[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018074471A1 - Plied cord, production method therefor, transmission belt, and method for using same - Google Patents

Plied cord, production method therefor, transmission belt, and method for using same Download PDF

Info

Publication number
WO2018074471A1
WO2018074471A1 PCT/JP2017/037532 JP2017037532W WO2018074471A1 WO 2018074471 A1 WO2018074471 A1 WO 2018074471A1 JP 2017037532 W JP2017037532 W JP 2017037532W WO 2018074471 A1 WO2018074471 A1 WO 2018074471A1
Authority
WO
WIPO (PCT)
Prior art keywords
twisted
twist
cords
para
cord
Prior art date
Application number
PCT/JP2017/037532
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 友田
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017192971A external-priority patent/JP6612827B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to CN201780064086.6A priority Critical patent/CN109844194B/en
Priority to US16/343,660 priority patent/US10941506B2/en
Priority to EP17862244.5A priority patent/EP3530783B1/en
Publication of WO2018074471A1 publication Critical patent/WO2018074471A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Definitions

  • the present invention relates to various twisted cords used for a tensile body of a transmission belt (particularly a V-ribbed belt), a manufacturing method thereof, a transmission belt, and a usage method thereof.
  • the core wire forming the V-ribbed belt tensile body is required to have high tensile strength and bending fatigue resistance, and an aramid core wire has been used particularly for high load applications.
  • an aramid core wire is manufactured by first twisting a fiber bundle and then twisting several twisted fiber bundles.
  • the above characteristics required for an aramid core wire have a contradictory relationship that when the number of twists of the core wire is increased to improve the bending fatigue resistance, the tensile strength is decreased.
  • V-ribbed belts for driving automotive accessories with para-aramid cords (cords made of twisted yarns of para-aramid fibers) as tensile bodies have been on the market for a long time.
  • ISG Integrated Starter Generator
  • para-aramid fibers used for high-load power transmission include para-aramid fibers of single repeating units represented by Kevler (registered trademark) and Twaron (registered trademark).
  • Kevler registered trademark
  • Twaron registered trademark
  • Technora registered trademark
  • copolymerized para-aramid fibers containing a plurality of types of repeating units have problems of cost and supply stability, and it has been desired to improve bending fatigue resistance even with para-aramid fibers having a single repeating unit.
  • Patent Document 1 discloses a first twist multiplier and a first twist multiplier as load sharing cords of a multi-V ribbed belt having a good balance between load sharing performance and bending fatigue resistance.
  • a plurality of yarns having a first twist corresponding to one twist direction, and a second twist corresponding to a second twist multiplier in a direction opposite to the first twist direction, the second twist multiplier A cord is disclosed in which the ratio of the first twist multiplier to is greater than about 1.5.
  • a ratio of the first twist multiplier corresponding to the lower twist to the second twist multiplier corresponding to the upper twist is 2.5 (that is, the second twist) using the 1000 denier para-aramid fiber as the base yarn.
  • a cord having a twist multiplier / first twist multiplier 0.4) is manufactured.
  • Patent Document 2 As a core wire of a transmission belt excellent in bending fatigue resistance, a para-aramid fiber bundle having a fineness of 1000 to 1250 dtex and a twist coefficient of 1200 to 1350 are unidirectional.
  • the four lower twisted yarns were composed of various twisted yarns having a total fineness of 4000 to 5000 dtex, in which the four lower twisted yarns were twisted in the opposite direction to the lower twist with a twist coefficient of 900 to 1100.
  • a core wire is disclosed.
  • This document describes that the ratio of the upper twist coefficient to the lower twist coefficient (upper twist coefficient / lower twist coefficient) in the various twisted yarns constituting the core wire is 0.5 to 1.
  • An object of the present invention is to provide a multi-strand cord capable of simultaneously improving the tensile strength, bending fatigue resistance and pop-out resistance of a transmission belt (particularly a V-ribbed belt) having a para-aramid core as a tensile body, and its manufacture. It is an object of the present invention to provide a method, a transmission belt provided with the twisted cord as a tensile body, and a method of using the transmission belt.
  • the present inventor prepared a plurality of underwound yarns having a specific underwound coefficient by using a high elongation type para-aramid fiber, and further a twist coefficient of the underwound
  • the twisted cords obtained by twisting the lower twisted yarn so that the ratio of the twist coefficient of the upper twist to the predetermined range is used as the tensile body of the V-ribbed belt, the tensile strength and bending resistance of the transmission belt such as the V-ribbed belt
  • the present inventors have found that fatigue and pop-out resistance can be improved at a high level simultaneously.
  • the plied cords of the present invention are plied cords including three lower twisted yarns containing para-aramid fibers, the para-aramid fibers having an average fineness of 1000 to 1250 dtex, a tensile modulus of 55 to 70 GPa and a tensile strength.
  • the twisted cord has a twist of 33 to 40 times / 10 cm, the direction of the upper twist is opposite to that of the lower twist, and the upper twist with respect to the lower twist factor is 2800 to 3500 MPa.
  • the ratio of the coefficients is 0.25-1.
  • the number of upper twists of the twisted cords is preferably about 10 to 15 times / 10 cm.
  • the ratio of the upper twist coefficient to the lower twist coefficient of the twisted cords may be about 0.5 to 0.75.
  • the plied cords of the present invention are laid cords comprising four lower twisted yarns containing para-aramid fibers, the para-aramid fibers having an average fineness of 1000 to 1250 dtex, a tensile modulus of 55 to 70 GPa and a tensile strength.
  • the twisted cord has a twist number of 42 to 52 times / 10 cm, the upper twist direction is opposite to the lower twist, and the upper twist relative to the lower twist coefficient is 2800 to 3500 MPa.
  • the ratio of the coefficients is 0.25-1.
  • the number of upper twists of the twisted cords is preferably about 5 to 15 times / 10 cm.
  • the ratio of the upper twist coefficient to the lower twist coefficient of the twisted cords may be about 0.33 to 0.66.
  • the average diameter of the twisted cords is preferably about 0.7 to 0.9 mm.
  • the para-aramid fiber may be a polyparaphenylene terephthalamide fiber.
  • the present invention includes a twisting process in which a para-aramid fiber is twisted in one direction to obtain a twisted yarn, and three or four of the twisted yarns obtained in the twisting process are aligned to reverse the twisted direction. Also included is a method for producing the above-mentioned twisted cords, which includes an upper twisting step in which the twisted cords are twisted to obtain the twisted cords.
  • the present invention also includes a transmission belt including a tensile body formed of the plied cords.
  • the tensile body may be a core wire, and the average pitch of the core wire is preferably about 0.8 to 1.05 mm.
  • the power transmission belt of the present invention may further include a compressed rubber layer formed of a rubber composition containing a rubber component.
  • the rubber component may be an ethylene- ⁇ -olefin elastomer.
  • the transmission belt is preferably a V-ribbed belt.
  • the present invention includes a method of using the transmission belt to drive an ISG-equipped engine.
  • 3 to 4 (preferably 3) twisted yarns having a specific twisting factor are prepared using a high elongation type para-aramid fiber, and an upper twisting factor corresponding to the twisting factor of the twisting is further prepared. Since the twisted cords obtained by twisting the lower twisted yarn so that the ratio of the twisting coefficients is within a certain range are used as the tensile body of the transmission belt (particularly V-ribbed belt), the tensile strength, flexural fatigue resistance and Pop-out resistance can be improved at a high level at the same time.
  • FIG. 1 is a schematic cross-sectional view in the belt width direction showing an example of a V-ribbed belt of the present invention.
  • FIG. 2 is a schematic view for explaining a method for evaluating the bending fatigue resistance of the V-ribbed belts obtained in the examples and comparative examples.
  • the twisted cords of the present invention are prepared by twisting para-aramid fiber (aromatic polyamide fiber) in one direction to form a twisted yarn (cord), and arranging 3 to 4 (preferably 3) twisted yarns.
  • the twisted cords are twisted cords that are twisted in the opposite direction, and can be used as a tensile body of a transmission belt (particularly a V-ribbed belt).
  • the untwisting torque is offset between the lower twist and the upper twist, and the pop-out resistance can be improved.
  • the base yarn of the lower twist yarn is usually a para-aramid multifilament yarn containing para-aramid fibers.
  • the para-type aramid multifilament yarn only needs to contain a monofilament yarn of para-type aramid fibers, and may contain monofilament yarns of other fibers (such as polyester fibers) if necessary.
  • the ratio of the para-type aramid fiber is 50% by mass or more (particularly 80 to 100% by mass) with respect to the whole monofilament yarn (multifilament yarn), and usually all monofilament yarns are composed of para-type aramid fiber.
  • the para-aramid fiber as the raw yarn is a copolymer para-aramid fiber containing a plurality of types of repeating units (for example, a copolymer aramid fiber of polyparaphenylene terephthalamide and 3,4'-oxydiphenylene terephthalamide).
  • Teijin Limited's “Technora” etc. may be used, but para-aramid fibers (for example, polypara-arabic) having a single repeating unit are excellent in terms of economy and availability and the effects of the present invention are remarkably exhibited.
  • Preference is given to Teijin's "Twaron” and Toray DuPont's "Kevlar", which are phenylene terephthalamide fibers.
  • the tensile elastic modulus of the para-aramid fiber as the raw yarn is 55 to 70 GPa, preferably 58 to 68 GPa, more preferably about 60 to 65 GPa. If the tensile elastic modulus is too small, the belt stretches at a high load. On the other hand, if the tensile elastic modulus is too large, it becomes difficult to balance the tensile strength, the bending fatigue resistance, and the pop-out resistance. Bending fatigue resistance decreases.
  • a tensile elasticity modulus is measured by the method of measuring a load-elongation curve by the method as described in JIS L1013 (2010), and calculating
  • the tensile strength of the para-aramid fiber as the raw yarn is 2800 to 3500 MPa, preferably 2850 to 3400 MPa (for example, 2900 to 3300 MPa), and more preferably about 3000 to 3200 MPa. If the tensile strength is too small, it becomes difficult to balance the tensile strength, the bending fatigue resistance and the pop-out resistance, and the belt tensile strength is particularly lowered. In the present specification and claims, the tensile strength is measured by the method described in JIS L1013 (2010). In addition, as described in the standard, in measuring the tensile strength of a non-twisted multifilament, the measurement is performed by applying 8 twists per 10 cm.
  • a para-aramid fiber of a single repeating unit having such mechanical properties for example, “Twaron 2100” manufactured by Teijin Ltd. or “Toray DuPont” manufactured by “Toray DuPont” Commercial products such as “Kevlar 119” can be used.
  • high tensile strength and tensile elastic modulus can be imparted to the V-ribbed belt by preparing plied cords using a high elongation type para-aramid fiber.
  • the average fineness of the para-aramid fiber as the raw yarn is 1000 to 1250 dtex, preferably about 1050 to 1200 dtex, and more preferably about 1080 to 1150 dtex. If the fineness is too small, the belt tensile strength is lowered. Conversely, if the fineness is too large, the bending fatigue resistance is lowered.
  • the number of twists of the twisted cords can be selected according to the number of twisted yarns.
  • the number of lower twists is 33 to 40 times / 10 cm, preferably 35 to 39.5 times / 10 cm from the viewpoint of imparting excellent bending fatigue resistance and tensile strength. (For example, 36 to 39.3 times / 10 cm), more preferably about 37 to 39 times / 10 cm (especially 38 to 38.5 times / 10 cm).
  • the number of lower twists is 42 to 52 times / 10 cm, preferably 42.5 to 51.
  • 5 in terms of imparting excellent bending fatigue resistance and tensile strength. It is about 8/10 cm (for example, 43 to 51.5 times / 10 cm), more preferably about 46.1 to 51 times / 10 cm (particularly 46.5 to 50.5 times / 10 cm). If the number of lower twists is too small, the bending fatigue resistance decreases, and if it is too large, the tensile strength decreases.
  • the number of upper twists (upper twist) of various twisted cords can be selected from a range of about 5 to 20 times / 10 cm (especially 5 to 19 times / 10 cm) depending on the number of lower twisted yarns.
  • the number of upper twists is, for example, 10 to 19 times / 10 cm (for example, 10 to 15 times / 10 cm), preferably 12 to 15 times / 10 cm (for example, 13 to 15 times / 10 cm), more preferably about 14 to 15 times / 10 cm (especially 14.5 to 15 times / 10 cm).
  • the number of upper twists is, for example, 5 to 19 times / 10 cm (for example, 5 to 15 times / 10 cm), preferably 6 to 16 times / 10 cm (for example, 8.2 to 14). 2 times / 10 cm), more preferably about 9-14 times / 10 cm (especially 9.6-12.8 times / 10 cm), and further about 10-12 times / 10 cm.
  • the pop-out resistance can be improved to a high degree by increasing the number of upper twists. If the number of upper twists is too small, the pop-out resistance may be lowered. On the other hand, if the number is too large, the tensile strength may be lowered or the bending fatigue resistance may be lowered.
  • the ratio of the upper twist coefficient to the lower twist coefficient of the various twisted cords is also in the range of about 0.25 to 1 (for example, 0.3 to 0.8) depending on the number of the lower twist threads. You can choose from.
  • the coefficient ratio is, for example, about 0.5 to 0.75, preferably about 0.6 to 0.73, and more preferably about 0.65 to 0.7.
  • the coefficient ratio is, for example, 0.33 to 0.66, preferably 0.35 to 0.6, more preferably 0.36 to 0.55 (particularly 0).
  • each twist coefficient of a lower twist coefficient and an upper twist coefficient is calculated based on the following formula
  • Twist coefficient (TF) [twist number (times / m) ⁇ ⁇ total fineness (tex)] / 960.
  • the lower twist coefficient and the upper twist coefficient of the various twisted cords are not particularly limited as long as the above-mentioned ratio is satisfied, but the lower twist coefficient is, for example, 4 to 6, preferably 4.5 to 5.5, More preferably, it is about 4.8 to 5.3, and the upper twist coefficient is, for example, about 1.5 to 3.5, preferably 1.8 to 3, and more preferably about 2 to 2.5.
  • the average diameter (diameter) of the various twisted cords is, for example, about 0.5 to 1.2 mm, preferably 0.6 to 1 mm, and more preferably 0.7 to 0.9 mm (particularly 0.78 to 0.88 mm). It is.
  • the requirements for belt strength and bending fatigue resistance are severe, and a thicker core wire diameter is preferable to increase belt strength, but if it is too thick, bending fatigue resistance decreases. It is preferable to adjust to the range. If the average diameter of the plied cords is too small, the tensile strength and the tensile modulus of elasticity may be reduced. On the other hand, if the average diameter is too large, the bending fatigue resistance may be reduced.
  • the average fineness of the twisted cords may be, for example, about 2000 to 7000 dtex, preferably about 3000 to 6000 dtex, and more preferably about 4000 to 5000 dtex.
  • the multifilament yarn may include, for example, about 1000 to 6000 monofilament yarns, preferably 2000 to 5000 yarns, and more preferably about 2500 to 4500 yarns.
  • the tensile strength of the plied cords may be, for example, 600 N or more (especially 650 N or more), preferably 600 to 1000 N, more preferably 650 to 900 N (particularly 700 to 800 N). If the tensile strength of the twisted cords is too small, the tensile strength and pop-out resistance of the belt may be reduced. In the present specification and claims, the tensile strength of plied cords is measured by the method described in the examples described later.
  • the twisted cords of the present invention are prepared by a conventional method in which a para-aramid fiber is first twisted in one direction to obtain a lower twisted yarn, and three or four lower twisted yarns obtained in the lower twisted step are drawn. They can be manufactured through an upper twisting step in which twisted cords are obtained by twisting in the opposite direction to the lower twist.
  • the transmission belt of this invention should just contain the tensile body formed with the said twisted cord, and usually contains the said twisted cord as a core wire.
  • the transmission belt include friction transmission belts such as a V belt and a V-ribbed belt, and meshing transmission belts such as a toothed belt and a double-sided toothed belt. Since the tensile strength, the bending fatigue resistance and the pop-out resistance can be improved at a high level at the same time, the twisted cord of the present invention can be particularly preferably used as a core of a V-ribbed belt for driving an ISG-equipped engine.
  • the form of the V-ribbed belt will be described.
  • the form of the V-ribbed belt as an example of the present invention is not particularly limited as long as it has a plurality of V-rib portions extending in parallel with each other along the belt longitudinal direction.
  • FIG. 1 is a schematic cross-sectional view in the belt width direction showing an example of the V-ribbed belt of the present invention.
  • a V-ribbed belt shown in FIG. 1 has a compression rubber layer 2, an adhesive rubber layer 4 in which a core wire 1 is embedded in the longitudinal direction of the belt, a cover canvas (from the belt lower surface (inner circumferential surface) to the belt upper surface (back surface). Woven fabric, knitted fabric, non-woven fabric, etc.) or a stretched layer 5 made of a rubber composition.
  • a plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compressed rubber layer 2, and a plurality of V-rib portions 3 having a V-shaped cross section (reverse trapezoid) are formed between the grooves (example shown in FIG. 1). 4), and the two inclined surfaces (surfaces) of the V-rib portion 3 form a friction transmission surface and contact the pulley to transmit power (friction transmission).
  • the V-ribbed belt is not limited to this form, and it is sufficient that at least a part is provided with a compression rubber layer having a transmission surface that can come into contact with the V-rib groove portion (V-groove portion) of the pulley. What is necessary is just to provide the rubber layer and the core wire embed
  • the core wire 1 may be embedded between the stretched layer 5 and the compressed rubber layer 2 without providing the adhesive rubber layer 4.
  • the adhesive rubber layer 4 is provided on either the compressed rubber layer 2 or the stretched layer 5, and the core wire 1 is disposed between the adhesive rubber layer 4 (compressed rubber layer 2 side) and the stretched layer 5, or the adhesive rubber layer 4 It may be embedded between the (extended layer 5 side) and the compressed rubber layer 2.
  • the compressed rubber layer 2 is preferably formed of a rubber composition described in detail below, and the adhesive rubber layer 4 may be formed of a conventional rubber composition used as an adhesive rubber layer.
  • the stretch layer 5 may be formed of a conventional cover canvas or rubber composition used as a stretch layer, and may not be formed of the same rubber composition as the compressed rubber layer 2.
  • the tensile strength of the V-ribbed belt may be, for example, 6000 N or more (especially 6500 N or more), preferably about 6000 to 9000 N, more preferably about 6500 to 8000 N (particularly 7000 to 7500 N). If the tensile strength is too small, there is a high possibility that the belt will break during traveling. In the present specification and claims, the tensile strength of the V-ribbed belt is measured by the method described in Examples described later.
  • a plurality of core wires 1 extend in the belt longitudinal direction and are spaced apart from each other at a predetermined pitch in the belt width direction.
  • the average pitch of the core wires (the average distance between adjacent core wires) can be appropriately selected according to the core wire diameter and the target belt tensile strength, for example, 0.6 to 2 mm, preferably 0.8 to 1.5 mm, More preferably, it can be selected from a range of about 0.8 to 1.05 mm. Further, the average pitch of the core wires may be selected according to the number of the lower twisted yarns. In particular, in a twisted cord including three lower twisted yarns, the average pitch of the cords is, for example, about 0.7 to 1 mm, preferably about 0.75 to 0.95 mm, and more preferably about 0.8 to 0.9 mm. .
  • the average pitch of the cords is, for example, 0.8 to 1.2 mm, preferably 0.9 to 1.05 mm, and more preferably about 0.9 to 1 mm. . If the core wire pitch is too small, there is a risk that the core wires may run up in the belt manufacturing process, and conversely if too large, the tensile strength and tensile modulus of the belt may be reduced.
  • the core wire may be either S-twisted or Z-twisted, but it is preferable to alternately arrange S-twisted and Z-twisted to improve the straightness of the belt.
  • the core wire may be subjected to a conventional adhesion treatment (or surface treatment), such as a resorcin-formalin-latex (RFL) solution or a treatment solution containing an isocyanate compound. Furthermore, the core wire may be covered with a rubber composition containing a rubber component constituting the adhesive rubber layer.
  • a conventional adhesion treatment or surface treatment
  • RNL resorcin-formalin-latex
  • the compressed rubber layer 2, the adhesive rubber layer 4, and the stretch layer 5 may be formed of a rubber composition containing a rubber component.
  • a rubber composition containing a rubber component.
  • an existing method is used.
  • a vulcanizable or crosslinkable rubber may be used.
  • a diene rubber natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), Hydrogenated nitrile rubber, etc.
  • SBR styrene butadiene rubber
  • acrylonitrile butadiene rubber nitrile rubber
  • Hydrogenated nitrile rubber etc.
  • ethylene- ⁇ -olefin elastomer chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber and the like.
  • Preferred rubber components are ethylene- ⁇ -olefin elastomers (ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), etc.), and chloroprene rubber. Further, since it does not contain harmful halogen, has ozone resistance, heat resistance, cold resistance, weather resistance, and can reduce the belt weight, an ethylene- ⁇ -olefin elastomer [ethylene-propylene copolymer (EPM), Ethylene-propylene-diene terpolymer (EPDM) etc.] is particularly preferred.
  • the proportion of the ethylene- ⁇ -olefin elastomer in the rubber component may be 50% by mass or more (particularly about 80 to 100% by mass) or 100% by mass (ethylene - ⁇ -olefin elastomer only) is particularly preferred.
  • the rubber composition may further contain short fibers.
  • the short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (for example, polyethylene terephthalate ( PET) fibers, C 2-4 alkylene C 8-14 arylate fibers such as polyethylene naphthalate (PEN) fibers), vinylon fibers, polyvinyl alcohol fibers, synthetic fibers such as polyparaphenylene benzobisoxazole (PBO) fibers; Examples include natural fibers such as cotton, hemp, and wool; inorganic fibers such as carbon fibers. These short fibers can be used alone or in combination of two or more. In order to improve dispersibility and adhesiveness in the rubber composition, the short fibers may be subjected to a conventional adhesion treatment (or surface treatment) as in the case of the core wire
  • the rubber composition may further contain a conventional additive.
  • conventional additives include vulcanizing agents or crosslinking agents (or crosslinking agent systems) (sulfur vulcanizing agents, etc.), co-crosslinking agents (bismaleimides, etc.), vulcanization aids or vulcanization accelerators ( Thiuram accelerators), vulcanization retarders, metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), enhancers (for example, carbon black, , Silicon oxide such as hydrous silica), fillers (clay, calcium carbonate, talc, mica, etc.), softeners (for example, oils such as paraffin oil and naphthenic oil), processing agents or processing aids (stearin Acid, stearic acid metal salt, wax, paraffin, fatty acid amide, etc.), anti-aging agent (antioxidant, thermal anti-aging agent, anti-bending agent, anti-ozone degradation agent, etc.), colorant, tack
  • the metal oxide may act as a crosslinking agent.
  • the rubber composition constituting the adhesive rubber layer 4 may contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
  • the rubber composition constituting the compressed rubber layer 2, the adhesive rubber layer 4 and the stretch layer 5 may be the same or different from each other.
  • the short fibers contained in the compressed rubber layer 2, the adhesive rubber layer 4, and the stretch layer 5 may be the same or different from each other.
  • the stretch layer 5 may be formed of a cover canvas.
  • the cover canvas can be formed of, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide-angle canvas, a knitted cloth, and a non-woven cloth.
  • the stretch layer 5 may be subjected to adhesion treatment, for example, treatment with an RFL solution (immersion treatment, etc.), friction for rubbing adhesive rubber into the cloth material, or lamination (coating) of the adhesive rubber and the cloth material. ) And then laminated on the compressed rubber layer and / or the adhesive rubber layer in the above-described form.
  • V-ribbed belt The manufacturing method of the V ribbed belt which is an example of this invention is not restrict
  • the compressed rubber layer 2, the adhesive rubber layer 4 in which the core wire 1 is embedded, and the stretched layer 5 are each formed by laminating with an unvulcanized rubber composition, and this laminate is formed into a cylindrical shape with a molding die. And then vulcanizing to form a sleeve and cutting the vulcanized sleeve to a predetermined width.
  • the V-ribbed belt can be manufactured by the following method.
  • a stretching layer sheet is wound around a cylindrical mold (mold or mold) having a smooth surface, and a core wire (twisted cord) that forms a core body is spirally spun on the sheet.
  • An adhesive rubber layer sheet and a compressed rubber layer sheet are sequentially wound to prepare a molded body.
  • the molding mold is accommodated in a vulcanizing can with the vulcanization jacket covered from above the molded body, vulcanized under predetermined vulcanization conditions, and then demolded from the molding mold and cylindrical vulcanized. Get a rubber sleeve.
  • the outer surface (compressed rubber layer) of the vulcanized rubber sleeve is polished by a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut in a circumferential direction with a predetermined width using a cutter. Finish in a V-ribbed belt. By reversing the cut belt, a V-ribbed belt provided with a compressed rubber layer having a rib portion on the inner peripheral surface can be obtained.
  • a cylindrical inner mold having a flexible jacket attached to the outer peripheral surface is used as the inner mold, and a stretch layer sheet is wound around the flexible jacket on the outer peripheral surface, and a core wire forming a core body is formed on the sheet. Spinning in a spiral shape and winding a compressed rubber layer sheet to produce a laminate.
  • an outer mold that can be attached to the inner mold a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface is used, and an inner mold in which the laminate is wound is provided in the outer mold. Install concentrically.
  • the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed rubber layer) is press-fitted into the rib mold and vulcanized.
  • the inner mold is extracted from the outer mold, the vulcanized rubber sleeve having a plurality of ribs is removed from the outer mold, and then the vulcanized rubber sleeve is cut in the circumferential direction with a predetermined width by using a cutter. Finish.
  • a laminated body including an extension layer, a core body, and a compressed rubber layer can be expanded at a time to be finished into a sleeve (or V-ribbed belt) having a plurality of ribs.
  • hird production method In connection with the second production method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2004-82702 (only a compression rubber layer is expanded to form a preform (semi-vulcanized state), A method in which the core body is expanded and pressure-bonded to the preform, and vulcanized and integrated into a V-ribbed belt) may be employed.
  • Para-aramid fiber of standard type single repeating unit “Twaron (registered trademark) 1014” manufactured by Teijin Limited, tensile elastic modulus 82 GPa, tensile strength 2800 MPa
  • Pre-dip treatment liquid Toluene solution containing 10% by mass of polymeric isocyanate
  • Resorcin-formalin-latex (RFL) treatment liquid 4 parts by mass of a prepolymer of resorcin and formalin (2.6 parts by mass of resorcin, 1.4 parts of formalin) Mixed solution containing 17.2 parts by mass of latex (styrene-butadiene-vinylpyridine copolymer, manufactured by Nippon Zeon Co., Ltd.) and 78.8
  • Hydrous silica “Nippil VN3” manufactured by Tosoh Silica Co., Ltd., BET specific surface area 240 m 2 / g Resorcin / formaldehyde condensate: Less than 20% resorcinol, less than 0.1% formalin Anti-aging agent: “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
  • Vulcanization accelerator DM Di-2-benzothiazolyl disulfide
  • Polyamide short fiber “66 nylon” manufactured by Asahi Kasei Corporation
  • Paraffin softener “Diana Process Oil” manufactured by Idemitsu Kosan Co., Ltd.
  • Organic peroxide “Parkadox 14RP” manufactured by Kayaku Akzo Corporation.
  • Examples 1 to 11 and Comparative Examples 1 to 12 [Production of core wire]
  • a multifilament (fineness of 1100 dtex) of a para-aramid fiber of a high elongation type single repeating unit is decreased in one direction with the number of twists shown in Table 3. These were twisted together, and four of them were aligned and twisted in the direction opposite to the lower twist with the number of upper twists shown in Table 3 to produce various twisted cords (S twisted, Z twisted) having a total fineness of 4400 dtex.
  • the twisted cords thus obtained were immersed in a pre-dip treatment solution for 10 seconds and then heat treated at 180 ° C. for 4 minutes.
  • the pre-dip-treated various twisted cords were immersed in an RFL treatment solution for 10 seconds and then heat-treated at 230 ° C. for 2 minutes. Furthermore, after the RFL-treated various twisted cords were immersed in an overcoat treatment solution for 3 seconds, heat treatment was performed at 150 ° C. for 4 minutes to obtain a treated cord covered with adhesive rubber.
  • the cords used in Comparative Examples 5 to 7 treatment cords were prepared in the same manner as in Examples 1 to 7 and Comparative Examples 1 to 4 except that a para-aramid fiber of a standard type single repeating unit was used. did.
  • cords used in Examples 8 to 11 and Comparative Examples 8 to 12 multifilaments of para-aramid fibers of high elongation type single repeating units are twisted in one direction with the number of twists shown in Table 4. Examples were prepared except that three wires were aligned and twisted in the direction opposite to the bottom twist with the number of twists shown in Table 4 to produce various twisted cords (S twisted, Z twisted) having a total fineness of 3300 dtex.
  • Treated cords were prepared in the same manner as in 1-7 and Comparative Examples 1-4.
  • the core diameters of the treated cords obtained in Examples 1 to 7 and Comparative Examples 1 to 7 are ⁇ 0.82 mm in diameter.
  • the cord diameters of the treated cords obtained in Examples 8 to 11 and Comparative Examples 8 to 12 are as follows. The diameter was 0.72 mm.
  • 650 N or more (high tensile strength) ⁇ : 600N to less than 650N (no problem in practical use) X: Less than 600 N (problematic in practical use).
  • the molding mold was placed in a vulcanizing can and vulcanized in a state where a vulcanizing jacket was disposed outside the compressed rubber layer sheet.
  • the cylindrical vulcanized rubber sleeve obtained by vulcanization is taken out from the molding mold, the compressed rubber layer of the vulcanized rubber sleeve is ground simultaneously with a plurality of V-shaped grooves by a grinder, and then the vulcanized rubber sleeve is cut into rings.
  • a V-ribbed belt having a circumferential length of 1100 mm in which three ribs were formed was obtained by cutting in the circumferential direction with a cutter (the obtained belt is a cross-sectional view in the direction shown in FIG. It was in parallel with the Z-twisted processing cord).
  • 6000 N or more (high tensile strength) ⁇ : 5700N or more and less than 6000N (no problem in practical use) X: Less than 5700 N (practical problem).
  • the obtained V-ribbed belt is composed of a drive pulley 11 (diameter 120 mm, rotation speed: 4900 rpm), a driven pulley 12 (diameter 120 mm, load: 8.8 kW), an idler pulley 13 (diameter 85 mm) and a tension. It was wound around a pulley 14 (diameter 45 mm, axial load: 60 kgf (constant)) and allowed to run at an ambient temperature of 120 ° C. for 200 hours.
  • pop-out resistance In the evaluation of pop-out resistance, it was determined that pop-out occurred when the core wire protruded from the side surface of the belt by 5 mm or more in the high tension test and the over tension test described below.
  • the belt running test conditions of the high tension test and the over tension test are the same as the belt running test conditions in the above-described evaluation of the bending fatigue resistance except for the axial load.
  • the axial load of the high tension test is 82 kgf, and the over tension test The axial load was 104 kgf.
  • Tables 3 and 4 show the results of the high-tensile test and the over-tensile test, which were evaluated according to the following criteria.
  • Tables 3 and 4 also show the results of evaluation on the following criteria for the results of tensile strength, bending fatigue resistance, and pop-out resistance.
  • In each evaluation item, there is no X judgment, and ⁇ is two or more items (Achieved simultaneously in a dimension with high tensile strength, flex fatigue resistance, and pop-out resistance)
  • X In each evaluation item, even if the individual judgment is one item, x or ⁇ is two items or more (not simultaneously achieved in a dimension with high tensile strength, bending fatigue resistance, and pop-out resistance)
  • Comparative Examples 1 and 3 it is estimated that the reason why the tensile strength is low is that the number of twists is too large. Moreover, in Comparative Examples 2 and 4, it is estimated that the reason why the bending fatigue resistance is low is that the number of twists is too small.
  • Example 1 and Comparative Example 5 pop-out occurs only in the over-tensile test, and it is considered that pop-out does not occur in use under the appropriate tension, and the pop-out resistance is at a level at which there is no problem. Although it is judged that there is an increase in the complexity of the layout and the increase in load fluctuations as in the case of ISG-equipped engines, the configuration of Example 4 is more effective for these strict requirements. .
  • Example 4 focusing on the case where the ratio of the upper twist coefficient to the lower twist coefficient is large, in Comparative Example 4, the value of the ratio of the upper twist coefficient to the lower twist coefficient is 0.74. Is. Further, in Example 7, the ratio of the upper twist coefficient to the lower twist coefficient is 0.66, which is a relatively large value, but the determination of the bending fatigue resistance is “ ⁇ ”, and the ratio of the upper twist coefficient to the lower twist coefficient When the value of is increased, it is considered that the bending fatigue resistance tends to decrease. From the above, it can be seen that both the resistance to pop-out and the resistance to bending fatigue can be achieved by maintaining the value of the ratio of the upper twist coefficient to the lower twist coefficient within an appropriate range. In particular, in Example 4 in which the ratio of the upper twist coefficient to the lower twist coefficient is 0.49, the strength retention (flexural fatigue resistance) is the highest.
  • the number of upper twists is in the range of 11.1 to 14.8 times / 10 cm, and the ratio of the upper twist coefficient to the lower twist coefficient is 0.
  • the overall judgment is “ ⁇ ”, and the tensile strength, the bending fatigue resistance and the pop-out resistance are simultaneously achieved in a high dimension. It can be seen that the performance required for the belt mounted on the automobile engine is satisfied.
  • the number of upper twists and the higher twist coefficient ratio were better than those in the twisted cords including four lower twisted yarns.
  • Example 10 where the number of upper twists is 14.8 times / 10 cm and the number of lower twists is 38.4 times / 10 cm, it is confirmed that the strength retention (flexural fatigue resistance) is the highest. it can.
  • the twisted cords of the present invention can be used for tensile bodies of various transmission belts (for example, friction transmission belts such as V-belts and V-ribbed belts, meshing transmission belts such as toothed belts and double-sided toothed belts).
  • various transmission belts for example, friction transmission belts such as V-belts and V-ribbed belts, meshing transmission belts such as toothed belts and double-sided toothed belts.
  • a V-ribbed belt for driving an ISG-equipped engine because it can be suitably used as a core of a V-ribbed belt and can simultaneously improve tensile strength, bending fatigue resistance and pop-out resistance at a high level.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

The present invention relates to a plied cord comprising three or four first twist yarns containing para-aramid fibers, wherein: the para-aramid fibers have an average size of 1000–1250 dtex, a tensile elasticity of 55–70 GPa and a tensile strength of 2800–3500 MPa; and for the plied cord, the number of first twists when the number of the first twist yarns is three is 33–40 twists/10 cm and the number of first twists when the number of the first twist yarns is four is 42–52 twists/10 cm, the second twist direction is the opposite direction from the first twist, and the ratio of the second twist coefficient to the first twist coefficient is 0.25–1.

Description

諸撚りコード及びその製造方法並びに伝動ベルト及びその使用方法Various twisted cords, manufacturing method thereof, transmission belt and usage method thereof
 本発明は、伝動ベルト(特にVリブドベルト)の抗張体などに用いられる諸撚りコード及びその製造方法並びに伝動ベルト及びその使用方法に関する。 The present invention relates to various twisted cords used for a tensile body of a transmission belt (particularly a V-ribbed belt), a manufacturing method thereof, a transmission belt, and a usage method thereof.
 Vリブドベルトの抗張体を形成する心線には、高い引張強度及び耐屈曲疲労性が求められ、特に高負荷用途ではアラミド心線が用いられてきた。アラミド心線は、繊維束を下撚りした後に、下撚りした繊維束を数本合わせて上撚りして製造するのが一般的である。しかしながらアラミド心線に求められる前記特性は、心線の撚り数を多くして耐屈曲疲労性を向上させると、逆に引張強度は低下するという二律背反の関係にあり、両立が困難であった。また、高負荷伝動の要求に応えるため、パラ系アラミド心線(パラ系アラミド繊維の原糸を撚糸したコード)を抗張体とする自動車補機駆動用Vリブドベルトが上市されて久しいが、近年ISG(Integrated Starter Generator)搭載エンジンの登場などにより、ベルト強度及び耐屈曲疲労性に対する要求はますます高まっている。 The core wire forming the V-ribbed belt tensile body is required to have high tensile strength and bending fatigue resistance, and an aramid core wire has been used particularly for high load applications. In general, an aramid core wire is manufactured by first twisting a fiber bundle and then twisting several twisted fiber bundles. However, the above characteristics required for an aramid core wire have a contradictory relationship that when the number of twists of the core wire is increased to improve the bending fatigue resistance, the tensile strength is decreased. In addition, in order to meet the demands of high load transmission, V-ribbed belts for driving automotive accessories with para-aramid cords (cords made of twisted yarns of para-aramid fibers) as tensile bodies have been on the market for a long time. With the advent of engines equipped with ISG (Integrated Starter Generator), demands for belt strength and bending fatigue resistance are increasing.
 一方、高負荷伝動用途に用いられるパラ系アラミド繊維としては、ケブラー(Kevler、登録商標)やトワロン(Twaron、登録商標)に代表される単独繰り返し単位のパラ系アラミド繊維が挙げられるが、耐屈曲疲労性に関しては複数種の繰り返し単位を含む共重合パラ系アラミド繊維であるテクノーラ(Technora、登録商標)の方がより優れており賞用されてきた。ただし、複数種の繰り返し単位を含む共重合パラ系アラミド繊維にはコスト及び供給安定性の問題があり、単独繰り返し単位のパラ系アラミド繊維でも耐屈曲疲労性を高めることが望まれていた。 On the other hand, para-aramid fibers used for high-load power transmission include para-aramid fibers of single repeating units represented by Kevler (registered trademark) and Twaron (registered trademark). Regarding fatigue, Technora (registered trademark), which is a copolymerized para-aramid fiber containing a plurality of types of repeating units, is more excellent and has been awarded. However, copolymerized para-aramid fibers containing a plurality of types of repeating units have problems of cost and supply stability, and it has been desired to improve bending fatigue resistance even with para-aramid fibers having a single repeating unit.
 なお、心線をラング撚り(下撚りと上撚りの撚り方向が同じ)にすれば、耐屈曲疲労性は向上するが、ラング撚りにした場合は高張力条件下でポップアウト(心線がベルト側面から飛び出す現象)し易いという問題がある。この現象は、ラング撚りの解撚トルクに起因する心線の非直進性が原因と推定され、下撚りと上撚りとで解撚トルクが相殺される諸撚り(下撚りと上撚りの撚り方向が逆)ではポップアウトが起こりにくいことが知られている。そのため、心線が自ら捩れようとするのを防ぐために下撚りと上撚りとの撚り方向を逆方向とし、下撚りの撚り係数(下撚り係数)と上撚りの撚り係数(上撚り係数)とを略同一にするのが一般的であった。 In addition, if the core wire is rung-twisted (the twist direction of the lower and upper twists is the same), the bending fatigue resistance will be improved, but if it is rung-twisted, it will pop out under high tension conditions (the core wire is the belt). (Phenomenon popping out from the side surface) This phenomenon is presumed to be caused by the non-straightness of the core wire due to the untwisting torque of the Lang twist, and the twists in which the untwisting torque is offset by the lower twist and the upper twist (twist direction of the lower twist and the upper twist) On the other hand, it is known that pop-out hardly occurs. Therefore, in order to prevent the core wire from twisting itself, the twist direction of the lower twist and the upper twist is reversed, and the twist coefficient of the lower twist (lower twist coefficient) and the twist coefficient of the upper twist (upper twist coefficient) It was common to make them substantially the same.
 これに対して、日本国特許第4694616号公報(特許文献1)には、荷重分担性能と屈曲疲労抵抗との良好なバランスを有するマルチVリブドベルトの荷重分担コードとして、第1の捻り乗数及び第1の捻り方向に対応する第1の捻りを有する複数のヤーンと、前記第1の捻り方向と反対方向の第2の捻り乗数に対応する第2の捻りとを備え、前記第2の捻り乗数に対する前記第1の捻り乗数の比は約1.5よりも大きいコードが開示されている。この文献の実施例では、1000デニールのパラアラミド繊維をベースヤーンとして、上撚りに相当する第2の捻り乗数に対する下撚りに相当する第1の捻り乗数の比が2.5(すなわち、第2の捻り乗数/第1の捻り乗数=0.4)であるコードが製造されている。 On the other hand, Japanese Patent No. 4694616 (Patent Document 1) discloses a first twist multiplier and a first twist multiplier as load sharing cords of a multi-V ribbed belt having a good balance between load sharing performance and bending fatigue resistance. A plurality of yarns having a first twist corresponding to one twist direction, and a second twist corresponding to a second twist multiplier in a direction opposite to the first twist direction, the second twist multiplier A cord is disclosed in which the ratio of the first twist multiplier to is greater than about 1.5. In the example of this document, a ratio of the first twist multiplier corresponding to the lower twist to the second twist multiplier corresponding to the upper twist is 2.5 (that is, the second twist) using the 1000 denier para-aramid fiber as the base yarn. A cord having a twist multiplier / first twist multiplier = 0.4) is manufactured.
 日本国特許第5750561号公報(特許文献2)には、耐屈曲疲労性に優れた伝動ベルトの心線として、繊度1000~1250dtexのパラ系アラミド繊維束を、撚り係数を1200~1350として一方向に下撚りした4本の下撚り糸を有し、前記4本の下撚り糸を、撚り係数を900~1100として下撚りとは逆方向に上撚りした総繊度4000~5000dtexの諸撚り糸で構成された心線が開示されている。この文献には、前記心線を構成する諸撚り糸における下撚り係数に対する上撚り係数の比(上撚り係数/下撚り係数)が0.5~1であると記載され、実施例では、上撚り数14.3~17.5、下撚り数38.1~42.9、上撚り係数/下撚り係数=0.67~0.92の諸撚りコードが製造されている。 In Japanese Patent No. 5750561 (Patent Document 2), as a core wire of a transmission belt excellent in bending fatigue resistance, a para-aramid fiber bundle having a fineness of 1000 to 1250 dtex and a twist coefficient of 1200 to 1350 are unidirectional. The four lower twisted yarns were composed of various twisted yarns having a total fineness of 4000 to 5000 dtex, in which the four lower twisted yarns were twisted in the opposite direction to the lower twist with a twist coefficient of 900 to 1100. A core wire is disclosed. This document describes that the ratio of the upper twist coefficient to the lower twist coefficient (upper twist coefficient / lower twist coefficient) in the various twisted yarns constituting the core wire is 0.5 to 1. In the examples, the upper twist coefficient Various twisted cords having a number of 14.3 to 17.5, a number of lower twists of 38.1 to 42.9, and an upper twist coefficient / lower twist coefficient = 0.67 to 0.92 are manufactured.
 しかし、これらの諸撚りコードでも、ISG搭載エンジン用途では耐屈曲疲労性を十分に満足できていなかった。さらに、これらの特許文献では、耐ポップアウト性について記載されていない。 However, even these twisted cords did not sufficiently satisfy the bending fatigue resistance in the engine application with ISG. Furthermore, these patent documents do not describe pop-out resistance.
日本国特許第4694616号公報Japanese Patent No. 4694616 日本国特許第5750561号公報Japanese Patent No. 5750561
 本発明の目的は、パラ系アラミド心線を抗張体とする伝動ベルト(特にVリブドベルト)の引張強度、耐屈曲疲労性及び耐ポップアウト性を高い次元で同時に向上できる諸撚りコード及びその製造方法並びにこの諸撚りコードを抗張体として備えた伝動ベルト及びこの伝動ベルトの使用方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-strand cord capable of simultaneously improving the tensile strength, bending fatigue resistance and pop-out resistance of a transmission belt (particularly a V-ribbed belt) having a para-aramid core as a tensile body, and its manufacture. It is an object of the present invention to provide a method, a transmission belt provided with the twisted cord as a tensile body, and a method of using the transmission belt.
 本発明者は、前記課題を達成するため鋭意検討した結果、高伸度タイプのパラ系アラミド繊維を用いて特定の下撚り係数を有する複数本の下撚り糸を調製し、さらに下撚りの撚り係数に対する上撚りの撚り係数の比が一定の範囲内となるように前記下撚り糸を上撚りした諸撚りコードをVリブドベルトの抗張体として用いると、Vリブドベルトなどの伝動ベルトの引張強度、耐屈曲疲労性及び耐ポップアウト性を高い次元で同時に向上できることを見出し、本発明を完成した。 As a result of earnest studies to achieve the above-mentioned problems, the present inventor prepared a plurality of underwound yarns having a specific underwound coefficient by using a high elongation type para-aramid fiber, and further a twist coefficient of the underwound When the twisted cords obtained by twisting the lower twisted yarn so that the ratio of the twist coefficient of the upper twist to the predetermined range is used as the tensile body of the V-ribbed belt, the tensile strength and bending resistance of the transmission belt such as the V-ribbed belt The present inventors have found that fatigue and pop-out resistance can be improved at a high level simultaneously.
 すなわち、本発明の諸撚りコードは、パラ系アラミド繊維を含む下撚り糸を3本含む諸撚りコードであって、前記パラ系アラミド繊維が平均繊度1000~1250dtex、引張弾性率55~70GPa及び引張強度2800~3500MPaを有し、前記諸撚りコードは、前記下撚り糸の下撚り数が33~40回/10cmであり、上撚りの方向が下撚りとは逆方向であり、下撚り係数に対する上撚り係数の比が0.25~1である。前記諸撚りコードの上撚り数は10~15回/10cm程度であることが好ましい。前記諸撚りコードの下撚り係数に対する上撚り係数の比は0.5~0.75程度であってもよい。 That is, the plied cords of the present invention are plied cords including three lower twisted yarns containing para-aramid fibers, the para-aramid fibers having an average fineness of 1000 to 1250 dtex, a tensile modulus of 55 to 70 GPa and a tensile strength. The twisted cord has a twist of 33 to 40 times / 10 cm, the direction of the upper twist is opposite to that of the lower twist, and the upper twist with respect to the lower twist factor is 2800 to 3500 MPa. The ratio of the coefficients is 0.25-1. The number of upper twists of the twisted cords is preferably about 10 to 15 times / 10 cm. The ratio of the upper twist coefficient to the lower twist coefficient of the twisted cords may be about 0.5 to 0.75.
 また、本発明の諸撚りコードは、パラ系アラミド繊維を含む下撚り糸を4本含む諸撚りコードであって、前記パラ系アラミド繊維が平均繊度1000~1250dtex、引張弾性率55~70GPa及び引張強度2800~3500MPaを有し、前記諸撚りコードは、前記下撚り糸の下撚り数が42~52回/10cmであり、上撚りの方向が下撚りとは逆方向であり、下撚り係数に対する上撚り係数の比が0.25~1である。前記諸撚りコードの上撚り数は5~15回/10cm程度であることが好ましい。前記諸撚りコードの下撚り係数に対する上撚り係数の比は0.33~0.66程度であってもよい。 The plied cords of the present invention are laid cords comprising four lower twisted yarns containing para-aramid fibers, the para-aramid fibers having an average fineness of 1000 to 1250 dtex, a tensile modulus of 55 to 70 GPa and a tensile strength. The twisted cord has a twist number of 42 to 52 times / 10 cm, the upper twist direction is opposite to the lower twist, and the upper twist relative to the lower twist coefficient is 2800 to 3500 MPa. The ratio of the coefficients is 0.25-1. The number of upper twists of the twisted cords is preferably about 5 to 15 times / 10 cm. The ratio of the upper twist coefficient to the lower twist coefficient of the twisted cords may be about 0.33 to 0.66.
 前記2種類の諸撚りコードにおいて、前記諸撚りコードの平均径は0.7~0.9mm程度であることが好ましい。前記パラ系アラミド繊維は、ポリパラフェニレンテレフタルアミド繊維であってもよい。 In the two types of twisted cords, the average diameter of the twisted cords is preferably about 0.7 to 0.9 mm. The para-aramid fiber may be a polyparaphenylene terephthalamide fiber.
 本発明には、パラ系アラミド繊維を一方向に下撚りして下撚り糸を得る下撚り工程、前記下撚り工程で得られた下撚り糸を3本又は4本引き揃えて下撚りとは逆方向に上撚りして諸撚りコードを得る上撚り工程を含む前記諸撚りコードの製造方法も含まれる。 The present invention includes a twisting process in which a para-aramid fiber is twisted in one direction to obtain a twisted yarn, and three or four of the twisted yarns obtained in the twisting process are aligned to reverse the twisted direction. Also included is a method for producing the above-mentioned twisted cords, which includes an upper twisting step in which the twisted cords are twisted to obtain the twisted cords.
 本発明には、前記諸撚りコードで形成された抗張体を含む伝動ベルトも含まれる。本発明の伝動ベルトにおいて、前記抗張体は心線であってもよく、心線の平均ピッチは0.8~1.05mm程度であることが好ましい。本発明の伝動ベルトは、ゴム成分を含むゴム組成物で形成された圧縮ゴム層をさらに含んでいてもよい。前記ゴム成分はエチレン-α-オレフィンエラストマーであってもよい。なお、伝動ベルトはVリブドベルトであることが好ましい。 The present invention also includes a transmission belt including a tensile body formed of the plied cords. In the transmission belt of the present invention, the tensile body may be a core wire, and the average pitch of the core wire is preferably about 0.8 to 1.05 mm. The power transmission belt of the present invention may further include a compressed rubber layer formed of a rubber composition containing a rubber component. The rubber component may be an ethylene-α-olefin elastomer. The transmission belt is preferably a V-ribbed belt.
 本発明には、ISG搭載エンジンを駆動するために前記伝動ベルトを使用する方法も含まれる。 The present invention includes a method of using the transmission belt to drive an ISG-equipped engine.
 本発明では、高伸度タイプのパラ系アラミド繊維を用いて特定の下撚り係数を有する3~4本(好ましくは3本)の下撚り糸が調製され、さらに下撚りの撚り係数に対する上撚りの撚り係数の比が一定の範囲内となるように前記下撚り糸を上撚りした諸撚りコードを伝動ベルト(特にVリブドベルト)の抗張体として用いるため、伝動ベルトの引張強度、耐屈曲疲労性及び耐ポップアウト性を高い次元で同時に向上できる。 In the present invention, 3 to 4 (preferably 3) twisted yarns having a specific twisting factor are prepared using a high elongation type para-aramid fiber, and an upper twisting factor corresponding to the twisting factor of the twisting is further prepared. Since the twisted cords obtained by twisting the lower twisted yarn so that the ratio of the twisting coefficients is within a certain range are used as the tensile body of the transmission belt (particularly V-ribbed belt), the tensile strength, flexural fatigue resistance and Pop-out resistance can be improved at a high level at the same time.
図1は、本発明のVリブドベルトの一例を示すベルト幅方向の概略断面図である。FIG. 1 is a schematic cross-sectional view in the belt width direction showing an example of a V-ribbed belt of the present invention. 図2は、実施例及び比較例で得られたVリブドベルトの耐屈曲疲労性を評価する方法を説明するための概略図である。FIG. 2 is a schematic view for explaining a method for evaluating the bending fatigue resistance of the V-ribbed belts obtained in the examples and comparative examples.
 [諸撚りコード]
 本発明の諸撚りコードは、パラ系アラミド繊維(芳香族ポリアミド繊維)を一方向に下撚りして下撚り糸(子縄)とし、前記下撚り糸を3~4本(好ましくは3本)引き揃えて下撚りとは逆方向に上撚りした諸撚りコードであり、伝動ベルト(特にVリブドベルト)の抗張体として利用できる。本発明では、下撚りと上撚りとを逆方向の諸撚りにすることにより、下撚りと上撚りとで解撚トルクが相殺されて耐ポップアウト性を向上できる。また、伝動ベルトの引張強度、耐屈曲疲労性及び耐ポップアウト性、経済性などのバランスに優れるとともに、耐ポップアウト性を高度に向上できる点から、3本の下撚り糸が好ましい。
[Various twisted cords]
The twisted cords of the present invention are prepared by twisting para-aramid fiber (aromatic polyamide fiber) in one direction to form a twisted yarn (cord), and arranging 3 to 4 (preferably 3) twisted yarns. The twisted cords are twisted cords that are twisted in the opposite direction, and can be used as a tensile body of a transmission belt (particularly a V-ribbed belt). In the present invention, by making the lower twist and the upper twist in opposite directions, the untwisting torque is offset between the lower twist and the upper twist, and the pop-out resistance can be improved. In addition, it is preferable to use three twisted yarns from the viewpoints of excellent balance of tensile strength, bending fatigue resistance, pop-out resistance, economy and the like of the transmission belt and high improvement in pop-out resistance.
 下撚り糸の原糸は、通常、パラ系アラミド繊維を含むパラ系アラミドマルチフィラメント糸である。さらに、パラ系アラミドマルチフィラメント糸は、パラ系アラミド繊維のモノフィラメント糸を含んでいればよく、必要であれば、他の繊維(ポリエステル繊維など)のモノフィラメント糸を含んでいてもよい。パラ系アラミド繊維の割合は、モノフィラメント糸全体(マルチフィラメント糸)に対して50質量%以上(特に80~100質量%)であり、通常、全モノフィラメント糸がパラ系アラミド繊維で構成されている。 The base yarn of the lower twist yarn is usually a para-aramid multifilament yarn containing para-aramid fibers. Furthermore, the para-type aramid multifilament yarn only needs to contain a monofilament yarn of para-type aramid fibers, and may contain monofilament yarns of other fibers (such as polyester fibers) if necessary. The ratio of the para-type aramid fiber is 50% by mass or more (particularly 80 to 100% by mass) with respect to the whole monofilament yarn (multifilament yarn), and usually all monofilament yarns are composed of para-type aramid fiber.
 原糸であるパラ系アラミド繊維は、複数種の繰り返し単位を含む共重合パラ系アラミド繊維(例えば、ポリパラフェニレンテレフタルアミドと3,4’-オキシジフェニレンテレフタルアミドとの共重合アラミド繊維である帝人(株)製「テクノーラ」など)であってもよいが、経済性や入手性に優れ、かつ本発明の効果が顕著に表れる点から、単独繰り返し単位のパラ系アラミド繊維(例えば、ポリパラフェニレンテレフタルアミド繊維である帝人(株)製「トワロン」や東レ・デュポン(株)製「ケブラー」など)が好ましい。 The para-aramid fiber as the raw yarn is a copolymer para-aramid fiber containing a plurality of types of repeating units (for example, a copolymer aramid fiber of polyparaphenylene terephthalamide and 3,4'-oxydiphenylene terephthalamide). Teijin Limited's “Technora” etc.) may be used, but para-aramid fibers (for example, polypara-arabic) having a single repeating unit are excellent in terms of economy and availability and the effects of the present invention are remarkably exhibited. Preference is given to Teijin's "Twaron" and Toray DuPont's "Kevlar", which are phenylene terephthalamide fibers.
 原糸であるパラ系アラミド繊維の引張弾性率は55~70GPaであり、好ましくは58~68GPa、さらに好ましくは60~65GPa程度である。引張弾性率が小さすぎると、高負荷時においてベルトの伸びが大きくなり、逆に大きすぎると、引張強度と耐屈曲疲労性と耐ポップアウト性とのバランスを取るのが困難となり、特に、耐屈曲疲労性が低下する。なお、本明細書及び特許請求の範囲において、引張弾性率は、JIS L1013(2010)に記載の方法で荷重―伸び曲線を測定し、荷重1000MPa以下の領域の平均傾斜を求める方法で測定する。 The tensile elastic modulus of the para-aramid fiber as the raw yarn is 55 to 70 GPa, preferably 58 to 68 GPa, more preferably about 60 to 65 GPa. If the tensile elastic modulus is too small, the belt stretches at a high load. On the other hand, if the tensile elastic modulus is too large, it becomes difficult to balance the tensile strength, the bending fatigue resistance, and the pop-out resistance. Bending fatigue resistance decreases. In addition, in this specification and a claim, a tensile elasticity modulus is measured by the method of measuring a load-elongation curve by the method as described in JIS L1013 (2010), and calculating | requiring the average inclination of the area | region of a load of 1000 MPa or less.
 原糸であるパラ系アラミド繊維の引張強度は2800~3500MPaであり、好ましくは2850~3400MPa(例えば2900~3300MPa)、さらに好ましくは3000~3200MPa程度である。引張強度が小さすぎると、引張強度と耐屈曲疲労性と耐ポップアウト性とのバランスを取るのが困難となり、特に、ベルト引張強度が低下 する。なお、本明細書及び特許請求の範囲において、引張強度は、JIS L1013(2010)に記載の方法で測定する。なお、該規格に記載のとおり、無撚りのマルチフィラメントの引張強力の測定にあたり、10cmあたり8回の撚りをかけて測定を行う。 The tensile strength of the para-aramid fiber as the raw yarn is 2800 to 3500 MPa, preferably 2850 to 3400 MPa (for example, 2900 to 3300 MPa), and more preferably about 3000 to 3200 MPa. If the tensile strength is too small, it becomes difficult to balance the tensile strength, the bending fatigue resistance and the pop-out resistance, and the belt tensile strength is particularly lowered. In the present specification and claims, the tensile strength is measured by the method described in JIS L1013 (2010). In addition, as described in the standard, in measuring the tensile strength of a non-twisted multifilament, the measurement is performed by applying 8 twists per 10 cm.
 このような機械的特性を有する単独繰り返し単位のパラ系アラミド繊維としては、高伸度タイプのパラ系アラミド繊維として、例えば、帝人(株)製「トワロン2100」や東レ・デュポン(株)製「ケブラー119」などの市販品を利用できる。本願発明では、高伸度タイプのパラ系アラミド繊維を用いて諸撚りコードを調製することにより、Vリブドベルトに高い引張強度と引張弾性率とを付与できる。 As a para-aramid fiber of a single repeating unit having such mechanical properties, as a high elongation type para-aramid fiber, for example, “Twaron 2100” manufactured by Teijin Ltd. or “Toray DuPont” manufactured by “Toray DuPont” Commercial products such as “Kevlar 119” can be used. In the present invention, high tensile strength and tensile elastic modulus can be imparted to the V-ribbed belt by preparing plied cords using a high elongation type para-aramid fiber.
 原糸であるパラ系アラミド繊維の平均繊度は1000~1250dtexであり、好ましくは1050~1200dtex、さらに好ましくは1080~1150dtex程度である。繊度が小さすぎると、ベルト引張強度が低下し、逆に大きすぎると、耐屈曲疲労性が低下する。 The average fineness of the para-aramid fiber as the raw yarn is 1000 to 1250 dtex, preferably about 1050 to 1200 dtex, and more preferably about 1080 to 1150 dtex. If the fineness is too small, the belt tensile strength is lowered. Conversely, if the fineness is too large, the bending fatigue resistance is lowered.
 諸撚りコードの下撚りの撚り数(下撚り数)は、下撚り糸の本数に応じて選択できる。下撚り糸を3本含む諸撚りコードでは、優れた耐屈曲疲労性と引張強度を付与する点から、下撚り数は、33~40回/10cmであり、好ましくは35~39.5回/10cm(例えば36~39.3回/10cm)、さらに好ましくは37~39回/10cm(特に38~38.5回/10cm)程度である。一方、下撚り糸を4本含む諸撚りコードでは、優れた耐屈曲疲労性と引張強度を付与する点から、下撚り数は、42~52回/10cmであり、好ましくは42.5~51.8回/10cm(例えば43~51.5回/10cm)、さらに好ましくは46.1~51回/10cm(特に46.5~50.5回/10cm)程度である。下撚り数が少なすぎると、耐屈曲疲労性が低下し、多すぎると、引張強度が低下する。 The number of twists of the twisted cords (number of twists) can be selected according to the number of twisted yarns. In the case of various twisted cords including three lower twisted yarns, the number of lower twists is 33 to 40 times / 10 cm, preferably 35 to 39.5 times / 10 cm from the viewpoint of imparting excellent bending fatigue resistance and tensile strength. (For example, 36 to 39.3 times / 10 cm), more preferably about 37 to 39 times / 10 cm (especially 38 to 38.5 times / 10 cm). On the other hand, in the case of various twisted cords including four lower twisted yarns, the number of lower twists is 42 to 52 times / 10 cm, preferably 42.5 to 51. 5 in terms of imparting excellent bending fatigue resistance and tensile strength. It is about 8/10 cm (for example, 43 to 51.5 times / 10 cm), more preferably about 46.1 to 51 times / 10 cm (particularly 46.5 to 50.5 times / 10 cm). If the number of lower twists is too small, the bending fatigue resistance decreases, and if it is too large, the tensile strength decreases.
 諸撚りコードの上撚りの撚り数(上撚り数)も、下撚り糸の本数に応じて、5~20回/10cm(特に5~19回/10cm)程度の範囲から選択できる。特に、下撚り糸を3本含む諸撚りコードでは、上撚り数は、例えば10~19回/10cm(例えば10~15回/10cm)、好ましくは12~15回/10cm(例えば13~15回/10cm)、さらに好ましくは14~15回/10cm(特に14.5~15回/10cm)程度である。一方、下撚り糸を4本含む諸撚りコードでは、上撚り数は、例えば5~19回/10cm(例えば5~15回/10cm)、好ましくは6~16回/10cm(例えば8.2~14.2回/10cm)、さらに好ましくは9~14回/10cm(特に9.6~12.8回/10cm)程度であり、さらに10~12回/10cm程度であってもよい。上撚り数を前記範囲に調整することにより、下撚りの撚り係数(下撚り係数)に対する上撚りの撚り係数(上撚り係数)の比を適正に保つことが可能となる。特に、下撚り糸を3本含む諸撚りコードでは、上撚り数を多くすることにより、耐ポップアウト性を高度に向上できる。上撚り数が少なすぎると、耐ポップアウト性が低下する虞があり、逆に多すぎると、引張強度が低下したり、耐屈曲疲労性が低下したりする虞がある。 The number of upper twists (upper twist) of various twisted cords can be selected from a range of about 5 to 20 times / 10 cm (especially 5 to 19 times / 10 cm) depending on the number of lower twisted yarns. In particular, in various twisted cords including three lower twisted yarns, the number of upper twists is, for example, 10 to 19 times / 10 cm (for example, 10 to 15 times / 10 cm), preferably 12 to 15 times / 10 cm (for example, 13 to 15 times / 10 cm), more preferably about 14 to 15 times / 10 cm (especially 14.5 to 15 times / 10 cm). On the other hand, in the case of various twisted cords including four lower twisted yarns, the number of upper twists is, for example, 5 to 19 times / 10 cm (for example, 5 to 15 times / 10 cm), preferably 6 to 16 times / 10 cm (for example, 8.2 to 14). 2 times / 10 cm), more preferably about 9-14 times / 10 cm (especially 9.6-12.8 times / 10 cm), and further about 10-12 times / 10 cm. By adjusting the number of upper twists within the above range, it is possible to appropriately maintain the ratio of the twist coefficient (upper twist coefficient) of the upper twist to the twist coefficient (lower twist coefficient) of the lower twist. In particular, in various twisted cords including three lower twisted yarns, the pop-out resistance can be improved to a high degree by increasing the number of upper twists. If the number of upper twists is too small, the pop-out resistance may be lowered. On the other hand, if the number is too large, the tensile strength may be lowered or the bending fatigue resistance may be lowered.
 諸撚りコードの下撚り係数に対する上撚り係数の比(上撚り係数/下撚り係数)も、下撚り糸の本数に応じて、0.25~1(例えば0.3~0.8)程度の範囲から選択できる。特に、下撚り糸を3本含む諸撚りコードでは、前記係数比は、例えば0.5~0.75、好ましくは0.6~0.73、さらに好ましくは0.65~0.7程度である。一方、下撚り糸を4本含む諸撚りコードでは、前記係数比は、例えば0.33~0.66、好ましくは0.35~0.6、さらに好ましくは0.36~0.55(特に0.38~0.5)程度であり、さらに0.45~0.53であってもよい。本願発明では、下撚りと上撚りの撚り方向を逆方向とし、下撚り係数に対する上撚り係数の比を前記範囲に調整することにより、優れた耐屈曲疲労性、耐ポップアウト性を付与できる。特に、下撚り糸を3本含む諸撚りコードでは、この係数比を1に近づけることにより、耐ポップアウト性を高度に向上できる。下撚り係数に対する上撚り係数の比が小さすぎると、耐ポップアウト性が低下し、逆に大きすぎると、耐屈曲疲労性が低下する。なお、本明細書及び特許請求の範囲において、下撚り係数及び上撚り係数の各撚り係数は、以下の式に基づいて、算出する。 The ratio of the upper twist coefficient to the lower twist coefficient of the various twisted cords (upper twist coefficient / lower twist coefficient) is also in the range of about 0.25 to 1 (for example, 0.3 to 0.8) depending on the number of the lower twist threads. You can choose from. In particular, in various twisted cords including three lower twisted yarns, the coefficient ratio is, for example, about 0.5 to 0.75, preferably about 0.6 to 0.73, and more preferably about 0.65 to 0.7. . On the other hand, in the case of various twisted cords including four lower twisted yarns, the coefficient ratio is, for example, 0.33 to 0.66, preferably 0.35 to 0.6, more preferably 0.36 to 0.55 (particularly 0). .38 to 0.5), and may be 0.45 to 0.53. In the present invention, excellent bending fatigue resistance and pop-out resistance can be imparted by setting the twist direction of the lower twist and the upper twist in opposite directions and adjusting the ratio of the upper twist coefficient to the lower twist coefficient within the above range. In particular, in various twisted cords including three lower twisted yarns, the pop-out resistance can be improved to a high degree by bringing the coefficient ratio close to 1. When the ratio of the upper twist coefficient to the lower twist coefficient is too small, the pop-out resistance is lowered. Conversely, when the ratio is too large, the bending fatigue resistance is lowered. In addition, in this specification and a claim, each twist coefficient of a lower twist coefficient and an upper twist coefficient is calculated based on the following formula | equation.
 撚り係数(T.F.)=[撚り数(回/m)×√トータル繊度(tex)]/960。 Twist coefficient (TF) = [twist number (times / m) × √total fineness (tex)] / 960.
 諸撚りコードの下撚り係数及び上撚り係数は、前述の両者の比を充足していれば、特に限定されないが、下撚り係数は、例えば4~6、好ましくは4.5~5.5、さらに好ましくは4.8~5.3程度であり、上撚り係数は、例えば1.5~3.5、好ましくは1.8~3、さらに好ましくは2~2.5程度である。 The lower twist coefficient and the upper twist coefficient of the various twisted cords are not particularly limited as long as the above-mentioned ratio is satisfied, but the lower twist coefficient is, for example, 4 to 6, preferably 4.5 to 5.5, More preferably, it is about 4.8 to 5.3, and the upper twist coefficient is, for example, about 1.5 to 3.5, preferably 1.8 to 3, and more preferably about 2 to 2.5.
 諸撚りコードの平均径(直径)としては、例えば0.5~1.2mm、好ましくは0.6~1mm、さらに好ましくは0.7~0.9mm(特に0.78~0.88mm)程度である。特に、ISG搭載エンジンではベルト強度、耐屈曲疲労性の要求が厳しく、ベルト強度を上げるために心線径は太い方が好ましい一方で、あまり太くしすぎると耐屈曲疲労性が低下するため、前記範囲に調整するのが好ましい。諸撚りコードの平均径が小さすぎると、引張強度及び引張弾性率が低下する虞があり、逆に大きすぎると、耐屈曲疲労性が低下する虞がある。 The average diameter (diameter) of the various twisted cords is, for example, about 0.5 to 1.2 mm, preferably 0.6 to 1 mm, and more preferably 0.7 to 0.9 mm (particularly 0.78 to 0.88 mm). It is. In particular, in an ISG-equipped engine, the requirements for belt strength and bending fatigue resistance are severe, and a thicker core wire diameter is preferable to increase belt strength, but if it is too thick, bending fatigue resistance decreases. It is preferable to adjust to the range. If the average diameter of the plied cords is too small, the tensile strength and the tensile modulus of elasticity may be reduced. On the other hand, if the average diameter is too large, the bending fatigue resistance may be reduced.
 諸撚りコードがマルチフィラメント糸である場合、諸撚りコードの平均繊度は、例えば2000~7000dtex、好ましくは3000~6000dtex、さらに好ましくは4000~5000dtex程度であってもよい。マルチフィラメント糸は、例えば1000~6000本、好ましくは2000~5000本、さらに好ましくは2500~4500本程度のモノフィラメント糸を含んでよい。 When the twisted cords are multifilament yarns, the average fineness of the twisted cords may be, for example, about 2000 to 7000 dtex, preferably about 3000 to 6000 dtex, and more preferably about 4000 to 5000 dtex. The multifilament yarn may include, for example, about 1000 to 6000 monofilament yarns, preferably 2000 to 5000 yarns, and more preferably about 2500 to 4500 yarns.
 諸撚りコードの引張強度は、例えば600N以上(特に650N以上)であってもよく、好ましくは600~1000N、さらに好ましくは650~900N(特に700~800N)程度である。諸撚りコードの引張強度が小さすぎると、ベルトの引張強度及び耐ポップアウト性が低下する虞がある。本明細書及び特許請求の範囲において、諸撚りコードの引張強度は、後述する実施例に記載の方法で測定する。 The tensile strength of the plied cords may be, for example, 600 N or more (especially 650 N or more), preferably 600 to 1000 N, more preferably 650 to 900 N (particularly 700 to 800 N). If the tensile strength of the twisted cords is too small, the tensile strength and pop-out resistance of the belt may be reduced. In the present specification and claims, the tensile strength of plied cords is measured by the method described in the examples described later.
 本発明の諸撚りコードは、慣用の方法によって、パラ系アラミド繊維を一方向に下撚りして下撚り糸を得る下撚り工程、前記下撚り工程で得られた下撚り糸を3本又は4本引き揃えて下撚りとは逆方向に上撚りして諸撚りコードを得る上撚り工程を経て製造できる。 The twisted cords of the present invention are prepared by a conventional method in which a para-aramid fiber is first twisted in one direction to obtain a lower twisted yarn, and three or four lower twisted yarns obtained in the lower twisted step are drawn. They can be manufactured through an upper twisting step in which twisted cords are obtained by twisting in the opposite direction to the lower twist.
 [伝動ベルト]
 本発明の伝動ベルトは、前記諸撚りコードで形成された抗張体を含んでいればよく、通常、前記諸撚りコードを心線として含んでいる。伝動ベルトとしては、例えば、Vベルト、Vリブドベルトなどの摩擦伝動ベルト、歯付ベルト、両面歯付ベルトなどの噛み合い伝動ベルトなどが挙げられる。引張強度、耐屈曲疲労性及び耐ポップアウト性を高い次元で同時に向上できる点から、本発明の撚りコードは、ISG搭載エンジンを駆動するためのVリブドベルトの心線として特に好適に利用できる。以下、Vリブドベルトの形態を説明する。
[Power transmission belt]
The transmission belt of this invention should just contain the tensile body formed with the said twisted cord, and usually contains the said twisted cord as a core wire. Examples of the transmission belt include friction transmission belts such as a V belt and a V-ribbed belt, and meshing transmission belts such as a toothed belt and a double-sided toothed belt. Since the tensile strength, the bending fatigue resistance and the pop-out resistance can be improved at a high level at the same time, the twisted cord of the present invention can be particularly preferably used as a core of a V-ribbed belt for driving an ISG-equipped engine. Hereinafter, the form of the V-ribbed belt will be described.
 本発明の一例であるVリブドベルトの形態は、ベルト長手方向に沿って互いに平行して延びる複数のVリブ部を有していれば、特に制限されず、例えば、図1に示す形態が例示される。図1は本発明のVリブドベルトの一例を示すベルト幅方向の概略断面図である。図1に示されるVリブドベルトは、ベルト下面(内周面)からベルト上面(背面)に向かって順に、圧縮ゴム層2、ベルト長手方向に心線1を埋設した接着ゴム層4、カバー帆布(織物、編物、不織布など)又はゴム組成物で構成された伸張層5を積層した形態を有している。圧縮ゴム層2には、ベルト長手方向に伸びる複数の断面V字状の溝が形成され、この溝の間には断面V字形(逆台形)の複数のVリブ部3(図1に示す例では4個)が形成されており、このVリブ部3の二つの傾斜面(表面)が摩擦伝動面を形成し、プーリと接して動力を伝達(摩擦伝動)する。 The form of the V-ribbed belt as an example of the present invention is not particularly limited as long as it has a plurality of V-rib portions extending in parallel with each other along the belt longitudinal direction. For example, the form shown in FIG. The FIG. 1 is a schematic cross-sectional view in the belt width direction showing an example of the V-ribbed belt of the present invention. A V-ribbed belt shown in FIG. 1 has a compression rubber layer 2, an adhesive rubber layer 4 in which a core wire 1 is embedded in the longitudinal direction of the belt, a cover canvas (from the belt lower surface (inner circumferential surface) to the belt upper surface (back surface). Woven fabric, knitted fabric, non-woven fabric, etc.) or a stretched layer 5 made of a rubber composition. A plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compressed rubber layer 2, and a plurality of V-rib portions 3 having a V-shaped cross section (reverse trapezoid) are formed between the grooves (example shown in FIG. 1). 4), and the two inclined surfaces (surfaces) of the V-rib portion 3 form a friction transmission surface and contact the pulley to transmit power (friction transmission).
 Vリブドベルトはこの形態に限定されず、少なくとも一部がプーリのVリブ溝部(V溝部)と接触可能な伝動面を有する圧縮ゴム層を備えていればよく、典型的には、伸張層と圧縮ゴム層と、その間にベルト長手方向に沿って埋設される心線とを備えていればよい。本発明のVリブドベルトにおいて、例えば、接着ゴム層4を設けることなく伸張層5と圧縮ゴム層2との間に心線1を埋設してもよい。さらに、接着ゴム層4を圧縮ゴム層2又は伸張層5のいずれか一方に設け、心線1を接着ゴム層4(圧縮ゴム層2側)と伸張層5との間、もしくは接着ゴム層4(伸張層5側)と圧縮ゴム層2との間に埋設する形態であってもよい。 The V-ribbed belt is not limited to this form, and it is sufficient that at least a part is provided with a compression rubber layer having a transmission surface that can come into contact with the V-rib groove portion (V-groove portion) of the pulley. What is necessary is just to provide the rubber layer and the core wire embed | buried along the belt longitudinal direction between them. In the V-ribbed belt of the present invention, for example, the core wire 1 may be embedded between the stretched layer 5 and the compressed rubber layer 2 without providing the adhesive rubber layer 4. Further, the adhesive rubber layer 4 is provided on either the compressed rubber layer 2 or the stretched layer 5, and the core wire 1 is disposed between the adhesive rubber layer 4 (compressed rubber layer 2 side) and the stretched layer 5, or the adhesive rubber layer 4 It may be embedded between the (extended layer 5 side) and the compressed rubber layer 2.
 なお、少なくとも前記圧縮ゴム層2が以下に詳細に説明するゴム組成物で形成されていることが好ましく、前記接着ゴム層4は接着ゴム層として利用される慣用のゴム組成物で形成されていればよく、前記伸張層5は伸張層として利用される慣用のカバー帆布又はゴム組成物で形成されていればよく、前記圧縮ゴム層2と同一のゴム組成物で形成されていなくてもよい。 Note that at least the compressed rubber layer 2 is preferably formed of a rubber composition described in detail below, and the adhesive rubber layer 4 may be formed of a conventional rubber composition used as an adhesive rubber layer. The stretch layer 5 may be formed of a conventional cover canvas or rubber composition used as a stretch layer, and may not be formed of the same rubber composition as the compressed rubber layer 2.
 Vリブドベルトの引張強度は、例えば6000N以上(特に6500N以上)であってもよく、好ましくは6000~9000N、さらに好ましくは6500~8000N(特に7000~7500N)程度である。引張強度が小さすぎると、走行中にベルトが破断する虞が高くなる。本明細書及び特許請求の範囲において、Vリブドベルトの引張強度は、後述する実施例に記載の方法で測定する。 The tensile strength of the V-ribbed belt may be, for example, 6000 N or more (especially 6500 N or more), preferably about 6000 to 9000 N, more preferably about 6500 to 8000 N (particularly 7000 to 7500 N). If the tensile strength is too small, there is a high possibility that the belt will break during traveling. In the present specification and claims, the tensile strength of the V-ribbed belt is measured by the method described in Examples described later.
 (心線)
 接着ゴム層4内には、複数の心線1が、ベルト長手方向にそれぞれ延在し、かつベルト幅方向に所定のピッチで互いに離隔して配置されている。
(Core)
In the adhesive rubber layer 4, a plurality of core wires 1 extend in the belt longitudinal direction and are spaced apart from each other at a predetermined pitch in the belt width direction.
 心線の平均ピッチ(隣接する心線間の平均距離)は、心線径や目的のベルト引張強度に合わせて適宜選択でき、例えば0.6~2mm、好ましくは0.8~1.5mm、さらに好ましくは0.8~1.05mm程度の範囲から選択できる。さらに、心線の平均ピッチは、下撚り糸の本数に応じて選択してもよい。特に、下撚り糸を3本含む諸撚りコードでは、心線の平均ピッチは、例えば0.7~1mm、好ましくは0.75~0.95mm、さらに好ましくは0.8~0.9mm程度である。一方、下撚り糸を4本含む諸撚りコードでは、心線の平均ピッチは、例えば0.8~1.2mm、好ましくは0.9~1.05mm、さらに好ましくは0.9~1mm程度である。心線ピッチが小さすぎると、ベルト製造工程において心線同士の乗り上げが発生する虞があり、逆に大きすぎると、ベルトの引張強度及び引張弾性率が低下する虞がある。 The average pitch of the core wires (the average distance between adjacent core wires) can be appropriately selected according to the core wire diameter and the target belt tensile strength, for example, 0.6 to 2 mm, preferably 0.8 to 1.5 mm, More preferably, it can be selected from a range of about 0.8 to 1.05 mm. Further, the average pitch of the core wires may be selected according to the number of the lower twisted yarns. In particular, in a twisted cord including three lower twisted yarns, the average pitch of the cords is, for example, about 0.7 to 1 mm, preferably about 0.75 to 0.95 mm, and more preferably about 0.8 to 0.9 mm. . On the other hand, in a twisted cord including four lower twisted yarns, the average pitch of the cords is, for example, 0.8 to 1.2 mm, preferably 0.9 to 1.05 mm, and more preferably about 0.9 to 1 mm. . If the core wire pitch is too small, there is a risk that the core wires may run up in the belt manufacturing process, and conversely if too large, the tensile strength and tensile modulus of the belt may be reduced.
 心線は、S撚り、Z撚りのいずれであってもよいが、ベルトの直進性を高めるためにS撚りとZ撚りとを交互に配設するのが好ましい。 The core wire may be either S-twisted or Z-twisted, but it is preferable to alternately arrange S-twisted and Z-twisted to improve the straightness of the belt.
 心線は、慣用の接着処理(又は表面処理)が施されていてもよく、例えば、レゾルシン-ホルマリン-ラテックス(RFL)液やイソシアネート化合物を含む処理液等で処理されていてもよい。さらに、心線は、接着ゴム層を構成するゴム成分を含むゴム組成物で被覆されていてもよい。 The core wire may be subjected to a conventional adhesion treatment (or surface treatment), such as a resorcin-formalin-latex (RFL) solution or a treatment solution containing an isocyanate compound. Furthermore, the core wire may be covered with a rubber composition containing a rubber component constituting the adhesive rubber layer.
 (ゴム組成物)
 圧縮ゴム層2、接着ゴム層4及び伸張層5は、ゴム成分を含むゴム組成物で形成されていてもよい。特に、圧縮ゴム層をゴム組成物で形成することにより、優れた静粛性、動力伝達性能を付与できるとともに、圧縮ゴム層や接着ゴム層をゴム組成物で形成することにより、既存の方法を用いて、パラ系アラミド心線との接着処理を行うことが可能となる。
(Rubber composition)
The compressed rubber layer 2, the adhesive rubber layer 4, and the stretch layer 5 may be formed of a rubber composition containing a rubber component. In particular, by forming a compressed rubber layer with a rubber composition, it is possible to provide excellent quietness and power transmission performance, and by using a rubber composition to form a compressed rubber layer or an adhesive rubber layer, an existing method is used. Thus, it is possible to perform an adhesion treatment with a para-aramid core wire.
 ゴム成分としては、加硫又は架橋可能なゴムを用いてよく、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム等)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが挙げられる。これらのゴム成分は、単独で又は二種以上組み合わせて使用できる。好ましいゴム成分は、エチレン-α-オレフィンエラストマー(エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)等)、及び、クロロプレンゴムである。さらに、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性、耐候性を有し、ベルト重量を低減できる点から、エチレン-α-オレフィンエラストマー[エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)等]が特に好ましい。ゴム成分がエチレン-α-オレフィンエラストマーを含む場合、ゴム成分中のエチレン-α-オレフィンエラストマーの割合は50質量%以上(特に80~100質量%程度)であってもよく、100質量%(エチレン-α-オレフィンエラストマーのみ)が特に好ましい。 As the rubber component, a vulcanizable or crosslinkable rubber may be used. For example, a diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), Hydrogenated nitrile rubber, etc.), ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber and the like. These rubber components can be used alone or in combination of two or more. Preferred rubber components are ethylene-α-olefin elastomers (ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer (EPDM), etc.), and chloroprene rubber. Further, since it does not contain harmful halogen, has ozone resistance, heat resistance, cold resistance, weather resistance, and can reduce the belt weight, an ethylene-α-olefin elastomer [ethylene-propylene copolymer (EPM), Ethylene-propylene-diene terpolymer (EPDM) etc.] is particularly preferred. When the rubber component contains an ethylene-α-olefin elastomer, the proportion of the ethylene-α-olefin elastomer in the rubber component may be 50% by mass or more (particularly about 80 to 100% by mass) or 100% by mass (ethylene -Α-olefin elastomer only) is particularly preferred.
 ゴム組成物は、短繊維をさらに含んでいてもよい。短繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維等)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維等)、ポリアルキレンアリレート系繊維(例えば、ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維等のC2-4アルキレンC8-14アリレート系繊維)、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維等の合成繊維;綿、麻、羊毛等の天然繊維;炭素繊維等の無機繊維等が挙げられる。これらの短繊維は、単独で又は二種以上組み合わせて使用できる。ゴム組成物中での分散性や接着性を向上させるため、短繊維には、心線と同様に、慣用の接着処理(又は表面処理)を施してもよい。 The rubber composition may further contain short fibers. Examples of the short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers (for example, polyethylene terephthalate ( PET) fibers, C 2-4 alkylene C 8-14 arylate fibers such as polyethylene naphthalate (PEN) fibers), vinylon fibers, polyvinyl alcohol fibers, synthetic fibers such as polyparaphenylene benzobisoxazole (PBO) fibers; Examples include natural fibers such as cotton, hemp, and wool; inorganic fibers such as carbon fibers. These short fibers can be used alone or in combination of two or more. In order to improve dispersibility and adhesiveness in the rubber composition, the short fibers may be subjected to a conventional adhesion treatment (or surface treatment) as in the case of the core wire.
 ゴム組成物は、慣用の添加剤をさらに含んでいてもよい。慣用の添加剤としては、例えば、加硫剤又は架橋剤(又は架橋剤系)(硫黄系加硫剤等)、共架橋剤(ビスマレイミド類等)、加硫助剤又は加硫促進剤(チウラム系促進剤等)、加硫遅延剤、金属酸化物(酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウム等)、増強剤(例えば、カーボンブラックや、含水シリカ等の酸化ケイ素)、充填剤(クレー、炭酸カルシウム、タルク、マイカ等)、軟化剤(例えば、パラフィンオイルや、ナフテン系オイル等のオイル類等)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイド等)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止剤、オゾン劣化防止剤等)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤等)、安定剤(紫外線吸収剤、熱安定剤等)、難燃剤、帯電防止剤等が挙げられる。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。なお、金属酸化物は架橋剤として作用してもよい。また、特に接着ゴム層4を構成するゴム組成物は、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂等)を含んでいてもよい。 The rubber composition may further contain a conventional additive. Examples of conventional additives include vulcanizing agents or crosslinking agents (or crosslinking agent systems) (sulfur vulcanizing agents, etc.), co-crosslinking agents (bismaleimides, etc.), vulcanization aids or vulcanization accelerators ( Thiuram accelerators), vulcanization retarders, metal oxides (zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), enhancers (for example, carbon black, , Silicon oxide such as hydrous silica), fillers (clay, calcium carbonate, talc, mica, etc.), softeners (for example, oils such as paraffin oil and naphthenic oil), processing agents or processing aids (stearin Acid, stearic acid metal salt, wax, paraffin, fatty acid amide, etc.), anti-aging agent (antioxidant, thermal anti-aging agent, anti-bending agent, anti-ozone degradation agent, etc.), colorant, tackifier , Plasticizers, coupling agents (silane coupling agent, etc.), stabilizers (UV absorbers, heat stabilizers, etc.), flame retardants, antistatic agents and the like. These additives can be used alone or in combination of two or more. The metal oxide may act as a crosslinking agent. In particular, the rubber composition constituting the adhesive rubber layer 4 may contain an adhesion improver (resorcin-formaldehyde cocondensate, amino resin, etc.).
 圧縮ゴム層2、接着ゴム層4及び伸張層5を構成するゴム組成物は、互いに同一であってもよく、互いに異なってもよい。同様に、圧縮ゴム層2、接着ゴム層4及び伸張層5に含まれる短繊維も、互いに同一であってもよく、互いに異なってもよい。 The rubber composition constituting the compressed rubber layer 2, the adhesive rubber layer 4 and the stretch layer 5 may be the same or different from each other. Similarly, the short fibers contained in the compressed rubber layer 2, the adhesive rubber layer 4, and the stretch layer 5 may be the same or different from each other.
 (カバー帆布)
 伸張層5は、カバー帆布で形成されていてもよい。カバー帆布は、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)などで形成できる。伸張層5は、必要であれば、接着処理、例えば、RFL液で処理(浸漬処理など)したり、接着ゴムを前記布材にすり込むフリクションや、前記接着ゴムと前記布材とを積層(コーティング)した後、前記の形態で圧縮ゴム層及び/又は接着ゴム層に積層してもよい。
(Cover canvas)
The stretch layer 5 may be formed of a cover canvas. The cover canvas can be formed of, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide-angle canvas, a knitted cloth, and a non-woven cloth. If necessary, the stretch layer 5 may be subjected to adhesion treatment, for example, treatment with an RFL solution (immersion treatment, etc.), friction for rubbing adhesive rubber into the cloth material, or lamination (coating) of the adhesive rubber and the cloth material. ) And then laminated on the compressed rubber layer and / or the adhesive rubber layer in the above-described form.
 [Vリブドベルトの製造方法]
 本発明の一例であるVリブドベルトの製造方法は特に制限されず、公知又は慣用の方法が採用できる。例えば、圧縮ゴム層2と、心線1が埋設された接着ゴム層4と、伸張層5とを、それぞれ未加硫ゴム組成物で形成して積層し、この積層体を成形型で筒状に成形し、加硫してスリーブを成形し、この加硫スリーブを所定幅にカッティングすることにより形成できる。より詳細には、以下の方法でVリブドベルトを製造できる。
[Manufacturing method of V-ribbed belt]
The manufacturing method of the V ribbed belt which is an example of this invention is not restrict | limited in particular, A well-known or usual method is employable. For example, the compressed rubber layer 2, the adhesive rubber layer 4 in which the core wire 1 is embedded, and the stretched layer 5 are each formed by laminating with an unvulcanized rubber composition, and this laminate is formed into a cylindrical shape with a molding die. And then vulcanizing to form a sleeve and cutting the vulcanized sleeve to a predetermined width. More specifically, the V-ribbed belt can be manufactured by the following method.
 (第1の製造方法)
 先ず、表面が平滑な円筒状の成形モールド(金型又は成形型)に伸張層用シートを巻きつけ、このシート上に芯体を形成する心線(撚りコード)を螺旋状にスピニングし、さらに接着ゴム層用シート、圧縮ゴム層用シートを順次巻き付けて成形体を作製する。その後、加硫用ジャケットを成形体の上から被せた状態で成形モールドを加硫缶内に収容し、所定の加硫条件で加硫した後、成形モールドから脱型して筒状の加硫ゴムスリーブを得る。そして、この加硫ゴムスリーブの外表面(圧縮ゴム層)を研削ホイールにより研磨して複数のリブを形成した後、カッターを用いてこの加硫ゴムスリーブを所定の幅で周方向にカットしてVリブドベルトに仕上げる。なお、カットしたベルトを反転させることにより、内周面にリブ部を有する圧縮ゴム層を備えたVリブドベルトが得られる。
(First manufacturing method)
First, a stretching layer sheet is wound around a cylindrical mold (mold or mold) having a smooth surface, and a core wire (twisted cord) that forms a core body is spirally spun on the sheet. An adhesive rubber layer sheet and a compressed rubber layer sheet are sequentially wound to prepare a molded body. After that, the molding mold is accommodated in a vulcanizing can with the vulcanization jacket covered from above the molded body, vulcanized under predetermined vulcanization conditions, and then demolded from the molding mold and cylindrical vulcanized. Get a rubber sleeve. Then, the outer surface (compressed rubber layer) of the vulcanized rubber sleeve is polished by a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut in a circumferential direction with a predetermined width using a cutter. Finish in a V-ribbed belt. By reversing the cut belt, a V-ribbed belt provided with a compressed rubber layer having a rib portion on the inner peripheral surface can be obtained.
 (第2の製造方法)
 先ず、内型として外周面に可撓性ジャケットを装着した円筒状内型を用い、外周面の可撓性ジャケットに伸張層用シートを巻きつけ、このシート上に芯体を形成する心線を螺旋状にスピニングし、さらに圧縮ゴム層用シートを巻き付けて積層体を作製する。次に、前記内型に装着可能な外型として、内周面に複数のリブ型が刻設された筒状外型を用い、この外型内に、前記積層体が巻き付けられた内型を、同心円状に設置する。その後、可撓性ジャケットを外型の内周面(リブ型)に向かって膨張させて積層体(圧縮ゴム層)をリブ型に圧入し、加硫する。そして、外型より内型を抜き取り、複数のリブを有する加硫ゴムスリーブを外型から脱型した後、カッターを用いて、加硫ゴムスリーブを所定の幅で周方向にカットしてVリブドベルトに仕上げる。この第2の製造方法では、伸張層、芯体、圧縮ゴム層を備えた積層体を一度に膨張させて複数のリブを有するスリーブ(又はVリブドベルト)に仕上げることができる。
(Second manufacturing method)
First, a cylindrical inner mold having a flexible jacket attached to the outer peripheral surface is used as the inner mold, and a stretch layer sheet is wound around the flexible jacket on the outer peripheral surface, and a core wire forming a core body is formed on the sheet. Spinning in a spiral shape and winding a compressed rubber layer sheet to produce a laminate. Next, as an outer mold that can be attached to the inner mold, a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface is used, and an inner mold in which the laminate is wound is provided in the outer mold. Install concentrically. Thereafter, the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed rubber layer) is press-fitted into the rib mold and vulcanized. Then, the inner mold is extracted from the outer mold, the vulcanized rubber sleeve having a plurality of ribs is removed from the outer mold, and then the vulcanized rubber sleeve is cut in the circumferential direction with a predetermined width by using a cutter. Finish. In the second manufacturing method, a laminated body including an extension layer, a core body, and a compressed rubber layer can be expanded at a time to be finished into a sleeve (or V-ribbed belt) having a plurality of ribs.
 (第3の製造方法)
 第2の製造方法に関連して、例えば、日本国特開2004-82702号公報に開示される方法(圧縮ゴム層のみを膨張させて予備成形体(半加硫状態)とし、次いで伸張層と芯体とを膨張させて前記予備成形体に圧着し、加硫一体化してVリブドベルトに仕上げる方法)を採用してもよい。
(Third production method)
In connection with the second production method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2004-82702 (only a compression rubber layer is expanded to form a preform (semi-vulcanized state), A method in which the core body is expanded and pressure-bonded to the preform, and vulcanized and integrated into a V-ribbed belt) may be employed.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例で使用した原料の詳細と、測定した評価項目の評価方法を以下に示す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the detail of the raw material used in the Example and the evaluation method of the measured evaluation item are shown below.
 [原料]
 高伸度タイプの単独繰り返し単位のパラ系アラミド繊維:帝人(株)製「Twaron(登録商標)2100」、引張弾性率62GPa、引張強度3100MPa
 標準タイプの単独繰り返し単位のパラ系アラミド繊維:帝人(株)製「Twaron(登録商標)1014」、引張弾性率82GPa、引張強度2800MPa
 プレディップ処理液:ポリメリックイソシアネートを10質量%の割合で含むトルエン溶液
 レゾルシン-ホルマリン-ラテックス(RFL)処理液:レゾルシンとホルマリンとのプレポリマー4質量部(レゾルシン2.6質量部、ホルマリン1.4質量部)、ラテックス(スチレン-ブタジエン-ビニルピリジン共重合体、日本ゼオン(株)製)17.2質量部、水78.8質量部を含む混合液
 オーバーコート処理液:表1に示す接着ゴム層用のゴム組成物9.3質量部、ポリメリックイソシアネート0.7質量部、トルエン90質量部を含む混合液
 EPDM:デュポン・ダウエラストマージャパン(株)製「IP3640」、ムーニー粘度40(100℃)
 カーボンHAF:東海カーボン(株)製「シースト3」
 含水シリカ:東ソー・シリカ(株)製「Nipsil VN3」、BET比表面積240m/g
 レゾルシン・ホルムアルデヒド縮合物:レゾルシノール20%未満、ホルマリン0.1%未満
 老化防止剤:精工化学(株)製「ノンフレックスOD3」
 加硫促進剤DM:ジ-2-ベンゾチアゾリルジスルフィド
 ポリアミド短繊維:旭化成(株)製「66ナイロン」
 パラフィン系軟化剤:出光興産(株)製「ダイアナプロセスオイル」
 有機過酸化物:化薬アクゾ(株)製「パーカドックス14RP」。
[material]
Para-aramid fiber of high elongation type single repeating unit: “Twaron (registered trademark) 2100” manufactured by Teijin Limited, tensile elastic modulus 62 GPa, tensile strength 3100 MPa
Para-aramid fiber of standard type single repeating unit: “Twaron (registered trademark) 1014” manufactured by Teijin Limited, tensile elastic modulus 82 GPa, tensile strength 2800 MPa
Pre-dip treatment liquid: Toluene solution containing 10% by mass of polymeric isocyanate Resorcin-formalin-latex (RFL) treatment liquid: 4 parts by mass of a prepolymer of resorcin and formalin (2.6 parts by mass of resorcin, 1.4 parts of formalin) Mixed solution containing 17.2 parts by mass of latex (styrene-butadiene-vinylpyridine copolymer, manufactured by Nippon Zeon Co., Ltd.) and 78.8 parts by mass of water Overcoat treatment liquid: adhesive rubber shown in Table 1 Mixed liquid containing 9.3 parts by mass of rubber composition for layer, 0.7 parts by mass of polymeric isocyanate and 90 parts by mass of toluene EPDM: “IP3640” manufactured by DuPont Dow Elastomer Japan Co., Ltd., Mooney viscosity 40 (100 ° C.)
Carbon HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
Hydrous silica: “Nippil VN3” manufactured by Tosoh Silica Co., Ltd., BET specific surface area 240 m 2 / g
Resorcin / formaldehyde condensate: Less than 20% resorcinol, less than 0.1% formalin Anti-aging agent: “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
Vulcanization accelerator DM: Di-2-benzothiazolyl disulfide Polyamide short fiber: “66 nylon” manufactured by Asahi Kasei Corporation
Paraffin softener: “Diana Process Oil” manufactured by Idemitsu Kosan Co., Ltd.
Organic peroxide: “Parkadox 14RP” manufactured by Kayaku Akzo Corporation.
 実施例1~11及び比較例1~12
 [心線の作製]
 実施例1~7及び比較例1~4に用いる心線として、高伸度タイプの単独繰り返し単位のパラ系アラミド繊維のマルチフィラメント(繊度1100dtex)を表3に示す下撚り数で一方向に下撚りし、これを4本引き揃えて表3に示す上撚り数で下撚りとは逆方向に上撚りして総繊度4400dtexの諸撚りコード(S撚り、Z撚り)をそれぞれ作製した。こうして得られた諸撚りコードを、プレディップ処理液に10秒間浸漬した後、180℃で4分間熱処理した。次に、プレディップ処理した諸撚りコードをRFL処理液に10秒間浸漬した後、230℃で2分間熱処理した。さらに、RFL処理した諸撚りコードをオーバーコート処理液に3秒間浸漬した後、150℃で4分間熱処理することにより、接着ゴムで被覆された処理コードを得た。一方、比較例5~7に用いる心線としては、標準タイプの単独繰り返し単位のパラ系アラミド繊維を用いた以外は実施例1~7及び比較例1~4と同一の方法で処理コードを作製した。また、実施例8~11及び比較例8~12に用いる心線としては、高伸度タイプの単独繰り返し単位のパラ系アラミド繊維のマルチフィラメントを表4に示す下撚り数で一方向に下撚りし、これを3本引き揃えて表4に示す上撚り数で下撚りとは逆方向に上撚りして総繊度3300dtexの諸撚りコード(S撚り、Z撚り)をそれぞれ作製した以外は実施例1~7及び比較例1~4と同一の方法で処理コードを作製した。実施例1~7及び比較例1~7で得られた処理コードの心線径は直径φ0.82mmであり、実施例8~11及び比較例8~12で得られた処理コードの心線径は直径φ0.72mmであった。
Examples 1 to 11 and Comparative Examples 1 to 12
[Production of core wire]
As cores used in Examples 1 to 7 and Comparative Examples 1 to 4, a multifilament (fineness of 1100 dtex) of a para-aramid fiber of a high elongation type single repeating unit is decreased in one direction with the number of twists shown in Table 3. These were twisted together, and four of them were aligned and twisted in the direction opposite to the lower twist with the number of upper twists shown in Table 3 to produce various twisted cords (S twisted, Z twisted) having a total fineness of 4400 dtex. The twisted cords thus obtained were immersed in a pre-dip treatment solution for 10 seconds and then heat treated at 180 ° C. for 4 minutes. Next, the pre-dip-treated various twisted cords were immersed in an RFL treatment solution for 10 seconds and then heat-treated at 230 ° C. for 2 minutes. Furthermore, after the RFL-treated various twisted cords were immersed in an overcoat treatment solution for 3 seconds, heat treatment was performed at 150 ° C. for 4 minutes to obtain a treated cord covered with adhesive rubber. On the other hand, as the cords used in Comparative Examples 5 to 7, treatment cords were prepared in the same manner as in Examples 1 to 7 and Comparative Examples 1 to 4 except that a para-aramid fiber of a standard type single repeating unit was used. did. Further, as the cords used in Examples 8 to 11 and Comparative Examples 8 to 12, multifilaments of para-aramid fibers of high elongation type single repeating units are twisted in one direction with the number of twists shown in Table 4. Examples were prepared except that three wires were aligned and twisted in the direction opposite to the bottom twist with the number of twists shown in Table 4 to produce various twisted cords (S twisted, Z twisted) having a total fineness of 3300 dtex. Treated cords were prepared in the same manner as in 1-7 and Comparative Examples 1-4. The core diameters of the treated cords obtained in Examples 1 to 7 and Comparative Examples 1 to 7 are φ0.82 mm in diameter. The cord diameters of the treated cords obtained in Examples 8 to 11 and Comparative Examples 8 to 12 are as follows. The diameter was 0.72 mm.
 [処理コードの引張強度]
 得られた処理コード1本をオートグラフ((株)島津製作所製「AGS-J10kN」)を用いて、引張速度50mm/分の条件で引張り、処理コードの破断時の強力を測定した。処理コードの引張強度を、その強力値により、以下の基準で評価し、結果を表3及び4に示す。
[Tensile strength of treated cord]
One of the obtained treated cords was pulled using an autograph (“AGS-J10kN” manufactured by Shimadzu Corporation) at a tensile speed of 50 mm / min, and the strength at break of the treated cord was measured. The tensile strength of the treated cord was evaluated according to the following criteria based on the strength value, and the results are shown in Tables 3 and 4.
  ○:650N以上(引張強度が高い)
  △:600N以上~650N未満(実用上問題なし)
  ×:600N未満(実用上問題あり)。
○: 650 N or more (high tensile strength)
Δ: 600N to less than 650N (no problem in practical use)
X: Less than 600 N (problematic in practical use).
 [Vリブドベルトの作製]
 まず、表面が平滑な円筒状の成形モールドの外周に、1プライ(1枚重ね)のゴム付綿帆布を巻き付け、この綿帆布の外側に、表1に示すゴム組成物で形成された未加硫の接着ゴム層用シートを巻き付けた。次に、接着ゴム層用シートの上からS撚りの処理コードとZ撚りの処理コードとをピッチ0.95mm又は0.85mmで並列した状態で、2本の処理コード(S撚り、Z撚り)をらせん状にスピニングして巻き付け、さらにこの上に、前記ゴム組成物で形成された未加硫の接着ゴム層用シート及び表2に示すゴム組成物で形成された未加硫の圧縮ゴム層用シートを順に巻き付けた。圧縮ゴム層用シートの外側に加硫用ジャケットを配置した状態で、成形モールドを加硫缶に入れて加硫した。加硫して得られた筒状の加硫ゴムスリーブを成形モールドから取り出し、加硫ゴムスリーブの圧縮ゴム層をグラインダーにより複数のV字状溝を同時に研削した後、加硫ゴムスリーブを輪切りするようにカッターで周方向に切断することによって、3つのリブを形成した周長1100mmのVリブドベルトを得た(得られたベルトは、図1に示す方向の断面図では、S撚りの処理コードとZ撚りの処理コードとは交互に並列していた)。
[Production of V-ribbed belt]
First, a 1-ply (one-ply) cotton canvas with rubber is wound around the outer periphery of a cylindrical molding mold having a smooth surface, and an unaddition formed of the rubber composition shown in Table 1 is formed on the outside of the cotton canvas. A sheet for adhesive rubber layer of sulfur was wound. Next, two treated cords (S twisted, Z twisted) in a state where an S twisted processing cord and a Z twisted processing cord are arranged in parallel at a pitch of 0.95 mm or 0.85 mm from above the adhesive rubber layer sheet. And a non-vulcanized compressed rubber layer formed with the rubber composition shown in Table 2 and an unvulcanized adhesive rubber layer sheet formed with the rubber composition. The sheets were wound in order. The molding mold was placed in a vulcanizing can and vulcanized in a state where a vulcanizing jacket was disposed outside the compressed rubber layer sheet. The cylindrical vulcanized rubber sleeve obtained by vulcanization is taken out from the molding mold, the compressed rubber layer of the vulcanized rubber sleeve is ground simultaneously with a plurality of V-shaped grooves by a grinder, and then the vulcanized rubber sleeve is cut into rings. In this way, a V-ribbed belt having a circumferential length of 1100 mm in which three ribs were formed was obtained by cutting in the circumferential direction with a cutter (the obtained belt is a cross-sectional view in the direction shown in FIG. It was in parallel with the Z-twisted processing cord).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [ベルトの引張強度]
 得られたVリブドベルトを万能試験機((株)島津製作所製「UH-200kNX」)を用いて、引張速度50mm/分の条件で引張り、Vリブドベルトの破断時の強力を測定した。Vリブドベルトの引張強度を、その強力値により、以下の基準で評価し、結果を表3及び4に示す。
[Belt tensile strength]
The obtained V-ribbed belt was pulled using a universal testing machine ("UH-200kNX" manufactured by Shimadzu Corporation) at a pulling speed of 50 mm / min, and the strength at break of the V-ribbed belt was measured. The tensile strength of the V-ribbed belt was evaluated according to the following criteria based on its strength value, and the results are shown in Tables 3 and 4.
  ○:6000N以上(引張強度が高い)
  △:5700N以上~6000N未満(実用上問題なし)
  ×:5700N未満(実用上問題あり)。
○: 6000 N or more (high tensile strength)
Δ: 5700N or more and less than 6000N (no problem in practical use)
X: Less than 5700 N (practical problem).
 [耐屈曲疲労性]
 得られたVリブドベルトを、図2に示すように、駆動プーリ11(直径120mm、回転数:4900rpm)、従動プーリ12(直径120mm、負荷:8.8kW)、アイドラプーリ13(直径85mm)及びテンションプーリ14(直径45mm、軸荷重:60kgf(一定))に巻き付け、120℃の雰囲気温度で、200時間走行させた。ベルト走行試験の前後のベルト引張強度を万能試験機((株)島津製作所製「UH-200kNX」)を用いて、引張速度50mm/分の条件で引張り、ベルトの破断時の強力を測定し、強力保持率は、次の式で計算した。さらに、算出した強力保持率について、以下の基準で評価した結果を表3及び4に示す。
[Bending fatigue resistance]
As shown in FIG. 2, the obtained V-ribbed belt is composed of a drive pulley 11 (diameter 120 mm, rotation speed: 4900 rpm), a driven pulley 12 (diameter 120 mm, load: 8.8 kW), an idler pulley 13 (diameter 85 mm) and a tension. It was wound around a pulley 14 (diameter 45 mm, axial load: 60 kgf (constant)) and allowed to run at an ambient temperature of 120 ° C. for 200 hours. Using a universal testing machine ("UH-200kNX" manufactured by Shimadzu Corporation), the belt tensile strength before and after the belt running test was pulled at a tensile speed of 50 mm / min, and the strength at break of the belt was measured. The strength retention was calculated by the following formula. Further, Tables 3 and 4 show the results of evaluating the calculated strength retention ratio based on the following criteria.
  強力保持率(%)=(屈曲試験後の強力/屈曲試験前の強力)×100 Strength retention rate (%) = (Strength after bending test / Strength before bending test) x 100
 (強力保持率の評価)
  ○:強力保持率が85%以上(耐屈曲疲労性良好)
  △:強力保持率が80%以上~85%未満(実用上問題なし)
  ×:強力保持率が80%未満(実用上問題あり)。
(Evaluation of strong retention)
○: Strength retention rate is 85% or more (good bending fatigue resistance)
Δ: Strong retention rate of 80% to less than 85% (no problem in practical use)
X: Strength retention is less than 80% (practical problem).
 [耐ポップアウト性]
 耐ポップアウト性の評価は、以下に示す高張力試験、過張力試験においてベルト側面から心線が5mm以上飛び出した場合をポップアウトありと判断した。高張力試験及び過張力試験のベルト走行試験条件は、軸荷重を除いて上述の耐屈曲疲労性の評価におけるベルト走行試験条件と同一であり、高張力試験の軸荷重は82kgf、過張力試験の軸荷重は104kgfとした。高張力試験及び過張力試験の結果について、以下の基準で評価した結果を表3及び4に示す。
[Pop-out resistance]
In the evaluation of pop-out resistance, it was determined that pop-out occurred when the core wire protruded from the side surface of the belt by 5 mm or more in the high tension test and the over tension test described below. The belt running test conditions of the high tension test and the over tension test are the same as the belt running test conditions in the above-described evaluation of the bending fatigue resistance except for the axial load. The axial load of the high tension test is 82 kgf, and the over tension test The axial load was 104 kgf. Tables 3 and 4 show the results of the high-tensile test and the over-tensile test, which were evaluated according to the following criteria.
  ○:両方の試験でポップアウトが発生しなかった(耐ポップアウト性良好)
  △:過張力試験ではポップアウトが発生したものの高張力試験ではポップアウトが発生しなかった(実用上問題なし)
  ×:両方の試験でポップアウトが発生した(実用上問題あり)。
○: Pop-out did not occur in both tests (good pop-out resistance)
Δ: Pop-out occurred in the over-tensile test, but no pop-out occurred in the high-tensile test (no problem in practical use)
X: Pop-out occurred in both tests (problematic problems).
 [総合判断]
 引張強度、耐屈曲疲労性、耐ポップアウト性の結果について、以下の基準で評価した結果も表3及び4に示す。
[Comprehensive judgment]
Tables 3 and 4 also show the results of evaluation on the following criteria for the results of tensile strength, bending fatigue resistance, and pop-out resistance.
 ○:各評価項目において、×判定がなく○が二項目以上(引張強度、耐屈曲疲労性、耐ポップアウト性が高い次元で同時に達成されている)
 ×:各評価項目において、個別の判定が一項目でも×、又は△が二項目以上(引張強度、耐屈曲疲労性、耐ポップアウト性が高い次元で同時に達成されていない)
○: In each evaluation item, there is no X judgment, and ○ is two or more items (Achieved simultaneously in a dimension with high tensile strength, flex fatigue resistance, and pop-out resistance)
X: In each evaluation item, even if the individual judgment is one item, x or Δ is two items or more (not simultaneously achieved in a dimension with high tensile strength, bending fatigue resistance, and pop-out resistance)
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 [結果及び考察]
 表3から明らかなように、下撚り糸を4本含む諸撚りコードでは、原糸タイプが高伸度タイプであり、かつ下撚り数が43~50.3回/10cmの範囲であり、かつ下撚り係数に対する上撚り係数の比が0.33~0.66の範囲である実施例1~7において、総合判定が「○」であり、引張強度、耐屈曲疲労性及び耐ポップアウト性が高い次元で同時に達成されており、近年の自動車用エンジンに搭載されるベルトに要求される性能を充足していることが分かる。
[Results and discussion]
As is apparent from Table 3, in the case of various twisted cords including four lower twisted yarns, the raw yarn type is a high elongation type, the number of lower twists is in the range of 43 to 50.3 times / 10 cm, and In Examples 1 to 7 in which the ratio of the upper twist coefficient to the twist coefficient is in the range of 0.33 to 0.66, the overall judgment is “◯”, and the tensile strength, the bending fatigue resistance, and the pop-out resistance are high. It has been achieved simultaneously in the dimension, and it can be seen that the performance required for a belt mounted on a recent automobile engine is satisfied.
 比較例1及び3において、引張強度が低い原因は、下撚り数が多すぎるためであると推測される。また、比較例2及び4において、耐屈曲疲労性が低い原因は、下撚り数が少なすぎるためであると推測される。 In Comparative Examples 1 and 3, it is estimated that the reason why the tensile strength is low is that the number of twists is too large. Moreover, in Comparative Examples 2 and 4, it is estimated that the reason why the bending fatigue resistance is low is that the number of twists is too small.
 実施例1~7では、下撚り数が適度な範囲に保たれていることから、引張強度と耐屈曲疲労性とが両立されていると考えられる。特に、下撚り数が46.7回/10cmである実施例3~5において、強力保持率(耐屈曲疲労性)が比較的高くなっていることが確認できる。 In Examples 1 to 7, since the number of lower twists is maintained in an appropriate range, it is considered that tensile strength and bending fatigue resistance are compatible. In particular, it can be confirmed that in Examples 3 to 5 in which the number of lower twists is 46.7 times / 10 cm, the strength retention (bending fatigue resistance) is relatively high.
 次に、耐ポップアウト性について注目すると、実施例1、比較例1及び5で過張力試験及び/又は高張力試験でポップアウトが発生し、判定が「×」又は「△」となっている。これらの3例は下撚り係数に対する上撚り係数の比の値がそれぞれ、0.33、0.30、0.38と比較的小さく、下撚りに対して上撚りが甘い状態となっている。そのため、下撚りと上撚りとの解撚トルクが相殺されることなく、ベルトの直進性が低くなってポップアウトの発生に繋がったと考えられる。なお、実施例1及び比較例5に関しては、過張力試験においてのみポップアウトが発生しており、適性張力下での使用においてポップアウトは発生しないと考えられ、耐ポップアウト性は問題ないレベルであると判断されるが、ISG搭載エンジンのように、レイアウトの複雑化や負荷変動の増大は今後も続くと考えられ、これらの厳しい要求に対しては、実施例4の構成がより有効である。 Next, when paying attention to the pop-out resistance, pop-out occurs in the over-tensile test and / or the high-tensile test in Example 1 and Comparative Examples 1 and 5, and the determination is “x” or “Δ”. . In these three examples, the values of the ratio of the upper twist coefficient to the lower twist coefficient are relatively small, 0.33, 0.30, and 0.38, respectively, and the upper twist is in a state of being sweeter than the lower twist. For this reason, it is considered that the untwisting torque between the lower twist and the upper twist is not offset, and the straightness of the belt is lowered, leading to the occurrence of pop-out. In addition, regarding Example 1 and Comparative Example 5, pop-out occurs only in the over-tensile test, and it is considered that pop-out does not occur in use under the appropriate tension, and the pop-out resistance is at a level at which there is no problem. Although it is judged that there is an increase in the complexity of the layout and the increase in load fluctuations as in the case of ISG-equipped engines, the configuration of Example 4 is more effective for these strict requirements. .
 さらに、下撚り係数に対する上撚り係数の比が大きい場合に着目すると、比較例4では下撚り係数に対する上撚り係数の比の値が0.74であるが、耐屈曲疲労性の判定が「×」である。また、実施例7も下撚り係数に対する上撚り係数の比が0.66と比較的大きい値であるが、耐屈曲疲労性の判定が「△」であり、下撚り係数に対する上撚り係数の比の値が大きくなると、耐屈曲疲労性が低下する傾向にあると考えられる。以上より、下撚り係数に対する上撚り係数の比の値を適切な範囲に保つことで、耐ポップアウト性と耐屈曲疲労性とを両立できることが分かる。特に、下撚り係数に対する上撚り係数の比が0.49である実施例4において、強力保持率(耐屈曲疲労性)が最も高くなっている。 Further, focusing on the case where the ratio of the upper twist coefficient to the lower twist coefficient is large, in Comparative Example 4, the value of the ratio of the upper twist coefficient to the lower twist coefficient is 0.74. Is. Further, in Example 7, the ratio of the upper twist coefficient to the lower twist coefficient is 0.66, which is a relatively large value, but the determination of the bending fatigue resistance is “Δ”, and the ratio of the upper twist coefficient to the lower twist coefficient When the value of is increased, it is considered that the bending fatigue resistance tends to decrease. From the above, it can be seen that both the resistance to pop-out and the resistance to bending fatigue can be achieved by maintaining the value of the ratio of the upper twist coefficient to the lower twist coefficient within an appropriate range. In particular, in Example 4 in which the ratio of the upper twist coefficient to the lower twist coefficient is 0.49, the strength retention (flexural fatigue resistance) is the highest.
 一方、比較例5~7の総合判定が全て「×」となっていることから分かるように、原糸として標準タイプの単独繰り返し単位のパラ系アラミド繊維を用いた場合には、引張強度、耐屈曲疲労性及び耐ポップアウト性を高い次元で同時に達成できない。この原因は、例え撚り数や下撚り係数に対する上撚り係数の比を調整したとしても、原糸自体の引張強度や耐屈曲疲労性が低いためと推定できる。 On the other hand, as can be seen from the overall judgments of Comparative Examples 5 to 7 being “x”, when the standard type single repeat unit para-aramid fiber is used as the raw yarn, the tensile strength, Bending fatigue resistance and pop-out resistance cannot be achieved at a high level at the same time. The reason for this can be presumed that even if the ratio of the upper twist coefficient to the number of twists and the lower twist coefficient is adjusted, the tensile strength and the bending fatigue resistance of the raw yarn itself are low.
 表4から明らかなように、下撚り糸を3本含む諸撚りコードでは、上撚り数が11.1~14.8回/10cmの範囲であり、かつ下撚り係数に対する上撚り係数の比が0.50~0.74の範囲である実施例8~11において、総合判定が「○」であり、引張強度、耐屈曲疲労性及び耐ポップアウト性が高い次元で同時に達成されており、近年の自動車用エンジンに搭載されるベルトに要求される性能を充足していることが分かる。下撚り糸を3本含む諸撚りコードでは、下撚り糸を4本含む諸撚りコードに比べて、上撚り数が多く、撚り係数比が大きい方が良好であった。さらに、撚り糸の本数が少ないため、下撚り数を少なくし、心線ピッチを狭くすることにより、引張強度と耐屈曲疲労性とが両立されていると考えられる。特に、上撚り数が14.8回/10cmであり、下撚り数が38.4回/10cmである実施例10において、強力保持率(耐屈曲疲労性)が最も高くなっていることが確認できる。 As is apparent from Table 4, in the case of various twisted cords including three lower twisted yarns, the number of upper twists is in the range of 11.1 to 14.8 times / 10 cm, and the ratio of the upper twist coefficient to the lower twist coefficient is 0. In Examples 8 to 11 in the range of 50 to 0.74, the overall judgment is “◯”, and the tensile strength, the bending fatigue resistance and the pop-out resistance are simultaneously achieved in a high dimension. It can be seen that the performance required for the belt mounted on the automobile engine is satisfied. In the twisted cords including three lower twisted yarns, the number of upper twists and the higher twist coefficient ratio were better than those in the twisted cords including four lower twisted yarns. Furthermore, since the number of twisted yarns is small, it is considered that both the tensile strength and the bending fatigue resistance are achieved by reducing the number of lower twists and narrowing the core wire pitch. In particular, in Example 10 where the number of upper twists is 14.8 times / 10 cm and the number of lower twists is 38.4 times / 10 cm, it is confirmed that the strength retention (flexural fatigue resistance) is the highest. it can.
 なお、今回の試験条件ではデータ上差が出ていないが、下撚り糸を3本含む諸撚りコードでは、撚り係数比が大きくなる(1に近づく)ことで解撚トルクは減少するので、下撚り糸を4本含む諸撚りコードよりも耐ポップアウト性も向上していると考えられる。 Although there is no difference in the data under the test conditions of this time, in the case of various twisted cords including three lower twisted yarns, the untwisting torque decreases as the twist coefficient ratio increases (closer to 1). It is considered that the pop-out resistance is also improved as compared with the various twisted cords containing four.
 一方、上撚り数は適当であっても、比較例8では、下撚り数が多すぎるため、耐ポップアウト性が低下しており、比較例9では、下撚り数が少なすぎるため、耐屈曲疲労性が低下した。また、比較例10では、上撚り数が多く、下撚り数が少なすぎるため、耐屈曲疲労性が低下しており、比較例11では、上撚り数及び下撚り数がいずれも少なすぎるため、耐屈曲疲労性及び耐ポップアウト性の双方が低下した。さらに、比較例12では、上撚り数及び下撚り数がいずれも多すぎるため、ベルト引張強度が低下した。 On the other hand, even if the number of upper twists is appropriate, in Comparative Example 8, since the number of lower twists is too large, the pop-out resistance is lowered. In Comparative Example 9, the number of lower twists is too small, so Fatigue decreased. Further, in Comparative Example 10, since the number of upper twists is large and the number of lower twists is too small, the bending fatigue resistance is lowered, and in Comparative Example 11, both the number of upper twists and the number of lower twists are too small, Both bending fatigue resistance and pop-out resistance decreased. Furthermore, in Comparative Example 12, since the number of upper twists and the number of lower twists were both too large, the belt tensile strength decreased.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2016年10月20日出願の日本特許出願2016-206182、及び2017年10月2日出願の日本特許出願2017-192971に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2016-206182 filed on October 20, 2016 and Japanese Patent Application No. 2017-192971 filed on October 2, 2017, the contents of which are incorporated herein by reference.
 本発明の諸撚りコードは、各種の伝動ベルト[例えば、Vベルト、Vリブドベルトなどの摩擦伝動ベルト、歯付ベルト、両面歯付ベルトなどの噛み合い伝動ベルトなど]の抗張体などに利用できるが、Vリブドベルトの心線として好適に利用でき、引張強度、耐屈曲疲労性及び耐ポップアウト性を高い次元で同時に向上できる点から、ISG搭載エンジンを駆動するためのVリブドベルトの心線として特に好適に利用できる。 The twisted cords of the present invention can be used for tensile bodies of various transmission belts (for example, friction transmission belts such as V-belts and V-ribbed belts, meshing transmission belts such as toothed belts and double-sided toothed belts). , Especially suitable as the core of a V-ribbed belt for driving an ISG-equipped engine, because it can be suitably used as a core of a V-ribbed belt and can simultaneously improve tensile strength, bending fatigue resistance and pop-out resistance at a high level. Available to:
 1…心線
 2…圧縮ゴム層
 3…Vリブ部
 4…接着ゴム層
 5…伸張層
DESCRIPTION OF SYMBOLS 1 ... Core wire 2 ... Compression rubber layer 3 ... V rib part 4 ... Adhesive rubber layer 5 ... Stretch layer

Claims (14)

  1.  パラ系アラミド繊維を含む下撚り糸を3本含む諸撚りコードであって、
     前記パラ系アラミド繊維が平均繊度1000~1250dtex、引張弾性率55~70GPa及び引張強度2800~3500MPaを有し、
     前記諸撚りコードは、前記下撚り糸の下撚り数が33~40回/10cmであり、上撚りの方向が下撚りとは逆方向であり、下撚り係数に対する上撚り係数の比が0.25~1である諸撚りコード。
    Various twisted cords including three lower twisted yarns containing para-aramid fibers,
    The para-aramid fiber has an average fineness of 1000 to 1250 dtex, a tensile modulus of 55 to 70 GPa and a tensile strength of 2800 to 3500 MPa,
    The various twisted cords have a lower twist number of 33 to 40 times / 10 cm, the upper twist direction is opposite to the lower twist, and the ratio of the upper twist coefficient to the lower twist coefficient is 0.25. ~ 1 twisted cords.
  2.  諸撚りコードの上撚り数が10~15回/10cmである請求項1記載の諸撚りコード。 The twisted cord according to claim 1, wherein the number of twists of the twisted cord is 10 to 15 times / 10 cm.
  3.  諸撚りコードの下撚り係数に対する上撚り係数の比が0.5~0.75である請求項1又は2記載の諸撚りコード。 The twisted cord according to claim 1 or 2, wherein the ratio of the upper twist coefficient to the lower twist coefficient of the twisted cord is 0.5 to 0.75.
  4.  パラ系アラミド繊維を含む下撚り糸を4本含む諸撚りコードであって、
     前記パラ系アラミド繊維が平均繊度1000~1250dtex、引張弾性率55~70GPa及び引張強度2800~3500MPaを有し、
     前記諸撚りコードは、前記下撚り糸の下撚り数が42~52回/10cmであり、上撚りの方向が下撚りとは逆方向であり、下撚り係数に対する上撚り係数の比が0.25~1である諸撚りコード。
    Various twisted cords including four lower twisted yarns containing para-aramid fibers,
    The para-aramid fiber has an average fineness of 1000 to 1250 dtex, a tensile modulus of 55 to 70 GPa and a tensile strength of 2800 to 3500 MPa,
    In the twisted cords, the number of lower twists of the lower twisted yarn is 42 to 52 times / 10 cm, the direction of the upper twist is opposite to that of the lower twist, and the ratio of the upper twist coefficient to the lower twist coefficient is 0.25. ~ 1 twisted cords.
  5.  諸撚りコードの上撚り数が5~15回/10cmである請求項4記載の諸撚りコード。 The twisted cord according to claim 4, wherein the number of upper twists of the twisted cord is 5 to 15 times / 10 cm.
  6.  諸撚りコードの下撚り係数に対する上撚り係数の比が0.33~0.66である請求項4又は5記載の諸撚りコード。 The twisted cord according to claim 4 or 5, wherein the ratio of the upper twist coefficient to the lower twist coefficient of the twisted cord is 0.33 to 0.66.
  7.  諸撚りコードの平均径が0.7~0.9mmである請求項1~6のいずれか1項に記載の諸撚りコード。 The twisted cord according to any one of claims 1 to 6, wherein the average diameter of the twisted cord is 0.7 to 0.9 mm.
  8.  パラ系アラミド繊維がポリパラフェニレンテレフタルアミド繊維である請求項1~7のいずれか1項に記載の諸撚りコード。 The stranded cord according to any one of claims 1 to 7, wherein the para-aramid fiber is a polyparaphenylene terephthalamide fiber.
  9.  パラ系アラミド繊維を一方向に下撚りして下撚り糸を得る下撚り工程、前記下撚り工程で得られた下撚り糸を3本又は4本引き揃えて下撚りとは逆方向に上撚りして諸撚りコードを得る上撚り工程を含む請求項1~8のいずれか1項に記載の諸撚りコードの製造方法。 Twist the para-aramid fiber in one direction to obtain a lower twisted yarn, three or four lower twisted yarns obtained in the lower twisted step are aligned and twisted in the opposite direction to the lower twist The method for producing multi-twisted cords according to any one of claims 1 to 8, further comprising an upper twisting step for obtaining a multi-twisted cord.
  10.  請求項1~8のいずれか1項に記載の諸撚りコードで形成された抗張体を含む伝動ベルト。 A transmission belt comprising a tensile body formed of the stranded cords according to any one of claims 1 to 8.
  11.  抗張体が心線であり、心線の平均ピッチが0.8~1.05mmである請求項10記載の伝動ベルト。 The transmission belt according to claim 10, wherein the tensile body is a core wire, and an average pitch of the core wires is 0.8 to 1.05 mm.
  12.  ゴム成分を含むゴム組成物で形成された圧縮ゴム層をさらに含む請求項10又は11記載の伝動ベルト。 The transmission belt according to claim 10 or 11, further comprising a compression rubber layer formed of a rubber composition containing a rubber component.
  13.  ゴム成分がエチレン-α-オレフィンエラストマーである請求項12記載の伝動ベルト。 The transmission belt according to claim 12, wherein the rubber component is an ethylene-α-olefin elastomer.
  14.  ISG搭載エンジンを駆動するために請求項10~13のいずれか1項に記載の伝動ベルトを使用する方法。 A method of using the transmission belt according to any one of claims 10 to 13 to drive an engine equipped with an ISG.
PCT/JP2017/037532 2016-10-20 2017-10-17 Plied cord, production method therefor, transmission belt, and method for using same WO2018074471A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780064086.6A CN109844194B (en) 2016-10-20 2017-10-17 Twisted rope, method for producing same, transmission belt, and method for using same
US16/343,660 US10941506B2 (en) 2016-10-20 2017-10-17 Plied cord, production method therefor, transmission belt, and method for using same
EP17862244.5A EP3530783B1 (en) 2016-10-20 2017-10-17 Plied cord, production method therefor, transmission belt, and method for using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-206182 2016-10-20
JP2016206182 2016-10-20
JP2017192971A JP6612827B2 (en) 2016-10-20 2017-10-02 Various twisted cords, manufacturing method thereof, transmission belt and usage method thereof
JP2017-192971 2017-10-02

Publications (1)

Publication Number Publication Date
WO2018074471A1 true WO2018074471A1 (en) 2018-04-26

Family

ID=62019326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037532 WO2018074471A1 (en) 2016-10-20 2017-10-17 Plied cord, production method therefor, transmission belt, and method for using same

Country Status (1)

Country Link
WO (1) WO2018074471A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200217396A1 (en) * 2017-07-04 2020-07-09 Mitsuboshi Belting Ltd. V-Ribbed Belt
DE102019212056A1 (en) * 2019-08-12 2021-02-18 Contitech Antriebssysteme Gmbh Helical drive belt
WO2021104745A1 (en) * 2019-11-29 2021-06-03 Contitech Antriebssysteme Gmbh Drive belt, use of a drive belt of this type as a v-ribbed belt, and production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516614Y2 (en) * 1986-07-24 1996-11-06 株式会社ブリヂストン Aromatic polyamide fiber cord for rubber reinforcement
JP2009079337A (en) * 2007-09-27 2009-04-16 Mitsuboshi Belting Ltd Method for manufacturing twisted cord for belt
JP5750561B1 (en) * 2014-06-20 2015-07-22 バンドー化学株式会社 Transmission belt and belt transmission device having the same
WO2015121907A1 (en) * 2014-02-14 2015-08-20 バンドー化学株式会社 Double-cogged v-belt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516614Y2 (en) * 1986-07-24 1996-11-06 株式会社ブリヂストン Aromatic polyamide fiber cord for rubber reinforcement
JP2009079337A (en) * 2007-09-27 2009-04-16 Mitsuboshi Belting Ltd Method for manufacturing twisted cord for belt
WO2015121907A1 (en) * 2014-02-14 2015-08-20 バンドー化学株式会社 Double-cogged v-belt
JP5750561B1 (en) * 2014-06-20 2015-07-22 バンドー化学株式会社 Transmission belt and belt transmission device having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3530783A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200217396A1 (en) * 2017-07-04 2020-07-09 Mitsuboshi Belting Ltd. V-Ribbed Belt
US11867258B2 (en) * 2017-07-04 2024-01-09 Mitsuboshi Belting Ltd. V-ribbed belt
DE102019212056A1 (en) * 2019-08-12 2021-02-18 Contitech Antriebssysteme Gmbh Helical drive belt
WO2021104745A1 (en) * 2019-11-29 2021-06-03 Contitech Antriebssysteme Gmbh Drive belt, use of a drive belt of this type as a v-ribbed belt, and production method
CN114761705A (en) * 2019-11-29 2022-07-15 康蒂泰克驱动系统有限公司 Drive belt, use of a drive belt of this type as a V-ribbed belt and method for producing the same
US11982335B2 (en) 2019-11-29 2024-05-14 Contitech Antriebssysteme Gmbh Drive belt, use of a drive belt of this type as a V-ribbed belt, and production method

Similar Documents

Publication Publication Date Title
JP6612827B2 (en) Various twisted cords, manufacturing method thereof, transmission belt and usage method thereof
JP6640921B2 (en) V-ribbed belt and method of manufacturing the same
WO2018074471A1 (en) Plied cord, production method therefor, transmission belt, and method for using same
JP6650545B1 (en) Core wire for friction transmission belt, friction transmission belt, and method of manufacturing the same
WO2018235755A1 (en) V-ribbed belt and method for manufacturing same
JP6748152B2 (en) V-ribbed belt
US12123475B2 (en) Core wire for drive belt, drive belt, and method for manufacturing core wire and drive belt
JP6676725B2 (en) Friction transmission belt, cord therefor, and method of manufacturing them
EP3650731B1 (en) V-ribbed belt
JP6935000B2 (en) Transmission belt core wire and transmission belt and their manufacturing method
WO2019111639A1 (en) Friction transmission belt, cord for same, and manufacturing method for same
EP3971331A1 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017862244

Country of ref document: EP

Effective date: 20190520