[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017221730A1 - Power semiconductor device and method for manufacturing power semiconductor device - Google Patents

Power semiconductor device and method for manufacturing power semiconductor device Download PDF

Info

Publication number
WO2017221730A1
WO2017221730A1 PCT/JP2017/021308 JP2017021308W WO2017221730A1 WO 2017221730 A1 WO2017221730 A1 WO 2017221730A1 JP 2017021308 W JP2017021308 W JP 2017021308W WO 2017221730 A1 WO2017221730 A1 WO 2017221730A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
bonding
main terminal
semiconductor device
semiconductor element
Prior art date
Application number
PCT/JP2017/021308
Other languages
French (fr)
Japanese (ja)
Inventor
範之 別芝
貴夫 三井
公昭 樽谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018523855A priority Critical patent/JP6522241B2/en
Publication of WO2017221730A1 publication Critical patent/WO2017221730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector

Definitions

  • the present invention relates to a power semiconductor device having a main terminal bonded to a main electrode of a semiconductor element through a conductive bonding layer, and a method for manufacturing the power semiconductor device.
  • power semiconductor devices have been widely used not only for general industrial and electric railways but also for in-vehicle use.
  • downsizing each component in a limited space directly affects the vehicle performance. Therefore, miniaturization is particularly demanded in power semiconductor devices for vehicles.
  • power semiconductor devices are required to have higher output density.
  • Patent Document 1 it is necessary to secure a clearance for bonding in order to prevent interference between a bonding tool and a bonding wire in a bonding process of connecting via a bonding wire. This has been made in view of the problem that miniaturization and high output density are hindered.
  • lead wires are soldered instead of wire bonding, and the need to provide the clearance is eliminated, thereby reducing the size and increasing the output density of the power semiconductor device.
  • Patent Document 1 By using the technique described in Patent Document 1, there is a possibility that the power semiconductor device can be increased in output density.
  • the temperature when the semiconductor element is energized also increases.
  • the temperature of the semiconductor element rises, for example, the thermal stress applied to the solder material at the joint between the semiconductor element and the lead also increases, so there is a possibility that reliability at the joint cannot be ensured.
  • Patent Document 1 does not sufficiently study the reliability of a junction between a semiconductor element and a lead wire when the temperature at the time of energization of the semiconductor element becomes high. .
  • the present invention has been made to solve the above-described problems, and in a power semiconductor device including a main terminal bonded to a main electrode of a semiconductor element through a conductive bonding layer, It is an object to ensure reliability at the joint.
  • a power semiconductor device includes: A substrate, A semiconductor element having a back surface bonded to the substrate and a surface provided with a first main electrode; A plate-like first main terminal having an electrode-side bonding portion bonded to the surface of the semiconductor element via a conductive bonding layer and electrically connected to the first main electrode; The electrode-side joint portion of the first main terminal has a protrusion and a through hole that extend along the thickness direction and are provided to face the surface of the semiconductor element.
  • the electrode-side joint portion of the first main terminal has the protrusion and the through hole, so that the joining area and thickness of the joining material can be secured, and thereby the reliability of the joint portion of the first main terminal Can be secured.
  • FIG. 1 is a perspective view showing a power semiconductor device according to a first embodiment of the present invention. It is a perspective view which shows the power semiconductor device which concerns on Embodiment 1 of this invention in the state which excluded the frame member. It is a perspective view which shows the power semiconductor device which concerns on Embodiment 1 of this invention in the state which excluded the terminal block. It is the figure which looked at the power semiconductor device shown to FIG. 1C from the length direction. It is the elements on larger scale of FIG. 1B which show the semiconductor module of the power semiconductor device.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 3 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 4 is a flowchart showing an exemplary manufacturing method of the power semiconductor device according to the embodiment of the present invention. It is a perspective view corresponding to FIG. 2 which shows the semiconductor module of the semiconductor device for electric power which concerns on Embodiment 2 of this invention. It is a perspective view corresponding to FIG. 2 which shows the semiconductor module of the semiconductor device for electric power which concerns on Embodiment 3 of this invention. It is a perspective view which shows the power semiconductor device which concerns on Embodiment 7 of this invention.
  • FIG. 1A, 1B, and 1C are perspective views showing a power semiconductor device 1000 according to Embodiment 1 of the present invention.
  • the power semiconductor device 1000 includes six semiconductor modules 101, 102, 103, 104, 105, and 106.
  • the semiconductor modules 101 to 106 are joined on the heat sink 110.
  • a terminal block 120 extending in the length direction Y is fixed on the heat sink 110.
  • the six semiconductor modules 101 to 106 are arranged three by three across the terminal block 120.
  • the semiconductor module sets 101 to 103 and the semiconductor module sets 104 to 106 are arranged side by side in the length direction Y, respectively.
  • the semiconductor module 101 includes a substrate 10, semiconductor elements 21 and 22 disposed on the substrate 10, first main terminals 30 and second main terminals 40 that perform wiring of the semiconductor elements, Etc.
  • the semiconductor module 101 includes a frame member 70 having a frame shape. The detailed shape of the frame member 70 will be described together with the description of the second embodiment.
  • the semiconductor modules 102 to 106 have substantially the same configuration as the semiconductor module 101 except for the first main terminal 30 and the second main terminal 40, the configuration of the semiconductor module 101 will be described below, and the semiconductor modules 102 to 106 will be described. Only parts different from the semiconductor module 101 will be described.
  • substrate 10 The board
  • substrate 10 has the insulating layer 11, the surface conductor layer 12, and the back surface conductor layer 13 (refer FIG. 3).
  • the back surface of the substrate 10 is bonded to the surface of the heat sink 110 via the first bonding layer 61.
  • the back surface of the back conductor layer 13 is bonded to the surface of the heat sink 110.
  • the insulating layer 11 is preferably made of a material having insulating properties and high thermal conductivity.
  • the material constituting the insulating layer 11 include ceramic materials (such as AlN (aluminum nitride), Si 3 N 4 (silicon nitride), Al 2 O 3 (aluminum oxide)), and BN (boron nitride) filler. It is the contained epoxy resin insulating layer.
  • An exemplary thickness of the insulating layer 11 is not less than about 0.3 mm and not more than about 1 mm.
  • Examples of the material constituting the front conductor layer 12 and the back conductor layer 13 are Cu (copper), Al (aluminum), and a laminate of Cu and Al.
  • Exemplary thicknesses of the front conductor layer 12 and the back conductor layer 13 are about 0.2 mm or more and about 1 mm or less.
  • the heat dissipation from the semiconductor elements 21 and 22 can be increased as the thickness of the front conductor layer 12 and the back conductor layer 13 is increased, and the thermal stress applied to the insulating layer 11 when the semiconductor elements 21 and 22 are energized as the thickness is decreased. Can be reduced. Therefore, in order to secure a margin for preventing the insulating layer 11 from being broken, the thickness may be, for example, about 0.3 to about 0.6 mm.
  • the semiconductor element 21 is an IGBT (insulated gate bipolar transistor), and the semiconductor element 22 is an FWD (free wheel diode).
  • the semiconductor elements 21 and 22 may be other semiconductor elements such as a MOSFET (metal oxide semiconductor field effect transistor).
  • the semiconductor elements 21 and 22 are arranged side by side in the width direction X.
  • the semiconductor elements 21 and 22 are each mounted on the surface of the surface conductor layer 12 of the substrate 10 via the second bonding layer 62.
  • the material of the semiconductor elements 21 and 22 may be Si (silicon), or may be a semiconductor material having a large band gap such as GaN (gallium nitride), SiC (silicon carbide), diamond, or the like.
  • a semiconductor material having a large band gap has a high allowable current density and low power loss, so that the semiconductor elements 21 and 22 can be operated at a high temperature and the semiconductor module 101 can be downsized.
  • the front surface 21a of the semiconductor element 21 that is an IGBT is provided with an emitter that is a main electrode and a gate that is a control electrode, and the back surface (without reference numeral) of the semiconductor element 21 is the main electrode.
  • a collector is provided.
  • the gate receives a gate current from a control terminal (see FIG. 7).
  • the semiconductor element 22 that is an FWD has electrodes provided on the front surface 22a and the back surface (no symbol).
  • the FWD electrode is also referred to as a main electrode.
  • the main electrodes provided on the front and back surfaces of the semiconductor elements 21 and 22 are referred to as a front main electrode and a back main electrode, respectively.
  • the main circuit of the power semiconductor device 1000 is constituted by the main electrodes of the semiconductor elements 21 and 22, the first main terminal 30, the second main terminal 40, and the main circuit wirings 51 to 55.
  • a metallized layer suitable for diffusion bonding with a conductive bonding material may be provided on the surfaces 21a and 22a of the semiconductor elements 21 and 22.
  • a metallized layer may be provided in the order of Au (gold) layer / Ni (nickel) layer from the outermost surface side.
  • Au gold
  • Ni nickel
  • the thickness of the Ni layer is determined in consideration of the heat application during solder bonding and the maximum temperature during operation.
  • An exemplary thickness of the Ni layer is about 1.5 ⁇ m or more and about 5.0 ⁇ m or less.
  • the Ni layer may be provided by sputtering in a vacuum, or may be provided by plating (which may be electrolytic plating or electroless plating).
  • the first main terminal 30 has a plate shape.
  • the first main terminal 30 includes an electrode part 31 extending in the width direction X and a substantially L-shaped wiring part 32 extending from the electrode part 31 toward the main circuit wiring 51.
  • the first main terminal 30 is bent between the electrode portion 31 and the wiring portion 32 and in the middle of the wiring portion 32 (L-shaped corner).
  • An exemplary thickness of the first main terminal 30 is not less than about 0.2 mm and not more than about 1.0 mm. In view of the fact that the smaller the thickness of the first main terminal 30 is, the smaller the thermal stress applied to the semiconductor elements 21 and 22 during energization, the smaller the thickness of the first main terminal 30, the smaller the Joule heat generated during energization. Is set to an appropriate value.
  • the first main terminal 30 may be a single layer of Cu, or may be, for example, a laminate including a Cu layer / invar (Fe-36% Ni alloy) layer / Cu layer. By changing the thickness of each layer, the apparent linear expansion coefficient of the first main terminal 30 can be changed.
  • the first main terminal 30 may be made of a Cu—Mo (copper-molybdenum) alloy or a Cu—W (copper-tungsten) alloy.
  • the electrode portion 31 of the first main terminal 30 has an electrode-side joint portion 33 joined to the surfaces 21 a and 22 a of the semiconductor elements 21 and 22 through the third joint layer 63.
  • the electrode-side joint 33 and the entire first main terminal 30 are electrically connected to the surface main electrodes of the semiconductor elements 21 and 22.
  • the electrode-side bonding portion 33 extends along the thickness direction (height direction Z) of the first main terminal 30 and is provided with a protrusion 34 and a through hole provided to face the surfaces 21 a and 22 a of the semiconductor elements 21 and 22. 35.
  • the protrusion 34 protrudes along the height direction Z, and the through hole 35 penetrates along the height direction Z.
  • the protrusion 34 is at least partially in contact with the third bonding layer 63.
  • a bonding material constituting the third bonding layer 63 may exist in the through hole 35.
  • the protrusion 34 may be provided on the back surface of the first main terminal 30 as a separate body, or may be formed by press molding. When press molding is used, a recess corresponding to the protrusion 34 is formed on the surface of the first main terminal 30. The same applies to other joint portions provided in the first and second main terminals 30 and 40. Moreover, the height of the protrusion part 34 provided in each junction part may be the same.
  • a cylindrical protrusion 34 is shown, but the present invention is not limited to this, and the protrusion 34 may have any shape such as a prismatic shape, a cylindrical shape, or a plate shape.
  • the through hole 35 having a circular shape in plan view is shown, but the present invention is not limited to this, and the through hole 35 may have an arbitrary shape such as a polygon in plan view.
  • a cylindrical protrusion 34 may be provided at the position of the through hole 35 by press-fitting a cylindrical bush into the through hole 35. At this time, it is preferable that a hole is formed in the side surface of the protrusion 34.
  • the modified examples of the shapes of the protrusions 34 and the through holes 35 described here can be similarly applied to other joints provided in the first and second main terminals 30 and 40.
  • the wiring inductance is reduced and the surge voltage applied to the semiconductor elements 21 and 22 is reduced. Can do.
  • the two electrode-side joints 33 provided between the first main terminal 30 and the semiconductor elements 21 and 22 can be joined at the same time in one joining process, the productivity of the power semiconductor device 1000 is improved. .
  • the wiring part 32 of the first main terminal 30 has a wiring side joining part 36 joined to the main circuit wiring 51 via the fourth joining layer 64.
  • the wiring-side joint portion 36 includes a protrusion 37 and a through hole 38 that extend along the thickness direction (height direction Z) of the first main terminal 30 and are opposed to the main circuit wiring 51.
  • the protruding portion 37 is at least partially in contact with the fourth bonding layer 64.
  • a bonding material constituting the fourth bonding layer 64 may exist inside the through hole 38.
  • the wiring side joints 36 of the semiconductor modules 102 and 103 are joined to the main circuit wiring 51 in the same manner as the semiconductor module 101, and the wiring side joints 36 of the semiconductor modules 104 to 106 are joined to the main circuit wiring 55. .
  • the second main terminal 40 has a plate shape.
  • the second main terminal 40 includes an electrode part 41 and a substantially L-shaped wiring part 42 extending from the electrode part 41 toward the main circuit wiring 54.
  • the second main terminal 40 is bent between the electrode part 41 and the wiring part 42 and in the middle of the wiring part 42 (L-shaped corner).
  • An exemplary thickness of the second main terminal 40 is not less than about 0.2 mm and not more than about 1.0 mm. Similar to the thickness of the first main terminal 30, the thermal stress applied to the semiconductor elements 21 and 22 during energization can be reduced as the thickness of the second main terminal 40 is smaller. In view of the fact that Joule heat can be reduced, an appropriate value is set.
  • the second main terminal 40 may be a single layer of Cu, for example, a laminate composed of a Cu layer / invar (Fe-36% Ni alloy) layer / Cu layer. Alternatively, it may be made of a Cu—Mo (copper-molybdenum) alloy or a Cu—W (copper-tungsten) alloy.
  • the electrode part 41 of the second main terminal 40 has an electrode side joint part 43 joined to the surface conductor layer 12 of the substrate 10 via the fifth joint layer 65.
  • the electrode-side joint 43 and the entire second main terminal 40 are electrically connected to the back main electrodes of the semiconductor elements 21 and 22.
  • the electrode side joint 43 extends along the thickness direction (height direction Z) of the second main terminal 40 and includes a protrusion 44 and a through hole 45 provided to face the surface conductor layer 12 of the substrate 10. Have.
  • the protrusion 44 is at least partially in contact with the fifth bonding layer 65. Inside the through hole 45, a bonding material constituting the fifth bonding layer 65 may exist.
  • the wiring part 42 of the second main terminal 40 has a wiring side joining part 36 joined to the main circuit wiring 54 via the fourth joining layer 64.
  • the wiring side joint 46 and the entire second main terminal 40 are electrically connected to the main circuit wiring 54.
  • the wiring side joint 46 includes a protrusion 47 and a through hole 48 that extend along the thickness direction (height direction Z) of the second main terminal 40 and that are opposed to the main circuit wiring 54.
  • the protrusion 47 is at least partially in contact with the sixth bonding layer 66.
  • a bonding material constituting the sixth bonding layer 66 may exist inside the through hole 48.
  • the wiring side joints 46 provided on the second main terminals 40 of the semiconductor modules 102, 103, 104, 105, 106 are joined to the main circuit wirings 53, 52, 54, 53, 52, respectively.
  • the structure of the second main terminal 40 provided in each semiconductor module is changed depending on the height of the second main terminal 40 in the terminal block 120. For example, as shown in FIG. 2, the second main terminal 40 of the semiconductor module 102 has a flat shape.
  • the main circuit wirings 51 to 55 are fixed to the terminal block 120 and led out of the power semiconductor device 1000.
  • the main circuit wires 51 to 55 each have a flat plate shape, and are arranged in parallel with a predetermined distance from each other.
  • the main circuit wires 51 to 55 are exposed from the notches 121 and 122 provided on the terminal block 120.
  • the first main terminals 30 of the semiconductor modules 101 to 103 are joined to the main circuit wiring 51.
  • Second main terminals 40 of the semiconductor modules 103, 101, and 103 are joined to the main circuit wirings 52, 53, and 54, respectively.
  • the second main terminals 40 of the semiconductor modules 106, 104, 105 are also joined to the main circuit wirings 52, 53, 54.
  • First main terminals 30 of the semiconductor modules 104 to 106 are joined to the main circuit wiring 55.
  • the inverter circuit 600 shown in FIG. 6 is configured by the six semiconductor modules 101 to 106 wired using the main circuit wirings 51 to 55. Each semiconductor module constitutes one arm of the inverter circuit 600.
  • the pair of semiconductor modules 101 and 104, the pair of semiconductor modules 102 and 105, and the pair of semiconductor modules 103 and 106 provided with the terminal block 120 interposed therebetween constitute a leg of the inverter circuit 600.
  • the inverter circuit 600 is used as a drive circuit for driving a cage type three-phase induction motor, for example.
  • one of the main circuit wires 51 and 55 is connected to the positive electrode of the external power supply, and the other is connected to the negative electrode of the external power supply.
  • the main circuit wirings 52 to 54 are connected to the motor.
  • the main circuit wirings 51 and 52 have functions corresponding to the three-phase AC high voltage line (P) and the ground line (N) of the inverter circuit 600, respectively.
  • each of the main circuit wirings 51 to 55 has a flat plate shape and is arranged in parallel with a predetermined distance from each other. Therefore, a magnetic field generated due to a current flowing through each main circuit wiring is a terminal. Canceled between. This minimizes the inductance component generated by the mutual magnetic field.
  • the surge voltage generated during the switching operation of the power semiconductor element 1000 is reduced, and as a result, the heat loss generated during the switching operation is reduced.
  • the terminal block 120 may be made of a resin such as PPS (polyphenylene sulfide), liquid crystal resin, or fluorine resin.
  • the terminal block 120 may be bonded to the surface of the heat sink 110 with a silicone-based soft adhesive, or may be fixed to the heat sink 110 with a bolt by providing a screw hole in the heat sink 110.
  • the heat sink 110 has a rectangular parallelepiped shape.
  • An exemplary size of the heat sink 110 is 350 mm ⁇ 200 mm ⁇ 50 mm.
  • the heat sink 110 includes a top plate 111 bonded to the back surface of the substrate 10 via the first bonding layer 61, a plurality of heat radiation fins 112 attached to the top plate 111, and a coolant jacket 113 through which a coolant such as water flows.
  • the refrigerant jacket 113 has an inlet portion 114 and an outlet portion 115 for circulating the refrigerant to an external radiator.
  • the refrigerant jacket 113 is fixed to the top plate 111 so that airtightness between the top plate 111 and the refrigerant jacket 113 is secured and leakage of the refrigerant to the outside of the heat sink is prevented.
  • the fixing method is fixed to the top plate 111 using a method selected from 1) rubber O-ring and screwing, 2) application of sealing material and screwing, 3) brazing, and 4) friction stir welding.
  • the heat sink 110 preferably has a high thermal conductivity and is easily available, and may be made of Cu or Al, for example.
  • the heat sink 110 is preferably made of Al in order to reduce weight and improve fuel efficiency.
  • the first bonding layer 61 is provided between the heat sink 110 and the substrate 10 of the semiconductor module 101.
  • the bonding material constituting the first bonding layer 61 may be an Al—Si brazing material that enables direct bonding to the heat sink 110 made of Al, or may be an Sn-based solder material.
  • the Sn-based solder material is a solder material mainly composed of Sn (tin), for example, Ag (silver), Cu (copper), Bi (bismuth), In (indium), This refers to those to which Sb (antimony) or Pb (lead) is added.
  • Sn—Cu solder material an Sn—Cu solder material.
  • the bonding material forming the first bonding layer 61 is an Sn-based solder material and the material forming the heat sink 110 is Al
  • the Ni-based or Sn plating is applied to the heat sink 110 in advance, for example, to form the Sn-based solder material.
  • the thickness of the plating layer is about 2 ⁇ m or more and about 10 ⁇ m or less, the wettability of the solder material and the reliability of the joint can be sufficiently satisfied.
  • the material constituting the heat sink 110 is Al
  • the insulating layer 11 of the substrate 10 is Si 3 N 4 having a thickness of 0.32 mm
  • the front conductor layer 12 and the back conductor layer 13 are Cu each having a thickness of 0.5 mm.
  • the linear expansion coefficient of Al constituting the heat sink 110 is 23 ppm / K
  • the apparent linear expansion coefficient of the substrate 10 is about 7 ppm / K or more and about 8 ppm / K or less, and the difference between the two linear expansion coefficients is large. Become.
  • the bonding material constituting the first bonding layer 61 is bonded with a large yield stress or 0.2% proof stress.
  • the second bonding layer 62 is provided between the substrate 10 and the semiconductor elements 21 and 22.
  • the third bonding layer 63 is provided between the surfaces 21 a and 22 a of the semiconductor elements 21 and 22 and the first main terminal 30.
  • the fourth bonding layer 64 is provided between the main circuit wiring and the first main terminal 30.
  • the fifth bonding layer 65 is provided between the surface conductor layer 12 of the substrate 10 and the second main terminal 40.
  • the sixth bonding layer 66 is provided between the main circuit wiring and the second main terminal 40.
  • the bonding material constituting the second to sixth bonding layers 62 to 66 may be a solder material.
  • the bonding material may be an epoxy resin adhesive mixed with a conductive filler (silver or graphite).
  • a low-melting-point material such as a solder material has an advantage that it is easy to use because the heating temperature at the time of joining is low.
  • the bonding materials constituting the second to sixth bonding layers 62 to 66 may be sinterable bonding materials such as an Ag-based sintering material, a Cu-based sintering material, and a CuSn (copper tin alloy) -based sintering material.
  • the sinterable metal bonding material is a bonding material in which fine metal particles, which are aggregates, are dispersed in an organic component to form a paste, and the fine metal particles are sintered at a temperature lower than the melting point of the metal. This is a phenomenon.
  • the heat resistance temperature of the bonded portion can be increased by increasing the melting point of the bonding material after bonding to the original melting point as a metal.
  • the bonding material constituting the second and third bonding layers 62 and 63 provided in the place in direct contact with the semiconductor elements 21 and 22 is a sinterable metal bonding material from the viewpoint of long-term reliability. It is preferable.
  • an exemplary manufacturing method of the power semiconductor device 1000 includes a step 1001 for preparing a substrate, a step 1002 for fixing the terminal block 120 to the surface of the heat sink 110, and a bonding material on the surface of the heat sink 110.
  • a step 1006 is formed in which the second main terminal 40 is bonded to the layer 12 and the main circuit wiring by using a bonding material to form fifth and sixth bonding layers 65 and 66.
  • steps 1003 to 1006 using the bonding material if the bonding material is a solder material, the bonding material is heated, melted, and cooled, and if the bonding material is a sinterable bonding material, the bonding material is heated.
  • the first to sixth bonding layers 61 to 66 are formed by sintering.
  • a solder material may be arranged at a plurality of joints, and a plurality of joint layers may be formed at a time by a known reflow process.
  • a bulk solder material is used as the joining material constituting the third and fourth joining layers 63 and 64. It is preferable to use (bar solder, plate solder, sheet solder, etc.).
  • a bulk solder material is disposed on each of the surfaces 21a, 22a and the main circuit wiring 51, and then the first main terminal 30 is pressed from above, so that the protrusions 34, 37 are placed in the bulk solder material.
  • the power semiconductor device 1000 is manufactured, the displacement of the first main terminal 30 is suppressed.
  • the power semiconductor device 1000 when used as the inverter circuit 600 for a motor, a current of several hundred amperes normally flows through the main circuit of the power semiconductor device 1000.
  • the third to sixth joining layers 63 to 66 of the first and second main terminals 30 and 40 constituting the main circuit join materials having different linear expansion coefficients. Therefore, when the thermal stress acting on the bonding layer increases due to the repeatedly applied temperature cycle, the crack progresses and the cross-sectional area of the bonded portion decreases. And the Joule heat which generate
  • the bonding material is temporarily raised to the liquidus temperature and then liquefied to promote diffusion at the interface with the material to be joined, and then lowered to the solidus temperature and then solidified.
  • the volume after bonding of the layers is determined. For example, in this way, the amount of the bonding material supplied to the bonding portion is determined.
  • the bonding area of the bonding layer is increased and decreased.
  • the inclination of the first and second main terminals 30 and 40 is such that the tolerance of the member between the electrode side joints 33 and 43 and the wiring side joints 36 and 46 of the first and second main terminals 30 and 40, and This is caused by variations in the thickness of the bonding layer.
  • the first main terminal 30 is supported by the electrode-side bonding portion 33 at a height equal to the sum of the thicknesses of the first bonding layer 61, the substrate 10, the second bonding layer 62, and the semiconductor elements 21 and 22.
  • the 1st main terminal 30 is the wiring side junction part 36, and is equal to the height from the lower surface of the terminal block 120 to the notch part 121 (The terminal block 120 is joined to the top plate 111 of the heat sink 110 via a joining layer. In this case, it is supported by the sum of the height of the bonding layer.
  • the electrode side joint portion 33 and the wiring side joint portion 36 of the first main terminal 30 have the through holes 35 and 38, so that the electrode side joint portion 33 of the first main terminal 30
  • the deviation from the ideal height between the height and the height at the wiring side joint 36 is at least partially offset by the melted bonding material being absorbed by the through holes 35 and 38.
  • the same effect can be obtained for the second main terminal 40. In this way, the bonding area of the third to sixth bonding layers 63 to 66 is ensured.
  • the minimum thickness of the third to sixth bonding layers 63 to 66 is defined. Is done. The same effect can be obtained for the second main terminal 40. In this way, the thicknesses of the third to sixth bonding layers 63 to 66 are ensured.
  • the first main terminal 30 and the semiconductor element 2122 are also formed at the same electrode-side joining portion 33.
  • the first main terminal 30 may be inclined between the third bonding layer 63 between the first main terminal 30 and the third bonding layer 63 between the first main terminal 30 and the semiconductor element 22. Since the third bonding layer 63 and the third bonding layer 63 on the semiconductor element 22 side have the protrusions 34 and the through holes 35, the bonding area and thickness of the third bonding layer 63 can be secured.
  • the reliability of the electrode side joints 33 and 43 and the wiring side joints 36 and 46 of the first and second main terminals 30 and 40 is ensured.
  • the protrusions and the through holes are provided in all of the electrode side joints 33 and 43 and the wiring side joints 36 and 46 of the first and second main terminals 30 and 40.
  • FIG. FIG. 8 is a perspective view showing a power semiconductor device according to the second embodiment of the present invention.
  • the same or corresponding components as those of the first embodiment are denoted by the same reference numerals, and the description of the components is omitted.
  • the frame member 70 of the semiconductor module 201 of the power semiconductor device according to the second embodiment includes a housing portion 71 and a convex portion 72 that protrudes from the housing portion 71 in the length direction Y.
  • the casing 71 of the frame member 70 is provided so as to surround the semiconductor elements 21 and 22.
  • the terminal block side of the casing 71 in the width direction Y is cut away so as not to interfere with the wiring portions 32 and 42 of the first and second main terminals 30 and 40.
  • a protrusion 73 extending toward the heat sink 110 is provided on the outside of the wall surface of the frame member 70.
  • the protrusion 73 is fitted in a recess 116 provided in the heat sink 110.
  • the frame member 70 is made of, for example, a resin that can be injection-molded and has high heat resistance.
  • the frame member 70 may be made of PPS (polyphenylene sulfide), liquid crystal resin, or fluorine resin.
  • sealing resin is injected inside the frame member 70, and the semiconductor elements 21, 22, the electrode portions 31, 41 of the first and second main terminals 30, 40, and the like are sealed with resin.
  • the frame member 70 is bonded to the front surface of the front surface conductor layer 12 of the substrate 10 via a back surface (no reference) through a seventh bonding layer (not shown).
  • the bonding material constituting the seventh bonding layer may be a silicone-based soft adhesive.
  • a control terminal 80 protrudes from the frame member 70 in the height direction Z.
  • the control terminal 80 is joined to a gate provided on the surface 21a of the semiconductor element 21 via a bonding wire 81 (or a bonding ribbon).
  • the joint between the frame member 70 and the surface conductor layer 12 of the substrate 10 is sealed and sealed with a sealing material so that the sealing resin does not flow out of the semiconductor module. Thereby, electrical insulation between the main electrodes of the semiconductor elements 21 and 22 and between the main electrodes and the heat sink 110 is ensured.
  • the electrode portion 31 of the first main terminal 30 has a concave portion 39 having a shape complementary to the convex portion 72 of the frame member 70.
  • the recess 39 is formed by cutting out the vicinity of the center in the width direction X of the first main terminal 30.
  • the concave portion 39 has a dimension substantially equal to the convex portion 72 of the frame member 70, and both are configured to engage with each other.
  • the convex portion 72 of the frame member 70 fixed to the substrate 10 and the concave portion 39 of the first main terminal 30 are engaged, so that the main terminal is interposed via the third bonding layer 63. Misalignment of the main terminal 30 that occurs when 30 is bonded to the semiconductor elements 21 and 22 and the main circuit wiring 51 is suppressed.
  • the convex portion 72 is provided in the casing portion 71 of the frame member 70 and the concave portion 39 is provided in the electrode portion 31 of the first main terminal 30.
  • the frame member 70 is provided. Even if the housing portion 71 is provided with a recess and the electrode portion 31 of the first main terminal 30 is provided with a projection, the same effect as described above can be obtained.
  • FIG. 9 is a perspective view showing a power semiconductor device according to the third embodiment of the present invention.
  • the same or corresponding components as those of the first and second embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
  • a groove portion 238 extending through the first main terminal 30 in the thickness direction (the height direction Z) is formed in the wiring side joint portion 36 of the first main terminal 30.
  • a groove portion 245 extending through the thickness direction (height direction Z) of the second main terminal 40 is formed in the electrode side bonding portion 43 of the second main terminal 40 and the wiring side bonding portion 46 of the second main terminal 40, respectively.
  • 248 are formed. These groove portions 238, 245, and 248 are open in the width direction X. That is, the groove portions 238, 245, and 248 are formed by opening the through holes 38, 45, and 48 shown in FIG.
  • the grooves 238, 245, 248 may open in a direction inclined from the width direction X toward the length direction Y.
  • the appearance inspection of the bonding layer is performed before the shipment of the power semiconductor device. Specifically, 1) Is there a void or the like missing in the bonding layer, 2) Is the required amount of alloy layer formed at the interface between the bonding material and the material to be bonded, and 3) The bonding material is to be bonded? An inspection is performed to check whether the entire surface is wet and spread.
  • a transmission X-ray imaging apparatus is often used for the above-described inspection 1) to check whether a void or other missing portion has occurred in the bonding layer.
  • things other than the bonding layer to be confirmed such as the heat radiation fin 112 of the heat sink 110, are reflected on the projection surface, and the missing portion in the bonding layer is detected with high accuracy. It becomes difficult.
  • this problem may be solved by using an X-ray CT apparatus, since a long time is required for imaging using the X-ray CT apparatus, there arises a problem that the productivity of the power semiconductor device decreases.
  • the determination of the unbonded region is performed by using ultrasonic flaw detection. Can do. However, since imaging using ultrasonic flaw detection takes a long time, there arises a problem that the productivity of the power semiconductor device decreases.
  • the generation rate of voids is generally managed under the process conditions in the solder bonding process.
  • the void ratio can be indirectly managed based on a known correlation between the degree of vacuum and the void generation rate.
  • the formation amount of the alloy layer can be indirectly managed based on the correlation between the exposure time to the temperature above the liquidus and the formation amount of the alloy layer.
  • the bonding material spreads over the entire surface to be bonded only by confirming the fillet shape formed in the bonding layers of the first and second main terminals 30 and 40. It is difficult to confirm that.
  • grooves 238, 245, and 248 are formed in the wiring side joint 36 of the first main terminal 30, the electrode side joint 43 of the second main terminal 40, and the wiring side joint 46 of the second main terminal 40, respectively.
  • the groove portion is provided in the wiring side joint portion 36 of the first main terminal 30, the electrode side joint portion 43 of the second main terminal 40, and the wiring side joint portion 46 of the second main terminal 40.
  • the present invention is not limited to this, and a groove portion may be provided in the electrode side joint portion 33 of the first main terminal 30.
  • the above-mentioned effect can be obtained at least partially by providing a groove in one or more of these four joints.
  • Embodiment 4 FIG. In the description of the fourth embodiment, the same or corresponding components as those in the first to third embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
  • an Sn-based solder material is used as the bonding material forming the first, third to sixth bonding layers 61, 63 to 66, and the bonding material forming the second bonding layer 62 is used.
  • a sinterable bonding material having a yield stress or 0.2% yield strength greater than that of the Sn-based solder material is used.
  • the first to third to sixth bonding layers 61 and 63 to 66 are collectively formed by a known reflow process as described in the first embodiment. .
  • the second bonding layer 62 that bonds the surface conductor layer 12 of the substrate 10 and the semiconductor elements 21 and 22 is more sensitive to cracks than other bonding layers. Therefore, according to the fourth embodiment, the sinterable bonding material is used as the bonding material forming the second bonding layer 62, and the bonding forming the first to third to sixth bonding layers 61, 63 to 66 is performed. By forming these bonding layers in a lump using Sn-based solder material as a material, high reliability of each bonding portion can be ensured while improving productivity.
  • Embodiment 5 FIG. In the description of the fifth embodiment, the same or corresponding components as those in the first to fourth embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
  • the yield stress or 0.2% proof stress is the third as the bonding material constituting the first, second, fourth, and sixth bonding layers 61, 62, 64, 66.
  • a Sn—Sb solder material larger than the bonding material constituting the fifth bonding layers 63 and 65 is used.
  • a bonding material constituting the third and fifth bonding layers 63 and 65 for example, a Pb-free Sn—Cu solder material is used.
  • the first to sixth bonding layers 61 to 66 are collectively formed by a known reflow process as described in the first embodiment.
  • the effect of the fifth embodiment will be described.
  • the difference in thickness between the bonding members (the heat sink 110 and the substrate 10) and the difference in linear expansion coefficient are increased.
  • the second bonding layer 62 that bonds the substrate 10 and the semiconductor elements 21 and 22 has high sensitivity to cracks.
  • Sn—Sb solder material is used as the bonding material constituting the first, second, fourth, and sixth bonding layers 61, 62, 64, and 66, and the first to sixth bonding layers 61 are used. Forming these bonding layers in a lump using Sn-based solder materials as bonding materials constituting the components 66 to 66 can ensure high reliability of each bonding portion while improving productivity.
  • Embodiment 6 FIG. In the description of the sixth embodiment, the same or corresponding components as those in the first to fifth embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
  • solder material supply method a method of printing cream solder obtained by impregnating fine solder balls in a flux having a reducing action, or a method of applying cream solder using a dispenser is known.
  • the heights of the first and second main terminals 30 and 40 are different between the electrode side joint and the wiring side joint. Therefore, when using cream solder, it is necessary to divide the printing into a plurality of times and to invert the first and second main terminals 30 and 40, which may reduce productivity.
  • a fluxless solder material is used as the bonding material constituting the first to sixth bonding layers 61 to 66.
  • This fluxless solder material is obtained, for example, by rolling minute solder balls containing no flux into a sheet.
  • the fluxless solder material is punched with a blade type that is harder than Sn solder.
  • the fluxless solder material is in the form of a sheet, the amount of solder material supplied to each joint can be stabilized. Further, by using a fluxless solder material, it is basically unnecessary to perform cleaning after soldering.
  • Non-ding material heating method In general, as a heating method for fluxless solder materials, 1) an atmosphere heating method in which hot air is sent into a reflow bath, 2) a heat transfer method from a heating block to a workpiece, and 3) a radiant heat method using infrared rays such as a halogen lamp. There are mainly three methods.
  • the radiant heat method is used. If the emissivity of the bonded object is 0.3 or less, the heat transfer method is used. As a result, it was found that the heat transfer efficiency can be increased and soldering can be performed, which improves productivity. Therefore, in the sixth embodiment, a fluxless solder material is used as a bonding material in steps 1003 to 1006 shown in FIG. 7, and a radiant heat method or a heat transfer method is used to heat the fluxless solder material in accordance with the emissivity of the objects to be bonded. Adopt as a method.
  • Embodiment 7 As described above, when a radiant heat method using an infrared light source (such as a halogen lamp) is used as a heating method for the fluxless solder material, the emissivity increases depending on the type of material constituting the heat receiving surface, the roughness of the surface, and the degree of oxidation of the material There are cases where heat transfer cannot be performed efficiently depending on the emissivity.
  • the first and second main terminals 30 and 40 made of a material such as Cu and Al with the fourth and sixth bonding layers 64 and 66 sandwiched therebetween, PPS, liquid crystal resin, and fluorine resin. And a terminal block 120 made of a resin material.
  • the wavelength of light emitted from the halogen lamp is typically about 1 ⁇ m or more and about 10 ⁇ m or less.
  • the emissivity for light in this wavelength range is 0.1 or less for non-oxidized surfaces of Cu and Al, and 0.85 or more for resin materials such as PPS, liquid crystal resin, and fluorine resin. Therefore, the emissivity may be greatly different between the materials constituting the adjacent members.
  • a fluxless solder material is used as a bonding material in steps 1005 and 1006 for forming the fourth and sixth bonding layers 64 and 66, and the terminal block 120 is fixed to the surface of the heat sink 110.
  • the terminal block 120 (see FIG. 10) provided with a terminal block cover 121 is used.
  • the terminal block cover 121 is provided so as to cover the terminal block 120 as a whole.
  • the terminal block cover 121 has the same emissivity as (or the same as) the material constituting the first and second main terminals 30 and 40.
  • the terminal block cover 121 may be made of a metal material such as Cu or Al.
  • the emissivity of the terminal block cover 121 may be adjusted not only by the type of material constituting the terminal block cover 121 but also by the roughness of the surface and the degree of oxidation of the material.
  • the fourth and sixth bonding layers 64 and 66 are formed by heating the flexless solder material using radiant heat. Even in such a case, it is possible to increase the energy of the radiant heat while suppressing the temperature rise of the terminal block 120 made of a resin material, thereby reducing the time required for soldering and improving the productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A semiconductor module for a power semiconductor device according to the present invention is provided with: a substrate; a semiconductor element having a back surface which is bonded to the substrate and a front surface which is provided with a main electrode; and a plate-like main terminal having an electrode-side bonding part which is electrically connected to the main electrode by being bonded to the front surface of the semiconductor element with a conductive bonding layer being interposed therebetween. The electrode-side bonding part of the first main terminal has a projection part and a through hole, which extend in the thickness direction thereof and face the front surface of the semiconductor element.

Description

電力用半導体装置および電力用半導体装置の製造方法Power semiconductor device and method for manufacturing power semiconductor device
 本発明は、導電性接合層を介して半導体素子の主電極に接合された主端子を備えた電力用半導体装置、および電力用半導体装置の製造方法に関する。 The present invention relates to a power semiconductor device having a main terminal bonded to a main electrode of a semiconductor element through a conductive bonding layer, and a method for manufacturing the power semiconductor device.
 近年、電力用半導体装置は、一般産業用、電鉄用のみならず車載用にも広く使用されるようになってきた。自動車では、限られたスペースの中で各部品を小型化することが車両性能に直結することから、特に車載用の電力用半導体装置では、その小型化が求められている。また、一般的に、電力用半導体装置では、その高出力密度化が求められている。 In recent years, power semiconductor devices have been widely used not only for general industrial and electric railways but also for in-vehicle use. In automobiles, downsizing each component in a limited space directly affects the vehicle performance. Therefore, miniaturization is particularly demanded in power semiconductor devices for vehicles. In general, power semiconductor devices are required to have higher output density.
 例えば、特許文献1は、ボンディングワイヤを介して接続するボンディング工程において、ボンディングツールとボンディングワイヤとの干渉を防止するためにはボンディングを行うためのクリアランスを確保する必要があり、電力用半導体装置の小型化および高出力密度化が妨げられるという課題に鑑みてなされたものである。特許文献1では、ワイヤボンディングの代わりにリード線のはんだ付けを行い、前記クリアランスを設ける必要性をなくすことにより、電力用半導体装置の小型化および高出力密度化が図られている。 For example, in Patent Document 1, it is necessary to secure a clearance for bonding in order to prevent interference between a bonding tool and a bonding wire in a bonding process of connecting via a bonding wire. This has been made in view of the problem that miniaturization and high output density are hindered. In Patent Document 1, lead wires are soldered instead of wire bonding, and the need to provide the clearance is eliminated, thereby reducing the size and increasing the output density of the power semiconductor device.
特開2014-11236号公報JP 2014-11236 A
 特許文献1に記載された技術を用いることにより、電力用半導体装置を高出力密度化できる可能性がある。しかし、電力用半導体装置の高出力密度化、具体的には半導体素子の高電流密度化に伴って、半導体素子の通電時の温度も上昇する。半導体素子の温度が上昇すると、例えば半導体素子とリードとの接合部ではんだ材に加わる熱応力も大きくなるため、当該接合部での信頼性を確保できないおそれがある。しかし、特許文献1では、半導体素子とリード線等との接合部において、半導体素子の通電時の温度が高くなったときに当該接合部の信頼性を確保するための検討が十分になされていない。 By using the technique described in Patent Document 1, there is a possibility that the power semiconductor device can be increased in output density. However, as the power semiconductor device has a higher output density, specifically, a higher current density of the semiconductor element, the temperature when the semiconductor element is energized also increases. When the temperature of the semiconductor element rises, for example, the thermal stress applied to the solder material at the joint between the semiconductor element and the lead also increases, so there is a possibility that reliability at the joint cannot be ensured. However, Patent Document 1 does not sufficiently study the reliability of a junction between a semiconductor element and a lead wire when the temperature at the time of energization of the semiconductor element becomes high. .
 本発明は、上述のような課題を解決するためになされたものであり、導電性接合層を介して半導体素子の主電極に接合された主端子を備えた電力用半導体装置において、主端子の接合部での信頼性を確保することを課題とする。 The present invention has been made to solve the above-described problems, and in a power semiconductor device including a main terminal bonded to a main electrode of a semiconductor element through a conductive bonding layer, It is an object to ensure reliability at the joint.
 上記目的を達成するために、本発明に係る電力用半導体装置は、
 基板と、
 前記基板に接合された裏面と、第1主電極が設けられた表面と、を有する半導体素子と、
 導電性接合層を介して前記半導体素子の表面に接合されて前記第1主電極に電気的に接続された電極側接合部を有する板状の第1主端子と、を備え、
 前記第1主端子の電極側接合部は、その厚さ方向に沿って延び且つ前記半導体素子の表面に対向して設けられた、突起部および貫通孔を有する。
In order to achieve the above object, a power semiconductor device according to the present invention includes:
A substrate,
A semiconductor element having a back surface bonded to the substrate and a surface provided with a first main electrode;
A plate-like first main terminal having an electrode-side bonding portion bonded to the surface of the semiconductor element via a conductive bonding layer and electrically connected to the first main electrode;
The electrode-side joint portion of the first main terminal has a protrusion and a through hole that extend along the thickness direction and are provided to face the surface of the semiconductor element.
 本発明によれば、第1主端子の電極側接合部が突起部および貫通孔を有することにより、接合材の接合面積と厚さを確保でき、これにより第1主端子の接合部の信頼性を確保できる。 According to the present invention, the electrode-side joint portion of the first main terminal has the protrusion and the through hole, so that the joining area and thickness of the joining material can be secured, and thereby the reliability of the joint portion of the first main terminal Can be secured.
本発明の実施の形態1に係る電力用半導体装置を示す斜視図である。1 is a perspective view showing a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1に係る電力用半導体装置を、枠部材を除いた状態で示す斜視図である。It is a perspective view which shows the power semiconductor device which concerns on Embodiment 1 of this invention in the state which excluded the frame member. 本発明の実施の形態1に係る電力用半導体装置を、端子台を除いた状態で示す斜視図である。It is a perspective view which shows the power semiconductor device which concerns on Embodiment 1 of this invention in the state which excluded the terminal block. 図1Cに示す電力用半導体装置を長さ方向から見た図である。It is the figure which looked at the power semiconductor device shown to FIG. 1C from the length direction. 電力用半導体装置の半導体モジュールを示す図1Bの部分拡大図である。It is the elements on larger scale of FIG. 1B which show the semiconductor module of the power semiconductor device. 図2のA-A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2. 図2のB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 図2のC-C線断面図である。FIG. 3 is a cross-sectional view taken along the line CC of FIG. 本発明の実施の形態に係る電力用半導体装置が構成するインバータ回路を示す図である。It is a figure which shows the inverter circuit which the power semiconductor device which concerns on embodiment of this invention comprises. 本発明の実施の形態に係る電力用半導体装置の例示的な製造方法を示すフローチャートである。4 is a flowchart showing an exemplary manufacturing method of the power semiconductor device according to the embodiment of the present invention. 本発明の実施の形態2に係る電力用半導体装置の半導体モジュールを示す、図2に対応する斜視図である。It is a perspective view corresponding to FIG. 2 which shows the semiconductor module of the semiconductor device for electric power which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電力用半導体装置の半導体モジュールを示す、図2に対応する斜視図である。It is a perspective view corresponding to FIG. 2 which shows the semiconductor module of the semiconductor device for electric power which concerns on Embodiment 3 of this invention. 本発明の実施の形態7に係る電力用半導体装置を示す斜視図である。It is a perspective view which shows the power semiconductor device which concerns on Embodiment 7 of this invention.
 以下、本発明の実施の形態について、図面を参照して具体的に説明する。以下の説明では、必要に応じて特定の方向を示す用語(上、下など)を用いるが、これらは本発明の理解を容易にするために用いているのであって、こられの用語により本発明の範囲が限定さると理解すべきでない。以下の説明では、符号「X」を付した方向を幅方向、符号「Y」を付した方向を長さ方向、符号「Z」を付した方向を高さ方向という。X方向、Y方向およびZ方向は、互いに直交している。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In the following description, terms indicating a specific direction (upper, lower, etc.) are used as necessary. These terms are used to facilitate understanding of the present invention. It should not be understood as limiting the scope of the invention. In the following description, the direction marked with “X” is called the width direction, the direction marked with “Y” is called the length direction, and the direction marked with “Z” is called the height direction. The X direction, the Y direction, and the Z direction are orthogonal to each other.
実施形態1.
 図1A、図1B、図1Cは、本発明の実施の形態1による電力用半導体装置1000を示す斜視図である。電力用半導体装置1000は、6つの半導体モジュール101,102,103,104,105,106を備えている。半導体モジュール101~106は、ヒートシンク110の上に接合されている。ヒートシンク110の上には、長さ方向Yに延びる端子台120が固定されている。
Embodiment 1. FIG.
1A, 1B, and 1C are perspective views showing a power semiconductor device 1000 according to Embodiment 1 of the present invention. The power semiconductor device 1000 includes six semiconductor modules 101, 102, 103, 104, 105, and 106. The semiconductor modules 101 to 106 are joined on the heat sink 110. A terminal block 120 extending in the length direction Y is fixed on the heat sink 110.
 6つの半導体モジュール101~106は、端子台120を挟んで、3個ずつ配置されている。半導体モジュール組101~103および半導体モジュール組104~106は、それぞれ長さ方向Yに並べて配置されている。 The six semiconductor modules 101 to 106 are arranged three by three across the terminal block 120. The semiconductor module sets 101 to 103 and the semiconductor module sets 104 to 106 are arranged side by side in the length direction Y, respectively.
 図2に示すように、半導体モジュール101は、基板10と、基板10の上に配置された半導体素子21,22と、半導体素子の配線を行う第1主端子30および第2主端子40と、などを備えている。半導体モジュール101は、枠形状を有する枠部材70を備えている。枠部材70の詳細な形状については、実施形態2の説明において合わせて説明する。 As shown in FIG. 2, the semiconductor module 101 includes a substrate 10, semiconductor elements 21 and 22 disposed on the substrate 10, first main terminals 30 and second main terminals 40 that perform wiring of the semiconductor elements, Etc. The semiconductor module 101 includes a frame member 70 having a frame shape. The detailed shape of the frame member 70 will be described together with the description of the second embodiment.
 半導体モジュール102~106は、第1主端子30および第2主端子40を除いて半導体モジュール101と大略同じ構成を有するので、以下では半導体モジュール101の構成について説明し、半導体モジュール102~106については、半導体モジュール101と異なる部分のみを説明する。 Since the semiconductor modules 102 to 106 have substantially the same configuration as the semiconductor module 101 except for the first main terminal 30 and the second main terminal 40, the configuration of the semiconductor module 101 will be described below, and the semiconductor modules 102 to 106 will be described. Only parts different from the semiconductor module 101 will be described.
(基板10)
 基板10は、絶縁層11と、表面導体層12と、裏面導体層13とを有する(図3を参照)。基板10の裏面は、第1接合層61を介してヒートシンク110の表面に接合されている。具体的には、裏面導体層13の裏面が、ヒートシンク110の表面に接合されている。
(Substrate 10)
The board | substrate 10 has the insulating layer 11, the surface conductor layer 12, and the back surface conductor layer 13 (refer FIG. 3). The back surface of the substrate 10 is bonded to the surface of the heat sink 110 via the first bonding layer 61. Specifically, the back surface of the back conductor layer 13 is bonded to the surface of the heat sink 110.
 絶縁層11は、絶縁性があり且つ熱伝導性の高い材料でできていることが好ましい。絶縁層11を構成する材料の例は、セラミック材料(AlN(窒化アルミニウム)、Si(窒化ケイ素)、Al(酸化アルミニウム)など)、および、BN(窒化ホウ素)フィラーなどを含有したエポキシ樹脂絶縁層である。絶縁層11の例示的な厚さは、約0.3mm以上約1mm以下である。 The insulating layer 11 is preferably made of a material having insulating properties and high thermal conductivity. Examples of the material constituting the insulating layer 11 include ceramic materials (such as AlN (aluminum nitride), Si 3 N 4 (silicon nitride), Al 2 O 3 (aluminum oxide)), and BN (boron nitride) filler. It is the contained epoxy resin insulating layer. An exemplary thickness of the insulating layer 11 is not less than about 0.3 mm and not more than about 1 mm.
 表面導体層12と裏面導体層13を構成する材料の例は、Cu(銅)、Al(アルミニウム)、およびCuとAlとの積層体である。表面導体層12と裏面導体層13の例示的な厚さは、約0.2mm以上約1mm以下である。表面導体層12と裏面導体層13の厚さが大きいほど半導体素子21,22からの放熱性を高めることができ、厚さが小さいほど半導体素子21,22の通電時に絶縁層11に加わる熱応力を小さくすることができる。したがって、絶縁層11の破壊を防止するためのマージンを確保するために、当該厚さは例えば約0.3以上約0.6mm以下であってもよい。 Examples of the material constituting the front conductor layer 12 and the back conductor layer 13 are Cu (copper), Al (aluminum), and a laminate of Cu and Al. Exemplary thicknesses of the front conductor layer 12 and the back conductor layer 13 are about 0.2 mm or more and about 1 mm or less. The heat dissipation from the semiconductor elements 21 and 22 can be increased as the thickness of the front conductor layer 12 and the back conductor layer 13 is increased, and the thermal stress applied to the insulating layer 11 when the semiconductor elements 21 and 22 are energized as the thickness is decreased. Can be reduced. Therefore, in order to secure a margin for preventing the insulating layer 11 from being broken, the thickness may be, for example, about 0.3 to about 0.6 mm.
(半導体素子21,22)
 実施形態1で、半導体素子21はIGBT(絶縁ゲートバイポーラトランジスタ)であり、半導体素子22はFWD(フリーホイールダイオード)である。半導体素子21,22は、MOSFET(金属酸化膜半導体電界効果トランジスタ)など、他の半導体素子であってもよい。
(Semiconductor elements 21, 22)
In the first embodiment, the semiconductor element 21 is an IGBT (insulated gate bipolar transistor), and the semiconductor element 22 is an FWD (free wheel diode). The semiconductor elements 21 and 22 may be other semiconductor elements such as a MOSFET (metal oxide semiconductor field effect transistor).
 半導体素子21,22は、幅方向Xに並べて配置されている。半導体素子21,22は、それぞれ第2接合層62を介して、基板10の表面導体層12の表面に接合されて実装されている。 The semiconductor elements 21 and 22 are arranged side by side in the width direction X. The semiconductor elements 21 and 22 are each mounted on the surface of the surface conductor layer 12 of the substrate 10 via the second bonding layer 62.
 半導体素子21,22の材料は、Si(ケイ素)であってもよいし、GaN(窒化ガリウム)、SiC(炭化ケイ素)、ダイヤモンドなど、バンドギャップの大きい半導体材料であってもよい。バンドギャップの大きい半導体材料は、許容電流密度が高く、電力損失も低いため、半導体素子21,22の高温動作、および、半導体モジュール101の小型化を可能とする。 The material of the semiconductor elements 21 and 22 may be Si (silicon), or may be a semiconductor material having a large band gap such as GaN (gallium nitride), SiC (silicon carbide), diamond, or the like. A semiconductor material having a large band gap has a high allowable current density and low power loss, so that the semiconductor elements 21 and 22 can be operated at a high temperature and the semiconductor module 101 can be downsized.
 IGBTである半導体素子21の表面21aには、図示していないが、主電極であるエミッタと、制御電極であるゲートが設けられ、半導体素子21の裏面(符号なし)には、主電極であるコレクタが設けられている。ゲートは、制御端子(図7を参照)からゲート電流を受ける。FWDである半導体素子22は、図示していないが、表面22a、裏面(符号なし)に設けられた電極を有する。本明細書では、FWDの電極もまた、主電極という。以下、半導体素子21,22の表面、裏面に設けられた主電極を、それぞれ、表面主電極、裏面主電極という。 Although not shown in the figure, the front surface 21a of the semiconductor element 21 that is an IGBT is provided with an emitter that is a main electrode and a gate that is a control electrode, and the back surface (without reference numeral) of the semiconductor element 21 is the main electrode. A collector is provided. The gate receives a gate current from a control terminal (see FIG. 7). Although not shown, the semiconductor element 22 that is an FWD has electrodes provided on the front surface 22a and the back surface (no symbol). In this specification, the FWD electrode is also referred to as a main electrode. Hereinafter, the main electrodes provided on the front and back surfaces of the semiconductor elements 21 and 22 are referred to as a front main electrode and a back main electrode, respectively.
 半導体素子21,22の主電極と、第1主端子30と、第2主端子40と、主回路配線51~55とにより、電力用半導体装置1000の主回路が構成される。 The main circuit of the power semiconductor device 1000 is constituted by the main electrodes of the semiconductor elements 21 and 22, the first main terminal 30, the second main terminal 40, and the main circuit wirings 51 to 55.
 半導体素子21,22の表面21a,22aには、導電性接合材(以下、単に接合材という)との拡散接合に適したメタライズ層が設けられていてもよい。例えば、接合材としてはんだ材を用いる場合、最表面側からAu(金)層/Ni(ニッケル)層の順でメタライズ層を設けてもよい。Au層を設けることにより、最表面の酸化が防止されると共に、はんだ材に対する濡れ性が向上する。Ni層を設けることにより、Ni層より基材側へのはんだ材の拡散が防止される。Ni層の厚さは、はんだ接合時の熱印加と動作時の最高温度を考慮して決定される。Ni層の例示的な厚さは、約1.5μm以上約5.0μm以下である。Ni層は、真空中でのスパッタリングにより設けられてもよいし、めっき(電解めっきであっても無電解めっきであってもよい)により設けられてもよい。 A metallized layer suitable for diffusion bonding with a conductive bonding material (hereinafter simply referred to as a bonding material) may be provided on the surfaces 21a and 22a of the semiconductor elements 21 and 22. For example, when a solder material is used as the bonding material, a metallized layer may be provided in the order of Au (gold) layer / Ni (nickel) layer from the outermost surface side. By providing the Au layer, oxidation of the outermost surface is prevented and wettability with respect to the solder material is improved. By providing the Ni layer, diffusion of the solder material from the Ni layer to the substrate side is prevented. The thickness of the Ni layer is determined in consideration of the heat application during solder bonding and the maximum temperature during operation. An exemplary thickness of the Ni layer is about 1.5 μm or more and about 5.0 μm or less. The Ni layer may be provided by sputtering in a vacuum, or may be provided by plating (which may be electrolytic plating or electroless plating).
(第1主端子30)
 第1主端子30は、板状である。第1主端子30は、幅方向Xに延びる電極部31と、電極部31から主回路配線51に向かって延びる略L字状の配線部32とを有する。第1主端子30は、電極部31と配線部32との間、および、配線部32の途中(L字の角部)で折り曲げられている。第1主端子30の例示的な厚さは、約0.2mm以上約1.0mm以下である。第1主端子30の厚さは、小さいほど、通電時に半導体素子21,22に加わる熱応力を小さくすることができる一方、大きいほど、通電時に発生するジュール熱を小さくすることができることに鑑みて、適切な値に設定される。
(First main terminal 30)
The first main terminal 30 has a plate shape. The first main terminal 30 includes an electrode part 31 extending in the width direction X and a substantially L-shaped wiring part 32 extending from the electrode part 31 toward the main circuit wiring 51. The first main terminal 30 is bent between the electrode portion 31 and the wiring portion 32 and in the middle of the wiring portion 32 (L-shaped corner). An exemplary thickness of the first main terminal 30 is not less than about 0.2 mm and not more than about 1.0 mm. In view of the fact that the smaller the thickness of the first main terminal 30 is, the smaller the thermal stress applied to the semiconductor elements 21 and 22 during energization, the smaller the thickness of the first main terminal 30, the smaller the Joule heat generated during energization. Is set to an appropriate value.
 第1主端子30は、Cuの単層であってもよいし、例えばCu層/インバー(Fe-36%Ni合金)層/Cu層からなる積層体であってもよい。各層の厚さを変更することにより、第1主端子30の見かけの線膨張係数を変更できる。第1主端子30は、Cu-Mo(銅-モリブデン)合金またはCu-W(銅-タングステン)合金でできていてもよい。 The first main terminal 30 may be a single layer of Cu, or may be, for example, a laminate including a Cu layer / invar (Fe-36% Ni alloy) layer / Cu layer. By changing the thickness of each layer, the apparent linear expansion coefficient of the first main terminal 30 can be changed. The first main terminal 30 may be made of a Cu—Mo (copper-molybdenum) alloy or a Cu—W (copper-tungsten) alloy.
 第1主端子30の電極部31は、第3接合層63を介して半導体素子21,22の表面21a,22aに接合された電極側接合部33を有する。これにより、電極側接合部33、そして第1主端子30の全体が、半導体素子21,22の表面主電極に電気的に接続される。電極側接合部33は、第1主端子30の厚さ方向(高さ方向Z)に沿って延び且つ半導体素子21,22の表面21a,22aに対向して設けられた突起部34と貫通孔35とを有する。突起部34は、高さ方向Zに沿って突出しており、貫通孔35は高さ方向Zに沿って貫通している。突起部34は、少なくとも部分的に第3接合層63に接触している。貫通孔35の内部には、第3接合層63を構成する接合材が存在していてもよい。 The electrode portion 31 of the first main terminal 30 has an electrode-side joint portion 33 joined to the surfaces 21 a and 22 a of the semiconductor elements 21 and 22 through the third joint layer 63. As a result, the electrode-side joint 33 and the entire first main terminal 30 are electrically connected to the surface main electrodes of the semiconductor elements 21 and 22. The electrode-side bonding portion 33 extends along the thickness direction (height direction Z) of the first main terminal 30 and is provided with a protrusion 34 and a through hole provided to face the surfaces 21 a and 22 a of the semiconductor elements 21 and 22. 35. The protrusion 34 protrudes along the height direction Z, and the through hole 35 penetrates along the height direction Z. The protrusion 34 is at least partially in contact with the third bonding layer 63. A bonding material constituting the third bonding layer 63 may exist in the through hole 35.
 突起部34は、別体として第1主端子30の裏面に設けられていてもよいし、プレス成形により形成されていてもよい。プレス成形を用いる場合、第1主端子30の表面には、突起部34に対応する凹部が形成される。これは、第1、第2主端子30,40に設けられる他の接合部でも同様である。また、各接合部に設けられる突起部34の高さは同じであってもよい。 The protrusion 34 may be provided on the back surface of the first main terminal 30 as a separate body, or may be formed by press molding. When press molding is used, a recess corresponding to the protrusion 34 is formed on the surface of the first main terminal 30. The same applies to other joint portions provided in the first and second main terminals 30 and 40. Moreover, the height of the protrusion part 34 provided in each junction part may be the same.
 図面では、円柱状の突起部34を示しているが、本発明はこれに限定されることなく、突起部34は、角柱状、筒状、板状など任意の形状を有していてよい。また、図面では、平面視円形の貫通孔35を示しているが、本発明はこれに限定されることなく、貫通孔35は、平面視多角形など、任意の形状を有していてよい。さらに、貫通孔35に筒状のブッシュを圧入することにより、貫通孔35の位置に筒状の突起部34を設けてもよい。このとき、突起部34の側面には穴が空けられていることが好ましい。ここで説明した突起部34と貫通孔35の形状についての変形例は、第1、第2主端子30,40に設けられる他の接合部にも同様に適用できる。 In the drawings, a cylindrical protrusion 34 is shown, but the present invention is not limited to this, and the protrusion 34 may have any shape such as a prismatic shape, a cylindrical shape, or a plate shape. In the drawings, the through hole 35 having a circular shape in plan view is shown, but the present invention is not limited to this, and the through hole 35 may have an arbitrary shape such as a polygon in plan view. Furthermore, a cylindrical protrusion 34 may be provided at the position of the through hole 35 by press-fitting a cylindrical bush into the through hole 35. At this time, it is preferable that a hole is formed in the side surface of the protrusion 34. The modified examples of the shapes of the protrusions 34 and the through holes 35 described here can be similarly applied to other joints provided in the first and second main terminals 30 and 40.
 幅方向Xに並べて配置された2つの半導体素子21,22を1つの第1主端子30で接合することにより、配線インダクタンスを小さくして半導体素子21,22に印加されるサージ電圧を小さくすることができる。また、第1主端子30と半導体素子21,22との間に設けられる2箇所の電極側接合部33を1回の接合工程で同時に接合できるので、電力用半導体装置1000の生産性が向上する。 By joining two semiconductor elements 21 and 22 arranged side by side in the width direction X with one first main terminal 30, the wiring inductance is reduced and the surge voltage applied to the semiconductor elements 21 and 22 is reduced. Can do. In addition, since the two electrode-side joints 33 provided between the first main terminal 30 and the semiconductor elements 21 and 22 can be joined at the same time in one joining process, the productivity of the power semiconductor device 1000 is improved. .
 第1主端子30の配線部32は、主回路配線51に第4接合層64を介して接合された配線側接合部36を有する。これにより、配線側接合部36、そして第1主端子30の全体が、主回路配線51に電気的に接続される。配線側接合部36は、第1主端子30の厚さ方向(高さ方向Z)に沿って延び且つ主回路配線51に対向して設けられた突起部37と貫通孔38とを有する。突起部37は、少なくとも部分的に第4接合層64に接触している。貫通孔38の内部には、第4接合層64を構成する接合材が存在していてもよい。 The wiring part 32 of the first main terminal 30 has a wiring side joining part 36 joined to the main circuit wiring 51 via the fourth joining layer 64. As a result, the wiring side joint 36 and the entire first main terminal 30 are electrically connected to the main circuit wiring 51. The wiring-side joint portion 36 includes a protrusion 37 and a through hole 38 that extend along the thickness direction (height direction Z) of the first main terminal 30 and are opposed to the main circuit wiring 51. The protruding portion 37 is at least partially in contact with the fourth bonding layer 64. A bonding material constituting the fourth bonding layer 64 may exist inside the through hole 38.
 なお、半導体モジュール102,103の配線側接合部36は、半導体モジュール101と同様に主回路配線51に接合され、半導体モジュール104~106の配線側接合部36は、主回路配線55に接合される。 Note that the wiring side joints 36 of the semiconductor modules 102 and 103 are joined to the main circuit wiring 51 in the same manner as the semiconductor module 101, and the wiring side joints 36 of the semiconductor modules 104 to 106 are joined to the main circuit wiring 55. .
(第2主端子40)
 第2主端子40は、板状である。第2主端子40は、電極部41と、電極部41から主回路配線54に向かって延びる略L字状の配線部42とを有する。第2主端子40は、電極部41と配線部42との間、および、配線部42の途中(L字の角部)で折り曲げられている。第2主端子40の例示的な厚さは、約0.2mm以上約1.0mm以下である。第2主端子40の厚さは、第1主端子30の厚さと同様に、小さいほど、通電時に半導体素子21,22に加わる熱応力を小さくすることができる一方、大きいほど、通電時に発生するジュール熱を小さくすることができることに鑑みて、適切な値に設定される。
(Second main terminal 40)
The second main terminal 40 has a plate shape. The second main terminal 40 includes an electrode part 41 and a substantially L-shaped wiring part 42 extending from the electrode part 41 toward the main circuit wiring 54. The second main terminal 40 is bent between the electrode part 41 and the wiring part 42 and in the middle of the wiring part 42 (L-shaped corner). An exemplary thickness of the second main terminal 40 is not less than about 0.2 mm and not more than about 1.0 mm. Similar to the thickness of the first main terminal 30, the thermal stress applied to the semiconductor elements 21 and 22 during energization can be reduced as the thickness of the second main terminal 40 is smaller. In view of the fact that Joule heat can be reduced, an appropriate value is set.
 第2主端子40は、第1主端子30と同様に、Cuの単層であってもよいし、例えばCu層/インバー(Fe-36%Ni合金)層/Cu層からなる積層体であってもよいし、Cu-Mo(銅-モリブデン)合金またはCu-W(銅-タングステン)合金でできていてもよい。 Similar to the first main terminal 30, the second main terminal 40 may be a single layer of Cu, for example, a laminate composed of a Cu layer / invar (Fe-36% Ni alloy) layer / Cu layer. Alternatively, it may be made of a Cu—Mo (copper-molybdenum) alloy or a Cu—W (copper-tungsten) alloy.
 第2主端子40の電極部41は、第5接合層65を介して基板10の表面導体層12に接合された電極側接合部43を有する。これにより、電極側接合部43、そして第2主端子40の全体が、半導体素子21,22の裏面主電極に電気的に接続される。電極側接合部43は、第2主端子40の厚さ方向(高さ方向Z)に沿って延び且つ基板10の表面導体層12に対向して設けられた突起部44と貫通孔45とを有する。突起部44は、少なくとも部分的に第5接合層65に接触している。貫通孔45の内部には、第5接合層65を構成する接合材が存在していてもよい。 The electrode part 41 of the second main terminal 40 has an electrode side joint part 43 joined to the surface conductor layer 12 of the substrate 10 via the fifth joint layer 65. As a result, the electrode-side joint 43 and the entire second main terminal 40 are electrically connected to the back main electrodes of the semiconductor elements 21 and 22. The electrode side joint 43 extends along the thickness direction (height direction Z) of the second main terminal 40 and includes a protrusion 44 and a through hole 45 provided to face the surface conductor layer 12 of the substrate 10. Have. The protrusion 44 is at least partially in contact with the fifth bonding layer 65. Inside the through hole 45, a bonding material constituting the fifth bonding layer 65 may exist.
 第2主端子40の配線部42は、主回路配線54に第4接合層64を介して接合された配線側接合部36を有する。これにより、配線側接合部46、そして第2主端子40の全体が、主回路配線54に電気的に接続される。配線側接合部46は、第2主端子40の厚さ方向(高さ方向Z)に沿って延び且つ主回路配線54に対向して設けられた突起部47と貫通孔48とを有する。突起部47は、少なくとも部分的に第6接合層66に接触している。貫通孔48の内部には、第6接合層66を構成する接合材が存在していてもよい。 The wiring part 42 of the second main terminal 40 has a wiring side joining part 36 joined to the main circuit wiring 54 via the fourth joining layer 64. As a result, the wiring side joint 46 and the entire second main terminal 40 are electrically connected to the main circuit wiring 54. The wiring side joint 46 includes a protrusion 47 and a through hole 48 that extend along the thickness direction (height direction Z) of the second main terminal 40 and that are opposed to the main circuit wiring 54. The protrusion 47 is at least partially in contact with the sixth bonding layer 66. A bonding material constituting the sixth bonding layer 66 may exist inside the through hole 48.
 なお、半導体モジュール102,103,104,105,106の第2主端子40に設けられた配線側接合部46は、それぞれ主回路配線53,52,54,53,52に接合される。各半導体モジュールに設けられる第2主端子40の構造は、端子台120における第2主端子40の高さにより変更される。例えば、図2に示すように、半導体モジュール102の第2主端子40は、平坦な形状を有する。 It should be noted that the wiring side joints 46 provided on the second main terminals 40 of the semiconductor modules 102, 103, 104, 105, 106 are joined to the main circuit wirings 53, 52, 54, 53, 52, respectively. The structure of the second main terminal 40 provided in each semiconductor module is changed depending on the height of the second main terminal 40 in the terminal block 120. For example, as shown in FIG. 2, the second main terminal 40 of the semiconductor module 102 has a flat shape.
(主回路配線51~55)
 図5に示すように、主回路配線51~55は、端子台120に固定されており、電力用半導体装置1000の外部へ導出されている。図1D、図5に示すように、主回路配線51~55は、それぞれ平板形状を有し、互いに所定の間隔を隔てて平行に配置されている。主回路配線51~55は、端子台120に設けられた切欠部121,122から露出している。上述のとおり、主回路配線51には、半導体モジュール101~103の第1主端子30が接合されている。主回路配線52,53,54には、それぞれ半導体モジュール103,101,103の第2主端子40が接合されている。図示していないが、主回路配線52,53,54には、半導体モジュール106,104,105の第2主端子40も接合されている。主回路配線55には、半導体モジュール104~106の第1主端子30が接合されている。
(Main circuit wiring 51 to 55)
As shown in FIG. 5, the main circuit wirings 51 to 55 are fixed to the terminal block 120 and led out of the power semiconductor device 1000. As shown in FIGS. 1D and 5, the main circuit wires 51 to 55 each have a flat plate shape, and are arranged in parallel with a predetermined distance from each other. The main circuit wires 51 to 55 are exposed from the notches 121 and 122 provided on the terminal block 120. As described above, the first main terminals 30 of the semiconductor modules 101 to 103 are joined to the main circuit wiring 51. Second main terminals 40 of the semiconductor modules 103, 101, and 103 are joined to the main circuit wirings 52, 53, and 54, respectively. Although not shown, the second main terminals 40 of the semiconductor modules 106, 104, 105 are also joined to the main circuit wirings 52, 53, 54. First main terminals 30 of the semiconductor modules 104 to 106 are joined to the main circuit wiring 55.
 主回路配線51~55を用いて配線される6つの半導体モジュール101~106により、図6に示すインバータ回路600が構成される。各半導体モジュールにより、インバータ回路600の1つのアームが構成される。端子台120を挟んで設けられた一対の半導体モジュール101,104、一対の半導体モジュール102,105、および、一対の半導体モジュール103,106により、それぞれインバータ回路600のレッグが構成される。インバータ回路600は、例えばかご型三相誘導モータを駆動する駆動回路として用いられる。このとき、主回路配線51,55は、一方が外部電源の正極に、他方が外部電源の負極に接続される。主回路配線52~54は、モータに接続される。 The inverter circuit 600 shown in FIG. 6 is configured by the six semiconductor modules 101 to 106 wired using the main circuit wirings 51 to 55. Each semiconductor module constitutes one arm of the inverter circuit 600. The pair of semiconductor modules 101 and 104, the pair of semiconductor modules 102 and 105, and the pair of semiconductor modules 103 and 106 provided with the terminal block 120 interposed therebetween constitute a leg of the inverter circuit 600. The inverter circuit 600 is used as a drive circuit for driving a cage type three-phase induction motor, for example. At this time, one of the main circuit wires 51 and 55 is connected to the positive electrode of the external power supply, and the other is connected to the negative electrode of the external power supply. The main circuit wirings 52 to 54 are connected to the motor.
 主回路配線51,52は、それぞれインバータ回路600の三相交流の高電圧線(P)とグラウンド線(N)に相当する機能を有する。上述のとおり、主回路配線51~55は、それぞれ平板形状を有し、互いに所定の間隔を隔てて平行に配置されているので、各主回路配線を流れる電流に起因して生じる磁界は、端子間で打ち消される。これにより、相互の磁界により生じるインダクタンス成分が最小化される。主回路配線のインダクタンス成分が小さくなることにより、電力用半導体素子1000のスイッチング動作時に生じるサージ電圧が小さくなり、ひいてはスイッチング動作時に生じる熱損失が小さくなるという効果が得られる。 The main circuit wirings 51 and 52 have functions corresponding to the three-phase AC high voltage line (P) and the ground line (N) of the inverter circuit 600, respectively. As described above, each of the main circuit wirings 51 to 55 has a flat plate shape and is arranged in parallel with a predetermined distance from each other. Therefore, a magnetic field generated due to a current flowing through each main circuit wiring is a terminal. Canceled between. This minimizes the inductance component generated by the mutual magnetic field. By reducing the inductance component of the main circuit wiring, the surge voltage generated during the switching operation of the power semiconductor element 1000 is reduced, and as a result, the heat loss generated during the switching operation is reduced.
(端子台120)
 端子台120は、PPS(ポリフェニレンサルファイド)、液晶樹脂、フッ素系樹脂などの樹脂でできていてもよい。端子台120は、シリコーン系の柔らかい接着剤でヒートシンク110の表面に接合されていてもよいし、ヒートシンク110にねじ穴を設けてボルトによりヒートシンク110に固定されてもよい。
(Terminal block 120)
The terminal block 120 may be made of a resin such as PPS (polyphenylene sulfide), liquid crystal resin, or fluorine resin. The terminal block 120 may be bonded to the surface of the heat sink 110 with a silicone-based soft adhesive, or may be fixed to the heat sink 110 with a bolt by providing a screw hole in the heat sink 110.
(ヒートシンク110)
 ヒートシンク110は、これに限定されないが直方体形状を有している。ヒートシンク110の例示的な大きさは、350mm×200mm×50mmである。ヒートシンク110は、基板10の裏面に第1接合層61を介して接合された天板111と、天板111に取り付けられた複数の放熱フィン112と、水などの冷媒が流通する冷媒ジャケット113とを有する。冷媒ジャケット113は、外部のラジエータへ冷媒を循環させるための入口部114と出口部115を有する。
(Heat sink 110)
Although not limited to this, the heat sink 110 has a rectangular parallelepiped shape. An exemplary size of the heat sink 110 is 350 mm × 200 mm × 50 mm. The heat sink 110 includes a top plate 111 bonded to the back surface of the substrate 10 via the first bonding layer 61, a plurality of heat radiation fins 112 attached to the top plate 111, and a coolant jacket 113 through which a coolant such as water flows. Have The refrigerant jacket 113 has an inlet portion 114 and an outlet portion 115 for circulating the refrigerant to an external radiator.
 冷媒ジャケット113は、天板111と冷媒ジャケット113との気密性が確保されてヒートシンク外部への冷媒の漏れが防止されるように、天板111に固定されている。固定の方法は、1)ゴム製Oリングとねじ止め、2)シール材塗布とねじ止め、3)ロウ付け、および4)摩擦撹拌接合などから選択される方法を用いて天板111に固定される。 The refrigerant jacket 113 is fixed to the top plate 111 so that airtightness between the top plate 111 and the refrigerant jacket 113 is secured and leakage of the refrigerant to the outside of the heat sink is prevented. The fixing method is fixed to the top plate 111 using a method selected from 1) rubber O-ring and screwing, 2) application of sealing material and screwing, 3) brazing, and 4) friction stir welding. The
 ヒートシンク110は、熱伝導率が高く且つ入手しやすいものであることが好ましく、例えばCuまたはAlでできていてもよい。電力用半導体装置1000を車載用に用いる場合、ヒートシンク110は、軽量化ひいては燃費向上のために、Alでできていることが好ましい。 The heat sink 110 preferably has a high thermal conductivity and is easily available, and may be made of Cu or Al, for example. When the power semiconductor device 1000 is used for in-vehicle use, the heat sink 110 is preferably made of Al in order to reduce weight and improve fuel efficiency.
(第1から第6接合層61~66)
 第1接合層61は、ヒートシンク110と半導体モジュール101の基板10との間に設けられている。第1接合層61を構成する接合材は、Alでできているヒートシンク110への直接の接合を可能とするAl-Siろう材であってもよいし、Sn系はんだ材であってもよい。ここで、本明細書において、Sn系はんだ材は、Sn(錫)を主成分とするはんだ材であって、例えばAg(銀)、Cu(銅)、Bi(ビスマス)、In(インジウム)、Sb(アンチモン)またはPb(鉛)が添加されたものを指す。以下、例えばSnにCuが添加されたSn系はんだ材をSn-Cuはんだ材、のように示す。
(First to sixth bonding layers 61 to 66)
The first bonding layer 61 is provided between the heat sink 110 and the substrate 10 of the semiconductor module 101. The bonding material constituting the first bonding layer 61 may be an Al—Si brazing material that enables direct bonding to the heat sink 110 made of Al, or may be an Sn-based solder material. Here, in the present specification, the Sn-based solder material is a solder material mainly composed of Sn (tin), for example, Ag (silver), Cu (copper), Bi (bismuth), In (indium), This refers to those to which Sb (antimony) or Pb (lead) is added. Hereinafter, for example, an Sn-based solder material in which Cu is added to Sn is shown as an Sn—Cu solder material.
 第1接合層61を構成する接合材がSn系はんだ材であってヒートシンク110を構成する材料がAlであれば、ヒートシンク110に、例えばNiめっきまたはSnめっきを予め施しておくことにより、Sn系はんだとの合金化により、両者を直接に接合しやすくなる。めっき層の厚さは、約2μm以上約10μm以下であれば、はんだ材の濡れ性と接合部の信頼性とを十分に満足させられることがわかっている。 If the bonding material forming the first bonding layer 61 is an Sn-based solder material and the material forming the heat sink 110 is Al, the Ni-based or Sn plating is applied to the heat sink 110 in advance, for example, to form the Sn-based solder material. By alloying with solder, it becomes easy to join both directly. It has been found that if the thickness of the plating layer is about 2 μm or more and about 10 μm or less, the wettability of the solder material and the reliability of the joint can be sufficiently satisfied.
 ここで、ヒートシンク110を構成する材料がAlであり、基板10の絶縁層11が厚さ0.32mmのSi、表面導体層12と裏面導体層13がそれぞれ厚さ0.5mmのCuであるとする。ヒートシンク110を構成するAlの線膨張係数が23ppm/Kであるのに対し、基板10の見かけの線膨張係数は約7ppm/K以上約8ppm/K以下であり、両者の線膨張係数差が大きくなる。このように、ヒートシンク110を構成する材料と基板10を構成する材料との線膨張係数差が大きいとき、第1接合層61を構成する接合材に、降伏応力または0.2%耐力が大きい接合材を用いることにより、第1接合層61のき裂進展速度(負荷1サイクルあたりのき裂進展量)を小さくすることが好ましい。 Here, the material constituting the heat sink 110 is Al, the insulating layer 11 of the substrate 10 is Si 3 N 4 having a thickness of 0.32 mm, and the front conductor layer 12 and the back conductor layer 13 are Cu each having a thickness of 0.5 mm. Suppose that While the linear expansion coefficient of Al constituting the heat sink 110 is 23 ppm / K, the apparent linear expansion coefficient of the substrate 10 is about 7 ppm / K or more and about 8 ppm / K or less, and the difference between the two linear expansion coefficients is large. Become. As described above, when the difference in linear expansion coefficient between the material constituting the heat sink 110 and the material constituting the substrate 10 is large, the bonding material constituting the first bonding layer 61 is bonded with a large yield stress or 0.2% proof stress. By using a material, it is preferable to reduce the crack growth rate (crack growth amount per load cycle) of the first bonding layer 61.
 第2接合層62は、基板10と半導体素子21,22との間に設けられている。第3接合層63は、半導体素子21,22の表面21a,22aと第1主端子30との間に設けられている。第4接合層64は、主回路配線と第1主端子30との間に設けられている。第5接合層65は、基板10の表面導体層12と第2主端子40との間に設けられている。第6接合層66は、主回路配線と第2主端子40との間に設けられている。 The second bonding layer 62 is provided between the substrate 10 and the semiconductor elements 21 and 22. The third bonding layer 63 is provided between the surfaces 21 a and 22 a of the semiconductor elements 21 and 22 and the first main terminal 30. The fourth bonding layer 64 is provided between the main circuit wiring and the first main terminal 30. The fifth bonding layer 65 is provided between the surface conductor layer 12 of the substrate 10 and the second main terminal 40. The sixth bonding layer 66 is provided between the main circuit wiring and the second main terminal 40.
 第2から第6接合層62~66を構成する接合材は、はんだ材であってもよい。当該接合材は、導電性フィラー(銀またはグラファイト)を混合したエポキシ樹脂系の接着剤であってもよい。はんだ材などの低融点材料は、接合時の加熱温度が低いため使いやすいという利点がある。 The bonding material constituting the second to sixth bonding layers 62 to 66 may be a solder material. The bonding material may be an epoxy resin adhesive mixed with a conductive filler (silver or graphite). A low-melting-point material such as a solder material has an advantage that it is easy to use because the heating temperature at the time of joining is low.
 また、第2から第6接合層62~66を構成する接合材は、Ag系シンター材、Cu系シンター材およびCuSn(銅錫合金)系シンター材などの焼結性接合材であってもよい。ここで、焼結性金属接合材は、骨材である金属微粒子が有機成分中に分散されてペースト状になった接合材であり、金属微粒子がその金属の融点よりも低い温度で焼結する現象を利用したものである。焼結性金属接合材では、接合後の接合材の融点が金属としての本来の融点にまで高くなることにより、接合部の耐熱温度を高くすることができる。 Further, the bonding materials constituting the second to sixth bonding layers 62 to 66 may be sinterable bonding materials such as an Ag-based sintering material, a Cu-based sintering material, and a CuSn (copper tin alloy) -based sintering material. . Here, the sinterable metal bonding material is a bonding material in which fine metal particles, which are aggregates, are dispersed in an organic component to form a paste, and the fine metal particles are sintered at a temperature lower than the melting point of the metal. This is a phenomenon. In the sinterable metal bonding material, the heat resistance temperature of the bonded portion can be increased by increasing the melting point of the bonding material after bonding to the original melting point as a metal.
 一般的に、金属は再結晶温度以上で使用していると、結晶粒界が拡散により移動して結晶粒が粗大化し、金属疲労に対して弱くなる。そこで、特に、半導体素子21,22に直接に接する場所に設けられた第2、第3接合層62,63を構成する接合材は、長期信頼性の観点から、焼結性金属接合材であることが好ましい。 Generally, when a metal is used at a temperature higher than the recrystallization temperature, the crystal grain boundary moves due to diffusion, and the crystal grain becomes coarse and weak against metal fatigue. Therefore, in particular, the bonding material constituting the second and third bonding layers 62 and 63 provided in the place in direct contact with the semiconductor elements 21 and 22 is a sinterable metal bonding material from the viewpoint of long-term reliability. It is preferable.
(電力用半導体装置1000の製造方法)
 図7に示すように、電力用半導体装置1000の例示的な製造方法は、基板を準備するステップ1001、ヒートシンク110の表面に端子台120を固定するステップ1002、ヒートシンク110の表面に接合材を用いて基板10を接合し、第1接合層61を形成するステップ1003、基板10の表面に接合材を用いて半導体素子21,22を接合し、第2接合層62を形成するステップ1004、半導体素子21,22の表面21a,22aおよび主回路配線に接合材を用いて第1主端子30を接合して第3、第4接合層63,64を形成するステップ1005、および、基板10の表面導体層12および主回路配線に接合材を用いて第2主端子40を接合し、第5、第6接合層65,66を形成するステップ1006を含む。
(Manufacturing method of power semiconductor device 1000)
As shown in FIG. 7, an exemplary manufacturing method of the power semiconductor device 1000 includes a step 1001 for preparing a substrate, a step 1002 for fixing the terminal block 120 to the surface of the heat sink 110, and a bonding material on the surface of the heat sink 110. Step 1003 for bonding the substrate 10 to form the first bonding layer 61; Step 1004 for bonding the semiconductor elements 21 and 22 to the surface of the substrate 10 using a bonding material to form the second bonding layer 62; Steps 1005 for bonding the first main terminals 30 to the surfaces 21a and 22a of the 21 and 22 and the main circuit wiring by using a bonding material to form the third and fourth bonding layers 63 and 64, and the surface conductor of the substrate 10 A step 1006 is formed in which the second main terminal 40 is bonded to the layer 12 and the main circuit wiring by using a bonding material to form fifth and sixth bonding layers 65 and 66.
 接合材を用いるステップ1003~1006では、接合材がはんだ材であれば、接合材を加熱して溶融させて冷却することにより、接合材が焼結性接合材であれば、接合材を加熱して焼結させることにより、第1~第6接合層61~66を形成する。複数の接合部にはんだ材を配置し、公知のリフロー工程により一括で複数の接合層を形成してもよい。 In steps 1003 to 1006 using the bonding material, if the bonding material is a solder material, the bonding material is heated, melted, and cooled, and if the bonding material is a sinterable bonding material, the bonding material is heated. The first to sixth bonding layers 61 to 66 are formed by sintering. A solder material may be arranged at a plurality of joints, and a plurality of joint layers may be formed at a time by a known reflow process.
 例えば、半導体素子21,22の表面21a,22aおよび主回路配線51に第1主端子30を接合するステップ1005では、第3、第4接合層63,64を構成する接合材として、バルクはんだ材(棒はんだ、板はんだ、シートはんだなど)を用いることが好ましい。当該ステップ1005では、まず、表面21a,22aおよび主回路配線51の上にそれぞれバルクはんだ材を配置し、続いて第1主端子30を上から押し付けて、突起部34,37をバルクはんだ材内に圧入して固定することにより、電力用半導体装置1000の製造中に第1主端子30の位置ずれが抑制される。基板10の表面導体層12および主回路配線54に接合材を用いて第2主端子40を接合するステップ1006でも、同様に、第5、第6接合層65,66を構成する接合材として、バルクはんだ材を用いることにより、電力用半導体装置1000の製造中に第2主端子40の位置ずれが抑制される。 For example, in step 1005 for joining the first main terminal 30 to the surfaces 21a and 22a of the semiconductor elements 21 and 22 and the main circuit wiring 51, a bulk solder material is used as the joining material constituting the third and fourth joining layers 63 and 64. It is preferable to use (bar solder, plate solder, sheet solder, etc.). In the step 1005, first, a bulk solder material is disposed on each of the surfaces 21a, 22a and the main circuit wiring 51, and then the first main terminal 30 is pressed from above, so that the protrusions 34, 37 are placed in the bulk solder material. When the power semiconductor device 1000 is manufactured, the displacement of the first main terminal 30 is suppressed. In step 1006 for joining the second main terminal 40 to the surface conductor layer 12 and the main circuit wiring 54 of the substrate 10 using a joining material, similarly, as the joining materials constituting the fifth and sixth joining layers 65 and 66, By using the bulk solder material, the displacement of the second main terminal 40 is suppressed during the manufacture of the power semiconductor device 1000.
(効果)
 本実施形態1の効果について具体的に説明する。まず、本実施形態1に係る電力用半導体装置1000において想定される課題を説明する。
(effect)
The effect of the first embodiment will be specifically described. First, problems assumed in the power semiconductor device 1000 according to the first embodiment will be described.
 例えば、電力用半導体装置1000をモータ用のインバータ回路600として用いる場合、電力用半導体装置1000の主回路には、通常は数百アンペアの電流が流れる。主回路を構成する第1、第2主端子30,40の第3から第6接合層63~66は、線膨張係数の異なる材料同士を接合している。したがって、繰り返し印加される温度サイクルにより、接合層に作用する熱応力が大きくなると、き裂が進展し、接合部の断面積が小さくなる。そして、通電時に接合部に発生するジュール熱が多くなり、接合部に加わる熱応力も大きくなる。き裂が進展し、半導体素子21,22の表面主電極と主回路配線51~55との間に高い電位差が生じると、アーク放電を起こし電力用半導体装置1000が適正に動作できないという問題がある。 For example, when the power semiconductor device 1000 is used as the inverter circuit 600 for a motor, a current of several hundred amperes normally flows through the main circuit of the power semiconductor device 1000. The third to sixth joining layers 63 to 66 of the first and second main terminals 30 and 40 constituting the main circuit join materials having different linear expansion coefficients. Therefore, when the thermal stress acting on the bonding layer increases due to the repeatedly applied temperature cycle, the crack progresses and the cross-sectional area of the bonded portion decreases. And the Joule heat which generate | occur | produces in a junction part at the time of electricity supply increases, and the thermal stress added to a junction part also becomes large. If a crack develops and a high potential difference is generated between the main surface electrodes of the semiconductor elements 21 and 22 and the main circuit wires 51 to 55, there is a problem that the electric power semiconductor device 1000 cannot operate properly due to arc discharge. .
 接合層に作用する熱応力を考慮して接合部の信頼性を確保するためには、接合後の接合材の体積を適切に設定する必要がある。例えばはんだ接合の場合、接合材を一旦液相線温度以上まで上昇させ液化することで被接合材との界面の拡散を促進させ、その後再び固相線温度以下まで下降させて凝固させることで接合層の接合後の体積が決まる。例えばこのようにして、接合部に供給する接合材の量が決定される。 In order to secure the reliability of the joint in consideration of the thermal stress acting on the joining layer, it is necessary to appropriately set the volume of the joining material after joining. For example, in the case of solder bonding, the bonding material is temporarily raised to the liquidus temperature and then liquefied to promote diffusion at the interface with the material to be joined, and then lowered to the solidus temperature and then solidified. The volume after bonding of the layers is determined. For example, in this way, the amount of the bonding material supplied to the bonding portion is determined.
 しかし、接合層の体積は適切であっても、1)接合層の接合面積が小さい場合(き裂許容範囲が小さくなることによる)、または、2)接合層の厚さが小さい場合、接合層においてき裂が進展しやすくなる。 However, even if the volume of the bonding layer is appropriate, 1) when the bonding area of the bonding layer is small (because the allowable crack range is small), or 2) when the thickness of the bonding layer is small, the bonding layer In this case, cracks tend to propagate.
 接合層の接合面積は、第1、第2主端子30,40に水平状態からの傾きが生じたときに、大きくなる部分と小さくなる部分が生じる。第1、第2主端子30,40の傾きは、第1、第2主端子30,40の電極側接合部33,43と配線側接合部36,46との間で、部材の公差、および、接合層の厚さのばらつきにより生じる。 When the first and second main terminals 30 and 40 are inclined from the horizontal state, the bonding area of the bonding layer is increased and decreased. The inclination of the first and second main terminals 30 and 40 is such that the tolerance of the member between the electrode side joints 33 and 43 and the wiring side joints 36 and 46 of the first and second main terminals 30 and 40, and This is caused by variations in the thickness of the bonding layer.
 第1主端子30の傾きについて検討する。第1主端子30は、電極側接合部33で、第1接合層61、基板10、第2接合層62および半導体素子21,22の厚さの和に等しい高さで支持される。一方、第1主端子30は、配線側接合部36で、端子台120の下面から切欠部121までの高さに等しい(端子台120が接合層を介してヒートシンク110の天板111に接合されている場合は、接合層の高さとの和)で支持される。第1主端子30の電極側接合部33での高さと配線側接合部36での高さが理想的な高さからずれていた場合、第1主端子30に傾きが生じる。 Consider the inclination of the first main terminal 30. The first main terminal 30 is supported by the electrode-side bonding portion 33 at a height equal to the sum of the thicknesses of the first bonding layer 61, the substrate 10, the second bonding layer 62, and the semiconductor elements 21 and 22. On the other hand, the 1st main terminal 30 is the wiring side junction part 36, and is equal to the height from the lower surface of the terminal block 120 to the notch part 121 (The terminal block 120 is joined to the top plate 111 of the heat sink 110 via a joining layer. In this case, it is supported by the sum of the height of the bonding layer. When the height of the first main terminal 30 at the electrode side joint 33 and the height at the wiring side joint 36 deviate from the ideal height, the first main terminal 30 is inclined.
 本実施形態1では、第1主端子30の電極側接合部33と配線側接合部36が貫通孔35,38を有していることにより、第1主端子30の電極側接合部33での高さと配線側接合部36での高さの、理想的な高さからのずれは、溶融した接合材が貫通孔35,38に吸収されることにより、少なくとも部分的に相殺される。第2主端子40についても同様の作用が得られる。このようにして、第3から第6接合層63~66の接合面積が確保される。 In the first embodiment, the electrode side joint portion 33 and the wiring side joint portion 36 of the first main terminal 30 have the through holes 35 and 38, so that the electrode side joint portion 33 of the first main terminal 30 The deviation from the ideal height between the height and the height at the wiring side joint 36 is at least partially offset by the melted bonding material being absorbed by the through holes 35 and 38. The same effect can be obtained for the second main terminal 40. In this way, the bonding area of the third to sixth bonding layers 63 to 66 is ensured.
 このとき、第1主端子30の電極側接合部33と配線側接合部36が突起部34,37を有していることにより、第3から第6接合層63~66の最小厚さが規定される。第2主端子40についても同様の作用が得られる。このようにして、第3から第6接合層63~66の厚さが確保される。 At this time, since the electrode side bonding portion 33 and the wiring side bonding portion 36 of the first main terminal 30 have the protrusions 34 and 37, the minimum thickness of the third to sixth bonding layers 63 to 66 is defined. Is done. The same effect can be obtained for the second main terminal 40. In this way, the thicknesses of the third to sixth bonding layers 63 to 66 are ensured.
 また、本実施形態1では、2つの半導体素子21,22を1つの第1主端子30で接合していることから、同じ電極側接合部33においても、第1主端子30と半導体素子2122との間の第3接合層63と、第1主端子30と半導体素子22との間の第3接合層63との間で第1主端子30に傾きが生じるおそれがあるところ、半導体素子21側の第3接合層63と半導体素子22側の第3接合層63がそれぞれ突起部34および貫通孔35を有していることにより、第3接合層63の接合面積と厚みを確保できる。 In the first embodiment, since the two semiconductor elements 21 and 22 are joined by the one first main terminal 30, the first main terminal 30 and the semiconductor element 2122 are also formed at the same electrode-side joining portion 33. The first main terminal 30 may be inclined between the third bonding layer 63 between the first main terminal 30 and the third bonding layer 63 between the first main terminal 30 and the semiconductor element 22. Since the third bonding layer 63 and the third bonding layer 63 on the semiconductor element 22 side have the protrusions 34 and the through holes 35, the bonding area and thickness of the third bonding layer 63 can be secured.
 以上のようにして、第1、第2主端子30,40の電極側接合部33,43と配線側接合部36,46の信頼性が確保される。 As described above, the reliability of the electrode side joints 33 and 43 and the wiring side joints 36 and 46 of the first and second main terminals 30 and 40 is ensured.
 なお、本実施形態1では、第1、第2主端子30,40の電極側接合部33,43と配線側接合部36,46のすべてに突起部および貫通孔を設けたが、これらの少なくとも1つの接合部に突起部および貫通孔を設けることにより、上述の効果が少なくとも部分的に得られる。 In the first embodiment, the protrusions and the through holes are provided in all of the electrode side joints 33 and 43 and the wiring side joints 36 and 46 of the first and second main terminals 30 and 40. By providing the protrusion and the through hole in one joint, the above-described effects can be obtained at least partially.
実施の形態2.
 図8は、本発明の実施の形態2に係る電力用半導体装置を示す斜視図である。本実施形態2の説明および図面では、実施形態1と同一または対応する構成には同じ符号を付して、当該構成の説明を省略する。
Embodiment 2. FIG.
FIG. 8 is a perspective view showing a power semiconductor device according to the second embodiment of the present invention. In the description of the second embodiment and the drawings, the same or corresponding components as those of the first embodiment are denoted by the same reference numerals, and the description of the components is omitted.
 本実施形態2に係る電力用半導体装置の半導体モジュール201の枠部材70は、筐体部71と、筐体部71から長さ方向Yに突出する凸部72とを有する。枠部材70の筐体部71は、半導体素子21,22を囲むように設けられている。幅方向Yで筐体部71の端子台側は、第1、第2主端子30,40の配線部32,42に干渉しないように切り欠かれている。 The frame member 70 of the semiconductor module 201 of the power semiconductor device according to the second embodiment includes a housing portion 71 and a convex portion 72 that protrudes from the housing portion 71 in the length direction Y. The casing 71 of the frame member 70 is provided so as to surround the semiconductor elements 21 and 22. The terminal block side of the casing 71 in the width direction Y is cut away so as not to interfere with the wiring portions 32 and 42 of the first and second main terminals 30 and 40.
 枠部材70の壁面の外側には、ヒートシンク110に向かって延びる突出部73が設けられている。突出部73は、ヒートシンク110に設けられた凹部116と嵌合している。突出部73が凹部116に嵌合することにより、電力用半導体装置の製造時における半導体モジュール101の位置ずれが抑制される。 A protrusion 73 extending toward the heat sink 110 is provided on the outside of the wall surface of the frame member 70. The protrusion 73 is fitted in a recess 116 provided in the heat sink 110. By fitting the protrusion 73 into the recess 116, the positional deviation of the semiconductor module 101 during the manufacture of the power semiconductor device is suppressed.
 枠部材70は、例えば射出成型可能で耐熱性の高い樹脂でできている。枠部材70は、PPS(ポリフェニレンサルファイド)、液晶樹脂、フッ素系樹脂でできていてもよい。図示していないが、枠部材70の内側には封止樹脂が注入され、半導体素子21,22、第1、第2主端子30,40の電極部31,41などが樹脂封止される。枠部材70は、基板10の表面導体層12の表面に、裏面(符号なし)図示しない第7接合層を介して接合されている。第7接合層を構成する接合材は、シリコーン系の柔らかい接着剤であってもよい。 The frame member 70 is made of, for example, a resin that can be injection-molded and has high heat resistance. The frame member 70 may be made of PPS (polyphenylene sulfide), liquid crystal resin, or fluorine resin. Although not shown, sealing resin is injected inside the frame member 70, and the semiconductor elements 21, 22, the electrode portions 31, 41 of the first and second main terminals 30, 40, and the like are sealed with resin. The frame member 70 is bonded to the front surface of the front surface conductor layer 12 of the substrate 10 via a back surface (no reference) through a seventh bonding layer (not shown). The bonding material constituting the seventh bonding layer may be a silicone-based soft adhesive.
 枠部材70からは高さ方向Zに制御端子80が突出して延びている。制御端子80は、半導体素子21の表面21aに設けられたゲートに、ボンディングワイヤ81(またはボンディングリボン)を介して接合されている。 A control terminal 80 protrudes from the frame member 70 in the height direction Z. The control terminal 80 is joined to a gate provided on the surface 21a of the semiconductor element 21 via a bonding wire 81 (or a bonding ribbon).
 図示していないが、枠部材70と基板10の表面導体層12との接合部は、半導体モジュール外部へ封止樹脂が流出しないように、シールを行い封止材で封入されている。これにより、半導体素子21,22の主電極間、および、当該主電極とヒートシンク110との間の電気絶縁性が確保される。 Although not shown, the joint between the frame member 70 and the surface conductor layer 12 of the substrate 10 is sealed and sealed with a sealing material so that the sealing resin does not flow out of the semiconductor module. Thereby, electrical insulation between the main electrodes of the semiconductor elements 21 and 22 and between the main electrodes and the heat sink 110 is ensured.
 第1主端子30の電極部31は、枠部材70の凸部72に相補的な形状の凹部39を有する。凹部39は、第1主端子30の幅方向Xの中央付近を切り欠いて形成されている。凹部39は、枠部材70の凸部72と略等しい寸法を有しており、両者は互いに係合するように構成されている。 The electrode portion 31 of the first main terminal 30 has a concave portion 39 having a shape complementary to the convex portion 72 of the frame member 70. The recess 39 is formed by cutting out the vicinity of the center in the width direction X of the first main terminal 30. The concave portion 39 has a dimension substantially equal to the convex portion 72 of the frame member 70, and both are configured to engage with each other.
 本実施形態2によれば、基板10に固定された枠部材70の凸部72と第1主端子30の凹部39とが係合していることにより、第3接合層63を介して主端子30を半導体素子21,22および主回路配線51に接合する際に生じる主端子30の位置ずれが抑制される。 According to the second embodiment, the convex portion 72 of the frame member 70 fixed to the substrate 10 and the concave portion 39 of the first main terminal 30 are engaged, so that the main terminal is interposed via the third bonding layer 63. Misalignment of the main terminal 30 that occurs when 30 is bonded to the semiconductor elements 21 and 22 and the main circuit wiring 51 is suppressed.
 なお、上述の説明では、枠部材70の筐体部71に凸部72を設け、第1主端子30の電極部31に凹部39を設けたが、実施形態2の変形例として、枠部材70の筐体部71に凹部を設け、第1主端子30の電極部31に凸部を設けても、上述の効果と同等の効果が得られる。 In the above description, the convex portion 72 is provided in the casing portion 71 of the frame member 70 and the concave portion 39 is provided in the electrode portion 31 of the first main terminal 30. However, as a modification of the second embodiment, the frame member 70 is provided. Even if the housing portion 71 is provided with a recess and the electrode portion 31 of the first main terminal 30 is provided with a projection, the same effect as described above can be obtained.
実施の形態3.
 図9は、本発明の実施の形態3に係る電力用半導体装置を示す斜視図である。本実施形態3の説明および図面では、実施形態1,2と同一または対応する構成には同じ符号を付して、当該構成の説明を省略する。
Embodiment 3 FIG.
FIG. 9 is a perspective view showing a power semiconductor device according to the third embodiment of the present invention. In the description of the third embodiment and the drawings, the same or corresponding components as those of the first and second embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
 実施形態3では、第1主端子30の配線側接合部36に、第1主端子30の厚さ方向(高さ方向Z)に貫通して延びる溝部238が形成されている。第2主端子40の電極側接合部43および第2主端子40の配線側接合部46には、それぞれ、第2主端子40の厚さ方向(高さ方向Z)に貫通して延びる溝部245,248が形成されている。これらの溝部238,245,248は、幅方向Xに開口している。すなわち、溝部238,245,248は、図2に示す貫通孔38,45,48が幅方向Xに延びて開口したものである。溝部238,245,248は、幅方向Xから長さ方向Yに向かって傾斜した方向に開口していてもよい。 In the third embodiment, a groove portion 238 extending through the first main terminal 30 in the thickness direction (the height direction Z) is formed in the wiring side joint portion 36 of the first main terminal 30. A groove portion 245 extending through the thickness direction (height direction Z) of the second main terminal 40 is formed in the electrode side bonding portion 43 of the second main terminal 40 and the wiring side bonding portion 46 of the second main terminal 40, respectively. , 248 are formed. These groove portions 238, 245, and 248 are open in the width direction X. That is, the groove portions 238, 245, and 248 are formed by opening the through holes 38, 45, and 48 shown in FIG. The grooves 238, 245, 248 may open in a direction inclined from the width direction X toward the length direction Y.
 次に、本実施形態3により得られる効果について説明する。一般的に、電力用半導体装置の出荷前には、接合層の外観検査が行われる。具体的には、1)接合層にボイドなどの欠落部が生じていないか、2)接合材と被接合材との界面に合金層が必要量形成されているか、3)接合材が被接合面全体に濡れ拡がっているか、などを確認する検査が行われる。 Next, effects obtained by the third embodiment will be described. In general, the appearance inspection of the bonding layer is performed before the shipment of the power semiconductor device. Specifically, 1) Is there a void or the like missing in the bonding layer, 2) Is the required amount of alloy layer formed at the interface between the bonding material and the material to be bonded, and 3) The bonding material is to be bonded? An inspection is performed to check whether the entire surface is wet and spread.
 まず、上記の1)接合層にボイドなどの欠落部が生じていないか、を確認する検査については、透過型X線撮影装置を用いることが多い。しかし、透過型X線撮影装置を用いた場合、ヒートシンク110の放熱フィン112など、確認対象の接合層以外のものが投影面に映り込んでしまい、接合層における欠落部を高精度に検出することが困難となる。この問題はX線CT装置を用いることにより解消する可能性があるが、X線CT装置を用いた撮影には長い時間を要するので、電力用半導体装置の生産性が低下するという問題が生じる。 First, a transmission X-ray imaging apparatus is often used for the above-described inspection 1) to check whether a void or other missing portion has occurred in the bonding layer. However, when a transmission X-ray imaging apparatus is used, things other than the bonding layer to be confirmed, such as the heat radiation fin 112 of the heat sink 110, are reflected on the projection surface, and the missing portion in the bonding layer is detected with high accuracy. It becomes difficult. Although this problem may be solved by using an X-ray CT apparatus, since a long time is required for imaging using the X-ray CT apparatus, there arises a problem that the productivity of the power semiconductor device decreases.
 次に、上記の2)接合材と被接合材との界面に合金層が必要量形成されているか、を確認する検査については、超音波探傷を用いることにより、未接合領域の判断を行うことができる。しかし、超音波探傷を用いた撮影には長い時間を要するので、電力用半導体装置の生産性が低下するという問題が生じる。 Next, for the inspection to confirm whether the required amount of the alloy layer is formed at the interface between the bonding material and the material to be bonded, the determination of the unbonded region is performed by using ultrasonic flaw detection. Can do. However, since imaging using ultrasonic flaw detection takes a long time, there arises a problem that the productivity of the power semiconductor device decreases.
 ここで、第1、第2接合層61,62のように、半導体素子21,22からヒートシンク110への放熱経路を構成する接合層では、ボイドの発生率について厳しい品質管理が求められないことが多く、はんだ接合工程でのプロセス条件で、ボイドの発生率の管理を行うことが一般的である。例えば、フラックスレス真空はんだプロセスの場合、真空度とボイドの発生率との既知の相関関係に基づいて、ボイド率を間接的に管理できる。また、合金層の形成については、液相線以上の温度に晒される時間と合金層の形成量との相関関係に基づいて、合金層の形成量を間接的に管理できる。 Here, as in the first and second bonding layers 61 and 62, in the bonding layer constituting the heat dissipation path from the semiconductor elements 21 and 22 to the heat sink 110, strict quality control may not be required for the void generation rate. In many cases, the generation rate of voids is generally managed under the process conditions in the solder bonding process. For example, in the case of a fluxless vacuum solder process, the void ratio can be indirectly managed based on a known correlation between the degree of vacuum and the void generation rate. As for the formation of the alloy layer, the formation amount of the alloy layer can be indirectly managed based on the correlation between the exposure time to the temperature above the liquidus and the formation amount of the alloy layer.
 一方、上記の3)接合材が被接合面全体に濡れ拡がっているか、を確認する検査については、第1、第2主端子30,40の端部で接合層に形成されるフィレット形状を目視で確認することにより、簡便に且つ有効に行うことができる。 On the other hand, for the above-mentioned 3) inspection for confirming whether or not the bonding material spreads over the entire surface to be bonded, the fillet shape formed in the bonding layer at the ends of the first and second main terminals 30 and 40 is visually observed. By confirming with, it can carry out simply and effectively.
 しかし、各接合層の中心部またはその付近では、第1、第2主端子30,40の接合層に形成されるフィレット形状を確認するだけでは、接合材が被接合面全体に濡れ拡がっていることを確認することは困難である。 However, at or near the center of each bonding layer, the bonding material spreads over the entire surface to be bonded only by confirming the fillet shape formed in the bonding layers of the first and second main terminals 30 and 40. It is difficult to confirm that.
 本実施形態3では、第1主端子30の配線側接合部36、第2主端子40の電極側接合部43および第2主端子40の配線側接合部46に、それぞれ溝部238,245,248が形成されていることにより、実施形態1,2で説明した効果を得つつ、接合層のフィレット形状をより視認しやすくなり、接合材が被接合面全体に濡れ拡がっているか、についての確認の精度が向上する。 In the third embodiment, grooves 238, 245, and 248 are formed in the wiring side joint 36 of the first main terminal 30, the electrode side joint 43 of the second main terminal 40, and the wiring side joint 46 of the second main terminal 40, respectively. As a result, it is easier to visually recognize the fillet shape of the bonding layer while obtaining the effects described in the first and second embodiments, and confirmation of whether the bonding material spreads over the entire surface to be bonded. Accuracy is improved.
 なお、本実施形態3では、第1主端子30の配線側接合部36、第2主端子40の電極側接合部43および第2主端子40の配線側接合部46に溝部を設けたが、本発明はこれに限定されることなく、第1主端子30の電極側接合部33にも溝部を設けてよい。また、これら4つの接合部のうち1つ以上に溝部を設けることにより、上述の効果を少なくとも部分的に得ることができる。 In the third embodiment, the groove portion is provided in the wiring side joint portion 36 of the first main terminal 30, the electrode side joint portion 43 of the second main terminal 40, and the wiring side joint portion 46 of the second main terminal 40. The present invention is not limited to this, and a groove portion may be provided in the electrode side joint portion 33 of the first main terminal 30. Moreover, the above-mentioned effect can be obtained at least partially by providing a groove in one or more of these four joints.
実施の形態4.
 本実施形態4の説明では、実施形態1から3と同一または対応する構成には同じ符号を付して、当該構成の説明を省略する。
Embodiment 4 FIG.
In the description of the fourth embodiment, the same or corresponding components as those in the first to third embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
 本実施形態4に係る電力用半導体装置では、第1、第3から第6接合層61,63~66を構成する接合材としてSn系はんだ材を用い、第2接合層62を構成する接合材として、Sn系はんだ材よりも降伏応力または0.2%耐力が大きい焼結性接合材を用いる。 In the power semiconductor device according to the fourth embodiment, an Sn-based solder material is used as the bonding material forming the first, third to sixth bonding layers 61, 63 to 66, and the bonding material forming the second bonding layer 62 is used. As described above, a sinterable bonding material having a yield stress or 0.2% yield strength greater than that of the Sn-based solder material is used.
 本実施形態4に係る電力用半導体装置の製造方法では、第1、第3から第6接合層61,63~66は、実施形態1で説明したように、公知のリフロー工程により一括で形成する。 In the method for manufacturing a power semiconductor device according to the fourth embodiment, the first to third to sixth bonding layers 61 and 63 to 66 are collectively formed by a known reflow process as described in the first embodiment. .
 次に、本実施形態4の効果を説明する。基板10の表面導体層12と半導体素子21,22とを接合する第2接合層62は、他の接合層に比べてき裂に対する感度が大きい。したがって、本実施形態4によれば、第2接合層62を構成する接合材として焼結性接合材を用い、かつ、第1、第3から第6接合層61,63~66を構成する接合材としてSn系はんだ材を用いて一括でこれらの接合層を形成することにより、生産性の向上を図りつつ、各接合部の高い信頼性を確保できる。 Next, the effect of the fourth embodiment will be described. The second bonding layer 62 that bonds the surface conductor layer 12 of the substrate 10 and the semiconductor elements 21 and 22 is more sensitive to cracks than other bonding layers. Therefore, according to the fourth embodiment, the sinterable bonding material is used as the bonding material forming the second bonding layer 62, and the bonding forming the first to third to sixth bonding layers 61, 63 to 66 is performed. By forming these bonding layers in a lump using Sn-based solder material as a material, high reliability of each bonding portion can be ensured while improving productivity.
実施の形態5.
 本実施形態5の説明では、実施形態1から4と同一または対応する構成には同じ符号を付して、当該構成の説明を省略する。
Embodiment 5 FIG.
In the description of the fifth embodiment, the same or corresponding components as those in the first to fourth embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
 本実施形態5に係る電力用半導体装置では、第1、第2、第4、第6接合層61,62,64,66を構成する接合材として、降伏応力または0.2%耐力が第3、第5接合層63,65を構成する接合材よりも大きいSn-Sbはんだ材を用いる。第3、第5接合層63,65を構成する接合材としては、例えばPbフリーのSn-Cuはんだ材を用いる。 In the power semiconductor device according to the fifth embodiment, the yield stress or 0.2% proof stress is the third as the bonding material constituting the first, second, fourth, and sixth bonding layers 61, 62, 64, 66. In addition, a Sn—Sb solder material larger than the bonding material constituting the fifth bonding layers 63 and 65 is used. As a bonding material constituting the third and fifth bonding layers 63 and 65, for example, a Pb-free Sn—Cu solder material is used.
 本実施形態5に係る電力用半導体装置の製造方法では、第1から第6接合層61~66は、実施形態1で説明したように、公知のリフロー工程により一括で形成する。 In the method for manufacturing a power semiconductor device according to the fifth embodiment, the first to sixth bonding layers 61 to 66 are collectively formed by a known reflow process as described in the first embodiment.
 次に、本実施形態5の効果を説明する。第1接合層61では、接合部材同士(ヒートシンク110と基板10)の間の厚さの差と線膨張係数差が大きくなる。基板10と半導体素子21,22とを接合する第2接合層62は、上述のとおり、き裂に対する感度が大きい。第1、第2主端子30,40と主回路配線51,55とをそれぞれ接合する第4、第6接合層64,66は、接合面積を最小化することが好ましい。 Next, the effect of the fifth embodiment will be described. In the first bonding layer 61, the difference in thickness between the bonding members (the heat sink 110 and the substrate 10) and the difference in linear expansion coefficient are increased. As described above, the second bonding layer 62 that bonds the substrate 10 and the semiconductor elements 21 and 22 has high sensitivity to cracks. The fourth and sixth bonding layers 64 and 66 that bond the first and second main terminals 30 and 40 and the main circuit wirings 51 and 55, respectively, preferably minimize the bonding area.
 本実施形態5では、第1、第2、第4、第6接合層61,62,64,66を構成する接合材としてSn-Sbはんだ材を用い、かつ、第1から第6接合層61~66を構成する接合材としてSn系はんだ材を用いて一括でこれらの接合層を形成することにより、生産性の向上を図りつつ、各接合部の高い信頼性を確保できる。 In the fifth embodiment, Sn—Sb solder material is used as the bonding material constituting the first, second, fourth, and sixth bonding layers 61, 62, 64, and 66, and the first to sixth bonding layers 61 are used. Forming these bonding layers in a lump using Sn-based solder materials as bonding materials constituting the components 66 to 66 can ensure high reliability of each bonding portion while improving productivity.
実施の形態6.
 本実施形態6の説明では、実施形態1から5と同一または対応する構成には同じ符号を付して、当該構成の説明を省略する。
Embodiment 6 FIG.
In the description of the sixth embodiment, the same or corresponding components as those in the first to fifth embodiments are denoted by the same reference numerals, and the description of the configuration is omitted.
(接合材)
 一般的に、はんだ材の供給方法として、還元作用をもつフラックスに微小なはんだボールを含浸させたクリームはんだを印刷する方法、または、ディスペンサを用いてクリームはんだを塗布する方法が知られている。
(Joining material)
Generally, as a solder material supply method, a method of printing cream solder obtained by impregnating fine solder balls in a flux having a reducing action, or a method of applying cream solder using a dispenser is known.
 第1、第2主端子30,40では、電極側接合部と配線側接合部との間で高さが異なる。したがって、クリームはんだを用いる場合、印刷を複数回に分けて行い、さらに第1、第2主端子30,40を反転させる必要があり、これにより生産性が低下することが考えられる。 The heights of the first and second main terminals 30 and 40 are different between the electrode side joint and the wiring side joint. Therefore, when using cream solder, it is necessary to divide the printing into a plurality of times and to invert the first and second main terminals 30 and 40, which may reduce productivity.
 一方、ディスペンサを用いてクリームはんだを塗布する場合、半導体素子21,22の表面21a,22aと主回路配線51,52とに直接にアクセスしてはんだ材を供給することは可能であり、第1、第2主端子30,40を反転させる必要はない。しかし、塗布開始の際にディスペンサの先端にはんだ材が残ること、塗布完了後にディスペンサを引き上げる際に液切れが生じることにより、はんだ材の供給量にばらつきが生じることが考えられる。 On the other hand, when applying cream solder using a dispenser, it is possible to directly access the surfaces 21a and 22a of the semiconductor elements 21 and 22 and the main circuit wirings 51 and 52 to supply the solder material. The second main terminals 30 and 40 need not be inverted. However, it is conceivable that the solder material remains at the tip of the dispenser at the start of application, and the supply amount of the solder material varies due to the occurrence of liquid breakage when the dispenser is lifted after the application is completed.
 また、クリームはんだを用いる場合、フラックス残渣が接合し、長期信頼性における故障の原因などを引き起こすおそれがある。そこで、一般的には、クリームはんだを用いる場合、超音波洗浄法を用いてフラックス残渣を除去する。しかし、本発明の実施形態に係る電力用半導体装置でこの方法を採ると、枠部材70、端子台120などの樹脂部品とともに、全体を一括で洗浄する必要が生じる。これにより、残渣の除去手段に加えて、樹脂部品からの異物飛散を防止する手段を設けることが必要となり、電力用半導体装置1000の製造コストが上昇する。 Also, when cream solder is used, flux residues may be joined, causing a failure in long-term reliability. Therefore, in general, when cream solder is used, the flux residue is removed using an ultrasonic cleaning method. However, when this method is employed in the power semiconductor device according to the embodiment of the present invention, it is necessary to clean the whole together with the resin components such as the frame member 70 and the terminal block 120. As a result, it is necessary to provide a means for preventing the scattering of foreign matters from the resin component in addition to the means for removing the residue, and the manufacturing cost of the power semiconductor device 1000 increases.
 こうした課題に鑑みて、実施形態6では、第1から第6接合層61~66を構成する接合材として、フラックスレスはんだ材を用いる。このフラックスレスはんだ材は、例えば、フラックスを含有しない微小なはんだボールをシート状に圧延したものである。フラックスレスはんだ材は、Sn系はんだよりも硬い刃型で抜き加工される。 In view of such problems, in the sixth embodiment, a fluxless solder material is used as the bonding material constituting the first to sixth bonding layers 61 to 66. This fluxless solder material is obtained, for example, by rolling minute solder balls containing no flux into a sheet. The fluxless solder material is punched with a blade type that is harder than Sn solder.
 フラックスレスはんだ材がシート状であることにより、各接合部に供給するはんだ材の量を安定させることができる。また、フラックスレスはんだ材を用いる事により、基本的には、はんだ接合後の洗浄を行う必要がない。 Since the fluxless solder material is in the form of a sheet, the amount of solder material supplied to each joint can be stabilized. Further, by using a fluxless solder material, it is basically unnecessary to perform cleaning after soldering.
(接合材の加熱方法)
 一般的に、フラックスレスはんだ材の加熱方法として、1)リフロー槽に熱風を送り込む雰囲気加熱方式、2)加熱ブロックからワークへの伝熱方式、および、3)ハロゲンランプなど赤外線を用いた輻射熱方式の3つの方式が主として存在する。
(Bonding material heating method)
In general, as a heating method for fluxless solder materials, 1) an atmosphere heating method in which hot air is sent into a reflow bath, 2) a heat transfer method from a heating block to a workpiece, and 3) a radiant heat method using infrared rays such as a halogen lamp. There are mainly three methods.
 ここで、フラックスレスはんだ材を用いる場合、フラックスの代わりに還元力を有するギ酸、水素などの還元ガスを用いることが一般的である。雰囲気加熱方式の場合、熱風を効率良く送り込むリフロー槽を設ける必要があるが、ギ酸、水素ガスを用いた場合、酸性のギ酸を含むガスによる異臭の発生、水素爆発などを防止するため、リフロー槽に気密性を持たせることが必要となる。しかし、リフロー槽の気密性を確保しつつ熱風を効率良く送りこむことは、困難であるか、リフロー槽の製造コストが高くなる。 Here, when using a fluxless solder material, it is common to use a reducing gas such as formic acid or hydrogen having reducing power instead of flux. In the case of atmospheric heating method, it is necessary to provide a reflow tank that efficiently sends hot air, but when formic acid and hydrogen gas are used, a reflow tank is used to prevent generation of off-flavors due to gas containing acidic formic acid, hydrogen explosion, etc. It is necessary to provide airtightness. However, it is difficult to efficiently send hot air while ensuring the airtightness of the reflow tank, or the manufacturing cost of the reflow tank is increased.
 次に、伝熱方法の場合、はんだ接合部品として、他の部品に比べて大型であるヒートシンク110と基板10とのはんだ接合を行う際に、ヒートシンク110の反り量によっては、伝熱経路に空気層が介在することになる。空気は熱伝導率が低いことから、被接合面同士の間での温度差、および、各被接合面内での温度のばらつきが解消されないことも考えられる。 Next, in the case of the heat transfer method, when solder bonding is performed between the heat sink 110 and the substrate 10, which are larger than other components, as solder joint components, depending on the amount of warpage of the heat sink 110, air may be introduced into the heat transfer path. There will be intervening layers. Since air has a low thermal conductivity, it is considered that the temperature difference between the surfaces to be joined and the variation in temperature within each surface to be joined cannot be eliminated.
 次に、輻射熱方式の場合、ヒートシンク110の反りなど形状因子に起因する熱伝達不足、熱伝達分布は発生しない。また、雰囲気加熱方式のように、気密性が確保され且つ効率良く熱風を送り込むことが可能なリフロー槽を設ける必要はない。ただし、受熱面を構成する材料の種類、面の粗さ、材料の酸化度によって放射率が大きく異なるところ、放射率の大きさによっては効率良く熱伝達できないおそれがある。 Next, in the case of the radiant heat method, heat transfer shortage and heat transfer distribution due to shape factors such as warpage of the heat sink 110 do not occur. Further, unlike the atmosphere heating method, it is not necessary to provide a reflow tank that is airtight and that can efficiently send hot air. However, where the emissivity varies greatly depending on the type of material constituting the heat receiving surface, the roughness of the surface, and the degree of oxidation of the material, there is a possibility that heat cannot be transferred efficiently depending on the size of the emissivity.
 本発明者らによる試験研究の結果、被接合体の放射率が0.3以上であれば輻射熱方式を用いることにより、被接合体の放射率が0.3以下であれば伝熱方法を用いることにより、熱伝達効率を大きくしてはんだ付けを行うことができ、これにより生産性が向上することがわかった。そこで、本実施形態6では、図7に示すステップ1003~1006において接合材としてフラックスレスはんだ材を用い、被接合体の放射率に応じて、輻射熱方式または伝熱方法をフラックスレスはんだ材の加熱方法として採用する。 As a result of the test research by the present inventors, if the emissivity of the bonded object is 0.3 or more, the radiant heat method is used. If the emissivity of the bonded object is 0.3 or less, the heat transfer method is used. As a result, it was found that the heat transfer efficiency can be increased and soldering can be performed, which improves productivity. Therefore, in the sixth embodiment, a fluxless solder material is used as a bonding material in steps 1003 to 1006 shown in FIG. 7, and a radiant heat method or a heat transfer method is used to heat the fluxless solder material in accordance with the emissivity of the objects to be bonded. Adopt as a method.
実施の形態7.
 上述のとおり、フラックスレスはんだ材の加熱方法として赤外線光源(ハロゲンランプなど)による輻射熱方式を用いた場合、受熱面を構成する材料の種類、面の粗さ、材料の酸化度によって放射率が大きく異なるところ、放射率の大きさによっては効率良く熱伝達できない場合がある。また、上述のとおり、第4、第6接合層64,66を挟んで、Cu、Alなどの材料で作られた第1、第2主端子30,40と、PPS、液晶樹脂、フッ素系樹脂などの樹脂材料で作られた端子台120とが存在する。
Embodiment 7 FIG.
As described above, when a radiant heat method using an infrared light source (such as a halogen lamp) is used as a heating method for the fluxless solder material, the emissivity increases depending on the type of material constituting the heat receiving surface, the roughness of the surface, and the degree of oxidation of the material There are cases where heat transfer cannot be performed efficiently depending on the emissivity. In addition, as described above, the first and second main terminals 30 and 40 made of a material such as Cu and Al with the fourth and sixth bonding layers 64 and 66 sandwiched therebetween, PPS, liquid crystal resin, and fluorine resin. And a terminal block 120 made of a resin material.
 ここで、ハロゲンランプから放出される光の波長は、典型的には約1μm以上約10μm以下である。この波長範囲の光に対する放射率は、Cu、Alの非酸化面では0.1以下であり、PPS、液晶樹脂、フッ素系樹脂などの樹脂材料では0.85以上である。したがって、隣接配置されている部材を構成する材料同士の間で、放射率が大きく異なる場合がある。 Here, the wavelength of light emitted from the halogen lamp is typically about 1 μm or more and about 10 μm or less. The emissivity for light in this wavelength range is 0.1 or less for non-oxidized surfaces of Cu and Al, and 0.85 or more for resin materials such as PPS, liquid crystal resin, and fluorine resin. Therefore, the emissivity may be greatly different between the materials constituting the adjacent members.
 はんだ付け時の処理時間を短くして生産性を高めるために、輻射熱のエネルギーを大きくしていくと、第4、第6接合層64,66の近傍に位置する樹脂材料に伝わるエネルギー量が大きくなる。この樹脂材料が、樹脂の軟化温度または分解温度を超える温度に至った場合、端子台120の一部が構造材として機能しなくなるおそれがある。 In order to shorten the processing time at the time of soldering and increase productivity, when the energy of radiant heat is increased, the amount of energy transmitted to the resin material located in the vicinity of the fourth and sixth bonding layers 64 and 66 increases. Become. When this resin material reaches a temperature exceeding the softening temperature or decomposition temperature of the resin, part of the terminal block 120 may not function as a structural material.
 そこで、本実施形態7では、第4、第6接合層64,66を形成するステップ1005,1006において接合材としてフラックスレスはんだ材を用いると共に、ヒートシンク110の表面に端子台120を固定するステップ1002において、端子台カバー121が設けられた端子台120(図10を参照)を用いる。 Therefore, in the seventh embodiment, a fluxless solder material is used as a bonding material in steps 1005 and 1006 for forming the fourth and sixth bonding layers 64 and 66, and the terminal block 120 is fixed to the surface of the heat sink 110. The terminal block 120 (see FIG. 10) provided with a terminal block cover 121 is used.
 端子台カバー121は、端子台120を全体的に覆うように設けられている。端子台カバー121は、第1、第2主端子30,40を構成する材料と同じ(または同程度の)放射率を有する。端子台カバー121は、Cu、Alなどの金属材料で作られていてよい。端子台カバー121の放射率は、端子台カバー121を構成する材料の種類だけでなく、面の粗さ、材料の酸化度によって調節されてもよい。 The terminal block cover 121 is provided so as to cover the terminal block 120 as a whole. The terminal block cover 121 has the same emissivity as (or the same as) the material constituting the first and second main terminals 30 and 40. The terminal block cover 121 may be made of a metal material such as Cu or Al. The emissivity of the terminal block cover 121 may be adjusted not only by the type of material constituting the terminal block cover 121 but also by the roughness of the surface and the degree of oxidation of the material.
 本実施形態7によれば、端子台120が端子台カバー121で覆われていることにより、輻射熱を用いたフレックスレスはんだ材の加熱で第4、第6接合層64,66を形成した場合であっても、樹脂材料からなる端子台120の昇温を抑制しつつ、輻射熱のエネルギーを大きくすることができ、ひいてははんだ付けに要する時間を短縮して、生産性を高めることができる。 According to the seventh embodiment, when the terminal block 120 is covered with the terminal block cover 121, the fourth and sixth bonding layers 64 and 66 are formed by heating the flexless solder material using radiant heat. Even in such a case, it is possible to increase the energy of the radiant heat while suppressing the temperature rise of the terminal block 120 made of a resin material, thereby reducing the time required for soldering and improving the productivity.
 以上、複数の実施形態を挙げて本発明を説明したが、本発明は実施形態に限定されないと理解すべきである。また、各実施形態に記載された特徴は、自由に組み合わせられてよい。また、実施形態には、種々の改良、設計上の変更および削除が加えられてよい。 Although the present invention has been described with reference to a plurality of embodiments, it should be understood that the present invention is not limited to the embodiments. The features described in each embodiment may be freely combined. Various improvements, design changes, and deletions may be added to the embodiments.
10 基板、 11 絶縁層、 12 表面導体層、 13 裏面導体層、 21,22 半導体素子、 21a,21b (半導体素子の)表面、 30 第1主端子、 31 (第1主端子の)電極部、 32 (第1主端子の)配線部、 33 電極側接合部、 34 突起部、 35 貫通孔、 36 配線側接合部、 37 突起部、 38 貫通孔、 39 凹部、 40 第2主端子、 41 (第2主端子の)電極部、 42 (第2主端子の)配線部、 43 電極側接合部、 44 突起部、 45 貫通孔、 46 配線側接合部、 47 突起部、 48 貫通孔、 51~55 主回路配線、 61~66 第1から第6接合層、 70 枠部材、 72 凸部、 80 制御端子、 101~106,201,301 半導体モジュール、 110 ヒートシンク、 120 端子台、 238,248 溝部、 1000 電力用半導体装置 10 substrate, 11 insulating layer, 12 surface conductor layer, 13 back conductor layer, 21, 22 semiconductor element, 21a, 21b (semiconductor element) surface, 30 first main terminal, 31 (first main terminal) electrode part, 32 (first main terminal) wiring part, 33 electrode side joint part, 34 protrusion part, 35 through hole, 36 wiring side joint part, 37 protrusion part, 38 through hole, 39 concave part, 40 second main terminal, 41 ( Electrode part of second main terminal), 42 (second main terminal) wiring part, 43 electrode side joint part, 44 projection part, 45 through hole, 46 wiring side joint part, 47 projection part, 48 through hole, 51- 55, main circuit wiring, 61-66, first to sixth bonding layers, 70 frame members, 72 convex parts, 80 control terminals, 101-106, 201, 01 semiconductor module, 110 a heat sink, 120 terminal blocks 238 and 248 grooves, semiconductor device 1000 power

Claims (12)

  1.  基板と、
     前記基板に接合された裏面と、第1主電極が設けられた表面と、を有する半導体素子と、
     導電性接合層を介して前記半導体素子の表面に接合されて前記第1主電極に電気的に接続された電極側接合部を有する板状の第1主端子と、を備え、
     前記第1主端子の電極側接合部は、その厚さ方向に沿って延び且つ前記半導体素子の表面に対向して設けられた、突起部および貫通孔を有する、
     電力用半導体装置。
    A substrate,
    A semiconductor element having a back surface bonded to the substrate and a surface provided with a first main electrode;
    A plate-like first main terminal having an electrode-side bonding portion bonded to the surface of the semiconductor element via a conductive bonding layer and electrically connected to the first main electrode;
    The electrode-side joint portion of the first main terminal has a protrusion and a through-hole that extend along the thickness direction and is provided to face the surface of the semiconductor element.
    Power semiconductor device.
  2.  前記電力用半導体装置の外部へ導出された第1主回路配線をさらに備え、
     前記第1主端子は、導電性接合層を介して前記第1主回路配線に接合された配線側接合部を有し、
     前記第1主端子の配線側接合部は、その厚さ方向に沿って延び且つ前記第1主回路配線に対向して設けられた、突起部および貫通孔を有する、
     請求項1に記載の電力用半導体装置。
    A first main circuit wiring led out of the power semiconductor device;
    The first main terminal has a wiring-side bonding portion bonded to the first main circuit wiring through a conductive bonding layer,
    The wiring side junction of the first main terminal has a protrusion and a through hole that extend along the thickness direction and is provided to face the first main circuit wiring.
    The power semiconductor device according to claim 1.
  3.  前記基板は、導体層を有し、
     前記半導体素子は、該半導体素子の裏面に設けられ且つ前記基板の導体層に接合された板状の第2主電極を有し、
     前記電力用半導体装置には、導電性接合層を介して前記基板の導体層に接合されて前記半導体素子の第2主電極に電気的に接続された電極側接合部、を有する第2主端子がさらに備えられ、
     前記第2主端子の電極側接合部は、その厚さ方向に沿って延び、前記導体層に対向する突起部および貫通孔を有する、
     請求項1または2に記載の電力用半導体装置。
    The substrate has a conductor layer;
    The semiconductor element has a plate-like second main electrode provided on the back surface of the semiconductor element and bonded to the conductor layer of the substrate;
    The power semiconductor device includes a second main terminal having an electrode-side joint portion joined to the conductor layer of the substrate via a conductive joint layer and electrically connected to the second main electrode of the semiconductor element. Is further provided,
    The electrode side joint portion of the second main terminal extends along its thickness direction and has a protrusion and a through hole facing the conductor layer.
    The power semiconductor device according to claim 1.
  4.  前記電力用半導体装置の外部へ導出された第2主回路配線をさらに備え、
     前記第2主端子は、導電性接合層を介して前記第2主回路配線に接合された配線側接合部を有し、
     前記第2主端子の配線側接合部は、その厚さ方向に沿って延び、前記導体層に対向する突起部および貫通孔を有する、
     請求項3に記載の電力用半導体装置。
    A second main circuit wiring led out of the power semiconductor device;
    The second main terminal has a wiring side bonding portion bonded to the second main circuit wiring through a conductive bonding layer,
    The wiring side junction of the second main terminal extends along its thickness direction and has a protrusion and a through hole facing the conductor layer.
    The power semiconductor device according to claim 3.
  5.  前記半導体素子を囲む枠部材をさらに備え、
     前記枠部材は、前記第1主端子との係合部を有し、
     前記第1主端子は、前記枠部材の係合部に相補的な形状の被係合部を有する、
     請求項1から4のいずれか1項に記載の電力用半導体装置。
    A frame member surrounding the semiconductor element;
    The frame member has an engagement portion with the first main terminal,
    The first main terminal has an engaged portion having a shape complementary to the engaging portion of the frame member.
    The power semiconductor device according to any one of claims 1 to 4.
  6.  前記第1主端子の電極側接合部、前記第1主端子の配線側接合部、前記第2主端子の電極側接合部および前記第2主端子の配線側接合部のうち少なくとも1つに設けられた貫通孔は、前記厚さ方向に垂直な方向に開口して溝部を形成している、
     請求項4に記載の電力用半導体装置。
    Provided in at least one of the electrode side junction of the first main terminal, the wiring side junction of the first main terminal, the electrode side junction of the second main terminal, and the wiring side junction of the second main terminal The formed through hole is opened in a direction perpendicular to the thickness direction to form a groove,
    The power semiconductor device according to claim 4.
  7.  前記半導体素子は、第1半導体素子であり、
     前記電力用半導体装置には、前記基板の導体層に接合された第3主電極が設けられた裏面と、前記第1主電極の電極側接合部に接合された第4主電極が設けられた表面と、を有する第2半導体素子が備えられている、
     請求項1から6のいずれか1項に記載の電力用半導体装置。
    The semiconductor element is a first semiconductor element;
    The power semiconductor device includes a back surface provided with a third main electrode bonded to the conductor layer of the substrate, and a fourth main electrode bonded to an electrode side bonding portion of the first main electrode. A second semiconductor element having a surface,
    The power semiconductor device according to claim 1.
  8.  基板を準備するステップと、
     前記基板に半導体素子を接合するステップと、
     前記半導体素子の上にバルクはんだ材を介して板状の主端子を配置するステップと、
     前記バルクはんだ材を加熱して、前記半導体素子と前記主端子とを接合するステップと、を含み、
     前記主端子は、その厚さ方向に沿って延び且つ前記半導体素子の表面に対向して設けられた、突起部および貫通孔を有し、
     前記主端子を配置するステップでは、前記バルクはんだ材を前記突起部に対して固定する、
     電力用半導体装置の製造方法。
    Preparing a substrate;
    Bonding a semiconductor element to the substrate;
    Arranging a plate-like main terminal on the semiconductor element via a bulk solder material;
    Heating the bulk solder material to join the semiconductor element and the main terminal,
    The main terminal has a protrusion and a through hole that extend along the thickness direction and is provided to face the surface of the semiconductor element.
    In the step of disposing the main terminal, the bulk solder material is fixed to the protrusion.
    A method of manufacturing a power semiconductor device.
  9.  前記半導体素子を接合するステップでは、前記バルクはんだ材よりも降伏応力または0.2%耐力が大きい焼結性接合材を用いて、前記基板に前記半導体素子を接合する、
     請求項8に記載の電力用半導体装置の製造方法。
    In the step of bonding the semiconductor element, the semiconductor element is bonded to the substrate using a sinterable bonding material having a yield stress or 0.2% proof stress greater than that of the bulk solder material.
    A method for manufacturing a power semiconductor device according to claim 8.
  10.  前記半導体素子を接合するステップでは、前記バルクはんだ材よりも降伏応力または0.2%耐力が大きいSn-Sbはんだ材を用いて、前記基板に前記半導体素子を接合する、
     請求項8に記載の電力用半導体装置の製造方法。  
    In the step of bonding the semiconductor element, the semiconductor element is bonded to the substrate using a Sn—Sb solder material having a yield stress or 0.2% proof stress greater than that of the bulk solder material.
    A method for manufacturing a power semiconductor device according to claim 8.
  11.  前記バルクはんだ材は、シート状のフラックスレスはんだ材である、
     請求項8から10のいずれか1項に記載の電力用半導体装置の製造方法。
    The bulk solder material is a sheet-like fluxless solder material,
    The method for manufacturing a power semiconductor device according to claim 8.
  12.  前記主端子は、主回路配線に接合され、
     前記基板をヒートシンクの上に接合するステップと、
     前記ヒートシンクの上に、前記主回路配線が固定された樹脂製の端子台を固定するステップとをさらに含み、
     前記端子台は、金属製の端子台カバーで覆われており、
     前記半導体素子と前記主端子とを接合するステップでは、輻射熱により前記バルクはんだ材を加熱する、
     請求項8から11のいずれか1項に記載の電力用半導体装置の製造方法。
    The main terminal is joined to the main circuit wiring,
    Bonding the substrate onto a heat sink;
    A step of fixing a resin terminal block to which the main circuit wiring is fixed on the heat sink;
    The terminal block is covered with a metal terminal block cover,
    In the step of joining the semiconductor element and the main terminal, the bulk solder material is heated by radiant heat.
    The method for manufacturing a power semiconductor device according to claim 8.
PCT/JP2017/021308 2016-06-24 2017-06-08 Power semiconductor device and method for manufacturing power semiconductor device WO2017221730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523855A JP6522241B2 (en) 2016-06-24 2017-06-08 Power semiconductor device and method of manufacturing power semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-125308 2016-06-24
JP2016125308 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017221730A1 true WO2017221730A1 (en) 2017-12-28

Family

ID=60784094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021308 WO2017221730A1 (en) 2016-06-24 2017-06-08 Power semiconductor device and method for manufacturing power semiconductor device

Country Status (2)

Country Link
JP (1) JP6522241B2 (en)
WO (1) WO2017221730A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190101678A (en) * 2018-02-23 2019-09-02 엘에스산전 주식회사 Power semiconductor module
JP2019165051A (en) * 2018-03-19 2019-09-26 京セラ株式会社 Power semiconductor module
WO2020208713A1 (en) * 2019-04-09 2020-10-15 三菱電機株式会社 Power semiconductor module and power conversion device
JPWO2021111846A1 (en) * 2019-12-02 2021-06-10
WO2023047451A1 (en) * 2021-09-21 2023-03-30 三菱電機株式会社 Power semiconductor device and method for manufacturing power semiconductor device
WO2023190387A1 (en) * 2022-03-31 2023-10-05 新電元工業株式会社 Electrical connecting member and semiconductor device
US11973015B2 (en) 2020-06-25 2024-04-30 Fuji Electric Co., Ltd. Plurality of overlapping power terminals in a semiconductor module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059970B2 (en) * 2019-03-11 2022-04-26 株式会社デンソー Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536853A (en) * 1991-08-02 1993-02-12 Nec Corp Hybrid integrated circuit device
JP2008277523A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Semiconductor device with contact electrode
JP2010010173A (en) * 2008-06-24 2010-01-14 Denso Corp Electronic device and method of manufacturing the same
JP2015099843A (en) * 2013-11-19 2015-05-28 パナソニックIpマネジメント株式会社 Semiconductor device
JP2016051878A (en) * 2014-09-02 2016-04-11 三菱電機株式会社 Power semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536853A (en) * 1991-08-02 1993-02-12 Nec Corp Hybrid integrated circuit device
JP2008277523A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Semiconductor device with contact electrode
JP2010010173A (en) * 2008-06-24 2010-01-14 Denso Corp Electronic device and method of manufacturing the same
JP2015099843A (en) * 2013-11-19 2015-05-28 パナソニックIpマネジメント株式会社 Semiconductor device
JP2016051878A (en) * 2014-09-02 2016-04-11 三菱電機株式会社 Power semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030712B1 (en) * 2018-02-23 2019-10-10 엘에스산전 주식회사 Power semiconductor module
US10892226B2 (en) 2018-02-23 2021-01-12 Lsis Co., Ltd. Power semiconductor module
KR20190101678A (en) * 2018-02-23 2019-09-02 엘에스산전 주식회사 Power semiconductor module
JP2019165051A (en) * 2018-03-19 2019-09-26 京セラ株式会社 Power semiconductor module
JPWO2020208713A1 (en) * 2019-04-09 2021-11-25 三菱電機株式会社 Power semiconductor module and power converter
WO2020208713A1 (en) * 2019-04-09 2020-10-15 三菱電機株式会社 Power semiconductor module and power conversion device
JP7126609B2 (en) 2019-04-09 2022-08-26 三菱電機株式会社 Power semiconductor module and power converter
WO2021111846A1 (en) * 2019-12-02 2021-06-10 三菱電機株式会社 Power semiconductor device, and method for manufacturing same
JPWO2021111846A1 (en) * 2019-12-02 2021-06-10
JP7170911B2 (en) 2019-12-02 2022-11-14 三菱電機株式会社 Power semiconductor device and its manufacturing method
US11973015B2 (en) 2020-06-25 2024-04-30 Fuji Electric Co., Ltd. Plurality of overlapping power terminals in a semiconductor module
WO2023047451A1 (en) * 2021-09-21 2023-03-30 三菱電機株式会社 Power semiconductor device and method for manufacturing power semiconductor device
WO2023190387A1 (en) * 2022-03-31 2023-10-05 新電元工業株式会社 Electrical connecting member and semiconductor device

Also Published As

Publication number Publication date
JPWO2017221730A1 (en) 2018-10-11
JP6522241B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2017221730A1 (en) Power semiconductor device and method for manufacturing power semiconductor device
JP6234630B2 (en) Power module
JP4958735B2 (en) Power semiconductor module manufacturing method, power semiconductor module manufacturing apparatus, power semiconductor module, and joining method
JP4207896B2 (en) Semiconductor device
CN102593081B (en) Comprise the semiconductor device of radiator
CN107851639B (en) Power semiconductor device
US20170309544A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP4989552B2 (en) Electronic components
WO2015141284A1 (en) Semiconductor module unit and semiconductor module
WO2011040313A1 (en) Semiconductor module, process for production thereof
JP2016051878A (en) Power semiconductor device
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP4683043B2 (en) Manufacturing method of semiconductor device
JP2004356625A (en) Semiconductor device and method for manufacturing the same
KR20180059778A (en) A substrate for a light emitting module, a light emitting module, a substrate for a light emitting module formed with a cooler, and a method for manufacturing a substrate for a light emitting module
JP2006190728A (en) Electric power semiconductor device
CN111433910B (en) Semiconductor device and method for manufacturing semiconductor device
JP6700119B2 (en) Power semiconductor device and method of manufacturing power semiconductor device
US20230223317A1 (en) Resin-sealed semiconductor device
JP7170911B2 (en) Power semiconductor device and its manufacturing method
US20170323801A1 (en) Method of generating a power semiconductor module
JP2005032791A (en) Heat dissipating member, circuit board, and semiconductor device
JP2008027935A (en) Power semiconductor device
JP6698879B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2013161996A (en) Semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523855

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815199

Country of ref document: EP

Kind code of ref document: A1