Schnittlinie A-A in Figur 2 gemäß einer dritten Ausführungsform. Die Nuten 70 weisen dabei einen zumindest annähernd rechteckigen Querschnitt auf. Die Außenwände der Nuten 70 sind in einem dem kathodischen
Stromableiter 32 abgewandten Bereich voneinander beabstandet und verlaufen parallel zueinander und rechtwinklig zu dem kathodischen Stromableiter 32 auf den kathodischen Stromableiter 32 zu.
Figur 4 zeigt eine schematische Schnittdarstellung eines Verbundelements 50, welches ein Kathodenelement 46 gemäß der ersten Ausführungsform, wie Figur 3a gezeigt, umfasst. Das Verbundelement 50 umfasst ferner ein Anodenelement 45 sowie eine erstes Separatorelement 16 und auch ein zweites
Separatorelement 16.
Das Kathodenelement 46 ist dabei auf das erste Separatorelement 16 aufgebracht und mit dem ersten Separatorelement 16 verbunden. Auf einer dem Kathodenelement 46 abgewandten Seiten des ersten Separatorelements 16 ist das Anodenelement 45 aufgebracht und mit dem ersten Separatorelement 16 verbunden. Auf einer dem ersten Separatorelement 16 abgewandten Seiten des Anodenelements 45 ist das zweite Separatorelement 16 aufgebracht und mit dem Anodenelements 45 verbunden.
Das Verbundelement 50 entsteht vorliegend durch Aufbringen des
Kathodenelements 46 auf das Anodenelement 45 unter Zwischenlage des ersten Separatorelements 16 und Aufbringen des zweiten Separatorelements 16 auf das Anodenelement 45. Das Verbundelement 50 wird dann an den
Segmentierungslinien S in den Nuten 70 in dem kathodischen Aktivmaterial 42 geschnitten. Durch das Schneiden des bandförmigen Verbundelements 50 an den besagten Segmentierungslinien S entstehen somit plattenförmige
Verbundsegmente 52.
Figur 5 zeigt eine schematische Schnittdarstellung eines solchen
Verbundsegments 52. Das so erzeugte Verbundsegment 52 umfasst ein
Kathodensegment 56, ein Anodensegment 55 und zwei Separatorsegmente 17. Dabei ist ein erstes Separatorsegment 17 zwischen dem Anodensegment 55 und dem Kathodensegment 56 angeordnet. Ein zweites Separatorsegment 17 ist auf der dem ersten Separatorsegment 17 abgewandten Seite des Anodensegments 55 angeordnet. Das Kathodensegment 56, das Anodensegment 55 und die zwei Separatorsegmente 17 sind miteinander verbunden.
Danach werden mehrere solcher Verbundsegmente 52 zu dem Elektrodenstapel 10 übereinander gestapelt. Die Verbundsegmente 52 werden dabei mit gleicher Orientierung übereinander gestapelt. Es ergibt sich somit stets die Abfolge Separatorsegment 17 - Anodensegment 55 - Separatorsegment 17 - Kathodensegment 56 - Separatorsegment 17 usw. Von den anodischen Stromableitern 31 ragen hier nicht dargestellte
Kontaktfahnen der Anode 21 aus den Verbundsegmenten 52 heraus. Von den kathodischen Stromableitern 32 ragen hier nicht dargestellte Kontaktfahnen der Kathode 22 aus den Verbundsegmenten 52 heraus. Die Verbundsegmente 52 werden beim Stapeln derart angeordnet, dass die Kontaktfahnen der Anode 21 fluchten, und dass die Kontaktfahnen der Kathode 22 fluchten. Dabei werden die Kontaktfahnen der Anode 21 versetzt zu den Kontaktfahnen der Kathode 22 positioniert.
Nachfolgend werden die Kontaktfahnen 35 der Anode 21 miteinander und mit dem negativen Terminal 11 der Batteriezelle 2 elektrisch verbunden. Ebenso werden nachfolgend die Kontaktfahnen 36 der Kathode 22 miteinander und mit dem positiven Terminal 12 der Batteriezelle 2 elektrisch verbunden. Die
Verbindung der Kontaktfahnen miteinander sowie mit den Terminals 11, 12 erfolgt vorzugsweise durch Schweißen.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche
1. Verfahren zur Herstellung eines Elektrodenstapels (10) für eine
Batteriezelle (2), umfassend folgende Schritte:
Bereitstellen eines bandförmigen Anodenelements (45), umfassend einen anodischen Stromableiter (31), auf weichen ein anodisches
Aktivmaterial (41) aufgebracht ist,
Bereitstellen eines bandförmigen Kathodenelements (46), umfassend einen kathodischen Stromableiter (32), auf welchen ein kathodisches Aktivmaterial (42) aufgebracht ist,
- Bereitstellen mindestens eines bandförmigen Separatorelements
(16),
Einbringen von Nuten (70) in das kathodische Aktivmaterial (42) um Segmentierungslinien (S) herum,
Erzeugen eines bandförmigen Verbundelements (50) durch
Aufbringen des Kathodenelements (46) auf das Anodenelement (45) unter Zwischenlage des mindestens einen Separatorelements (16), Schneiden des Verbundelements (50) zu plattenförmigen Verbundsegmenten (52) an den Segmentierungslinien (S),
Stapeln von Verbundsegmenten (52).
2. Verfahren nach Anspruch 1, wobei
das Anodenelement (45) eine Breite (dl) in Querrichtung (y) aufweist, welche größer ist als eine Breite (d2) des Kathodenelements (46) in Querrichtung (y).
3. Verfahren nach Anspruch 2, wobei
die Segmentierungslinien (S) und die Nuten (70) in Querrichtung (y) verlaufen.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei
das kathodische Aktivmaterial (42) beidseitig auf den kathodischen Stromableiter (32) aufgebracht ist, und wobei
die Nuten (70) beidseitig in das kathodische Aktivmaterial (42) eingebracht werden.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei
mehrere der Nuten (70) mittels eines Lasers in das kathodische Aktivmaterial (42) eingebracht werden.
6. Verfahren nach einem der vorstehenden Ansprüche, wobei
mehrere der Nuten (70) einen zumindest annähernd U-förmigen Querschnitt aufweisen.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei
mehrere der Nuten (70) einen zumindest annähernd dreieckigen Querschnitt aufweisen.
8. Verfahren nach einem der vorstehenden Ansprüche, wobei
mehrere der Nuten (70) einen zumindest annähernd rechteckigen Querschnitt aufweisen.
9. Batteriezelle (2), umfassend mindestens einen Elektrodenstapel (10) hergestellt nach einem Verfahren nach einem der vorstehenden Ansprüche.
10. Verwendung einer Batteriezelle (2) nach Anspruch 9 in einer
Batteriezelle (2) in einem Elektrofahrzeug (EV), in einem Hybridfahrzeug (HEV), in einem Plug-In-Hybridfahrzeug (PHEV) oder in einem
Consumer-Elektronik-Produkt.
PCT/EP2017/073254 2016-09-27 2017-09-15 Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle WO2018059967A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/336,143 US10985427B2 (en) 2016-09-27 2017-09-15 Method for producing an electrode stack for a battery cell, battery cell
KR1020197011819A KR102411957B1 (ko) 2016-09-27 2017-09-15 배터리 셀용 전극 스택의 제조 방법, 그리고 배터리 셀
JP2019516385A JP6788106B2 (ja) 2016-09-27 2017-09-15 電池セルのための電極スタックを製造する方法、及び、電池セル
CN201780059203.XA CN109792071B (zh) 2016-09-27 2017-09-15 用于制造电池组电池用的电极堆叠的方法和电池组电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016218495.4A DE102016218495A1 (de) 2016-09-27 2016-09-27 Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE102016218495.4 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018059967A1 true WO2018059967A1 (de) 2018-04-05

Family

ID=59859097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/073254 WO2018059967A1 (de) 2016-09-27 2017-09-15 Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle

Country Status (6)

Country Link
US (1) US10985427B2 (de)
JP (1) JP6788106B2 (de)
KR (1) KR102411957B1 (de)
CN (1) CN109792071B (de)
DE (1) DE102016218495A1 (de)
WO (1) WO2018059967A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088887A1 (de) * 2018-10-29 2020-05-07 Robert Bosch Gmbh Verfahren zur herstellung eines stapelaufbaus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394557B (zh) * 2018-04-17 2021-05-18 宁德时代新能源科技股份有限公司 极片加工方法及极片加工设备
WO2020185683A1 (en) 2019-03-08 2020-09-17 Sharkninja Operating Llc Vacuum food processing system
DE102020105156A1 (de) * 2020-02-27 2021-09-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen einer Elektrode
WO2021199721A1 (ja) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 積層電池の製造方法
DE102020124038A1 (de) * 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Zellstapels für Batteriezellen
DE102020124039A1 (de) * 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Zellstapels für Batteriezellen
US20220263060A1 (en) * 2021-02-15 2022-08-18 Alliance For Sustainable Energy, Llc Laser ablation for lithium-ion batteries
DE102022211282A1 (de) 2022-10-25 2024-04-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur kontinuierlichen Herstellung einer Batteriezelle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042191A1 (en) * 2000-11-22 2002-05-30 3M Innovative Properties Company Stacking apparatus and method for laminated products and packaging
US20090239133A1 (en) * 2007-03-12 2009-09-24 Shinichiro Kosugi Rolled electrode battery and manufacturing method therefor
US20110039140A1 (en) 2009-01-14 2011-02-17 Masaharu Miyahisa Positive electrode for nonaqueous battery, electrode group for nonaqueous battery and method for producing the same, and rectangular nonaqueous secondary battery and method for producing the same
DE102011075063A1 (de) * 2011-05-02 2012-11-08 Volkswagen Varta Microbattery Forschungsgesellschaft Mbh & Co. Kg Verfahren und Vorrichtung zur Herstellung von Elektrodenwickeln
CN203932198U (zh) 2014-05-30 2014-11-05 比亚迪股份有限公司 一种锂离子电池电极片及锂离子电池
US20140363727A1 (en) * 2013-02-15 2014-12-11 Lg Chem, Ltd. Electrode assembly with improved stability and method of manufacturing the same
WO2015015274A1 (en) 2013-08-02 2015-02-05 Toyota Jidosha Kabushiki Kaisha Secondary battery
DE102014200011A1 (de) * 2014-01-03 2015-07-09 Robert Bosch Gmbh Elektroden für Batteriezellen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT963550B (it) 1971-09-03 1974-01-21 Du Pont Catodo di batteria a spirale
ATE298932T1 (de) * 1997-04-23 2005-07-15 Japan Storage Battery Co Ltd Elektrode und batterie
JP2000188099A (ja) * 1998-12-22 2000-07-04 Mitsubishi Chemicals Corp 薄膜型電池の製造方法
CN100359724C (zh) * 2002-01-08 2008-01-02 索尼株式会社 正极活性材料和利用这种正极活性材料的非水电解质二次电池
EP1528972B1 (de) * 2002-08-16 2007-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit einem stanzmuster versehene folien und folienverbünde, insbesondere für die fertigung von elektrochemischen bauelementen
JP5426989B2 (ja) * 2009-10-15 2014-02-26 コマツNtc株式会社 積層型電池製造装置
DE102010044080A1 (de) 2010-11-17 2012-05-24 Varta Microbattery Gmbh Herstellungsverfahren für Elektroden
JP2012248465A (ja) * 2011-05-30 2012-12-13 Sharp Corp 二次電池およびその製造方法
CN202495522U (zh) * 2012-02-27 2012-10-17 宁德新能源科技有限公司 一种卷绕结构方形锂离子电池及其正极片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042191A1 (en) * 2000-11-22 2002-05-30 3M Innovative Properties Company Stacking apparatus and method for laminated products and packaging
US20090239133A1 (en) * 2007-03-12 2009-09-24 Shinichiro Kosugi Rolled electrode battery and manufacturing method therefor
US20110039140A1 (en) 2009-01-14 2011-02-17 Masaharu Miyahisa Positive electrode for nonaqueous battery, electrode group for nonaqueous battery and method for producing the same, and rectangular nonaqueous secondary battery and method for producing the same
DE102011075063A1 (de) * 2011-05-02 2012-11-08 Volkswagen Varta Microbattery Forschungsgesellschaft Mbh & Co. Kg Verfahren und Vorrichtung zur Herstellung von Elektrodenwickeln
US20140363727A1 (en) * 2013-02-15 2014-12-11 Lg Chem, Ltd. Electrode assembly with improved stability and method of manufacturing the same
WO2015015274A1 (en) 2013-08-02 2015-02-05 Toyota Jidosha Kabushiki Kaisha Secondary battery
DE102014200011A1 (de) * 2014-01-03 2015-07-09 Robert Bosch Gmbh Elektroden für Batteriezellen
CN203932198U (zh) 2014-05-30 2014-11-05 比亚迪股份有限公司 一种锂离子电池电极片及锂离子电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088887A1 (de) * 2018-10-29 2020-05-07 Robert Bosch Gmbh Verfahren zur herstellung eines stapelaufbaus

Also Published As

Publication number Publication date
DE102016218495A1 (de) 2018-03-29
KR20190058574A (ko) 2019-05-29
CN109792071A (zh) 2019-05-21
CN109792071B (zh) 2022-04-05
JP6788106B2 (ja) 2020-11-18
US10985427B2 (en) 2021-04-20
KR102411957B1 (ko) 2022-06-22
US20200028140A1 (en) 2020-01-23
JP2019533285A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018059967A1 (de) Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle
EP3520163B1 (de) Verfahren zur herstellung einer elektrodeneinheit für eine batteriezelle und elektrodeneinheit
DE102010035458B4 (de) Batterie
DE102017216138A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE112018007443T5 (de) Hybride lithium-ionen-kondensator-batterie mit einer kohlenstoffbeschichtetenseparatorschicht und verfahren zu deren herstellung
DE112011100279T5 (de) Batteriezellen- Modul für eine modulare Batterie mit einem verschachtelt angeordnetem Trennelement
DE102014220953A1 (de) Elektrode für eine Kombination aus Superkondensator und Batterie sowie Verfahren zu deren Herstellung
DE102016205160A1 (de) Batteriezelle
DE102016203918A1 (de) Verfahren zur Herstellung eines Elektrodenstapels, Elektrodenstapel und Batteriezelle
EP3300141B1 (de) Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle
DE102018221904A1 (de) Elektrodeneinheit für eine Batteriezelle, Batteriezelle und Verfahren zur Herstellung einer Elektrodeneinheit
DE102016214239A1 (de) Folienstapel für eine Batteriezelle und Verfahren zur Herstellung
DE102015218695A1 (de) Batteriezelle
DE102021105975A1 (de) Vorlithiierung von batterieelektrodenmaterial
DE102017216209A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
WO2019052813A1 (de) Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle
DE102016225221A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
WO2022079169A1 (de) Verfahren zur bereitstellung einer batteriezelle und verwendung einer solchen
EP3096371A1 (de) Batteriezelle
WO2016116317A1 (de) Elektrodenwickel für ein galvanisches element und verfahren zu dessen herstellung
DE102017216131A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
WO2019145542A1 (de) Batteriezelle
DE102017207766A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE102016210838A1 (de) Anode für eine Batteriezelle, Verfahren zur Herstellung einer Anode und Batteriezelle
DE102017207770A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17767833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011819

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17767833

Country of ref document: EP

Kind code of ref document: A1