[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017138327A1 - 波長変換素子及び光源装置 - Google Patents

波長変換素子及び光源装置 Download PDF

Info

Publication number
WO2017138327A1
WO2017138327A1 PCT/JP2017/001900 JP2017001900W WO2017138327A1 WO 2017138327 A1 WO2017138327 A1 WO 2017138327A1 JP 2017001900 W JP2017001900 W JP 2017001900W WO 2017138327 A1 WO2017138327 A1 WO 2017138327A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
conversion element
conversion member
source device
Prior art date
Application number
PCT/JP2017/001900
Other languages
English (en)
French (fr)
Inventor
山中 一彦
博隆 上野
深草 雅春
古賀 稔浩
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017566570A priority Critical patent/JP6799828B2/ja
Priority to CN201780009281.9A priority patent/CN108604609A/zh
Priority to EP17750052.7A priority patent/EP3416197A4/en
Publication of WO2017138327A1 publication Critical patent/WO2017138327A1/ja
Priority to US16/054,688 priority patent/US20180342629A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • F21S41/192Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/10Protection of lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • F21V23/0442Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • F21V7/26Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium

Definitions

  • the present disclosure relates to a wavelength conversion element and a light source device using the same.
  • the wavelength conversion element is irradiated with light emitted from the semiconductor light-emitting device in order to emit a high luminous flux, thereby converting the wavelength.
  • the light emitted from the element is used efficiently.
  • Patent Document 1 a conventional light source device disclosed in Patent Document 1 will be described with reference to FIG.
  • FIG. 21 is a schematic diagram showing a configuration of a conventional light source device 1001.
  • a conventional light source device 1001 includes a semiconductor laser element 1002 that emits laser light, a phosphor 1004 that converts at least part of the laser light emitted from the semiconductor laser element 1002 into incoherent light, and a coherent laser light And a safety device (light detector 1011, control unit 1009) that suppresses emission to the outside.
  • the light receiving element 1008 of the light detector 1011 receives light having a wavelength larger than about 500 nm transmitted through the optical filter 1007 among the light from the phosphor 1004 arranged in the concave portion 1005a of the reflecting member 1005.
  • the output of the light receiving element 1008 is reduced, and the determination unit 1009a of the control unit 1009 determines a predetermined value. Determined to be less than or equal to the value.
  • the drive circuit 1010 stops driving the semiconductor laser element 1002.
  • the fluorescence emitted from the wavelength conversion member (phosphor) is light emitted in a random direction, it is difficult to detect a minute change in the light emission state of the wavelength conversion member (phosphor). .
  • the light source device 1001 can determine the final stage of a failure such as a dropout or breakage of the phosphor, but can detect the initial stage of a failure such as a crack generated in a part of the phosphor. I can't.
  • This indication is made in order to solve such a subject, and it aims at providing a light source device provided with the wavelength conversion element which can detect the state of a wavelength conversion member correctly, and the wavelength conversion element concerned. .
  • a wavelength conversion element is integrated on a base, a plate-like or film-like wavelength conversion member disposed on at least a part of the surface of the base, and the p And a light receiving portion including a pn junction composed of an n-type semiconductor and an n-type semiconductor.
  • the light receiving unit including the pn junction is integrated on the substrate on which the wavelength converting member is arranged, so that the light receiving unit detects light emitted from the wavelength converting member in the vicinity of the wavelength converting member. can do. Therefore, the light receiving unit can accurately detect a minute change in the wavelength conversion member.
  • the light receiving unit may receive light incident on the base.
  • the light receiving unit can detect light emitted from the wavelength conversion member toward the substrate in the vicinity of the wavelength conversion member. Therefore, a minute change in the wavelength conversion member can be accurately detected.
  • the thickness of the wavelength conversion member in the direction perpendicular to the surface may be smaller than the maximum width in the direction parallel to the surface of the wavelength conversion member.
  • the wavelength conversion element according to the present disclosure may further include an optical filter that is disposed between the wavelength conversion member and the base and reflects light emitted from the wavelength conversion member.
  • the light propagating toward the substrate can be efficiently emitted to the outside of the wavelength conversion element.
  • the optical filter may include a metal film or a dielectric multilayer film.
  • This configuration makes it easy to form an optical filter.
  • the p-type semiconductor and the n-type semiconductor may be silicon doped with impurities.
  • This configuration makes it possible to easily manufacture the light receiving part.
  • the light receiving unit may be disposed inside the base or between the base and the wavelength conversion member.
  • the distance between the wavelength conversion member and the light receiving portion can be shortened by this configuration, a minute change of the wavelength conversion member can be accurately detected.
  • the base may include a plurality of the light receiving units.
  • This configuration makes it possible to accurately detect the position of light incident on the wavelength conversion member.
  • the light receiving unit may be disposed around the wavelength conversion member in a plan view of the surface.
  • This configuration makes it possible to accurately detect information on light incident on the wavelength conversion member. For example, when irradiating light from the light emitting device to the wavelength conversion element, the irradiation position of the light from the light emitting device may be shifted so that the light is incident on the periphery of the wavelength converting member without being incident on the wavelength converting member. . In such a case, in this configuration, it is possible to accurately detect the deviation of the irradiation position.
  • the light receiving unit may be disposed on the periphery of the wavelength conversion member in the plan view of the surface.
  • the position of light from the light emitting device to the wavelength conversion member can be detected, and the area of the light receiving unit can be reduced.
  • the wavelength conversion member may have a plurality of regions.
  • a wavelength conversion member having a plurality of light emitting regions can be easily configured.
  • a light source device includes the wavelength conversion element and a light-emitting device that emits light applied to the wavelength conversion element.
  • the light source device can achieve the same effect as the wavelength conversion element.
  • the light emitting device may emit laser light.
  • the light source device may further include an optical system that varies the optical path of the light emitted from the light emitting device.
  • a wavelength conversion element capable of accurately detecting the state of the wavelength conversion member and a light source device including the wavelength conversion element.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the light source device according to Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the wavelength conversion element mounted on the light source device according to Embodiment 1.
  • 3A is a schematic cross-sectional view for explaining an example of the operation of the wavelength conversion element according to Embodiment 1.
  • FIG. 3B is a schematic cross-sectional view for explaining another example of the operation of the wavelength conversion element according to Embodiment 1.
  • 3C is a schematic cross-sectional view for explaining yet another example of the operation of the wavelength conversion element according to Embodiment 1.
  • FIG. FIG. 4 is a schematic circuit block diagram of the light source device according to Embodiment 1 and a control unit that operates the light source device.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the first modification of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the second modification of the first embodiment.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the second embodiment.
  • FIG. 8 is a perspective view showing an appearance of the wavelength conversion element according to the second embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the light source device according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing the configuration of the light source device according to Embodiment 3.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the light source device according to Embodiment 2.
  • FIG. 11 is a schematic circuit block diagram of the light source device according to Embodiment 3 and a control unit for driving the light source device.
  • FIG. 12 is a flowchart illustrating a control algorithm in the light source device and the control unit according to the third embodiment.
  • FIG. 13 is a graph showing the time dependency of an example of a drive signal input to the light source device according to the third embodiment.
  • FIG. 14 is a perspective view schematically showing a light source device according to the first modification of the third embodiment.
  • FIG. 15 is a schematic diagram illustrating an application example of the light source device according to the first modification of the third embodiment.
  • FIG. 16 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the second modification of the third embodiment.
  • FIG. 17 is a schematic cross-sectional view illustrating a configuration of a wavelength conversion element according to Modification 3 of Embodiment 3.
  • FIG. 18 is a schematic cross-sectional view showing the configuration of the light source device according to Embodiment 4.
  • FIG. 19 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the fourth embodiment.
  • FIG. 20 is a schematic cross-sectional view showing the configuration of the wavelength conversion element according to the fifth embodiment.
  • FIG. 21 is a schematic diagram showing a configuration of a conventional light source device.
  • Embodiment 1 the light source device according to Embodiment 1 will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a light source device 101 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 100 mounted on the light source device 101 according to the present embodiment.
  • the light source device 101 includes a wavelength conversion element 100 and a light emitting device 1 that irradiates the wavelength conversion element 100 with light.
  • the light source device 101 further includes a condensing optical system 3.
  • the light source device 101 irradiates the wavelength conversion member 4 with the light emitted from the light emitting device 1, and emits the light emitted from the wavelength conversion member 4 as the emitted light 90 of the light source device 101.
  • the wavelength conversion element 100 is an element that is irradiated with light from the light emitting device 1 and that converts at least a part of the light to emit the light, and includes a base body 5, a wavelength conversion member 4, and a light receiving unit 6.
  • the substrate 5 is a member on which the wavelength conversion member 4 is disposed and the light receiving unit 6 is integrated.
  • substrate 5 is not specifically limited, For example, plate shape may be sufficient.
  • the wavelength converting member 4 is a plate-like or film-like wavelength converting member disposed on at least a part of the surface of the substrate 5.
  • the wavelength conversion member 4 is a member including at least one kind of phosphor material, for example, absorbs light having a wavelength of 380 nm to 490 nm and emits fluorescence having a peak wavelength in a visible light region between wavelengths 420 nm and 780 nm. Exit.
  • the wavelength conversion member 4 includes at least a phosphor material that emits red light from yellow light having a wavelength between 500 nm and 650 nm, for example.
  • the wavelength conversion member 4 includes, for example, a cerium (Ce) activated yttrium / aluminum / garnet phosphor material as the phosphor material.
  • the light receiving portion 6 is integrated on the base 5 and includes a pn junction composed of a p-type semiconductor and an n-type semiconductor.
  • the light receiving unit 6 receives light incident on the substrate 5.
  • the light emitting device 1 is a device that emits light irradiated to the wavelength conversion element 100.
  • the light emitting device 1 includes, for example, a semiconductor light emitting element 10.
  • the semiconductor light emitting device 10 is, for example, a nitride semiconductor light emitting device including a light emitting layer made of a nitride semiconductor.
  • the semiconductor light emitting element 10 is, for example, a semiconductor laser diode element in which an optical waveguide is formed.
  • the emitted light 11 emitted from the semiconductor light emitting element 10 is, for example, light having a wavelength of near ultraviolet to blue having a peak wavelength between 380 nm and 490 nm.
  • the emitted light 11 is, for example, laser light emitted from a semiconductor laser diode element.
  • the condensing optical system 3 is an optical system including one or more optical elements such as a convex lens and a concave reflecting lens, and condenses at least a part of the emitted light 11 on at least a part of the surface of the wavelength conversion member 4. To do.
  • the emitted light 90 is light emitted from the wavelength conversion member 4.
  • the outgoing light 90 includes light obtained by wavelength-converting at least a part of the outgoing light 11 by the wavelength conversion member 4. More specifically, from the wavelength conversion member 4 irradiated with the outgoing light 11, the first outgoing light 91 that is a part of the outgoing light 11 scattered and the other part of the outgoing light 11 are absorbed. And the 2nd emitted light 92 which is the light by which wavelength conversion was carried out is emitted.
  • the first outgoing light 91 is blue light
  • the second outgoing light 92 is yellow light. That is, the wavelength conversion member 4 emits the emitted light 90 that is white light in which the first emitted light 91 and the second emitted light 92 are mixed.
  • the wavelength conversion element 100 is integrated with the base 5, the plate-like or film-like wavelength conversion member 4 disposed on at least a part of the surface of the base 5, and the base 5, and is composed of a p-type semiconductor and an n-type semiconductor. And a light receiving unit 6 including a pn junction.
  • the base 5 is, for example, a first semiconductor 22 made of silicon (Si) having a first conductivity type and a second conductivity type that is disposed on the wavelength conversion member 4 side of the first semiconductor 22 and has a conductivity type different from the first conductivity type.
  • the second semiconductor 23 is formed of conductive silicon.
  • the first conductivity type and the second conductivity type are n-type and p-type, respectively. Thereby, the light-receiving part 6 can be manufactured easily.
  • the first conductivity type and the second conductivity type may be p-type and n-type, respectively.
  • the first semiconductor 22 is, for example, an n-type silicon substrate whose outer shape is 3 mm in length, 3 mm in width, and 300 ⁇ m in thickness.
  • the second semiconductor 23 is formed by injecting a p-type dopant into the surface of the first semiconductor 22.
  • the light receiving unit 6 including a pn junction is formed between the first semiconductor 22 and the second semiconductor 23, the light receiving unit 6 including a pn junction is formed. A depletion layer is formed in the light receiving unit 6.
  • the depth from the surface of the light receiving portion 6 formed at the interface between the first semiconductor 22 and the second semiconductor 23 is designed based on the light penetration length in the second semiconductor 23. For example, when receiving light with a wavelength of 420 nm to 650 nm, the light receiving unit 6 is disposed at a position where the depth from the surface of the second semiconductor 23 is between 0.1 ⁇ m and 10 ⁇ m.
  • a protective film 35 which is a silicon oxide film having a thickness of, for example, between 0.1 ⁇ m and 10 ⁇ m, is formed on the second semiconductor 23 side of the substrate 5.
  • the protective film 35 is a film for suppressing deterioration of the first semiconductor 22 and the second semiconductor 23.
  • the protective film 35 is not an essential component of the wavelength conversion element 100.
  • a second electrode 33 made of a metal such as nickel, aluminum, titanium, platinum, or gold is formed on part or all of the surface of the protective film 35. In addition, an opening is provided in a part of the surface of the second semiconductor 23, and the second semiconductor 23 and the second electrode 33 are electrically connected.
  • the surface of the first semiconductor 22 opposite to the second semiconductor 23 of the base 5 (that is, the lower side in FIG. 2) is made of a metal such as nickel, aluminum, titanium, platinum, or gold.
  • One electrode 32 is formed, and the first electrode 32 and the first semiconductor 22 are electrically connected.
  • the wavelength conversion member 4 is a member including one or more kinds of phosphor materials, and is formed on at least one surface of the protective film 35 and the second electrode 33.
  • the wavelength conversion member 4 is made of a mixed paste of Ce-activated (Gd, Y, Lu) 3 (Al, Ga) 5 O 12 phosphor particles and silicone having an average particle diameter D50 of 5 ⁇ m. It is formed by being applied to the surface and cured.
  • the wavelength conversion member 4 is formed, for example, in a region slightly smaller than the main surface of the main surface on which the wavelength conversion member 4 of the base 5 is disposed.
  • the thickness of the wavelength conversion member 4 is, for example, 10 ⁇ m to 150 ⁇ m.
  • the thickness of the wavelength conversion member 4 is appropriately set depending on the color temperature of the emitted light 90 emitted from the wavelength conversion member, the conversion efficiency from the emitted light 11 to the emitted light 90, and the like.
  • the wavelength conversion element 100 is electrically connected to an external circuit using a conductive member such as solder or conductive paste, or a metal wire.
  • a conductive member such as solder or conductive paste, or a metal wire.
  • the second electrode 33 is connected to the outside by a metal wire 37 as shown in FIG.
  • the light source device 101 includes a wavelength conversion element 100 and a light emitting device 1.
  • the wavelength conversion element 100 and the light emitting device 1 are held by a holding member (not shown).
  • the light source device 101 further includes a condensing optical system 3 and an external connection means 80.
  • the light emitting device 1 includes, for example, a package 12 that is TO-CAN and a semiconductor light emitting element 10 mounted on the package 12.
  • the package 12 includes lead pins 13 a and 13 b that are wirings for applying power to the semiconductor light emitting element 10.
  • the package 12 includes a can 15 that seals the semiconductor light emitting element 10.
  • the can 15 includes a translucent member 16.
  • the translucent member 16 is made of glass, for example.
  • the light emitting device 1 emits outgoing light 11 that is blue laser light having a peak wavelength of 450 nm, for example.
  • the emitted light 11 passes through the translucent member 16 and is emitted to the outside of the light emitting device 1.
  • the lead pins 13a and 13b of the light emitting device 1 are connected to wirings 70a and 70b, respectively.
  • the wirings 70a and 70b are, for example, flexible printed circuit boards in which wiring is formed of copper foil or the like on a base film such as polyimide.
  • Wirings 70a and 70b are connected to external connection means 80.
  • the external connection means 80 is a connector, for example.
  • the condensing optical system 3 is a convex lens, and condenses the emitted light 11 on the wavelength conversion element 100.
  • a light projecting member 120 which is an aspherical convex lens having a high numerical aperture, is disposed on the optical path of the emitted light 90 emitted from the wavelength conversion element 100, for example. ing. Thereby, the light distribution characteristic of the light source device 101 can be adjusted.
  • FIG. 3A is a schematic cross-sectional view for explaining an example of the operation of the wavelength conversion element 100 according to the present embodiment.
  • FIG. 3B is a schematic cross-sectional view for explaining another example of the operation of the wavelength conversion element 100 according to the present embodiment.
  • FIG. 3C is a schematic cross-sectional view for explaining still another example of the operation of the wavelength conversion element 100 according to the present embodiment.
  • the light source device 101 condenses the emitted light 11 emitted from the light emitting device 1 by the condensing optical system 3 and irradiates the wavelength conversion member 4 of the wavelength conversion element 100.
  • the wavelength conversion member 4 irradiated with the emitted light 11 emits emitted light 90 that is white light.
  • the emitted light 11 is applied to the wavelength conversion member 4 disposed on the upper part of the light receiving unit 6.
  • a part of the emitted light 90b transmitted through the protective film 35 or the second electrode 33 is incident on the light receiving unit 6 including the depletion layer of the substrate 5.
  • the light incident on the light receiving unit 6 generates electron-hole pairs by photoelectric conversion.
  • a voltage for applying a reverse bias to the pn junction is applied to the first electrode 32 and the second electrode 33.
  • a positive voltage and a negative voltage are applied to the first electrode 32 and the second electrode 33, respectively. Therefore, the electrons and holes generated in the light receiving unit 6 reach the external connection means 80 from the first electrode 32 and the second electrode 33 via the wirings 70c and 70d, respectively. Furthermore, electrons and holes are sent from the external connection means 80 to the outside of the light source device 101.
  • the state of the wavelength conversion member 4 can be detected based on a signal (that is, photocurrent) output from the light receiving unit 6. Furthermore, the operation control of the light emitting device 1 can be performed based on the detection result. For example, when the photocurrent from the light receiving unit 6 suddenly increases, it is determined that the wavelength conversion member 4 may be damaged or detached, and the operation of the light emitting device 1 can be stopped. In this way, it is possible to suppress the coherent outgoing light 11 from being directly emitted to the outside of the light source device 101 without being scattered.
  • FIG. 4 is a schematic circuit block diagram of the light source device 101 according to the present embodiment and the control unit 140 that operates the light source device 101.
  • the light source device 101 includes a semiconductor light emitting element 10, a photodetector 20, and external connection means 80.
  • the photodetector 20 is a photodiode including the light receiving unit 6, the first electrode 32, and the second electrode 33.
  • the external connection means 80 includes an anode terminal C1, a cathode terminal C2, a first terminal C3, and a second terminal C4.
  • the anode electrode of the semiconductor light emitting element 10 is connected to the anode terminal C1 of the external connection means 80, and the cathode electrode of the semiconductor light emitting element 10 is connected to the cathode terminal C2 of the external connection means 80.
  • the cathode electrode of the photodetector 20 is connected to the first terminal C3 of the external connection means 80, and the anode electrode of the photodetector 20 is connected to the second terminal C4 of the external connection means 80.
  • the external connection means 80 of the light source device 101 is connected to the control unit 140 by an external wiring 81.
  • the light source device 101 is driven by a power supply unit 160 that is, for example, a battery, an external circuit 150 that is, for example, a central control circuit, and a control unit 140. That is, the power supply unit 160, the external circuit 150, and the control unit 140 constitute a drive unit of the light source device 101.
  • a power supply unit 160 that is, for example, a battery
  • an external circuit 150 that is, for example, a central control circuit
  • a control unit 140 constitute a drive unit of the light source device 101.
  • the power supply unit 160 supplies electric power to drive the control unit 140.
  • the external circuit 150 communicates with the control unit 140, for example. Thereby, the external circuit 150 may obtain information from the control unit 140 or may issue an instruction to the control unit 140.
  • the controller 140 supplies a predetermined current Iop to the semiconductor light emitting element 10 through the anode terminal C1 and the cathode terminal C2 in order to drive the semiconductor light emitting element 10.
  • control unit 140 receives the photocurrent via the second terminal C4 in order to detect the photocurrent from the photodetector 20.
  • the control unit 140 includes a microcontroller 141, a first step-down converter 142, and a second step-down converter 143.
  • the control unit 140 further includes a resistance element 132, an A / D converter 144, an I / O port 148, and a sense resistor 146.
  • the microcontroller 141 is a circuit that controls the current Iop supplied to the semiconductor light emitting element 10 based on the photocurrent from the photodetector 20 and the signal from the external circuit 150.
  • the first step-down converter 142 is a buck converter for supplying a current Iop to the semiconductor light emitting element 10.
  • the second step-down converter 143 is a buck converter for generating a power supply voltage Vcc to be applied to the photodetector 20.
  • the resistance element 132 is a resistance element for obtaining a voltage value corresponding to the photocurrent output from the photodetector 20.
  • the A / D converter 144 is a converter that converts a voltage value corresponding to the photocurrent from the photodetector 20 into a digital signal.
  • the I / O port 148 is a port for performing communication with the external circuit 150.
  • the sense resistor 146 is a resistor element for obtaining a voltage corresponding to the current Iop supplied from the first step-down converter 142 to the semiconductor light emitting element 10.
  • the light source device 101 and the control unit 140 control the operation of the semiconductor light emitting element 10 with the circuit configuration as described above.
  • the light source device 101 As an application example of the light source device 101 according to the present embodiment, an example in which the light source device 101 is used as a headlamp for a vehicle such as an automobile will be described.
  • the operation of the light source device 101 is prepared by starting the engine of the vehicle.
  • power (voltage V B ) is supplied from the power supply unit 160 to the control unit 140, and the power supply voltage Vcc is generated by the second step-down converter 143.
  • a predetermined instruction signal is sent from the external circuit 150 to the microcontroller 141 via the I / O port 148, and the current Iop passes from the first step-down converter 142 through the external wiring 81 to external connection means. It flows to 80 anode terminals C1.
  • the current Iop supplied to the anode terminal C1 is supplied from the external wiring 81 to the external connection means 80. As shown in FIG. 1, the current Iop is transmitted to the lead pins 13a and 13b by the wirings 70a and 70b, and is supplied to the semiconductor light emitting element 10 by a metal wire (not shown). Thereby, the emitted light 11 is emitted from the semiconductor light emitting element 10.
  • the emitted light 11 emitted from the semiconductor light emitting element 10 of the light emitting device 1 is incident on the wavelength converting member 4 of the wavelength converting element 100 by the condensing optical system 3.
  • the wavelength conversion member 4 scatters a part of the emitted light 11 and emits the first emitted light 91.
  • the wavelength converting member 4 absorbs a part of the emitted light 11 and emits the second emitted light 92.
  • the outgoing light 90 is a light in which the first outgoing light 91 and the second outgoing light 92 are mixed.
  • the first emitted light 91 is blue light and the second emitted light 92 is yellow light
  • the emitted light 90 that is white light is emitted from the light source device 101.
  • a part of the emitted light 90 b enters the light receiving unit 6.
  • the light received by the light receiving unit 6 is converted into a photocurrent by photoelectric conversion and input to the control unit 140.
  • the photocurrent input to the control unit 140 becomes a voltage signal by the resistance element 132 and is input to the microcontroller 141.
  • the thickness of the wavelength conversion member 4 is, for example, about 10 ⁇ m to 150 ⁇ m.
  • the thickness of the protective film 35 is, for example, about 0.1 ⁇ m to 10 ⁇ m.
  • the light receiving unit 6 is arranged at a predetermined position whose depth from the surface of the base 5 is, for example, between 0.1 ⁇ m and 10 ⁇ m.
  • the material alteration portion 4x is generated at the surface portion where the light intensity of the wavelength conversion member 4 is strong and the temperature is highest.
  • the light receiving unit 6 is arranged outside the optical path of the emitted light 90 and at a position close to the material altered portion 4x, so that a minute change in the wavelength conversion member 4 can be accurately regarded as a change in the emitted light 90b. Can be detected.
  • the light receiving unit 6 since the light receiving unit 6 is disposed outside the optical path of the emitted light 90, the light receiving unit 6 does not prevent the propagation of the emitted light 90.
  • the light receiving unit 6 can be disposed at a place of 170 ⁇ m or less from the surface of the wavelength conversion member 4.
  • a minute change of the wavelength conversion member 4 can be regarded as a change of the emitted light 90b. It can be detected accurately.
  • the light amount of the emitted light 90b is output from the light source device 101 as a photocurrent, converted into a signal by the resistance element 132 and the A / D converter 144, and input to the microcontroller 141.
  • This signal is judged by the microcontroller 141, and when the wavelength conversion member 4 has a problem, the microcontroller 141 controls the first step-down converter 142 to set the current Iop to 0 and stop the operation of the semiconductor light emitting device 10.
  • the light receiving unit 6 including the pn junction is integrated on the base 5 on which the wavelength conversion member 4 is disposed. Thereby, the light receiving unit 6 can detect the light emitted from the wavelength conversion member 4 in the vicinity of the wavelength conversion member 4. Therefore, the light receiving unit 6 can accurately detect a minute change in the wavelength conversion member 4.
  • the light receiving unit 6 can detect light emitted from the wavelength conversion member 4 toward the base 5 in the vicinity of the wavelength conversion member 4. Therefore, a minute change of the wavelength conversion member 4 can be accurately detected.
  • the thickness of the wavelength conversion member 4 in the direction perpendicular to the main surface of the base 5 is smaller than the maximum width in the direction parallel to the main surface of the wavelength conversion member 4, the light receiving unit 6 Of the light generated by the wavelength conversion member 4, light having a short propagation distance inside the wavelength conversion member 4 can be detected. Such light intensity is sensitive to minute changes in the wavelength conversion member 4. Therefore, the state of the wavelength conversion member 4 can be detected more accurately by the light receiving unit 6.
  • the distance between the wavelength conversion member 4 and the light receiving unit 6 can be shortened. For this reason, a minute change of the wavelength conversion member 4 can be accurately detected.
  • the light source device 101 includes a wavelength conversion element 100 and a light emitting device that emits light applied to the wavelength conversion element 100. Thereby, the light source device 101 can have the same effect as the wavelength conversion element 100.
  • the light emitting device 1 emits laser light. Therefore, since laser light with high directivity is incident on the wavelength conversion element 100, the sensitivity of the light receiving unit 6 with respect to a minute change in the state of the wavelength conversion member 4 can be improved.
  • Modification 1 of Embodiment 1 Next, a wavelength conversion element according to Modification 1 of Embodiment 1 will be described.
  • the wavelength conversion element according to this modification is different from the wavelength conversion element 100 according to Embodiment 1 in that an optical filter is provided between the wavelength conversion member 4 and the substrate 5.
  • an optical filter is provided between the wavelength conversion member 4 and the substrate 5.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 100a according to this modification.
  • the wavelength conversion element 100 a includes an optical filter that is disposed between the wavelength conversion member 4 and the base 5 and reflects light emitted from the wavelength conversion member 4.
  • the optical filter 40 is, for example, a metal film such as a silver alloy, a dielectric multilayer film, or a film that combines both of them. With this configuration, the optical filter 40 whose reflectance can be freely designed can be easily formed between the wavelength conversion member 4 and the substrate 5.
  • the optical filter 40 reflects light having at least one wavelength of the emitted light 11 and the wavelength-converted light (fluorescence) emitted from the wavelength conversion member 4. Thereby, out of the light emitted from the wavelength conversion member 4, the light propagating toward the base 5 is efficiently emitted to the outside of the wavelength conversion element 100 a, and the light incident from the wavelength conversion member 4 to the light receiving unit 6 is necessary. Can be minimized.
  • the optical filter 40 is designed to reflect 95% of the light having the wavelength of the emitted light 11 and the light having the wavelength converted from the wavelength-converted light emitted from the wavelength conversion member 4. At this time, only 5% of the light traveling from the wavelength conversion member 4 to the light receiving unit 6 can be transmitted through the optical filter 40 and input to the light receiving unit 6. At this time, by adjusting the thickness and the dopant amount of the first semiconductor 22 and the second semiconductor 23 that form the light receiving portion, it is possible to arrange the light receiving portion 6 having sufficient sensitivity even with a small amount of light.
  • the reflectivity of the optical filter 40 is an example, and it is preferable that the optical filter 40 is designed to reflect light at a high reflectivity, for example, a ratio of 80% to 99.9%. With this configuration, it is possible to increase the luminous flux of the light emitted from the wavelength conversion element 100a and to allow the predetermined outgoing light to enter the light receiving unit 6 and detect a minute change in the state of the wavelength conversion member 4.
  • the base 5 forms the first semiconductor 22 that is an n-type silicon region by implanting an n-dopant into the substrate 21 that is a p-type silicon substrate, for example. Then, a third semiconductor 24 that is an n + region implanted with a high concentration n dopant is formed, and a second semiconductor 23 that is a p layer implanted with a p-type dopant is formed. The first electrode 32 is electrically connected to the third semiconductor 24. A protective film 35 is formed on the surface of the second semiconductor 23, and the second semiconductor 23 is electrically connected to the second electrode 33.
  • the base 5 is wired to the outside by metal wires 36 and 37 from the first electrode 32 and the second electrode 33 formed on the main surface on the side where the wavelength conversion member 4 is disposed.
  • wiring can be performed only on one main surface of the substrate 5, wiring can be easily performed by wire bonding or the like.
  • the optical filter 40 may be configured by applying and curing a mixture of white fine particles, for example, TiO 2 fine particles of 1 ⁇ m or less with a transparent binder such as silicone.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 100b according to this modification.
  • the base 5 is fixed to the package 50 by the adhesive layer 45.
  • the first terminal 55, the second terminal 56, and the third terminal 57 are embedded in the insulating member 52.
  • the insulating member 52 is made of plastic, for example.
  • the 1st terminal 55, the 2nd terminal 56, and the 3rd terminal 57 are the terminals by which the copper surface was plated, for example.
  • the first terminal 55 and the second terminal 56 are used for wiring with the outside of the package.
  • the first electrode 32 provided on the substrate 5 and the first terminal 55 are connected by a metal wire 36.
  • the second electrode 33 provided on the base 5 and the second terminal 56 are connected by a metal wire 37.
  • the wavelength conversion element 100 according to the present modification can be easily handled when the light source device 101 is manufactured.
  • the wavelength conversion element according to the present embodiment is different from the wavelength conversion element 100 according to the first embodiment in that it includes a plurality of light receiving units.
  • the wavelength conversion element and the light source device according to the present embodiment will be described focusing on differences from the wavelength conversion element 100 and the light source device 101 according to Embodiment 1.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 200 according to the present embodiment.
  • FIG. 8 is a perspective view showing an appearance of the wavelength conversion element 200 according to the present embodiment.
  • positioned is shown.
  • 7 is a cross-sectional view corresponding to the VII-VII cross section of FIG.
  • the wavelength conversion element 200 has a plurality of light receiving portions 6a to 6e, and the wavelength conversion member 4 is disposed above the plurality of light receiving portions 6a to 6e.
  • the wavelength conversion element 200 includes five light receiving portions 6a to 6e.
  • the wavelength conversion element 200 includes a total of 15 light receiving portions in the vicinity of the central portion of the substrate 5, 5 rows in the horizontal direction and 3 rows in the vertical direction. Then, 18 electrodes are formed on the periphery of the base 5 so as to surround the light receiving portion. At this time, of the 18 electrodes, 3 are common cathode electrodes for the three rows of light receiving portions in the vertical direction, and the remaining 15 are the anode electrodes of the 15 light receiving portions.
  • the plurality of light receiving portions 6a to 6e are formed, for example, by injecting a p-type dopant into the first semiconductor 22 made of n-type silicon for each region where the second semiconductors 23a to 23e and the like are formed.
  • the optical filter 40 is formed between the wavelength conversion member 4 and the substrate 5, as in the first modification of the first embodiment.
  • the optical filter 40 also has an effect of flattening the surface on the substrate 5 on which the wavelength conversion member 4 is disposed.
  • the optical filter 40 is composed of, for example, a metal film such as a silver alloy, a dielectric multilayer film, a film formed by mixing white fine particles with a transparent binder, or a film obtained by combining a plurality of them.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the light source device 201 according to the present embodiment.
  • the light source device 201 includes a wavelength conversion element 200 and the light emitting device 1.
  • the wavelength conversion element 200 and the light emitting device 1 are held by a holding member (not shown).
  • the light source device 201 further includes a condensing optical system 3, an external connection means 80, a first wiring board 71, and a second wiring board 72.
  • the lead pins 13 a and 13 b of the light emitting device 1 are connected to the first wiring board 71.
  • the first wiring board 71 is, for example, a printed circuit board in which wiring is formed of copper foil or the like on a base board such as plastic.
  • external connection means 80 which is a connector is mounted.
  • the condensing optical system 3 is configured by a combination of a convex lens 3a and a concave reflecting surface 3b, and condenses the emitted light 11 on the wavelength conversion element 200.
  • the first terminal 55 and the second terminal 56 of the wavelength conversion element 200 are connected to the second wiring board 72.
  • the second wiring board 72 is, for example, a flexible printed circuit board in which wiring is formed with a copper foil or the like on a base film such as polyimide.
  • the second wiring board 72 is electrically connected to the first wiring board 71.
  • the light source device 201 condenses the emitted light 11 emitted from the light emitting device 1 by the condensing optical system 3 and irradiates the wavelength conversion member 4 of the wavelength conversion element 200.
  • the wavelength conversion member 4 irradiated with the emitted light 11 emits emitted light 90 that is white light.
  • the light incident on each of the plurality of light receiving units generates electron-hole pairs by photoelectric conversion. Electrons and holes generated in each of the plurality of light receiving units are sent to the outside from the package 50 via the second wiring board 72 and the external connection means 80, respectively.
  • the state of the wavelength conversion member 4 can be detected based on signals from a plurality of light receiving units.
  • the light source device according to the present embodiment is different from the light source device 201 according to the second embodiment in that an optical system that varies the optical path of the light emitted from the light emitting device 1 is provided.
  • the light source device according to the present embodiment will be described focusing on differences from the light source device 201 according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the configuration of the light source device 301 according to the present embodiment.
  • the light source device 301 includes an optical system that varies the optical path of the emitted light 11 from the light emitting device 1.
  • the emitted light 11 from the light emitting device 1 can be irradiated to a desired position of the wavelength conversion member 4.
  • the emitted light having a predetermined light distribution pattern can be emitted from the light source device 301.
  • the condensing optical system 3 includes a convex lens 3a and a movable reflective surface 3b.
  • the wavelength conversion element 200 includes a base body 5 and a wavelength conversion member 4 in a package 50.
  • the wavelength conversion element 200 is mounted on the second wiring board 72.
  • the wavelength conversion element 200 is connected to an external circuit through the external wiring 83 by the external connection means 82.
  • the reflecting surface 3b is connected to the driving unit 538 via the shaft 527.
  • the driving unit 538 is connected to the external wiring 84, and power is supplied to the driving unit 538 from the outside. With this electric power, the reflecting surface 3b is driven using electrostatic force, magnetic force or the like.
  • the emitted light 11 can be applied to a predetermined position of the wavelength conversion member 4. Further, the irradiation position of the emitted light 11 can be scanned.
  • the reflecting surface 3b when the reflecting surface 3b is at the position 3b1, the emitted light 11 is reflected as the emitted light 54a and irradiated to the position 351 of the wavelength conversion member 4.
  • the emitted light 11 is reflected as the emitted light 54b when it is at the position 3b2 of the reflecting surface 3b, and is irradiated to the position 352 of the wavelength conversion member 4.
  • the position of the emitted light 11 on the wavelength conversion member 4 can also be detected by the plurality of light receiving portions of the wavelength conversion element 200.
  • the position of the emitted light 11 on the wavelength conversion member 4 is at the position 351, the amount of light received by the light receiving unit immediately below the position 351 increases, and thus the photocurrent output from the light receiving unit increases.
  • circuit configuration Next, a circuit configuration of a control unit that operates the light source device 301 according to the present embodiment will be described with reference to the drawings.
  • FIG. 11 is a schematic circuit block diagram of the light source device 301 and the control unit 140 for driving the light source device 301 according to the present embodiment.
  • the light source device 301 includes the semiconductor light emitting device 10, photodetectors 20 a to 20 e, external connection means 80 and 82, and a drive unit 538.
  • the photodetectors 20a to 20e are photodiodes each including the light receiving portions 6a to 6e, the first electrode 32, and the second electrode 33.
  • the photodetectors 20a to 20e are photodiodes each including the light receiving portions 6a to 6e, the first electrode 32, and the second electrode 33.
  • FIG. 11 for simplification, only five photodetectors 20a to 20e are shown among all the photodetectors.
  • External connection means 80 and 82 of the light source device 301 are connected to the control unit 140 through external wirings 81 and 83, respectively.
  • the drive unit 538 is connected to the control unit 140 through the external wiring 84.
  • control unit 140 includes a microcontroller 141, a first step-down converter 142, a second step-down converter 143, a resistance element 132, and an A / D converter 144. , I / O port 148 and sense resistor 146. Control unit 140 according to the present embodiment further includes drive circuit 145.
  • the drive circuit 145 is a circuit for operating the drive unit 538, and operates the drive unit 538 based on a control signal from the microcontroller 141.
  • control unit 140 can control the operations of the semiconductor light emitting element 10 and the drive unit 538 of the light source device 301.
  • FIG. 12 is a flowchart showing a control algorithm in the light source device 301 and the control unit 140 according to the present embodiment.
  • FIG. 13 is a graph showing an example of the time dependency of the drive signal input to the light source device 301 according to the present embodiment.
  • a graph (a) in FIG. 13 is a graph showing the time dependency of the voltage applied from the drive circuit 145 to the drive unit 538.
  • the graph (b) in FIG. 13 is a graph showing the time dependency of the current supplied from the first step-down converter 142 to the semiconductor light emitting element 10.
  • the light source device 301 As an application example of the light source device 301 according to this embodiment, an example in which the light source device 301 is used as a headlamp for a vehicle such as an automobile will be described. First, for example, the operation of the light source device 301 is prepared by starting the engine of the vehicle. As a result, power is supplied from the power supply unit 160 to the control unit 140, and the power supply voltage Vcc is generated by the second step-down converter 143.
  • an instruction signal indicating a predetermined light projecting pattern is sent from the external circuit 150 to the microcontroller 141.
  • the microcontroller 141 calculates the instruction signal and outputs a control signal for controlling the drive circuit 145 to the drive circuit 145. Thereby, the drive part 538 which drives the reflective surface 3b is operated.
  • a periodic voltage signal such as a sine wave as shown in the graph (a) of FIG. 13 is applied to the drive unit 538, for example.
  • a voltage from ⁇ G ACT to + G ACT is applied to the drive unit 538 at a predetermined period (2T ACT ).
  • the irradiation position of the emitted light 11 from the semiconductor light emitting element 10 to the wavelength conversion member 4 is from the predetermined peripheral portion of the wavelength conversion member 4 to the central portion and from the central portion to other peripheral portions. Moving from the other peripheral part to the central part and from the central part to the predetermined peripheral part.
  • the emitted light 11 is irradiated to the peripheral region of the wavelength conversion member 4 when the voltage applied to the drive unit 538 takes an extreme value.
  • the drive unit 538 is described as performing a one-dimensional operation (linear operation), but this is not restrictive.
  • An actuator that performs a two-dimensional operation may be used as the driving unit 538.
  • the microcontroller 141 operates the first step-down converter 142, and a predetermined current Iop (t) from the first step-down converter 142 passes through the external wiring 81 and the semiconductor light emitting element 10 of the light emitting device 1.
  • the current Iop (t) is a pulsed current having a peak value G LD .
  • the current Iop (t) is modulated with the same cycle (2T LD ) as the cycle of the voltage applied to the drive unit 538 (2T ACT ). That is, the current Iop (t) is synchronized with the voltage applied to the drive unit 538.
  • the light source device 301 and the control unit 140 receive a signal from the wavelength conversion element 200 based on the algorithm illustrated in FIG. 12, calculate the signal, and feed back to the drive unit 538.
  • the irradiation position of the emitted light 11 on the wavelength conversion member 4 can be accurately controlled.
  • the algorithm shown in FIG. 12 will be described.
  • a light distribution pattern is input from the external circuit 150 to the control unit 140 (S10).
  • the light distribution pattern is information indicating a relationship between a position (light emission position) where the emitted light 11 is irradiated on the wavelength conversion member 4 and a light emission intensity at the position.
  • the light emission intensity is a parameter corresponding to the intensity of the emitted light 11, that is, the amount of current supplied to the semiconductor light emitting element 10.
  • control unit 140 operates the driving unit 538 (S12).
  • control unit 140 causes a laser operation by supplying current to the semiconductor light emitting element 10 (S14). That is, the control unit 140 causes the semiconductor light emitting element 10 to emit light.
  • control unit 140 processes the signals from the plurality of photodetectors of the wavelength conversion element 200, thereby obtaining the position of each of the plurality of photodetectors and the signal intensity output from each photodetector. Information indicating the relationship is obtained (S16).
  • the validity of the signals from the plurality of photodetectors is determined based on the information obtained in step S16 (S18). That is, it is determined whether signals obtained from a plurality of photodetectors correspond to the light distribution pattern input to the control unit 140.
  • the control unit 140 proceeds to control based on the next light distribution pattern (S40).
  • the control unit 140 determines whether there is a deviation in the emission intensity (S20).
  • control unit 140 determines that the emission intensity has a deviation (YES in S20)
  • the control unit 140 corrects the gain value corresponding to the current supplied to the semiconductor light emitting element 10 according to the deviation (S22). Return to step S14.
  • the controller 140 determines whether there is a deviation in the light emission position (S24).
  • the controller 140 determines that it cannot be corrected, displays an error, and stops the operation (S42). .
  • control unit 140 determines whether there is a deviation in the light emission timing (S26).
  • the controller 140 determines that there is a deviation in the light emission timing (YES in S26), the controller 140 corrects the waveform of the current supplied to the semiconductor light emitting element 10 in the time axis direction (S28), and proceeds to step S14. Return. On the other hand, if the controller 140 does not determine that there is a deviation in the light emission timing (NO in S26), the controller 140 determines whether there is a deviation in the scanning by the drive unit 538 (S30).
  • control unit 140 determines that there is a shift in scanning by the drive unit 538 (YES in S30)
  • the control unit 140 corrects the gain value corresponding to the voltage applied to the drive unit 538 (S32), and step S12.
  • the control unit 140 determines that the state cannot be corrected, displays an error, and stops the operation ( S44).
  • the concave reflection surface 3b is actively driven by the drive unit 538, and the irradiation position of the emitted light 11 on the wavelength conversion member 4 is changed, thereby changing the irradiation position of the emitted light from the light source device 301. Can be changed.
  • the irradiation position (light emission position) of the emitted light 11 to the wavelength conversion member 4 can be accurately grasped in a plurality of photodetectors, the position of the emitted light from the light source device 301 can be accurately controlled. it can.
  • FIG. 14 is a perspective view schematically showing a part of the light source device 301a according to this modification, and in particular, an embodiment of the reflecting surface 3b and the shaft 527 will be described in more detail.
  • a light projecting member 120 which is an aspherical convex lens having a high numerical aperture, is disposed on the optical path of emitted light from the wavelength conversion member 4 of the wavelength conversion element 200, for example. Yes.
  • the reflecting surface 3b can be inclined in two directions (that is, two directions perpendicular to each other) in the x and y directions. More specifically, the reflecting surface 3b and the shaft 527 are formed by using a micro electrical mechanical system technology.
  • the minute movable reflecting surface 3b is configured by being held hollow on a substrate such as a silicon substrate by an axis 527X that is an axis in the x direction and an axis 527Y that is an axis in the y direction.
  • the reflecting surface 3b can be slightly rotated about the axis 527Y, and the emitted light 11 can be scanned in the x direction.
  • the reflecting surface 3b is slightly rotated about the axis 527X, the emitted light 11 can be scanned in the y direction.
  • the semiconductor light emitting element 10 is supplied with the current shown in the graph (b) of FIG.
  • a driving voltage shown in the graph (a) of FIG. 13 is applied from the control unit 140 to the voltage converted into the rotational force of the shaft 527Y of the driving unit 538 of the reflecting surface 3b.
  • an outgoing light pattern 112 is formed on the wavelength conversion member 4, and outgoing light 90 having a pattern corresponding to the pattern is emitted.
  • the emitted light 90 is incident on the light projecting member 120 with the light distribution pattern 111. Then, the light projecting member 120 can irradiate the irradiated light with the light projecting pattern 110 to a place away from the light source device 301.
  • the light projection pattern 110 can be adjusted to a desired pattern and brightness by controlling the drive circuit 145 and the first step-down converter 142 of the control unit 140 by the microcontroller 141.
  • FIG. 15 is a schematic diagram showing an application example of the light source device 301a according to the present modification.
  • a vehicle 99 is equipped with a light source device 301 according to this modification as a traveling headlamp.
  • a traveling headlamp On night highways and the like, it is preferable in terms of safety to illuminate as far as possible using a traveling headlamp.
  • the driving headlight that illuminates a distant place is turned on when passing the oncoming vehicle 199, the driver of the oncoming vehicle 199 is dazzling and takes the driver's view. For this reason, when passing the oncoming vehicle 199, generally, the traveling headlamp is turned off and only the passing headlamp is turned on.
  • the position information of the oncoming vehicle 199 is detected by a sensor or the like (not shown), and based on that information, the light projection pattern 110 as shown in FIG. A lamp can be irradiated.
  • the light source device 301a may be arranged behind the vehicle 99 and projected with a pattern such as a light projection pattern 210 shown in FIG. Thereby, information can be presented to the vehicle traveling behind the vehicle 99.
  • the wavelength conversion member 4 for example, a phosphor having a peak wavelength of 615 nm is used, and the wavelength component of the emitted light 11 emitted from the light source device 301 a is suppressed, thereby being used as a tail lamp of the vehicle 99. It can also be used.
  • FIG. 16 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 300a according to this modification.
  • the plurality of light receiving portions 6 a and 6 b are arranged at the periphery of the wavelength conversion member 4 in a plan view of the surface of the substrate 5 on which the wavelength conversion member 4 is disposed. It is arranged in the part.
  • the amount of inclination of the movable reflective surface 3b can be adjusted by adjusting the extreme value of the voltage applied to the drive unit that drives the reflective surface 3b.
  • the light receiving portions 6a and 6b are arranged at the end of the region to be scanned of the wavelength conversion member 4.
  • the scanning position of the emitted light 11 is calculated using the light receiving parts 6 a and 6 b at the periphery of the wavelength conversion member 4. For example, when the amount of inclination of the reflecting surface 3b is insufficient, the photocurrent decreases in at least a part of the plurality of light receiving parts 6a and 6b. As described above, the scanning position of the emitted light 11 can be detected by the plurality of light receiving portions 6 a and 6 b arranged on the periphery of the wavelength conversion member 4.
  • the wavelength conversion element according to this modification it is possible to reduce the area of the light receiving part as compared with the case where the light receiving part is provided in the entire area facing the wavelength conversion member 4 of the base 5. That is, in the wavelength conversion element according to this modification, the position of the light from the light emitting device 1 to the wavelength conversion member 4 can be detected, and the area of the light receiving unit can be reduced.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 300b according to this modification.
  • the plurality of light receiving portions 6 a and 6 b have the wavelength conversion member 4 of the base 5 in a plan view of the surface on which the wavelength conversion member 4 is disposed. It is arranged around. That is, the plurality of light receiving portions 6 a and 6 b are arranged outside the wavelength conversion member 4 and in the vicinity of the wavelength conversion member 4 in a plan view of the surface.
  • the wavelength conversion element 300b according to this modification has the same effects as the wavelength conversion element 300a according to modification 2 according to the third embodiment. Furthermore, according to the wavelength conversion element 300b according to the present modification, the light receiving portions 6a and 6b are arranged around the wavelength conversion member 4 so that the lower part of the wavelength conversion member 4 (that is, between the wavelength conversion member 4 and the substrate 5). The degree of freedom in designing the structure of the reflective film can be improved. For example, in the wavelength conversion element 300b according to this modification, there is no light receiving portion immediately below the wavelength conversion member 4, and therefore an optical filter 40 having a reflectance of approximately 100% is selectively disposed below the wavelength conversion member. Also good.
  • the wavelength conversion element according to the present embodiment is different from the wavelength conversion element 200 according to Embodiment 3 in that the wavelength conversion member includes a plurality of wavelength conversion regions.
  • the wavelength conversion element and the light source device according to the present embodiment will be described with reference to the drawings with a focus on differences from the third embodiment.
  • FIG. 18 is a schematic cross-sectional view showing the configuration of the light source device 301c according to the present embodiment.
  • FIG. 19 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 300c according to the present embodiment.
  • the same optical system as that of the third embodiment is fixed to the support member 320.
  • the support member 320 has a heat radiating surface 320b on one surface, and the light emitting device 1 and the wavelength conversion element 300c are fixed to the opposite surface.
  • the condensing optical system 3 includes a convex lens 3a and a movable reflective surface 3b.
  • the convex lens 3 a is fixed to the package of the light emitting device 1.
  • the light-emitting device 1 is mounted with a semiconductor light-emitting element 10 having an optical waveguide 10 a in a package and sealed with a metal can 15. At this time, the convex lens 3a is fixed to the opening of the can 15 with a low melting point glass or the like.
  • the reflective surface 3b is, for example, a micro electrical mechanical system, and is connected to the drive unit 538 via a shaft 527.
  • the driving unit 538 is connected to the external wiring 84, and power is supplied to the driving unit 538 from the outside. With this electric power, the reflecting surface 3b is moved by an electrostatic force, a magnetic force, or the like.
  • the driving unit 538 is held by the holding unit 324 and is fixed after positioning with respect to the support member 320.
  • the wavelength conversion element 300 c includes the base 5 and the wavelength conversion member 4 in the package 50.
  • the wavelength conversion element 300 c is mounted on the second wiring board 72 and is electrically connected to the first wiring board 71.
  • a plurality of light receiving portions 6a to 6e are formed on the base 5 of the wavelength conversion element 300c.
  • the wavelength conversion member 4 is divided into a plurality of wavelength conversion regions 4a to 4e, which are arranged so as to correspond to the plurality of light receiving portions 6a to 6e, respectively.
  • a blocking member 204 having a low light transmittance is disposed between adjacent wavelength conversion regions.
  • the blocking member 204 is made of, for example, a silicone resin mixed with titania particles.
  • the emitted light 11 can be irradiated to a predetermined position of the wavelength conversion member 4, and the irradiation position can be changed.
  • the reflecting surface 3 b when the reflecting surface 3 b is at the position 3 b 1, the emitted light 11 is reflected as the emitted light 51 a by the reflecting surface 3 b and is irradiated to the position 351 of the wavelength conversion member 4.
  • the reflecting surface 3 b is at the position 3 b 2, the emitted light 11 is reflected as the emitted light 51 b by the reflecting surface 3 b and irradiated to the position 352 of the wavelength conversion member 4.
  • each light receiving unit is a wavelength conversion region arranged above the other light receiving unit adjacent to the light receiving unit. It is difficult to receive outgoing light.
  • the information of the emitted light irradiated on the wavelength conversion member 4 can be accurately received for each wavelength conversion region.
  • a wavelength conversion member having a plurality of light emitting regions can be easily configured.
  • the wavelength conversion element according to the present embodiment is different from the wavelength conversion element 100 according to the first embodiment in that the light receiving unit is provided outside the base.
  • FIG. 20 is a schematic cross-sectional view showing the configuration of the wavelength conversion element 400 according to the present embodiment.
  • the wavelength conversion element 400 includes a base 5, a plate-like or film-like wavelength conversion member 4 disposed on at least a part of the surface of the base 5, and the base 5. And a light receiving unit 6 including a pn junction composed of a first semiconductor 22 and a second semiconductor 23.
  • the light receiving unit 6 is not disposed inside the base 5 or between the base 5 and the wavelength conversion member 4, and the base 5 is optically connected to the wavelength conversion member 4. 5a.
  • the light receiving unit 6 is disposed on the surface of the substrate 5 on which the wavelength conversion member 4 is disposed, is optically connected to the optical waveguide 5 a, and is disposed in the vicinity of the wavelength conversion member 4.
  • the wavelength conversion element 400 further includes first electrodes 32a to 32c, second electrodes 33a to 33c, a protective film 35, an optical filter 40, and a reflective film 432.
  • the base 5 may not include the first semiconductor and the second semiconductor.
  • the base 5 includes an optical waveguide 5a that propagates light from the wavelength conversion member 4 to the light receiving portion or the vicinity of the light receiving portion without passing through a space. That is, the light from the wavelength conversion member 4 is incident on the inside of the base body 5 without passing through the space and propagates.
  • the base 5 preferably suppresses the temperature increase of the wavelength conversion member 4 by transferring and diffusing the heat generated by the wavelength conversion member 4. Therefore, the base 5 is preferably composed of a transparent substrate such as sapphire having high transmittance with respect to the wavelength of incident light and high thermal conductivity.
  • the transparent substrate is radiated from the wavelength conversion member 4, enters the transparent substrate without passing through a space, and is sandwiched between the optical filter 40 and the reflective film 432 that reflect part or all of the wavelength of light propagating through the transparent substrate.
  • the optical waveguide 5a is formed.
  • the optical filter 40 is a film formed on the surface of the substrate 5 on which the wavelength conversion member 4 is disposed. Accordingly, the light traveling from the wavelength conversion member 4 toward the base 5 passes through the optical filter 40 and enters the base.
  • the optical filter 40 includes, for example, the same material and configuration as the optical filter 40 according to the first modification of the first embodiment. In other words, the optical filter 40 is designed so that it slightly transmits from the wavelength conversion member 4 to the base 5 and the light from the inside of the base toward the optical filter 40 is reflected with a high reflectance. In order to make light easily propagate from the wavelength conversion member 4 to the light receiving unit 6 in the optical filter 40, pattern formation may be performed in addition to the adjustment of the refractive index and the film thickness. Further, the optical filter 40 may have a configuration in which the reflectance increases as the incident angle to the surface increases in order to facilitate light propagation.
  • the reflective film 432 is a film that reflects light incident on the base 5.
  • the reflective film 432 is, for example, a metal film such as a silver alloy, a dielectric multilayer film, or a film that combines both.
  • the first electrode 32 c and the second electrode 33 c are electrodes arranged at positions different from the arrangement position of the wavelength conversion member 4 on the protective film 35 of the base 5.
  • the first electrode 32c and the second electrode 33c are arranged so as not to contact each other.
  • the first electrode 32c and the second electrode 33c are made of the same material as the first electrode 32 and the second electrode 33 according to Embodiment 1, respectively.
  • the first semiconductor 22, the second semiconductor 23, and the light receiving unit 6 are disposed on the surface of the base 5 at positions corresponding to the first electrode 32c and the second electrode 33c. That is, the first semiconductor 22, the second semiconductor 23, and the light receiving unit 6 are disposed on the surface of the base 5 on which the wavelength conversion member 4 is disposed, and are disposed at positions different from the position where the wavelength conversion member 4 is disposed. It is optically connected to the optical waveguide 5 a arranged at the arrangement position of the wavelength conversion member 4.
  • the second semiconductor 23 is formed on the surface of the first semiconductor 22 on the base 5 side.
  • the light receiving unit 6 includes a pn junction including the first semiconductor 22 and the second semiconductor 23.
  • the protective film 35 is a protective film formed on the surface of the first semiconductor 22 and the second semiconductor 23 on the base 5 side.
  • the protective film 35 has the same configuration as the protective film 35 according to the first embodiment.
  • the first electrode 32a and the second electrode 33a are disposed on the base 5 side of the first semiconductor 22 and the second semiconductor 23, respectively, and are electrically connected to the first semiconductor 22 and the second semiconductor 23, respectively.
  • the first electrode 32a and the second electrode 33a are made of a metal such as nickel, aluminum, titanium, platinum, or gold, for example.
  • the first electrode 32b is a conductive member that electrically connects the first electrode 32a and the first electrode 32c.
  • the second electrode 33b is a conductive member that electrically connects the second electrode 33a and the second electrode 33c.
  • the first electrode 32b and the second electrode 33b are made of, for example, solder.
  • the wavelength conversion element 400 Since the wavelength conversion element 400 according to the present embodiment has the above-described configuration, a part of the emitted light emitted from the wavelength conversion member 4 is formed on the base 5 as indicated by arrows in FIG.
  • the light enters the optical waveguide 5 a disposed immediately below the wavelength conversion member 4, and is reflected by the optical filter 40 and the reflection film 432.
  • the light receiving unit 6 receives at least a part of the light incident on the optical waveguide 5 a of the base 5.
  • the optical waveguide 5a is provided on the base 5 on which the wavelength conversion member 4 is arranged, the light receiving unit 6 including the pn junction is integrated, and further the wavelength conversion is performed.
  • the member 4, the optical waveguide 5a, and the light receiving unit 6 are optically connected.
  • the light receiving unit 6 can detect the light emitted from the wavelength conversion member 4 substantially in the vicinity of the wavelength conversion member 4. Therefore, the light receiving unit 6 can accurately detect a minute change in the wavelength conversion member 4.
  • the light receiving unit 6 can detect the light emitted from the wavelength conversion member 4 toward the base 5 without being scattered by the wavelength conversion member. Therefore, a minute change of the wavelength conversion member 4 can be accurately detected.
  • the thickness of the wavelength conversion member 4 in the direction perpendicular to the main surface of the base 5 is smaller than the maximum width in the direction parallel to the main surface of the wavelength conversion member 4, the light receiving unit 6 Of the light generated by the wavelength conversion member 4, light having a short propagation distance inside the wavelength conversion member 4 can be detected. Such light intensity is sensitive to minute changes in the wavelength conversion member 4. Therefore, the state of the wavelength conversion member 4 can be detected more accurately by the light receiving unit 6.
  • the light receiving unit 6 since the light receiving unit 6 is disposed on the surface of the base 5 using the optical waveguide 5a provided in the base 5, the light receiving unit 6 of the wavelength conversion element 400 can be arranged more freely. Can be set. For this reason, a minute change of the wavelength conversion member 4 can be accurately detected.
  • the wavelength conversion element 400 according to this embodiment can accurately detect a minute change of the wavelength conversion member 4.
  • the member in order to increase the amount of light incident on the light receiving unit 6 out of the light incident on the base 5, the member is disposed between the light receiving unit 6 and the base 5 and reflects or absorbs light. You may reduce the member to do.
  • a region where the reflecting first electrode and the second electrode are not disposed may be provided in the region where the light receiving unit 6 is disposed.
  • a region where the optical filter 40 is not disposed may be provided in a region where the light receiving unit 6 is disposed.
  • the light receiving unit 6 has been described with respect to the structure disposed on the surface of the base 5 on the same side as the wavelength conversion member 4, but this is not limiting, and the base 5 on the opposite side to the wavelength conversion member 4. The same effect can be realized even if it is arranged in contact with the surface.
  • the light receiving unit 6 may be disposed between the wavelength conversion member 4 and the base 5.
  • the film-shaped light receiving unit 6 may be disposed between the wavelength conversion member 4 and the base 5.
  • the present disclosure can be applied to a wavelength conversion element and a light source device used in a display field such as a projection display device or a lighting field such as vehicle illumination, industrial illumination, and medical illumination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Led Device Packages (AREA)

Abstract

波長変換素子(100)であって、基体(5)と、基体(5)の表面の少なくとも一部に配置された板状又は膜状の波長変換部材(4)と、基体(5)に集積され、p型半導体及びn型半導体で構成されるp-nジャンクションを含む受光部(6)とを備える。

Description

波長変換素子及び光源装置
 本開示は、波長変換素子及びそれを用いた光源装置に関する。
 半導体レーザ素子などの半導体発光素子で構成される半導体発光装置を用いた光源装置では、高光束の光を出射させるために、半導体発光装置から出射される光を波長変換素子に照射し、波長変換素子で出射される光を効率良く利用する。
 一方で、上記光源装置においては、半導体発光素子から出射される高光束の光が、波長変換素子で散乱されることなくそのまま外部に出射されることを抑制する必要がある。そのため、光源装置の発光状態を検知するシステムが提案されている。
 以下、図21を参照しながら特許文献1に開示されている従来の光源装置について説明する。
 図21は、従来の光源装置1001の構成を示す概略図である。
 従来の光源装置1001は、レーザ光を出射する半導体レーザ素子1002と、半導体レーザ素子1002から出射されたレーザ光の少なくとも一部をインコヒーレントな光に変換する蛍光体1004と、コヒーレントなレーザ光が外部に出射されるのを抑制する安全装置(光検知器1011、制御部1009)とを備える。
 光検知器1011の受光素子1008は、反射部材1005の凹部1005aに配置された蛍光体1004からの光のうち、光学フィルタ1007を透過した約500nmよりも大きい波長の光を受ける。蛍光体1004の損傷又は欠落などに起因してレーザ光がそのまま外部に出射される状態(光変換異常)になった場合、受光素子1008の出力低下が起こり、制御部1009の判定部1009aで所定値以下と判定される。駆動回路1010は、制御部1009の制御信号発生部1009bから判定結果を示す信号を受けた場合、半導体レーザ素子1002の駆動を停止する。
特開2011-66069号公報
 しかしながら、波長変換部材(蛍光体)から出射される蛍光は、ランダムな方向へ出射される光であるため、波長変換部材(蛍光体)の発光状態の微小な変化に対しては、検出が難しい。
 例えば、特許文献1に開示されている光源装置1001においては、蛍光体1004と受光素子1008との距離が離れている。そのため、光源装置1001においては、蛍光体の脱落及び破損のような故障の最終段階については判別可能であるが、蛍光体内部の一部に発生したクラック等などの故障の初期段階については検出することができない。
 本開示は、このような課題を解決するためになされたものであり、波長変換部材の状態を正確に検出可能な波長変換素子及び当該波長変換素子を備える光源装置を提供することを目的とする。
 上記課題を解決するために、本開示に係る波長変換素子は、基体と、前記基体の表面の少なくとも一部に配置された板状又は膜状の波長変換部材と、前記基体に集積され、p型半導体及びn型半導体で構成されるp-nジャンクションを含む受光部とを備える。
 この構成により、波長変換部材が配置された基体に、p-nジャンクションを含む受光部が集積されていることにより、受光部は、波長変換部材から出射される光を波長変換部材の近傍で検出することができる。したがって、受光部は波長変換部材の微小な変化を正確に検出することができる。
 また、本開示に係る波長変換素子において、前記受光部は、前記基体に入射する光を受光してもよい。
 この構成により、受光部は、波長変換部材から基体に向けて出射される光を波長変換部材の近傍で検出することができる。したがって、波長変換部材の微小な変化を正確に検出することができる。
 また、本開示に係る波長変換素子において、前記波長変換部材の前記表面に垂直な方向の厚みは、前記波長変換部材の前記表面に平行な方向の最大幅より小さくてもよい。
 この構成により、波長変換部材で生成した光のうち、波長変換部材の内部での伝播距離が短い光を検出することができる。このような光の強度は、波長変換部材の微小な変化に敏感である。したがって、上記構成により、波長変換部材の状態をより正確に検出することができる。
 また、本開示に係る波長変換素子において、前記波長変換部材と前記基体との間に配置され、前記波長変換部材から出射される光を反射する光学フィルタをさらに備えてもよい。
 この構成により、波長変換部材から出射される光のうち、基体に向かって伝播する光を効率良く波長変換素子の外部へ出射することができる。
 また、本開示に係る波長変換素子において、前記光学フィルタは金属膜又は誘電体多層膜を含んでもよい。
 この構成により光学フィルタを容易に形成することができる。
 また、本開示に係る波長変換素子において、前記p型半導体及び前記n型半導体は、不純物がドープされたシリコンであってもよい。
 この構成により受光部を容易に製造することができる。
 また、本開示に係る波長変換素子において、前記受光部は、前記基体の内部、又は、前記基体と前記波長変換部材との間に配置されてもよい。
 この構成により波長変換部材と受光部との距離を短くすることができるため、波長変換部材の微小な変化を正確に検出することができる。
 また、本開示に係る波長変換素子において、前記基体は複数の前記受光部を備えてもよい。
 この構成により波長変換部材に入射する光の位置を正確に検出することができる。
 また、本開示に係る波長変換素子において、前記受光部は、前記表面の平面視において、前記波長変換部材の周囲に配置されてもよい。
 この構成により波長変換部材に周辺に入射する光の情報を正確に検出することができる。例えば、波長変換素子に発光装置からの光を照射する場合、発光装置からの光の照射位置がずれることによって、波長変換部材に入射されずに、波長変換部材の周辺に入射されることがある。このような場合にこの構成においては、照射位置のずれを正確に検出することができる。
 また、本開示に係る波長変換素子において、受光部は、前記表面の平面視において、前記波長変換部材の周縁に配置されてもよい。
 この構成により、波長変換部材への発光装置からの光の位置を検出でき、かつ、受光部の領域を低減することができる。
 また、本開示に係る波長変換素子において、前記波長変換部材が複数の領域を有してもよい。
 この構成により、複数の発光領域を有する波長変換部材を容易に構成することができる。
 また、本開示に係る光源装置は、上記波長変換素子と、前記波長変換素子に照射される光を出射する発光装置とを備える。
 この構成により、光源装置は、上記波長変換素子と同様の効果を奏することができる。
 また、本開示に係る光源装置において、前記発光装置は、レーザ光を出射してもよい。
 この構成により、波長変換素子に指向性の高いレーザ光が入射されるため、波長変換部材の状態の微小な変化に対する受光部の感度を向上させることができる。
 また、本開示に係る光源装置において、前記発光装置から出射された光の光路を変動させる光学系をさらに備えてもよい。
 この構成により、波長変換部材の所望の位置に発光装置からの出射光を照射することができる。また、発光装置からの出射光を走査することによって、所定の配光パターンの出射光を光源装置から出射することができる。
 本開示によれば、波長変換部材の状態を正確に検出可能な波長変換素子及び当該波長変換素子を備える光源装置を提供できる。
図1は、実施の形態1に係る光源装置の構成を示す概略断面図である。 図2は、実施の形態1に係る光源装置に搭載される波長変換素子の構成を示す概略断面図である。 図3Aは、実施の形態1に係る波長変換素子の動作の一例を説明するための概略断面図である。 図3Bは、実施の形態1に係る波長変換素子の動作の他の一例を説明するための概略断面図である。 図3Cは、実施の形態1に係る波長変換素子の動作のさらに他の一例を説明するための概略断面図である。 図4は、実施の形態1に係る光源装置、及び、光源装置を動作させる制御部の模式的な回路ブロック図である。 図5は、実施の形態1の変形例1に係る波長変換素子の構成を示す概略断面図である。 図6は、実施の形態1の変形例2に係る波長変換素子の構成を示す概略断面図である。 図7は、実施の形態2に係る波長変換素子の構成を示す概略断面図である。 図8は、実施の形態2に係る波長変換素子の外観を示す斜視図である。 図9は、実施の形態2に係る光源装置の構成を示す概略断面図である。 図10は、実施の形態3に係る光源装置の構成を示す概略断面図である。 図11は、実施の形態3に係る光源装置及び光源装置を駆動するための制御部の模式的な回路ブロック図である。 図12は、実施の形態3に係る光源装置及び制御部における制御のアルゴリズムを示すフローチャートである。 図13は、実施の形態3に係る光源装置に入力される駆動信号の一例の時間依存性を示すグラフである。 図14は、実施の形態3の変形例1に係る光源装置を模式的に表した斜視図である。 図15は、実施の形態3の変形例1に係る光源装置の応用例を示す概略図である。 図16は、実施の形態3の変形例2に係る波長変換素子の構成を示す概略断面図である。 図17は、実施の形態3の変形例3に係る波長変換素子の構成を示す概略断面図である。 図18は、実施の形態4に係る光源装置の構成を示す概略断面図である。 図19は、実施の形態4に係る波長変換素子の構成を示す概略断面図である。 図20は、実施の形態5に係る波長変換素子の構成を示す概略断面図である。 図21は、従来の光源装置の構成を示す概略図である。
 本開示の実施の形態について、以下に図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置および接続形態、並びに、工程(ステップ)および工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 以下、実施の形態1における光源装置について、図1及び図2を参照しながら説明する。
 図1は、本実施の形態に係る光源装置101の構成を示す概略断面図である。
 図2は、本実施の形態に係る光源装置101に搭載される波長変換素子100の構成を示す概略断面図である。
 [基本構成]
 まず、本実施の形態に係る光源装置101及び波長変換素子100の基本構成について説明する。なお、以下に説明する基本構成は、以下の各実施の形態に共通であるため、以下の各実施の形態の説明においては、以下の基本構成に関する説明を省略する。
 図1に示すように、光源装置101は、波長変換素子100と、波長変換素子100に光を照射する発光装置1とを備える。光源装置101は、さらに集光光学系3を備える。光源装置101は、発光装置1から出射される光を波長変換部材4に照射し、波長変換部材4から出射される光を光源装置101の出射光90として出射する。
 波長変換素子100は、発光装置1からの光が照射され、当該光の少なくとも一部を波長変換して出射する素子であり、基体5と、波長変換部材4と、受光部6とを備える。
 基体5は、波長変換部材4が配置され、かつ、受光部6が集積される部材である。基体5の形状は、特に限定されないが、例えば、板状であってもよい。
 波長変換部材4は、基体5の表面の少なくとも一部に配置された板状又は膜状の波長変換部材である。波長変換部材4は、少なくとも1種類以上の蛍光体材料を含む部材であり、例えば、波長380nmから490nmの光を吸収し、波長420nmから780nmの間の可視光の領域にピーク波長がある蛍光を出射する。
 波長変換部材4は、例えば、波長500nmから650nmの間の黄色光から赤色光を出射する蛍光体材料を少なくとも含む。波長変換部材4は、蛍光体材料として、例えば、セリウム(Ce)賦活イットリウム・アルミニウム・ガーネット系の蛍光体材料を含む。
 受光部6は、基体5に集積され、p型半導体及びn型半導体で構成されるp-nジャンクションを含む。受光部6は、基体5に入射する光を受光する。
 発光装置1は、波長変換素子100に照射される光を出射する装置である。発光装置1は、例えば、半導体発光素子10を備える。半導体発光素子10は、例えば、窒化物半導体からなる発光層を備える窒化物半導体発光素子である。半導体発光素子10は、例えば光導波路が形成された半導体レーザダイオード素子である。半導体発光素子10から出射される出射光11は、例えば、ピーク波長が380nmから490nmの間にある近紫外から青色の波長の光である。
 出射光11は、例えば、半導体レーザダイオード素子から出射されるレーザ光である。
 集光光学系3は、例えば、凸レンズ、凹反射レンズなどの光学素子を、1つ以上含む光学系であり、出射光11の少なくとも一部を波長変換部材4の表面の少なくとも一部に集光する。
 出射光90は、波長変換部材4から出射される光である。出射光90は、出射光11の少なくとも一部が波長変換部材4で波長変換された光を含む。より具体的には、出射光11が照射された波長変換部材4からは、出射光11の一部が散乱された光である第1出射光91と、出射光11の他の一部が吸収及び波長変換された光である第2出射光92とが出射される。例えば、第1出射光91は青色光であり、第2出射光92は黄色光である。つまり、波長変換部材4からは、第1出射光91と第2出射光92とが混合された白色光である出射光90が出射される。
 [詳細構成]
 続いて、本実施の形態に係る波長変換素子100及び光源装置101の詳細構成について説明する。
 <波長変換素子>
 波長変換素子100は、基体5と、基体5の表面の少なくとも一部に配置された板状又は膜状の波長変換部材4と、基体5に集積され、p型半導体及びn型半導体で構成されるp-nジャンクションを含む受光部6とを備える。
 基体5は、例えば、第1伝導型を有するシリコン(Si)である第1半導体22と、第1半導体22の波長変換部材4側に配置され、第1伝導型と異なる伝導型である第2伝導型のシリコンである第2半導体23が形成された構成を備える。例えば、第1伝導型及び第2伝導型は、それぞれn型及びp型である。これにより受光部6を容易に製造することができる。なお、第1伝導型及び第2伝導型は、それぞれp型及びn型であってもよい。
 より具体的には、第1半導体22は、例えば、外形が縦3mm、横3mm、厚み300μmのn型シリコン基板である。第2半導体23は、第1半導体22の表面にp型ドーパントを注入することにより形成される。
 第1半導体22と第2半導体23の間には、p-nジャンクションを含む受光部6が形成される。受光部6には、空乏層が形成される。
 第1半導体22と第2半導体23との界面に形成される受光部6の表面からの深さは、第2半導体23における光の進入長に基づいて設計される。例えば、波長が420nmから650nmの光を受光する場合は、受光部6は、第2半導体23の表面からの深さが0.1μmから10μmの間の位置に配置される。
 基体5の第2半導体23側には、例えば厚みが0.1μmから10μmの間にあるシリコン酸化膜である保護膜35が形成される。保護膜35は、第1半導体22及び第2半導体23の劣化を抑制するための膜である。保護膜35は、波長変換素子100の必須の構成要素ではない。保護膜35の表面の一部又は全部には、例えば、ニッケル、アルミニウム、チタン、白金、金などの金属で構成される第2電極33が形成される。また、第2半導体23の表面の一部には、開口部が設けられ、第2半導体23と第2電極33とは電気的に接続される。
 一方、基体5の第2半導体23と反対側(つまり、図2の下側)の第1半導体22の表面には、例えば、ニッケル、アルミニウム、チタン、白金、金などの金属で構成される第1電極32が形成され、第1電極32と第1半導体22とは電気的に接続される。
 波長変換部材4は、1種類以上の蛍光体材料を含む部材であり、保護膜35及び第2電極33の少なくとも一方の表面に形成される。
 より具体的には、波長変換部材4は、平均粒径D50が5μmであるCe賦活(Gd、Y、Lu)(Al、Ga)12蛍光体粒子とシリコーンとの混合ペーストが基体5の表面に塗布され、硬化されることにより形成される。
 波長変換部材4は、例えば、基体5の波長変換部材4が配置される主面の、当該主面より一回り小さい領域に形成される。波長変換部材4の厚みは、例えば、10μmから150μmである。波長変換部材4の厚みは、波長変換部材から出射される出射光90の色温度、出射光11から出射光90への変換効率などにより適宜設定される。
 波長変換素子100は、外部の回路と、半田、導電ペーストなどの導電性部材、又は金属ワイヤなどを用いて電気的に接続される。本実施の形態では、図2に示すように、第2電極33は金属ワイヤ37により外部と接続される。
 <光源装置>
 図1に示すように、光源装置101は、波長変換素子100と、発光装置1とを備える。波長変換素子100及び発光装置1は、図示しない保持部材に保持される。
 本実施の形態では、光源装置101は、さらに、集光光学系3と、外部接続手段80とを備える。
 発光装置1は、例えば、TO-CANであるパッケージ12と、パッケージ12に実装された半導体発光素子10とを備える。パッケージ12は、半導体発光素子10に電力を印加させるための配線であるリードピン13a及び13bを備える。パッケージ12は、半導体発光素子10を封止する缶15を備える。缶15は透光部材16を備える。透光部材16は、例えばガラスで構成される。
 発光装置1は、例えばピーク波長450nmの青色レーザ光である出射光11を出射する。出射光11は、透光部材16を通過し、発光装置1の外部に出射される。
 発光装置1のリードピン13a及び13bはそれぞれ配線70a及び70bに接続される。配線70a及び70bは、例えば、ポリイミド等のベースフィルム上に、銅箔などで配線が形成されたプレキシブルプリント回路基板(Flexible Printed Circuits)である。
 配線70a及び70bは、外部接続手段80に接続される。外部接続手段80は、例えば、コネクタである。
 本実施の形態に係る光源装置101において、集光光学系3は、凸レンズであり、出射光11を波長変換素子100に集光する。
 また、本実施の形態では、図1に示すように、波長変換素子100から出射された出射光90の光路上に、例えば、高い開口数を有する非球面凸レンズである投光部材120を配置している。これにより、光源装置101の配光特性を調整することができる。
 [動作]
 <動作の概要>
 次に、本実施の形態に係る波長変換素子100の動作の概要について図面を参照しながら説明する。
 図3Aは、本実施の形態に係る波長変換素子100の動作の一例を説明するための概略断面図である。
 図3Bは、本実施の形態に係る波長変換素子100の動作の他の一例を説明するための概略断面図である。
 図3Cは、本実施の形態に係る波長変換素子100の動作のさらに他の一例を説明するための概略断面図である。
 上述のとおり、光源装置101は、発光装置1から出射された出射光11を集光光学系3で集光し、波長変換素子100の波長変換部材4に照射する。出射光11が照射された波長変換部材4からは、白色光である出射光90が出射される。
 本実施の形態では、出射光11は、受光部6の上部に配置された波長変換部材4に照射される。
 このとき、図3A~図3Cに示すように、波長変換部材4から基体5側にも光が出射される。
 基体5側に出射された光のうち、保護膜35又は第2電極33を透過した出射光90bの一部は、基体5の空乏層を含む受光部6に入射される。
 受光部6に入射された光は、光電変換により電子―正孔対を生成する。第1電極32及び第2電極33には、p-nジャンクションに逆バイアスを印加するための電圧が印加されている。本実施の形態では、第1電極32及び第2電極33には、それぞれ正電圧及び負電圧が印加されている。したがって、受光部6で生成された電子及び正孔は、それぞれ、第1電極32及び第2電極33から配線70c及び70dを経由して、外部接続手段80に到達する。さらに、電子及び正孔は、外部接続手段80から光源装置101の外部へと送られる。
 受光部6から出力される信号(つまり光電流)に基づいて、波長変換部材4の状態を検出することができる。さらに、当該検出結果に基づいて、発光装置1の動作制御を行うことができる。例えば、受光部6からの光電流が急激に上昇した場合には、波長変換部材4が破損又は脱離したおそれがあると判断して、発光装置1の動作を停止させることができる。このように、コヒーレントな出射光11が散乱されずに、そのまま光源装置101の外部へと出射することを抑制できる。
 <回路構成>
 続いて、本実施の形態に係る光源装置101を動作させる制御部の回路構成について、図面を参照しながら説明する。
 図4は、本実施の形態に係る光源装置101、及び、光源装置101を動作させる制御部140の模式的な回路ブロック図である。
 図4に示すように、光源装置101は、半導体発光素子10と、光検出器20と、外部接続手段80とを備える。
 ここで、光検出器20は、受光部6と、第1電極32と、第2電極33とを備えるフォトダイオードである。
 外部接続手段80は、アノード端子C1、カソード端子C2、第1端子C3、第2端子C4を備える。
 半導体発光素子10のアノード電極は、外部接続手段80のアノード端子C1に接続され、半導体発光素子10のカソード電極は、外部接続手段80のカソード端子C2に接続される。また、光検出器20のカソード電極は、外部接続手段80の第1端子C3に接続され、光検出器20のアノード電極は、外部接続手段80の第2端子C4に接続される。
 光源装置101の外部接続手段80は、外部配線81で、制御部140と接続される。
 光源装置101は、例えばバッテリーである電源部160と、例えば、中央制御回路である外部回路150と、制御部140とによって駆動される。つまり、電源部160、外部回路150及び制御部140は、光源装置101の駆動部を構成する。
 電源部160は、制御部140を駆動するために電力を供給する。
 外部回路150は、制御部140と、例えば、通信を行う。これにより、外部回路150は、制御部140からの情報を得てもよいし、制御部140に指示を出してもよい。
 制御部140は、半導体発光素子10を駆動するために、アノード端子C1及びカソード端子C2を介して、半導体発光素子10に所定の電流Iopを供給する。
 また、制御部140は、光検出器20からの光電流を検出するために、第2端子C4を介して、当該光電流を受ける。
 制御部140は、マイクロコントローラ141と、第1の降圧コンバータ142、第2の降圧コンバータ143とを備える。制御部140は、さらに、抵抗素子132と、A/Dコンバータ144、I/Oポート148と、センス抵抗146とを備える。
 マイクロコントローラ141は、光検出器20からの光電流及び外部回路150からの信号に基づいて、半導体発光素子10に供給する電流Iopを制御する回路である。
 第1の降圧コンバータ142は、半導体発光素子10に電流Iopを供給するためのバックコンバータ(Buck converter)である。
 第2の降圧コンバータ143は、光検出器20に印加する電源電圧Vccを生成するためのバックコンバータである。
 抵抗素子132は、光検出器20から出力される光電流に対応する電圧値を得るための抵抗素子である。
 A/Dコンバータ144は、光検出器20からの光電流に対応する電圧値を、デジタル信号に変換するコンバータである。
 I/Oポート148は、外部回路150との間で通信を行うためのポートである。
 センス抵抗146は、第1の降圧コンバータ142から半導体発光素子10に供給される電流Iopに対応する電圧を得るための抵抗素子である。
 本実施の形態に係る光源装置101及び制御部140は、以上のような回路構成により、半導体発光素子10の動作を制御する。
 <動作の詳細>
 続いて、本実施の形態に係る光源装置101及び制御部140の動作の詳細について図4などを参照しながら説明する。
 本実施の形態に係る光源装置101の適用例として、光源装置101を自動車などの車両の前照灯として用いる例について説明する。まず、例えば、車両のエンジンを始動させることによって、光源装置101の動作準備を行う。これにより、電源部160から制御部140に電力(電圧V)が供給され、第2の降圧コンバータ143により電源電圧Vccが生成される。
 続いて、外部回路150から、I/Oポート148を介してマイクロコントローラ141に所定の指示信号が送られ、第1の降圧コンバータ142から、電流Iopが、外部配線81を通って、外部接続手段80のアノード端子C1に流れる。
 アノード端子C1へ供給される電流Iopは、外部配線81から外部接続手段80に供給される。そして、図1に示すように、電流Iopは、配線70a及び70bによりリードピン13a及び13bに伝達され、図示しない金属ワイヤにより半導体発光素子10に供給される。これにより、半導体発光素子10から出射光11が出射される。
 発光装置1の半導体発光素子10から出射された出射光11は集光光学系3により、波長変換素子100の波長変換部材4に入射する。
 波長変換部材4は、出射光11の一部を散乱して、第1出射光91を出射する。また、波長変換部材4は、出射光11の一部を吸収して、第2出射光92を出射する。
 出射光90は、第1出射光91と第2出射光92とが混合された光である。例えば、第1出射光91が青色光であり、第2出射光92が黄色光である場合には、白色光である出射光90が光源装置101から出射される。
 このとき、図3Aに示すように出射光90bの一部は、受光部6に入射する。受光部6で受光された光は、光電変換により光電流となり制御部140に入力される。制御部140に入力された光電流は抵抗素子132により電圧信号となりマイクロコントローラ141に入力される。
 <不良モード>
 続いて、本実施の形態に係る光源装置101から、正常な出射光90が出力されない不良モードにおける光源装置101の動作について説明する。
 出射光11は波長変換部材4に集光されるため、波長変換部材4には、局所的に強度の強い光が入射される。このため、波長変換部材4では、局所的に、かつ、急激に温度が上昇し得る。このような温度上昇に起因して、図3Bに示すように局所的に材料変質部4xが発生する場合、及び、図3Cに示すように局所的なクラック4yが発生する場合などがある。
 まず、本実施の形態に係る光源装置101において、図3Bに示す材料変質部4xの検知を行う場合の動作について説明する。
 前述のように波長変換部材4の厚みは、例えば10μmから150μm程度である。そして、保護膜35の厚みは、例えば0.1μmから10μm程度である。
 そして、受光部6は、基体5の表面からの深さが、例えば0.1μmから10μmの間の所定の位置に配置される。
 一方、材料変質部4xは、波長変換部材4の光強度が強く、温度が最も高くなる表面部分において発生すると推測される。このため、受光部6を、出射光90の光路の外部であって、材料変質部4xと距離が近い位置に配置することで、波長変換部材4の微小な変化を出射光90bの変化として正確に検知することができる。また、受光部6は、出射光90の光路の外部に配置されるため、受光部6によって出射光90の伝播が妨げられない。
 本実施の形態においては、例えば、波長変換部材4の表面から170μm以下の場所に受光部6を配置することができる。
 同様にして、図3Cに示すクラック4yの発生を検知する場合においても、クラック4yに近接する位置に受光部6を配置することで、波長変換部材4の微小な変化を出射光90bの変化として正確に検知することができる。
 上記の構成において、出射光90bの光量は、光電流として光源装置101から出力され、抵抗素子132及びA/Dコンバータ144で信号変換されて、マイクロコントローラ141に入力される。
 この信号をマイクロコントローラ141で判断し、波長変換部材4に不具合がある場合に、マイクロコントローラ141で第1の降圧コンバータ142を制御することによって電流Iopを0にし、半導体発光素子10の動作を停止させる。
 [効果]
 以上のように、本実施の形態に係る波長変換素子100においては、波長変換部材4が配置された基体5に、p-nジャンクションを含む受光部6が集積されている。これにより、受光部6は、波長変換部材4から出射される光を、波長変換部材4の近傍で検出することができる。したがって、受光部6は波長変換部材4の微小な変化を正確に検出することができる。
 また、本実施の形態では、受光部6は、波長変換部材4から基体5に向けて出射される光を波長変換部材4の近傍で検出することができる。したがって、波長変換部材4の微小な変化を正確に検出することができる。
 また、本実施の形態では、波長変換部材4の基体5の主面に垂直な方向の厚みは、波長変換部材4の当該主面に平行な方向の最大幅より小さくため、受光部6は、波長変換部材4で生成した光のうち、波長変換部材4の内部での伝播距離が短い光を検出することができる。このような光の強度は、波長変換部材4の微小な変化に敏感である。したがって、受光部6により波長変換部材4の状態をより正確に検出することができる。
 また、本実施の形態では、受光部6は、基体5の内部に配置されていることから、波長変換部材4と受光部6との距離を短くすることができる。このため波長変換部材4の微小な変化を正確に検出することができる。
 また、本実施の形態に係る光源装置101は、波長変換素子100と、波長変換素子100に照射される光を出射する発光装置とを備える。これにより、光源装置101は、波長変換素子100と同様の効果を奏することができる。
 また、本実施の形態に係る光源装置101においては、発光装置1は、レーザ光を出射する。これにより、波長変換素子100に指向性の高いレーザ光が入射されるため、波長変換部材4の状態の微小な変化に対する受光部6の感度を向上させることができる。
 (実施の形態1の変形例1)
 次に、実施の形態1の変形例1に係る波長変換素子について説明する。本変形例に係る波長変換素子においては、波長変換部材4と基体5との間に光学フィルタを備える点において、実施の形態1に係る波長変換素子100と相違する。以下、本変形例に係る波長変換素子と、実施の形態1に係る波長変換素子100との相違点を中心に図面を参照しながら説明する。
 図5は、本変形例に係る波長変換素子100aの構成を示す概略断面図である。
 図5に示すように、本変形例に係る波長変換素子100aは、波長変換部材4と基体5との間に配置され、波長変換部材4から出射される光を反射する光学フィルタを備える。
 光学フィルタ40は、例えば、銀合金などの金属膜、誘電体多層膜、又は、それらの両方を組み合わせた膜である。この構成により反射率を自由に設計できる光学フィルタ40を、波長変換部材4と基体5の間に容易に形成することができる。
 光学フィルタ40は、出射光11、及び、波長変換部材4から出射される波長変換された光(蛍光)の少なくとも一方の波長の光を反射する。これにより、波長変換部材4から出射される光のうち、基体5に向かって伝播する光を効率良く波長変換素子100aの外部へ出射し、波長変換部材4から受光部6へ入射する光を必要最小限にすることができる。
 例えば、光学フィルタ40は、出射光11の波長の光、及び、波長変換部材4から出射される波長変換された光の少なくとも一方の波長の光の95%の光を反射するように設計する。このときは波長変換部材4から受光部6へ向かう光の5%の光のみ光学フィルタ40を透過し、受光部6に入力させることができる。このとき受光部を形成する第1半導体22及び第2半導体23の厚みとドーパント量とを調整することで、少ない光量でも十分な感度を有する受光部6を配置することができる。なお、上記の光学フィルタ40の反射率は一例で、高い反射率、例えば80%から99.9%のいずれかの割合で光を反射するように設計されるのが好ましい。この構成により、波長変換素子100aから出射される光の光束を大きくするとともに、受光部6に所定の出射光を入射させ、波長変換部材4の状態の微小な変化を検出することができる。
 また、本変形例において基体5は、例えば、p型シリコン基板である基板21に、nドーパントを注入することでn型シリコン領域である第1半導体22を形成する。そして、高濃度nドーパントを注入したn+領域である第3半導体24を形成し、かつ、p型ドーパントを注入したp層である第2半導体23を形成する。第1電極32は、第3半導体24に電気的に接続される。第2半導体23の表面には保護膜35が形成され、第2半導体23は、第2電極33と電気的に接続される。
 基体5は、波長変換部材4が配置される側の主面に形成された第1電極32と第2電極33から金属ワイヤ36及び37により外部に配線される。
 上記構成により、基体5の一方の主面だけに配線することができるため、ワイヤボンディングなどにより、容易に配線できる。
 なお、上記の構成において、光学フィルタ40は、例えば1μm以下のTiO2微粒子である白色微粒子を、シリコーンなどの透明バインダで混合したものを塗布し、硬化することで構成してもよい。
 (実施の形態1の変形例2)
 次に、実施の形態1の変形例2に係る波長変換素子について説明する。本変形例に係る波長変換素子は、パッケージングされている点において、実施の形態1に係る波長変換素子100と相違する。以下、本変形例に係る波長変換素子について、実施の形態1に係る波長変換素子100との相違点を中心に図面を参照しながら説明する。
 図6は、本変形例に係る波長変換素子100bの構成を示す概略断面図である。
 図6に示すように、本変形例に係る波長変換素子100bは、基体5が接着層45によりパッケージ50に固定される。
 パッケージ50は、絶縁部材52に、第1端子55、第2端子56及び第3端子57が埋め込まれる。
 絶縁部材52は、例えば、プラスチックで構成される。第1端子55、第2端子56及び第3端子57は、例えば、銅の表面がメッキ処理された端子である。
 第1端子55及び第2端子56はパッケージ外部との配線のために用いられる。
 基体5に設けられた第1電極32と、第1端子55とは、金属ワイヤ36で接続される。基体5に設けられた第2電極33と、第2端子56とは、金属ワイヤ37で接続される。
 上記の構成により、本変形例に係る波長変換素子100は、光源装置101の製造時などにおいて容易に取り扱うことができる。
 (実施の形態2)
 次に、実施の形態2に係る波長変換素子及び光源装置について説明する。本実施の形態に係る波長変換素子は、複数の受光部を備える点において、実施の形態1に係る波長変換素子100と相違する。以下、本実施の形態に係る波長変換素子及び光源装置について、実施の形態1に係る波長変換素子100及び光源装置101との相違点を中心に説明する。
 [波長変換素子]
 まず、本実施の形態に係る波長変換素子について図面を参照しながら説明する。
 図7は、本実施の形態に係る波長変換素子200の構成を示す概略断面図である。
 図8は、本実施の形態に係る波長変換素子200の外観を示す斜視図である。なお、図8においては、波長変換部材4などが配置されていない状態における波長変換素子200の外観の概略図が示されている。また、図7は、図8のVII-VII断面に対応する断面図である。
 図7に示すように、波長変換素子200は、複数の受光部6a~6eを有し、複数の受光部6a~6eの上部に波長変換部材4が配置される。
 図7に示す断面においては、波長変換素子200は、5個の受光部6a~6eを備える。
 図8に示すように、本実施の形態では、波長変換素子200は、基体5の中央部付近に、横方向に5列、縦方向に3列の合計15個の受光部を備える。そして、基体5の周辺部分に受光部を囲うように18個の電極が形成される。このとき、18個の電極のうち、3個は、縦方向3列の受光部に対する共通カソード電極であり、残り15個は各受光部15個それぞれのアノード電極である。
 複数の受光部6a~6eは、例えば、n型シリコンである第1半導体22に、p型ドーパントを、第2半導体23a~23eなどが形成される領域ごとに注入することで形成される。
 また、波長変換素子200では、実施の形態1の変形例1と同様に、波長変換部材4と基体5との間に光学フィルタ40が形成されている。光学フィルタ40は、波長変換部材4が配置される基体5上の面を平坦化する効果もある。光学フィルタ40は、例えば銀合金などの金属膜、誘電体多層膜、白色微粒子を透明バインダで混合して構成される膜、又は、それらを複数組み合わせた膜で構成される。
 [光源装置]
 続いて、本実施の形態に係る光源装置について図面を参照しながら説明する。
 図9は、本実施の形態に係る光源装置201の構成を示す概略断面図である。
 図9に示すように、光源装置201は、波長変換素子200と、発光装置1とを備える。波長変換素子200及び発光装置1は、図示しない保持部材に保持される。
 本実施の形態では、光源装置201は、さらに、集光光学系3と、外部接続手段80と、第1の配線基板71と、第2の配線基板72とを備える。
 発光装置1のリードピン13a及び13bは第1の配線基板71に接続される。
 第1の配線基板71は、例えば、プラスチック等のベース基板上に銅箔などで配線が形成されたプリント回路基板である。
 第1の配線基板71には、例えば、コネクタである外部接続手段80が実装される。
 本実施の形態に係る光源装置201において、集光光学系3は、凸レンズ3aと凹状の反射面3bとの組み合わせで構成され、出射光11を波長変換素子200に集光する。
 波長変換素子200の第1端子55、第2端子56は、第2の配線基板72に接続される。
 第2の配線基板72は、例えば、ポリイミド等のベースフィルム上に銅箔などで配線が形成されたプレキシブルプリント回路基板である。
 第2の配線基板72は、第1の配線基板71に電気的に接続される。
 [動作]
 続いて、本実施の形態に係る光源装置201の動作について説明する。
 光源装置201は、発光装置1から出射された出射光11を集光光学系3で集光し、波長変換素子200の波長変換部材4に照射する。出射光11が照射された波長変換部材4からは、白色光である出射光90が出射される。
 このとき、波長変換部材4から基体5側にも光が出射され、複数の受光部の各々に光が入射される。
 複数の受光部の各々に入射された光は、光電変換により電子―正孔対を生成する。複数の受光部の各々で生成された電子及び正孔は、それぞれ、パッケージ50から第2の配線基板72及び外部接続手段80を経由して外部へと送られる。
 本実施の形態では、複数の受光部からの信号に基づいて、波長変換部材4の状態を検知することができる。
 また、複数の受光部からの信号を比較することで、出射光11が波長変換部材4に入射する位置の情報を検出することができる。
 このため、集光光学系3の凹状の反射面3bなどの位置がずれることにより、出射光11が波長変換部材4に入射する位置がずれたことを正確に検知することができる。
 (実施の形態3)
 次に、実施の形態3に係る光源装置について説明する。本実施の形態に係る光源装置は、発光装置1からの出射された光の光路を変動させる光学系を備える点において、実施の形態2の形態に係る光源装置201と相違する。以下、本実施の形態に係る光源装置について、実施の形態2に係る光源装置201との相違点を中心に説明する。
 [光源装置]
 まず、本実施の形態に係る光源装置の構成について図面を参照しながら説明する。
 図10は、本実施の形態に係る光源装置301の構成を示す概略断面図である。
 本実施の形態においては、集光光学系3の一部の光学素子が可動型である。つまり、本実施の形態に係る光源装置301は、発光装置1からの出射光11の光路を変動させる光学系を備える。これにより、波長変換部材4の所望の位置に発光装置1からの出射光11を照射することができる。また、発光装置1からの出射光11を走査することによって、所定の配光パターンの出射光を光源装置301から出射することができる。
 集光光学系3は、凸レンズ3aと、可動型の反射面3bとで構成される。
 また、波長変換素子200は、パッケージ50内に、基体5と波長変換部材4とを備える。波長変換素子200は、第2の配線基板72に実装される。波長変換素子200は、外部接続手段82により外部配線83を介して外部の回路と接続される。
 また、反射面3bは、軸527を介して駆動部538と接続される。
 駆動部538は、外部配線84と接続され、外部より駆動部538に電力が供給される。この電力により、反射面3bは静電力、磁力などを用いて駆動される。
 この構成により、出射光11を、波長変換部材4の所定の位置に照射することができる。また、出射光11の照射位置を走査させることもできる。
 具体的には、反射面3bが位置3b1にあるときに、出射光11は出射光54aとして反射され、波長変換部材4の位置351に照射される。
 また、反射面3bの位置3b2にあるときに出射光11は出射光54bとして反射され、波長変換部材4の位置352に照射される。
 さらに、本実施の形態においては、波長変換素子200の複数の受光部により、出射光11の波長変換部材4における位置も検出できる。
 例えば、出射光11の波長変換部材4上の位置が位置351にある場合は、位置351直下の受光部が受ける光量が多くなるため、当該受光部から出力される光電流が多くなる。
 また出射光11の波長変換部材4上の位置が位置352にある場合は、位置352直下の受光部が受ける光量が多くなる。
 [回路構成]
 続いて、本実施の形態に係る光源装置301を動作させる制御部の回路構成について、図面を参照しながら説明する。
 図11は、本実施の形態に係る光源装置301及び光源装置301を駆動するための制御部140の模式的な回路ブロック図である。
 図11に示すように、光源装置301は、半導体発光素子10と、光検出器20a~20eと、外部接続手段80及び82と、駆動部538とを備える。
 ここで、光検出器20a~20eは、それぞれ、受光部6a~6eと、第1電極32と、第2電極33とを備えるフォトダイオードである。なお、図11では、簡略化のため、すべての光検出器のうち、5個の光検出器20a~20eだけを示している。
 光源装置301の外部接続手段80及び82は、それぞれ外部配線81及び83で、制御部140と接続される。また、駆動部538は、外部配線84で制御部140と接続される。
 本実施の形態に係る制御部140は、実施の形態1と同様に、マイクロコントローラ141と、第1の降圧コンバータ142、第2の降圧コンバータ143と、抵抗素子132と、A/Dコンバータ144と、I/Oポート148と、センス抵抗146とを備える。本実施の形態に係る制御部140は、さらに、駆動回路145を備える。
 駆動回路145は、駆動部538を動作させるための回路であり、マイクロコントローラ141からの制御信号に基づいて、駆動部538を動作させる。
 光源装置301及び制御部140が以上のような構成を備えることにより、制御部140は、光源装置301の半導体発光素子10及び駆動部538の動作を制御することができる。
 [動作]
 次に、本実施の形態に係る光源装置301及び制御部140の動作について図面を参照しながら説明する。
 図12は、本実施の形態に係る光源装置301及び制御部140における制御のアルゴリズムを示すフローチャートである。
 図13は、本実施の形態に係る光源装置301に入力される駆動信号の一例の時間依存性を示すグラフである。図13のグラフ(a)は、駆動回路145から駆動部538に印加される電圧の時間依存性を示すグラフである。図13のグラフ(b)は、第1の降圧コンバータ142から半導体発光素子10に供給される電流の時間依存性を示すグラフである。
 本実施の形態に係る光源装置301の適用例として、光源装置301を自動車などの車両の前照灯として用いる例について説明する。まず、例えば、車両のエンジンを始動させることによって、光源装置301の動作準備を行う。これにより、電源部160から制御部140に電力が供給され、第2の降圧コンバータ143により電源電圧Vccが生成される。
 続いて、外部回路150からマイクロコントローラ141に、所定の投光パターンを示す指示信号が送られる。
 マイクロコントローラ141は、その指示信号を演算し、駆動回路145を制御する制御信号を駆動回路145に出力する。これにより、反射面3bを駆動する駆動部538を動作させる。
 駆動部538には、例えば図13のグラフ(a)に示すようなサイン波など、周期的な電圧信号が印加される。
 図13のグラフ(a)に示す例では、駆動部538には、-GACTから+GACTまでの電圧が所定の周期(2TACT)で印加される。
 本実施の形態に係る光源装置301では、半導体発光素子10からの出射光11の波長変換部材4への照射位置は、波長変換部材4の所定の周辺部から中央部、中央部から他の周辺部、当該他の周辺部から中央部、中央部から当該所定の周辺部へと移動する。本実施の形態では、図13のグラフ(a)に示すように、出射光11は、駆動部538に印加される電圧が極値をとるときに波長変換部材4の周辺領域に照射される。
 本実施の形態では、駆動部538を一次元の動作(線形動作)を行うものとして説明するがこの限りではない。駆動部538として二次元の動作を行うアクチュエータを用いてもよい。これにより、波長変換部材4への照射パターンの自由度を向上させることができるため、波長変換部材4から出射される出射光の配光パターンの自由度を向上させることができる。
 続いて、マイクロコントローラ141は、第1の降圧コンバータ142を動作させ、第1の降圧コンバータ142から、所定の電流Iop(t)が、外部配線81を通って、発光装置1の半導体発光素子10に電流が流れる。本実施の形態では、電流Iop(t)は、ピーク値GLDのパルス状の電流である。電流Iop(t)は、駆動部538に印加される電圧の周期(2TACT)と同一の周期(2TLD)で変調されている。つまり、電流Iop(t)は、駆動部538に印加される電圧と同期されている。
 光源装置301及び制御部140は、上記構成を備えることにより、図12に示すアルゴリズムに基づいて、波長変換素子200からの信号を受信し、当該信号を演算し、駆動部538にフィードバックすることで、出射光11の波長変換部材4への照射位置を正確に制御することができる。以下、図12に示されるアルゴリズムについて説明する。
 まず、外部回路150から制御部140に配光パターンが入力される(S10)。配光パターンとは、具体的には、波長変換部材4における出射光11が照射される位置(発光位置)と、当該位置における発光強度との関係を示す情報である。ここで、発光強度とは、出射光11の強度、すなわち、半導体発光素子10に供給される電流量に対応するパラメータである。
 次に、制御部140は、駆動部538を動作させる(S12)。
 さらに、制御部140は、半導体発光素子10に電流を供給することによってレーザ動作させる(S14)。つまり、制御部140は半導体発光素子10を発光させる。
 ここで、制御部140は、波長変換素子200の複数の光検出器からの信号を処理することによって、複数の光検出器の各々の位置と、各光検出器から出力される信号強度との関係を示す情報を得る(S16)。
 続いて、ステップS16で得られた情報に基づき複数の光検出器からの信号の妥当性を判断する(S18)。つまり、複数の光検出器から得られた信号は、制御部140に入力された配光パターンに対応しているか否かを判断する。制御部140は、複数の光検出器からの信号が妥当と判断した場合には(S18でYES)、次の配光パターンに基づく制御に移行する(S40)。一方、制御部140は、複数の光検出器からの信号が妥当と判断しなかった場合には(S18でNO)、発光強度にズレがあるかを判断する(S20)。
 ここで、制御部140は、発光強度にズレがあると判断した場合には(S20でYES)、半導体発光素子10に供給する電流に対応するゲイン値を当該ズレに応じて修正し(S22)、ステップS14に戻る。一方、制御部140は、発光強度にズレがあると判断しなかった場合には(S20でNO)、発光位置にズレがあるかを判断する(S24)。
 ここで、制御部140は、発光位置にズレがあると判断しなかった場合には(S24でNO)、修正不能な状態と判断して、エラー表示し、かつ、動作を停止する(S42)。
 一方、制御部140は、発光位置にズレがあると判断した場合には(S24でYES)、発光タイミングにズレがあるかを判断する(S26)。
 ここで、制御部140は、発光タイミングにズレがあると判断した場合には(S26でYES)、半導体発光素子10に供給する電流の波形を時間軸方向に修正し(S28)、ステップS14に戻る。一方、制御部140は、発光タイミングにズレがあると判断しなかった場合には(S26でNO)、駆動部538による走査にズレがあるかを判断する(S30)。
 ここで、制御部140は、駆動部538による走査にズレがあると判断した場合には(S30でYES)、駆動部538に印加する電圧に対応するゲイン値を修正し(S32)、ステップS12に戻る。一方、制御部140は、駆動部538による走査にズレがあると判断しなかった場合には(S30でNO)、修正不能な状態と判断して、エラー表示し、かつ、動作を停止する(S44)。
 以上のように、凹状の反射面3bを駆動部538によって積極的に駆動し、出射光11の波長変換部材4への照射位置を変化させることによって、光源装置301からの出射光の照射位置を変化させることができる。
 この場合でも、複数の光検出器において、出射光11の波長変換部材4への照射位置(発光位置)を正確に把握できるため、光源装置301からの出射光の位置を正確に制御することができる。
 (実施の形態3の変形例1)
 次に、実施の形態3の変形例1に係る光源装置について図面を用いて説明する。本変形例の光源装置は図10に示す光源装置301の構成とほぼ同じである。
 図14は、本変形例に係る光源装置301aの一部を模式的に表した斜視図であり、特に反射面3bおよび軸527の実施形態をより詳しく説明する。
 本変形例においては、図14に示すように、波長変換素子200の波長変換部材4から出射光の光路上に、例えば、高い開口数を有する非球面凸レンズである投光部材120を配置している。
 この構成により波長変換素子200の発光パターンに応じたパターンの出射光を出射することができる。
 本実施の形態においては、反射面3bはx方向及びy方向の2方向(すなわち、直交する2方向)に傾斜させることができる。より具体的には反射面3bおよび軸527は、マイクロ・エレクトリカル・メカニカル・システム技術を用いて形成される。例えば、微小可動な反射面3bは、x方向の軸である軸527Xと、y方向の軸である軸527Yとで、例えばシリコン基板などの基板上に中空保持されることで構成される。この構成により、反射面3bを軸527Y中心に微小回転させ、出射光11をx方向に走査させることができる。また、反射面3bを軸527X中心に微小回転させると、出射光11をy方向に走査させることができる。
 半導体発光素子10には制御部140から、例えば、図13のグラフ(b)に示す電流が供給される。
 反射面3bの駆動部538の軸527Yの回転力に変換する電圧には、制御部140から、例えば、図13のグラフ(a)に示す駆動電圧が印加される。
 このとき、波長変換部材4には、出射光パターン112が形成され、そのパターンに応じたパターンを有する出射光90が出射される。
 なお、図14に示す波長変換部材4の中心線115に沿った光強度分布は、図13のグラフ(b)に示す電流供給タイミングによって生成される。
 本実施の形態では、出射光90は、配光パターン111で投光部材120に入射される。そして、投光部材120により、光源装置301から離れた場所に投光パターン110で照射光を照射させることができる。
 また、投光パターン110は、制御部140の駆動回路145及び第1の降圧コンバータ142をマイクロコントローラ141によって制御することにより、所望のパターン及び明るさに調整することができる。
 この機能を活用した応用例について、図15を参照しながら説明する。
 図15は、本変形例に係る光源装置301aの応用例を示す概略図である。
 図15において、車両99には本変形例に係る光源装置301が走行用前照灯として搭載されている。夜間の高速道路などでは、走行用前照灯を用いて、できるだけ遠方を照らすことが安全上好ましい。しかしながら、対向車199とすれ違う場合に、遠方を照らす走行用前照灯を点灯していると、対向車199の運転者にとって眩しく、運転者の視野を奪う。そのため、対向車199とすれ違う場合には、一般に、走行用前照灯を消灯し、すれ違い用前照灯のみを点灯する。
 しかしながら、すれ違い用前照灯だけを点灯する場合には、すれ違い用前照灯の到達距離が短いた。また、対向車の有無に応じて走行用前照灯とすれ違い用前照灯を切り替える作業は、運転者にとって煩雑である。
 そこで本応用例では、対向車199の位置情報を図示しないセンサー等で検知し、その情報をもとに、図15に示すような投光パターン110で、対向車199を避けて走行用前照灯を照射させることができる。
 また、本変形例に係る光源装置301aのその他の応用例として、光源装置301aを車両99の後方に配置し、図15に示す投光パターン210のようなパターンで投光させてもよい。これにより、車両99の後方を走行する車両に情報を提示することができる。本応用例においては、波長変換部材4としては、例えば、ピーク波長615nmの蛍光体を用い、かつ、光源装置301aから出射され出射光11の波長の成分を抑制することによって、車両99のテールランプとして用いることもできる。
 (実施の形態3の変形例2)
 次に、実施の形態3の変形例2に係る波長変換素子について、図面を参照しながら説明する。
 図16は、本変形例に係る波長変換素子300aの構成を示す概略断面図である。
 図16に示すように、本変形例に係る波長変換素子300aにおいて、複数の受光部6a及び6bは、基体5における波長変換部材4が配置された表面の平面視において、波長変換部材4の周縁部に配置されている。
 図13のグラフ(a)に示すように、可動型の反射面3bを用いて出射光11を走査させる場合、出射光11は一定の周期で、周辺部に照射される。
 一方で、可動型の反射面3bの傾斜量については、反射面3bを駆動する駆動部に印加される電圧の極値を調整することによって、調整することも可能である。
 このとき受光部6a及び6bは波長変換部材4の走査したい領域の端部に配置される。
 そして、出射光11の走査位置は、波長変換部材4の周縁の受光部6a及び6bを用いて演算される。例えば、反射面3bの傾斜量が不足している場合には、複数の受光部6a及び6bの少なくとも一部において、光電流が低下する。このように、波長変換部材4の周縁に配置された複数の受光部6a及び6bによって、出射光11の走査位置を検知することができる。
 また、この構成により、受光部を基体5の波長変換部材4に対向する全領域に設ける場合より、受光部の領域を低減することができる。つまり、本変形例に係る波長変換素子では、波長変換部材4への発光装置1からの光の位置を検出でき、かつ、受光部の領域を低減することができる。
 (実施の形態3の変形例3)
 次に、実施の形態3の変形例3に係る波長変換素子について図面を参照しながら説明する。
 図17は、本変形例に係る波長変換素子300bの構成を示す概略断面図である。
 図17に示すように、本変形例に係る波長変換素子300bにおいては、複数の受光部6a及び6bは、基体5における波長変換部材4が配置された表面の平面視において、波長変換部材4の周囲に配置されている。つまり、複数の受光部6a及び6bは、当該表面の平面視において、波長変換部材4の外側であって、波長変換部材4の近傍に配置されている。
 本変形例に係る波長変換素子300bは、実施の形態3に係る変形例2に係る波長変換素子300aと同様の効果を奏する。さらに、本変形例に係る波長変換素子300bによれば、受光部6a及び6bを波長変換部材4の周囲に配置することにより波長変換部材4の下部(つまり、波長変換部材4と基体5との間)の反射膜の構成の設計の自由度を向上させることができる。例えば、本変形例に係る波長変換素子300bでは、波長変換部材4の直下に受光部が存在しないため、波長変換部材の下部に選択的に反射率がほぼ100%の光学フィルタ40を配置してもよい。
 (実施の形態4)
 次に、実施の形態4に係る波長変換素子及びそれを備える光源装置について説明する。本実施の形態に係る波長変換素子は、波長変換部材が複数の波長変換領域を備える点において、実施の形態3に係る波長変換素子200と相違する。以下、本実施の形態に係る波長変換素子及び光源装置について、実施の形態3との相違点を中心に図面を参照しながら説明する。
 図18は、本実施の形態に係る光源装置301cの構成を示す概略断面図である。
 図19に、本実施の形態に係る波長変換素子300cの構成を示す概略断面図である。
 本実施の形態に係る光源装置301cにおいて、実施の形態3と同様の光学系が支持部材320に固定されている。
 支持部材320は、一方の面が放熱面320bとなっており、反対の面に発光装置1と波長変換素子300cが固定される。
 集光光学系3は、凸レンズ3aと、可動型の反射面3bとで構成される。
 凸レンズ3aは、発光装置1のパッケージに固定される。
 発光装置1は、パッケージに光導波路10aを有する半導体発光素子10が搭載され、金属の缶15で封止される。このとき、缶15の開口部には凸レンズ3aが低融点ガラスなどで固定される。
 反射面3bは例えば、マイクロ・エレクトリカル・メカニカル・システムであり、軸527を介して駆動部538と接続される。
 駆動部538は、外部配線84と接続され、外部より駆動部538に電力が供給される。この電力により、反射面3bは静電力、磁力などで可動される。
 駆動部538は、保持部324により保持され、支持部材320に対して位置合わせを行った後、固定される。
 また、波長変換素子300cは、パッケージ50内に、基体5と波長変換部材4とを備える。波長変換素子300cは、第2の配線基板72に実装され、第1の配線基板71に電気的に接続される。
 図19に示すように、波長変換素子300cの基体5には、複数の受光部6a~6eが形成される。
 さらに、波長変換部材4が複数の波長変換領域4a~4eに分かれており、それぞれ、複数の受光部6a~6eに対応するように配置される。隣り合う波長変換領域の間には、光の透過率が低い遮断部材204が配置されている。遮断部材204は、例えば、チタニア粒子が混合されたシリコーン樹脂で構成される。
 上記構成において、出射光11を、波長変換部材4の所定の位置に照射することができ、その照射位置を変化させることができる。
 具体的には、図18に示すように、反射面3bが位置3b1にあるときに出射光11は反射面3bによって出射光51aとして反射され、波長変換部材4の位置351に照射される。
 また、反射面3bが位置3b2にあるときに出射光11は反射面3bによって出射光51bとして反射され、波長変換部材4の位置352に照射される。
 このとき、複数の受光部6a~6eに対応した波長変換領域4a~4eが配置されるため、各受光部は、当該受光部と隣り合う他の受光部の上部に配置された波長変換領域の出射光を受光しにくい。
 したがって、波長変換部材4に照射される出射光の情報を波長変換領域毎に正確に受信することができる。
 また、本実施の形態に係る波長変換素子300cでは、複数の発光領域を有する波長変換部材を容易に構成することができる。
 (実施の形態5)
 次に、実施の形態5に係る波長変換素子について説明する。本実施の形態に係る波長変換素子は、受光部が、基体の外部に設けられている点において、実施の形態1に係る波長変換素子100と相違する。以下の本実施の形態に係る波長変換素子について、実施の形態1に係る波長変換素子100との相違点を中心に図面を参照しながら説明する。
 図20は、本実施の形態に係る波長変換素子400の構成を示す概略断面図である。
 図20に示されるように、本実施の形態に係る波長変換素子400は、基体5と、基体5の表面の少なくとも一部に配置された板状又は膜状の波長変換部材4と、基体5に集積され、第1半導体22及び第2半導体23で構成されるp-nジャンクションを含む受光部6とを備える。本実施の形態では、受光部6は、基体5の内部に、又は、基体5と波長変換部材4との間に配置されず、基体5は波長変換部材4と光学的に接続される光導波路5aを備える。受光部6は、基体5における波長変換部材4が配置される表面に配置され、光導波路5aと光学的に接続され、波長変換部材4の近傍に配置される。
 波長変換素子400は、第1電極32a~32cと、第2電極33a~33cと、保護膜35と、光学フィルタ40と、反射膜432とをさらに備える。
 本実施の形態では、基体5は、第1半導体及び第2半導体を備えなくてもよい。ただし、基体5は、波長変換部材4からの光を、空間を介さずに受光部もしくは受光部の近傍に伝搬する光導波路5aを備える。つまり、波長変換部材4からの光は、空間を介さずに基体5の内部に入射して、伝搬する。このとき基体5は、好ましくは、波長変換部材4で発生した熱を伝熱し、拡散させることで波長変換部材4の温度上昇を抑制する。したがって、基体5は、好ましくは、例えば、入射された光の波長に対する透過率が高く、熱伝導率も高いサファイヤなどの透明基板で構成される。そして、透明基板は、波長変換部材4から放射され、空間を介さずに透明基板に入射し、透明基板を伝搬する光の波長の一部もしくは全部を反射する光学フィルタ40及び反射膜432で挟まれ、光導波路5aを形成する。
 光学フィルタ40は、基体5の波長変換部材4が配置される表面に形成された膜である。したがって、波長変換部材4から基体5に向かう光は光学フィルタ40を通過し、基体内部に入射される。光学フィルタ40は、例えば、実施の形態1の変形例1に係る光学フィルタ40と同様の材料と構成とを備える。つまり、光学フィルタ40は、波長変換部材4から基体5にわずかに透過し、基体内部から光学フィルタ40に向かう光が高い反射率で反射するように設計される。光学フィルタ40において波長変換部材4から受光部6へ光が伝搬しやすくするために、屈折率及び膜厚の調整のほかにパターン形成をおこなっても良い。また、光学フィルタ40は、光の伝搬を容易にするため、表面への入射角が大きくなると反射率が高くなる構成としても良い。
 反射膜432は、基体5に入射された光を反射させる膜である。反射膜432は、例えば、銀合金などの金属膜、誘電体多層膜、又は、それらの両方を組み合わせた膜である。
 第1電極32c及び第2電極33cは、基体5の保護膜35上の波長変換部材4の配置位置とは異なる位置に配置された電極である。第1電極32c及び第2電極33cは、互いに接触しないように配置される。第1電極32c及び第2電極33cは、それぞれ実施の形態1に係る第1電極32及び第2電極33と同様の材料で構成される。
 本実施の形態では、第1半導体22、第2半導体23及び受光部6は、基体5の表面上であって、第1電極32c及び第2電極33cに対応する位置に配置されている。つまり、第1半導体22、第2半導体23及び受光部6は、基体5の波長変換部材4が配置された表面上であって、波長変換部材4の配置位置とは異なる位置に配置されて、波長変換部材4の配置位置に配置された光導波路5aと光学的に接続されている。
 第2半導体23は、第1半導体22の基体5側の表面に形成されている。
 受光部6は、第1半導体22及び第2半導体23構成されるp-nジャンクションを含む。
 保護膜35は、第1半導体22及び第2半導体23の基体5側の表面に形成された保護膜である。保護膜35は、実施の形態1に係る保護膜35と同様の構成を備える。
 第1電極32a及び第2電極33aは、それぞれ、第1半導体22及び第2半導体23の基体5側に配置され、それぞれ、第1半導体22及び第2半導体23と電気的に接続される。第1電極32a及び第2電極33aは、例えば、ニッケル、アルミニウム、チタン、白金、金などの金属で構成される。
 第1電極32bは、第1電極32aと第1電極32cとを電気的に接続する導電性部材である。第2電極33bは、第2電極33aと第2電極33cとを電気的に接続する導電性部材である。第1電極32b及び第2電極33bは、例えば、半田などで構成される。
 本実施の形態に係る波長変換素子400は、以上のような構成を備えることにより、図20の矢印で示すように、波長変換部材4にから出射される出射光の一部が、基体5の波長変換部材4の直下に配置された光導波路5aに入射し、光学フィルタ40と反射膜432とで反射される。そして、受光部6は、基体5の光導波路5aに入射した光の少なくとも一部を受光する。
 このとき、本実施の形態に係る波長変換素子400においては、波長変換部材4が配置された基体5に光導波路5aが設けられ、p-nジャンクションを含む受光部6が集積され、さらに波長変換部材4と光導波路5aと、受光部6が光学的に接続されている。これにより、受光部6は、波長変換部材4から出射される光を、実質的に波長変換部材4の近傍で検出することができる。したがって、受光部6は波長変換部材4の微小な変化を正確に検出することができる。
 また、本実施の形態では、受光部6は、波長変換部材4から基体5に向けて出射される光を波長変換部材で散乱されることなく検出することができる。したがって、波長変換部材4の微小な変化を正確に検出することができる。
 また、本実施の形態では、波長変換部材4の基体5の主面に垂直な方向の厚みは、波長変換部材4の当該主面に平行な方向の最大幅より小さくため、受光部6は、波長変換部材4で生成した光のうち、波長変換部材4の内部での伝播距離が短い光を検出することができる。このような光の強度は、波長変換部材4の微小な変化に敏感である。したがって、受光部6により波長変換部材4の状態をより正確に検出することができる。
 また、本実施の形態では、受光部6は、基体5に備えられる光導波路5aを利用して基体5の表面に配置されていることから、波長変換素子400の受光部6の配置をより自由に設定できる。このため波長変換部材4の微小な変化を正確に検出することができる。
 これにより、上記各実施の形態に係る各波長変換素子と同様に、本実施の形態に係る波長変換素子400は、波長変換部材4の微小な変化を正確に検出することができる。
 なお、基体5に入射した光のうち、受光部6に入射される光の量を増大させるために、受光部6と基体5との間に配置される部材であって、光を反射又は吸収する部材を削減してもよい。例えば、基体5の受光部6が配置される表面の平面視において、受光部6が配置された領域内に、反射する第1電極及び第2電極が配置されない領域を設けてもよい。また、当該表面の平面視において、受光部6が配置された領域内に、光学フィルタ40が配置されない領域を設けてもよい。また、本実施の形態において、受光部6は、波長変換部材4と同じ側の基体5の表面に配置された構成について説明したが、これに限らず、波長変換部材4と反対側の基体5の面に接して配置しても同様の効果を実現できる。
 (その他の変形例)
 以上、本開示に係る波長変換素子及び光源装置について、実施の形態および変形例に基づいて説明したが、本開示は、上記の実施の形態および変形例に限定されるものではない。例えば、各実施の形態および変形例に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態および変形例における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 例えば、受光部6は、波長変換部材4と基体5との間に配置されてもよい。例えば、膜状の受光部6が波長変換部材4と基体5との間に配置されてもよい。
 この構成においても、波長変換部材4と受光部6との距離を短くすることができるため、波長変換部材4の微小な変化を正確に検出することができる。
 本開示は、投写表示装置などのディスプレイ分野、又は、車両用照明、産業用照明や医療用照明などの照明分野に用いられる波長変換素子及び光源装置に適用できる。
 1 発光装置
 3 集光光学系
 3a 凸レンズ
 3b 反射面
 4 波長変換部材
 4a、4b、4c、4d、4e 波長変換領域
 4x 材料変質部
 4y クラック
 5 基体
 6、6a、6b、6c、6d、6e 受光部
 10 半導体発光素子
 11、51a、51b、54a、54b、90、90b 出射光
 20、20a、20b、20c、20d、20e 光検出器
 21 基板
 22 第1半導体
 23、23a、23b、23c、23d、23e 第2半導体
 24 第3半導体
 32、32a、32b、32c 第1電極
 33、33a、33b、33c 第2電極
 35 保護膜
 36、37 金属ワイヤ
 40 光学フィルタ
 55 第1端子
 56 第2端子
 57 第3端子
 71 第1の配線基板
 72 第2の配線基板
 80、82 外部接続手段
 81、83、84 外部配線
 91 第1出射光
 92 第2出射光
 99 車両
 100、100a、100b、200、300a、300b、300c、400 波長変換素子
 101、101a、101b、201、301、301a、301c 光源装置
 110、210 投光パターン
 111 配光パターン
 112 出射光パターン
 115 中心線
 120 投光部材
 132 抵抗素子
 140 制御部
 142 第1の降圧コンバータ
 143 第2の降圧コンバータ
 144 A/Dコンバータ
 145 駆動回路
 146 センス抵抗
 148 I/Oポート
 150 外部回路
 160 電源部
 199 対向車
 204 遮断部材
 320 支持部材
 320b 放熱面
 324 保持部
 432 反射膜
 527 軸
 538 駆動部

Claims (14)

  1.  基体と、
     前記基体の表面の少なくとも一部に配置された板状又は膜状の波長変換部材と、
     前記基体に集積され、p型半導体及びn型半導体で構成されるp-nジャンクションを含む受光部とを備える
     波長変換素子。
  2.  前記受光部は、前記基体に入射する光を受光する
     請求項1に記載の波長変換素子。
  3.  前記波長変換部材の前記表面に垂直な方向の厚みは、前記波長変換部材の前記表面に平行な方向の最大幅より小さい
     請求項1又は2に記載の波長変換素子。
  4.  前記波長変換部材と前記基体との間に配置され、前記波長変換部材から出射される光を反射する光学フィルタをさらに備える
     請求項1~3のいずれか1項に記載の波長変換素子。
  5.  前記光学フィルタは、金属膜又は誘電体多層膜を含む
     請求項4に記載の波長変換素子。
  6.  前記p型半導体及び前記n型半導体は、不純物がドープされたシリコンである
     請求項1~5のいずれか1項に記載の波長変換素子。
  7.  前記受光部は、前記基体の内部、又は、前記基体と前記波長変換部材との間に配置される
     請求項1~6のいずれか1項に記載の波長変換素子。
  8.  前記基体は複数の前記受光部を備える
     請求項1~7のいずれか1項に記載の波長変換素子。
  9.  前記受光部は、前記表面の平面視において、前記波長変換部材の周囲に配置される
     請求項1~8のいずれか1項に記載の波長変換素子。
  10.  前記受光部は、前記表面の平面視において、前記波長変換部材の周縁に配置される
     請求項1~8のいずれか1項に記載の波長変換素子。
  11.  前記波長変換部材は、複数の波長変換領域を備える
     請求項1~10のいずれか1項に記載の波長変換素子。
  12.  請求項1~11のいずれか1項に記載の波長変換素子と、
     前記波長変換素子に照射される光を出射する発光装置とを備える
     光源装置。
  13.  前記発光装置は、レーザ光を出射する
     請求項12に記載の光源装置。
  14.  前記発光装置から出射された光の光路を変動させる光学系をさらに備える
     請求項12又は13に記載の光源装置。
PCT/JP2017/001900 2016-02-08 2017-01-20 波長変換素子及び光源装置 WO2017138327A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017566570A JP6799828B2 (ja) 2016-02-08 2017-01-20 光源装置
CN201780009281.9A CN108604609A (zh) 2016-02-08 2017-01-20 波长变换元件以及光源装置
EP17750052.7A EP3416197A4 (en) 2016-02-08 2017-01-20 WAVE LENGTH CONVERTING ELEMENT AND LIGHT SOURCE DEVICE
US16/054,688 US20180342629A1 (en) 2016-02-08 2018-08-03 Wavelength conversion element and light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-022198 2016-02-08
JP2016022198 2016-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/054,688 Continuation US20180342629A1 (en) 2016-02-08 2018-08-03 Wavelength conversion element and light source device

Publications (1)

Publication Number Publication Date
WO2017138327A1 true WO2017138327A1 (ja) 2017-08-17

Family

ID=59563184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001900 WO2017138327A1 (ja) 2016-02-08 2017-01-20 波長変換素子及び光源装置

Country Status (5)

Country Link
US (1) US20180342629A1 (ja)
EP (1) EP3416197A4 (ja)
JP (1) JP6799828B2 (ja)
CN (1) CN108604609A (ja)
WO (1) WO2017138327A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109424916A (zh) * 2017-09-05 2019-03-05 株式会社小糸制作所 灯具单元以及车辆用灯具
US20210119404A1 (en) * 2017-11-09 2021-04-22 Compact Laser Solutions Gmbh Device for adjusting an optical component
JP2022063342A (ja) * 2017-12-25 2022-04-21 日亜化学工業株式会社 発光装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217521A1 (de) * 2014-09-02 2016-03-03 Osram Gmbh Beleuchtungsvorrichtung zur variablen Beleuchtung
US10854646B2 (en) * 2018-10-19 2020-12-01 Attollo Engineering, LLC PIN photodetector
JP2021154949A (ja) * 2020-03-27 2021-10-07 本田技研工業株式会社 車両におけるコミュニケーション支援装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238142A (ja) * 1988-03-18 1989-09-22 Fuji Electric Co Ltd 半導体集積回路の製造方法
JP2000188416A (ja) * 1998-12-22 2000-07-04 Sanyo Electric Co Ltd 受光素子
JP2000252592A (ja) * 1999-03-01 2000-09-14 Hitachi Ltd 光ディスク装置
JP2004119713A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 半導体光センサ装置
JP2008116240A (ja) * 2006-11-01 2008-05-22 Mitsubishi Electric Corp メルカプト基含有物質検知装置及び方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990048A (ja) * 1995-09-28 1997-04-04 Canon Inc 放射線検出装置
JP5122542B2 (ja) * 2009-09-15 2013-01-16 シャープ株式会社 発光装置、照明装置および光検知器
JP4975797B2 (ja) * 2009-10-14 2012-07-11 シャープ株式会社 照明装置、車両用灯具および車両
JP2011249538A (ja) * 2010-05-26 2011-12-08 Sharp Corp 発光装置および照明装置
US9202832B2 (en) * 2011-04-19 2015-12-01 Infineon Technologies Ag Integrated circuit arrangements
US9037204B2 (en) * 2011-09-07 2015-05-19 Covidien Lp Filtered detector array for optical patient sensors
EP2793052B1 (en) * 2011-12-01 2020-08-26 Kabushiki Kaisha Toshiba Scintillator array, and x-ray detector and x-ray examination device using scintillator array
JP5955593B2 (ja) * 2012-03-15 2016-07-20 スタンレー電気株式会社 異常検出機構およびそれを具備する車両用前方照明装置
FR3010829B1 (fr) * 2013-09-19 2017-01-27 St Microelectronics Sa Procede de realisation d'un filtre optique au sein d'un circuit integre, et circuit integre correspondant
KR20160012468A (ko) * 2014-07-24 2016-02-03 에스엘 주식회사 차량용 램프의 진단장치 및 진단방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238142A (ja) * 1988-03-18 1989-09-22 Fuji Electric Co Ltd 半導体集積回路の製造方法
JP2000188416A (ja) * 1998-12-22 2000-07-04 Sanyo Electric Co Ltd 受光素子
JP2000252592A (ja) * 1999-03-01 2000-09-14 Hitachi Ltd 光ディスク装置
JP2004119713A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 半導体光センサ装置
JP2008116240A (ja) * 2006-11-01 2008-05-22 Mitsubishi Electric Corp メルカプト基含有物質検知装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3416197A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109424916A (zh) * 2017-09-05 2019-03-05 株式会社小糸制作所 灯具单元以及车辆用灯具
US20210119404A1 (en) * 2017-11-09 2021-04-22 Compact Laser Solutions Gmbh Device for adjusting an optical component
JP2022063342A (ja) * 2017-12-25 2022-04-21 日亜化学工業株式会社 発光装置
JP7277841B2 (ja) 2017-12-25 2023-05-19 日亜化学工業株式会社 発光装置

Also Published As

Publication number Publication date
CN108604609A (zh) 2018-09-28
JPWO2017138327A1 (ja) 2018-11-29
EP3416197A1 (en) 2018-12-19
EP3416197A4 (en) 2019-06-12
JP6799828B2 (ja) 2020-12-16
US20180342629A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017138327A1 (ja) 波長変換素子及び光源装置
JP7072037B2 (ja) 光源装置及び照明装置
US10497846B2 (en) Light emitting device package
JPWO2017138412A1 (ja) 光源装置および投光装置
US10497827B2 (en) Light emitting device package
US10763398B2 (en) Light emitting device package
TW201909449A (zh) 發光裝置封裝
JP2011192598A (ja) 白色led光源モジュール
US20100001653A1 (en) Optical lighting device
TWI775911B (zh) 發光裝置封裝
US11322667B2 (en) Light-emitting device package
JP2014017337A (ja) 灯具、車両用前照灯、および半導体レーザアレイ
JP7046917B2 (ja) 波長変換素子及び発光装置
WO2022209376A1 (ja) 照明装置および測距装置
JP2009010048A (ja) 発光装置
KR102607445B1 (ko) 표면발광레이저 패키지
KR102486332B1 (ko) 표면발광 레이저패키지 및 이를 포함하는 광 모듈
KR102432217B1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
US12142891B2 (en) Surface emitting laser package
US20210098964A1 (en) Surface emitting laser package
KR102432220B1 (ko) 반도체 소자 및 반도체 모듈
US20210193877A1 (en) Light emitting device package
JP2009059980A (ja) Led発光装置
KR20190022177A (ko) 반도체 소자 및 반도체 소자 패키지
KR20190094722A (ko) 광학렌즈 및 이를 포함하는 반도체 소자 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750052

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750052

Country of ref document: EP

Effective date: 20180910