WO2018042788A1 - 光ファイバ - Google Patents
光ファイバ Download PDFInfo
- Publication number
- WO2018042788A1 WO2018042788A1 PCT/JP2017/020145 JP2017020145W WO2018042788A1 WO 2018042788 A1 WO2018042788 A1 WO 2018042788A1 JP 2017020145 W JP2017020145 W JP 2017020145W WO 2018042788 A1 WO2018042788 A1 WO 2018042788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- updopant
- core
- refractive index
- inner cladding
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03694—Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/045—Silica-containing oxide glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/024—Optical fibres with cladding with or without a coating with polarisation maintaining properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/08—Doped silica-based glasses containing boron or halide
- C03C2201/10—Doped silica-based glasses containing boron or halide containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/08—Doped silica-based glasses containing boron or halide
- C03C2201/12—Doped silica-based glasses containing boron or halide containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/20—Doped silica-based glasses containing non-metals other than boron or halide
- C03C2201/28—Doped silica-based glasses containing non-metals other than boron or halide containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/30—Doped silica-based glasses containing metals
- C03C2201/31—Doped silica-based glasses containing metals containing germanium
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02004—Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0286—Combination of graded index in the central core segment and a graded index layer external to the central core segment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03622—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
- G02B6/305—Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
Definitions
- the present invention relates to an optical fiber capable of expanding a core by thermal diffusion.
- Semiconductor optical waveguides typified by silicon optical waveguides have high expectations as a technology that contributes to the integration of devices for optical communication.
- a silicon waveguide having functions such as an optical modulator, a photodetector, and an optical switch has been realized, and its use for optical communication has begun.
- a CSMF Conventional Single Mode Fiber
- the mode field diameter of the CSMF is about 10 ⁇ m
- the mode field diameter of the semiconductor optical waveguide is about 1 ⁇ m.
- an optical fiber having a TEC Thermally Diffused Expanded Core
- TEC Thermally Diffused Expanded Core
- the core of the bridge fiber is expanded by fusion with CSMF or by subsequent heating, so that the mismatch in mode field diameter between the bridge fiber and CSMF is reduced.
- the connection loss at the fusion point between the bridge fiber and CSMF can be reduced.
- Patent No. 5900484 (issued on April 6, 2016)” Japanese Patent Publication “Japanese Patent Laid-Open No. 3-130705 (published on June 4, 1991)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-75677 (published March 12, 2003)” Japanese Patent Publication “Patent No. 3993198 (issued on October 17, 2007)”
- the core is composed of quartz glass to which germanium is added and the inner cladding is composed of quartz glass to which germanium, phosphorus and fluorine are added
- simply adding these dopants at known concentrations allows CSMF.
- the inventors of the present application have found that the connection loss at the fusion point is not sufficiently reduced (for example, does not become 0.2 dB or less). This means that the expansion of the core due to thermal diffusion is insufficient.
- the present invention has been made in view of the above problems, and an object of the present invention is an optical fiber in which a core is expanded by thermal diffusion, and a connection loss at a fusion point with CSMF is sufficiently small (for example, (To achieve an optical fiber of 0.2 dB or less).
- an optical fiber according to the present invention includes a core made of quartz glass to which an updopant is added, and an inner cladding that covers a side surface of the core, and includes both an updopant and a downdopant.
- the refractive index of the outer cladding is substantially equal to the refractive index of the outer cladding, and the concentration of the updopant in the inner cladding is determined so that the refractive index increase rate by the updopant is 0.25% to 0.5%. It is characterized by that.
- an optical fiber capable of expanding the core by thermal diffusion and having a sufficiently small connection loss at the fusion point with CSMF.
- FIG. 2 is a graph showing a concentration distribution of an updopant added to a core in the optical fiber shown in FIG. (A) shows the concentration distribution before the heat treatment, (b) shows the concentration distribution during the heat treatment, and (c) shows the concentration distribution after the heat treatment. 2 is a graph showing a concentration distribution of an updopant added to an inner cladding in the optical fiber shown in FIG.
- FIG. (A) shows the concentration distribution before the heat treatment
- (b) shows the concentration distribution during the heat treatment
- (c) shows the concentration distribution after the heat treatment.
- 2 is a graph showing a concentration distribution of a downdopant added to an inner cladding in the optical fiber shown in FIG. (A) shows the concentration distribution before the heat treatment
- (b) shows the concentration distribution during the heat treatment
- (c) shows the concentration distribution after the heat treatment.
- It is a graph which shows the refractive index distribution of the optical fiber shown in FIG. (A) shows the refractive index distribution before the heat treatment
- (b) shows the refractive index distribution during the heat treatment
- (c) shows the refractive index distribution after the heat treatment.
- FIG. 1 Optical fiber structure
- the structure of the optical fiber 1 according to an embodiment of the present invention will be described with reference to FIG.
- the upper part of FIG. 1 is a cross-sectional view showing the structure of the optical fiber 1
- the lower part of FIG. 1 is a graph showing the refractive index distribution of the optical fiber 1.
- the optical fiber 1 covers a core 11 having a circular cross section, an inner clad 12 having an annular cross section that covers the side surface of the core 11, and an outer face of the inner clad 12. And an outer cladding 13 having an annular cross section.
- the optical fiber 1 may further include a protective coating layer (not shown) that covers the outer surface of the outer cladding 13 and has an annular cross section.
- the diameter d1 of the core 11 is 4 ⁇ m
- the diameter (outer diameter) d2 of the inner cladding 12 is 16 ⁇ m
- the diameter (outer diameter) d3 of the outer cladding 13 is 80 ⁇ m.
- the reason why the diameter d3 of the outer cladding 13 is set to 80 ⁇ m is to ensure the reliability of the mechanical strength even in a bent state.
- the outer cladding 13 may have a diameter d3 of 125 ⁇ m.
- the core 11 is made of quartz glass to which germanium (Ge) as an updopant is added. Therefore, the refractive index n1 of the core 11 is higher than the refractive index n3 of the outer cladding 13 (substantially the same as the refractive index of pure quartz glass, as will be described later), as shown in the lower part of FIG.
- the relative refractive index difference ⁇ 1 ⁇ (n1 ⁇ n3) / n1 ⁇ ⁇ 100 of the core 11 with respect to the outer cladding 13 in order to set the mode field diameter at a wavelength of 1550 nm to 3.5 ⁇ m or more and 6.5 ⁇ m or less.
- the concentration of the updopant added to the core 11 is determined so that the amount of the dopant is 1.0% or more and 2.8% or less.
- this invention is not limited to this. That is, a configuration in which phosphorus (P) is added as an updopant to the core 11 instead of germanium may be employed, or a configuration in which phosphorus is added as an updopant to the core 11 in addition to germanium may be employed.
- the inner cladding 12 includes (1) fluorine (F), which is a downdopant for promoting diffusion of the updopant added to the core 11, and (2) an updopant for offsetting a decrease in refractive index due to the downdopant. It is made of quartz glass to which germanium (Ge) and phosphorus (P) are added. For this reason, the refractive index n2 of the inner cladding 12 is substantially the same as the refractive index n3 of the outer cladding 13, as shown in the lower part of FIG.
- the concentration of the updopant added to the inner cladding 12 is determined so that the refractive index increase rate ⁇ due to the updopant is 0.25% to 0.50%
- the refractive index increase rate ⁇ due to the updopant means that the refractive index of the quartz glass before the addition of the updopant is n, and the refractive index of the quartz glass after the addition of the updopant is n ′, It is an amount defined by ⁇ (n′ ⁇ n) / n ′ ⁇ ⁇ 100.
- this invention is not limited to this. That is, a configuration in which boron (B) is added to the inner cladding 12 as a down dopant instead of fluorine may be employed, or a configuration in which boron is added to the inner cladding 12 as a down dopant in addition to fluorine. Good.
- the structure which adds both germanium and phosphorus to the inner clad 12 as an updopant is employ
- adopted this invention is not limited to this. That is, a configuration in which only germanium is added as an updopant to the inner cladding 12 may be employed, or a configuration in which only phosphorus is added as an updopant to the inner cladding 12 may be employed.
- the outer cladding 13 is made of quartz glass to which a dopant other than chlorine (Cl) is not intentionally added. That is, since neither updop nor downdopant is added to the quartz glass constituting the outer cladding 13, the refractive index n3 of the outer cladding 13 is substantially the same as the refractive index 1.46 of pure quartz glass. .
- the inner cladding 12 contains a sufficient amount of downdopant (an amount sufficient to offset the refractive index increase rate ⁇ of 0.25% or more caused by the updopant added to the inner cladding 12).
- This downdopant itself diffuses into the core 11 to lower the refractive index of the core 11 and promotes diffusion of the updopant added to the core 11 into the inner cladding 12. It has the effect of reducing the refractive index. For this reason, when the optical fiber 1 is fused with another optical fiber, the diameter d1 of the core 11 can be sufficiently enlarged in the vicinity of the fusion point, and the connection loss at the fusion point can be sufficiently suppressed.
- fluorine added to the inner cladding 12 significantly promotes diffusion of germanium added to the core 11. Accordingly, by adopting a configuration in which germanium is added as an updopant to the core 11 and fluorine is added as a downdopant to the inner cladding 12 as in the present embodiment, the diameter d1 of the core 11 is made near the fusion point. The connection loss at the fusion point can be remarkably suppressed significantly.
- the relative refractive index difference ⁇ 1 of the core 11 with respect to the outer cladding 13 is smaller than 1.0%, the mode field diameter at the wavelength of 1550 nm is larger than 6.5 ⁇ m. For this reason, when the optical fiber 1 is connected to the silicon waveguide, the connection loss increases.
- the relative refractive index difference ⁇ 1 of the core 11 with respect to the outer cladding 13 is larger than 2.8%, the mode field diameter at a wavelength of 1550 nm is smaller than 3.5 ⁇ m. For this reason, when connecting the optical fiber 1 to a silicon waveguide, alignment becomes difficult (tolerance with respect to an axial deviation becomes small).
- the optical fiber 1 is connected to the silicon waveguide by setting the relative refractive index difference ⁇ 1 of the core 11 with respect to the outer cladding 13 to 1.0% or more and 2.8% or less as in the present embodiment, the connection is made.
- the loss can be kept small and alignment can be facilitated.
- the concentration of the down dopant added to the inner cladding 12 is indirectly determined using the concentration of the up dopant added to the inner cladding 12 and the relative refractive index difference ⁇ 2 of the inner cladding 12 with respect to the outer cladding 13. Stipulated. This is because it is difficult to directly measure the concentration of fluorine, which is a downdopant added to the inner cladding 12.
- each dopant added to each part of the optical fiber 1 diffuses by heat treatment.
- the dopant concentration distribution u (r, 0) at time 0 ⁇ (r)
- the dopant concentration distribution u (r, t) at time t is given by equation (1).
- D in equation (1) is defined by equation (2) and is called a diffusion coefficient.
- Q activation energy
- R is a gas constant
- T is an absolute temperature
- D 0 is an experimental constant.
- FIG. 2 is a graph showing the concentration distribution of the updopant (germanium) added to the core 11.
- 2A shows the concentration distribution of the updopant before the heat treatment
- FIG. 2B shows the concentration distribution of the updopant during the heat treatment
- FIG. 2C shows the concentration distribution of the updopant after the heat treatment.
- the concentration distribution is shown.
- r1 is the radius of the core 11 before the heat treatment
- r2 is the radius of the inner cladding 12 before the heat treatment.
- FIG. 3 is a graph showing the concentration distribution of updopants (germanium and phosphorus) added to the inner cladding 12.
- 3A shows the concentration distribution of the updopant before the heat treatment
- FIG. 3B shows the concentration distribution of the updopant during the heat treatment
- FIG. 3C shows the concentration distribution of the updopant after the heat treatment. Indicates the concentration.
- r1 is the radius of the core 11 before the heat treatment.
- the region where r1 ⁇ r ⁇ r2 (inner cladding 12 before heat treatment) and the updopant that is unevenly distributed in the region where r ⁇ r1 (core 11 before heat treatment) and r> r2 It turns out that it diffuses asymmetrically to the area
- the reason why the updopant diffuses asymmetrically, that is, the diffusion to the region where r ⁇ r1 is suppressed more than the diffusion to the region where r> r2 is that the updopant is added to the region where r ⁇ r1
- FIG. 4 is a graph showing the concentration distribution of the downdopant (fluorine) added to the inner cladding 12.
- 4A shows the concentration distribution of the downdopant before the heat treatment
- FIG. 4B shows the concentration distribution of the downdopant during the heat treatment
- FIG. 4C shows the concentration of the downdopant after the heat treatment. Indicates the concentration.
- r1 is the radius of the core 11 before heat treatment
- r2 is the radius of the inner cladding 12 before heat treatment.
- the region where r1 ⁇ r ⁇ r2 (the inner cladding 12 before the heat treatment) and the down-dopant which is unevenly distributed in the region where r ⁇ r1 (core 11 before the heat treatment) and r> r2 It can be seen that it diffuses in a substantially symmetrical region (outer cladding 13 before heat treatment) (the diffusion symmetry is higher than that of the updopant).
- the reason why the downdopant diffuses substantially symmetrically is considered that no downdopant is added to the region where r ⁇ r1 or r> r2.
- the amount of downdopant diffused from the region where r1 ⁇ r ⁇ r2 into the region where r ⁇ r1 is larger than the amount of updopant diffused from the region where r1 ⁇ r ⁇ r2 into the region where r ⁇ r1. Will also increase.
- FIG. 5 is a graph showing the refractive index distribution of the optical fiber 1 estimated from the distribution of each dopant shown in FIG. 2, FIG. 3, and FIG.
- FIG. 5 shows the refractive index distribution before the heat treatment
- (b) shows the refractive index distribution during the heat treatment
- (c) shows the refractive index distribution after the heat treatment.
- r1 is the radius of the core 11 before the heat treatment
- r2 is the radius of the inner cladding 12 before the heat treatment.
- FIG. 5 confirms that the region having a relatively high refractive index functioning as the core is enlarged by the heat treatment.
- optical fibers A to G optical fibers having a core diameter of 4 ⁇ m, an inner cladding diameter of 16 ⁇ m, and an outer cladding diameter of 80 ⁇ m were prepared.
- the updope added to the core is germanium
- the downdopant added to the inner cladding is fluorine
- the updopants added to the inner cladding are germanium and phosphorus. It is.
- the concentration of germanium added to the core is determined so that the relative refractive index difference of the core with respect to the outer cladding is + 1.0% or more and + 2.8% or less.
- the concentration of the updopant added to the inner cladding is determined so that the absolute value of the relative refractive index difference between the inner cladding and the outer cladding is 0.10% or less.
- the CMSF an optical fiber having a cladding diameter of 125 ⁇ m and a mode field diameter of 10.6 ⁇ m at a wavelength of 1550 nm was prepared.
- the concentration of each updopant added to the inner cladding of each of the optical fibers A to G was measured using EPMA (Electron Probing Micro MicroAnalyzer). Further, the refractive index increase rate ⁇ due to the updopant added to the inner cladding of each of the optical fibers A to G was calculated from the measured concentration of each updopant according to the method described in Non-Patent Document 3. For each of the optical fibers A to G, the measured concentration of each updopant is shown in the second and third columns of Table 1, and the calculated refractive index increase rate ⁇ is shown in the fourth column of Table 1.
- each of the optical fibers A to G was fused to CSMF, and the connection loss at the fused point was measured.
- the fusion between the optical fibers A to G and the CMSF was performed as follows. That is, after smoothing the end faces of the optical fibers A to G and CMSF with a fiber cleaner, the smoothed end faces are connected to an arc discharge type fusion splicing device (specifically, FSM-100P manufactured by Fujikura). Used and fused.
- the connection loss at the fusion point was measured as follows. That is, while performing heat treatment by arc discharge in the vicinity of the fusion point, the measurement of the transmission loss at a wavelength of 1550 nm was repeated, and the connection loss was calculated from the measured minimum value of the transmission loss.
- the measured splice loss for optical fibers A to G is shown in the fifth column of Table 1.
- FIG. 6 is a graph showing the correlation between the refractive index increase rate ⁇ due to the updopant and the connection loss at a wavelength of 1550 nm. According to the graph shown in FIG. 6, it can be seen that when the refractive index increase rate ⁇ due to the updopant is 0.25% or more and 0.50% or less, the connection loss at the wavelength of 1550 nm can be suppressed to 0.2 dB or less. This is because a sufficient amount of downdopant is added to the inner cladding to offset the increase in refractive index due to the updopant, resulting in enhanced diffusion of the updopant from the core to the inner cladding, and sufficient expansion of the core. It is thought that it is because it is planned.
- the refractive index increase rate ⁇ due to the updopant is smaller than 0.25%, the connection loss at a wavelength of 1550 nm exceeds 0.2 dB. Also, when the refractive index increase rate ⁇ due to the updopant is larger than 0.50%, the refractive index increase due to the updopant cannot be offset by the refractive index decrease due to fluorine alone, and as a result, the inner cladding with respect to the outer cladding 13 The absolute value of the relative refractive index difference ⁇ 2 of 12 cannot be made 0.10% or less. For this reason, the cutoff wavelength becomes longer than the expected value, or the bending loss becomes larger than the expected value.
- the optical fiber 1 functions as a polarization maintaining fiber by adding stress applying portions 14 a to 14 b to the outer cladding 13.
- FIG. 7 is a cross-sectional view showing a first configuration example of the optical fiber 1 functioning as a polarization maintaining fiber.
- the refractive index distribution (lower side of the sectional view) along the AA line and the refractive index distribution (upper side of the sectional view) along the BB line are shown together.
- the stress applying portions 14 a to 14 b are structures having a circular cross section embedded in the outer cladding 13.
- the refractive index n4 of the stress applying portions 14a to 14b is lower than the refractive index n3 of the outer cladding 13.
- the stress applying portions 14 a to 14 b are arranged symmetrically with respect to the core 11, and the outer edges of the stress applying portions 14 a to 14 b are in contact with the outer edges of the inner cladding 12, respectively.
- FIG. 8 is a cross-sectional view showing a second configuration example of the optical fiber 1 functioning as a polarization maintaining fiber.
- the refractive index distribution along the AA line (lower side of the sectional view) and the refractive index distribution along the BB line (right side of the sectional view) are shown together.
- the stress applying portions 14 a to 14 b are structures having a circular cross section embedded in the outer cladding 13.
- the refractive index n4 of the stress applying portions 14a to 14b is lower than the refractive index n3 of the outer cladding 13.
- the stress applying portions 14 a to 14 b are arranged symmetrically with respect to the core 11, and the outer edges of the stress applying portions 14 a to 14 b are separated from the outer edges of the inner cladding 12, respectively. .
- a polarization maintaining fiber is manufactured by drawing a base material having a cross section shown in FIG. Since the relationship ⁇ oc> ⁇ ic> ⁇ sap is established between the viscosity ⁇ oc of the outer cladding, the viscosity ⁇ ic of the inner cladding, and the viscosity ⁇ sap of the stress applying portion, the outer cladding, the inner cladding, and the stress applying portion are in this order when drawing. It will be cured.
- the inner clad having a non-circular cross-section in the base metal is deformed so that the cross-section is rounded by surface tension, and the core having a circular cross-section in the base metal is deformed in accordance with the deformation of the inner clad. Deforms to be non-circular.
- a cross section of the polarization maintaining fiber obtained is as shown in FIG.
- the stress applying portions 14 a to 14 b do not overlap the inner cladding 12.
- the non-circularization of the core 11 which may occur at the time of drawing can be suppressed. Therefore, it is possible to realize the optical fiber 1 in which the non-circularity of the core 11 is low, that is, the circularity of the core 11 is high compared with the case where the stress applying portion and the inner cladding overlap.
- the optical fiber 1 according to the present embodiment can be suitably used as a bridge fiber interposed between a semiconductor optical waveguide and a CSMF (Conventional Single Mode Fiber).
- CSMF Conventional Single Mode Fiber
- a bridge fiber 102 constituted by the optical fiber 1 according to this embodiment, (2) a semiconductor optical waveguide 101 butt-connected to one end of the bridge fiber 102, and (3
- the low-loss optical device 100 can be constituted by the CSMF 103 fused and connected to the other end of the bridge fiber 102. This is because when the bridge fiber 102 and the CSMF 103 are fusion-bonded, the core of the bridge fiber 102 is sufficiently enlarged near the fusion point, so that the connection loss at the fusion point between the bridge fiber 102 and the CSMF 103 is sufficiently increased. This is because it can be suppressed.
- the semiconductor optical waveguide 101 for example, a silicon waveguide in which SSC (Spot Size Converter) is formed is preferable.
- SSC spot Size Converter
- the CSMF 103 for example, a single mode fiber having a mode field diameter of about 10 ⁇ m at a wavelength of 1550 nm is preferable. In ITU-T, G. 652 or G.I. The optical fiber classified as 657 is an example of such a single mode fiber.
- An optical fiber according to the present invention is composed of a core made of quartz glass to which an updopant is added, and an inner cladding that covers the side surface of the core, and is made of quartz glass to which both an updopant and a downdopant are added. And an outer clad that covers the outer surface of the inner clad and is made of quartz glass, and the refractive index of the inner clad is equal to the refractive index of the outer clad. Substantially equal, the concentration of the updopant in the inner cladding is determined such that the refractive index increase rate by the updopant is 0.25% to 0.5%.
- the core when the optical fiber is fused and connected to another optical fiber (for example, CSMF), the core can be sufficiently enlarged in the vicinity of the fusion point, and as a result, at each fusion point.
- the connection loss can be made sufficiently small (for example, 0.2 dB or less).
- the concentration of the updopant in the core is determined so that the mode field diameter at a wavelength of 1550 nm is 3.5 ⁇ m or more and 6.5 ⁇ m or less.
- connection loss when the optical fiber is butt-connected to the semiconductor waveguide, the connection loss can be suppressed while maintaining the tolerance against the axial deviation.
- the concentration of the downdopant in the inner cladding is determined such that the absolute value of the relative refractive index difference of the inner cladding with respect to the outer cladding is 0.1% or less. Is preferred.
- the cutoff wavelength, the bending loss, and the like can be brought close to intended values (values expected when the refractive index of the inner cladding and the refractive index of the outer cladding match). . Note that when the refractive index of the inner cladding is larger than that of the outer cladding, there is a possibility that the cutoff wavelength becomes longer and the single mode operation becomes difficult.
- germanium is added to the core as the updopant, and fluorine is added to the inner cladding as the downdopant.
- the core when the optical fiber is fusion-spliced to another optical fiber, the core can be further enlarged in the vicinity of the fusion point, and as a result, the connection loss at the fusion point can be further reduced. Can do.
- one or both of phosphorus and germanium may be added to the inner cladding as the updopant.
- boron may be further added to the inner cladding as the downdopant.
- the optical fiber according to the present invention preferably further includes a pair of stress applying portions arranged symmetrically with respect to the core.
- the optical fiber can function as a polarization maintaining fiber.
- the pair of stress applying portions are arranged such that the outer edges thereof are in contact with the outer edges of the inner cladding, or the outer edges are separated from the outer edges of the inner cladding, It is preferable.
- the non-roundness of the core can be reduced, that is, the roundness of the core can be increased.
- An optical device comprising the optical fiber, a semiconductor optical waveguide that is butt-connected to one end of the optical fiber, and a CSMF (Conventional Single Mode Fiber) fused to the other end of the optical fiber, It is included in the category of the present invention.
- CSMF Conventional Single Mode Fiber
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
CSMFとの融着点における接続損失が十分に小さくなる光ファイバを実現する。内側クラッド(12)の屈折率を、外側クラッド(13)の屈折率と実質的に等しくすると共に、内側クラッド(12)におけるアップドーパントの濃度を、当該アップドーパントによる屈折率上昇率が0.25%以上0.5%以下となるように定める。
Description
本発明は、熱拡散によりコアを拡大可能な光ファイバに関する。
シリコン光導波路に代表される半導体光導波路は、光通信用デバイスの集積化に寄与する技術として、大きな期待が寄せられている。例えば、光変調器、光検出器、光スイッチなどの機能を有するシリコン導波路が実現されており、光通信への利用が始まっている。
半導体光導波路に入力する光、又は、半導体光導波路から出力された光を伝搬するために、半導体光導波路には、しばしば、CSMF(Conventional Single Mode Fiber)が接続される。ところが、半導体光導波路のモードフィールド径が1μm程度であるのに対して、CSMFのモードフィールド径は10μm程度である。このため、半導体光導波路にCSMFを突き合わせ接続すると、モードフィールド径の差に起因する接続損失が大きくなり過ぎて実用に耐えない。
そこで、半導体光導波路にSSC(Spot Size Converter)を作り込み、SSCにCSMFを接続する方法が提案されている(特許文献1参照)。しかしながら、SSCを用いて半導体光導波路のモードフィールド径をCSMFのモードフィールド径と同程度まで拡大すると、SSCにおける損失が大きくなるという問題がある。このため、(1)SCCを用いてモードフィールド径が4μmに拡大された半導体光導波路に、モードフィールド径が4μmのブリッジファイバの一端を突き合わせ接続し、(2)このブリッジファイバの他端にモードフィールド径が10μmのCSMFを融着接続することが検討されている。
このようなブリッジファイバには、TEC(Thermally Diffused Expanded Core)を有する光ファイバ、すなわち、熱拡散によりコアを拡大可能な光ファイバを用いる(特許文献2、3参照)。そうすると、ブリッジファイバのコアがCSMFとの融着時又はその後の加熱により拡大するため、ブリッジファイバとCSMFとの間にモードフィールド径の不整合が軽減される。その結果、ブリッジファイバとCSMFとの融着点における接続損失を小さく抑えることができる。
なお、熱拡散によるコアの拡大は、コアを形成するために添加されたアップドーパント(石英ガラスの屈折率を上げるための添加物)が加熱により周囲に拡散することによって生じる。コアを形成するために添加されたアップドーパントがゲルマニウム(Ge)である場合、周囲にゲルマニウム、リン(P)、及びフッ素(F)を共添加することによって、コアの拡大を促進できることが知られている(特許文献4参照)。
しかしながら、コアがゲルマニウムを添加した石英ガラスにより構成され、内側クラッドがゲルマニウム、リン、及びフッ素を添加した石英ガラスにより構成された光ファイバについて、これらのドーパントを公知の濃度で添加しただけでは、CSMFとの融着点における接続損失が十分に小さくならない(例えば、0.2dB以下にならない)ことを、本願発明者らは見出した。これは、熱拡散によるコアの拡大が不十分であることを意味する。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、熱拡散によりコアが拡大する光ファイバであって、CSMFとの融着点における接続損失が十分に小さくなる(例えば、0.2dB以下になる)光ファイバを実現することにある。
上記課題を解決するために、本発明に係る光ファイバは、アップドーパントが添加された石英ガラスにより構成されたコアと、上記コアの側面を覆う内側クラッドであって、アップドーパント及びダウンドーパントの両方が添加された石英ガラスにより構成された内側クラッドと、上記内側クラッドの外側面を覆う外側クラッドであって、石英ガラスにより構成された外側クラッドと、を備えており、上記内側クラッドの屈折率は、上記外側クラッドの屈折率と実質的に等しく、上記内側クラッドにおける上記アップドーパントの濃度は、当該アップドーパントによる屈折率上昇率が0.25%以上0.5%以下となるように定められている、ことを特徴とする。
本発明によれば、熱拡散によりコアを拡大可能な光ファイバであって、CSMFとの融着点における接続損失が十分に小さくなる光ファイバを実現することができる。
(光ファイバの構造)
本発明の一実施形態に係る光ファイバ1の構造について、図1を参照して説明する。図1の上段は、光ファイバ1の構造を示す断面図であり、図1の下段は、光ファイバ1の屈折率分布を示すグラフである。
本発明の一実施形態に係る光ファイバ1の構造について、図1を参照して説明する。図1の上段は、光ファイバ1の構造を示す断面図であり、図1の下段は、光ファイバ1の屈折率分布を示すグラフである。
光ファイバ1は、図1の上段に示すように、円形状の断面を有するコア11と、コア11の側面を覆う、円環状の断面を有する内側クラッド12と、内側クラッド12の外側面を覆う、円環状の断面を有する外側クラッド13と、を備えている。光ファイバ1は、外側クラッド13の外側面を覆う、円環状の断面を有する保護被覆層(不図示)を更に備えていてもよい。
本実施形態においては、コア11の直径d1を4μmとし、内側クラッド12の直径(外径)d2を16μmとし、外側クラッド13の直径(外径)d3を80μmとしている。ここで、外側クラッド13の直径d3を80μmとしているのは、機械的強度に関する信頼性を曲げた状態でも担保するためである。使用目的及び/又は使用環境によっては、外側クラッド13の直径d3を125μmとしてもよい。
コア11は、アップドーパントであるゲルマニウム(Ge)が添加された石英ガラスにより構成されている。このため、コア11の屈折率n1は、図1の下段に示すように、外側クラッド13の屈折率n3(後述するように、純粋石英ガラスの屈折率と実質的に同一)よりも高くなる。本実施形態においては、波長1550nmにおけるモードフィールド径が3.5μm以上6.5μm以下にするために、外側クラッド13に対するコア11の比屈折率差Δ1={(n1-n3)/n1}×100が1.0%以上2.8%以下になるようコア11に添加するアップドーパントの濃度が定められている。
なお、本実施形態においては、ゲルマニウムをアップドーパントとしてコア11に添加する構成を採用しているが、本発明はこれに限定されない。すなわち、ゲルマニウムの代わりにリン(P)をアップドーパントとしてコア11に添加する構成を採用してもよいし、ゲルマニウムに加えてリンをアップドーパントとしてコア11に添加する構成を採用してもよい。
内側クラッド12は、(1)コア11に添加されたアップドーパントの拡散を促進するためのダウンドーパントであるフッ素(F)と、(2)このダウンドーパントによる屈折率低下を相殺するためのアップドーパントであるゲルマニウム(Ge)及びリン(P)とが添加された石英ガラスにより構成されている。このため、内側クラッド12の屈折率n2は、図1の下段に示すように、外側クラッド13の屈折率n3と実質的に同一になる。本実施形態においては、(1)アップドーパントによる屈折率上昇率Δが0.25%以上0.50%以下になるように、内側クラッド12に添加するアップドーパントの濃度が定められ、(2)外側クラッド13に対する内側クラッド12の比屈折率差Δ2={(n2-n3)/n2}×100の絶対値が0.10%以下になるように、内側クラッド12におけるダウンドーパントの濃度が定められている。ここで、アップドーパントによる屈折率上昇率Δとは、そのアップドーパントが添加される前の石英ガラスの屈折率をn、そのアップドーパントが添加された後の石英ガラスの屈折率をn’として、{(n’-n)/n’}×100より定義される量である。
なお、本実施形態においては、フッ素をダウンドーパントとして内側クラッド12に添加する構成を採用しているが、本発明はこれに限定されない。すなわち、フッ素の代わりにホウ素(B)をダウンドーパントとして内側クラッド12に添加する構成を採用してもよいし、フッ素に加えてホウ素をダウンドーパントとして内側クラッド12に添加する構成を採用してもよい。また、本実施形態においては、ゲルマニウム及びリンの両方をアップドーパントとして内側クラッド12に添加する構成を採用しているが、本発明はこれに限定されない。すなわち、ゲルマニウムのみをアップドーパントとして内側クラッド12に添加する構成を採用してもよいし、リンのみをアップドーパントとして内側クラッド12に添加する構成を採用してもよい。
外側クラッド13は、塩素(Cl)以外のドーパントが意図的に添加されていない石英ガラスにより構成されている。すなわち、外側クラッド13を構成する石英ガラスには、アップドーパントもダウンドーパントも添加されていないので、外側クラッド13の屈折率n3は、純粋石英ガラスの屈折率1.46と実質的に同一になる。
以上のように、内側クラッド12には、ダウンドーパントが十分に(内側クラッド12に添加されたアップドーパントによる0.25%以上の屈折率上昇率Δを相殺するに足る量)含まれている。このダウンドーパントは、それ自身がコア11に拡散することによりコア11の屈折率を低下させる作用と、コア11に添加されたアップドーパントの内側クラッド12への拡散を促進することにより内側クラッド12の屈折率を低下させる作用とを有する。このため、光ファイバ1を他の光ファイバと融着する際に、融着点近傍においてコア11の直径d1を十分に拡大し、融着点における接続損失を十分に抑制することができる。
特に、内側クラッド12に添加されたフッ素は、コア11に添加されたゲルマニウムの拡散を顕著に促進する。したがって、本実施形態のように、コア11にアップドーパントとしてゲルマニウムを添加すると共に、内側クラッド12にダウンドーパントとしてフッ素を添加する構成を採用することによって、融着点近傍においてコア11の直径d1を顕著に拡大し、融着点における接続損失を顕著に抑制することができる。
また、外側クラッド13に対するコア11の比屈折率差Δ1が1.0%よりも小さい場合、波長1550nmにおけるモードフィールド径が6.5μmよりも大きくなる。このため、光ファイバ1をシリコン導波路に接続する際、接続損失が大きくなる。一方、外側クラッド13に対するコア11の比屈折率差Δ1が2.8%よりも大きい場合、波長1550nmにおけるモードフィールド径が3.5μmよりも小さくなる。このため、光ファイバ1をシリコン導波路に接続する際、調心が困難になる(軸ずれに対するトレランスが小さくなる)。したがって、本実施形態のように、外側クラッド13に対するコア11の比屈折率差Δ1を1.0%以上2.8%以下にすることによって、光ファイバ1をシリコン導波路に接続する際、接続損失を小さく抑えると共に、調心を容易にすることができる。
なお、本実施形態において、内側クラッド12に添加されるダウンドーパントの濃度を、内側クラッド12に添加されるアップドーパントの濃度と外側クラッド13に対する内側クラッド12の比屈折率差Δ2とを用いて間接的に規定している。これは、内側クラッド12に添加されたダウンドーパントであるフッ素の濃度を直接的に測定することが困難だからである。
(光ファイバにおけるコア拡大)
次に、光ファイバ1を他の光ファイバに融着する際に生じるコア拡大について説明する。
次に、光ファイバ1を他の光ファイバに融着する際に生じるコア拡大について説明する。
光ファイバ1の各部に添加された各ドーパントは、加熱処理によって拡散する。時刻0におけるドーパントの濃度分布u(r,0)=δ(r)であるとき、時刻tにおけるドーパントの濃度分布u(r,t)は、(1)式により与えられる。
(1)式におけるDは、(2)式により定義され、拡散係数と呼ばれる。(2)式において、Qは活性化エネルギーであり、Rは気体定数であり、Tは絶対温度であり、D0は実験定数である。
図2は、コア11に添加されたアップドーパント(ゲルマニウム)の濃度分布を示すグラフである。図2において、(a)は、加熱処理前のアップドーパントの濃度分布を示し、(b)は、加熱処理中のアップドーパントの濃度分布を示し、(c)は、加熱処理後のアップドーパントの濃度分布を示す。図2において、r1は、加熱処理前のコア11の半径、r2は、加熱処理前の内側クラッド12の半径である。
図2によれば、加熱処理によって、r<r1となる領域(加熱処理前のコア11)に偏在していたアップドーパントがr>r1となる領域(加熱処理前の内側クラッド12)に拡散していることが分かる。
図3は、内側クラッド12に添加されたアップドーパント(ゲルマニウム及びリン)の濃度分布を示すグラフである。図3において、(a)は、加熱処理前のアップドーパントの濃度分布を示し、(b)は、加熱処理中のアップドーパントの濃度分布を示し、(c)は、加熱処理後のアップドーパントの濃度を示す。図3において、r1は、加熱処理前のコア11の半径である。
図3によれば、r1<r<r2となる領域(加熱処理前の内側クラッド12)に偏在していたアップドーパントがr<r1となる領域(加熱処理前のコア11)及びr>r2となる領域(加熱処理前の外側クラッド13)に非対称に拡散していることが分かる。アップドーパントが非対称に拡散する、すなわち、r<r1となる領域への拡散がr>r2となる領域への拡散よりも抑制されている理由は、r<r1となる領域にはアップドーパントが添加されているのに対して、r>r1となる領域にはアップドーパントが添加されていないからであると考えられる。
図4は、内側クラッド12に添加されたダウンドーパント(フッ素)の濃度分布を示すグラフである。図4において、(a)は、加熱処理前のダウンドーパントの濃度分布を示し、(b)は、加熱処理中のダウンドーパントの濃度分布を示し、(c)は、加熱処理後のダウンドーパントの濃度を示す。図4において、r1は、加熱処理前のコア11の半径であり、r2は、加熱処理前の内側クラッド12の半径である。
図4によれば、r1<r<r2となる領域(加熱処理前の内側クラッド12)に偏在していたダウンドーパントがr<r1となる領域(加熱処理前のコア11)及びr>r2となる領域(加熱処理前の外側クラッド13)に略対称に拡散している(アップドーパントよりも拡散の対称性が高い)ことが分かる。ダウンドーパントが略対称に拡散する理由は、r<r1となる領域にもr>r2となる領域にもダウンドーパントが添加されていないからであると考えられる。このため、r1<r<r2となる領域からr<r1となる領域に拡散するダウンドーパントの量は、r1<r<r2となる領域からr<r1となる領域に拡散するアップドーパントの量よりも多くなる。
図5は、図2、図3、及び図4に示す各ドーパントの分布から推定される光ファイバ1の屈折率分布を示すグラフである。図5において、(a)は、加熱処理前の屈折率分布を示し、(b)は、加熱処理中の屈折率分布を示し、(c)は、加熱処理後の屈折率分布を示す。図5において、r1は、加熱処理前のコア11の半径であり、r2は、加熱処理前の内側クラッド12の半径である。
図5によれば、コアとして機能する相対的に屈折率の高い領域が加熱処理によって拡大することが確かめられる。
(実施例)
以下、実施例に係る光ファイバA~D、及び、比較例に係る光ファイバE~Gについて、CSMFとの融着点における接続損失を実測した結果について説明する。
以下、実施例に係る光ファイバA~D、及び、比較例に係る光ファイバE~Gについて、CSMFとの融着点における接続損失を実測した結果について説明する。
光ファイバA~Gとしては、コアの直径が4μm、内側クラッドの直径が16μm、外側クラッドの直径が80μmの光ファイバを用意した。光ファイバA~Gの各々において、コアに添加されたアップドーパンとは、ゲルマニウムであり、内側クラッドに添加されたダウンドーパントは、フッ素であり、内側クラッドに添加されたアップドーパントは、ゲルマニウム及びリンである。コアに添加されたゲルマニウムの濃度は、外側クラッドに対するコアの比屈折率差が+1.0%以上+2.8%以下になるように決められている。内側クラッドに添加されたアップドーパントの濃度は、外側クラッドに対する内側クラッドの比屈折率差の絶対値が0.10%以下になるように決められている。CMSFとしては、クラッドの直径が125μmの光ファイバであって、波長1550nmおけるモードフィールド径が10.6μmとなる光ファイバを用意した。
まず、各光ファイバA~Gの内側クラッドに添加された各アップドーパントの濃度を、EPMA(Electron Prove Micro Analyzer)を用いて測定した。また、各光ファイバA~Gの内側クラッドに添加されたアップドーパントによる屈折率上昇率Δを、測定した各アップドーパントの濃度から非特許文献3に記載の方法に従って算出した。光ファイバA~Gの各々について、測定された各アップドーパントの濃度を表1の第2列及び第3列に示し、算出された屈折率上昇率Δを表1の第4列に示す。
次に、各光ファイバA~GをCSMFに融着し、融着点における接続損失を測定した。各光ファイバA~GとCMSFとの融着は、以下のように実施した。すなわち、各光ファイバA~G及びCMSFの端面をファイバクリーナで平滑化した後、平滑化した端面同士をアーク放電型の融着接続装置(具体的には、フジクラ社製のFSM-100P)を用いて融着した。また、融着点における接続損失の測定は、以下のように実施した。すなわち、融着点近傍にアーク放電による加熱処理を施しながら、波長1550nmにおける伝送損失の測定を繰り返し、測定された伝送損失の最小値から接続損失を算出した。光ファイバA~Gについて、測定された接続損失を表1の第5列に示す。
図6は、アップドーパントによる屈折率上昇率Δと、波長1550nmにおける接続損失との相関を示すグラフである。図6に示すグラフによれば、アップドーパントによる屈折率上昇率Δが0.25%以上0.50%以下であるとき、波長1550nmにおける接続損失を0.2dB以下に抑えられることが分かる。これは、アップドーパントによる屈折率上昇を相殺するために、内側クラッドに十分な濃度のダウンドーパントが添加された結果、コアから内側クラッドへのアップドーパントの拡散が促進され、コアの十分な拡大が図られるからであると考えられる。
アップドーパントによる屈折率上昇率Δが0.25%よりも小さい場合、波長1550nmにおける接続損失が0.2dBを超えてしまう。また、アップドーパントによる屈折率上昇率Δが0.50%よりも大きい場合、アップドーパントによる屈折率上昇をフッ素のみによる屈折率低下で相殺することができず、その結果、外側クラッド13に対する内側クラッド12の比屈折率差Δ2の絶対値を0.10%以下にすることができない。このため、カットオフ波長が所期の値よりも長くなってしまったり、曲げ損失が所期の値よりも大きくなってしまったりする。
(変形例)
光ファイバ1は、外側クラッド13に応力付与部14a~14bを付加することによって、偏波保持ファイバとして機能する。
光ファイバ1は、外側クラッド13に応力付与部14a~14bを付加することによって、偏波保持ファイバとして機能する。
図7は、偏波保持ファイバとして機能する光ファイバ1の第1の構成例を示す断面図である。図7においては、AA線に沿った屈折率分布(断面図の下側)と、BB線に沿った屈折率分布(断面図の上側)とを併せて示している。
応力付与部14a~14bは、外側クラッド13に埋め込まれた、円形状の断面を有する構造体である。応力付与部14a~14bの屈折率n4は、外側クラッド13の屈折率n3よりも低くなっている。
光ファイバ1の各断面において、応力付与部14a~14bは、コア11に対して対称に、かつ、応力付与部14a~14bの外縁がそれぞれ内側クラッド12の外縁と接するように配置されている。
図8は、偏波保持ファイバとして機能する光ファイバ1の第2の構成例を示す断面図である。図8においては、AA線に沿った屈折率分布(断面図の下側)と、BB線に沿った屈折率分布(断面図の右側)とを併せて示している。
応力付与部14a~14bは、外側クラッド13に埋め込まれた、円形状の断面を有する構造体である。応力付与部14a~14bの屈折率n4は、外側クラッド13の屈折率n3よりも低くなっている。
光ファイバ1の各断面において、応力付与部14a~14bは、コア11に対して対称に、かつ、応力付与部14a~14bの外縁がそれぞれ内側クラッド12の外縁から離間するように配置されている。
応力付与部と内側クラッドとが重なり合う構成を採用する場合、図9の(a)に示す断面を有する母材を線引きすることによって、偏波保持ファイバを製造することになる。外側クラッドの粘度ηoc、内側クラッドの粘度ηic、応力付与部の粘度ηsapの間には、ηoc>ηic>ηsapという関係が成り立つので、線引きの際、外側クラッド、内側クラッド、応力付与部がこの順に硬化することになる。この際、母材において断面が非円であった内側クラッドは、表面張力により断面が円形化するように変形し、母材において断面が円形であったコアは、内側クラッドの変形に伴い断面が非円化するように変形する。その結果、得られる偏波保持ファイバの断面は、図9の(b)に示すようになる。図7に示す第1の構成例においても、図8に示す第2の構成例においても、応力付与部14a~14bは、内側クラッド12と重なり合うことがない。このため、線引きの際に生じ得るコア11の非円化を抑制することができる。したがって、応力付与部と内側クラッドとが重なり合う場合と比べて、コア11の非円度の低い、すなわち、コア11の真円度の高い光ファイバ1を実現することができる。
(適用例)
本実施形態に係る光ファイバ1は、半導体光導波路とCSMF(Conventional Single Mode Fiber)との間に介在するブリッジファイバとして好適に利用することができる。
本実施形態に係る光ファイバ1は、半導体光導波路とCSMF(Conventional Single Mode Fiber)との間に介在するブリッジファイバとして好適に利用することができる。
すなわち、図10に示すように、(1)本実施形態に係る光ファイバ1により構成されたブリッジファイバ102と、(2)ブリッジファイバ102の一端に突き合わせ接続された半導体光導波路101と、(3)ブリッジファイバ102の他端に融着接続されたCSMF103とにより、低損失な光デバイス100を構成することができる。なぜなら、ブリッジファイバ102とCSMF103とを融着接続する際に、融着点近傍においてブリッジファイバ102のコアが十分に拡大されるので、ブリッジファイバ102とCSMF103との融着点における接続損失を十分に抑制することができるからである。
なお、半導体光導波路101としては、例えば、SSC(Spot Size Converter)が形成されたシリコン導波路が好適である。また、CSMF103としては、例えば、波長1550nmにおけるモードフィールド径が10μm程度となるシングルモードファイバが好適である。ITU-TにおいてG.652又はG.657に分類される光ファイバは、このようなシングルモードファイバの一例である。
(まとめ)
本発明に係る光ファイバは、アップドーパントが添加された石英ガラスにより構成されたコアと、上記コアの側面を覆う内側クラッドであって、アップドーパント及びダウンドーパントの両方が添加された石英ガラスにより構成された内側クラッドと、上記内側クラッドの外側面を覆う外側クラッドであって、石英ガラスにより構成された外側クラッドと、を備えており、上記内側クラッドの屈折率は、上記外側クラッドの屈折率と実質的に等しく、上記内側クラッドにおける上記アップドーパントの濃度は、当該アップドーパントによる屈折率上昇率が0.25%以上0.5%以下となるように定められている、ことを特徴とする。
本発明に係る光ファイバは、アップドーパントが添加された石英ガラスにより構成されたコアと、上記コアの側面を覆う内側クラッドであって、アップドーパント及びダウンドーパントの両方が添加された石英ガラスにより構成された内側クラッドと、上記内側クラッドの外側面を覆う外側クラッドであって、石英ガラスにより構成された外側クラッドと、を備えており、上記内側クラッドの屈折率は、上記外側クラッドの屈折率と実質的に等しく、上記内側クラッドにおける上記アップドーパントの濃度は、当該アップドーパントによる屈折率上昇率が0.25%以上0.5%以下となるように定められている、ことを特徴とする。
上記の構成によれば、当該光ファイバを他の光ファイバ(例えば、CSMF)に融着接続する場合、融着点近傍においてコアを十分に拡大することができ、その結果、各融着点における接続損失を十分に小さくする(例えば、0.2dB以下にする)ことができる。
本発明に係る光ファイバにおいて、上記コアにおける上記アップドーパントの濃度は、波長1550nmにおけるモードフィールド径が3.5μm以上6.5μm以下となるように定められている、ことが好ましい。
上記の構成によれば、当該光ファイバを半導体導波路に突き合わせ接続する際、軸ずれに対するトレランスを保ちつつ、接続損失を小さく抑えることができる。
本発明に係る光ファイバにおいて、上記内側クラッドにおける上記ダウンドーパントの濃度は、上記外側クラッドに対する上記内側クラッドの比屈折率差の絶対値が0.1%以下となるように定められている、ことが好ましい。
上記の構成によれば、カットオフ波長及び曲げ損失などを、所期の値(上記内側クラッドの屈折率と上記外側クラッドの屈折率とが一致する場合に期待される値)に近づけることができる。なお、上記外側クラッドに対して、内側クラッドの屈折率が大きい場合には、カットオフ波長が長くなり、シングルモード動作が困難になるという問題を生じる可能性がある。
本発明に係る光ファイバおいて、上記コアには、上記アップドーパントとして、ゲルマニウムが添加されており、上記内側クラッドには、上記ダウンドーパントとして、フッ素が添加されている、ことが好ましい。
上記の構成によれば、当該光ファイバを他の光ファイバに融着接続する場合、融着点近傍においてコアを更に拡大することができ、その結果、融着点における接続損失を更に小さくすることができる。
本発明に係る光ファイバにおいて、上記内側クラッドには、例えば、上記アップドーパントとして、リン及びゲルマニウムの一方又は両方が添加されていてもよい。また、本発明に係る光ファイバにおいて、上記内側クラッドには、上記ダウンドーパントとして、更にホウ素が添加されていてもよい。
本発明に係る光ファイバは、コアに対して対称に配置された1対の応力付与部を更に備えている、ことが好ましい。
上記の構成によれば、当該光ファイバを偏波保持ファイバとして機能させることができる。
本発明に係る光ファイバにおいて、上記1対の応力付与部は、その外縁が上記内側クラッドの外縁と接するように、又は、その外縁が上記内側クラッドの外縁から離間するように配置されている、ことが好ましい。
上記の構成によれば、コアの非円度を低くすること、すなわち、コアの真円度を高くすることができる。
なお、上記光ファイバと、上記光ファイバの一端に突き合わせ接続された半導体光導波路と、上記光ファイバの他端に融着接続されたCSMF(Conventional Single Mode Fiber)とを備えている光デバイスも、本発明の範疇に含まれる。
(付記事項)
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1 光ファイバ
11 コア
12 内側クラッド
13 外側クラッド
14a 応力付与部
14b 応力付与部
11 コア
12 内側クラッド
13 外側クラッド
14a 応力付与部
14b 応力付与部
Claims (9)
- アップドーパントが添加された石英ガラスにより構成されたコアと、
上記コアの側面を覆う内側クラッドであって、アップドーパント及びダウンドーパントの両方が添加された石英ガラスにより構成された内側クラッドと、
上記内側クラッドの外側面を覆う外側クラッドであって、石英ガラスにより構成された外側クラッドと、を備えており、
上記内側クラッドの屈折率は、上記外側クラッドの屈折率と実質的に等しく、
上記内側クラッドにおける上記アップドーパントの濃度は、当該アップドーパントによる屈折率上昇率が0.25%以上0.5%以下となるように定められている、
ことを特徴とする光ファイバ。 - 上記コアにおける上記アップドーパントの濃度は、波長1550nmにおけるモードフィールド径が3.5μm以上6.5μm以下となるように定められている、
ことを特徴とする請求項1に記載の光ファイバ。 - 上記内側クラッドにおける上記ダウンドーパントの濃度は、上記外側クラッドに対する上記内側クラッドの比屈折率差の絶対値が0.1%以下となるように定められている、
ことを特徴とする請求項1又は2に記載の光ファイバ。 - 上記コアには、上記アップドーパントとして、ゲルマニウムが添加されており、
上記内側クラッドには、上記ダウンドーパントとして、フッ素が添加されている、
ことを特徴とする請求項1~3の何れか1項に記載の光ファイバ。 - 上記内側クラッドには、上記アップドーパントとして、リン及びゲルマニウムの一方又は両方が添加されている、
ことを特徴とする請求項4に記載の光ファイバ。 - 上記内側クラッドには、上記ダウンドーパントとして、更にホウ素が添加されている、
ことを特徴とする請求項4又は5に記載の光ファイバ。 - コアに対して対称に配置された1対の応力付与部を更に備えている、
ことを特徴とする請求項1~6の何れか1項に記載の光ファイバ。 - 上記1対の応力付与部は、その外縁が上記内側クラッドの外縁と接するように、又は、その外縁が上記内側クラッドの外縁から離間するように配置されている、
ことを特徴とする請求項7に記載の光ファイバ。 - 請求項1~8の何れか1項に記載の光ファイバと、上記光ファイバの一端に突き合わせ接続された半導体光導波路と、上記光ファイバの他端に融着接続されたCSMF(Conventional Single Mode Fiber)とを備えている、ことを特徴とする光デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17845799.0A EP3508897A4 (en) | 2016-08-30 | 2017-05-30 | OPTICAL FIBER |
US16/329,145 US10670812B2 (en) | 2016-08-30 | 2017-05-30 | Optical fiber |
CA3034991A CA3034991C (en) | 2016-08-30 | 2017-05-30 | Optical fiber |
CN201780052834.9A CN109642983B (zh) | 2016-08-30 | 2017-05-30 | 光纤 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016168271A JP6312760B2 (ja) | 2016-08-30 | 2016-08-30 | 光ファイバ |
JP2016-168271 | 2016-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018042788A1 true WO2018042788A1 (ja) | 2018-03-08 |
Family
ID=61300388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020145 WO2018042788A1 (ja) | 2016-08-30 | 2017-05-30 | 光ファイバ |
Country Status (6)
Country | Link |
---|---|
US (1) | US10670812B2 (ja) |
EP (1) | EP3508897A4 (ja) |
JP (1) | JP6312760B2 (ja) |
CN (1) | CN109642983B (ja) |
CA (1) | CA3034991C (ja) |
WO (1) | WO2018042788A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020184611A1 (ja) * | 2019-03-14 | 2020-09-17 | 株式会社フジクラ | レーザ装置およびレーザ装置の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7133328B2 (ja) * | 2017-03-22 | 2022-09-08 | 株式会社フジクラ | 偏波保持ファイバ、光デバイス、偏波保持ファイバの母材、及び製造方法 |
JP7400152B2 (ja) * | 2018-10-31 | 2023-12-19 | 株式会社石原産業 | 光ファイバー接続体、及びその光ファイバー接続体と光デバイスとの接続構造 |
CN110346866B (zh) * | 2019-06-12 | 2020-08-25 | 烽火通信科技股份有限公司 | 一种熊猫型保偏光纤 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711848A (en) * | 1980-06-24 | 1982-01-21 | Nippon Telegr & Teleph Corp <Ntt> | Fiber for optical communication |
JPS62270903A (ja) * | 1986-05-19 | 1987-11-25 | Fujitsu Ltd | 光フアイバ |
JPH08313749A (ja) * | 1995-05-15 | 1996-11-29 | Fujikura Ltd | 希土類添加偏波保持光ファイバ |
JPH11211920A (ja) * | 1998-01-28 | 1999-08-06 | Showa Electric Wire & Cable Co Ltd | フォトセンシティブファイバ |
JP2003057480A (ja) * | 2001-08-08 | 2003-02-26 | Furukawa Electric Co Ltd:The | 光ファイバおよびその光ファイバを用いた光部品 |
JP2003075293A (ja) * | 2001-09-06 | 2003-03-12 | Fujikura Ltd | シングルモード光ファイバの損失評価方法及びシングルモード光ファイバ |
WO2004005984A1 (ja) * | 2002-07-09 | 2004-01-15 | Fujikura Ltd. | 光ファイバおよびこれを用いた光ファイバカプラ、エルビウム添加光ファイバ増幅器、光導波路 |
JP2012086999A (ja) * | 2010-10-18 | 2012-05-10 | Sumitomo Electric Ind Ltd | 光ファイバ及び光ファイバ用ガラス母材の製造方法 |
US8406599B1 (en) * | 2009-03-17 | 2013-03-26 | Peter Dragic | Reduced brillouin gain coefficient optical fibers and material selection for same |
JP2014197214A (ja) * | 2006-07-12 | 2014-10-16 | 古河電気工業株式会社 | 偏波保持光ファイバ |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2618500B2 (ja) | 1989-10-17 | 1997-06-11 | 日本電信電話株式会社 | 光ファイバ接続方法 |
US5074633A (en) | 1990-08-03 | 1991-12-24 | At&T Bell Laboratories | Optical communication system comprising a fiber amplifier |
JP3088856B2 (ja) | 1991-11-15 | 2000-09-18 | 住友電気工業株式会社 | モードフィールド径変換ファイバ |
JPH11237514A (ja) | 1998-02-20 | 1999-08-31 | Shin Etsu Chem Co Ltd | グレーティング用光ファイバ、グレーティング用光ファイバ母材およびその光ファイバ母材の製造方法 |
AU754530B2 (en) | 1999-11-04 | 2002-11-21 | Sumitomo Electric Industries, Ltd. | Optical transmission line |
CN1287103A (zh) | 2000-03-07 | 2001-03-14 | 悉尼大学 | 制造预制坯料的方法 |
JP2002040278A (ja) | 2000-07-19 | 2002-02-06 | Hitachi Cable Ltd | Mfd拡大光ファイバ |
WO2003005083A2 (en) | 2001-07-06 | 2003-01-16 | Corning Incorporated | Method of connecting optical fibers, an optical fiber therefor, and an optical fiber span therefrom |
JP4609618B2 (ja) | 2001-09-03 | 2011-01-12 | 住友電気工業株式会社 | 光ファイバ融着接続方法 |
JP2003227976A (ja) * | 2001-11-30 | 2003-08-15 | Yazaki Corp | プラスチック光ファイバおよび光ファイバケーブル |
JP3726745B2 (ja) | 2001-12-10 | 2005-12-14 | 日立電線株式会社 | 光ファイバの接続方法 |
US7346258B2 (en) | 2002-07-09 | 2008-03-18 | Fujikura Ltd. | Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same |
JP2004295010A (ja) | 2003-03-28 | 2004-10-21 | Sumitomo Electric Ind Ltd | 光ファイバ |
JP5330729B2 (ja) * | 2008-04-16 | 2013-10-30 | 三菱電線工業株式会社 | グレーデッドインデックス形マルチモード光ファイバ |
US7680381B1 (en) * | 2008-11-25 | 2010-03-16 | Corning Incorporated | Bend insensitive optical fibers |
JP5900484B2 (ja) | 2011-02-21 | 2016-04-06 | 日本電気株式会社 | スポットサイズ変換器及びその製造方法 |
EP2495589A1 (en) * | 2011-03-04 | 2012-09-05 | Draka Comteq B.V. | Rare earth doped amplifying optical fiber for compact devices and method of manufacturing thereof |
US8848285B2 (en) * | 2012-01-12 | 2014-09-30 | Corning Incorporated | Few mode optical fibers for Er doped amplifiers, and amplifiers using such |
-
2016
- 2016-08-30 JP JP2016168271A patent/JP6312760B2/ja active Active
-
2017
- 2017-05-30 US US16/329,145 patent/US10670812B2/en active Active
- 2017-05-30 EP EP17845799.0A patent/EP3508897A4/en not_active Withdrawn
- 2017-05-30 CA CA3034991A patent/CA3034991C/en not_active Expired - Fee Related
- 2017-05-30 WO PCT/JP2017/020145 patent/WO2018042788A1/ja unknown
- 2017-05-30 CN CN201780052834.9A patent/CN109642983B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711848A (en) * | 1980-06-24 | 1982-01-21 | Nippon Telegr & Teleph Corp <Ntt> | Fiber for optical communication |
JPS62270903A (ja) * | 1986-05-19 | 1987-11-25 | Fujitsu Ltd | 光フアイバ |
JPH08313749A (ja) * | 1995-05-15 | 1996-11-29 | Fujikura Ltd | 希土類添加偏波保持光ファイバ |
JPH11211920A (ja) * | 1998-01-28 | 1999-08-06 | Showa Electric Wire & Cable Co Ltd | フォトセンシティブファイバ |
JP2003057480A (ja) * | 2001-08-08 | 2003-02-26 | Furukawa Electric Co Ltd:The | 光ファイバおよびその光ファイバを用いた光部品 |
JP2003075293A (ja) * | 2001-09-06 | 2003-03-12 | Fujikura Ltd | シングルモード光ファイバの損失評価方法及びシングルモード光ファイバ |
WO2004005984A1 (ja) * | 2002-07-09 | 2004-01-15 | Fujikura Ltd. | 光ファイバおよびこれを用いた光ファイバカプラ、エルビウム添加光ファイバ増幅器、光導波路 |
JP2014197214A (ja) * | 2006-07-12 | 2014-10-16 | 古河電気工業株式会社 | 偏波保持光ファイバ |
US8406599B1 (en) * | 2009-03-17 | 2013-03-26 | Peter Dragic | Reduced brillouin gain coefficient optical fibers and material selection for same |
JP2012086999A (ja) * | 2010-10-18 | 2012-05-10 | Sumitomo Electric Ind Ltd | 光ファイバ及び光ファイバ用ガラス母材の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3508897A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020184611A1 (ja) * | 2019-03-14 | 2020-09-17 | 株式会社フジクラ | レーザ装置およびレーザ装置の製造方法 |
JP2020150165A (ja) * | 2019-03-14 | 2020-09-17 | 株式会社フジクラ | レーザ装置およびレーザ装置の製造方法 |
CN113169508A (zh) * | 2019-03-14 | 2021-07-23 | 株式会社藤仓 | 激光装置和激光装置的制造方法 |
US11609380B2 (en) | 2019-03-14 | 2023-03-21 | Fujikura Ltd. | Laser device and method for manufacturing laser device |
CN113169508B (zh) * | 2019-03-14 | 2024-05-10 | 株式会社藤仓 | 激光装置和激光装置的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CA3034991A1 (en) | 2018-03-08 |
CN109642983A (zh) | 2019-04-16 |
US20190204512A1 (en) | 2019-07-04 |
JP6312760B2 (ja) | 2018-04-18 |
CA3034991C (en) | 2021-02-16 |
CN109642983B (zh) | 2020-09-25 |
JP2018036401A (ja) | 2018-03-08 |
EP3508897A4 (en) | 2020-04-01 |
EP3508897A1 (en) | 2019-07-10 |
US10670812B2 (en) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5409928B2 (ja) | 偏波保持光ファイバ | |
WO2018042788A1 (ja) | 光ファイバ | |
JP5768090B2 (ja) | マルチコアファイバ用ファンイン/ファンアウトデバイス | |
US20060067632A1 (en) | Splicing and connectorization of photonic crystal fibres | |
JP2019526073A (ja) | 塩素ドープコアを備えた低損失シングルモードファイバ | |
JP2009258354A (ja) | グレーデッドインデックス形マルチモード光ファイバ | |
RU2014126419A (ru) | Оптическое волокно с низкими потерями на изгиб | |
JP2010541006A (ja) | ガラス大コア光ファイバ | |
JP7133328B2 (ja) | 偏波保持ファイバ、光デバイス、偏波保持ファイバの母材、及び製造方法 | |
JP7388353B2 (ja) | 光ファイバ | |
JP6321589B2 (ja) | 光ファイバ | |
JPWO2008108404A1 (ja) | フォトニックバンドギャップファイバ | |
US11280965B2 (en) | Multi-clad optical fiber with taper portion, and optical fiber device having same | |
JP2015152871A (ja) | 光ファイバデバイス | |
WO2012128250A1 (ja) | 光ファイバ、光ファイバコードおよび光ファイバケーブル | |
JP2007010896A (ja) | 偏波保持光ファイバ及び光ファイバジャイロ | |
JP2017134290A (ja) | 光デバイス | |
JP2007536578A (ja) | 中実型単一偏波ファイバ及び装置 | |
WO2005124409A1 (ja) | フォトニッククリスタルファイバの接続方法及び接続構造 | |
JP2019095783A (ja) | 光ファイバのコア径変換体及び異種光ファイバ接続体 | |
JP6746625B2 (ja) | 光ファイバ | |
JP2017111173A (ja) | ファイバヒューズ抑圧ファイバ及び光コネクタ | |
JP4571060B2 (ja) | ホーリーファイバの接続構造の製造方法 | |
KR102300968B1 (ko) | Rcf를 활용한 심혈관 oct 광학 프로브 | |
JP6986904B2 (ja) | 光ファイバ、光デバイス、及び、光デバイスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17845799 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3034991 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017845799 Country of ref document: EP Effective date: 20190401 |