WO2018043436A1 - 異種金属含有リチウムニッケル複合酸化物及びその製造方法 - Google Patents
異種金属含有リチウムニッケル複合酸化物及びその製造方法 Download PDFInfo
- Publication number
- WO2018043436A1 WO2018043436A1 PCT/JP2017/030810 JP2017030810W WO2018043436A1 WO 2018043436 A1 WO2018043436 A1 WO 2018043436A1 JP 2017030810 W JP2017030810 W JP 2017030810W WO 2018043436 A1 WO2018043436 A1 WO 2018043436A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- composite oxide
- positive electrode
- nickel
- nickel composite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a dissimilar metal-containing lithium nickel composite oxide and a method for producing the same.
- the lithium-containing composite oxide is used as a positive electrode active material for lithium ion secondary batteries.
- Lithium ion secondary batteries are not only used for power supplies for mobile phones and laptop computers, but are also expected to be used for medium and large power supplies such as in-vehicle and power load leveling systems. Has been made.
- lithium nickelate is expected as a 4V class positive electrode material having a high specific capacity (200 mAh / g).
- a high voltage upper limit voltage: 4.3 V
- the cycle characteristics are remarkably deteriorated.
- the present invention has been made in view of the current state of the prior art described above, and has an object to provide a lithium-containing composite oxide having high initial charge / discharge efficiency and in which deterioration of cycle characteristics is remarkably suppressed. To do.
- the present inventors have surprisingly found that a lithium nickel-based composite oxide having a specific composition has high initial charge / discharge efficiency and cycle characteristics. It has been found that deterioration is remarkably suppressed.
- the inventors of the present invention have completed the present invention by repeating further research based on such knowledge.
- Item 1 General formula (1): Li x (Ni 1-y M y ) O 2 + ⁇ (1) [Wherein M represents at least one selected from the group consisting of Ge, Sn, Al, Co and Mn. x, y, and ⁇ represent 0.8 ⁇ x ⁇ 1.4, 0 ⁇ y ⁇ 0.500, and ⁇ 0.20 ⁇ ⁇ ⁇ 0.20, respectively. ] Lithium nickel composite oxide represented by Item 2. Item 2. The lithium nickel composite oxide according to Item 1, wherein M is Ge, Sn, Al, or Mn, or a combination of Al and Co. Item 3. Item 3.
- the lithium nickel-based composite oxide according to Item 1 or 2 comprising a crystal phase of a hexagonal layered rock salt type structure or a crystal phase of a monoclinic layered rock salt type structure.
- Item 4. The lithium nickel composite oxide according to Item 3, comprising only a crystal phase of a hexagonal layered rock salt type structure or a crystal phase of a monoclinic layered rock salt type structure.
- Item 5. The method for producing a lithium nickel composite oxide according to any one of Items 1 to 4, A first step in which a lithium compound, a metal M compound, nickel hydroxide and / or a water-soluble nickel salt are mixed in an aqueous solvent, and the mixture obtained in the first step is fired in an oxidizing atmosphere. A manufacturing method including a 2nd process.
- Item 6. The method according to Item 5, wherein the first step is a step of adding a metal M compound and nickel hydroxide and / or a water-soluble nickel salt to an aqueous solution containing a lithium compound.
- Item 7. A positive electrode material for a lithium ion secondary battery, comprising the lithium nickel composite oxide according to any one of Items 1 to 4.
- Item 8. The lithium ion secondary battery containing the positive electrode material for lithium ion secondary batteries of the said claim
- the lithium nickel composite oxide of the present invention as a positive electrode active material for a lithium ion secondary battery, it is possible to provide a lithium ion secondary battery having high initial charge / discharge efficiency and exhibiting high cycle characteristics. It becomes possible.
- FIG. 2 is a diagram showing an X-ray diffraction pattern of a sample obtained in Example 1.
- FIG. It is a figure which shows the result of the charging / discharging test of the sample obtained in Example 1.
- FIG. 6 is a diagram showing an X-ray diffraction pattern of a sample obtained in Example 2.
- FIG. It is a figure which shows the result of the charging / discharging test of the sample obtained in Example 2.
- FIG. 4 is a diagram showing an X-ray diffraction pattern of a sample obtained in Example 3.
- FIG. It is a figure which shows the result of the charging / discharging test of the sample obtained in Example 3.
- FIG. 1 It is a figure which shows the result of the charging / discharging test of the sample obtained by the comparative example 1. It is a figure which shows the X-ray-diffraction pattern of the sample obtained in Example 4. It is a figure which shows the result of the charging / discharging test of the sample obtained in Example 4. 6 is a diagram showing an X-ray diffraction pattern of a sample obtained in Example 5.
- FIG. In the figure, the upper right part shows an enlarged view of the diffraction angle 2 ⁇ around 17 to 32 °. It is a figure which shows the result of the charging / discharging test of the sample obtained in Example 5.
- Lithium nickel composite oxide The present invention includes lithium nickel composite oxide.
- the lithium nickel composite oxide of the present invention has the general formula (1): Li x (Ni 1-y M y ) O 2 + ⁇ (1) [Wherein M represents at least one selected from the group consisting of Ge, Sn, Al, Co, and Mn. x, y, and ⁇ represent 0.8 ⁇ x ⁇ 1.4, 0 ⁇ y ⁇ 0.500, and ⁇ 0.20 ⁇ ⁇ ⁇ 0.20, respectively. ] It is a compound represented by these.
- M represents at least one selected from the group consisting of Ge, Sn, Al, Co, and Mn.
- M may be a single species or a combination of two or more species.
- the two combinations include Ge and Sn, Ge and Al, Sn and Al, Ge and Co, Ge and Mn, Sn and Co, Sn and Mn, Al and Co, Al and Mn, and Co and Mn.
- Examples of the three combinations include Ge, Sn, and Al, and a combination of Al, Co, and Mn.
- the ratio is not particularly limited and can be determined as appropriate.
- M is preferably Ge, Sn, Al, or Mn, or a combination of Al and Co, more preferably Ge, Sn, or Al, and particularly preferably Ge or Al. preferable.
- x corresponds to the molar ratio of Li, Ni, and M (Li / (Ni + M)).
- x is less than 0.8, the capacity is reduced, and when x exceeds 1.4, the crystal structure changes to a monoclinic LiNiO 2 —Li 2 NiO 3 based solid solution having poor battery characteristics.
- 0.8 ⁇ x ⁇ 1.4 is preferable, and 0.9 ⁇ x ⁇ 1.3 is more preferable.
- y is 0.0 ⁇ y ⁇ 0.500, preferably 0.001 ⁇ y ⁇ 0.300, more preferably 0.001 ⁇ y ⁇ 0.200.
- ⁇ corresponds to the non-stoichiometry of the oxygen amount.
- ⁇ is ⁇ 0.20 ⁇ ⁇ ⁇ 0.20, preferably ⁇ 0.15 ⁇ ⁇ ⁇ 0.15, more preferably ⁇ 0.10 ⁇ ⁇ ⁇ 0.10.
- Examples of the lithium nickel composite oxide represented by the general formula (1) include Li 1.1 (Ni 0.9 Ge 0.1 ) O 2 , Li 1.02 (Ni 0.9973 Ge 0. 0027) O 2, Li 1.1 ( Ni 0.9 Sn 0.1) O 2, Li 1.14 (Ni 0.989 Sn 0.011) O 2, Li 1.1 (Ni 0.9 Al 0 .1 ) O 2 , Li 1.00 (Ni 0.919 Al 0.081 ) O 2 , Li 1.00 (Ni 0.8 Co 0.15 Al 0.05 ) O 2 , and Li 1.00 ( Ni 0.7 Mn 0.3 ) O 2 and the like.
- the lithium nickel composite oxide of the present invention has a space group:
- the lithium nickel-based composite oxide of the present invention may contain the crystal phase of the above hexagonal layered rock salt structure or the crystal phase of the monoclinic layered rock salt structure. , Cubic rock salt structure, etc.).
- the ratio of the crystal phase of the hexagonal layered rock salt structure or the crystal phase of the monoclinic layered rock salt structure is based on the entire mixed phase from the viewpoint of initial charge / discharge efficiency and cycle characteristics (100 weight %) Is preferably 50 to 90% by weight.
- the lithium nickel composite oxide of the present invention may be composed of only the crystal phase of the above hexagonal layered rock salt structure or the crystal phase of the monoclinic layered rock salt structure.
- lithium nickel composite oxide represented by the general formula (1) when M is Ge, Sn, or Al, or a combination of Al and Co, a hexagonal layered rock salt structure It is easy to obtain a lithium nickel composite oxide containing a crystalline phase, and when M is Mn, a lithium nickel composite oxide containing a monoclinic layered rock salt structure crystalline phase is likely to be obtained.
- the lithium nickel composite oxide of the present invention is based on the total amount of elements present in the Ni layer (3b site) as a reference (100%) and the amount of Ni in the Ni layer and the M
- the occupation ratio of the sum of the amounts is preferably 99.90% or less, particularly preferably 70.00 to 99.80%.
- the lattice constant a is preferably 2.8702 or less, and is 2.850 ⁇ or more and 2.865 ⁇ or less. Is more preferable.
- the lattice constant a is preferably 5.000 ⁇ or less, and is 4.900 ⁇ or more and 4.980 ⁇ or less, and the lattice constant b is 8.600 ⁇ . It is preferable that it is below, and it is more preferable that it is 8.570 to 8.590.
- the positive electrode active material that is particularly excellent in cycle characteristics when the crystal constant of the hexagonal layered rock salt type structure is within the above range and the lattice constant a and b of the crystal phase of the monoclinic layered rock salt type structure are within the above ranges. It can be.
- the lattice constant c is preferably 14.10 to 14.20.
- the lattice constant c is preferably 4.90 to 5.10.
- the lattice constant c is in this range, a positive electrode active material having particularly excellent initial charge / discharge efficiency and cycle characteristics can be obtained.
- the lithium nickel composite oxide of the present invention includes a crystal phase of a hexagonal layered rock salt structure
- the value (c / a) obtained by dividing the lattice constant c by the lattice constant a is 4.940 or more and 4.960 or less. It is preferable that When the value (c / a) obtained by dividing the lattice constant c by the lattice constant a is in this range, a positive electrode active material having particularly excellent initial charge / discharge efficiency and cycle characteristics can be obtained.
- the angle ⁇ between the a axis and the c axis is preferably 105.0 ° or more and 112.0 ° or less.
- the angle ⁇ between the a-axis and the c-axis is in this range, a positive electrode active material that is particularly excellent in initial charge / discharge efficiency and cycle characteristics can be obtained.
- Lithium-nickel-based composite oxide of the present invention when containing a crystal phase of a hexagonal layered rock-salt structure, it is preferable that the lattice volume is 101.00A 3 or less, 99.00A 3 or more 100.90A 3 below Preferably there is. On the other hand, if it contains a crystal phase of monoclinic layered rock-salt structure, it is preferable lattice volume is 200.00A 3 or more 202.00A 3 or less. When the lattice volume is in the range, a positive electrode active material that is particularly excellent in initial charge / discharge efficiency and cycle characteristics can be obtained.
- the crystal structure, the occupation ratio of the sum of Ni and M in the Ni layer, the lattice constants a and c, and the lattice volume all use CuK ⁇ as the radiation source, and the measurement range of the diffraction angle 2 ⁇ is 10 °. It is determined or calculated by performing powder X-ray diffraction measurement at a temperature of 125 ° or less, defining a crystal structure as a hexagonal layered rock salt structure based on the measurement result, and performing Rietveld analysis.
- the present invention further includes a method for producing the lithium nickel composite oxide described above.
- the method for producing a lithium nickel composite oxide of the present invention comprises a step of mixing a lithium compound, a metal M compound, nickel hydroxide and / or a water-soluble nickel salt in an aqueous solvent (in this specification, “No. 1 step ”), and a step of firing the mixture in an oxidizing atmosphere (may be referred to as“ second step ”in this specification).
- the lithium compound used in the first step is not particularly limited.
- lithium hydroxide including hydrate
- lithium carbonate including hydrate
- lithium acetate including hydrate
- lithium nitrate lithium perchlorate (water) (Including Japanese).
- the lithium compound used in the first step is preferably excessive with respect to the number of moles of charged nickel and metal M, and more preferably 1.5 times or more and 2.5 times or less.
- the metal M compound used in the first step is not particularly limited, and examples thereof include metal M oxides, hydroxides, chlorides, sulfates, nitrates, acetates, and hydrates thereof. Specific examples include germanium oxide, sodium stannate, aluminum hydroxide, cobalt nitrate (including hydrate), cobalt hydroxide, manganese chloride (including hydrate), manganese hydroxide, and the like.
- nickel hydroxide can be used as the nickel hydroxide used in the first step. Moreover, you may use what is obtained by neutralizing water-soluble nickel salt with an alkali as needed. In this case, nickel hydroxide obtained by neutralizing a water-soluble nickel salt with an alkali in advance can be used in the first step, or the water-soluble nickel salt is charged into an aqueous solvent and alkali in the system. Nickel hydroxide can also be obtained by neutralizing with. Examples of the water-soluble nickel salt include nitrates, chlorides, sulfates, acetates, and hydrates thereof. Moreover, water-soluble nickel salt may be used individually by 1 type, and 2 or more types may be mixed and used for it.
- the alkali used for neutralizing the water-soluble nickel salt is not particularly limited, and for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia and the like can be used.
- the concentration of the alkali may be a concentration that can maintain pH 11 or more during the neutralization step in which the water-soluble nickel salt is dropped into the alkali.
- the temperature during the neutralization step is preferably -10 ° C or higher and 50 ° C or lower. By reducing the neutralization temperature, the nucleation rate of nickel hydroxide is increased, and finer and more reactive nickel hydroxide can be obtained.
- an antifreeze solution such as ethanol may be added to the alkaline aqueous solution.
- lithium hydroxide when making it react at low temperature, it is preferable to use lithium hydroxide as an alkali. This is because the temperature dependency of the solubility is flat as compared with sodium hydroxide or potassium hydroxide, so that alkali precipitation at low temperatures hardly occurs. In addition, it is not necessary to remove other alkali ions as lithium hydroxide impurities, and the remaining lithium hydroxide can be used as the above-described lithium compound. In order to add the water-soluble nickel salt to the alkaline solution during the neutralization step, it is preferable to gradually carry out over several hours in the dropping step in order to obtain uniform nickel hydroxide.
- a metal M compound a compound containing a metal that is not an amphoteric metal (that is, when M is Co or manganese) is used, and nickel hydroxide is obtained by neutralizing a water-soluble nickel salt with an alkali. When obtained, a uniform mixed state can be easily obtained, and composition control becomes easy. Therefore, it is preferable to add a water-soluble salt of metal M as a metal M compound to a water-soluble nickel salt.
- the water-soluble salt of the metal M include nitrates, chlorides, sulfates, acetates, and hydrates of the metal M.
- the specific method of the first step is not particularly limited, but from the viewpoints of the availability of the lithium nickel composite oxide of the present invention and the ease of the production process, the metal M is added to the aqueous solution containing the lithium compound.
- the step of adding the compound and nickel hydroxide and / or a water-soluble nickel salt is preferable.
- the order in which the metal M compound and nickel hydroxide are added to the aqueous solution containing the lithium compound in the first step is not particularly limited, but the lithium nickel composite oxide of the present invention is easily obtained and the manufacturing process is easy. From this point of view, it is preferable to add nickel hydroxide after adding the metal M compound to the aqueous solution containing the lithium compound and confirming that the metal M compound is completely dissolved.
- the aqueous solution containing the lithium compound used in the first step is preferably alkaline.
- the alkali source is not particularly limited, and for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia and the like can be used. It is preferable that an aqueous solution containing these alkali sources is first prepared, the metal M compound is added and dissolved, and then the lithium compound is added. Further, lithium hydroxide is preferable because it acts not only as an alkali source but also as a lithium compound.
- the manufacturing method of the lithium nickel type complex oxide of the present invention includes a step of drying the mixture, if necessary, before the second step described later after the first step.
- the drying method is not particularly limited and can be performed according to a conventional method. For example, a method of transferring the mixture obtained in the first step to a container such as a petri dish and putting it in a drier kept at 50 ° C. or more and drying for several hours can be mentioned.
- the dry powder of the mixture obtained at the 1st process can be prepared.
- the method for producing a lithium nickel composite oxide of the present invention includes a second step described later in an oxidizing atmosphere, if necessary, after the first step and before being subjected to a second step described later.
- a step of firing at a temperature lower than the firing temperature (for example, 550 ° C. or lower) (hereinafter referred to as “pre-baking step”) may be included.
- the oxidizing atmosphere is not particularly limited, and examples thereof include an atmospheric atmosphere and an oxygen stream.
- the firing time is not particularly limited, and can be, for example, 5 hours or longer. Thus, since it can take in more lithium by performing preliminary
- the mixture obtained in the first step is baked in an oxidizing atmosphere.
- the oxidizing atmosphere is not particularly limited, and examples thereof include an atmospheric atmosphere and an oxygen stream.
- the temperature is preferably 700 ° C. or less, and more preferably 600 ° C. or more and 700 ° C. or less.
- the firing time is not particularly limited, and can be, for example, about 1 hour to 30 hours.
- the fired product obtained in the above-described second step is optionally subjected to an oxidizing atmosphere in the same manner as in the above-described pre-firing step.
- a step of baking at a temperature (for example, 550 ° C. or lower) lower than the baking temperature in the second step described above may be included.
- the oxidizing atmosphere is not particularly limited, and examples thereof include an atmospheric atmosphere and an oxygen stream.
- the firing time is not particularly limited, and can be, for example, 5 hours or longer. Thus, it is preferable to perform further baking after the above-described second step because more lithium can be taken in.
- the method for producing a lithium nickel composite oxide of the present invention preferably includes a step of cooling the fired product obtained in the second step.
- the method for cooling the fired product is not particularly limited, and can be performed according to a conventional method. For example, a method of leaving the fired product in a furnace to near room temperature can be used.
- the obtained fired product is pulverized, washed, filtered, and dried. It is preferable to include at least one step.
- the specific method of these steps is not particularly limited, and can be performed according to a conventional method.
- Positive electrode material for lithium ion secondary battery and lithium ion secondary battery can be used as a positive electrode material for lithium ion secondary battery. Furthermore, by combining with the positive electrode material for lithium ion secondary battery, negative electrode, electrolyte (including solid electrolyte), and separator, the lithium ion secondary battery having high capacity and excellent cycle characteristics (non-aqueous lithium ion secondary battery) And an all-solid-state lithium ion secondary battery).
- the negative electrode is not particularly limited, and examples thereof include metallic lithium, graphite, Si—SiO negative electrode, and LTO (Li 4 Ti 5 O 12 ) negative electrode.
- the electrolyte is not particularly limited, and an organic electrolytic solution in which LiPF 6 or the like is used as an electrolyte salt and dissolved in various solvents such as ethyl carbonate (EC) or dimethyl carbonate (DMC), Li 2 S—P 2 S 5 , Li Examples thereof include inorganic sulfide solid electrolytes such as 2 S—GeS 2 —P 2 S 5 and Li 2 S—SiS 2 —Li 3 PO 4, and polymer polymers having lithium ion conductivity.
- the separator is not particularly limited, and examples thereof include polyethylene and polypropylene.
- Example 1 Sample Preparation 20.98 g (0.50 mol) of lithium hydroxide monohydrate was added to 200 ml of distilled water and completely dissolved. To the lithium hydroxide solution, 2.62 g (0.025 mol) of germanium oxide was added and completely dissolved, and then 20.86 g (0.225 mol) of nickel hydroxide was added and dispersed by stirring. The obtained mixture was transferred to a petri-tetrafluoroethylene petri dish, and the petri dish was placed in a drier kept at 100 ° C. and dried for 3 hours. The obtained dry powder was pulverized and mixed, heated to 650 ° C.
- the obtained fired product was pulverized, washed with distilled water, filtered, and dried at 100 ° C. to obtain a product.
- FIG. 1 shows an actual measurement (+) and a calculated (solid line) X-ray diffraction pattern of the product obtained above. Further, by Rietveld analysis, the obtained product is a hexagonal LiNiO 2 single phase having a layered rock salt structure, the lattice constant a is 2.86418 (4) ⁇ , and the lattice constant c is 14.19540 (17 ), Lattice volume is 100.851 (2) 3 3 , c / a value is 4.956, Ni and Ge ion occupancy in Ni layer is 92.07 (15)%, Ni and Ge in Li layer It was found that the ion occupancy was 0%.
- the charge / discharge test was started at the start of charging, and was conducted up to 50 cycles under the conditions of potential range: 2.2 to 4.8 V, current density per positive electrode active material: 40 mA / g, test temperature: 30 ° C. The results are shown in FIG.
- Example 2 the product obtained in Example 1 has an initial charge capacity of 239 mAh / g, an initial discharge capacity of 217 mAh / g, an initial charge / discharge efficiency of 90.7%, an initial discharge average voltage of 3.75 V, It was found that the initial discharge energy density was 815 mWh / g, the discharge capacity after 50 cycles was 184 mAh / g, and the discharge capacity retention rate after 50 cycles was 84.7%.
- Example 2 Sample Preparation 20.98 g (0.50 mol) of lithium hydroxide monohydrate was added to 200 ml of distilled water and completely dissolved. To the lithium hydroxide solution, 6.67 g (0.025 mol) of sodium stannate was added and completely dissolved, and then 20.86 g (0.225 mol) of nickel hydroxide was added and dispersed by stirring. The obtained mixture was transferred to a petri-tetrafluoroethylene petri dish, and the petri dish was placed in a drier kept at 100 ° C. and dried for 3 hours. The obtained dry powder was pulverized and mixed, heated to 625 ° C.
- the obtained fired product was pulverized, washed with distilled water, filtered, and dried at 100 ° C. to obtain a product.
- FIG. 3 shows an actual measurement (+) and calculation (solid line) X-ray diffraction pattern of the product obtained above. Further, by Rietveld analysis, the obtained product is a hexagonal LiNiO 2 single phase having a layered rock salt structure, the lattice constant a is 2.86013 (10) 10, and the lattice constant c is 14.1509 (4 ), Lattice volume is 100.250 (6) ⁇ 3 , c / a value is 4.948, Ni and Sn ion occupancy in Ni layer is 81.12 (18)%, Ni and Sn in Li layer The ion occupancy was found to be 0.83 (6)%.
- Example 4 the product obtained in Example 2 has an initial charge capacity of 236 mAh / g, an initial discharge capacity of 201 mAh / g, an initial charge / discharge efficiency of 84.8%, an initial discharge average voltage of 3.72 V, It was found that the initial discharge energy density was 746 mWh / g, the discharge capacity after 50 cycles was 171 mAh / g, and the discharge capacity retention rate after 50 cycles was 72.6%.
- Example 3 Sample Preparation 20.98 g (0.50 mol) of lithium hydroxide monohydrate was added to 200 ml of distilled water and completely dissolved. After 1.95 g (0.025 mol) of aluminum hydroxide was added to the lithium hydroxide solution and completely dissolved, 20.86 g (0.225 mol) of nickel hydroxide was added and dispersed by stirring. The obtained mixture was transferred to a petri-tetrafluoroethylene petri dish, and the petri dish was placed in a drier kept at 100 ° C. and dried for 3 hours. The obtained dry powder was pulverized and mixed, heated to 650 ° C.
- the obtained fired product was pulverized, washed with distilled water, filtered, and dried at 100 ° C. to obtain a product.
- FIG. 5 shows an actual measurement (+) and calculation (solid line) X-ray diffraction pattern of the product obtained above. Further, by Rietveld analysis, the obtained product is a hexagonal LiNiO 2 single phase having a layered rock salt type structure, the lattice constant a is 2.86305 (5) ⁇ , and the lattice constant c is 14.1800 (2 ), Lattice volume is 100.62 (3) ⁇ 3 , c / a value is 4.953, Ni and Al ion occupancy in Ni layer is 99.78 (19)%, Ni and Al in Li layer The ion occupancy was found to be 0.09 (7)%.
- Example 6 the product obtained in Example 3 has an initial charge capacity of 230 mAh / g, an initial discharge capacity of 207 mAh / g, an initial charge / discharge efficiency of 90.0%, an initial discharge average voltage of 3.70 V, It was found that the initial discharge energy density was 766 mWh / g, the discharge capacity after 50 cycles was 171 mAh / g, and the discharge capacity retention rate after 50 cycles was 82.6%.
- the temperature is again raised to 750 ° C. in an oxygen stream over 1 hour in an electric furnace, fired for 20 hours, and then cooled to near room temperature in the furnace to obtain a fired product. It was.
- the obtained fired product was pulverized, washed with distilled water, filtered, and dried at 100 ° C. to obtain a product.
- FIG. 7 shows an actual measurement (+) and calculation (solid line) X-ray diffraction pattern of the product obtained above. Further, by Rietveld analysis, the obtained product is a hexagonal LiNiO 2 single phase having a layered rock salt structure, the lattice constant a is 2.87589 (3) ⁇ , and the lattice constant c is 14.19150 (13 ), Lattice volume is 100.6489 (18) 3 , c / a value is 4.935, Ni ion occupancy in Ni layer is 100%, Ni ion occupancy in Li layer is 0.56 (5 )%.
- the product obtained in Comparative Example 1 has an initial charge capacity of 259 mAh / g, an initial discharge capacity of 220 mAh / g, an initial charge / discharge efficiency of 84.6%, an initial discharge average voltage of 3.80 V, Initial discharge energy density is 834 mWh / g, discharge capacity after 30 cycles is 176 mAh / g, discharge capacity maintenance rate after 30 cycles is 80.4%, discharge capacity after 50 cycles is 159 mAh / g, discharge after 50 cycles The capacity retention rate was found to be 72.6%.
- Example 4 Sample Preparation Nickel (II) nitrate hexahydrate and cobalt (II) nitrate hexahydrate were weighed to a molar ratio of 80:15 (0.25 mol / batch), dissolved in 500 ml of distilled water, An aqueous metal salt solution was prepared. Next, 500 ml of distilled water was added to another container containing 50 g of sodium hydroxide and completely dissolved, and kept at 20 ° C. in a thermostatic bath. The aqueous metal salt solution prepared above was gradually added dropwise to the aqueous sodium hydroxide solution over about 3 hours to produce a coprecipitate. Thereafter, the coprecipitate was subjected to a bubbling treatment at room temperature for 2 days using an oxygen gas generator to ripen the precipitate. After aging, the precipitate was washed with water and filtered to obtain a raw material for firing.
- Lithium hydroxide monohydrate 20.98 g (0.50 mol) was added to 200 ml of distilled water and completely dissolved. After 0.98 g (0.0125 mol) of aluminum hydroxide was added to the lithium hydroxide solution and completely dissolved, the firing raw material prepared above was added and dispersed by stirring with a mixer. The obtained mixture was transferred to a petri-tetrafluoroethylene petri dish, and the petri dish was placed in a drier kept at 50 ° C. and dried for 2 days. The obtained dry powder was pulverized and mixed, heated to 500 ° C. over 1 hour in an oxygen stream in an electric furnace, fired for 20 hours, and then cooled to near room temperature in the furnace to obtain a fired product. .
- the temperature was again raised to 700 ° C. in an oxygen stream over 1 hour in an electric furnace, fired for 20 hours, and then cooled to near room temperature in the furnace to obtain a fired product. It was. After performing the water washing process using distilled water, it filtered, and the product was obtained by drying at 100 degreeC.
- FIG. 9 shows an actual measurement (+) and calculation (solid line) X-ray diffraction pattern of the product obtained above. Further, the Rietveld analysis shows that the obtained product is a hexagonal LiNiO 2 single phase having a layered rock salt structure, the lattice constant a is 2.85522 (6) ⁇ , and the lattice constant c is 14.1473 (3 ), Lattice volume is 99.881 (4) ⁇ 3 , c / a value is 4.955, Ni, Al, and Co ion occupancy in Ni layer is 98.0 (3)%, in Li layer It was found that the occupation ratio of Ni, Al, and Co ions was 0%.
- a positive electrode mixture was prepared using 0.5 mg of polytetrafluoroethylene, and the positive electrode mixture was pressure-bonded to an aluminum mesh to form a positive electrode It was.
- a coin-type battery was fabricated using the positive electrode, metallic lithium as the negative electrode, 1M LiPF 6 / EC + DMC system as the electrolyte, and a separator, and a charge / discharge test was performed.
- the charge / discharge test is the start of charging, with a potential range of 2.2 to 4.8 V (second and subsequent cycles: 2.2 to 4.6 V), current density per positive electrode active material: 40 mA / g, test temperature: 30 ° C. Up to 30 cycles were performed under the following conditions. The results are shown in FIG.
- Example 10 the product obtained in Example 4 has an initial charge capacity of 209 mAh / g, an initial discharge capacity of 153 mAh / g, an initial charge / discharge efficiency of 73.2%, an initial discharge average voltage of 3.55 V, It was found that the initial discharge energy density was 566 mWh / g, the discharge capacity after 30 cycles was 126 mAh / g, and the discharge capacity retention rate after 30 cycles was 82.4%.
- Example 5 Sample preparation Nickel (II) nitrate hexahydrate and manganese (II) chloride tetrahydrate were weighed to a molar ratio of 7: 3 (0.25 mol / batch), dissolved in 500 ml of distilled water, An aqueous metal salt solution was prepared. Next, 500 ml of distilled water was added to another container containing 50 g of sodium hydroxide and completely dissolved, and kept at 20 ° C. in a thermostatic bath. The aqueous metal salt solution prepared above was gradually added dropwise to the aqueous sodium hydroxide solution over about 3 hours to produce a coprecipitate. Thereafter, the coprecipitate was subjected to a bubbling treatment at room temperature for 2 days using an oxygen gas generator to ripen the precipitate. After aging, the precipitate was washed with water and filtered to obtain a raw material for firing.
- Lithium hydroxide monohydrate 20.98 g (0.50 mol) was added to 200 ml of distilled water and completely dissolved.
- the firing raw material prepared above was added to the lithium hydroxide solution and dispersed by stirring with a mixer.
- the obtained mixture was transferred to a petri-tetrafluoroethylene petri dish, and the petri dish was placed in a drier kept at 50 ° C. and dried for 2 days.
- the obtained dry powder was pulverized and mixed, heated to 500 ° C. over 1 hour in an oxygen stream in an electric furnace, fired for 20 hours, and then cooled to near room temperature in the furnace to obtain a fired product. . After the obtained fired product is pulverized, the temperature is again raised to 750 ° C.
- FIG. 11 shows an actual measurement (+) and calculation (solid line) X-ray diffraction pattern of the product obtained above.
- the diffraction angle 2 ⁇ is enlarged in the vicinity of 17 to 32 °.
- Rietveld analysis revealed that the obtained product was a monoclinic Li 2 MnO 3 single phase having a layered rock salt structure.
- the fact that the crystal phase of the product is monoclinic was confirmed by the presence of a small superlattice peak in the diffraction angle 2 ⁇ range of 20 to 30 ° as shown in the upper right part of FIG. .
- the lattice constant a is 4.9425 (5) ⁇
- the lattice constant b is 8.5575 (6) ⁇
- the lattice constant c is 5.0099 (3) ⁇
- ⁇ is 109.220 (9 ) °
- lattice volume 200.5 (6) ⁇ 3 Ni and Mn ion occupancy in Ni layer 79.2 (4)%, Ni and Mn ion occupancy in Li layer 2.52 (7 )%.
- Example 5 From FIG. 12, the product obtained in Example 5 has an initial charge capacity of 162 mAh / g, an initial discharge capacity of 125 mAh / g, an initial charge / discharge efficiency of 77.2%, an initial discharge average voltage of 3.73 V, It was found that the initial discharge energy density was 469 mWh / g, the discharge capacity after 50 cycles was 103 mAh / g, and the discharge capacity retention rate after 50 cycles was 82.0%.
- Example 1 has almost the same initial charge / discharge capacity, initial discharge average voltage, and initial discharge energy density as compared with the sample of Comparative Example 1, and the initial charge / discharge efficiency, 50 cycles. It was found that the subsequent discharge capacity and the discharge capacity retention rate after 50 cycles were excellent.
- Example 2 and 3 are sufficient as positive electrode materials for lithium ion secondary batteries although initial charge / discharge capacity, initial discharge average voltage, and initial discharge energy density are slightly inferior to those of Comparative Example 1. It was a usable level, the initial charge and discharge efficiency was almost the same, and it was found that the discharge capacity after 50 cycles and the discharge capacity maintenance rate after 50 cycles were excellent.
- Example 4 Although the sample of Example 4 is inferior to the sample of Comparative Example 1 in initial charge / discharge capacity, initial charge / discharge efficiency, initial discharge average voltage, and initial discharge energy density, it is a positive electrode material for a lithium ion secondary battery. It was a usable level, and it was found that the discharge capacity retention rate after 30 cycles was excellent.
- Example 5 is inferior to the sample of Comparative Example 1 in terms of initial charge / discharge capacity, initial charge / discharge efficiency, initial discharge average voltage, and initial discharge energy density, but as a positive electrode material for a lithium ion secondary battery. It was found that this was a usable level and the discharge capacity retention rate after 50 cycles was excellent.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一般式(1):
Lix(Ni1-yMy)O2+δ (1)
[式中、MはGe、Sn、Al、Co、及びMnからなる群から選択される少なくとも1種を示す。x、y及びδはそれぞれ、0.8≦x≦1.4、0<y≦0.500、-0.20≦δ≦0.20を示す。]
で表されるリチウムニッケル系複合酸化物は、高容量を有し、かつサイクル特性の劣化が顕著に抑制されている。
Description
本発明は、異種金属含有リチウムニッケル複合酸化物及びその製造方法に関する。
リチウム含有複合酸化物はリチウムイオン二次電池用の正極活物質として用いられている。リチウムイオン二次電池は、携帯電話、ノートパソコン用電源に使用されるだけでなく、車載用、電力負荷平準化システム用などの中型・大型電源用としても期待されており、一部実用化がなされている。
リチウム含有複合酸化物の中でもニッケル酸リチウムは、高い比容量(200mAh/g)を有する4V級正極材料として期待されている。しかしながら、ニッケル酸リチウムは、高容量を得るために高い電圧(上限電圧:4.3V)以上まで充電するとサイクル特性が著しく劣化することが知られている。
このような中、本発明者らは、特定の結晶構造を有し、かつ特定のパラメータを有するリチウム複合金属酸化物が、高容量を維持しつつ、サイクル特性の劣化を抑制することを見出している(下記特許文献1参照)。
しかしながら、車載用および定置用などの長寿命が要求される用途においては、サイクル特性の劣化がさらに抑制された材料が必要である。
本発明は上記した従来技術の現状に鑑みてなされたものであり、高い初期充放電効率を有し、かつサイクル特性の劣化が顕著に抑制されたリチウム含有複合酸化物を提供することを目的とする。
本発明者らは上記した目的を達成すべく鋭意研究を重ねた結果、驚くべきことに、特定の組成を有するリチウムニッケル系複合酸化物が、高い初期充放電効率を有し、かつサイクル特性の劣化が顕著に抑制されることを見出した。本発明者らは、かかる知見に基づきさらなる研究を重ねることにより、本発明を完成させるに至った。
即ち、本発明は、以下の項に記載の発明を包含する。
項1.一般式(1):
Lix(Ni1-yMy)O2+δ (1)
[式中、MはGe、Sn、Al、Co及びMnからなる群から選択される少なくとも1種を示す。x、y及びδはそれぞれ、0.8≦x≦1.4、0<y≦0.500、-0.20≦δ≦0.20を示す。]
で表される、リチウムニッケル系複合酸化物。
項2.MがGe、Sn、Al若しくはMnであるか、Al及びCoの組合せである、上記項1に記載のリチウムニッケル系複合酸化物。
項3.六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相を含む、上記項1又は2に記載のリチウムニッケル系複合酸化物。
項4.六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相のみからなる、上記項3に記載のリチウムニッケル系複合酸化物。
項5.上記項1~4のいずれかに記載のリチウムニッケル系複合酸化物の製造方法であって、
水性溶媒中で、リチウム化合物と、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを混合する第1工程、及び
前記第1工程により得られた混合物を酸化性雰囲気下で焼成する第2工程
を含む、製造方法。
項6.前記第1工程が、リチウム化合物を含む水溶液に、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを添加する工程である、上記項5に記載の製造方法。
項7.上記項1~4のいずれかに記載のリチウムニッケル系複合酸化物を含む、リチウムイオン二次電池用正極材料。
項8.上記項7に記載のリチウムイオン二次電池用正極材料を含む、リチウムイオン二次電池。
項1.一般式(1):
Lix(Ni1-yMy)O2+δ (1)
[式中、MはGe、Sn、Al、Co及びMnからなる群から選択される少なくとも1種を示す。x、y及びδはそれぞれ、0.8≦x≦1.4、0<y≦0.500、-0.20≦δ≦0.20を示す。]
で表される、リチウムニッケル系複合酸化物。
項2.MがGe、Sn、Al若しくはMnであるか、Al及びCoの組合せである、上記項1に記載のリチウムニッケル系複合酸化物。
項3.六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相を含む、上記項1又は2に記載のリチウムニッケル系複合酸化物。
項4.六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相のみからなる、上記項3に記載のリチウムニッケル系複合酸化物。
項5.上記項1~4のいずれかに記載のリチウムニッケル系複合酸化物の製造方法であって、
水性溶媒中で、リチウム化合物と、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを混合する第1工程、及び
前記第1工程により得られた混合物を酸化性雰囲気下で焼成する第2工程
を含む、製造方法。
項6.前記第1工程が、リチウム化合物を含む水溶液に、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを添加する工程である、上記項5に記載の製造方法。
項7.上記項1~4のいずれかに記載のリチウムニッケル系複合酸化物を含む、リチウムイオン二次電池用正極材料。
項8.上記項7に記載のリチウムイオン二次電池用正極材料を含む、リチウムイオン二次電池。
本発明のリチウムニッケル系複合酸化物をリチウムイオン二次電池用の正極活物質として用いることにより、高い初期充放電効率を有し、かつ高いサイクル特性を示すリチウムイオン二次電池を提供することが可能となる。
以下、本発明について詳細に説明する。
1.リチウムニッケル系複合酸化物
本発明は、リチウムニッケル系複合酸化物を包含する。本発明のリチウムニッケル系複合酸化物は、一般式(1):
Lix(Ni1-yMy)O2+δ (1)
[式中、MはGe、Sn、Al、Co、及びMnからなる群から選択される少なくとも1種を示す。x、y及びδはそれぞれ、0.8≦x≦1.4、0<y≦0.500、-0.20≦δ≦0.20を示す。]
で表される化合物である。
本発明は、リチウムニッケル系複合酸化物を包含する。本発明のリチウムニッケル系複合酸化物は、一般式(1):
Lix(Ni1-yMy)O2+δ (1)
[式中、MはGe、Sn、Al、Co、及びMnからなる群から選択される少なくとも1種を示す。x、y及びδはそれぞれ、0.8≦x≦1.4、0<y≦0.500、-0.20≦δ≦0.20を示す。]
で表される化合物である。
上記一般式(1)において、MはGe、Sn、Al、Co、及びMnからなる群から選択される少なくとも1種を示す。Mは、1種単独であってもよいし、2種以上の組合せであってもよい。2種の組合せとしては、Ge及びSn、Ge及びAl、Sn及びAl、Ge及びCo、Ge及びMn、Sn及びCo、Sn及びMn、Al及びCo、Al及びMn、並びにCo及びMnの組合せが挙げられ、3種の組合せとしては、例えば、Ge、Sn及びAl、並びにAl、Co及びMnの組合せが挙げられる。2種以上の組合せの場合、その比率は特に限定的ではなく、適宜決定することができる。また、中でも、Mは、Ge、Sn、Al若しくはMnであるか、Al及びCoの組合せであることが好ましく、Ge、Sn、又はAlであることがより好ましく、Ge又はAlであることが特に好ましい。
上記一般式(1)において、xは、LiとNi及びMとのモル比(Li/(Ni+M))に相当する。xが0.8未満であると容量の低下を招き、xが1.4を超えると結晶構造が電池特性の劣る単斜晶LiNiO2-Li2NiO3系固溶体に変化することから、xは、0.8≦x≦1.4である。また、サイクル特性の高い正極活物質とする観点からは、0.8≦x≦1.3とすることが好ましく、0.9≦x≦1.3とすることがより好ましい。
上記一般式(1)において、yは、0.0<y≦0.500であり、好ましくは0.001≦y≦0.300、より好ましくは0.001≦y≦0.200である。このような範囲とすることにより、初期充放電効率及びサイクル特性を向上させることができる。
上記一般式(1)において、δは、酸素量の不定比性に相当する。δは、-0.20≦δ≦0.20、好ましくは-0.15≦δ≦0.15、より好ましくは-0.10≦δ≦0.10である。
上記一般式(1)で表されるリチウムニッケル系複合酸化物としては、例えば、Li1.1(Ni0.9Ge0.1)O2、Li1.02(Ni0.9973Ge0.0027)O2、Li1.1(Ni0.9Sn0.1)O2、Li1.14(Ni0.989Sn0.011)O2、Li1.1(Ni0.9Al0.1)O2、Li1.00(Ni0.919Al0.081)O2、Li1.00(Ni0.8Co0.15Al0.05)O2、及びLi1.00(Ni0.7Mn0.3)O2などが挙げられる。
本発明のリチウムニッケル系複合酸化物は、空間群:
に帰属する六方晶層状岩塩型構造の結晶相、又は空間群:
に帰属する単斜晶層状岩塩型構造の結晶相を含むことが好ましい。本発明のリチウムニッケル系複合酸化物は、上記の六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相を含んでいればよく、他の岩塩型構造の結晶相(例えば、立方晶岩塩型構造等)を含む混合相であってもよい。混合相である場合、六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相の割合は、初期充放電効率及びサイクル特性の観点から、当該混合相全体を基準(100重量%)として、50~90重量%が好ましい。また、本発明のリチウムニッケル系複合酸化物は、上記の六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相のみからなるものであってもよい。
例えば、上記一般式(1)で表されるリチウムニッケル系複合酸化物のうち、MがGe、Sn、若しくはAlであるか、Al及びCoの組合せである場合には、六方晶層状岩塩型構造の結晶相を含むリチウムニッケル系複合酸化物が得られやすく、MがMnである場合には、単斜晶層状岩塩型構造の結晶相を含むリチウムニッケル系複合酸化物が得られやすい。
本発明のリチウムニッケル系複合酸化物は、初期充放電効率及びサイクル特性の観点から、Ni層(3bサイト)に存在する元素の総量を基準(100%)として、Ni層内におけるNi量及びM量の和の占有率が99.90%以下、特に70.00~99.80%であることが好ましい。
本発明のリチウムニッケル系複合酸化物は、六方晶層状岩塩型構造の結晶相を含む場合は、格子定数aが2.870Å以下であることが好ましく、2.850Å以上2.865Å以下であることがより好ましい。一方、単斜晶層状岩塩型構造の結晶相を含む場合は、格子定数aが5.000Å以下であることが好ましく、4.900Å以上4.980Å以下であること、格子定数bが8.600Å以下であることが好ましく、8.570Å以上8.590Å以下であることがより好ましい。六方晶層状岩塩型構造の結晶相については格子定数a、単斜晶層状岩塩型構造の結晶相については格子定数a及びbが、当該範囲にあることにより、サイクル特性に特に優れた正極活物質とすることができる。
本発明のリチウムニッケル系複合酸化物は、六方晶層状岩塩型構造の結晶相を含む場合は、格子定数cが14.10Å以上14.20Å以下であることが好ましい。一方、単斜晶層状岩塩型構造の結晶相を含む場合は、格子定数cが4.90Å以上5.10Å以下であることが好ましい。格子定数cが当該範囲にあることにより、初期充放電効率及びサイクル特性に特に優れた正極活物質とすることができる。
本発明のリチウムニッケル系複合酸化物は、六方晶層状岩塩型構造の結晶相を含む場合は、格子定数cを格子定数aで除した値(c/a)が4.940以上4.960以下であることが好ましい。格子定数cを格子定数aで除した値(c/a)が当該範囲にあることにより、初期充放電効率及びサイクル特性に特に優れた正極活物質とすることができる。
一方、単斜晶層状岩塩型構造の結晶相を含む場合は、a軸とc軸との間の角度βが105.0°以上112.0°以下であることが好ましい。a軸とc軸との間の角度βが当該範囲にあることにより、初期充放電効率及びサイクル特性に特に優れた正極活物質とすることができる。
本発明のリチウムニッケル系複合酸化物は、六方晶層状岩塩型構造の結晶相を含む場合は、格子体積が101.00Å3以下であることが好ましく、99.00Å3以上100.90Å3以下であることが好ましい。一方、単斜晶層状岩塩型構造の結晶相を含む場合は、格子体積が200.00Å3以上202.00Å3以下であることが好ましい。格子体積が当該範囲にあることにより、初期充放電効率及びサイクル特性に特に優れた正極活物質とすることができる。
なお、上記した結晶構造、Ni層内におけるNi量及びM量の和の占有率、格子定数a及びc、並びに格子体積は、いずれもCuKαを線源とし、回折角2θの測定範囲を10°以上125°以下とする粉末X線回折測定を行い、当該測定結果を元に結晶構造を六方晶層状岩塩型構造として定義してリートベルト解析を行うことにより決定又は算出したものである。
2.リチウムニッケル系複合酸化物の製造方法
本発明は、さらに、上記したリチウムニッケル系複合酸化物の製造方法を包含する。本発明のリチウムニッケル系複合酸化物の製造方法は、水性溶媒中で、リチウム化合物と、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを混合する工程(本明細書において「第1工程」と記載する場合がある。)、及び当該混合物を酸化性雰囲気下で焼成する工程(本明細書において「第2工程」と記載する場合がある。)を含む。
本発明は、さらに、上記したリチウムニッケル系複合酸化物の製造方法を包含する。本発明のリチウムニッケル系複合酸化物の製造方法は、水性溶媒中で、リチウム化合物と、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを混合する工程(本明細書において「第1工程」と記載する場合がある。)、及び当該混合物を酸化性雰囲気下で焼成する工程(本明細書において「第2工程」と記載する場合がある。)を含む。
第1工程において用いるリチウム化合物としては特に限定的ではなく、例えば、水酸化リチウム(水和物を含む)、炭酸リチウム、酢酸リチウム(水和物を含む)、硝酸リチウム、過塩素酸リチウム(水和物を含む)などが挙げられる。また、第1工程において用いるリチウム化合物は、仕込みニッケル及び金属Mのモル数に対して過剰であることが好ましく、1.5倍以上2.5倍以下であることがより好ましい。
第1工程において用いる金属M化合物としては特に限定的ではなく、例えば、金属Mの酸化物、水酸化物、塩化物、硫酸塩、硝酸塩、酢酸塩、及びこれらの水和物などが挙げられる。具体的には、酸化ゲルマニウム、スズ酸ナトリウム、水酸化アルミニウム、硝酸コバルト(水和物を含む)、水酸化コバルト、塩化マンガン(水和物を含む)、水酸化マンガンなどが挙げられる。
第1工程において用いる水酸化ニッケルとしては、市販のものを用いることができる。また、必要に応じて、水溶性ニッケル塩をアルカリで中和することにより得られるものを用いてもよい。この場合、あらかじめ水溶性ニッケル塩をアルカリで中和することにより得られた水酸化ニッケルを第1工程に使用することもできるし、水性溶媒中に水溶性ニッケル塩を投入して系中でアルカリで中和することで水酸化ニッケルを得ることもできる。水溶性ニッケル塩としては、例えば、硝酸塩、塩化物、硫酸塩、酢酸塩、及びその水和物などが挙げられる。また、水溶性ニッケル塩は1種単独で用いてもよいし、2種以上を混合して用いてもよい。
水溶性ニッケル塩を中和する際に用いるアルカリとしては特に限定的ではなく、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなどを用いることができる。アルカリの濃度は、アルカリに対して水溶性ニッケル塩を滴下していく中和工程の間中、pH11以上を維持できる濃度であればよい。また、中和工程時の温度は-10℃以上50℃以下とすることが好ましい。中和温度を低下させることにより水酸化ニッケルの核生成速度が速くなり、より微細な反応性の高い水酸化ニッケルを得ることができる。特に反応温度を0℃以下に保持するために、アルカリ水溶液にエタノールなどの不凍液を加えてもよい。このように、低温で反応させる場合、アルカリとしては水酸化リチウムを用いることが好ましい。これは、溶解度の温度依存性が水酸化ナトリウムや水酸化カリウムに比べてフラットであるため、低温でのアルカリ析出が起こりにくいためである。また、水酸化リチウム不純物として他のアルカリイオンを除去する必要がないうえに、残存する水酸化リチウムは上記したリチウム化合物として使用することもできるという工程上のメリットもある。中和工程時にアルカリ溶液に水溶性ニッケル塩を加えるには、均一な水酸化ニッケルを得るために滴下工程により数時間かけて徐々に行うことが好ましい。また、必要に応じて滴下終了後、沈殿を熟成するために沈殿を室温にて空気を吹き込みながら数時間以上撹拌してもよい。さらに、必要に応じて、沈殿を調製した後、残留アルカリを除去するために、沈殿を蒸留水で水洗後、濾過してもよい。
また、金属M化合物として、両性金属ではない金属を含む化合物(即ち、MがCo又はマンガンである場合)を用いる場合であって、水溶性ニッケル塩をアルカリで中和することにより水酸化ニッケルを得る場合、容易に均一混合状態が得られ、組成制御が容易になるため、水溶性ニッケル塩に金属M化合物として金属Mの水溶性塩を添加することが好ましい。このような金属Mの水溶性塩としては、例えば、金属Mの硝酸塩、塩化物、硫酸塩、酢酸塩、及びこれらの水和物などが挙げられる。
このような第1工程の具体的な方法としては、特に制限されないが、本発明のリチウムニッケル系複合酸化物の得やすさと製造工程の容易さの観点から、リチウム化合物を含む水溶液に、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを添加する工程とすることが好ましい。この場合、第1工程において、リチウム化合物を含む水溶液に金属M化合物及び水酸化ニッケルを添加する順序としては、特に制限されないが、本発明のリチウムニッケル系複合酸化物の得やすさと製造工程の容易さの観点から、リチウム化合物を含む水溶液に金属M化合物を添加し、金属M化合物が完全に溶解したことを確認した後に、水酸化ニッケルを添加することが好ましい。
また、第1工程において用いるリチウム化合物を含む水溶液は、アルカリ性であることが好ましい。アルカリ源としては特に限定的ではなく、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなどを用いることができる。これらアルカリ源を含む水溶液をまず作製し、金属M化合物を添加して溶解した後、リチウム化合物を添加することが好ましい。また、水酸化リチウムは、アルカリ源としてだけではなく、リチウム化合物としても作用するため好ましい。
また、本発明のリチウムニッケル系複合酸化物の製造方法は、上記した第1工程の後、後述する第2工程に供する前に、必要に応じて、混合物を乾燥する工程を含むことが好ましい。乾燥方法としては特に限定的ではなく常法に従って行うことができる。例えば、第1工程で得られた混合物をシャーレ等の容器に移し、50℃以上に保温した乾燥機に入れて数時間乾燥を行う方法などが挙げられる。当該乾燥工程により、第1工程で得られた混合物の乾燥粉末を調製することができる。また、乾燥後、第2工程に供する前に、必要に応じて得られた乾燥粉末を粉砕してもよい。
また、本発明のリチウムニッケル系複合酸化物の製造方法は、上記した第1工程の後、後述する第2工程に供する前に、必要に応じて、酸化性雰囲気下で、後述する第2工程における焼成温度よりも低い温度(例えば、550℃以下)で焼成する工程(以下、「予備焼成工程」と記載する。)を含んでいてもよい。酸化性雰囲気としては特に限定的ではなく、例えば、大気中雰囲気、酸素気流中などが挙げられる。また、焼成時間としては特に限定的ではなく、例えば、5時間以上とすることができる。このように、後述する第2工程に供する前に、予備焼成を行うことにより、リチウムをより多く取り込むことができるため、好ましい。
第2工程では、第1工程で得られた混合物を酸化性雰囲気下で焼成する。酸化性雰囲気としては特に限定的ではなく、例えば、大気中雰囲気、酸素気流中などが挙げられる。焼成温度としては、700℃を超えるとサイクル特性が劣化するおそれがあるため、700℃以下の温度とすることが好ましく、600℃以上700℃以下とすることがより好ましい。また、焼成時間としては特に限定的ではなく、例えば、1時間~30時間程度とすることができる。
また、本発明のリチウムニッケル系複合酸化物の製造方法は、上記した第2工程により得られた焼成物を、必要に応じて、上記した予備焼成工程と同様にして、酸化性雰囲気下で、上記した第2工程における焼成温度よりも低い温度(例えば、550℃以下)で焼成する工程を含んでいてもよい。酸化性雰囲気としては特に限定的ではなく、例えば、大気中雰囲気、酸素気流中などが挙げられる。また、焼成時間としては特に限定的ではなく、例えば、5時間以上とすることができる。このように、上記した第2工程の後に、さらに焼成を行うことにより、リチウムをより多く取り込むことができるため、好ましい。
また、本発明のリチウムニッケル系複合酸化物の製造方法は、上記した第2工程により得られた焼成物を冷却する工程を含むことが好ましい。焼成物の冷却方法としては特に限定的ではなく常法に従って行うことができ、例えば、焼成後、炉内で室温付近まで放置する方法などが挙げられる。
さらに、本発明のリチウムニッケル系複合酸化物の製造方法は、必要に応じて、上記した冷却工程を経た後、得られた焼成物を粉砕する工程、洗浄する工程、濾過する工程、及び乾燥する工程の少なくとも1つの工程を含むことが好ましい。これらの工程の具体的な方法としては特に限定的ではなく、常法に従って行うことができる。
3.リチウムイオン二次電池用正極材料及びリチウムイオン二次電池
上記した本発明のリチウムニッケル系複合酸化物は、リチウムイオン二次電池用正極材料として用いることができる。さらに、当該リチウムイオン二次電池用正極材料、負極、電解質(固体電解質を含む)、及びセパレータと組み合わせることにより、高容量かつサイクル特性に優れたリチウムイオン二次電池(非水系リチウムイオン二次電池及び全固体リチウムイオン二次電池)とすることができる。負極としては特に限定的ではなく、例えば、金属リチウム、黒鉛、Si-SiO系負極、LTO(Li4Ti5O12)系負極などが挙げられる。電解質としては特に限定的ではなく、LiPF6等を電解質塩とし、炭酸エチル(EC)や炭酸ジメチル(DMC)などの各種溶媒に溶解させた有機電解液、Li2S-P2S5、Li2S-GeS2-P2S5、Li2S-SiS2-Li3PO4などの無機硫化物系固体電解質、リチウムイオン導電性を有する高分子ポリマーなどが挙げられる。セパレータとしては特に限定的ではなく、ポリエチレン、ポリプロピレンなどが挙げられる。
上記した本発明のリチウムニッケル系複合酸化物は、リチウムイオン二次電池用正極材料として用いることができる。さらに、当該リチウムイオン二次電池用正極材料、負極、電解質(固体電解質を含む)、及びセパレータと組み合わせることにより、高容量かつサイクル特性に優れたリチウムイオン二次電池(非水系リチウムイオン二次電池及び全固体リチウムイオン二次電池)とすることができる。負極としては特に限定的ではなく、例えば、金属リチウム、黒鉛、Si-SiO系負極、LTO(Li4Ti5O12)系負極などが挙げられる。電解質としては特に限定的ではなく、LiPF6等を電解質塩とし、炭酸エチル(EC)や炭酸ジメチル(DMC)などの各種溶媒に溶解させた有機電解液、Li2S-P2S5、Li2S-GeS2-P2S5、Li2S-SiS2-Li3PO4などの無機硫化物系固体電解質、リチウムイオン導電性を有する高分子ポリマーなどが挙げられる。セパレータとしては特に限定的ではなく、ポリエチレン、ポリプロピレンなどが挙げられる。
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は下記の例に限定されるものではない。
[実施例1]
試料の調製
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に酸化ゲルマニウム2.62g(0.025mol)を加えて完全に溶解させた後、水酸化ニッケル20.86g(0.225mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて650℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
試料の調製
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に酸化ゲルマニウム2.62g(0.025mol)を加えて完全に溶解させた後、水酸化ニッケル20.86g(0.225mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて650℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
X線回折による評価
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図1に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.86418(4)Å、格子定数cが14.19540(17)Å、格子体積が100.851(2)Å3、c/a値が4.956、Ni層内のNi及びGeイオン占有率が92.07(15)%、Li層内のNi及びGeイオン占有率が0%であることが分かった。
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図1に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.86418(4)Å、格子定数cが14.19540(17)Å、格子体積が100.851(2)Å3、c/a値が4.956、Ni層内のNi及びGeイオン占有率が92.07(15)%、Li層内のNi及びGeイオン占有率が0%であることが分かった。
化学分析
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/(Ni+Ge)比が1.02、Ge/(Ni+Ge)比が0.0027であることが分かった。
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/(Ni+Ge)比が1.02、Ge/(Ni+Ge)比が0.0027であることが分かった。
充放電特性評価
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系(ECは炭酸エチレン、DMCは炭酸ジメチルを示す。)、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図2に示す。
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系(ECは炭酸エチレン、DMCは炭酸ジメチルを示す。)、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図2に示す。
図2より、実施例1で得られた生成物は、初期充電容量が239mAh/g、初期放電容量が217mAh/g、初期充放電効率が90.7%、初期放電平均電圧が3.75V、初期放電エネルギー密度が815mWh/g、50サイクル後の放電容量が184mAh/g、50サイクル後の放電容量維持率が84.7%であることが分かった。
[実施例2]
試料の調製
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液にスズ酸ナトリウム6.67g(0.025mol)を加えて完全に溶解させた後、水酸化ニッケル20.86g(0.225mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて625℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
試料の調製
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液にスズ酸ナトリウム6.67g(0.025mol)を加えて完全に溶解させた後、水酸化ニッケル20.86g(0.225mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて625℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
X線回折による評価
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図3に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.86013(10)Å、格子定数cが14.1509(4)Å、格子体積が100.250(6)Å3、c/a値が4.948、Ni層内のNi及びSnイオン占有率が81.12(18)%、Li層内のNi及びSnイオン占有率が0.83(6)%であることが分かった。
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図3に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.86013(10)Å、格子定数cが14.1509(4)Å、格子体積が100.250(6)Å3、c/a値が4.948、Ni層内のNi及びSnイオン占有率が81.12(18)%、Li層内のNi及びSnイオン占有率が0.83(6)%であることが分かった。
化学分析
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/(Ni+Sn)比が1.14、Sn/(Ni+Sn)比が0.011であることが分かった。
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/(Ni+Sn)比が1.14、Sn/(Ni+Sn)比が0.011であることが分かった。
充放電特性評価
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図4に示す。
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図4に示す。
図4より、実施例2で得られた生成物は、初期充電容量が236mAh/g、初期放電容量が201mAh/g、初期充放電効率が84.8%、初期放電平均電圧が3.72V、初期放電エネルギー密度が746mWh/g、50サイクル後の放電容量が171mAh/g、50サイクル後の放電容量維持率が72.6%であることが分かった。
[実施例3]
試料の調製
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に水酸化アルミニウム1.95g(0.025mol)を加えて完全に溶解させた後、水酸化ニッケル20.86g(0.225mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて650℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
試料の調製
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に水酸化アルミニウム1.95g(0.025mol)を加えて完全に溶解させた後、水酸化ニッケル20.86g(0.225mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて650℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
X線回折による評価
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図5に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.86305(5)Å、格子定数cが14.1800(2)Å、格子体積が100.662(3)Å3、c/a値が4.953、Ni層内のNi及びAlイオン占有率が99.78(19)%、Li層内のNi及びAlイオン占有率が0.09(7)%であることが分かった。
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図5に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.86305(5)Å、格子定数cが14.1800(2)Å、格子体積が100.662(3)Å3、c/a値が4.953、Ni層内のNi及びAlイオン占有率が99.78(19)%、Li層内のNi及びAlイオン占有率が0.09(7)%であることが分かった。
化学分析
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/(Ni+Al)比が1.00、Al/(Ni+Al)比が0.081であることが分かった。
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/(Ni+Al)比が1.00、Al/(Ni+Al)比が0.081であることが分かった。
充放電特性評価
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図6に示す。
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図6に示す。
図6より、実施例3で得られた生成物は、初期充電容量が230mAh/g、初期放電容量が207mAh/g、初期充放電効率が90.0%、初期放電平均電圧が3.70V、初期放電エネルギー密度が766mWh/g、50サイクル後の放電容量が171mAh/g、50サイクル後の放電容量維持率が82.6%であることが分かった。
[比較例1]
試料の調製
水酸化リチウム1水和物10.70g(0.255mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に水酸化ニッケル23.18g(0.25mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて700℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、再度、電気炉にて酸素気流中1時間かけて750℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
試料の調製
水酸化リチウム1水和物10.70g(0.255mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に水酸化ニッケル23.18g(0.25mol)を加えて撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを100℃に保たれた乾燥機に入れ、3時間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて700℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、再度、電気炉にて酸素気流中1時間かけて750℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
X線回折による評価
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図7に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.87589(3)Å、格子定数cが14.19150(13)Å、格子体積が100.6489(18)Å3、c/a値が4.935、Ni層内のNiイオン占有率が100%、Li層内のNiイオン占有率が0.56(5)%であることが分かった。
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図7に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.87589(3)Å、格子定数cが14.19150(13)Å、格子体積が100.6489(18)Å3、c/a値が4.935、Ni層内のNiイオン占有率が100%、Li層内のNiイオン占有率が0.56(5)%であることが分かった。
化学分析
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/Ni比が1.02であることが分かった。
ICP発光分析により上記で得られた生成物の化学組成を求めたところ、Li/Ni比が1.02であることが分かった。
充放電特性評価
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図8に示す。
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図8に示す。
図8より、比較例1で得られた生成物は、初期充電容量が259mAh/g、初期放電容量が220mAh/g、初期充放電効率が84.6%、初期放電平均電圧が3.80V、初期放電エネルギー密度が834mWh/g、30サイクル後の放電容量が176mAh/g、30サイクル後の放電容量維持率が80.4%、50サイクル後の放電容量が159mAh/g、50サイクル後の放電容量維持率が72.6%であることが分かった。
[実施例4]
試料の調製
硝酸ニッケル(II)6水和物と硝酸コバルト(II)6水和物を80:15のモル比(0.25mol/バッチ)となるように秤量し、蒸留水500mlに溶解させ、金属塩水溶液を調製した。次いで、水酸化ナトリウム50gの入った別の容器に蒸留水500mlを加えて完全に溶解させ、恒温槽にて20℃に保持した。水酸化ナトリウム水溶液に対して、上記で調製した金属塩水溶液を約3時間かけて徐々に滴下し、共沈物を作製した。その後、酸素ガス発生器を用いて共沈物を室温にて2日間バブリング処理を行うことにより沈殿を熟成した。熟成後、沈殿を水洗及び濾過して焼成用原料とした。
試料の調製
硝酸ニッケル(II)6水和物と硝酸コバルト(II)6水和物を80:15のモル比(0.25mol/バッチ)となるように秤量し、蒸留水500mlに溶解させ、金属塩水溶液を調製した。次いで、水酸化ナトリウム50gの入った別の容器に蒸留水500mlを加えて完全に溶解させ、恒温槽にて20℃に保持した。水酸化ナトリウム水溶液に対して、上記で調製した金属塩水溶液を約3時間かけて徐々に滴下し、共沈物を作製した。その後、酸素ガス発生器を用いて共沈物を室温にて2日間バブリング処理を行うことにより沈殿を熟成した。熟成後、沈殿を水洗及び濾過して焼成用原料とした。
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に水酸化アルミニウム0.98g(0.0125mol)を加えて完全に溶解させた後、上記で作成した焼成用原料を加えてミキサー撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを50℃に保たれた乾燥機に入れ、2日間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて500℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、再び電気炉にて酸素気流中1時間かけて700℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却をして焼成物を得た。蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
X線回折による評価
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図9に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.85522(6)Å、格子定数cが14.1473(3)Å、格子体積が99.881(4)Å3、c/a値が4.955、Ni層内のNi、Al、及びCoイオン占有率が98.0(3)%、Li層内のNi、Al、及びCoイオンの占有率が0%であることが分かった。
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図9に示す。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する六方晶LiNiO2単相であること、格子定数aが2.85522(6)Å、格子定数cが14.1473(3)Å、格子体積が99.881(4)Å3、c/a値が4.955、Ni層内のNi、Al、及びCoイオン占有率が98.0(3)%、Li層内のNi、Al、及びCoイオンの占有率が0%であることが分かった。
充放電特性評価
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V(2サイクル目以降:2.2~4.6V)、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で30サイクルまで行った。結果を図10に示す。
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V(2サイクル目以降:2.2~4.6V)、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で30サイクルまで行った。結果を図10に示す。
図10より、実施例4で得られた生成物は、初期充電容量が209mAh/g、初期放電容量が153mAh/g、初期充放電効率が73.2%、初期放電平均電圧が3.55V、初期放電エネルギー密度が566mWh/g、30サイクル後の放電容量が126mAh/g、30サイクル後の放電容量維持率が82.4%であることが分かった。
[実施例5]
試料の調製
硝酸ニッケル(II)6水和物と塩化マンガン(II)4水和物を7:3のモル比(0.25mol/バッチ)となるように秤量し、蒸留水500mlに溶解させ、金属塩水溶液を調製した。次いで、水酸化ナトリウム50gの入った別の容器に蒸留水500mlを加えて完全に溶解させ、恒温槽にて20℃に保持した。水酸化ナトリウム水溶液に対して、上記で調製した金属塩水溶液を約3時間かけて徐々に滴下し、共沈物を作製した。その後、酸素ガス発生器を用いて共沈物を室温にて2日間バブリング処理を行うことにより沈殿を熟成した。熟成後、沈殿を水洗及び濾過して焼成用原料とした。
試料の調製
硝酸ニッケル(II)6水和物と塩化マンガン(II)4水和物を7:3のモル比(0.25mol/バッチ)となるように秤量し、蒸留水500mlに溶解させ、金属塩水溶液を調製した。次いで、水酸化ナトリウム50gの入った別の容器に蒸留水500mlを加えて完全に溶解させ、恒温槽にて20℃に保持した。水酸化ナトリウム水溶液に対して、上記で調製した金属塩水溶液を約3時間かけて徐々に滴下し、共沈物を作製した。その後、酸素ガス発生器を用いて共沈物を室温にて2日間バブリング処理を行うことにより沈殿を熟成した。熟成後、沈殿を水洗及び濾過して焼成用原料とした。
水酸化リチウム1水和物20.98g(0.50mol)を200mlの蒸留水に加え完全に溶解させた。当該水酸化リチウム溶液に上記で作成した焼成用原料を加えてミキサー撹拌して分散させた。得られた混合物をポリテトラフルオロエチレン製シャーレに移し、当該シャーレを50℃に保たれた乾燥機に入れ、2日間かけて乾燥を行った。得られた乾燥粉末を粉砕混合し、電気炉にて酸素気流中1時間かけて500℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却して焼成物を得た。得られた焼成物を粉砕後、再び電気炉にて酸素気流中1時間かけて750℃に昇温し、20時間焼成を行い、その後、炉内で室温付近まで冷却をして焼成物を得た。蒸留水を用いて水洗処理を行った後、濾過し、100℃で乾燥することにより生成物を得た。
X線回折による評価
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図11に示す。なお、図11の右上部は、回折角2θが17~32°付近を拡大したものである。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する単斜晶Li2MnO3単相であることが分かった。また、当該生成物の結晶相が単斜晶であることは、図11の右上部に示される通り、回折角2θが20~30°の範囲において小さな超格子ピークが存在することにより確認された。さらに、リートベルト解析により、格子定数aが4.9425(5)Å、格子定数bが8.5751(6)Å、格子定数cが5.0099(3)Å、βが109.220(9)°、格子体積が200.5(6)Å3、Ni層内のNi及びMnイオン占有率が79.2(4)%、Li層内のNi及びMnイオン占有率が2.52(7)%であることが分かった。
上記で得られた生成物の実測(+)及び計算(実線)X線回折パターンを図11に示す。なお、図11の右上部は、回折角2θが17~32°付近を拡大したものである。また、リートベルト解析により、得られた生成物が層状岩塩型構造を有する単斜晶Li2MnO3単相であることが分かった。また、当該生成物の結晶相が単斜晶であることは、図11の右上部に示される通り、回折角2θが20~30°の範囲において小さな超格子ピークが存在することにより確認された。さらに、リートベルト解析により、格子定数aが4.9425(5)Å、格子定数bが8.5751(6)Å、格子定数cが5.0099(3)Å、βが109.220(9)°、格子体積が200.5(6)Å3、Ni層内のNi及びMnイオン占有率が79.2(4)%、Li層内のNi及びMnイオン占有率が2.52(7)%であることが分かった。
充放電特性評価
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図12に示す。
上記で得られた生成物5mgをアセチレンブラック5mgと混合した後、ポリテトラフルオロエチレン0.5mgを用いて正極合材を作製し、当該正極合材をアルミニウムメッシュに圧着して正極とした。次いで、当該正極、負極として金属リチウム、電解液として1M LiPF6/EC+DMC系、及びセパレータを用いてコイン型電池を作製し、充放電試験を行った。充放電試験は充電開始で、電位範囲:2.2~4.8V、正極活物質あたりの電流密度:40mA/g、試験温度:30℃の条件で50サイクルまで行った。結果を図12に示す。
図12より、実施例5で得られた生成物は、初期充電容量が162mAh/g、初期放電容量が125mAh/g、初期充放電効率が77.2%、初期放電平均電圧が3.73V、初期放電エネルギー密度が469mWh/g、50サイクル後の放電容量が103mAh/g、50サイクル後の放電容量維持率が82.0%であることが分かった。
[結果及び考察]
以上の実施例1~5及び比較例1の試料のX線回折による評価結果及び化学分析結果を下記表1に、充放電特性評価の結果を下記表2に示す。
以上の実施例1~5及び比較例1の試料のX線回折による評価結果及び化学分析結果を下記表1に、充放電特性評価の結果を下記表2に示す。
以上の結果から、実施例1の試料は、比較例1の試料と比較して、初期充放電容量、初期放電平均電圧、及び初期放電エネルギー密度はほぼ同等であり、初期充放電効率、50サイクル後の放電容量、及び50サイクル後の放電容量維持率が優れることが分かった。
また、実施例2及び3の試料は、比較例1の試料と比較して、初期充放電容量、初期放電平均電圧、及び初期放電エネルギー密度はやや劣るもののリチウムイオン二次電池用正極材料として十分使用可能な水準であり、初期充放電効率はほぼ同等であり、50サイクル後の放電容量、及び50サイクル後の放電容量維持率が優れていることが分かった。
実施例4の試料は、比較例1の試料と比較して、初期充放電容量、初期充放電効率、初期放電平均電圧、及び初期放電エネルギー密度は劣るもののリチウムイオン二次電池用正極用材料として使用可能な水準であり、30サイクル後の放電容量維持率が優れていることが分かった。
実施例5の試料は、比較例1の試料と比較して、初期充放電容量、初期充放電効率、初期放電平均電圧、及び初期放電エネルギー密度は劣るもののリチウムイオン二次電池用正極用材料として使用可能な水準であり、50サイクル後の放電容量維持率が優れていることが分かった。
Claims (8)
- 一般式(1):
Lix(Ni1-yMy)O2+δ (1)
[式中、MはGe、Sn、Al、Co、及びMnからなる群から選択される少なくとも1種を示す。x、y及びδはそれぞれ、0.8≦x≦1.4、0<y≦0.500、-0.20≦δ≦0.20を示す。]
で表される、リチウムニッケル系複合酸化物。 - MがGe、Sn、Al若しくはMnであるか、Al及びCoの組合せである、請求項1に記載のリチウムニッケル系複合酸化物。
- 六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相を含む、請求項1又は2に記載のリチウムニッケル系複合酸化物。
- 六方晶層状岩塩型構造の結晶相又は単斜晶層状岩塩型構造の結晶相のみからなる、請求項3に記載のリチウムニッケル系複合酸化物。
- 請求項1~4のいずれかに記載のリチウムニッケル系複合酸化物の製造方法であって、
水性溶媒中で、リチウム化合物と、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを混合する第1工程、及び
前記第1工程により得られた混合物を酸化性雰囲気下で焼成する第2工程
を含む、製造方法。 - 前記第1工程が、リチウム化合物を含む水溶液に、金属M化合物と、水酸化ニッケル及び/又は水溶性ニッケル塩とを添加する工程である、請求項5に記載の製造方法。
- 請求項1~4のいずれかに記載のリチウムニッケル系複合酸化物を含む、リチウムイオン二次電池用正極材料。
- 請求項7に記載のリチウムイオン二次電池用正極材料を含む、リチウムイオン二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018537277A JPWO2018043436A1 (ja) | 2016-08-30 | 2017-08-28 | 異種金属含有リチウムニッケル複合酸化物及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-168501 | 2016-08-30 | ||
JP2016168501 | 2016-08-30 | ||
JP2016-221043 | 2016-11-11 | ||
JP2016221043 | 2016-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043436A1 true WO2018043436A1 (ja) | 2018-03-08 |
Family
ID=61300953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/030810 WO2018043436A1 (ja) | 2016-08-30 | 2017-08-28 | 異種金属含有リチウムニッケル複合酸化物及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018043436A1 (ja) |
WO (1) | WO2018043436A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111918840A (zh) * | 2018-03-28 | 2020-11-10 | 住友金属矿山株式会社 | 锂镍复合氧化物及锂镍复合氧化物的制造方法 |
JP2021017397A (ja) * | 2019-07-23 | 2021-02-15 | 国立研究開発法人産業技術総合研究所 | 単斜晶系リチウムニッケルマンガン系複合酸化物及びその製造方法 |
CN116014104A (zh) * | 2023-01-05 | 2023-04-25 | 深圳市德方创域新能源科技有限公司 | 富锂镍系正极材料及其制备方法、正极片与二次电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290863A (ja) * | 1985-05-10 | 1987-04-25 | Asahi Chem Ind Co Ltd | 二次電池 |
JPH05283076A (ja) * | 1992-02-07 | 1993-10-29 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池およびその正極活物質の製造法 |
WO1998057386A1 (fr) * | 1997-06-12 | 1998-12-17 | Sanyo Electric Co., Ltd. | Cellule secondaire a electrolyte non aqueux |
JP2004356092A (ja) * | 2003-05-02 | 2004-12-16 | Sony Corp | 電池 |
JP2013056801A (ja) * | 2011-09-08 | 2013-03-28 | Sumitomo Chemical Co Ltd | リチウム複合金属酸化物およびその製造方法 |
WO2014051089A1 (ja) * | 2012-09-28 | 2014-04-03 | 住友金属鉱山株式会社 | ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097087A (ja) * | 2003-07-18 | 2005-04-14 | Tosoh Corp | 新規なリチウム・ニッケル・マンガン複合酸化物およびその製造方法 |
JP6217636B2 (ja) * | 2012-07-12 | 2017-10-25 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質およびその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池 |
-
2017
- 2017-08-28 WO PCT/JP2017/030810 patent/WO2018043436A1/ja active Application Filing
- 2017-08-28 JP JP2018537277A patent/JPWO2018043436A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290863A (ja) * | 1985-05-10 | 1987-04-25 | Asahi Chem Ind Co Ltd | 二次電池 |
JPH05283076A (ja) * | 1992-02-07 | 1993-10-29 | Matsushita Electric Ind Co Ltd | 非水電解液二次電池およびその正極活物質の製造法 |
WO1998057386A1 (fr) * | 1997-06-12 | 1998-12-17 | Sanyo Electric Co., Ltd. | Cellule secondaire a electrolyte non aqueux |
JP2004356092A (ja) * | 2003-05-02 | 2004-12-16 | Sony Corp | 電池 |
JP2013056801A (ja) * | 2011-09-08 | 2013-03-28 | Sumitomo Chemical Co Ltd | リチウム複合金属酸化物およびその製造方法 |
WO2014051089A1 (ja) * | 2012-09-28 | 2014-04-03 | 住友金属鉱山株式会社 | ニッケルコバルト複合水酸化物とその製造方法および製造装置、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111918840A (zh) * | 2018-03-28 | 2020-11-10 | 住友金属矿山株式会社 | 锂镍复合氧化物及锂镍复合氧化物的制造方法 |
JP2021017397A (ja) * | 2019-07-23 | 2021-02-15 | 国立研究開発法人産業技術総合研究所 | 単斜晶系リチウムニッケルマンガン系複合酸化物及びその製造方法 |
JP7557191B2 (ja) | 2019-07-23 | 2024-09-27 | 国立研究開発法人産業技術総合研究所 | 単斜晶系リチウムニッケルマンガン系複合酸化物及びその製造方法 |
CN116014104A (zh) * | 2023-01-05 | 2023-04-25 | 深圳市德方创域新能源科技有限公司 | 富锂镍系正极材料及其制备方法、正极片与二次电池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018043436A1 (ja) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7718319B2 (en) | Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries | |
KR100701532B1 (ko) | 불소화합물이 첨가된 리튬이차전지 양극 활물질 및 그제조방법 | |
KR101729824B1 (ko) | 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극 및 리튬 이온 전지 | |
JP6119003B2 (ja) | リチウムマンガン系複合酸化物およびその製造方法 | |
JP5958926B2 (ja) | リチウムマンガン系複合酸化物およびその製造方法 | |
JP5737513B2 (ja) | 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP2006253140A (ja) | 非水電解質リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池 | |
JP6872816B2 (ja) | ニッケルマンガン系複合酸化物及びその製造方法 | |
KR20150074744A (ko) | 붕소 화합물이 코팅된 리튬 이차 전지용 양극 활물질 및 이의 제조 방법 | |
CN104160530A (zh) | 非水电解液二次电池 | |
JP6117718B2 (ja) | リチウム複合酸化物 | |
JP4997609B2 (ja) | リチウムマンガン系複合酸化物の製造方法 | |
CN110809563A (zh) | 制备正极活性材料的方法 | |
JP6754891B2 (ja) | スピネル型リチウムニッケルマンガン含有複合酸化物 | |
WO2018043436A1 (ja) | 異種金属含有リチウムニッケル複合酸化物及びその製造方法 | |
WO2018096999A1 (ja) | リチウムマンガン系複合酸化物及びその製造方法 | |
WO2018096972A1 (ja) | リチウムマンガン系複合酸化物及びその製造方法 | |
JP7163624B2 (ja) | リチウムイオン二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いたリチウムイオン二次電池 | |
JP7048944B2 (ja) | チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法 | |
JP7043076B2 (ja) | リチウムニッケル系複合酸化物及びその製造方法 | |
JP2008133149A (ja) | リチウム−鉄−マンガン複合酸化物の製造方法 | |
CN113161537B (zh) | 高镍材料及其制备方法与应用 | |
JP7133215B2 (ja) | ニッケルマンガン系複合酸化物及びその製造方法 | |
JP2024121136A (ja) | リチウムマンガン系複合酸化物およびその製造方法、ならびにこれを含むリチウムイオン二次電池用活物質およびリチウムイオン二次電池 | |
JP2003203678A (ja) | リチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018537277 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846441 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17846441 Country of ref document: EP Kind code of ref document: A1 |