WO2017204594A1 - 유기 발광 소자 - Google Patents
유기 발광 소자 Download PDFInfo
- Publication number
- WO2017204594A1 WO2017204594A1 PCT/KR2017/005520 KR2017005520W WO2017204594A1 WO 2017204594 A1 WO2017204594 A1 WO 2017204594A1 KR 2017005520 W KR2017005520 W KR 2017005520W WO 2017204594 A1 WO2017204594 A1 WO 2017204594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- formula
- light emitting
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 130
- 239000011368 organic material Substances 0.000 claims abstract description 53
- 239000000126 substance Substances 0.000 claims abstract description 26
- -1 biphenylyl group Chemical group 0.000 claims description 78
- 125000003118 aryl group Chemical group 0.000 claims description 71
- 125000001072 heteroaryl group Chemical group 0.000 claims description 41
- 125000000217 alkyl group Chemical group 0.000 claims description 32
- 125000003277 amino group Chemical group 0.000 claims description 25
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 20
- 125000003545 alkoxy group Chemical group 0.000 claims description 19
- 125000004104 aryloxy group Chemical group 0.000 claims description 19
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 19
- 125000003342 alkenyl group Chemical group 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 125000001424 substituent group Chemical group 0.000 claims description 18
- 125000002560 nitrile group Chemical group 0.000 claims description 17
- UFHFLCQGNIYNRP-VVKOMZTBSA-N Dideuterium Chemical compound [2H][2H] UFHFLCQGNIYNRP-VVKOMZTBSA-N 0.000 claims description 16
- 125000002950 monocyclic group Chemical group 0.000 claims description 15
- 230000005525 hole transport Effects 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 125000005842 heteroatom Chemical group 0.000 claims description 11
- 125000000732 arylene group Chemical group 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 claims description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 9
- 125000005549 heteroarylene group Chemical group 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 124
- 239000010410 layer Substances 0.000 description 123
- 238000000034 method Methods 0.000 description 54
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 47
- 239000000463 material Substances 0.000 description 35
- 238000002347 injection Methods 0.000 description 33
- 239000007924 injection Substances 0.000 description 33
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 16
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 13
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 11
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 125000003367 polycyclic group Chemical group 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 230000032258 transport Effects 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000012153 distilled water Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 8
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 125000005241 heteroarylamino group Chemical group 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 5
- 150000004982 aromatic amines Chemical class 0.000 description 5
- 125000005264 aryl amine group Chemical group 0.000 description 5
- 239000010406 cathode material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- IMKMFBIYHXBKRX-UHFFFAOYSA-M lithium;quinoline-2-carboxylate Chemical compound [Li+].C1=CC=CC2=NC(C(=O)[O-])=CC=C21 IMKMFBIYHXBKRX-UHFFFAOYSA-M 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 4
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical group N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 3
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 125000001769 aryl amino group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- 125000005916 2-methylpentyl group Chemical group 0.000 description 2
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 2
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- JDGDLKDQACLMQC-UHFFFAOYSA-N 3-bromo-9-(2-phenylphenyl)carbazole Chemical compound C1(=C(C=CC=C1)N1C2=CC=CC=C2C=2C=C(C=CC1=2)Br)C1=CC=CC=C1 JDGDLKDQACLMQC-UHFFFAOYSA-N 0.000 description 2
- 0 CC(*)C(C)C=CC(C1(C(C)C=*)c2ccccc2-c2ccccc12)=C Chemical compound CC(*)C(C)C=CC(C1(C(C)C=*)c2ccccc2-c2ccccc12)=C 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical group C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- 125000006614 N-arylalkylamine group Chemical group 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 150000002219 fluoranthenes Chemical class 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005978 1-naphthyloxy group Chemical group 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- JTMODJXOTWYBOZ-UHFFFAOYSA-N 2-methyl-n-phenylaniline Chemical group CC1=CC=CC=C1NC1=CC=CC=C1 JTMODJXOTWYBOZ-UHFFFAOYSA-N 0.000 description 1
- 125000005979 2-naphthyloxy group Chemical group 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- DDTHMESPCBONDT-UHFFFAOYSA-N 4-(4-oxocyclohexa-2,5-dien-1-ylidene)cyclohexa-2,5-dien-1-one Chemical compound C1=CC(=O)C=CC1=C1C=CC(=O)C=C1 DDTHMESPCBONDT-UHFFFAOYSA-N 0.000 description 1
- 125000004920 4-methyl-2-pentyl group Chemical group CC(CC(C)*)C 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- QXDWMAODKPOTKK-UHFFFAOYSA-N 9-methylanthracen-1-amine Chemical group C1=CC(N)=C2C(C)=C(C=CC=C3)C3=CC2=C1 QXDWMAODKPOTKK-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical group CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ACYWVHCCUGTDEW-UHFFFAOYSA-N N-naphthalen-1-yl-9H-fluoren-1-amine Chemical group C1(=CC=CC2=CC=CC=C12)NC1=CC=CC=2C3=CC=CC=C3CC12 ACYWVHCCUGTDEW-UHFFFAOYSA-N 0.000 description 1
- WJOZUXJBWJTHQQ-UHFFFAOYSA-N N-phenyl-2-(2-phenylphenyl)aniline Chemical group C1(=CC=CC=C1)NC=1C(=CC=CC=1)C=1C(=CC=CC=1)C1=CC=CC=C1 WJOZUXJBWJTHQQ-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- YXLXNENXOJSQEI-UHFFFAOYSA-L Oxine-copper Chemical compound [Cu+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 YXLXNENXOJSQEI-UHFFFAOYSA-L 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 125000005332 alkyl sulfoxy group Chemical group 0.000 description 1
- 125000005377 alkyl thioxy group Chemical group 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- YUENFNPLGJCNRB-UHFFFAOYSA-N anthracen-1-amine Chemical group C1=CC=C2C=C3C(N)=CC=CC3=CC2=C1 YUENFNPLGJCNRB-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 125000003609 aryl vinyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- GQVWHWAWLPCBHB-UHFFFAOYSA-L beryllium;benzo[h]quinolin-10-olate Chemical compound [Be+2].C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21.C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21 GQVWHWAWLPCBHB-UHFFFAOYSA-L 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000006616 biphenylamine group Chemical group 0.000 description 1
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLQDGNOYKLXGHH-UHFFFAOYSA-N c(cc1)ccc1-c(cccc1)c1N(c(cc1)cc2c1-c1ccccc1C21c2ccccc2-[n]2c3c1cccc3c1c2cccc1)c1ccc(c2ccccc2c2c3cccc2)c3c1 Chemical compound c(cc1)ccc1-c(cccc1)c1N(c(cc1)cc2c1-c1ccccc1C21c2ccccc2-[n]2c3c1cccc3c1c2cccc1)c1ccc(c2ccccc2c2c3cccc2)c3c1 LLQDGNOYKLXGHH-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical group C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- XNUVVHVFAAQPQY-UHFFFAOYSA-L manganese(2+) quinolin-8-olate Chemical compound N1=CC=CC2=CC=CC(=C12)[O-].[Mn+2].N1=CC=CC2=CC=CC(=C12)[O-] XNUVVHVFAAQPQY-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- NJVSFOMTEFOHMI-UHFFFAOYSA-N n,2-diphenylaniline Chemical group C=1C=CC=C(C=2C=CC=CC=2)C=1NC1=CC=CC=C1 NJVSFOMTEFOHMI-UHFFFAOYSA-N 0.000 description 1
- LCPYTQFVQRPZCV-UHFFFAOYSA-N n-[4-(4-carbazol-9-ylphenyl)phenyl]-4-phenyl-n-(4-phenylphenyl)aniline Chemical compound C1=CC=CC=C1C1=CC=C(N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 LCPYTQFVQRPZCV-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- UMGBMWFOGBJCJA-UHFFFAOYSA-N n-phenylphenanthren-1-amine Chemical group C=1C=CC(C2=CC=CC=C2C=C2)=C2C=1NC1=CC=CC=C1 UMGBMWFOGBJCJA-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000005184 naphthylamino group Chemical group C1(=CC=CC2=CC=CC=C12)N* 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 150000003413 spiro compounds Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- KWQNQSDKCINQQP-UHFFFAOYSA-K tri(quinolin-8-yloxy)gallane Chemical compound C1=CN=C2C(O[Ga](OC=3C4=NC=CC=C4C=CC=3)OC=3C4=NC=CC=C4C=CC=3)=CC=CC2=C1 KWQNQSDKCINQQP-UHFFFAOYSA-K 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- HTPBWAPZAJWXKY-UHFFFAOYSA-L zinc;quinolin-8-olate Chemical compound [Zn+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 HTPBWAPZAJWXKY-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/66—Arsenic compounds
- C07F9/70—Organo-arsenic compounds
- C07F9/74—Aromatic compounds
- C07F9/78—Aromatic compounds containing amino groups
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/156—Hole transporting layers comprising a multilayered structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/18—Carrier blocking layers
Definitions
- the present specification relates to an organic light emitting device.
- organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
- An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
- the organic material layer is often made of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
- the present specification provides an organic light emitting device using specific materials.
- L1 to L3 are the same as or different from each other, and each independently a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group, a to c are each an integer of 0 to 3, when a to c are each 2 or more, the structures in parentheses are the same as or different from each other,
- Ar1 to Ar6 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, Ar1 and Ar2; Ar3 and Ar4; Ar5 and Ar6; Ar1 and L1; Ar3 and L2; Or Ar5 and L3 combine with each other to form a monocyclic or polycyclic aromatic or aliphatic hydrocarbon ring or hetero ring, wherein l to n are each an integer of 0 to 2, and when l to n are 2, the structures in parentheses are Are the same or different, and when l to n are each 0, hydrogen is bonded to L1 to L3 instead of -NAr1Ar2, -NAr3Ar4 and -NAr5Ar6, respectively.
- X is NR '; O; Or S, p is 0 or 1, and when p is 0, two carbons bonded to X are directly bonded,
- R and R ' are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
- Ar7 and Ar8 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
- R1 and R2 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, or combine with each other to form a monocyclic or polycyclic aromatic or aliphatic hydrocarbon ring or hetero ring,
- R3 and R4 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, e is an integer of 0 to 4, when e is 2 or more, R 3 is the same as or different from each other, f is an integer of 0 to 3, and when f is 2 or more, R 4 is each other Same or different
- the first organic material layer and the second organic material layer are disposed on the anode and the light emitting layer, thereby improving efficiency, low driving voltage, and / or lifespan characteristics in the organic light emitting device. .
- FIG. 1 illustrates a laminated structure of an organic light emitting device according to an exemplary embodiment of the present specification.
- FIG. 2 illustrates a laminated structure of an organic light emitting diode according to another exemplary embodiment of the present specification.
- An organic light emitting device a cathode; Anode; A light emitting layer provided between the cathode and the anode; A first organic material layer provided between the anode and the light emitting layer and including the compound of Formula 1; And a second organic material layer provided between the first organic material layer and the light emitting layer and including the compound of Chemical Formula 2.
- substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
- substituted or unsubstituted is deuterium; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; And it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted heterocyclic group, or two or more of the substituents exemplified above are substituted with a substituent, or means that do not have any substitu
- a substituent to which two or more substituents are linked may be an aryl group substituted with an aryl group, an aryl group substituted with a heteroaryl group, a heterocyclic group substituted with an aryl group, an aryl group substituted with an alkyl group, or the like.
- the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 30.
- Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-o
- the cycloalkyl group is not particularly limited, but preferably has 3 to 30 carbon atoms, specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto. It is not.
- the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C30. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy and the like It may be, but is not limited thereto.
- the amine group is -NH 2 ; Alkylamine group; N-alkylarylamine group; Arylamine group; N-aryl heteroaryl amine group; It may be selected from the group consisting of an N-alkylheteroarylamine group and a heteroarylamine group, carbon number is not particularly limited, but is preferably 1 to 30.
- Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group.
- the N-alkylarylamine group means an amine group in which an alkyl group and an aryl group are substituted for N of the amine group.
- the N-arylheteroarylamine group means an amine group in which an aryl group and a heteroaryl group are substituted for N in the amine group.
- the N-alkylheteroarylamine group means an amine group in which an alkyl group and a heteroarylamine group are substituted for N of the amine group.
- the alkyl group in the alkylamine group, the N-arylalkylamine group, the alkylthioxy group, the alkyl sulfoxy group, and the N-alkylheteroarylamine group is the same as the example of the alkyl group described above.
- the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 30.
- Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
- the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
- the present invention is not limited thereto.
- the aryl group is not particularly limited, but preferably has 6 to 30 carbon atoms, and the aryl group may be monocyclic or polycyclic.
- the aryl group is a monocyclic aryl group
- carbon number is not particularly limited, but is preferably 6 to 30 carbon atoms.
- the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
- Carbon number is not particularly limited when the aryl group is a polycyclic aryl group. It is preferable that it is C10-30.
- the polycyclic aryl group may be naphthyl group, anthracenyl group, phenanthryl group, triphenyl group, pyrenyl group, penalenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto. no.
- the fluorenyl group may be substituted, and adjacent groups may combine with each other to form a ring.
- examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
- the aryl group in the arylamine group may be a monocyclic aryl group, may be a polycyclic aryl group.
- the arylamine group including two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
- the aryl group in the arylamine group may be selected from the examples of the aryl group described above.
- the aryl group in the aryloxy group, the N-arylalkylamine group, and the N-arylheteroarylamine group is the same as the aryl group described above.
- the aryloxy group may be a phenoxy group, p-tolyloxy group, m-tolyloxy group, 3,5-dimethyl-phenoxy group, 2,4,6-trimethylphenoxy group, p-tert-butylphenoxy group, 3- Biphenyloxy group, 4-biphenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 4-methyl-1-naphthyloxy group, 5-methyl-2-naphthyloxy group, 1-anthryloxy group , 2-anthryloxy group, 9-anthryloxy group, 1-phenanthryloxy group, 3-phenanthryloxy group, 9-phenanthryloxy group, and the like.
- the heteroaryl group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, and S, and the like. Although carbon number is not particularly limited, it is preferably 2 to 30 carbon atoms, the heteroaryl group may be monocyclic or polycyclic.
- heterocyclic group examples include thiophene group, furanyl group, pyrrole group, imidazolyl group, thiazolyl group, oxazolyl group, oxadiazolyl group, pyridyl group, bipyridyl group, pyrimidyl group, triazinyl group, tria Zolyl group, acridil group, pyridazinyl group, pyrazinyl group, quinolinyl group, quinazolinyl group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group , Isoquinolinyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzimidazolyl group, benzothiazolyl group, benzocarbazolyl group, benzothiophene
- examples of the heteroarylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group.
- the heteroarylamine group including two or more heteroaryl groups may simultaneously include a monocyclic heteroaryl group, a polycyclic heteroaryl group, or a monocyclic heteroaryl group and a polycyclic heteroaryl group.
- the heteroaryl group in the heteroarylamine group may be selected from the examples of the heteroaryl group described above.
- heteroaryl group in the N-arylheteroarylamine group and the N-alkylheteroarylamine group are the same as the examples of the heteroaryl group described above.
- heteroarylene group is a divalent group.
- the hydrocarbon ring may be an aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and may be selected from examples of the cycloalkyl group or aryl group except for the above-mentioned monovalent one.
- the aromatic ring may be monocyclic or polycyclic, and may be selected from examples of the aryl group except that it is not monovalent.
- the hetero ring includes one or more atoms other than carbon and hetero atoms, and specifically, the hetero atoms may include one or more atoms selected from the group consisting of O, N, Se, S, and the like.
- the hetero ring may be monocyclic or polycyclic, may be aromatic, aliphatic or a condensed ring of aromatic and aliphatic, and may be selected from examples of the heteroaryl group except that it is not monovalent.
- l + m + n of the general formula (1) is one or more.
- m + n of the formula 1 is one or more.
- p of Formula 1 is 0.
- a of Formula 1 is an integer of 1 to 3.
- Formula 1 may be represented by the following formula (3).
- At least one of -NAr1Ar2, -NAr3Ar4 and -NAr5Ar6 may be represented by the following structural formula.
- Xa is NRc; O; Or S, r is 0 or 1, and when r is 0, two carbons bonded to Xa are directly bonded,
- Ra and Rc are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, g is an integer of 0 to 8, and when g is 2 or more, Ra is the same as or different from each other.
- Formula 1 may be represented by the following formula (4).
- Ar1, Ar2, L1 to L3, R, X, a, b, c, d, l and p are as defined in Formula 1,
- Xa and Xb are the same as or different from each other, and each independently NRc; O; Or S, r and q are each 0 or 1, and when r and q are each 0, two carbons bonded to each of Xa and Xb are directly bonded,
- Ra to Rc are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, g and h are each an integer of 0 to 8, and when g or h is 2 or more, the structures in parentheses are the same or different from each other.
- Formula 1 may be represented by the following formula (5).
- At least one of-(L1) a-NAr1Ar2,-(L2) b-NAr3Ar4 and-(L3) c-NAr5Ar6 may be represented by the following structural formula.
- L4 is a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group, i is an integer of 0 to 2, when i is 2, L4 is the same as or different from each other, Ar9 is a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, Rd is hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted or unsub
- Chemical Formula 1 may be represented by the following Chemical Formula 6.
- Ar1, Ar2, L1, R, X, a, d, l and p are as defined in Formula 1,
- L4 and L5 are the same as or different from each other, and each independently a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group, i and j are each an integer of 0 to 2, and when i and j are 2, the structures in parentheses are the same as or different from each other, and Ar9 and Ar10 are the same as or different from each other; , Independently substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, Rd and Re are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstit
- Formula 1 may be represented by the following formula (7).
- L1 to L3 are the same as or different from each other, and each independently a direct bond; Arylene group; Or a heteroarylene group.
- L1 to L3 are the same as or different from each other, and each independently a direct bond; Or an arylene group.
- L1 to L3 are the same as or different from each other, and each independently a direct bond; Phenylene group; Or a naphthylene group.
- L1 to L3 are the same as or different from each other, and each independently a direct bond; Or a phenylene group.
- L1 to L3 are the same as or different from each other, and each independently a direct bond; Or a phenylene group, and a to c are each an integer of 0 to 2;
- Ar1 to Ar6 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
- Ar1 to Ar6 are the same as or different from each other, and each independently an aryl group unsubstituted or substituted with an alkyl group; Or a heteroaryl group unsubstituted or substituted with an alkyl group.
- Ar1 to Ar6 are the same as or different from each other, and each independently an aryl group unsubstituted or substituted with an alkyl group.
- Ar1 to Ar6 are the same as or different from each other, and each independently a phenyl group, a biphenylyl group, or a terphenylyl group.
- l is 0.
- l is 0, and L1 is a phenylenyl group, a biphenylyl group, a naphthyl group, or a fluorenyllenyl group unsubstituted or substituted with an alkyl group.
- L1 is a phenyl group, biphenylyl group, naphthyl group, or dimethylfluorenylenyl group.
- R ', Ar9 and Ar10 is an aryl group.
- R ', Ar9 and Ar10 is a phenyl group.
- Xa and Xb is O or S.
- r and q are zero.
- Formula 1 may be selected from the following embodiments.
- the compound of Formula 2 may be represented by the following formula (11).
- the compound of Formula 2 may be represented by the following formula (12).
- R3, R4, Ar7, Ar8, e and f are as defined in Formula 2, and R5 is hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, x is an integer of 0 to 8, and when x is 2 or more, R 5 is the same as or different from each other.
- the compound of Formula 2 may be represented by the following formula (13).
- R1 and R2 are the same as or different from each other, and each independently an alkyl group or an aryl group, or combine with each other to form a fluorene group.
- R1 and R2 are the same as or different from each other, and each independently a methyl group or a phenyl group, or combine with each other to form a fluorene group.
- R1 and R2 is a methyl group.
- R1 and R2 is a phenyl group.
- R1 is a methyl group
- R2 is a phenyl group
- R1 and R2 combine with each other to form a fluorene group.
- Ar7 and Ar8 are the same as or different from each other, and each independently represent a substituted or unsubstituted aryl group.
- Ar7 and Ar8 are the same as or different from each other, and each independently an aryl group unsubstituted or substituted with an alkyl group.
- Ar7 and Ar8 are the same as or different from each other, and each independently a phenyl group, a biphenylyl group, a fluorenyl group unsubstituted or substituted with an alkyl group, or a triphenylenyl group.
- Formula 2 may be selected from the following embodiments.
- the compound of Formula 1 or 2 may be prepared using starting materials, reaction conditions known in the art.
- the type and number of substituents can be determined by those skilled in the art as appropriately selecting known starting materials.
- the compound of Formula 1 or 2 can be obtained from commercially available.
- the organic light emitting device of the present specification may include only the first organic material layer, the second organic material layer and the light emitting layer as the organic material layer, but may further include an additional organic material layer.
- it may further include an additional hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron electron injection layer.
- the first organic material layer may serve as a hole transport layer
- the second organic material layer may serve as an electron blocking layer
- the first organic material layer and the second organic material layer are provided in contact with each other.
- the second organic material layer and the light emitting layer are provided in contact.
- the structure of the organic light emitting device of the present specification may have a structure as shown in FIGS. 1 and 2, but is not limited thereto.
- FIG. 1 illustrates a structure of an organic light emitting diode in which an anode 101, a first organic material layer 201, a second organic material layer 202, a light emitting layer 301, and a cathode 401 are sequentially stacked on a substrate 100.
- . 1 is an exemplary structure of an organic light emitting device according to an exemplary embodiment of the present specification, and may further include another organic material layer.
- the cathode, the light emitting layer, the second organic material layer, the first organic material layer and the anode may be sequentially stacked on the substrate.
- an electron transport layer 501 and an electron injection layer 502 are further provided between the light emitting layer 301 and the cathode 401 as compared to the device of FIG. 1.
- 2 is an exemplary structure according to an exemplary embodiment of the present specification, and may further include another organic material layer, and an electron transport layer or an electron injection layer may be omitted.
- the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the second organic material layer, the first organic material layer and the anode may be sequentially stacked on the substrate.
- the organic material layers may be formed of the same material or different materials.
- the organic light emitting device of the present specification may be manufactured using materials and methods known in the art. For example, by using a physical vapor deposition (PVD) such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate. It can be prepared by forming an anode, forming an organic layer thereon, and then depositing a material that can be used as a cathode thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
- PVD physical vapor deposition
- a metal or conductive metal oxide or an alloy thereof is deposited on a substrate. It can be prepared by forming an anode, forming an organic layer thereon, and then depositing a material that can be used as a cathode thereon.
- an organic light emitting device may be manufactured by sequentially depositing a ca
- the compound represented by Chemical Formula 1 or 2 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
- the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
- anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
- anode materials that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SnO 2 : Combination of metals and oxides such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
- the cathode material is generally a material having a small work function to facilitate electron injection into the organic material layer.
- Specific examples of the cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, Mg / Ag, and the like, but are not limited thereto.
- the hole injection layer is a layer for injecting holes from an electrode with a hole injection material, and has a capability of transporting holes with a hole injection material, and thus has a hole injection effect at an anode, and an excellent hole injection effect with respect to a light emitting layer or a light emitting material.
- generated in the light emitting layer to the electron injection layer or the electron injection material, and is excellent in thin film formation ability is preferable.
- the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
- hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone, and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
- the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
- the hole transport material is a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer.
- the material is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
- the light emitting material of the light emitting layer is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
- Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzothiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
- the light emitting layer may include a host material and a dopant material.
- the host material is a condensed aromatic ring derivative or a hetero ring-containing compound.
- condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
- heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
- the dopant material examples include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
- the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene, and periplanthene having an arylamino group, and a styrylamine compound may be substituted or unsubstituted.
- At least one arylvinyl group is substituted with the substituted arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
- substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
- the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
- the electron transporting material of the electron transporting layer is a layer for receiving electrons from the electron injection layer and transporting electrons to the light emitting layer.
- the electron transporting material is a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer. This large material is suitable. Specific examples thereof include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
- the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
- suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, followed by aluminum layers or silver layers in each case.
- the electron injection layer is a layer that injects electrons from an electrode, has an ability of transporting electrons, has an electron injection effect from a cathode, an electron injection effect with respect to a light emitting layer or a light emitting material, and hole injection of excitons generated in the light emitting layer.
- the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
- fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like and derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
- Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, It is not limited to this.
- the organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type according to a material used.
- the A, B, D and E are shown in Table 1 below.
- a glass substrate coated with a thin film of ITO (indium tin oxide) at a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
- ITO indium tin oxide
- Fischer Co. product was used as a detergent
- distilled water filtered secondly as a filter of Millipore Co. product was used as distilled water.
- ultrasonic washing was performed twice with distilled water for 10 minutes.
- ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol dried and transported to a plasma cleaner.
- the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
- hexanitrile hexaazatriphenylene (HAT) of the following formula was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
- the light emitting layer was formed by vacuum depositing the following BH and BD in a weight ratio of 25: 1 on the electron blocking layer with a film thickness of 300 GPa.
- the compound ET1 and the compound LiQ were vacuum-deposited on the emission layer in a weight ratio of 1: 1 to form an electron injection and transport layer having a thickness of 300 kPa.
- lithium fluoride (LiF) and aluminum were deposited to a thickness of 12 kPa in order to form a cathode.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-1 except for using H 2-2 instead of compound TCTA in Comparative Example 1-1.
- An organic light-emitting device was manufactured in the same manner as in Comparative Example 1-1, except that Compound TCTA was not used in Comparative Example 1-1.
- the organic light emitting device was manufactured by the same method as Comparative Example 1-1, except that Compound HT1 was not used in Comparative Example 1-1 and H 2-2 was used instead of TCTA.
- Compound H-1-1 was used instead of compound HT1 in Comparative Example 1-1 and an organic light emitting device was manufactured in the same manner as in Comparative Example 1-1, except that Compound TCTA was not used.
- the organic light emitting device was manufactured by the same method as Comparative Example 1-1, except that Compound HT1 was not used in Comparative Example 1-1, and H 2-4 was used instead of Compound TCTA.
- the organic light emitting device was manufactured by the same method as Comparative Example 1-1, except that Compound HT1 was not used in Comparative Example 1-1, and H 2-6 was used instead of Compound TCTA.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-1 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-2 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-3 instead of the compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-4 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-5 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-6 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-7 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-8 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-9 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-10 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-11 instead of the compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-12 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-13 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-14 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-15 instead of the compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-16 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-17 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-18 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-19 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-20 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-21 instead of compound HT1 in Comparative Example 1.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1 except for using the compound of Formula HT-1-22 instead of compound HT1 in Comparative Example 1.
- the organic light emitting device can improve the low driving voltage and lifespan characteristics by including the compounds represented by Chemical Formulas 1 and 2 in the first and second organic material layers, respectively. It can be seen that there is.
- a glass substrate coated with a thin film of ITO (indium tin oxide) at a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
- ITO indium tin oxide
- Fischer Co. product was used as a detergent
- distilled water filtered secondly as a filter of Millipore Co. product was used as distilled water.
- ultrasonic washing was performed twice with distilled water for 10 minutes.
- ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol dried and transported to a plasma cleaner.
- the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
- hexanitrile hexaazatriphenylene (HAT) of the above formula was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
- the compound tris (4-9H-carbazol-9-yl) phenyl) amine (tris (4- (9H-carbazol-9-yl) phenyl) amine: TCTA) was vacuumed on the hole transport layer at a film thickness of 100 kPa. Deposition was performed to form an electron blocking layer.
- Ir (ppy) 3 of the following Chemical Formula was doped with a doping concentration of 10% by weight as a dopant to the CBP of the following Chemical Formula as a host on the hole transport layer to form a thickness of 300 kPa.
- the compound ET1 and the compound LiQ were vacuum-deposited on the emission layer in a weight ratio of 1: 1 to form an electron injection and transport layer having a thickness of 300 kPa.
- lithium fluoride (LiF) and aluminum were deposited to a thickness of 12 kPa in order to form a cathode.
- Comparative Examples 1-9 to 1-14 were configured as in Table 3 below, and thus an organic light emitting device was manufactured in the same manner as in Comparative Example 1-8.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-1 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-2 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-3 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-4 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-5 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-6 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-7 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-8 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-9 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-10 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-11 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-12 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-13 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-14 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-15 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-16 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-17 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-18 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-19 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-20 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-21 instead of compound HT1 in Comparative Example 1-9.
- An organic light emitting diode was manufactured according to the same method as Comparative Example 1-9 except for using the compound of Formula HT-1-22 instead of compound HT1 in Comparative Example 1-9.
- the organic light emitting device can improve the low driving voltage and lifespan characteristics by including the compounds represented by Chemical Formulas 1 and 2 in the first and second organic layers, respectively. It can be seen that there is.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
- Indole Compounds (AREA)
Abstract
Description
화학식(정공수송층) | 화학식(전자 저지층) | 전압(V@10mA/cm2) | 효율(cd/A@10mA/cm2) | 색좌표(x,y) | |
비교예 1-1 | HT 1 | TCTA | 4.38 | 5.25 | (0.138, 0.127) |
비교예 1-2 | HT 1 | HT 2-2 | 4.35 | 5.26 | (0.138, 0.126) |
비교예 1-3 | HT 1 | - | 5.8 | 2.8 | (0.139, 0.126) |
비교예 1-4 | - | HT 2-2 | 5.9 | 3.2 | (0.137, 0.126) |
비교예 1-5 | HT-1-1 | - | 5.85 | 3.0 | (0.138, 0.125) |
비교예 1-6 | - | HT 2-4 | 6.2 | 2.98 | (0.137, 0.125) |
비교예 1-7 | - | HT 2-6 | 6.0 | 3.19 | (0.136, 0.128) |
실험예 1-1 | HT 1-1 | HT 2-2 | 3.85 | 5.45 | (0.139, 0.125) |
실험예 1-2 | HT 1-2 | HT 2-2 | 3.86 | 5.46 | (0.138, 0.125) |
실험예 1-3 | HT 1-3 | HT 2-2 | 3.84 | 5.46 | (0.138, 0.125) |
실험예 1-4 | HT 1-4 | HT 2-2 | 3.84 | 5.45 | (0.137, 0.127) |
실험예 1-5 | HT 1-5 | HT 2-2 | 3.80 | 5.47 | (0.136, 0.127) |
실험예 1-6 | HT 1-6 | HT 2-2 | 3.83 | 5.47 | (0.135, 0.127) |
실험예 1-7 | HT 1-7 | HT 2-2 | 3.82 | 5.46 | (0.136, 0.126) |
실험예 1-8 | HT 1-8 | HT 2-2 | 3.81 | 5.47 | (0.137, 0.126) |
실험예 1-9 | HT 1-9 | HT 2-2 | 3.86 | 5.49 | (0.138, 0.127) |
실험예 1-10 | HT 1-10 | HT 2-2 | 3.87 | 5.48 | (0.136, 0.126) |
실험예 1-11 | HT 1-11 | HT 2-2 | 3.85 | 5.48 | (0.137, 0.126) |
실험예 1-12 | HT 1-12 | HT 2-2 | 3.85 | 5.50 | (0.136, 0.127) |
실험예 1-13 | HT 1-13 | HT 2-2 | 3.83 | 5.47 | (0.138, 0.127) |
실험예 1-14 | HT 1-14 | HT 2-2 | 3.84 | 5.46 | (0.137, 0.126) |
실험예 1-15 | HT 1-15 | HT 2-2 | 3.84 | 5.47 | (0.136, 0.127) |
실험예 1-16 | HT 1-16 | HT 2-2 | 3.90 | 5.44 | (0.136, 0.126) |
실험예 1-17 | HT 1-17 | HT 2-2 | 3.91 | 5.43 | (0.138, 0.126) |
실험예 1-18 | HT 1-18 | HT 2-2 | 3.90 | 5.45 | (0.137, 0.126) |
실험예 1-19 | HT 1-19 | HT 2-2 | 3.89 | 5.44 | (0.137, 0.127) |
실험예 1-20 | HT 1-20 | HT 2-2 | 3.91 | 5.44 | (0.136, 0.126) |
실험예 1-21 | HT 1-21 | HT 2-2 | 3.92 | 5.46 | (0.136, 0.127) |
실험예 1-22 | HT 1-22 | HT 2-2 | 3.90 | 5.45 | (0.138, 0.127) |
화학식(정공수송층) | 화학식(전자 저지층) | 전압(V@10mA/cm2) | 효율(cd/A@10mA/cm2) | 색좌표(x,y) | |
비교예 1-8 | HT 1 | TCTA | 4.25 | 5.10 | (0.320, 0.611) |
비교예 1-9 | HT 1 | HT 2-2 | 4.35 | 5.12 | (0.321, 0.611) |
비교예 1-10 | HT 2-2 | 5.80 | 3.24 | (0.318, 0.613) | |
비교예 1-11 | HT 1 | - | 6.0 | 3.00 | (0.317, 0.612) |
비교예 1-12 | HT 1-1 | - | 5.93 | 3.05 | (0.319, 0.610) |
비교예 1-13 | - | HT 2-4 | 6.02 | 3.01 | (0.320, 0.615) |
비교예 1-14 | - | HT 2-6 | 6.0 | 3.10 | (0.321, 0.616) |
실험예 1-23 | HT 1-1 | HT 2-2 | 3.78 | 5.30 | (0.320, 0.612) |
실험예 1-24 | HT 1-2 | HT 2-2 | 3.77 | 5.31 | (0.320, 0.611) |
실험예 1-25 | HT 1-3 | HT 2-2 | 3.75 | 5.28 | (0.322, 0.610) |
실험예 1-26 | HT 1-4 | HT 2-2 | 3.74 | 5.29 | (0.319, 0.611) |
실험예 1-27 | HT 1-5 | HT 2-2 | 3.65 | 5.35 | (0.321, 0.610) |
실험예 1-28 | HT 1-6 | HT 2-2 | 3.68 | 5.47 | (0.320, 0.611) |
실험예 1-29 | HT 1-7 | HT 2-2 | 3.69 | 5.46 | (0.318, 0.613) |
실험예 1-30 | HT 1-8 | HT 2-2 | 3.70 | 5.47 | (0.320, 0.611) |
실험예 1-31 | HT 1-9 | HT 2-2 | 3.80 | 5.35 | (0.319, 0.612) |
실험예 1-32 | HT 1-10 | HT 2-2 | 3.82 | 5.37 | (0.320, 0.611) |
실험예 1-33 | HT 1-11 | HT 2-2 | 3.81 | 5.36 | (0.320, 0.613) |
실험예 1-34 | HT 1-12 | HT 2-2 | 3.83 | 5.39 | (0.321, 0.610) |
실험예 1-35 | HT 1-13 | HT 2-2 | 3.75 | 5.30 | (0.319, 0.613) |
실험예 1-36 | HT 1-14 | HT 2-2 | 3.76 | 5.31 | (0.321, 0.611) |
실험예 1-37 | HT 1-15 | HT 2-2 | 3.78 | 5.29 | (0.320, 0.612) |
실험예 1-38 | HT 1-16 | HT 2-2 | 3.76 | 5.30 | (0.318, 0.613) |
실험예 1-39 | HT 1-17 | HT 2-2 | 3.85 | 5.30 | (0.322, 0.610) |
실험예 1-40 | HT 1-18 | HT 2-2 | 3.84 | 5.28 | (0.321, 0.611) |
실험예 1-41 | HT 1-19 | HT 2-2 | 3.86 | 5.29 | (0.320, 0.610) |
실험예 1-42 | HT 1-20 | HT 2-2 | 3.84 | 5.30 | (0.319, 0.611) |
실험예 1-43 | HT 1-21 | HT 2-2 | 3.87 | 5.31 | (0.318, 0.612) |
실험예 1-44 | HT 1-22 | HT 2-2 | 3.87 | 5.30 | (0.319, 0.610) |
Claims (15)
- 캐소드; 애노드; 상기 캐소드와 상기 애노드 사이에 구비된 발광층; 상기 애노드와 상기 발광층 사이에 구비되고, 하기 화학식 1의 화합물을 포함하는 제1 유기물층; 및 상기 제1 유기물층과 상기 발광층 사이에 구비되고, 하기 화학식 2의 화합물을 포함하는 제2 유기물층을 포함하는 유기 발광 소자:[화학식 1]화학식 1에 있어서,L1 내지 L3는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이며, a 내지 c는 각각 0 내지 3의 정수이고, a 내지 c가 각각 2 이상인 경우 괄호내의 구조는 서로 같거나 상이하며,Ar1 내지 Ar6는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이거나, Ar1과 Ar2; Ar3와 Ar4; Ar5와 Ar6; Ar1과 L1; Ar3와 L2; 또는 Ar5와 L3가 서로 결합하여 단환 또는 다환의 방향족 또는 지방족의 탄화수소 고리 또는 헤테로 고리를 형성하고, l 내지 n은 각각 0 내지 2의 정수이고, l 내지 n가 각각 2인 경우 괄호내의 구조는 서로 같거나 상이하며, l 내지 n가 각각 0인 경우 L1 내지 L3에는 각각 -NAr1Ar2, -NAr3Ar4 및 -NAr5Ar6 대신 수소가 결합되고,X는 NR’; O; 또는 S이며, p는 0 또는 1이고, p가 0인 경우 X에 결합된 2개의 탄소가 직접 결합하며,R 및 R’는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.[화학식 2]화학식 2에 있어서,Ar7 및 Ar8은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이며,R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 서로 결합하여 단환 또는 다환의 방향족 또는 지방족의 탄화수소 고리 또는 헤테로 고리를 형성하고,R3 및 R4는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, e는 0 내지 4의 정수이고, e가 2 이상인 경우 R3는 서로 같거나 상이하고, f는 0 내지 3의 정수이고, f가 2 이상인 경우 R4는 서로 같거나 상이하다.
- 청구항 1에 있어서, 상기 화학식 1의 l+m+n은 1 이상인 것인 유기 발광 소자.
- 청구항 1에 있어서, 상기 화학식 1의 m+n은 1 이상인 것인 유기 발광 소자.
- 청구항 1에 있어서, 상기 화학식 1의 p는 0인 것인 유기 발광 소자.
- 청구항 1에 있어서, 상기 화학식 1의 a는 1 내지 3의 정수인 것인 유기 발광 소자.
- 청구항 1에 있어서, 상기 화학식 1에 있어서, -NAr1Ar2, -NAr3Ar4 및 -NAr5Ar6 중 적어도 하나는 하기 구조식으로 표시되는 것인 유기 발광 소자:상기 구조식에 있어서,Xa는 NRc; O; 또는 S이며, r은 0 또는 1이고, r이 0인 경우 Xa에 결합된 2개의 탄소가 직접 결합하며,Ra 및 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, g는 0 내지 8의 정수이며, g가 2 이상인 경우 Ra는 서로 같거나 상이하다.
- 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 4로 표시되는 것인 유기 발광 소자:[화학식 4]화학식 4에 있어서, Ar1, Ar2, L1 내지 L3, R, X, a, b, c, d, l 및 p는 화학식 1에서 정의한 바와 같고,Xa 및 Xb는 서로 같거나 상이하고, 각각 독립적으로 NRc; O; 또는 S이며, r 및 q는 각각 0 또는 1이고, r 및 q가 각각 0인 경우 Xa 및 Xb 각각에 결합된 2개의 탄소가 직접 결합하며,Ra 내지 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, g 및 h는 각각 0 내지 8의 정수이며, g 또는 h가 2 이상인 경우 괄호내의 구조는 서로 같거나 상이하다.
- 청구항 1에 있어서, 상기 화학식 1에 있어서, -(L1)a-NAr1Ar2, -(L2)b-NAr3Ar4 및 -(L3)c-NAr5Ar6 중 적어도 하나는 하기 구조식으로 표시되는 것인 유기 발광 소자:상기 구조식에 있어서, L4는 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이며, i는 0 내지 2의 정수이고, i가 2인 경우 L4는 서로 같거나 상이하며, Ar9는 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, Rd는 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, k는 0 내지 7의 정수이고, k가 2 이상인 경우 Rd는 서로 같거나 상이하다.
- 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 6으로 표시되는 것인 유기 발광 소자:[화학식 6]화학식 6에 있어서, Ar1, Ar2, L1, R, X, a, d, l 및 p는 화학식 1에서 정의한 바와 같고,L4 및 L5는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이며, i 및 j는 각각 0 내지 2의 정수이고, i 및 j가 각각 2인 경우 괄호내의 구조는 서로 같거나 상이하며, Ar9 및 Ar10은 서로 같거나 상이하고, 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, Rd 및 Re는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, k 및 o는 각각 0 내지 7의 정수이고, k 또는 o가 2 이상인 경우 괄호 내의 구조는 서로 같거나 상이하다.
- 청구항 1에 있어서, 상기 화학식 1에서 l은 0이고, L1은 페닐기, 바이페닐릴기, 나프틸기, 또는 알킬기로 치환 또는 비치환된 플루오레닐레닐기인 것인 유기 발광 소자.
- 청구항 1에 있어서, 상기 화학식 2는 하기 화학식 12로 표시되는 것인 유기 발광 소자:[화학식 12]화학식 12에 있어서, R3, R4, Ar7, Ar8, e 및 f는 화학식 2에서 정의한 바와 같고, R5는 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, x는 0 내지 8의 정수이며, x가 2 이상인 경우 R5는 서로 같거나 상이하다.
- 청구항 1에 있어서, 상기 제1 유기물층은 정공수송층이고, 상기 제2 유기물층은 전자차단층인 것인 유기 발광 소자.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780029487.8A CN109075261B (zh) | 2016-05-27 | 2017-05-26 | 有机发光器件 |
US16/304,426 US20190148650A1 (en) | 2016-05-27 | 2017-05-26 | Organic Light Emitting Device |
EP17803112.6A EP3439062B1 (en) | 2016-05-27 | 2017-05-26 | Organic light emitting element |
JP2018553124A JP6806312B2 (ja) | 2016-05-27 | 2017-05-26 | 有機発光素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160065970 | 2016-05-27 | ||
KR10-2016-0065970 | 2016-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204594A1 true WO2017204594A1 (ko) | 2017-11-30 |
Family
ID=60411815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/005520 WO2017204594A1 (ko) | 2016-05-27 | 2017-05-26 | 유기 발광 소자 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190148650A1 (ko) |
EP (1) | EP3439062B1 (ko) |
JP (2) | JP6806312B2 (ko) |
KR (1) | KR101997057B1 (ko) |
CN (1) | CN109075261B (ko) |
TW (1) | TWI619701B (ko) |
WO (1) | WO2017204594A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109928962A (zh) * | 2017-12-18 | 2019-06-25 | 江苏三月光电科技有限公司 | 一种以咔唑为核心的化合物、制备方法及其在有机电致发光器件上的应用 |
US10658594B2 (en) | 2017-12-06 | 2020-05-19 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and novel compound |
CN111602258A (zh) * | 2018-06-11 | 2020-08-28 | 株式会社Lg化学 | 有机发光器件 |
CN111684615A (zh) * | 2018-06-11 | 2020-09-18 | 株式会社Lg化学 | 有机发光器件 |
CN111868949A (zh) * | 2018-06-08 | 2020-10-30 | 株式会社Lg化学 | 有机发光器件 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019101719A1 (de) * | 2017-11-23 | 2019-05-31 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
KR102164775B1 (ko) * | 2018-05-24 | 2020-10-13 | 주식회사 엘지화학 | 유기 발광 소자 |
CN111480243B (zh) * | 2018-09-20 | 2023-04-18 | 株式会社Lg化学 | 有机发光二极管 |
US10593889B1 (en) | 2018-09-26 | 2020-03-17 | Idemitsu Kosan Co., Ltd. | Compound and organic electroluminescence device |
KR102247684B1 (ko) * | 2018-10-10 | 2021-05-03 | 주식회사 엘지화학 | 신규한 화합물 및 이를 포함하는 유기발광 소자 |
KR20200136115A (ko) * | 2019-05-27 | 2020-12-07 | 주식회사 동진쎄미켐 | 캡핑층용 유기 화합물 및 이를 포함하는 유기 발광 소자 |
EP3790857B1 (en) | 2019-06-28 | 2023-01-11 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescence element, organic electroluminescence element and electronic device |
CN113196515B (zh) * | 2019-07-31 | 2023-08-22 | 株式会社Lg化学 | 有机发光器件 |
KR102390663B1 (ko) * | 2019-08-01 | 2022-04-26 | 주식회사 엘지화학 | 유기 발광 소자 |
KR102442771B1 (ko) * | 2019-11-29 | 2022-09-14 | 주식회사 엘지화학 | 유기 발광 소자 |
US20220271226A1 (en) * | 2019-11-29 | 2022-08-25 | Lg Chem, Ltd. | Organic light-emitting device |
CN113939924B (zh) * | 2020-01-16 | 2024-06-07 | 株式会社Lg化学 | 有机发光器件 |
US20220310935A1 (en) * | 2020-02-28 | 2022-09-29 | Lg Chem, Ltd. | Organic light-emitting device |
KR102680194B1 (ko) | 2020-09-10 | 2024-07-01 | 주식회사 엘지화학 | 유기 발광 소자 |
EP4317126A1 (en) | 2021-03-31 | 2024-02-07 | Idemitsu Kosan Co., Ltd | Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120013173A (ko) * | 2010-08-04 | 2012-02-14 | 제일모직주식회사 | 유기광전소자용 화합물 및 이를 포함하는 유기광전소자 |
KR20130007461A (ko) * | 2011-06-27 | 2013-01-18 | 주식회사 엘지화학 | 새로운 화합물 및 이를 포함한 유기 발광 소자 |
KR20150102735A (ko) * | 2014-02-28 | 2015-09-07 | 머티어리얼사이언스 주식회사 | 유기전계발광소자 |
KR20160035610A (ko) * | 2012-02-14 | 2016-03-31 | 메르크 파텐트 게엠베하 | 유기 전계발광 소자용 스피로비플루오렌 화합물 |
KR20160047671A (ko) * | 2014-10-22 | 2016-05-03 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3649302B2 (ja) * | 1996-05-23 | 2005-05-18 | 出光興産株式会社 | 有機電界発光素子 |
JP4140986B2 (ja) * | 1997-02-14 | 2008-08-27 | 出光興産株式会社 | 有機電界発光素子 |
TW532048B (en) * | 2000-03-27 | 2003-05-11 | Idemitsu Kosan Co | Organic electroluminescence element |
DE10135513B4 (de) | 2001-07-20 | 2005-02-24 | Novaled Gmbh | Lichtemittierendes Bauelement mit organischen Schichten |
CN1221268C (zh) * | 2002-10-11 | 2005-10-05 | 兰为民 | 镁钙离子复合制剂及其生产工艺 |
JP4707082B2 (ja) * | 2002-11-26 | 2011-06-22 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子および表示装置 |
KR20080063291A (ko) * | 2005-09-30 | 2008-07-03 | 이데미쓰 고산 가부시키가이샤 | 유기 전계 발광 소자 |
JP5616582B2 (ja) * | 2006-06-22 | 2014-10-29 | 出光興産株式会社 | 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子 |
US7723722B2 (en) * | 2007-03-23 | 2010-05-25 | Semiconductor Energy Laboratory Co., Ltd. | Organic compound, anthracene derivative, and light-emitting element, light-emitting device, and electronic device using anthracene derivative |
KR20090028943A (ko) * | 2007-09-17 | 2009-03-20 | (주)루디스 | 정공주입층/정공수송층 물질 및 이를 포함하는유기전계발광소자 |
CN101959857B (zh) * | 2008-03-24 | 2014-02-19 | 新日铁住金化学株式会社 | 有机场致发光元件用化合物及使用其的有机场致发光元件 |
EP2299509B1 (en) * | 2008-05-16 | 2016-06-29 | Hodogaya Chemical Co., Ltd. | Organic electroluminescent device |
US20100295444A1 (en) * | 2009-05-22 | 2010-11-25 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
KR101446401B1 (ko) * | 2009-10-02 | 2014-10-01 | 이데미쓰 고산 가부시키가이샤 | 방향족 아민 유도체 및 유기 전기발광 소자 |
US20110309344A1 (en) * | 2010-06-18 | 2011-12-22 | Basf Se | Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex |
DE102010045405A1 (de) * | 2010-09-15 | 2012-03-15 | Merck Patent Gmbh | Materialien für organische Elektrolumineszenzvorrichtungen |
WO2012077902A2 (ko) * | 2010-12-08 | 2012-06-14 | 제일모직 주식회사 | 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치 |
EP2826079B1 (de) * | 2012-03-15 | 2021-01-20 | Merck Patent GmbH | Elektronische vorrichtungen |
WO2014015938A1 (de) * | 2012-07-23 | 2014-01-30 | Merck Patent Gmbh | Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen |
JP2014049539A (ja) * | 2012-08-30 | 2014-03-17 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
KR101684979B1 (ko) * | 2012-12-31 | 2016-12-09 | 제일모직 주식회사 | 유기광전자소자 및 이를 포함하는 표시장치 |
EP2978040B1 (en) * | 2014-07-22 | 2017-12-27 | Samsung Display Co., Ltd. | Organic light-emitting device |
US10696664B2 (en) * | 2015-08-14 | 2020-06-30 | Merck Patent Gmbh | Phenoxazine derivatives for organic electroluminescent devices |
WO2017028941A1 (en) * | 2015-08-14 | 2017-02-23 | Merck Patent Gmbh | Phenoxazine derivatives for organic electroluminescent devices |
-
2017
- 2017-05-26 US US16/304,426 patent/US20190148650A1/en active Pending
- 2017-05-26 TW TW106117702A patent/TWI619701B/zh active
- 2017-05-26 JP JP2018553124A patent/JP6806312B2/ja active Active
- 2017-05-26 EP EP17803112.6A patent/EP3439062B1/en active Active
- 2017-05-26 CN CN201780029487.8A patent/CN109075261B/zh active Active
- 2017-05-26 KR KR1020170065415A patent/KR101997057B1/ko active IP Right Grant
- 2017-05-26 WO PCT/KR2017/005520 patent/WO2017204594A1/ko active Application Filing
-
2020
- 2020-01-29 JP JP2020012666A patent/JP6933324B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120013173A (ko) * | 2010-08-04 | 2012-02-14 | 제일모직주식회사 | 유기광전소자용 화합물 및 이를 포함하는 유기광전소자 |
KR20130007461A (ko) * | 2011-06-27 | 2013-01-18 | 주식회사 엘지화학 | 새로운 화합물 및 이를 포함한 유기 발광 소자 |
KR20160035610A (ko) * | 2012-02-14 | 2016-03-31 | 메르크 파텐트 게엠베하 | 유기 전계발광 소자용 스피로비플루오렌 화합물 |
KR20150102735A (ko) * | 2014-02-28 | 2015-09-07 | 머티어리얼사이언스 주식회사 | 유기전계발광소자 |
KR20160047671A (ko) * | 2014-10-22 | 2016-05-03 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3439062A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10658594B2 (en) | 2017-12-06 | 2020-05-19 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and novel compound |
US10672989B2 (en) | 2017-12-06 | 2020-06-02 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and novel compound |
CN109928962A (zh) * | 2017-12-18 | 2019-06-25 | 江苏三月光电科技有限公司 | 一种以咔唑为核心的化合物、制备方法及其在有机电致发光器件上的应用 |
CN111868949A (zh) * | 2018-06-08 | 2020-10-30 | 株式会社Lg化学 | 有机发光器件 |
US11856852B2 (en) | 2018-06-08 | 2023-12-26 | Lg Chem, Ltd. | Organic light-emitting device |
CN111602258A (zh) * | 2018-06-11 | 2020-08-28 | 株式会社Lg化学 | 有机发光器件 |
CN111684615A (zh) * | 2018-06-11 | 2020-09-18 | 株式会社Lg化学 | 有机发光器件 |
CN111684615B (zh) * | 2018-06-11 | 2023-10-17 | 株式会社Lg化学 | 有机发光器件 |
CN111602258B (zh) * | 2018-06-11 | 2023-11-07 | 株式会社Lg化学 | 有机发光器件 |
Also Published As
Publication number | Publication date |
---|---|
CN109075261B (zh) | 2020-06-02 |
JP6806312B2 (ja) | 2021-01-06 |
EP3439062B1 (en) | 2021-09-08 |
CN109075261A (zh) | 2018-12-21 |
TWI619701B (zh) | 2018-04-01 |
JP6933324B2 (ja) | 2021-09-08 |
KR20170134260A (ko) | 2017-12-06 |
JP2020098916A (ja) | 2020-06-25 |
KR101997057B1 (ko) | 2019-07-08 |
US20190148650A1 (en) | 2019-05-16 |
JP2019515488A (ja) | 2019-06-06 |
TW201808899A (zh) | 2018-03-16 |
EP3439062A4 (en) | 2019-04-10 |
EP3439062A1 (en) | 2019-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017204594A1 (ko) | 유기 발광 소자 | |
WO2019235873A1 (ko) | 유기 발광 소자 | |
WO2016171406A2 (ko) | 유기 발광 소자 | |
WO2017150859A1 (ko) | 함질소 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2016182388A2 (ko) | 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2019143151A1 (ko) | 유기 발광 소자 | |
WO2020145725A1 (ko) | 화합물 및 이를 포함하는 유기발광소자 | |
WO2019151733A1 (ko) | 유기 발광 소자 | |
WO2019190223A1 (ko) | 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2019182402A1 (ko) | 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2019194617A1 (ko) | 아민 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2016068478A2 (ko) | 고리 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2017146522A1 (ko) | 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2015152651A1 (ko) | 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2021125648A1 (ko) | 신규한 화합물 및 이를 이용한 유기 발광 소자 | |
WO2020262861A1 (ko) | 신규한 화합물 및 이를 포함하는 유기발광 소자 | |
WO2018030786A1 (ko) | 화합물 및 이를 포함하는 유기발광소자 | |
WO2017164614A1 (ko) | 헤테로환 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2019107710A1 (ko) | 유기 발광 소자 | |
WO2021125813A1 (ko) | 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2018074881A1 (ko) | 다중고리 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2022108258A1 (ko) | 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2019151615A1 (ko) | 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 | |
WO2024053991A1 (ko) | 신규한 화합물 및 이를 포함한 유기 발광 소자 | |
WO2017061785A1 (ko) | 스피로형 화합물 및 이를 포함하는 유기 발광 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018553124 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017803112 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017803112 Country of ref document: EP Effective date: 20181029 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17803112 Country of ref document: EP Kind code of ref document: A1 |