[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018043316A1 - Method for manufacturing cogged v-belts - Google Patents

Method for manufacturing cogged v-belts Download PDF

Info

Publication number
WO2018043316A1
WO2018043316A1 PCT/JP2017/030465 JP2017030465W WO2018043316A1 WO 2018043316 A1 WO2018043316 A1 WO 2018043316A1 JP 2017030465 W JP2017030465 W JP 2017030465W WO 2018043316 A1 WO2018043316 A1 WO 2018043316A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber layer
unvulcanized
belt
sleeve
forming step
Prior art date
Application number
PCT/JP2017/030465
Other languages
French (fr)
Japanese (ja)
Inventor
三浦 義弘
高場 晋
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017158621A external-priority patent/JP6563986B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to US16/328,188 priority Critical patent/US11518125B2/en
Priority to CN201780042490.3A priority patent/CN109477549B/en
Priority to EP17846321.2A priority patent/EP3505791B1/en
Publication of WO2018043316A1 publication Critical patent/WO2018043316A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a method for manufacturing a cogged V-belt in which a plurality of cogs extending in the belt width direction and spaced apart from each other in the belt longitudinal direction are provided on the inner circumferential side of the belt.
  • V-belts with cogs have excellent flexibility due to multiple cogs, and are applied to general industrial machinery, agricultural machinery, snowmobiles, motorcycles, automobile accessory drive systems, etc., and also to continuously variable transmissions Sometimes it is done.
  • a cylindrical drum having irregularities on the outer peripheral surface is used, and a plurality of unvulcanized rubber sheets (compressed rubber layer, back rubber layer (extension rubber) are formed on the outer peripheral surface of the drum.
  • the unvulcanized sleeve was heated and pressurized to form a plurality of cogs corresponding to the irregularities of the drum.
  • Patent Document 1 A technique for obtaining a vulcanized sleeve is known (see Patent Document 1).
  • the unvulcanized rubber sheet for the compressed rubber layer that becomes the compressed rubber layer flows along the irregularities of the drum.
  • the flow mode of the unvulcanized rubber sheet for the compressed rubber layer differs between the concave portion and the convex portion of the drum, or the unvulcanized rubber when the unvulcanized rubber sheet for the compressed rubber layer flows into the concave portion of the drum.
  • the flow of the unvulcanized rubber sheet for the compressed rubber layer can be non-uniform by winding another unvulcanized rubber sheet on the belt outer periphery side with respect to the sheet.
  • the thickness of the cogged portion (cog portion) in the compressed rubber layer becomes non-uniform.
  • a dent is generated on the outer peripheral side of the belt of the cogged portion in the compressed rubber layer.
  • Another rubber layer made of the other unvulcanized rubber sheet may enter.
  • a crack starting from a dent is generated at the interface between the compressed rubber layer and another rubber layer, and the compressed rubber layer can be peeled off from the other rubber layer.
  • An object of the present invention is to provide a manufacturing method of a cogged V-belt that can suppress generation of cracks starting from a dent of the compressed rubber layer and peeling of the compressed rubber layer.
  • a plurality of unvulcanized rubbers including at least a non-vulcanized rubber sheet for a compressed rubber layer to be a compressed rubber layer disposed on the side and an unvulcanized rubber sheet for a stretched rubber layer to be a stretched rubber layer disposed on the outer peripheral side of the belt
  • the present invention is not a method in which the unvulcanized sleeve is pressurized and the unvulcanized rubber sheet for the compressed rubber layer is flowed to form a plurality of cogs, but the unvulcanized sleeve is vulcanized and vulcanized.
  • a method of forming a plurality of cogs after forming the sleeve is employed. Therefore, the problem that the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes uneven and the dent on the outer peripheral side of the belt of the cog portion in the compressed rubber layer is suppressed, and as a result, the dent of the compressed rubber layer is the starting point. Generation
  • production of a crack and peeling from another rubber layer of a compression rubber layer can be suppressed.
  • the unvulcanized rubber sheet for the compressed rubber layer laminated in the unvulcanized sleeve forming step may include short fibers oriented in the belt width direction. According to the above configuration, by orienting the short fibers in the belt width direction, high anisotropy can be obtained, and the elastic modulus in the belt width direction can be increased to effectively improve the side pressure resistance. In particular, when applied to a continuously variable transmission, the cogged V-belt is greatly bent and used in a harsh layout under a high load. Therefore, high durability and fuel saving (transmission) are required. In this respect, according to the above configuration, the side pressure resistance (deformation resistance due to side pressure), which is one of the important factors responsible for both durability and fuel efficiency, can be improved.
  • the present invention can be suitably applied to a continuously variable transmission that requires high-load transmission. Moreover, in the structure which mix
  • the present invention is not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs, but the unvulcanized sleeve is vulcanized. Since the method of forming a plurality of cogs after forming a vulcanized sleeve, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and the orientation of short fibers Disturbance is also suppressed.
  • the unvulcanized rubber sheet for the compressed rubber layer may include a plurality of sheet members each including the short fibers and laminated to each other.
  • a short fiber is each provided in each of several sheet members with comparatively small thickness. By aligning and laminating them, the short fibers can be easily oriented.
  • the unvulcanized sleeve for the compressed rubber layer is caused to flow by applying pressure to the unvulcanized sleeve as in Patent Document 1.
  • the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes non-uniform, and separation may occur between the plurality of sheet members when the belt is used.
  • the present invention is not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs, but the unvulcanized sleeve is vulcanized. Since the method of forming a plurality of cogs after forming a vulcanized sleeve, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and a plurality of sheet members Peeling is unlikely to occur.
  • an unvulcanized rubber sheet for an adhesive rubber layer serving as an adhesive rubber layer is provided between the unvulcanized rubber sheet for the compressed rubber layer and the unvulcanized rubber sheet for the stretch rubber layer. May be arranged.
  • the method of applying pressure to the unvulcanized sleeve and flowing the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs as in Patent Document 1 the unvulcanized for the compressed rubber layer is employed.
  • the present invention is not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs, but the unvulcanized sleeve is vulcanized.
  • the method of forming multiple cogs after forming the vulcanized sleeve prevents problems such as entanglement of the unvulcanized rubber sheet for the adhesive rubber layer and penetration of the adhesive rubber layer into the recess. In addition, cracks starting from the dents are unlikely to occur at the interface between the compressed rubber layer and the adhesive rubber layer, and peeling of the compressed rubber layer from the adhesive rubber layer is also suppressed.
  • a core wire extending in the belt longitudinal direction may be disposed in the unvulcanized rubber sheet for the adhesive rubber layer.
  • the core wire is buried in the adhesive rubber layer, and the durability is improved as compared with the case where the core wire is not buried in the adhesive rubber layer and is only in contact with the adhesive rubber layer.
  • the present invention is not a method in which the unvulcanized sleeve is pressurized and the unvulcanized rubber sheet for the compressed rubber layer is flowed to form a plurality of cogs, but the unvulcanized sleeve is vulcanized and vulcanized.
  • a method of forming a plurality of cogs after forming the sleeve is employed. Therefore, the problem that the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes uneven and the dent on the outer peripheral side of the belt of the cog portion in the compressed rubber layer is suppressed, and as a result, the dent of the compressed rubber layer is the starting point. Generation
  • production of a crack and peeling from another rubber layer of a compression rubber layer can be suppressed.
  • FIG. 1 is a perspective sectional view showing a cogged V-belt according to an embodiment of the present invention.
  • FIGS. 2A and 2B are cross-sectional views showing an example in which a cogged V-belt according to an embodiment of the present invention is applied to a continuously variable transmission.
  • FIG. 3 is a flowchart showing a method for manufacturing a cogged V-belt according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a running pattern of an actual vehicle in the durability running test of the cogged V-belt according to the example and the comparative example.
  • FIG. 5A is a schematic diagram illustrating a side surface of a cogged V-belt according to a comparative example after the durability running test.
  • FIG. 5B is a schematic view showing a side surface of the cogged V-belt according to the example after the durability running test.
  • the cogged V-belt 1 includes a reinforcing cloth 2, a stretch rubber layer 3, an adhesive rubber layer 4, and a belt from the belt outer peripheral side 1 y toward the belt inner peripheral side 1 x. It has a structure in which the compressed rubber layers 5 are sequentially laminated. A core wire 4a extending in the longitudinal direction of the belt is embedded in the adhesive rubber layer 4.
  • the stretch rubber layer 3, the adhesive rubber layer 4 and the compression rubber layer 5 are formed of a rubber composition containing a rubber component. Furthermore, the rubber composition constituting the stretched rubber layer 3 and the compressed rubber layer 5 includes short fibers.
  • a vulcanizable or crosslinkable rubber may be used, for example, a diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), Hydrogenated nitrile rubber, etc.), ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber, or You may use what combined 2 or more types.
  • a diene rubber natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), Hydrogenated nitrile rubber, etc.
  • SBR styrene but
  • Preferred rubber components are ethylene- ⁇ -olefin elastomers (ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), etc.), and chloroprene rubber.
  • EPM ethylene-propylene copolymer
  • EPDM ethylene-propylene-diene terpolymer
  • a particularly preferred rubber component is chloroprene rubber.
  • the chloroprene rubber may be either a sulfur-modified type or a non-sulfur-modified type.
  • Additives may be added to the rubber composition.
  • the additive include a vulcanizing agent or a crosslinking agent (or a crosslinking agent system) (sulfur-based vulcanizing agent, etc.), a co-crosslinking agent (bismaleimides, etc.), a vulcanization aid or a vulcanization accelerator (thiuram-based).
  • vulcanization retarders metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), enhancers (for example, carbon black, water content) Silicon oxides such as silica), fillers (clay, calcium carbonate, talc, mica, etc.), softeners (for example, oils such as paraffin oil and naphthenic oil), processing agents or processing aids (stearic acid, stearin) Acid metal salts, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending agents, anti-ozone agents, etc.), colorants, tackifiers, plastics , Coupling agents (silane coupling agent, etc.), stabilizers (UV absorbers, heat stabilizers, etc.), flame retardants, may be used a combination antistatic agent, one or more of.
  • the metal oxide may act as a crosslinking agent.
  • the short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (for example, polyethylene terephthalate ( PET) fiber, polyethylene naphthalate (PEN) fiber, etc., C 2-4 alkylene C 6-14 arylate fiber), vinylon fiber, polyvinyl alcohol fiber, polyparaphenylene benzobisoxazole (PBO) fiber, etc.
  • a combination of one or more of natural fibers such as cotton, hemp, and wool; inorganic fibers such as carbon fibers may be used.
  • the short fibers may be subjected to a conventional adhesion treatment (or surface treatment). May be processed.
  • the rubber composition constituting the stretch rubber layer 3, the adhesive rubber layer 4 and the compression rubber layer 5 may be the same as each other or different from each other.
  • the short fibers contained in the stretch rubber layer 3 and the compressed rubber layer 5 may be the same as each other or different from each other.
  • a plurality of core wires 4a extend in the belt longitudinal direction and are spaced apart from each other at a predetermined pitch in the belt width direction.
  • the core wire 4a is made of, for example, a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists).
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire 4a may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2.0 mm, and more preferably about 0.7 to 1.5 mm.
  • the fibers constituting the core wire 4a the fibers exemplified as the short fibers may be used.
  • the fibers constituting the core 4a include polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (for example, polyethylene terephthalate (PET) fibers, Synthetic fibers such as polyethylene naphthalate (PEN) fibers, C 2-4 alkylene C 6-14 arylate fibers); inorganic fibers such as carbon fibers may be used, particularly polyamide fibers and polyalkylene arylate fibers. It is preferable to use it.
  • the fiber constituting the core wire 4a may be a multifilament yarn.
  • the fineness of the core wire 4a composed of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the multifilament yarn may include, for example, about 100 to 5000, preferably 500 to 4000, and more preferably about 1000 to 3000 monofilament yarns.
  • the core wire 4a may be subjected to a conventional adhesion treatment (or surface treatment) as in the case of the short fibers.
  • the reinforcing cloth 2 is made of a cloth material such as woven cloth, wide-angle sail cloth, knitted cloth, non-woven cloth (preferably woven cloth).
  • the reinforcing cloth 2 is subjected to an adhesive treatment (for example, an immersion treatment with an RFL solution) on the cloth material, and a friction process in which the rubber composition is rubbed into the cloth material or a process of laminating the sheet-like rubber composition and the cloth material. After that, it may be laminated on the surface of the stretch rubber layer 3.
  • an adhesive treatment for example, an immersion treatment with an RFL solution
  • the cross section perpendicular to the belt longitudinal direction of the V-belt 1 with cogs has an inverted trapezoidal shape in which the belt width decreases from the belt outer peripheral side 1y toward the belt inner peripheral side 1x.
  • a plurality of cogs 1a are formed on the inner circumferential side 1x of the V belt 1 with cogs.
  • the plurality of cogs 1a are formed in the compressed rubber layer 5, and extend in the belt width direction and are spaced apart from each other in the belt longitudinal direction.
  • the cogged V-belt 1 is applicable to a continuously variable transmission 30 as shown in FIG.
  • the continuously variable transmission 30 includes a drive pulley 31 and a driven pulley 32 having V-shaped grooves 31x and 32x, respectively, into which the cogged V-belt 1 is fitted.
  • the cogged V-belt 1 is wound with tension applied to the driving pulley 31 and the driven pulley 32 to define both side surfaces 1z of the cogged V-belt 1 and grooves 31x and 32x of the driving pulley 31 and the driven pulley 32, respectively.
  • the vehicle travels in a state where both side surfaces 31z and 32z are in contact with each other.
  • the torque of the drive pulley 31 is transmitted to the driven pulley 32 via the cogged V-belt 1 due to the frictional force between both side surfaces generated at this time.
  • the driving pulley 31 and the driven pulley 32 are attached to fixed pulley pieces 31a and 32a having rotating shafts 31t and 32t, respectively, so as to be movable in the direction along the rotating shafts 31t and 32t with respect to the fixed pulley pieces 31a and 32a.
  • Movable pulley pieces 31b and 32b Movable pulley pieces 31b and 32b.
  • the movable pulley pieces 31b and 32b are formed between the fixed pulley pieces 31a and 32a and the movable pulley pieces 31b and 32b by moving in the direction along the rotation shafts 31t and 32t with respect to the fixed pulley pieces 31a and 32a.
  • the width of the groove 31x, 32x changes.
  • the position of the cogged V-belt 1 in the grooves 31x and 32x changes according to the change in the width of the grooves 31x and 32x.
  • the state shown in FIG. 2 (a) is changed to the state shown in FIG. 2 (b) (that is, the width of the groove 31x is narrow and the width of the groove 32x is wide)
  • the cogged V-belt 1 Is moved away from the rotating shaft 31t, and the groove 32x moves closer to the rotating shaft 32t.
  • the continuously variable transmission 30 is configured to change the speed ratio steplessly by continuously changing the winding radius in this way.
  • the manufacturing method according to the present embodiment includes an unvulcanized sleeve forming step S1, a vulcanized sleeve forming step S2, a cog-free V-belt forming step S3, and a cog forming step S4.
  • the unvulcanized sleeve forming step S1 is a step of forming an annular unvulcanized sleeve.
  • a cylindrical drum is used, and on the outer peripheral surface of the drum, the unvulcanized rubber sheet for the compressed rubber layer that becomes the compressed rubber layer 5, the compressed rubber layer 5 in the adhesive rubber layer 4, and Unvulcanized rubber sheet for the first adhesive rubber layer to be in contact, core 4a, unvulcanized rubber sheet for the second adhesive rubber layer to be in contact with the stretch rubber layer 3 in the adhesive rubber layer 4, stretch rubber
  • the unvulcanized rubber sheet for the stretch rubber layer and the reinforcing cloth 2 to be the layer 3 are laminated in order.
  • corrugation corresponding to several cogs 1a is not provided in the outer peripheral surface of the said drum.
  • the unvulcanized sleeve forming step S1 first, a plurality of sheet members including short fibers and laminated together are used as unvulcanized rubber sheets for the compressed rubber layer, and the short fibers of each sheet member are belted. Oriented in the width direction and wound on a cylindrical drum (S1a). Thereafter, the unvulcanized rubber sheet for the first adhesive rubber layer is laminated on the unvulcanized rubber sheet for the compressed rubber layer (S1b). Thereafter, the core 4a is spun spirally on the unvulcanized rubber sheet for the first adhesive rubber layer (S1c). Thereafter, an unvulcanized rubber sheet for the second adhesive rubber layer is laminated on the core wire 4a (S1d).
  • the unvulcanized rubber sheet for the stretch rubber layer is laminated on the unvulcanized rubber sheet for the second adhesive rubber layer (S1e).
  • the reinforcing cloth 2 is laminated on the unvulcanized rubber sheet for the stretch rubber layer (S1f).
  • the average length of the short fibers contained in the sheet member is preferably in the range of 1 to 20 mm, more preferably in the range of 1.2 to 15 mm, and further preferably in the range of 2 to 6 mm.
  • the reason for this is that if the average length of the short fibers is too short, the mechanical properties (for example, the modulus) in the line direction may not be sufficiently improved. This is because there is a possibility that the fiber is poorly dispersed, the rubber is cracked, and the belt is damaged early.
  • the average fiber diameter of the short fibers is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 3 to 50 ⁇ m, and further preferably in the range of 5 to 30 ⁇ m. The reason is that if the average fiber diameter is too large, the mechanical properties of the compressed rubber layer may be lowered, and if it is too small, the surface friction coefficient may not be sufficiently reduced.
  • the blending amount (ratio) of the short fibers is preferably 30 parts by mass or less, more preferably 8 to 30 parts by mass, and further preferably 10 to 28 parts by mass with respect to 100 parts by mass of the rubber component. It is preferably 12 to 25 parts by mass. The reason for this is that if the proportion of short fibers is too small, the mechanical properties of the compressed rubber layer may be reduced. On the other hand, if the proportion is too large, in addition to the reduction in transmission efficiency, dispersion of the short fibers in the rubber composition may occur. This is because there is a possibility that cracking may occur at an early stage in the compressed rubber layer starting from that point.
  • a sheet member laminated as an unvulcanized rubber sheet for a compressed rubber layer having a thickness of 0.2 to 2.5 mm, preferably 0.5 to 1.6 mm.
  • An unvulcanized rubber sheet for a compressed rubber layer is formed by laminating sheet members having a thickness in the left range to a predetermined thickness.
  • the vulcanized sleeve forming step S2 is a step of forming an annular vulcanized sleeve by vulcanizing the obtained unvulcanized sleeve after the unvulcanized sleeve forming step S1.
  • a known method may be employed. For example, a vulcanization jacket is placed on the outside of the unvulcanized sleeve and a mold is placed on the vulcanization can, and the temperature is 120 to 200 ° C.
  • the unvulcanized sleeve may be vulcanized at about ⁇ 180 ° C.
  • the cogless V-belt forming step S3 is a step of forming an annular cog-free (no cog 1a) V-belt after the vulcanization sleeve forming step S2.
  • the vulcanization jacket and the vulcanization sleeve are extracted from the vulcanization can, then the vulcanization sleeve is cut to a predetermined width, and the side is cut with a cutter or the like so as to obtain a predetermined V angle. By doing so, a coggless V-belt is formed.
  • the cog forming step S4 is a step of forming a plurality of cogs 1a on the compressed rubber layer 5 after the cogless V-belt forming step S3. That is, the cogs 1a are not formed in the steps S1 to S3, and the cogs 1a are formed in the step S4.
  • the cog forming step S4 an arbitrary method may be adopted, for example, a water jet processing machine may be used. An example of a procedure for forming the cogs 1a using a water jet processing machine will be described below.
  • a wooden plate, a plastic plate, and a metal plate are arranged in this order on a water tank of a water jet processing machine and fixed with tape or the like.
  • channel of the same shape as the belt inner peripheral side 1x containing several cogs 1a are formed in the metal plate arrange
  • the four reference holes correspond to the four pin holes formed in the cylindrical belt fixing jig to which the annular cogless V-belt is fixed.
  • the annular cogless V-belt formed in S3 is attached to the belt fixing jig with the compression rubber layer 5 on the outside and the stretch rubber layer 3 on the inside, and the belt fixing jig is installed on the metal plate.
  • the control unit of the water jet processing machine reads the data related to the shape of the belt inner peripheral side 1x including the plurality of cogs 1a, inputs the processing conditions such as the belt thickness and the processing speed, and performs the processing.
  • the present embodiment it is not a method of forming a plurality of cogs 1a by applying pressure to the unvulcanized sleeve and causing the unvulcanized rubber sheet for the compressed rubber layer to flow.
  • a method of forming a plurality of cogs 1a after vulcanizing an unvulcanized sleeve to form a vulcanized sleeve is employed (see S1 to S4 in FIG. 3). Therefore, the problem that the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes uneven and the dent on the belt outer peripheral side 1y of the cog portion in the compressed rubber layer 5 is suppressed, and as a result, the dent of the compressed rubber layer 5 is reduced. Generation of cracks as a starting point and peeling of the compressed rubber layer 5 from another rubber layer (the adhesive rubber layer 4 in the present embodiment) can be suppressed.
  • the unvulcanized rubber sheet for compressed rubber layer containing short fibers is used to orient the short fibers in the belt width direction (see S1a in FIG. 3).
  • the elastic modulus in the belt width direction can be increased to effectively improve the side pressure resistance.
  • the cogged V-belt 1 is greatly bent and used in a harsh layout under a high load, so that high durability and fuel saving (transmission) are required. .
  • the present invention can be suitably applied to the continuously variable transmission 30 or the like that requires high load transmission.
  • blended the short fiber with the compression rubber layer 5 it pressurizes with respect to an unvulcanized sleeve like patent document 1, and makes the unvulcanized rubber sheet for compression rubber layers flow, and the several cogs 1a are made.
  • the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes non-uniform so that the orientation of the short fibers is disturbed.
  • the unvulcanized sleeve is not a method of pressurizing the unvulcanized sleeve to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs 1a. Since a method of forming a plurality of cogs 1a after forming a vulcanized sleeve by vulcanization, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and the short Disturbance of fiber orientation is also suppressed.
  • a plurality of sheet members each containing short fibers and laminated together are used as unvulcanized rubber sheets for the compressed rubber layer (see S1a in FIG. 3).
  • a short fiber is each provided in each of several sheet members with comparatively small thickness. By aligning and laminating them, the short fibers can be easily oriented.
  • the unvulcanized sleeve for the compressed rubber layer is caused to flow by applying pressure to the unvulcanized sleeve as in Patent Document 1.
  • the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes non-uniform, and separation may occur between the plurality of sheet members when the belt is used.
  • the unvulcanized sleeve is vulcanized, not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs 1a. Since the method of forming the plurality of cogs 1a after forming the vulcanized sleeve is adopted, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and a plurality of cogs 1a are formed. Peeling hardly occurs between sheet members.
  • the unvulcanized rubber sheet for the adhesive rubber layer is disposed between the unvulcanized rubber sheet for the compression rubber layer and the unvulcanized rubber sheet for the stretch rubber layer ( (See S1a to S1e in FIG. 3).
  • the method of forming a plurality of cogs 1a by applying pressure to the unvulcanized sleeve and flowing the unvulcanized rubber sheet for the compressed rubber layer as in Patent Document 1 the unvulcanized for the compressed rubber layer is formed.
  • the unvulcanized rubber sheet flows into the concave portion of the drum, the unvulcanized rubber sheet for the adhesive rubber layer is wound, and a dent is formed on the belt outer peripheral side 1y of the cogged portion in the compressed rubber layer 5, and the adhesive rubber layer 4 enters the dent. It can be a state.
  • the unvulcanized sleeve is not a method of pressurizing the unvulcanized sleeve to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs 1a.
  • the core wire 4a extending in the longitudinal direction of the belt is disposed in the unvulcanized rubber sheet for the adhesive rubber layer (see S1b to S1d in FIG. 3).
  • the core wire 4 a is buried in the adhesive rubber layer 4, and the durability is higher than the case where the core wire 4 a is not buried in the adhesive rubber layer 4 and is only in contact with the adhesive rubber layer 4. Will improve.
  • Table 1 shows the configuration of the V-belt with cogs according to Examples 1 to 7
  • Table 2 shows the configuration of the V-belt with cogs according to Comparative Examples 1 to 4.
  • Examples 1 and 2 are examples in which the average fiber length of short fibers is varied using the same constituent materials.
  • Example 3 is an example in which the average fiber diameter of short fibers is varied using the same constituent materials as in Example 1.
  • Example 4 is an example in which the blending amount of the short fibers is changed using the same constituent materials as in Example 1.
  • Example 5 is an example in which the average fiber length of short fibers is varied using the same constituent materials as in Example 4.
  • Example 6 is an example in which the type of short fiber is changed.
  • Example 7 is an example in which the cog height is increased with the same constituent material as in Example 1.
  • the steps were performed under the same conditions except for the step of forming the cogs 1a.
  • the mold was placed on the vulcanization can with the vulcanization jacket placed outside the unvulcanized sleeve, and the temperature was 160 Vulcanization was carried out at 20 ° C. for 20 minutes.
  • the sizes of the V-belt with cogs according to Examples 1 to 7 and Comparative Examples 1 to 4 are as follows. The outer peripheral length is 800 mm, the upper width is 20.0 mm, the belt thickness is 9.5 mm, and the cog height is the values shown in Tables 1 and 2. did.
  • Example 1 to 7 and Comparative Examples 1 to 4 the unvulcanized rubber sheet for the compressed rubber layer and the unvulcanized rubber sheet for the stretch rubber layer were blended with the materials shown in Table 3 (Formulation 1 to 6). Each was kneaded with a Banbury mixer or the like, and the produced kneaded rubber was rolled through a calender roll to prepare.
  • Example 1 to 7 and Comparative Examples 1 to 4 the unvulcanized rubber sheet for the first adhesive rubber layer and the unvulcanized rubber sheet for the second adhesive rubber layer were blended with the materials shown in Table 4, respectively. Rubber kneading was performed with a Banbury mixer or the like, and the produced kneaded rubber was rolled through a calender roll to prepare.
  • Short fiber Aramid short fiber (a): Teijin Cornex short fiber, average fiber length 3 mm, average fiber diameter 14 ⁇ m ⁇ Aramid short fiber (b): Teijin Cornex short fiber, average fiber length 6 mm, average fiber diameter 14 ⁇ m Aramid short fiber (c): Teijin Cornex short fiber, average fiber length 3 mm, average fiber diameter 20 ⁇ m Aramid short fiber (d): Teijin Cornex short fiber, average fiber length 2 mm, average fiber diameter 14 ⁇ m Polyamide 66 short fiber: Nylon 66 fiber manufactured by Toray, average fiber length: 6 mm, average fiber diameter: 30 ⁇ m ⁇ Naphthenic oil: “RS700” manufactured by DIC Corporation ⁇ Carbon black: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
  • Anti-aging agent “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
  • Vulcanization accelerator Tetramethylthiuram disulfide (TMTD)
  • Silica “Nippil VN3” manufactured by Tosoh Silica Corporation
  • the core wire 4a is made of 1000 denier polyethylene terephthalate (PET) fibers in a 2 ⁇ 3 twist configuration with an upper twist factor of 3.0 and a lower twist factor of 3.0.
  • PET polyethylene terephthalate
  • Examples 1 to 7 and Comparative Examples 1 to 4 as the reinforcing cloth 2, a plain woven canvas using cotton spun yarn was dipped in an RFL solution, and the canvas was further heat-treated at 150 ° C. for 2 minutes. A canvas with rubber formed by friction processing in which the rubber composition shown in Table 4 was rubbed was used.
  • the V-belts with cogs according to Examples 1 to 7 and Comparative Examples 1 to 4 are attached to a belt type continuously variable transmission of an actual vehicle (scooter), and the chassis dynamo tester Traveling with the pattern shown in No. 4 (that is, UP / DOWN driving in which the throttle is fully opened (90 seconds for 90 km / h for 90 seconds) and the throttle is fully closed (30 seconds for idling) from the idling state) was performed up to a traveling distance of 10,000 km. .
  • Comparative Example 1 since the compressed rubber layer was flowed by conventional molding to form a plurality of cogs, the rubber flowed in the compressed rubber layer, resulting in cog cracks and peeling under the cord. More specifically, as shown in FIG. 5 (a), a dent 5x is formed on the belt outer peripheral side 1y of the cog portion in the compressed rubber layer 5, and the adhesive rubber layer 4 enters the dent 5x. The adhesive rubber layer 4 was peeled off from 4a (peeling under the core line). Further, a crack 5y1 starting from the dent 5x occurred at the interface between the compressed rubber layer 5 and the adhesive rubber layer 4. In the compressed rubber layer 5, the flow shape clearly appeared, cracks 5y2 and 5y3 (cog cracks) were generated between the plurality of sheet members, and separation between the plurality of sheet members occurred.
  • Comparative Example 2 is an example in which the cog height is increased as compared to Comparative Example 1.
  • the cog height is large, the flow of rubber in the compressed rubber layer also increases, and the orientation disorder of the short fibers also increases. Cog part cracks and peeling below the core line also occurred.
  • Comparative Example 3 is an example in which the cog height is made smaller than that of Comparative Example 1, but because the cog height is small, the flow of rubber in the compressed rubber layer is also reduced, and the orientation disorder of the short fibers is also reduced. Although peeling under the cord did not occur, some cracks in the cog part occurred.
  • Comparative Example 4 is an example in which the blending amount of the short fibers is reduced with respect to Comparative Example 1, but the cog cracks are generated to the same extent as Comparative Example 1, and the side pressure resistance is insufficient. Was further generated.
  • a plurality of cogs may be provided not only on the belt inner peripheral side but also on the belt outer peripheral side.
  • the reinforcing cloth may be provided on the inner peripheral side of the belt, or may not be provided on either the inner peripheral side of the belt or the outer peripheral side of the belt. Further, the reinforcing cloth may be buried in the compressed rubber layer or the stretched rubber layer. In the case where a reinforcing cloth is provided on the inner peripheral side of the belt, the reinforcing cloth may be bonded to the surface of the compressed rubber layer by a known method after the cog forming step.
  • the short fiber may not be included in the unvulcanized rubber sheet for the stretch rubber layer.
  • the short fiber may not be contained in any of the unvulcanized rubber sheet for the compressed rubber layer and the unvulcanized rubber sheet for the stretch rubber layer.
  • the unvulcanized rubber sheet for the compressed rubber layer is not limited to being composed of a plurality of sheet members, and may be composed of a single sheet member.
  • the core wire may be simply brought into contact with the adhesive rubber layer without being embedded in the adhesive rubber layer (for example, in the unvulcanized sleeve forming process, the core wire is bonded to the unvulcanized rubber sheet for the adhesive rubber layer and the stretched rubber layer. Or between the unvulcanized rubber sheet for the adhesive rubber layer and the unvulcanized rubber sheet for the compression rubber layer). Further, the adhesive rubber layer may be omitted.
  • the cross section orthogonal to the belt longitudinal direction in the cogged V-belt is not limited to the inverted trapezoidal shape.
  • the side surface of the stretched rubber layer may be parallel to the belt thickness direction, or may be inclined in a direction in which the belt width becomes narrower toward the belt outer peripheral side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

The present invention pertains to a method for manufacturing cogged v-belts that are provided with, on the inner circumference of a belt, a plurality of cogs that are disposed to extend in the width direction of the belt and to be spaced apart from each other in the belt longitudinal direction, wherein the method for manufacturing cogged v-belts comprises: a unvulcanized sleeve forming step of forming an unvulcanized sleeve by layering a plurality of unvulcanized rubber sheets that contain at least an unvulcanized rubber sheet for a compression rubber layer that is a compression rubber layer disposed on the inner circumferential side of the belt and an unvulcanized rubber sheet for an expansion rubber layer that is an expansion rubber layer disposed on the outer circumferential side of the belt; a vulcanized sleeve forming step of forming a vulcanized sleeve by vulcanizing the unvulcanized sleeve after the unvulcanized sleeve forming step; and a cog forming step of forming the plurality of cogs on the compression rubber layer after the vulcanized sleeve forming step.

Description

コグ付きVベルトの製造方法Manufacturing method of V belt with cogs
 本発明は、ベルト幅方向にそれぞれ延在しかつベルト長手方向に互いに離隔して配置された複数のコグがベルト内周側に設けられたコグ付きVベルトの製造方法に関する。 The present invention relates to a method for manufacturing a cogged V-belt in which a plurality of cogs extending in the belt width direction and spaced apart from each other in the belt longitudinal direction are provided on the inner circumferential side of the belt.
 コグ付きVベルトは、複数のコグにより優れた屈曲性を有し、一般産業機械、農業機械、スノーモービル、自動二輪車、自動車の補機駆動システム等に適用され、また、無段変速装置に適用されることもある。 V-belts with cogs have excellent flexibility due to multiple cogs, and are applied to general industrial machinery, agricultural machinery, snowmobiles, motorcycles, automobile accessory drive systems, etc., and also to continuously variable transmissions Sometimes it is done.
 コグ付きVベルトの製造方法においては、外周面に凹凸が設けられた円筒状のドラムを用い、当該ドラムの外周面上に複数の未加硫ゴムシート(圧縮ゴム層、背面ゴム層(伸張ゴム層)等となる未加硫ゴムシート)を巻き付けて未加硫スリーブを形成した後、未加硫スリーブに対して加熱・加圧を行い、ドラムの凹凸に対応する複数のコグが形成された加硫スリーブを得るという技術が知られている(特許文献1参照)。 In the manufacturing method of the cogged V-belt, a cylindrical drum having irregularities on the outer peripheral surface is used, and a plurality of unvulcanized rubber sheets (compressed rubber layer, back rubber layer (extension rubber) are formed on the outer peripheral surface of the drum. After forming an unvulcanized sleeve by wrapping an unvulcanized rubber sheet) to become a layer), etc., the unvulcanized sleeve was heated and pressurized to form a plurality of cogs corresponding to the irregularities of the drum A technique for obtaining a vulcanized sleeve is known (see Patent Document 1).
日本国特開2000-153558号公報Japanese Unexamined Patent Publication No. 2000-153558
 上記の製造方法では、未加硫スリーブに対して加圧を行う際に、圧縮ゴム層となる圧縮ゴム層用未加硫ゴムシートがドラムの凹凸に沿って流動する。このとき、圧縮ゴム層用未加硫ゴムシートの流動の態様がドラムの凹部と凸部とにおいて異なったり、圧縮ゴム層用未加硫ゴムシートがドラムの凹部に流れ込む際に当該未加硫ゴムシートに対してベルト外周側にある別の未加硫ゴムシートを巻き込んだりすることで、圧縮ゴム層用未加硫ゴムシートの流動が不均一になり得る。この場合、加硫スリーブにおいて、圧縮ゴム層におけるコグが形成された部分(コグ部)の厚みが不均一になり、例えば、圧縮ゴム層におけるコグ部のベルト外周側に凹みが生じ、当該凹みに上記別の未加硫ゴムシートからなる別のゴム層が入り込んだ状態となり得る。このようなコグ付きVベルトを使用すると、圧縮ゴム層と別のゴム層との界面において凹みを起点としたクラックが生じ、さらには圧縮ゴム層が別のゴム層から剥離し得る。 In the above manufacturing method, when the unvulcanized sleeve is pressurized, the unvulcanized rubber sheet for the compressed rubber layer that becomes the compressed rubber layer flows along the irregularities of the drum. At this time, the flow mode of the unvulcanized rubber sheet for the compressed rubber layer differs between the concave portion and the convex portion of the drum, or the unvulcanized rubber when the unvulcanized rubber sheet for the compressed rubber layer flows into the concave portion of the drum. The flow of the unvulcanized rubber sheet for the compressed rubber layer can be non-uniform by winding another unvulcanized rubber sheet on the belt outer periphery side with respect to the sheet. In this case, in the vulcanization sleeve, the thickness of the cogged portion (cog portion) in the compressed rubber layer becomes non-uniform. For example, a dent is generated on the outer peripheral side of the belt of the cogged portion in the compressed rubber layer. Another rubber layer made of the other unvulcanized rubber sheet may enter. When such a cogged V-belt is used, a crack starting from a dent is generated at the interface between the compressed rubber layer and another rubber layer, and the compressed rubber layer can be peeled off from the other rubber layer.
 本発明の目的は、圧縮ゴム層の凹みを起点としたクラックの発生や圧縮ゴム層の剥離を抑制することができる、コグ付きVベルトの製造方法を提供することである。 An object of the present invention is to provide a manufacturing method of a cogged V-belt that can suppress generation of cracks starting from a dent of the compressed rubber layer and peeling of the compressed rubber layer.
 本発明によると、ベルト幅方向にそれぞれ延在しかつベルト長手方向に互いに離隔して配置された複数のコグがベルト内周側に設けられたコグ付きVベルトの製造方法において、前記ベルト内周側に配置される圧縮ゴム層となる圧縮ゴム層用未加硫ゴムシート及びベルト外周側に配置される伸張ゴム層となる伸張ゴム層用未加硫ゴムシートを少なくとも含む複数の未加硫ゴムシートを積層し、未加硫スリーブを形成する未加硫スリーブ形成工程と、前記未加硫スリーブ形成工程の後、前記未加硫スリーブを加硫して加硫スリーブを形成する加硫スリーブ形成工程と、前記加硫スリーブ形成工程の後、前記圧縮ゴム層に前記複数のコグを形成するコグ形成工程と、を備えたことを特徴とする、コグ付きVベルトの製造方法が提供される。 According to the present invention, in the method of manufacturing a V-belt with a cog in which a plurality of cogs extending in the belt width direction and spaced apart from each other in the belt longitudinal direction are provided on the belt inner circumferential side, A plurality of unvulcanized rubbers including at least a non-vulcanized rubber sheet for a compressed rubber layer to be a compressed rubber layer disposed on the side and an unvulcanized rubber sheet for a stretched rubber layer to be a stretched rubber layer disposed on the outer peripheral side of the belt An unvulcanized sleeve forming step of laminating sheets to form an unvulcanized sleeve, and a vulcanized sleeve forming of a vulcanized sleeve by vulcanizing the unvulcanized sleeve after the unvulcanized sleeve forming step And a cog forming step of forming the plurality of cogs on the compressed rubber layer after the vulcanized sleeve forming step.
 本発明では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグを形成するという方法を採用している。そのため、圧縮ゴム層用未加硫ゴムシートの流動が不均一になって圧縮ゴム層におけるコグ部のベルト外周側に凹みが生じるという問題が抑制され、ひいては、圧縮ゴム層の凹みを起点としたクラックの発生や、圧縮ゴム層の別のゴム層からの剥離を抑制することができる。 The present invention is not a method in which the unvulcanized sleeve is pressurized and the unvulcanized rubber sheet for the compressed rubber layer is flowed to form a plurality of cogs, but the unvulcanized sleeve is vulcanized and vulcanized. A method of forming a plurality of cogs after forming the sleeve is employed. Therefore, the problem that the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes uneven and the dent on the outer peripheral side of the belt of the cog portion in the compressed rubber layer is suppressed, and as a result, the dent of the compressed rubber layer is the starting point. Generation | occurrence | production of a crack and peeling from another rubber layer of a compression rubber layer can be suppressed.
 前記未加硫スリーブ形成工程において積層される前記圧縮ゴム層用未加硫ゴムシートは、前記ベルト幅方向に配向した短繊維を含んでいてよい。上記構成によれば、短繊維をベルト幅方向に配向させることで、高い異方性が得られると共に、ベルト幅方向の弾性率を大きくして耐側圧性を有効に向上させることができる。特に無段変速装置に適用される場合、コグ付きVベルトは、大きく屈曲されると共に高負荷での過酷なレイアウトで用いられるため、高い耐久性及び省燃費性(伝動性)が求められる。この点、上記構成によれば、耐久性及び省燃費性の両立を担う重要な因子の一つである耐側圧性(側圧による耐変形性)を向上させることができるため、耐久性及び省燃費性を共に高めることができ、高負荷伝動が要求される無段変速装置等にも好適に適用できる。また、圧縮ゴム層に短繊維を配合した構成において、特許文献1のように未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法を採用した場合、圧縮ゴム層用未加硫ゴムシートの流動が不均一になることで、短繊維の配向も乱れてしまう。この点、本発明では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグを形成するという方法を採用しているため、圧縮ゴム層用未加硫ゴムシートの流動が不均一になるという問題が抑制され、短繊維の配向の乱れも抑制される。 The unvulcanized rubber sheet for the compressed rubber layer laminated in the unvulcanized sleeve forming step may include short fibers oriented in the belt width direction. According to the above configuration, by orienting the short fibers in the belt width direction, high anisotropy can be obtained, and the elastic modulus in the belt width direction can be increased to effectively improve the side pressure resistance. In particular, when applied to a continuously variable transmission, the cogged V-belt is greatly bent and used in a harsh layout under a high load. Therefore, high durability and fuel saving (transmission) are required. In this respect, according to the above configuration, the side pressure resistance (deformation resistance due to side pressure), which is one of the important factors responsible for both durability and fuel efficiency, can be improved. Therefore, the present invention can be suitably applied to a continuously variable transmission that requires high-load transmission. Moreover, in the structure which mix | blended the short fiber with the compression rubber layer, it pressurizes with respect to an unvulcanized sleeve like patent document 1, and makes the unvulcanized rubber sheet for compression rubber layers flow, and forms a plurality of cogs When this method is adopted, the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes nonuniform, and the orientation of the short fibers is disturbed. In this regard, the present invention is not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs, but the unvulcanized sleeve is vulcanized. Since the method of forming a plurality of cogs after forming a vulcanized sleeve, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and the orientation of short fibers Disturbance is also suppressed.
 前記未加硫スリーブ形成工程において、前記圧縮ゴム層用未加硫ゴムシートは、それぞれ前記短繊維を含むと共に互いに積層された複数のシート部材を含んでいてよい。上記構成によれば、1枚のシート部材に短繊維を配向させてそれを圧縮ゴム層用未加硫ゴムシートとして用いる場合に比べ、比較的厚みの小さい複数のシート部材のそれぞれに短繊維を配向させてそれらを積層することで、短繊維の配向を容易に行うことができる。また、圧縮ゴム層用未加硫ゴムシートが複数のシート部材を含む構成において、特許文献1のように未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法を採用した場合、圧縮ゴム層用未加硫ゴムシートの流動が不均一になり、ベルト使用時に複数のシート部材間で剥離が生じ得る。この点、本発明では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグを形成するという方法を採用しているため、圧縮ゴム層用未加硫ゴムシートの流動が不均一になるという問題が抑制され、複数のシート部材間で剥離が生じ難い。 In the unvulcanized sleeve forming step, the unvulcanized rubber sheet for the compressed rubber layer may include a plurality of sheet members each including the short fibers and laminated to each other. According to the said structure, compared with the case where a short fiber is orientated to one sheet member and it is used as an unvulcanized rubber sheet for compression rubber layers, a short fiber is each provided in each of several sheet members with comparatively small thickness. By aligning and laminating them, the short fibers can be easily oriented. Further, in a configuration in which the unvulcanized rubber sheet for the compressed rubber layer includes a plurality of sheet members, the unvulcanized sleeve for the compressed rubber layer is caused to flow by applying pressure to the unvulcanized sleeve as in Patent Document 1. When the method of forming a plurality of cogs is employed, the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes non-uniform, and separation may occur between the plurality of sheet members when the belt is used. In this regard, the present invention is not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs, but the unvulcanized sleeve is vulcanized. Since the method of forming a plurality of cogs after forming a vulcanized sleeve, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and a plurality of sheet members Peeling is unlikely to occur.
 前記未加硫スリーブ形成工程において、前記圧縮ゴム層用未加硫ゴムシートと前記伸張ゴム層用未加硫ゴムシートとの間に、接着ゴム層となる接着ゴム層用未加硫ゴムシートを配置してよい。特許文献1のように未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法を採用した場合、圧縮ゴム層用未加硫ゴムシートがドラムの凹部に流れ込む際に接着ゴム層用未加硫ゴムシートを巻き込み、圧縮ゴム層におけるコグ部のベルト外周側に凹みが生じ、当該凹みに接着ゴム層が入り込んだ状態となり得る。この点、本発明では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグを形成するという方法を採用しているため、接着ゴム層用未加硫ゴムシートの巻き込み、凹みへの接着ゴム層の入り込み等の問題が抑制され、圧縮ゴム層と接着ゴム層との界面において凹みを起点としたクラックが生じ難く、圧縮ゴム層の接着ゴム層からの剥離も抑制される。 In the unvulcanized sleeve forming step, an unvulcanized rubber sheet for an adhesive rubber layer serving as an adhesive rubber layer is provided between the unvulcanized rubber sheet for the compressed rubber layer and the unvulcanized rubber sheet for the stretch rubber layer. May be arranged. When the method of applying pressure to the unvulcanized sleeve and flowing the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs as in Patent Document 1, the unvulcanized for the compressed rubber layer is employed. When the rubber sheet flows into the concave portion of the drum, the unvulcanized rubber sheet for the adhesive rubber layer is wound, and a dent is generated on the outer peripheral side of the belt of the cogged portion in the compressed rubber layer, and the adhesive rubber layer enters the dent. In this regard, the present invention is not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs, but the unvulcanized sleeve is vulcanized. The method of forming multiple cogs after forming the vulcanized sleeve prevents problems such as entanglement of the unvulcanized rubber sheet for the adhesive rubber layer and penetration of the adhesive rubber layer into the recess. In addition, cracks starting from the dents are unlikely to occur at the interface between the compressed rubber layer and the adhesive rubber layer, and peeling of the compressed rubber layer from the adhesive rubber layer is also suppressed.
 前記未加硫スリーブ形成工程において、前記ベルト長手方向に延在する心線を、前記接着ゴム層用未加硫ゴムシートの中に配置してよい。上記構成によれば、心線が接着ゴム層に埋没されることとなり、心線が接着ゴム層に埋没されずに接着ゴム層に接しているだけの場合に比べ、耐久性が向上する。 In the unvulcanized sleeve forming step, a core wire extending in the belt longitudinal direction may be disposed in the unvulcanized rubber sheet for the adhesive rubber layer. According to the above configuration, the core wire is buried in the adhesive rubber layer, and the durability is improved as compared with the case where the core wire is not buried in the adhesive rubber layer and is only in contact with the adhesive rubber layer.
 本発明では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグを形成するという方法を採用している。そのため、圧縮ゴム層用未加硫ゴムシートの流動が不均一になって圧縮ゴム層におけるコグ部のベルト外周側に凹みが生じるという問題が抑制され、ひいては、圧縮ゴム層の凹みを起点としたクラックの発生や、圧縮ゴム層の別のゴム層からの剥離を抑制することができる。 The present invention is not a method in which the unvulcanized sleeve is pressurized and the unvulcanized rubber sheet for the compressed rubber layer is flowed to form a plurality of cogs, but the unvulcanized sleeve is vulcanized and vulcanized. A method of forming a plurality of cogs after forming the sleeve is employed. Therefore, the problem that the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes uneven and the dent on the outer peripheral side of the belt of the cog portion in the compressed rubber layer is suppressed, and as a result, the dent of the compressed rubber layer is the starting point. Generation | occurrence | production of a crack and peeling from another rubber layer of a compression rubber layer can be suppressed.
図1は、本発明の一実施形態に係るコグ付きVベルトを示す斜視断面図である。FIG. 1 is a perspective sectional view showing a cogged V-belt according to an embodiment of the present invention. 図2の(a),(b)は、本発明の一実施形態に係るコグ付きVベルトを無段変速装置に適用した例を示す断面図である。FIGS. 2A and 2B are cross-sectional views showing an example in which a cogged V-belt according to an embodiment of the present invention is applied to a continuously variable transmission. 図3は、本発明の一実施形態に係るコグ付きVベルトの製造方法を示すフロー図である。FIG. 3 is a flowchart showing a method for manufacturing a cogged V-belt according to an embodiment of the present invention. 図4は、実施例及び比較例に係るコグ付きVベルトの耐久走行試験における実車の走行パターンを示すグラフである。FIG. 4 is a graph showing a running pattern of an actual vehicle in the durability running test of the cogged V-belt according to the example and the comparative example. 図5の(a)は、耐久走行試験後の比較例に係るコグ付きVベルトの側面を示す概略図である。図5の(b)は、耐久走行試験後の実施例に係るコグ付きVベルトの側面を示す概略図である。FIG. 5A is a schematic diagram illustrating a side surface of a cogged V-belt according to a comparative example after the durability running test. FIG. 5B is a schematic view showing a side surface of the cogged V-belt according to the example after the durability running test.
 本発明の一実施形態に係るコグ付きVベルト1は、図1に示すように、ベルト外周側1yからベルト内周側1xに向かって、補強布2、伸張ゴム層3、接着ゴム層4及び圧縮ゴム層5が順次積層された構造を有している。接着ゴム層4内には、ベルト長手方向に延在する心線4aが埋設されている。 As shown in FIG. 1, the cogged V-belt 1 according to an embodiment of the present invention includes a reinforcing cloth 2, a stretch rubber layer 3, an adhesive rubber layer 4, and a belt from the belt outer peripheral side 1 y toward the belt inner peripheral side 1 x. It has a structure in which the compressed rubber layers 5 are sequentially laminated. A core wire 4a extending in the longitudinal direction of the belt is embedded in the adhesive rubber layer 4.
 伸張ゴム層3、接着ゴム層4及び圧縮ゴム層5は、ゴム成分を含むゴム組成物で形成されている。さらに、伸張ゴム層3及び圧縮ゴム層5を構成するゴム組成物は、短繊維を含む。 The stretch rubber layer 3, the adhesive rubber layer 4 and the compression rubber layer 5 are formed of a rubber composition containing a rubber component. Furthermore, the rubber composition constituting the stretched rubber layer 3 and the compressed rubber layer 5 includes short fibers.
 ゴム成分としては、加硫又は架橋可能なゴムを用いてよく、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム等)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴム、のうちの1種又は2種以上を組み合わせたものを用いてよい。好ましいゴム成分は、エチレン-α-オレフィンエラストマー(エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)等)、及び、クロロプレンゴムである。特に好ましいゴム成分は、クロロプレンゴムである。クロロプレンゴムは、硫黄変性タイプ及び非硫黄変性タイプのいずれでもよい。 As the rubber component, a vulcanizable or crosslinkable rubber may be used, for example, a diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), Hydrogenated nitrile rubber, etc.), ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber, or You may use what combined 2 or more types. Preferred rubber components are ethylene-α-olefin elastomers (ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), etc.), and chloroprene rubber. A particularly preferred rubber component is chloroprene rubber. The chloroprene rubber may be either a sulfur-modified type or a non-sulfur-modified type.
 ゴム組成物に、添加剤を追加してもよい。添加剤としては、例えば、加硫剤又は架橋剤(又は架橋剤系)(硫黄系加硫剤等)、共架橋剤(ビスマレイミド類等)、加硫助剤又は加硫促進剤(チウラム系促進剤等)、加硫遅延剤、金属酸化物(酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウム等)、増強剤(例えば、カーボンブラックや、含水シリカ等の酸化ケイ素)、充填剤(クレー、炭酸カルシウム、タルク、マイカ等)、軟化剤(例えば、パラフィンオイルや、ナフテン系オイル等のオイル類)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイド等)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止剤、オゾン劣化防止剤等)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤等)、安定剤(紫外線吸収剤、熱安定剤等)、難燃剤、帯電防止剤、のうちの1種又は2種以上を組み合わせたものを用いてよい。なお、金属酸化物は架橋剤として作用してもよい。また、特に接着ゴム層4を構成するゴム組成物は、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂等)を含んでよい。 Additives may be added to the rubber composition. Examples of the additive include a vulcanizing agent or a crosslinking agent (or a crosslinking agent system) (sulfur-based vulcanizing agent, etc.), a co-crosslinking agent (bismaleimides, etc.), a vulcanization aid or a vulcanization accelerator (thiuram-based). Accelerators), vulcanization retarders, metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), enhancers (for example, carbon black, water content) Silicon oxides such as silica), fillers (clay, calcium carbonate, talc, mica, etc.), softeners (for example, oils such as paraffin oil and naphthenic oil), processing agents or processing aids (stearic acid, stearin) Acid metal salts, wax, paraffin, fatty acid amide, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending agents, anti-ozone agents, etc.), colorants, tackifiers, plastics , Coupling agents (silane coupling agent, etc.), stabilizers (UV absorbers, heat stabilizers, etc.), flame retardants, may be used a combination antistatic agent, one or more of. The metal oxide may act as a crosslinking agent. In particular, the rubber composition constituting the adhesive rubber layer 4 may contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
 短繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維等)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維等)、ポリアルキレンアリレート系繊維(例えば、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維等の、C2-4アルキレンC6-14アリレート系繊維)、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維等の合成繊維;綿、麻、羊毛等の天然繊維;炭素繊維等の無機繊維、のうちの1種又は2種以上を組み合わせたものを用いてよい。ゴム組成物中での分散性や接着性を向上させるため、短繊維に、慣用の接着処理(又は表面処理)を施してよく、例えば、レゾルシン-ホルマリン-ラテックス(RFL)液等で短繊維を処理してよい。 Examples of the short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (for example, polyethylene terephthalate ( PET) fiber, polyethylene naphthalate (PEN) fiber, etc., C 2-4 alkylene C 6-14 arylate fiber), vinylon fiber, polyvinyl alcohol fiber, polyparaphenylene benzobisoxazole (PBO) fiber, etc. A combination of one or more of natural fibers such as cotton, hemp, and wool; inorganic fibers such as carbon fibers may be used. In order to improve the dispersibility and adhesiveness in the rubber composition, the short fibers may be subjected to a conventional adhesion treatment (or surface treatment). May be processed.
 伸張ゴム層3、接着ゴム層4及び圧縮ゴム層5を構成するゴム組成物は、互いに同じであってもよいし、互いに異なってもよい。同様に、伸張ゴム層3及び圧縮ゴム層5に含まれる短繊維は、互いに同じであってもよいし、互いに異なってもよい。 The rubber composition constituting the stretch rubber layer 3, the adhesive rubber layer 4 and the compression rubber layer 5 may be the same as each other or different from each other. Similarly, the short fibers contained in the stretch rubber layer 3 and the compressed rubber layer 5 may be the same as each other or different from each other.
 接着ゴム層4内には、複数の心線4aが、ベルト長手方向にそれぞれ延在し、かつ、ベルト幅方向に所定のピッチで互いに離隔して配置されている。 In the adhesive rubber layer 4, a plurality of core wires 4a extend in the belt longitudinal direction and are spaced apart from each other at a predetermined pitch in the belt width direction.
 心線4aは、例えば、マルチフィラメント糸を使用した撚り(例えば、諸撚り、片撚り、ラング撚り)コードからなる。心線4aの平均線径(撚りコードの繊維径)は、例えば、0.5~3mm、好ましくは0.6~2.0mm、さらに好ましくは0.7~1.5mm程度であってよい。 The core wire 4a is made of, for example, a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists). The average wire diameter (fiber diameter of the twisted cord) of the core wire 4a may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2.0 mm, and more preferably about 0.7 to 1.5 mm.
 心線4aを構成する繊維としては、短繊維として例示した繊維を用いてよい。高モジュラスの点から、心線4aを構成する繊維として、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維等)、ポリアルキレンアリレート系繊維(例えば、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維等の、C2-4アルキレンC6-14アリレート系繊維)等の合成繊維;炭素繊維等の無機繊維を用いてよく、特に、ポリアミド繊維、ポリアルキレンアリレート系繊維を用いることが好ましい。心線4aを構成する繊維は、マルチフィラメント糸であってよい。マルチフィラメント糸で構成される心線4aの繊度は、例えば、2000~10000デニール(特に4000~8000デニール)程度であってもよい。マルチフィラメント糸は、例えば100~5000本、好ましくは500~4000本、さらに好ましくは1000~3000本程度のモノフィラメント糸を含んでよい。心線4aに、短繊維と同様、慣用の接着処理(又は表面処理)を施してよい。 As the fibers constituting the core wire 4a, the fibers exemplified as the short fibers may be used. From the viewpoint of high modulus, the fibers constituting the core 4a include polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (for example, polyethylene terephthalate (PET) fibers, Synthetic fibers such as polyethylene naphthalate (PEN) fibers, C 2-4 alkylene C 6-14 arylate fibers); inorganic fibers such as carbon fibers may be used, particularly polyamide fibers and polyalkylene arylate fibers. It is preferable to use it. The fiber constituting the core wire 4a may be a multifilament yarn. The fineness of the core wire 4a composed of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier). The multifilament yarn may include, for example, about 100 to 5000, preferably 500 to 4000, and more preferably about 1000 to 3000 monofilament yarns. The core wire 4a may be subjected to a conventional adhesion treatment (or surface treatment) as in the case of the short fibers.
 補強布2は、例えば織布、広角度帆布、編布、不織布等(好ましくは織布)の布材からなる。補強布2は、布材に接着処理(例えば、RFL液で浸漬処理)を施し、ゴム組成物を布材にすり込むフリクション加工や、シート状のゴム組成物と布材とを積層する加工を行った後に、伸張ゴム層3の表面に積層されてよい。 The reinforcing cloth 2 is made of a cloth material such as woven cloth, wide-angle sail cloth, knitted cloth, non-woven cloth (preferably woven cloth). The reinforcing cloth 2 is subjected to an adhesive treatment (for example, an immersion treatment with an RFL solution) on the cloth material, and a friction process in which the rubber composition is rubbed into the cloth material or a process of laminating the sheet-like rubber composition and the cloth material. After that, it may be laminated on the surface of the stretch rubber layer 3.
 コグ付きVベルト1におけるベルト長手方向と直交する断面は、ベルト外周側1yからベルト内周側1xに向かってベルト幅が小さくなる逆台形形状である。コグ付きVベルト1におけるベルト内周側1xには、複数のコグ1aが形成されている。複数のコグ1aは、圧縮ゴム層5に形成されており、ベルト幅方向にそれぞれ延在しかつベルト長手方向に互いに離隔して配置されている。 The cross section perpendicular to the belt longitudinal direction of the V-belt 1 with cogs has an inverted trapezoidal shape in which the belt width decreases from the belt outer peripheral side 1y toward the belt inner peripheral side 1x. A plurality of cogs 1a are formed on the inner circumferential side 1x of the V belt 1 with cogs. The plurality of cogs 1a are formed in the compressed rubber layer 5, and extend in the belt width direction and are spaced apart from each other in the belt longitudinal direction.
 コグ付きVベルト1は、図2に示すように、無段変速装置30に適用可能である。 The cogged V-belt 1 is applicable to a continuously variable transmission 30 as shown in FIG.
 無段変速装置30は、コグ付きVベルト1が嵌合されるV字状の溝31x,32xをそれぞれ有する駆動プーリ31及び従動プーリ32を含む。コグ付きVベルト1は、駆動プーリ31と従動プーリ32とに張力をかけて巻回され、コグ付きVベルト1の両側面1zと駆動プーリ31及び従動プーリ32それぞれの溝31x,32xを画定する両側面31z,32zとが接触した状態で、走行される。このときに生じる両側面間の摩擦力により、駆動プーリ31のトルクがコグ付きVベルト1を介して従動プーリ32に伝達される。 The continuously variable transmission 30 includes a drive pulley 31 and a driven pulley 32 having V-shaped grooves 31x and 32x, respectively, into which the cogged V-belt 1 is fitted. The cogged V-belt 1 is wound with tension applied to the driving pulley 31 and the driven pulley 32 to define both side surfaces 1z of the cogged V-belt 1 and grooves 31x and 32x of the driving pulley 31 and the driven pulley 32, respectively. The vehicle travels in a state where both side surfaces 31z and 32z are in contact with each other. The torque of the drive pulley 31 is transmitted to the driven pulley 32 via the cogged V-belt 1 due to the frictional force between both side surfaces generated at this time.
 駆動プーリ31及び従動プーリ32は、それぞれ、回転軸31t,32tを有する固定プーリ片31a,32aと、固定プーリ片31a,32aに対して回転軸31t,32tに沿った方向に移動可能に取り付けられた可動プーリ片31b,32bとを含む。可動プーリ片31b,32bが固定プーリ片31a,32aに対して回転軸31t,32tに沿った方向に移動することで、固定プーリ片31a,32aと可動プーリ片31b,32bとの間に形成された溝31x,32xの幅が変化する。このような溝31x,32xの幅の変化に応じて、溝31x,32xにおけるコグ付きVベルト1の位置が変化する。例えば、図2の(a)に示す状態から図2の(b)に示す状態に(即ち、溝31xの幅を狭く且つ溝32xの幅を広く)すると、コグ付きVベルト1は、溝31xにおいては回転軸31tから離れる方向に、溝32xにおいては回転軸32tに近づく方向に移動する。これにより、駆動プーリ31及び従動プーリ32におけるコグ付きVベルト1の巻回半径が変化する。無段変速装置30は、このように巻回半径を連続的に変化させることで、変速比を無段階で変化させるように構成されている。 The driving pulley 31 and the driven pulley 32 are attached to fixed pulley pieces 31a and 32a having rotating shafts 31t and 32t, respectively, so as to be movable in the direction along the rotating shafts 31t and 32t with respect to the fixed pulley pieces 31a and 32a. Movable pulley pieces 31b and 32b. The movable pulley pieces 31b and 32b are formed between the fixed pulley pieces 31a and 32a and the movable pulley pieces 31b and 32b by moving in the direction along the rotation shafts 31t and 32t with respect to the fixed pulley pieces 31a and 32a. The width of the groove 31x, 32x changes. The position of the cogged V-belt 1 in the grooves 31x and 32x changes according to the change in the width of the grooves 31x and 32x. For example, when the state shown in FIG. 2 (a) is changed to the state shown in FIG. 2 (b) (that is, the width of the groove 31x is narrow and the width of the groove 32x is wide), the cogged V-belt 1 Is moved away from the rotating shaft 31t, and the groove 32x moves closer to the rotating shaft 32t. Thereby, the winding radius of the cogged V-belt 1 in the drive pulley 31 and the driven pulley 32 changes. The continuously variable transmission 30 is configured to change the speed ratio steplessly by continuously changing the winding radius in this way.
 次いで、図3を参照し、コグ付きVベルト1の製造方法について説明する。 Next, a method for manufacturing the cogged V-belt 1 will be described with reference to FIG.
 本実施形態に係る製造方法は、未加硫スリーブ形成工程S1、加硫スリーブ形成工程S2、コグ無しVベルト形成工程S3及びコグ形成工程S4を含む。 The manufacturing method according to the present embodiment includes an unvulcanized sleeve forming step S1, a vulcanized sleeve forming step S2, a cog-free V-belt forming step S3, and a cog forming step S4.
 未加硫スリーブ形成工程S1は、環状の未加硫スリーブを形成する工程である。未加硫スリーブ形成工程S1では、円筒状のドラムを用い、当該ドラムの外周面上に、圧縮ゴム層5となる圧縮ゴム層用未加硫ゴムシート、接着ゴム層4における圧縮ゴム層5と接触する部分となる第1接着ゴム層用未加硫ゴムシート、心線4a、接着ゴム層4における伸張ゴム層3と接触する部分となる第2接着ゴム層用未加硫ゴムシート、伸張ゴム層3となる伸張ゴム層用未加硫ゴムシート、補強布2を順に積層する。なお、当該ドラムの外周面には、複数のコグ1aに対応する凹凸が設けられていない。 The unvulcanized sleeve forming step S1 is a step of forming an annular unvulcanized sleeve. In the unvulcanized sleeve forming step S1, a cylindrical drum is used, and on the outer peripheral surface of the drum, the unvulcanized rubber sheet for the compressed rubber layer that becomes the compressed rubber layer 5, the compressed rubber layer 5 in the adhesive rubber layer 4, and Unvulcanized rubber sheet for the first adhesive rubber layer to be in contact, core 4a, unvulcanized rubber sheet for the second adhesive rubber layer to be in contact with the stretch rubber layer 3 in the adhesive rubber layer 4, stretch rubber The unvulcanized rubber sheet for the stretch rubber layer and the reinforcing cloth 2 to be the layer 3 are laminated in order. In addition, the unevenness | corrugation corresponding to several cogs 1a is not provided in the outer peripheral surface of the said drum.
 具体的には、未加硫スリーブ形成工程S1では、先ず、短繊維を含むと共に互いに積層された複数のシート部材を、圧縮ゴム層用未加硫ゴムシートとして、各シート部材の短繊維をベルト幅方向に配向させて、円筒状のドラム上に巻き付ける(S1a)。その後、圧縮ゴム層用未加硫ゴムシートの上に、第1接着ゴム層用未加硫ゴムシートを積層する(S1b)。その後、第1接着ゴム層用未加硫ゴムシートの上に、心線4aを螺旋状にスピニングする(S1c)。その後、心線4aの上に、第2接着ゴム層用未加硫ゴムシートを積層する(S1d)。その後、第2接着ゴム層用未加硫ゴムシートの上に、伸張ゴム層用未加硫ゴムシートを積層する(S1e)。その後、伸張ゴム層用未加硫ゴムシートの上に、補強布2を積層する(S1f)。 Specifically, in the unvulcanized sleeve forming step S1, first, a plurality of sheet members including short fibers and laminated together are used as unvulcanized rubber sheets for the compressed rubber layer, and the short fibers of each sheet member are belted. Oriented in the width direction and wound on a cylindrical drum (S1a). Thereafter, the unvulcanized rubber sheet for the first adhesive rubber layer is laminated on the unvulcanized rubber sheet for the compressed rubber layer (S1b). Thereafter, the core 4a is spun spirally on the unvulcanized rubber sheet for the first adhesive rubber layer (S1c). Thereafter, an unvulcanized rubber sheet for the second adhesive rubber layer is laminated on the core wire 4a (S1d). Thereafter, the unvulcanized rubber sheet for the stretch rubber layer is laminated on the unvulcanized rubber sheet for the second adhesive rubber layer (S1e). Thereafter, the reinforcing cloth 2 is laminated on the unvulcanized rubber sheet for the stretch rubber layer (S1f).
 ここでシート部材に含まれる短繊維の平均長さは、1~20mmの範囲であることが好ましく、より好ましくは1.2~15mmの範囲、さらには2~6mmの範囲であることが好ましい。その理由としては、短繊維の平均長さが短すぎると、列理方向の力学特性(例えばモジュラスなど)を十分に高めることができない虞があり、逆に長すぎると、ゴム組成物中の短繊維の分散不良が生じ、ゴムに亀裂が発生してベルトが早期に損傷する虞があるからである。 Here, the average length of the short fibers contained in the sheet member is preferably in the range of 1 to 20 mm, more preferably in the range of 1.2 to 15 mm, and further preferably in the range of 2 to 6 mm. The reason for this is that if the average length of the short fibers is too short, the mechanical properties (for example, the modulus) in the line direction may not be sufficiently improved. This is because there is a possibility that the fiber is poorly dispersed, the rubber is cracked, and the belt is damaged early.
 また、短繊維の平均繊維径は、1~100μmの範囲であることが好ましく、より好ましくは3~50μmの範囲、さらには5~30μmの範囲であることが好ましい。その理由としては、平均繊維径が大きすぎると、圧縮ゴム層の機械的特性が低下する虞があり、小さすぎると、表面の摩擦係数を充分に低減できない虞があるからである。 The average fiber diameter of the short fibers is preferably in the range of 1 to 100 μm, more preferably in the range of 3 to 50 μm, and further preferably in the range of 5 to 30 μm. The reason is that if the average fiber diameter is too large, the mechanical properties of the compressed rubber layer may be lowered, and if it is too small, the surface friction coefficient may not be sufficiently reduced.
 更に、短繊維の配合量(割合)は、ゴム成分100質量部に対して30質量部以下であることが好ましく、より好ましくは8~30質量部、更に好ましくは10~28質量部、できるならば12~25質量部であることが好ましい。その理由としては、短繊維の割合が少なすぎると、圧縮ゴム層の力学特性が低下する虞があり、逆に多すぎると、伝達効率の低下に加えて、短繊維のゴム組成物中の分散性が低下して分散不良が生じ、その箇所を起点にして圧縮ゴム層に亀裂が早期に発生する虞があるからである。 Further, the blending amount (ratio) of the short fibers is preferably 30 parts by mass or less, more preferably 8 to 30 parts by mass, and further preferably 10 to 28 parts by mass with respect to 100 parts by mass of the rubber component. It is preferably 12 to 25 parts by mass. The reason for this is that if the proportion of short fibers is too small, the mechanical properties of the compressed rubber layer may be reduced. On the other hand, if the proportion is too large, in addition to the reduction in transmission efficiency, dispersion of the short fibers in the rubber composition may occur. This is because there is a possibility that cracking may occur at an early stage in the compressed rubber layer starting from that point.
 また、圧縮ゴム層用未加硫ゴムシートとして積層されるシート部材の1枚の厚みは、0.2~2.5mm、好ましくは0.5~1.6mmのものを使用することが好ましい。左記範囲の厚みを有するシート部材を、所定の厚みになるまで積層することにより、圧縮ゴム層用未加硫ゴムシートを構成する。 Further, it is preferable to use a sheet member laminated as an unvulcanized rubber sheet for a compressed rubber layer having a thickness of 0.2 to 2.5 mm, preferably 0.5 to 1.6 mm. An unvulcanized rubber sheet for a compressed rubber layer is formed by laminating sheet members having a thickness in the left range to a predetermined thickness.
 加硫スリーブ形成工程S2は、未加硫スリーブ形成工程S1の後、得られた未加硫スリーブを加硫して環状の加硫スリーブを形成する工程である。加硫スリーブ形成工程S2では、公知の手法を採用してよく、例えば、未加硫スリーブの外側に加硫ジャケットを被せて金型を加硫缶に設置し、温度120~200℃(特に150~180℃)程度で未加硫スリーブを加硫してよい。 The vulcanized sleeve forming step S2 is a step of forming an annular vulcanized sleeve by vulcanizing the obtained unvulcanized sleeve after the unvulcanized sleeve forming step S1. In the vulcanization sleeve forming step S2, a known method may be employed. For example, a vulcanization jacket is placed on the outside of the unvulcanized sleeve and a mold is placed on the vulcanization can, and the temperature is 120 to 200 ° C. The unvulcanized sleeve may be vulcanized at about ~ 180 ° C.
 コグ無しVベルト形成工程S3は、加硫スリーブ形成工程S2の後、環状のコグ無し(コグ1aが形成されていない)Vベルトを形成する工程である。コグ無しVベルト形成工程S3では、加硫ジャケット及び加硫スリーブを加硫缶から抜き取った後、加硫スリーブを所定幅に切断し、側面を所定のV角度が得られるようにカッター等で切断することで、コグ無しVベルトを形成する。 The cogless V-belt forming step S3 is a step of forming an annular cog-free (no cog 1a) V-belt after the vulcanization sleeve forming step S2. In the cogless V-belt forming step S3, the vulcanization jacket and the vulcanization sleeve are extracted from the vulcanization can, then the vulcanization sleeve is cut to a predetermined width, and the side is cut with a cutter or the like so as to obtain a predetermined V angle. By doing so, a coggless V-belt is formed.
 コグ形成工程S4は、コグ無しVベルト形成工程S3の後、圧縮ゴム層5に複数のコグ1aを形成する工程である。即ち、工程S1~S3の段階ではコグ1aが形成されておらず、工程S4でコグ1aが形成される。 The cog forming step S4 is a step of forming a plurality of cogs 1a on the compressed rubber layer 5 after the cogless V-belt forming step S3. That is, the cogs 1a are not formed in the steps S1 to S3, and the cogs 1a are formed in the step S4.
 コグ形成工程S4では、任意の手法を採用してよく、例えばウォータージェット加工機を用いてよい。ウォータージェット加工機を用いてコグ1aを形成する手順の一例について、以下に説明する。 In the cog forming step S4, an arbitrary method may be adopted, for example, a water jet processing machine may be used. An example of a procedure for forming the cogs 1a using a water jet processing machine will be described below.
 先ず、ウォータージェット加工機の水槽の上に、木板、プラスチック板、金属板をこの順で配置してテープ等で固定する。そして、最上層に配置された金属板に、4つの基準穴と、複数のコグ1aを含むベルト内周側1xと同じ形状の溝とを、ウォータージェットで形成する。4つの基準穴は、環状のコグ無しVベルトが固定される円柱状のベルト固定治具に形成された4つのピン穴に対応する。その後、S3で形成された環状のコグ無しVベルトを、圧縮ゴム層5を外側・、伸張ゴム層3を内側としてベルト固定治具に取り付け、ベルト固定治具を金属板上に設置し、ベルト固定治具の4つのピン穴と4つの基準穴とにピンを挿入して、ベルト固定治具を金属板に対して固定する。その後、ウォータージェット加工機の制御部に、複数のコグ1aを含むベルト内周側1xの形状に係るデータを読み込ませ、ベルト厚み、加工速度等の加工条件を入力し、加工を行う。 First, a wooden plate, a plastic plate, and a metal plate are arranged in this order on a water tank of a water jet processing machine and fixed with tape or the like. And the four reference holes and the groove | channel of the same shape as the belt inner peripheral side 1x containing several cogs 1a are formed in the metal plate arrange | positioned at the uppermost layer with a water jet. The four reference holes correspond to the four pin holes formed in the cylindrical belt fixing jig to which the annular cogless V-belt is fixed. After that, the annular cogless V-belt formed in S3 is attached to the belt fixing jig with the compression rubber layer 5 on the outside and the stretch rubber layer 3 on the inside, and the belt fixing jig is installed on the metal plate. Pins are inserted into the four pin holes and the four reference holes of the fixing jig to fix the belt fixing jig to the metal plate. Thereafter, the control unit of the water jet processing machine reads the data related to the shape of the belt inner peripheral side 1x including the plurality of cogs 1a, inputs the processing conditions such as the belt thickness and the processing speed, and performs the processing.
 以上に述べたように、本実施形態によれば、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグ1aを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグ1aを形成するという方法を採用している(図3のS1~S4参照)。そのため、圧縮ゴム層用未加硫ゴムシートの流動が不均一になって圧縮ゴム層5におけるコグ部のベルト外周側1yに凹みが生じるという問題が抑制され、ひいては、圧縮ゴム層5の凹みを起点としたクラックの発生や、圧縮ゴム層5の別のゴム層(本実施形態では接着ゴム層4)からの剥離を抑制することができる。 As described above, according to the present embodiment, it is not a method of forming a plurality of cogs 1a by applying pressure to the unvulcanized sleeve and causing the unvulcanized rubber sheet for the compressed rubber layer to flow. A method of forming a plurality of cogs 1a after vulcanizing an unvulcanized sleeve to form a vulcanized sleeve is employed (see S1 to S4 in FIG. 3). Therefore, the problem that the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes uneven and the dent on the belt outer peripheral side 1y of the cog portion in the compressed rubber layer 5 is suppressed, and as a result, the dent of the compressed rubber layer 5 is reduced. Generation of cracks as a starting point and peeling of the compressed rubber layer 5 from another rubber layer (the adhesive rubber layer 4 in the present embodiment) can be suppressed.
 本実施形態では、未加硫スリーブ形成工程S1において、短繊維を含む圧縮ゴム層用未加硫ゴムシートを用い、短繊維をベルト幅方向に配向させる(図3のS1a参照)。上記構成によれば、短繊維をベルト幅方向に配向させることで、高い異方性が得られると共に、ベルト幅方向の弾性率を大きくして耐側圧性を有効に向上させることができる。特に無段変速装置30に適用される場合、コグ付きVベルト1は、大きく屈曲されると共に高負荷での過酷なレイアウトで用いられるため、高い耐久性及び省燃費性(伝動性)が求められる。この点、上記構成によれば、耐久性及び省燃費性の両立を担う重要な因子の一つである耐側圧性(側圧による耐変形性)を向上させることができるため、耐久性及び省燃費性を共に高めることができ、高負荷伝動が要求される無段変速装置30等にも好適に適用できる。また、圧縮ゴム層5に短繊維を配合した構成において、特許文献1のように未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグ1aを形成するという方法を採用した場合、圧縮ゴム層用未加硫ゴムシートの流動が不均一になることで、短繊維の配向も乱れてしまう。この点、本実施形態では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグ1aを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグ1aを形成するという方法を採用しているため、圧縮ゴム層用未加硫ゴムシートの流動が不均一になるという問題が抑制され、短繊維の配向の乱れも抑制される。 In the present embodiment, in the unvulcanized sleeve forming step S1, the unvulcanized rubber sheet for compressed rubber layer containing short fibers is used to orient the short fibers in the belt width direction (see S1a in FIG. 3). According to the above configuration, by orienting the short fibers in the belt width direction, high anisotropy can be obtained, and the elastic modulus in the belt width direction can be increased to effectively improve the side pressure resistance. In particular, when applied to the continuously variable transmission 30, the cogged V-belt 1 is greatly bent and used in a harsh layout under a high load, so that high durability and fuel saving (transmission) are required. . In this respect, according to the above configuration, the side pressure resistance (deformation resistance due to side pressure), which is one of the important factors responsible for both durability and fuel efficiency, can be improved. Therefore, the present invention can be suitably applied to the continuously variable transmission 30 or the like that requires high load transmission. Moreover, in the structure which mix | blended the short fiber with the compression rubber layer 5, it pressurizes with respect to an unvulcanized sleeve like patent document 1, and makes the unvulcanized rubber sheet for compression rubber layers flow, and the several cogs 1a are made. When the method of forming is adopted, the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes non-uniform so that the orientation of the short fibers is disturbed. In this regard, in this embodiment, the unvulcanized sleeve is not a method of pressurizing the unvulcanized sleeve to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs 1a. Since a method of forming a plurality of cogs 1a after forming a vulcanized sleeve by vulcanization, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and the short Disturbance of fiber orientation is also suppressed.
 本実施形態では、未加硫スリーブ形成工程S1において、それぞれ短繊維を含むと共に互いに積層された複数のシート部材を圧縮ゴム層用未加硫ゴムシートとして用いる(図3のS1a参照)。上記構成によれば、1枚のシート部材に短繊維を配向させてそれを圧縮ゴム層用未加硫ゴムシートとして用いる場合に比べ、比較的厚みの小さい複数のシート部材のそれぞれに短繊維を配向させてそれらを積層することで、短繊維の配向を容易に行うことができる。また、圧縮ゴム層用未加硫ゴムシートが複数のシート部材を含む構成において、特許文献1のように未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグ1aを形成するという方法を採用した場合、圧縮ゴム層用未加硫ゴムシートの流動が不均一になり、ベルト使用時に複数のシート部材間で剥離が生じ得る。この点、本発明では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグ1aを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグ1aを形成するという方法を採用しているため、圧縮ゴム層用未加硫ゴムシートの流動が不均一になるという問題が抑制され、複数のシート部材間で剥離が生じ難い。 In the present embodiment, in the unvulcanized sleeve forming step S1, a plurality of sheet members each containing short fibers and laminated together are used as unvulcanized rubber sheets for the compressed rubber layer (see S1a in FIG. 3). According to the said structure, compared with the case where a short fiber is orientated to one sheet member and it is used as an unvulcanized rubber sheet for compression rubber layers, a short fiber is each provided in each of several sheet members with comparatively small thickness. By aligning and laminating them, the short fibers can be easily oriented. Further, in a configuration in which the unvulcanized rubber sheet for the compressed rubber layer includes a plurality of sheet members, the unvulcanized sleeve for the compressed rubber layer is caused to flow by applying pressure to the unvulcanized sleeve as in Patent Document 1. When the method of forming the plurality of cogs 1a is employed, the flow of the unvulcanized rubber sheet for the compressed rubber layer becomes non-uniform, and separation may occur between the plurality of sheet members when the belt is used. In this respect, in the present invention, the unvulcanized sleeve is vulcanized, not a method in which the unvulcanized sleeve is pressurized to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs 1a. Since the method of forming the plurality of cogs 1a after forming the vulcanized sleeve is adopted, the problem of non-uniform flow of the unvulcanized rubber sheet for the compressed rubber layer is suppressed, and a plurality of cogs 1a are formed. Peeling hardly occurs between sheet members.
 本実施形態では、未加硫スリーブ形成工程S1において、圧縮ゴム層用未加硫ゴムシートと伸張ゴム層用未加硫ゴムシートとの間に接着ゴム層用未加硫ゴムシートを配置する(図3のS1a~S1e参照)。特許文献1のように未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグ1aを形成するという方法を採用した場合、圧縮ゴム層用未加硫ゴムシートがドラムの凹部に流れ込む際に接着ゴム層用未加硫ゴムシートを巻き込み、圧縮ゴム層5におけるコグ部のベルト外周側1yに凹みが生じ、当該凹みに接着ゴム層4が入り込んだ状態となり得る。この点、本実施形態では、未加硫スリーブに対して加圧を行い圧縮ゴム層用未加硫ゴムシートを流動させて複数のコグ1aを形成するという方法ではなく、未加硫スリーブを加硫して加硫スリーブを形成してから複数のコグ1aを形成するという方法を採用しているため、接着ゴム層用未加硫ゴムシートの巻き込み、凹みへの接着ゴム層4の入り込み等の問題が抑制され、圧縮ゴム層5と接着ゴム層4との界面において凹みを起点としたクラックが生じ難く、圧縮ゴム層5の接着ゴム層4からの剥離も抑制される。 In the present embodiment, in the unvulcanized sleeve forming step S1, the unvulcanized rubber sheet for the adhesive rubber layer is disposed between the unvulcanized rubber sheet for the compression rubber layer and the unvulcanized rubber sheet for the stretch rubber layer ( (See S1a to S1e in FIG. 3). When the method of forming a plurality of cogs 1a by applying pressure to the unvulcanized sleeve and flowing the unvulcanized rubber sheet for the compressed rubber layer as in Patent Document 1, the unvulcanized for the compressed rubber layer is formed. When the vulcanized rubber sheet flows into the concave portion of the drum, the unvulcanized rubber sheet for the adhesive rubber layer is wound, and a dent is formed on the belt outer peripheral side 1y of the cogged portion in the compressed rubber layer 5, and the adhesive rubber layer 4 enters the dent. It can be a state. In this regard, in this embodiment, the unvulcanized sleeve is not a method of pressurizing the unvulcanized sleeve to flow the unvulcanized rubber sheet for the compressed rubber layer to form a plurality of cogs 1a. Since a method of forming a plurality of cogs 1a after forming a vulcanized sleeve by vulcanization, the unvulcanized rubber sheet for the adhesive rubber layer is entangled, the adhesive rubber layer 4 enters into the recess, etc. The problem is suppressed, cracks starting from the dents are unlikely to occur at the interface between the compressed rubber layer 5 and the adhesive rubber layer 4, and peeling of the compressed rubber layer 5 from the adhesive rubber layer 4 is also suppressed.
 未加硫スリーブ形成工程S1において、ベルト長手方向に延在する心線4aを、接着ゴム層用未加硫ゴムシートの中に配置する(図3のS1b~S1d参照)。上記構成によれば、心線4aが接着ゴム層4に埋没されることとなり、心線4aが接着ゴム層4に埋没されずに接着ゴム層4に接しているだけの場合に比べ、耐久性が向上する。 In the unvulcanized sleeve forming step S1, the core wire 4a extending in the longitudinal direction of the belt is disposed in the unvulcanized rubber sheet for the adhesive rubber layer (see S1b to S1d in FIG. 3). According to the above configuration, the core wire 4 a is buried in the adhesive rubber layer 4, and the durability is higher than the case where the core wire 4 a is not buried in the adhesive rubber layer 4 and is only in contact with the adhesive rubber layer 4. Will improve.
 上述の実施形態と同様の製造方法で製造したコグ付きVベルト(実施例1~7)と特許文献1と同様の製造方法で製造したコグ付きVベルト(比較例1~4)とについて、実車U/D(UP/DOWN)耐久走行試験を行い、試験後の各コグ付きVベルトの側面の状態を比較した。実施例1~7に係るコグ付きVベルトの構成を表1に示し、比較例1~4に係るコグ付きVベルトの構成を表2に示す。 A cog-attached V-belt (Examples 1 to 7) manufactured by the same manufacturing method as in the above-described embodiment and a cog-attached V-belt (Comparative Examples 1 to 4) manufactured by the same manufacturing method as Patent Document 1 A U / D (UP / DOWN) durability running test was performed, and the state of the side surface of each cogged V-belt after the test was compared. Table 1 shows the configuration of the V-belt with cogs according to Examples 1 to 7, and Table 2 shows the configuration of the V-belt with cogs according to Comparative Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000001
 実施例1、2は同じ構成材料で短繊維の平均繊維長を変量した例である。
 実施例3は実施例1と同じ構成材料で短繊維の平均繊維径を変量した例である。
 実施例4は実施例1と同じ構成材料で短繊維の配合量を変量した例である。
 実施例5は実施例4と同じ構成材料で短繊維の平均繊維長を変量した例である。
 実施例6は短繊維の種類を変更した例である。
 実施例7は実施例1と同じ構成材料でコグ高さを大きくした例である。
Figure JPOXMLDOC01-appb-T000001
Examples 1 and 2 are examples in which the average fiber length of short fibers is varied using the same constituent materials.
Example 3 is an example in which the average fiber diameter of short fibers is varied using the same constituent materials as in Example 1.
Example 4 is an example in which the blending amount of the short fibers is changed using the same constituent materials as in Example 1.
Example 5 is an example in which the average fiber length of short fibers is varied using the same constituent materials as in Example 4.
Example 6 is an example in which the type of short fiber is changed.
Example 7 is an example in which the cog height is increased with the same constituent material as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~7に係る製造工程及び比較例1~4に係る製造工程では、コグ1aを形成する工程を除き、同様の条件で工程を行った。未加硫スリーブを加硫する際には、実施例1~7及び比較例1~4では、未加硫スリーブの外側に加硫ジャケットを被せて金型を加硫缶に設置し、温度160℃で20分間加硫を行った。実施例1~7及び比較例1~4に係るコグ付きVベルトのサイズは、外周長800mm、上幅20.0mm、ベルト厚み9.5mm、コグ高さは表1及び表2に示す値とした。 In the manufacturing steps according to Examples 1 to 7 and the manufacturing steps according to Comparative Examples 1 to 4, the steps were performed under the same conditions except for the step of forming the cogs 1a. When vulcanizing the unvulcanized sleeve, in Examples 1 to 7 and Comparative Examples 1 to 4, the mold was placed on the vulcanization can with the vulcanization jacket placed outside the unvulcanized sleeve, and the temperature was 160 Vulcanization was carried out at 20 ° C. for 20 minutes. The sizes of the V-belt with cogs according to Examples 1 to 7 and Comparative Examples 1 to 4 are as follows. The outer peripheral length is 800 mm, the upper width is 20.0 mm, the belt thickness is 9.5 mm, and the cog height is the values shown in Tables 1 and 2. did.
 実施例1~7において、コグ形成工程S4では、上述の実施形態で例示したウォータージェット加工機を用いた方法を採用した。
 ・使用設備(ウォータージェット加工機):(株)フロージャパン製 MACH3B Model1313
 ・ピン穴及び基準穴の径: 直径10mm
 ・加工条件: ベルト厚み20mm、加工速度240mm/min
In Examples 1 to 7, in the cog forming step S4, a method using the water jet processing machine exemplified in the above embodiment was adopted.
-Equipment used (water jet processing machine): MACH3B Model 1313 manufactured by Flow Japan Co., Ltd.
-Diameter of pin hole and reference hole: Diameter 10mm
・ Processing conditions: Belt thickness 20mm, processing speed 240mm / min
 実施例1~7及び比較例1~4において、圧縮ゴム層用未加硫ゴムシート及び伸張ゴム層用未加硫ゴムシートは、表3の材料を配合して(配合1~配合6)、それぞれバンバリーミキサー等でゴム練りを行い、生成された練りゴムをカレンダーロールに通して圧延して、作製した。また、実施例1~7及び比較例1~4において、第1接着ゴム層用未加硫ゴムシート及び第2接着ゴム層用未加硫ゴムシートは、表4の材料を配合して、それぞれバンバリーミキサー等でゴム練りを行い、生成された練りゴムをカレンダーロールに通して圧延して、作製した。 In Examples 1 to 7 and Comparative Examples 1 to 4, the unvulcanized rubber sheet for the compressed rubber layer and the unvulcanized rubber sheet for the stretch rubber layer were blended with the materials shown in Table 3 (Formulation 1 to 6). Each was kneaded with a Banbury mixer or the like, and the produced kneaded rubber was rolled through a calender roll to prepare. In Examples 1 to 7 and Comparative Examples 1 to 4, the unvulcanized rubber sheet for the first adhesive rubber layer and the unvulcanized rubber sheet for the second adhesive rubber layer were blended with the materials shown in Table 4, respectively. Rubber kneading was performed with a Banbury mixer or the like, and the produced kneaded rubber was rolled through a calender roll to prepare.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4に示す材料の詳細は、下記のとおりである。
 ・短繊維
  ・アラミド短繊維(a):帝人製 コーネックス短繊維、平均繊維長3mm、平均繊維径14μm
  ・アラミド短繊維(b):帝人製 コーネックス短繊維、平均繊維長6mm、平均繊維径14μm
  ・アラミド短繊維(c):帝人製 コーネックス短繊維、平均繊維長3mm、平均繊維径20μm
  ・アラミド短繊維(d):帝人製 コーネックス短繊維、平均繊維長2mm、平均繊維径14μm
  ・ポリアミド66短繊維:東レ製 ナイロン66繊維、平均繊維長:6mm、平均繊維径:30μm
 ・ナフテン系オイル:DIC(株)製「RS700」
 ・カーボンブラック:東海カーボン(株)製「シースト3」
 ・老化防止剤:精工化学(株)製「ノンフレックスOD3」
 ・加硫促進剤:テトラメチルチウラム・ジスルフィド(TMTD)
 ・シリカ:東ソー・シリカ(株)製「Nipsil VN3」
Details of the materials shown in Tables 3 and 4 are as follows.
Short fiber Aramid short fiber (a): Teijin Cornex short fiber, average fiber length 3 mm, average fiber diameter 14 μm
・ Aramid short fiber (b): Teijin Cornex short fiber, average fiber length 6 mm, average fiber diameter 14 μm
Aramid short fiber (c): Teijin Cornex short fiber, average fiber length 3 mm, average fiber diameter 20 μm
Aramid short fiber (d): Teijin Cornex short fiber, average fiber length 2 mm, average fiber diameter 14 μm
Polyamide 66 short fiber: Nylon 66 fiber manufactured by Toray, average fiber length: 6 mm, average fiber diameter: 30 μm
・ Naphthenic oil: “RS700” manufactured by DIC Corporation
・ Carbon black: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
Anti-aging agent: “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
・ Vulcanization accelerator: Tetramethylthiuram disulfide (TMTD)
・ Silica: “Nippil VN3” manufactured by Tosoh Silica Corporation
 実施例1~7及び比較例1~4において、心線4aとしては、1000デニールのポリエチレンテレフタレート(PET)繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で諸撚りしたトータルデニール6,000のコードに、接着処理を施したものを使用した。 In Examples 1 to 7 and Comparative Examples 1 to 4, the core wire 4a is made of 1000 denier polyethylene terephthalate (PET) fibers in a 2 × 3 twist configuration with an upper twist factor of 3.0 and a lower twist factor of 3.0. A cord having a total denier of 6,000 twisted and subjected to an adhesion treatment was used.
 実施例1~7及び比較例1~4において、補強布2としては、綿の紡績糸を使用した平織帆布にRFL液で浸漬処理を施し、さらに当該帆布を150℃で2分間熱処理した後、上記表4のゴム組成物をすり込むフリクション加工を行うことで形成された、ゴム付帆布を使用した。 In Examples 1 to 7 and Comparative Examples 1 to 4, as the reinforcing cloth 2, a plain woven canvas using cotton spun yarn was dipped in an RFL solution, and the canvas was further heat-treated at 150 ° C. for 2 minutes. A canvas with rubber formed by friction processing in which the rubber composition shown in Table 4 was rubbed was used.
 実車U/D耐久走行試験では、実車(スクータ)のベルト式無段変速装置に実施例1~7及び比較例1~4に係る各コグ付きVベルトを取り付け、シャーシダイナモ試験機にて、図4に示すパターンでの走行(即ち、アイドリング状態からスロットル全開(90km/h狙いで90秒間)、スロットル全閉(アイドリング状態で30秒間)、を繰り返すUP/DOWN走行)を走行距離10000kmまで実施した。 In the actual vehicle U / D endurance test, the V-belts with cogs according to Examples 1 to 7 and Comparative Examples 1 to 4 are attached to a belt type continuously variable transmission of an actual vehicle (scooter), and the chassis dynamo tester Traveling with the pattern shown in No. 4 (that is, UP / DOWN driving in which the throttle is fully opened (90 seconds for 90 km / h for 90 seconds) and the throttle is fully closed (30 seconds for idling) from the idling state) was performed up to a traveling distance of 10,000 km. .
 上記実車U/D耐久走行試験を行った、実施例1~7及び比較例1~4に係るコグ付きVベルトの側面の状態を観察した。具体的には、圧縮ゴム層のゴムの流動による短繊維の配向乱れが影響する、(1)圧縮ゴム層内での層間剥離によるクラック(コグ部クラック)と、(2)耐側圧性不足による側圧変形から生じる心線下での界面剥離(心線下剥離)の有無(及び程度)を観察した。実施例1~7及び比較例1~4に係る観察結果を表1及び表2に示す。 In the actual vehicle U / D durability running test, the state of the side surface of the cogged V-belt according to Examples 1 to 7 and Comparative Examples 1 to 4 was observed. Specifically, the orientation disorder of the short fiber due to the flow of rubber in the compressed rubber layer affects, (1) cracks due to delamination in the compressed rubber layer (cog part cracks), and (2) due to insufficient lateral pressure resistance. The presence / absence (and extent) of interface peeling (under-core peeling) under the core line resulting from lateral pressure deformation was observed. The observation results according to Examples 1 to 7 and Comparative Examples 1 to 4 are shown in Tables 1 and 2.
 比較例1は、従来の型成形により圧縮ゴム層を流動させて複数のコグを形成したため、圧縮ゴム層内にゴムの流動が生じ、コグ部クラックや心線下剥離が生じた。詳細すれば、図5(a)に示すように、圧縮ゴム層5におけるコグ部のベルト外周側1yに凹み5xが生じ、凹み5xに接着ゴム層4が入り込んだ状態となり、更には、心線4aから接着ゴム層4が剥離した状態(心線下剥離)となっていた。また、圧縮ゴム層5と接着ゴム層4との界面において、凹み5xを起点としたクラック5y1が生じていた。圧縮ゴム層5内部においては、流動形状が明確に現れており、複数のシート部材間にクラック5y2,5y3(コグ部クラック)が生じ、複数のシート部材間の剥離が生じていた。 In Comparative Example 1, since the compressed rubber layer was flowed by conventional molding to form a plurality of cogs, the rubber flowed in the compressed rubber layer, resulting in cog cracks and peeling under the cord. More specifically, as shown in FIG. 5 (a), a dent 5x is formed on the belt outer peripheral side 1y of the cog portion in the compressed rubber layer 5, and the adhesive rubber layer 4 enters the dent 5x. The adhesive rubber layer 4 was peeled off from 4a (peeling under the core line). Further, a crack 5y1 starting from the dent 5x occurred at the interface between the compressed rubber layer 5 and the adhesive rubber layer 4. In the compressed rubber layer 5, the flow shape clearly appeared, cracks 5y2 and 5y3 (cog cracks) were generated between the plurality of sheet members, and separation between the plurality of sheet members occurred.
 比較例2は比較例1に対して、コグ高さを大きくした例であるが、コグ高さが大きい分、圧縮ゴム層内のゴムの流動も大きくなり、短繊維の配向乱れも増したためか、コグ部クラックや心線下剥離も一段と生じた。 Comparative Example 2 is an example in which the cog height is increased as compared to Comparative Example 1. However, because the cog height is large, the flow of rubber in the compressed rubber layer also increases, and the orientation disorder of the short fibers also increases. Cog part cracks and peeling below the core line also occurred.
 比較例3は比較例1に対して、コグ高さを小さくした例であるが、コグ高さが小さい分、圧縮ゴム層内のゴムの流動も小さくなり、短繊維の配向乱れも減ったためか、心線下剥離は生じなかったが、コグ部クラックは若干生じた。 Comparative Example 3 is an example in which the cog height is made smaller than that of Comparative Example 1, but because the cog height is small, the flow of rubber in the compressed rubber layer is also reduced, and the orientation disorder of the short fibers is also reduced. Although peeling under the cord did not occur, some cracks in the cog part occurred.
 比較例4は比較例1に対して、短繊維の配合量を少なくした例であるが、コグ部クラックは比較例1と同程度に生じ、より耐側圧性が不足したためか、心線下剥離が一段と生じた。 Comparative Example 4 is an example in which the blending amount of the short fibers is reduced with respect to Comparative Example 1, but the cog cracks are generated to the same extent as Comparative Example 1, and the side pressure resistance is insufficient. Was further generated.
 一方、試験後の実施例1~7に係るコグ付きVベルトの側面の状態を観察したところ、コグ部クラックや心線下の剥離は一切生じていなかった。 On the other hand, when the state of the side surface of the cogged V-belt according to Examples 1 to 7 after the test was observed, no cog cracks or peeling under the cord occurred.
 以上、本発明の好適な実施の形態及び実施例について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な設計変更が可能なものである。 The preferred embodiments and examples of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various design changes can be made as long as they are described in the claims. is there.
 ・ベルト内周側のみでなく、ベルト外周側にも、複数のコグを設けてよい。
 ・補強布は、ベルト内周側にも設けてもよく、また、ベルト内周側及びベルト外周側のいずれにも設けなくてもよい。また、補強布を、圧縮ゴム層や伸張ゴム層に埋没させてもよい。ベルト内周側に補強布を設ける場合は、コグ形成工程の後、補強布を公知の手法で圧縮ゴム層の表面に接着してよい。
 ・短繊維は、伸張ゴム層用未加硫ゴムシートに含まれなくてもよい。また、短繊維は、圧縮ゴム層用未加硫ゴムシート及び伸張ゴム層用未加硫ゴムシートのいずれにも含まれなくてもよい。
 ・圧縮ゴム層用未加硫ゴムシートは、複数のシート部材から構成されることに限定されず、単一のシート部材から構成されてもよい。
 ・心線を、接着ゴム層に埋没させず、接着ゴム層に接触させるだけでもよい(例えば、未加硫スリーブ形成工程において、心線を、接着ゴム層用未加硫ゴムシートと伸張ゴム層用未加硫ゴムシートとの間に配置し、又は、接着ゴム層用未加硫ゴムシートと圧縮ゴム層用未加硫ゴムシートとの間に配置してもよい)。また、接着ゴム層を省略してもよい。
 ・コグ付きVベルトにおけるベルト長手方向と直交する断面は、逆台形形状であることに限定されない。例えば、伸張ゴム層の側面が、ベルト厚み方向と平行であったり、ベルト外周側に向かうにつれてベルト幅が狭くなる方向に傾斜したりしてもよい。
A plurality of cogs may be provided not only on the belt inner peripheral side but also on the belt outer peripheral side.
The reinforcing cloth may be provided on the inner peripheral side of the belt, or may not be provided on either the inner peripheral side of the belt or the outer peripheral side of the belt. Further, the reinforcing cloth may be buried in the compressed rubber layer or the stretched rubber layer. In the case where a reinforcing cloth is provided on the inner peripheral side of the belt, the reinforcing cloth may be bonded to the surface of the compressed rubber layer by a known method after the cog forming step.
The short fiber may not be included in the unvulcanized rubber sheet for the stretch rubber layer. Further, the short fiber may not be contained in any of the unvulcanized rubber sheet for the compressed rubber layer and the unvulcanized rubber sheet for the stretch rubber layer.
The unvulcanized rubber sheet for the compressed rubber layer is not limited to being composed of a plurality of sheet members, and may be composed of a single sheet member.
-The core wire may be simply brought into contact with the adhesive rubber layer without being embedded in the adhesive rubber layer (for example, in the unvulcanized sleeve forming process, the core wire is bonded to the unvulcanized rubber sheet for the adhesive rubber layer and the stretched rubber layer. Or between the unvulcanized rubber sheet for the adhesive rubber layer and the unvulcanized rubber sheet for the compression rubber layer). Further, the adhesive rubber layer may be omitted.
-The cross section orthogonal to the belt longitudinal direction in the cogged V-belt is not limited to the inverted trapezoidal shape. For example, the side surface of the stretched rubber layer may be parallel to the belt thickness direction, or may be inclined in a direction in which the belt width becomes narrower toward the belt outer peripheral side.
 本出願は、2016年8月29日出願の日本特許出願2016-167011、及び2017年8月21日出願の日本特許出願2017-158621に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2016-167011 filed on Aug. 29, 2016, and Japanese Patent Application No. 2017-158621 filed on Aug. 21, 2017, the contents of which are incorporated herein by reference.
 1 コグ付きVベルト
 1a コグ
 1x ベルト内周側
 1y ベルト外周側
 3 伸張ゴム層
 4a 心線
 5 圧縮ゴム層
 5x 凹み
 5y1~5y3 クラック
1 Vog with Cog 1a Cog 1x Belt inner circumference 1y Belt outer circumference 3 Stretch rubber layer 4a Core wire 5 Compression rubber layer 5x Recess 5y1-5y3 Crack

Claims (5)

  1.  ベルト幅方向にそれぞれ延在しかつベルト長手方向に互いに離隔して配置された複数のコグがベルト内周側に設けられたコグ付きVベルトの製造方法において、
     前記ベルト内周側に配置される圧縮ゴム層となる圧縮ゴム層用未加硫ゴムシート及びベルト外周側に配置される伸張ゴム層となる伸張ゴム層用未加硫ゴムシートを少なくとも含む複数の未加硫ゴムシートを積層し、未加硫スリーブを形成する未加硫スリーブ形成工程と、
     前記未加硫スリーブ形成工程の後、前記未加硫スリーブを加硫して加硫スリーブを形成する加硫スリーブ形成工程と、
     前記加硫スリーブ形成工程の後、前記圧縮ゴム層に前記複数のコグを形成するコグ形成工程と、
     を備えたことを特徴とする、コグ付きVベルトの製造方法。
    In the manufacturing method of the cogged V-belt in which a plurality of cogs extending in the belt width direction and spaced apart from each other in the belt longitudinal direction are provided on the belt inner peripheral side,
    A plurality of unvulcanized rubber sheets for a compressed rubber layer to be a compressed rubber layer disposed on the inner circumferential side of the belt and at least a non-vulcanized rubber sheet for an elongated rubber layer to be an elongated rubber layer disposed on the outer circumferential side of the belt An unvulcanized sleeve forming step of laminating unvulcanized rubber sheets to form an unvulcanized sleeve;
    After the unvulcanized sleeve forming step, a vulcanized sleeve forming step of vulcanizing the unvulcanized sleeve to form a vulcanized sleeve;
    A cog forming step of forming the plurality of cogs in the compressed rubber layer after the vulcanization sleeve forming step;
    A method for producing a cogged V-belt, comprising:
  2.  前記未加硫スリーブ形成工程において積層される、前記圧縮ゴム層用未加硫ゴムシートは、前記ベルト幅方向に配向した短繊維を含むことを特徴とする、請求項1に記載のコグ付きVベルトの製造方法。 2. The cogged V according to claim 1, wherein the unvulcanized rubber sheet for the compressed rubber layer laminated in the unvulcanized sleeve forming step includes short fibers oriented in the belt width direction. A method for manufacturing a belt.
  3.  前記未加硫スリーブ形成工程において、それぞれ前記短繊維を含むと共に互いに積層された複数のシート部材を前記圧縮ゴム層用未加硫ゴムシートとして用いることを特徴とする、請求項2に記載のコグ付きVベルトの製造方法。 3. The cog according to claim 2, wherein in the unvulcanized sleeve forming step, a plurality of sheet members each including the short fibers and laminated with each other are used as the unvulcanized rubber sheet for the compression rubber layer. A manufacturing method of a V-belt.
  4.  前記未加硫スリーブ形成工程において、前記圧縮ゴム層用未加硫ゴムシートと前記伸張ゴム層用未加硫ゴムシートとの間に、接着ゴム層となる接着ゴム層用未加硫ゴムシートを配置することを特徴とする、請求項1~3のいずれか1項に記載のコグ付きVベルトの製造方法。 In the unvulcanized sleeve forming step, an unvulcanized rubber sheet for an adhesive rubber layer serving as an adhesive rubber layer is provided between the unvulcanized rubber sheet for the compressed rubber layer and the unvulcanized rubber sheet for the stretch rubber layer. The method for producing a cogged V-belt according to any one of claims 1 to 3, wherein the cogged V-belt is arranged.
  5.  前記未加硫スリーブ形成工程において、前記ベルト長手方向に延在する心線を、前記接着ゴム層用未加硫ゴムシートの中に配置することを特徴とする、請求項4に記載のコグ付きVベルトの製造方法。
     
    5. The cogging according to claim 4, wherein in the unvulcanized sleeve forming step, a core wire extending in a longitudinal direction of the belt is disposed in the unvulcanized rubber sheet for the adhesive rubber layer. V belt manufacturing method.
PCT/JP2017/030465 2016-08-29 2017-08-25 Method for manufacturing cogged v-belts WO2018043316A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/328,188 US11518125B2 (en) 2016-08-29 2017-08-25 Method for manufacturing cogged V-belts
CN201780042490.3A CN109477549B (en) 2016-08-29 2017-08-25 Method for manufacturing toothed V belt
EP17846321.2A EP3505791B1 (en) 2016-08-29 2017-08-25 Method for manufacturing cogged v-belts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-167011 2016-08-29
JP2016167011 2016-08-29
JP2017-158621 2017-08-21
JP2017158621A JP6563986B2 (en) 2016-08-29 2017-08-21 Manufacturing method of V belt with cogs

Publications (1)

Publication Number Publication Date
WO2018043316A1 true WO2018043316A1 (en) 2018-03-08

Family

ID=61300809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030465 WO2018043316A1 (en) 2016-08-29 2017-08-25 Method for manufacturing cogged v-belts

Country Status (1)

Country Link
WO (1) WO2018043316A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217337A (en) * 1982-06-11 1983-12-17 Bando Chem Ind Ltd Manufacture of v-belt with cog
JP2000153558A (en) 1998-11-20 2000-06-06 Mitsuboshi Belting Ltd Production of cogged v-belt
JP2003536024A (en) * 1999-11-12 2003-12-02 ザ ゲイツ コーポレイション Power transmission belt with woven overcord

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217337A (en) * 1982-06-11 1983-12-17 Bando Chem Ind Ltd Manufacture of v-belt with cog
JP2000153558A (en) 1998-11-20 2000-06-06 Mitsuboshi Belting Ltd Production of cogged v-belt
JP2003536024A (en) * 1999-11-12 2003-12-02 ザ ゲイツ コーポレイション Power transmission belt with woven overcord

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3505791A4 *

Similar Documents

Publication Publication Date Title
US10591020B2 (en) Transmission belt and belt-speed-change device
KR102165523B1 (en) V-belt and production method therefor
US10941506B2 (en) Plied cord, production method therefor, transmission belt, and method for using same
JP2019007618A (en) V-ribbed belt and manufacturing method thereof
US11815158B2 (en) Core wire for friction transmission belts, friction transmission belt, and manufacturing methods therefor
US11867258B2 (en) V-ribbed belt
JP6563986B2 (en) Manufacturing method of V belt with cogs
WO2018074471A1 (en) Plied cord, production method therefor, transmission belt, and method for using same
JP7116023B2 (en) Coupling belt manufacturing method
WO2018043316A1 (en) Method for manufacturing cogged v-belts
JP4757041B2 (en) V-ribbed belt
EP3650731B1 (en) V-ribbed belt
WO2019160055A1 (en) V-ribbed belt and use thereof
US11933383B2 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt
JP2023104898A (en) Transmission V-belt and its manufacturing method
WO2019111639A1 (en) Friction transmission belt, cord for same, and manufacturing method for same
JP2018096538A (en) Friction transmission belt
JP2016205621A (en) V-belt and continuously variable transmission using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017846321

Country of ref document: EP