[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017126855A1 - Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor - Google Patents

Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor Download PDF

Info

Publication number
WO2017126855A1
WO2017126855A1 PCT/KR2017/000535 KR2017000535W WO2017126855A1 WO 2017126855 A1 WO2017126855 A1 WO 2017126855A1 KR 2017000535 W KR2017000535 W KR 2017000535W WO 2017126855 A1 WO2017126855 A1 WO 2017126855A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
oxide
air battery
carbon
positive electrode
Prior art date
Application number
PCT/KR2017/000535
Other languages
French (fr)
Korean (ko)
Inventor
이동욱
류병국
한재성
채종현
양두경
조은경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018500714A priority Critical patent/JP6494854B2/en
Priority to CN201780003170.7A priority patent/CN108028392B/en
Priority to EP17741621.1A priority patent/EP3316366B1/en
Priority to US15/743,387 priority patent/US10505203B2/en
Priority claimed from KR1020170007064A external-priority patent/KR102024899B1/en
Publication of WO2017126855A1 publication Critical patent/WO2017126855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode of a lithium-air battery having a side reaction prevention film in which a metal catalyst is partially introduced on a surface thereof, and a manufacturing method thereof.
  • Metal-air batteries use metals such as lithium (Li), zinc (Zn), aluminum (Al), magnesium (Mg), iron (Fe), calcium (Ca) and sodium (Na) as metal anodes And oxygen in the air as the positive electrode active material.
  • the metal-air battery generates electricity by reacting metal ions of the negative electrode with oxygen, and unlike the conventional secondary battery, it is not necessary to have a positive electrode active material in the battery in advance, so that the weight can be reduced.
  • a large amount of negative electrode material can be stored in the container, which can theoretically show a large capacity and high energy density.
  • the metal-air battery is composed of a metal fuel electrode (cathode) and an oxygen air electrode (anode).
  • cathode a metal fuel electrode
  • anode an oxygen air electrode
  • metal ions are formed due to oxidation of the metal anode, and the generated metal ions move across the electrolyte to the oxygen cathode.
  • oxygen cathode the outside oxygen is dissolved in the electrolyte inside the cavity of the oxygen anode and reduced.
  • lithium-air batteries generally include a negative electrode capable of occluding / discharging lithium ions, a positive electrode including a redox catalyst of oxygen using oxygen in air as a positive electrode active material, and between the positive electrode and the negative electrode. Is provided with a lithium ion conductive medium.
  • the theoretical energy density of lithium-air cells is more than 3000 Wh / kg, which corresponds to approximately 10 times the energy density of lithium-ion cells.
  • lithium-air batteries are environmentally friendly and can provide improved safety than lithium-ion batteries.
  • Electrolyte system anode structure, good air cathode catalyst, type of carbon support, oxygen pressure, etc. same.
  • Oxide electrode Li (s) ⁇ Li + + + e -
  • the solid lithium oxide formed during discharging does not dissolve well in an organic solvent but exists as a solid oxide and accumulates at a reaction site of a carbon electrode as an anode, thereby blocking the channel of oxygen and inhibiting diffusion of oxygen. In other words, it prevents contact between oxygen and lithium ions and prevents pores of carbon, which is a positive electrode, making it difficult to form lithium oxide, making capacity development difficult and deteriorating characteristics of a secondary battery. In addition, charge transfer is inhibited due to side reaction deposits during charging, and thus high resistance and high voltage are formed, resulting in battery degradation due to electrolyte decomposition reactions.
  • the solid lithium oxide and the side reaction deposits of the lithium-air battery increase the overvoltage during charging to reduce the charge / discharge energy efficiency and cause the decomposition of the solvent in the electrolyte, which is mainly a defect of the surface of the carbon-based conductive material. It occurs at (Defect).
  • Metal or metal oxide catalysts are mainly used to prevent such reactions, but still do not solve the problem.
  • an object of the present invention is to provide a lithium-known battery in which charge overvoltage is reduced and cycle life is improved by fundamentally blocking an interface between a carbon-based conductive material and an electrolyte.
  • the present invention is a carbon-based conductive material coated on one surface of the porous current collector; A side reaction prevention film coated on the surface of the carbon-based conductive material; And a metal catalyst sporadically introduced into the surface of the side reaction prevention film, wherein the side reaction prevention film is a conductive metal oxide.
  • the present invention provides a lithium-air battery comprising the positive electrode.
  • the present invention comprises the steps of: i) coating a carbon-based conductive material on the porous current collector; ii) depositing an anti-reaction film on the surface of the carbon-based conductive material; And iii) introducing a metal catalyst into the side reaction prevention film, wherein the side reaction prevention film includes a conductive metal oxide.
  • the lithium-air battery according to the present invention suppresses side reactions at the surface of the conductive carbon and the electrolyte, and thus does not cause decomposition of the electrolyte, thereby stabilizing for a long time, thereby improving cycle life.
  • the overvoltage is effectively reduced by the catalyst particles additionally supported on the surface of the side reaction prevention film, and thus has an effect of suppressing the decomposition of the electrolyte due to the high voltage.
  • FIG. 1 is a schematic cross-sectional image of a lithium-air battery of the present invention.
  • Example 2 is data comparing the charge and discharge curves of Example 1 and Comparative Examples 1 and 2 according to the present invention.
  • Example 3 is data comparing the cycle capacity of Example 1 and Comparative Examples 1 and 2 according to the present invention.
  • the present invention is intended to block the contact with the electrolyte by coating the surface of the carbon-based conductive material of the positive electrode active material with an anti-reaction film, and to introduce a metal catalyst to promote the redox reaction of oxygen.
  • the positive electrode 100 is a porous current collector (10); A carbon-based conductive material 20 coated on one surface of the porous current collector 10; A side reaction prevention film 30 coated on the surface of the carbon-based conductive material 20; And a metal catalyst 40 is sporadically introduced into the surface of the side reaction prevention film 30.
  • the introduction of the metal catalyst 40 is led by the electrostatic attraction or van der Waals attraction between the side reaction prevention layer 30 and the metal catalyst 40 and is buried by the side reaction prevention layer 30. It means a supported or coated state.
  • the porous current collector 10 of the present invention is a porous current collector having gas permeability, preferably porous carbon pulp, porous carbon paper, in addition to foamed metal, metal fiber, porous metal Porous three-dimensional current collectors, nonwoven fabrics, and the like, such as (Porous metal), etched metal, and uneven metals.
  • gas permeability preferably porous carbon pulp, porous carbon paper, in addition to foamed metal, metal fiber, porous metal Porous three-dimensional current collectors, nonwoven fabrics, and the like, such as (Porous metal), etched metal, and uneven metals.
  • a plurality of pores may exist inside the carbon-based conductive material 20, and these pores increase the permeability of air containing oxygen, thereby increasing the number of active sites, large pore volumes, and high specific ratios. Since it has a high specific surface area, it is desirable to provide an anode reaction site.
  • the carbon-based conductive material 20 is a particle or structure having a size of nano units, and it is preferable to use a porous carbon powder or a carbon structure having a large specific surface area and high electrical conductivity, for example, graphite or activated carbon. It is preferable to include one selected from the group consisting of carbon black, carbon fiber, carbon nanostructure, and combinations thereof, but is not limited thereto.
  • the carbon-based conductive material 20 is coated using the conductive metal oxide as the side reaction prevention layer 30 in the present invention, and the side reaction product is physically blocked between the carbon-based conductive material 20 and the electrolyte 400.
  • the side reaction product is physically blocked between the carbon-based conductive material 20 and the electrolyte 400.
  • the low resistance of the interface in addition to the interface reaction with the electrolyte contributes to the performance of the battery.
  • the conductive metal oxide according to the present invention is indium tin oxide (ITO), indium zinc oxide (IZO, Indium Zinc Oxide), antimony tin oxide (ATO, Antimony Tin Oxide), fluoride tin oxide (FTO, Fluoro Tin Oxide) ), Aluminum zinc oxide (AZO), magnesium indium oxide (Magnesium Indium Oxide), gallium zinc oxide (GZO), gallium indium oxide (Galliumm Indium Oxide), indium-gallium-zinc oxide (IGZO) , Indium Gallium Zinc Oxide), Niobium-Strontium-Titanium Oxide (Nb-STO, Niobium Strontium Titanium Oxide), Indium Cadmium Oxide, BZO (Boron Zinc Oxide), SZO (SiO 2 -ZnO), Indium Oxide (In 2 O 3 ) and combinations thereof, and may include one selected from the group consisting of a combination thereof.
  • ITO indium tin oxide
  • ITO in
  • transparent conductive oxides having a wide bandgap, low resistance, and high transmittance in the visible region, such as indium tin oxide (ITO) or indium zinc oxide (IZO), are solar cells.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Touch panels heat mirrors
  • organic electroluminescence devices OLEDs
  • LCDs liquid crystal displays
  • the thickness of the side reaction prevention film 30 is preferably in the range of 5 ⁇ 30 nm, if less than 5 nm there is a risk that the carbon-based conductive material 20 is exposed to the electrolyte 400, if more than 30 nm This is because it is difficult to support a large amount of discharge products (for example, Li 2 O 2 ) by changing the structure of the fine pores of the carbon-based conductive material 20 and reducing the size.
  • the metal catalyst 40 of the present invention it is preferable to use a known metal or metal compound capable of weakening or breaking the bond of lithium oxide (Li 2 O 2 or Li 2 O) generated during discharge.
  • the metal catalyst 40 may include ruthenium (Ru), palladium (Pd), platinum (Pt), gold (Au), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), and lead ( Pb), cadmium (Cd), tin (Sn), titanium (Ti) and alloys thereof, oxides, sulfides or selenides thereof, preferably ruthenium oxide (RuO 2 ) is applied.
  • the metal catalyst 40 is to be included in 10 to 50 parts by weight with respect to 100 parts by weight of the carbon-based conductive material 20, the metal catalyst 40 is that the average particle diameter of 1 to 10 nm to use the present invention It is desirable to secure the effect according to.
  • the positive electrode for a lithium-air battery having the components as described above comprises the steps of: i) coating a carbon conductive material on the porous current collector; ii) depositing a conductive metal oxide as an anti-reaction film on a surface thereof to include the carbon conductive material; And iii) can be prepared through the step of introducing a metal catalyst to the side reaction prevention film, it will be described in detail for each step below.
  • a carbon conductive material is coated on the porous current collector.
  • the carbon-based conductive material and the binder are mixed at a weight ratio of 9: 1 to 7: 3, respectively, and dispersed in a solvent to form a slurry composition, and then coated on a porous current collector and dried.
  • the binder serves to bond the carbon-based conductive material and to fix them to the current collector.
  • the kind is not particularly limited, and any binder known in the art may be used.
  • one type selected from the group consisting of an acrylic binder, a fluororesin binder, a rubber binder, a cellulose binder, a polyalcohol binder, a polyolefin binder, a polyimide binder, a polyester binder, a silicone binder, and a combination thereof may be used.
  • PVDF polyvinylidene fluoride
  • the solvent for forming the slurry may be water or an organic solvent, the organic solvent in the group consisting of isopropyl alcohol, N-methylpyrrolidone (N-Methyl-2-pyrrolidone: NMP), acetone and combinations thereof It is possible to apply the selected one.
  • a conductive metal oxide is deposited on the entire surface of the porous current collector to include the coated carbon-based conductive material to form an anti-reaction film.
  • doctor blade coating dip coating, gravure coating, slit die coating, spin coating Coating may be performed by coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, or the like.
  • the coating may be dried for 12 to 36 hours in a vacuum oven heated to 100 ⁇ 150 °C.
  • the solvent contained in the slurry is evaporated, thereby facilitating binding force between the carbon-based conductive material and the current collector, and simultaneously dispersing and bonding the carbon-based conductive material to the inner frame of the porous current collector.
  • a conductive metal oxide is deposited on the entire surface of the porous current collector to include the coated carbon-based conductive material to form an anti-reaction film.
  • at least one selected from the above-described conductive metal oxides is dry deposited on the carbon-based conductive material coated porous current collector, and may be deposited by, for example, a sputtering or thermal vapor deposition method.
  • the method can be deposited by ion beam sputtering, DC sputtering, RF-sputtering, or thermal evaporation deposition, and this method is characterized by high deposition rate at room temperature and There is a release of non-toxic gas, ease of operation, safety, etc., and it is possible to deposit on a large-area substrate.
  • such a method is not only easy to control the thickness of the side reaction prevention film, but also inexpensive compared to atomic layer deposition (ALD), and has the advantage of producing a relatively even deposition surface.
  • a metal catalyst is introduced into the side reaction prevention film to prepare a lithium-air battery positive electrode.
  • the method of introducing the metal catalyst into the side reaction prevention film is not limited.
  • the carbon-based conductive material coated with the prepared side reaction prevention film is immersed in a beaker containing a metal precursor, the metal is repeatedly immersed in distilled water. It is possible to introduce oxides. Metal oxides can be introduced through a simple process of obtaining metal cations in a beaker containing the metal precursors and obtaining oxygen anions in distilled water.
  • the positive electrode manufactured through the above process is easily introduced into a lithium-air battery to fundamentally block contact between the electrolyte and the carbon-based conductive material.
  • the present invention as shown in Figure 1, the anode 100; Cathode 200; Provided is a lithium-air battery having a separator 300 interposed therebetween and an electrolyte solution 400 impregnated therebetween.
  • Lithium-air battery according to an embodiment of the present invention includes a separator provided on at least one surface of the porous coating layer according to the above-described embodiments, it may have a conventional configuration and components of the metal-air battery.
  • the one surface on which the carbon-based conductive material 20, the side reaction prevention film 30, and the metal catalyst 40 of the porous current collector 10 is formed on the positive electrode 100 is preferably disposed to be impregnated in the electrolyte 400.
  • the side reaction prevention layer 30 and the metal catalyst 40 are disposed to be impregnated in the electrolyte solution 400 to suppress side reactions occurring in the anode 100 or to promote decomposition of the generated reactants. In addition, it exhibits the effect of improving the electrochemical reactivity of the metal catalyst 40 itself, as a result of increasing the battery capacity of the lithium-air battery and at the same time improve the cycle characteristics.
  • FIG. 1 schematically shows a cross-sectional structure of a lithium-air battery according to an embodiment of the present invention.
  • the positive electrode, the negative electrode and the electrolyte may be applied to those known in the art.
  • the thickness of the positive electrode 100 is not particularly limited, but may be preferably 10 ⁇ 100 ⁇ m, more preferably the thickness of the positive electrode May be 20 to 60 ⁇ m.
  • the negative electrode active material of the negative electrode 200 may be selected from the group consisting of lithium metal, lithium metal-based alloys, lithium compounds and lithium intercalation (Intercalation) material.
  • the lithium metal-based alloy for example, an alloy of lithium with one or more materials selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Ma, Ca, Sr, Ba, Ra, Al and Sn
  • the lithium compound may be a material that reacts with lithium ions to reversibly form a lithium-containing compound.
  • the lithium compound may be tin oxide (SnO 2 ), titanium nitrate (TiN), or recon.
  • the lithium intercalating material means a material capable of reversibly intercalating or deintercalating lithium ions, and may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the thickness of the cathode 200 is not particularly limited, but may be 50 ⁇ m or more.
  • the upper limit of the thickness of the cathode is not particularly limited, but thicker is better. In consideration of the possibility of commercialization, the thickness of the cathode may be 50 ⁇ 500 ⁇ m.
  • a conventional separator 300 may be interposed between the anode 100 and the cathode 200.
  • the separator 300 has a function of physically separating the electrode, and can be used without particular limitation as long as it is used as a conventional separator, and in particular, has a low resistance to ion migration of the electrolyte, and an excellent electrolyte-moisture capability. Do.
  • the separator 300 enables transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode 100 and the negative electrode 200 from each other.
  • the separator 300 may be made of a porous and nonconductive or insulating material.
  • the separator may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the electrolyte 400 is a non-aqueous electrolyte containing an ionizable lithium salt and an organic solvent.
  • the solvent of the non-aqueous electrolyte solution is carbonate such as ethylene carbonate (EC), propylene carbonate (PC), chain carbonate such as diethylene carbonate, 1,2-dioxane (1 Ethers such as 2,2-Dioxane), nitriles such as acetonitrile (AN), and amides may be used, but are not limited thereto. One or more of these can be used in combination.
  • the lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiF, LiBr, LiCl, LiI and LiB (C 2 O 4 ) 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 (Li-TFSI), LiN (SO 2 C 2 F 5 ) 2 and LiC (SO 2 CF 3), but it may use one or two or more selected from the group consisting of 3, and the like.
  • the concentration of the lithium salt can be used within the range of 0.1 ⁇ 2.0M.
  • concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the form of the lithium-air battery according to the present invention is not limited, and may be, for example, coin, flat, cylindrical, horn, button, sheet or stacked. It is also possible to apply to large batteries such as electric vehicles.
  • the lithium-air battery according to the present invention can be used for both the metal primary battery and the metal secondary battery.
  • the present invention can also be applied to large batteries used in electric vehicles.
  • Step 1 Coating the positive electrode active material on the porous current collector
  • NMP N-methylpyrrolidone
  • a sputtering process was used to coat the indium tin oxide (ITO) layer as a side reaction prevention layer.
  • the deposition process was performed at room temperature, and proceeded to have a thickness of about 10 nm in an argon (Ar) atmosphere.
  • a ruthenium precursor solution was prepared to introduce a ruthenium oxide catalyst.
  • a precursor solution in which ruthenium chloride (RuCl 2 ) was dissolved in distilled water to have a concentration of 10 mM in a beaker was prepared. In another beaker, the same amount of distilled water was prepared and heated to 60 ° C.
  • Step 2 the anode-coated anode was coated in an aqueous solution containing ruthenium ions and immersed in distilled water heated to 60 ° C. for 15 seconds and 30 seconds, and then taken out five times. Since oxygen anions are supported from distilled water, no separate washing procedure is included.
  • the positive electrode for lithium-air battery into which the metal catalyst was introduced was dried in a vacuum oven previously heated to 120 ° C. for at least 24 hours.
  • the anode prepared in Step 3 was assembled in the form of a coin cell (Gin box) in a glove box of argon (Ar) atmosphere.
  • the coin cell was assembled by putting a positive electrode, a glass fiber, a lithium negative electrode, a gasket, a stainless steel coin, a spring, and a top plate in order to the stainless steel perforated bottom plate.
  • Tetraethylene glycol dimethyl ether (TEGDME) in which 1 M LiTFSI was dissolved was used.
  • a lithium-air battery was manufactured by the same method as in Example 1 (except Step 2 and Step 3) using the cathode coated with only a carbon-based conductive material.
  • a lithium-air battery was manufactured in the same manner as in Example 1 (except Step 2), by using a cathode coated with ruthenium oxide as a metal catalyst on the carbon-based conductive material of Example 1.
  • the completed coin cell was subjected to a discharge and charge experiment in an oxygen atmosphere of 1 atm. Discharge and charge experiments were conducted at a discharge / charge rate of 0.3 C / 0.1 C based on a capacity of 1,000 mAh / g relative to the weight of carbon. Comparison of charge and discharge curves and cycle capacities of a lithium-air battery using a carbon-based conductive material (CNT) anode, an anode carrying a side reaction prevention film, and a catalyst layer is shown in FIGS. 2 and 3.
  • CNT carbon-based conductive material
  • the lithium-air battery of Example 1 has a lower voltage than the lithium-air battery of Comparative Example 1, it can be seen that the overvoltage is reduced, compared to Comparative Example 2 somewhat overvoltage Was measured high, but this appeared to be negligible.
  • the cycle capacity curve of FIG. 3 shows that the discharge capacity of Comparative Example 1 is greatly reduced when 30 cycles are progressed, while Comparative Example 2 is greatly reduced before proceeding with 20 cycles, while the discharge capacity of Example 1 is 50 cycles. It was confirmed to maintain the initial state until progress.
  • the battery pack including the lithium-sulfur battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), power Can be used as a power source for storage.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to a positive electrode of a lithium-air battery having a side reaction prevention film to which a metal catalyst is partially introduced, and a manufacturing method therefor. More specifically, the present invention relates to a positive electrode of a lithium-air battery having a side reaction prevention film, and a manufacturing method therefor, wherein a metal catalyst is partially and sporadically introduced to a surface thereof. The lithium-air battery according to the present invention suppresses side reactions in a positive electrode active material and electrolyte interface, and thereby can effectively reduce overvoltage when charged, does not cause electrolyte decomposition, and improves cycle lifetime.

Description

금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극, 이를 포함하는 리튬-공기전지 및 이의 제조방법A cathode of a lithium-air battery having a side reaction prevention film partially introduced with a metal catalyst, a lithium-air battery comprising the same, and a method of manufacturing the same
본 출원은 2016년 1월 20일자 한국 특허 출원 제10-2016-0006885호 및 2017년 1월 16일자 한국 특허 출원 제10-2017-0007064호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0006885 dated January 20, 2016 and Korean Patent Application No. 10-2017-0007064 dated January 16, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 표면에 산발적으로 금속 촉매가 부분 도입된 부반응 방지막을 가지는 리튬-공기전지의 양극 및 이의 제조방법에 관한 것이다.The present invention relates to a cathode of a lithium-air battery having a side reaction prevention film in which a metal catalyst is partially introduced on a surface thereof, and a manufacturing method thereof.
금속-공기 전지는 금속 연료극(음극)에 리튬(Li), 아연(Zn), 알루미늄(Al), 마그네슘(Mg), 철(Fe), 칼슘(Ca) 및 나트륨(Na)과 같은 금속을 사용하고, 양극 활물질로 공기 중의 산소를 이용하는 전지이다. 또한, 금속-공기 전지는 음극의 금속 이온을 산소와 반응시켜 전기를 생산하며, 기존의 이차전지와 다르게 전지 내부에 양극 활물질을 미리 가지고 있을 필요가 없기 때문에 경량화가 가능하다. 또한, 용기 내에 음극 물질을 대량으로 저장할 수 있어 이론적으로 큰 용량과 높은 에너지 밀도를 나타낼 수 있다.Metal-air batteries use metals such as lithium (Li), zinc (Zn), aluminum (Al), magnesium (Mg), iron (Fe), calcium (Ca) and sodium (Na) as metal anodes And oxygen in the air as the positive electrode active material. In addition, the metal-air battery generates electricity by reacting metal ions of the negative electrode with oxygen, and unlike the conventional secondary battery, it is not necessary to have a positive electrode active material in the battery in advance, so that the weight can be reduced. In addition, a large amount of negative electrode material can be stored in the container, which can theoretically show a large capacity and high energy density.
금속-공기 전지는 금속 연료극(음극)과 산소 공기극(양극)으로 구성되어 있다. 방전 시, 금속 연료극의 산화로 인해 금속 이온이 형성되고, 생성된 금속 이온은 전해질을 가로질러 산소 공기극으로 이동하게 된다. 산소 공기극에서는, 외부의 산소가 산소 양극의 공극 내부의 전해질에 용해되어 환원된다.The metal-air battery is composed of a metal fuel electrode (cathode) and an oxygen air electrode (anode). During discharge, metal ions are formed due to oxidation of the metal anode, and the generated metal ions move across the electrolyte to the oxygen cathode. In the oxygen cathode, the outside oxygen is dissolved in the electrolyte inside the cavity of the oxygen anode and reduced.
금속-공기 전지 중, 특히 리튬-공기 전지는 일반적으로 리튬 이온의 흡장/방출이 가능한 음극, 공기 중의 산소를 양극 활물질로 하여 산소의 산화 환원 촉매를 포함하는 양극을 구비하고, 상기 양극과 음극 사이에 리튬 이온 전도성 매체를 구비한다. 리튬-공기 전지의 이론 에너지 밀도는 3000Wh/kg 이상이며, 이는 리튬 이온 전지보다 대략 10배의 에너지 밀도에 해당한다. 아울러, 리튬-공기 전지는 친환경적이며, 리튬 이온 전지보다 개선된 안전성을 제공할 수 있어 많은 개발이 이루어지고 있다.Among metal-air batteries, in particular, lithium-air batteries generally include a negative electrode capable of occluding / discharging lithium ions, a positive electrode including a redox catalyst of oxygen using oxygen in air as a positive electrode active material, and between the positive electrode and the negative electrode. Is provided with a lithium ion conductive medium. The theoretical energy density of lithium-air cells is more than 3000 Wh / kg, which corresponds to approximately 10 times the energy density of lithium-ion cells. In addition, lithium-air batteries are environmentally friendly and can provide improved safety than lithium-ion batteries.
리튬-공기 전지의 전기화학적 특성을 결정하는 중요한 요인들로는 전해질 시스템, 양극 구조, 우수한 공기 환원극 촉매, 탄소 지지체의 종류, 산소 압력 등이 있으며, 리튬-공기 이차전지에서 일어나는 반응식은 하기 반응식 1과 같다.Important factors that determine the electrochemical characteristics of lithium-air battery include electrolyte system, anode structure, good air cathode catalyst, type of carbon support, oxygen pressure, etc. same.
[반응식 1] Scheme 1
산화극: Li(s) ↔ Li+ + e- Oxide electrode: Li (s) ↔ Li + + e -
환원극: 4Li + O2 → 2Li2O V = 2.91 VCathode: 4Li + O 2 → 2Li 2 OV = 2.91 V
2Li + O2 → Li2O2 V = 3.10 V2Li + O 2 → Li 2 O 2 V = 3.10 V
즉, 방전시 음극으로부터 생성된 리튬이 양극의 산소 기체와 만나 리튬 산화물이 생성되며, 산소는 환원(Oxygen Reduction Reaction: ORR)되어 산소 음이온이 발생한다. 반대로 충전시 리튬 산화물이 환원되며, 산소가 산화(Oxygen Evolution Reaction: OER)되면서 산소 기체가 발생한다.That is, during discharge, lithium generated from the negative electrode meets oxygen gas of the positive electrode to generate lithium oxide, and oxygen is reduced (Oxygen Reduction Reaction: ORR) to generate oxygen anions. In contrast, lithium oxide is reduced during charging and oxygen gas is generated as oxygen is oxidized (Oxygen Evolution Reaction: OER).
방전 동안에 형성되는 상기 고체 리튬 산화물은 유기 용매에 잘 용해되지 않으며 고체 산화물로 존재하여 양극인 탄소 전극의 반응 사이트에 축적이 되어 산소의 채널을 막아 산소의 확산을 저해한다. 즉, 산소와 리튬 이온의 접촉을 방해할 뿐만 아니라 양극인 탄소의 기공(Pore)을 막기 때문에 리튬 산화물의 형성이 어려워져 용량 발현을 어렵고 2차 전지의 특성이 떨어진다. 또한 충전 시 부반응 퇴적물로 인해 전하 전달이 저해되어 고저항, 고전압이 형성되고, 이로 인한 전해액 분해 반응으로 전지 열화가 발생하는 문제점이 있다. The solid lithium oxide formed during discharging does not dissolve well in an organic solvent but exists as a solid oxide and accumulates at a reaction site of a carbon electrode as an anode, thereby blocking the channel of oxygen and inhibiting diffusion of oxygen. In other words, it prevents contact between oxygen and lithium ions and prevents pores of carbon, which is a positive electrode, making it difficult to form lithium oxide, making capacity development difficult and deteriorating characteristics of a secondary battery. In addition, charge transfer is inhibited due to side reaction deposits during charging, and thus high resistance and high voltage are formed, resulting in battery degradation due to electrolyte decomposition reactions.
[선행기술문헌] 대한민국 공개특허공보 제2015-0022095호 "금속 공기 전지용 양극재 및 이를 포함하는 금속 공기 전지"[Technical Document] Korean Unexamined Patent Publication No. 2015-0022095 "Anode Material for Metal Air Battery and Metal Air Battery Including the Same"
상술한 바와 같이, 리튬-공기 전지의 고체 리튬 산화물과 부반응 퇴적물은 충전 시 과전압을 상승시켜 충방전 에너지 효율을 저하시키고 전해액 내 용매의 분해를 야기하는데, 이러한 반응은 주로 탄소계 도전재 표면의 결함(Defect)에서 발생 된다. 이러한 반응을 방지하기 위하여 금속 또는 금속 산화물계 촉매가 주로 사용되고 있으나, 여전히 문제점을 해결하지 못하고 있는 실정이다.As described above, the solid lithium oxide and the side reaction deposits of the lithium-air battery increase the overvoltage during charging to reduce the charge / discharge energy efficiency and cause the decomposition of the solvent in the electrolyte, which is mainly a defect of the surface of the carbon-based conductive material. It occurs at (Defect). Metal or metal oxide catalysts are mainly used to prevent such reactions, but still do not solve the problem.
따라서 본 발명의 목적은 탄소계 도전재와 전해액 간의 계면을 원천적으로 차단함으로써, 충전 과전압이 감소되고 사이클 수명이 개선된 리튬-공지 전지를 제공하는 것이다.Accordingly, an object of the present invention is to provide a lithium-known battery in which charge overvoltage is reduced and cycle life is improved by fundamentally blocking an interface between a carbon-based conductive material and an electrolyte.
상기의 목적을 달성하기 위하여, 본 발명은 다공성 집전체의 일면에 코팅되는 탄소계 도전재; 상기 탄소계 도전재의 표면에 코팅되는 부반응 방지막; 및 상기 부반응 방지막의 표면에 산발적으로 부분 도입되는 금속 촉매를 포함하되, 상기 부반응 방지막은 전도성 금속 산화물인 것을 특징으로 하는 리튬-공기 전지용 양극을 제공한다.In order to achieve the above object, the present invention is a carbon-based conductive material coated on one surface of the porous current collector; A side reaction prevention film coated on the surface of the carbon-based conductive material; And a metal catalyst sporadically introduced into the surface of the side reaction prevention film, wherein the side reaction prevention film is a conductive metal oxide.
또한 본 발명은 상기 양극을 포함하는 리튬-공기 전지를 제공한다.In another aspect, the present invention provides a lithium-air battery comprising the positive electrode.
또한 본 발명은 i) 다공성 집전체에 탄소계 도전재를 코팅하는 단계; ii) 상기 탄소계 도전재의 표면에 부반응 방지막을 증착하는 단계; 및 iii) 상기 부반응 방지막에 금속 촉매를 도입시키는 단계;를 포함하며, 상기 부반응 방지막은 전도성 금속 산화물을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극의 제조방법을 제공한다.In addition, the present invention comprises the steps of: i) coating a carbon-based conductive material on the porous current collector; ii) depositing an anti-reaction film on the surface of the carbon-based conductive material; And iii) introducing a metal catalyst into the side reaction prevention film, wherein the side reaction prevention film includes a conductive metal oxide.
본 발명에 따른 리튬-공기 전지는 전도성 탄소 표면과 전해질 계면에서의 부반응을 억제함으로써, 전해액 분해를 야기하지 않아 장기적으로 안정화되어 사이클 수명이 향상된다. 또한 부반응 방지막 표면에 추가로 담지된 촉매 입자에 의해 과전압이 효과적으로 저감되어 고전압에 의한 전해액 분해 억제 효과를 갖는다.The lithium-air battery according to the present invention suppresses side reactions at the surface of the conductive carbon and the electrolyte, and thus does not cause decomposition of the electrolyte, thereby stabilizing for a long time, thereby improving cycle life. In addition, the overvoltage is effectively reduced by the catalyst particles additionally supported on the surface of the side reaction prevention film, and thus has an effect of suppressing the decomposition of the electrolyte due to the high voltage.
도 1은 본 발명의 리튬-공기 전지의 개략적인 단면 이미지이다.1 is a schematic cross-sectional image of a lithium-air battery of the present invention.
도 2는 본 발명에 따른 실시예 1과 비교예 1 및 2의 충방전 곡선을 비교한 데이터이다.2 is data comparing the charge and discharge curves of Example 1 and Comparative Examples 1 and 2 according to the present invention.
도 3은 본 발명에 따른 실시예 1과 비교예 1 및 2의 사이클 용량을 비교한 데이터이다.3 is data comparing the cycle capacity of Example 1 and Comparative Examples 1 and 2 according to the present invention.
본 발명은 양극 활물질인 탄소계 도전재의 표면을 부반응 방지막으로 코팅하여 전해액과의 접촉을 차단하고, 여기에 금속 촉매를 도입하여 산소의 산화 환원 반응을 도모하고자 하는 것이다. The present invention is intended to block the contact with the electrolyte by coating the surface of the carbon-based conductive material of the positive electrode active material with an anti-reaction film, and to introduce a metal catalyst to promote the redox reaction of oxygen.
이하, 본 발명의 바람직한 실시 예를 첨부된 예시도면에 의거하여 상세히 설명한다. 이러한 도면은 본 발명을 설명하기 위한 일 구현예에 속하며 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다. 이때 도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. These drawings belong to one embodiment for explaining the present invention and may be implemented in various different forms, not limited to this specification. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are used for similar parts throughout the specification. In addition, the size and relative size of the components shown in the drawings are not related to the actual scale, may be reduced or exaggerated for clarity of description.
본 명세서에 있어서, 「~」를 사용하여 나타낸 수치 범위는 「~」의 전후에 기재되는 수치를 각각 최소치 및 최대치로서 포함하는 범위를 나타낸다. 또한 본 명세서에 있어서, 「이들의 조합」이란 특별한 언급이 없는 한, 둘 이상을 혼합 또는 결합하여 하나의 요소로 적용하거나, 각각을 개별의 요소로 적용하는 것 모두를 포함하는 의미이며, 상기 적용 형태를 불문하고 각각의 조합은 1종으로 간주된다.In this specification, the numerical range shown using "-" shows the range which includes the numerical value described before and after "-" as minimum value and the maximum value, respectively. In addition, in this specification, "combination of these" means, unless otherwise specified, by mixing or combining two or more as a single element, or applying each of them as a separate element, the above application Regardless of form, each combination is considered to be one species.
리튬-공기 전지용 양극Anode for Lithium-Air Battery
도 1은 본 발명에서 제시하는 리튬-공기 전지의 개략적인 단면도로서, 이를 참조하여 보다 구체적으로 설명하면, 양극(100), 음극(200), 이들 사이에 개재되는 분리막(300) 및 전해액(400)을 포함하여 구성된 리튬-공기 전지에 있어서, 상기 양극(100)은 다공성 집전체(10); 다공성 집전체(10)의 일면에 코팅되는 탄소계 도전재(20); 상기 탄소계 도전재(20)의 표면에 코팅되는 부반응 방지막(30); 및 상기 부반응 방지막(30)의 표면에 금속 촉매(40)가 산발적으로 부분 도입되는 구조를 갖는다.1 is a schematic cross-sectional view of a lithium-air battery according to the present invention, which will be described in more detail with reference to the cathode 100, the cathode 200, a separator 300 interposed therebetween, and an electrolyte 400. In the lithium-air battery comprising a), the positive electrode 100 is a porous current collector (10); A carbon-based conductive material 20 coated on one surface of the porous current collector 10; A side reaction prevention film 30 coated on the surface of the carbon-based conductive material 20; And a metal catalyst 40 is sporadically introduced into the surface of the side reaction prevention film 30.
본 발명에서 도입이란 상기 부반응 방지막(30)과 상기 금속 촉매(40)간의 정전기적 인력 또는 반데르발스(van der Waals) 인력에 의해, 금속 촉매(40)가 부반응 방지막(30)으로 이끌려 파묻히듯 담지되거나 코팅된 상태를 의미한다.In the present invention, the introduction of the metal catalyst 40 is led by the electrostatic attraction or van der Waals attraction between the side reaction prevention layer 30 and the metal catalyst 40 and is buried by the side reaction prevention layer 30. It means a supported or coated state.
본 발명의 다공성 집전체(10)는 기체 투과성을 가지는 다공성 집전체로서, 바람직하게는 다공성 카본 펄프, 다공성 카본 페이퍼일 수 있으며, 이외에도 발포 금속(Foamed metal), 금속 파이버(Metal fiber), 다공성 금속(Porous metal), 에칭된 금속(Etched metal), 앞뒤로 요철화된 금속 등의 다공성 3차원 집전체나 부직포체 등이 가능하다. 또한 탄소계 도전재(20) 내부에도 다수의 기공이 존재할 수 있으며, 이러한 기공은 산소를 포함하는 공기의 투과율을 높여, 다수의 활성 자리(Active site), 큰 공극 부피(Pore volume) 및 고 비표면적(High specific surface area)을 가지므로, 양극 반응 사이트를 제공하는데 바람직하다.The porous current collector 10 of the present invention is a porous current collector having gas permeability, preferably porous carbon pulp, porous carbon paper, in addition to foamed metal, metal fiber, porous metal Porous three-dimensional current collectors, nonwoven fabrics, and the like, such as (Porous metal), etched metal, and uneven metals. In addition, a plurality of pores may exist inside the carbon-based conductive material 20, and these pores increase the permeability of air containing oxygen, thereby increasing the number of active sites, large pore volumes, and high specific ratios. Since it has a high specific surface area, it is desirable to provide an anode reaction site.
본 발명에서 탄소계 도전재(20)는 나노 단위의 크기를 갖는 입자 또는 구조체로서, 비표면적이 넓고, 전기 전도도가 높은 다공성 탄소 분말 또는 탄소 구조체를 사용하는 것이 바람직하며, 예컨대 흑연계, 활성탄계, 카본 블랙(Carbon black)계, 탄소 섬유계, 탄소 나노구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것이 바람직하나, 이에 제한되지는 않는다.In the present invention, the carbon-based conductive material 20 is a particle or structure having a size of nano units, and it is preferable to use a porous carbon powder or a carbon structure having a large specific surface area and high electrical conductivity, for example, graphite or activated carbon. It is preferable to include one selected from the group consisting of carbon black, carbon fiber, carbon nanostructure, and combinations thereof, but is not limited thereto.
특히 본 발명에서 부반응 방지막(30)으로서 전도성 금속 산화물을 이용하여 상술한 탄소계 도전재(20)를 코팅하여, 탄소계 도전재(20)와 전해액(400)과의 물리적인 차단을 통해 부반응 생성물의 퇴적을 억제하고자 한다. 이러한 전도성 금속 산화물로 코팅하여 표면을 개질하는 경우, 전해질과의 계면 반응 외에 계면의 낮은 저항 특성이 전지의 성능 향상에 기여하게 된다.In particular, the carbon-based conductive material 20 is coated using the conductive metal oxide as the side reaction prevention layer 30 in the present invention, and the side reaction product is physically blocked between the carbon-based conductive material 20 and the electrolyte 400. To suppress sedimentation. In the case of modifying the surface by coating with such a conductive metal oxide, the low resistance of the interface in addition to the interface reaction with the electrolyte contributes to the performance of the battery.
본 발명에 따른 전도성 금속 산화물은 인듐주석산화물(ITO, Indium Tin Oxide), 인듐아연산화물(IZO, Indium Zinc Oxide), 안티몬주석산화물(ATO, Antimony Tin Oxide), 불화주석산화물(FTO, Fluoro Tin Oxide), 알루미늄아연산화물(AZO, Aluminum Zinc Oxide), 마그네슘인듐산화물(Magnesium Indium Oxide), 아연갈륨산화물(GZO, Gallium Zinc Oxide), 갈륨인듐산화물(Galliumm Indium Oxide), 인듐-갈륨-아연산화물(IGZO, Indium Gallium Zinc Oxide), 니오븀-스트론튬-티타늄산화물(Nb-STO, Niobium Strontium Titanium Oxide), 인듐카드뮴산화물(Indium Cadmium Oxide), BZO(Boron Zinc Oxide), SZO(SiO2-ZnO), 인듐 산화물(In2O3) 및 이들의 조합 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함할 수 있으며, 바람직하게는 인듐주석산화물(ITO), 인듐아연산화물(IZO)을 적용한다.The conductive metal oxide according to the present invention is indium tin oxide (ITO), indium zinc oxide (IZO, Indium Zinc Oxide), antimony tin oxide (ATO, Antimony Tin Oxide), fluoride tin oxide (FTO, Fluoro Tin Oxide) ), Aluminum zinc oxide (AZO), magnesium indium oxide (Magnesium Indium Oxide), gallium zinc oxide (GZO), gallium indium oxide (Galliumm Indium Oxide), indium-gallium-zinc oxide (IGZO) , Indium Gallium Zinc Oxide), Niobium-Strontium-Titanium Oxide (Nb-STO, Niobium Strontium Titanium Oxide), Indium Cadmium Oxide, BZO (Boron Zinc Oxide), SZO (SiO 2 -ZnO), Indium Oxide (In 2 O 3 ) and combinations thereof, and may include one selected from the group consisting of a combination thereof. Preferably, indium tin oxide (ITO) or indium zinc oxide (IZO) is applied.
전도성 금속 산화물 중에서, 인듐주석산화물(ITO)이나 인듐아연산화물(IZO)과 같이, 넓은 밴드갭, 낮은 저항값, 가시광선 영역에서의 높은 투과율을 가지는 투명 전도성 산화물(TCO)은 태양 전지(Solar cell), 터치 패널(Touch panels), Heat mirrors, OLED(Organic electroluminescence devices), LCD(Liquid crystal displays)에 이용되고 있으며, 이들은 금속 산화물임에도 금속에 준하는 전기 전도성을 가지기 때문에, 양극에 전도성을 부여하면서도, 탄소 결함(Defect) 부분을 완전히 피복하여 전해액(400)과의 물리적 차단이 가능하므로, 본 발명의 부반응 방지막(30)으로서 가장 바람직하다.Among the conductive metal oxides, transparent conductive oxides (TCOs) having a wide bandgap, low resistance, and high transmittance in the visible region, such as indium tin oxide (ITO) or indium zinc oxide (IZO), are solar cells. ), Touch panels, heat mirrors, organic electroluminescence devices (OLEDs), and liquid crystal displays (LCDs), which have a conductivity similar to that of metals, even though they are metal oxides. Since it is possible to completely cover the carbon defect part and physically block the electrolyte 400, it is most preferable as the side reaction prevention film 30 of the present invention.
또한 상기 부반응 방지막(30)의 두께는 5 ~ 30 nm 범위 내인 것이 바람직한데, 5 nm 미만인 경우에는 탄소계 도전재(20)가 전해액(400)으로 노출될 위험이 있으며, 30 nm를 초과하는 경우에는 탄소계 도전재(20)의 미세 공극(Pore)의 구조를 변화시키고 크기를 감소시켜 많은 양의 방전 생성물(예컨대 Li2O2)을 담지하기 어렵기 때문이다.In addition, the thickness of the side reaction prevention film 30 is preferably in the range of 5 ~ 30 nm, if less than 5 nm there is a risk that the carbon-based conductive material 20 is exposed to the electrolyte 400, if more than 30 nm This is because it is difficult to support a large amount of discharge products (for example, Li 2 O 2 ) by changing the structure of the fine pores of the carbon-based conductive material 20 and reducing the size.
본 발명의 금속 촉매(40)는 방전 시 생성되는 리튬산화물(Li2O2 또는 Li2O)의 결합을 약하게 하거나 파괴시킬 수 있는 공지의 금속 또는 금속 화합물을 사용하는 것이 바람직하다. 예컨대, 금속 촉매(40)는 루테늄(Ru), 팔라듐(Pd), 백금(Pt), 금(Au), 니켈(Ni), 구리(Cu), 은(Ag), 아연(Zn), 납(Pb), 카드뮴(Cd), 주석(Sn), 티타늄(Ti) 및 이들의 합금, 이의 산화물, 황화물 또는 셀레늄화물이며, 바람직하게는 산화루테늄(RuO2)을 적용한다.As the metal catalyst 40 of the present invention, it is preferable to use a known metal or metal compound capable of weakening or breaking the bond of lithium oxide (Li 2 O 2 or Li 2 O) generated during discharge. For example, the metal catalyst 40 may include ruthenium (Ru), palladium (Pd), platinum (Pt), gold (Au), nickel (Ni), copper (Cu), silver (Ag), zinc (Zn), and lead ( Pb), cadmium (Cd), tin (Sn), titanium (Ti) and alloys thereof, oxides, sulfides or selenides thereof, preferably ruthenium oxide (RuO 2 ) is applied.
상기 금속 촉매(40)는 상기 탄소계 도전재(20) 100 중량부에 대해 10 ~ 50 중량부로 포함되도록 하며, 이러한 금속 촉매(40)는 평균 입경이 1 ~ 10 nm인 것을 사용하는 것이 본 발명에 따른 효과를 확보하는데 바람직하다.The metal catalyst 40 is to be included in 10 to 50 parts by weight with respect to 100 parts by weight of the carbon-based conductive material 20, the metal catalyst 40 is that the average particle diameter of 1 to 10 nm to use the present invention It is desirable to secure the effect according to.
리튬-공기 전지용 양극의 제조방법Manufacturing method of positive electrode for lithium air battery
전술한 바의 구성요소를 갖는 리튬 공기 전지용 양극은 i) 다공성 집전체에 탄소 도전재를 코팅하는 단계; ii) 상기 탄소 도전재를 포함하도록 이의 표면에 부반응 방지막으로 전도성 금속 산화물을 증착하는 단계; 및 iii) 상기 부반응 방지막에 금속 촉매를 도입시키는 단계를 거쳐 제조할 수 있으며, 이하 각 단계별로 상세히 설명한다.The positive electrode for a lithium-air battery having the components as described above comprises the steps of: i) coating a carbon conductive material on the porous current collector; ii) depositing a conductive metal oxide as an anti-reaction film on a surface thereof to include the carbon conductive material; And iii) can be prepared through the step of introducing a metal catalyst to the side reaction prevention film, it will be described in detail for each step below.
먼저 다공성 집전체에 탄소 도전재를 코팅한다. 상술한 탄소계 도전재와 바인더를 각각 9 : 1 ~ 7 : 3의 중량비로 섞고 용매에 분산하여 슬러리 조성물을 만든 뒤, 다공성 집전체 위에 도포하고 건조할 수 있다.First, a carbon conductive material is coated on the porous current collector. The carbon-based conductive material and the binder are mixed at a weight ratio of 9: 1 to 7: 3, respectively, and dispersed in a solvent to form a slurry composition, and then coated on a porous current collector and dried.
상기 바인더는 탄소계 도전재 간의 결합을 도모하고, 집전체에 이들을 고정시키는 역할을 한다. 본 발명에서 그 종류를 특별히 한정하지 않고, 당 업계에서 공지된 바인더라면 어느 것이든 사용 가능하다. 예컨대, 아크릴계 바인더, 불소수지계 바인더, 고무계 바인더, 셀룰로오스계 바인더, 폴리알코올계 바인더, 폴리올레핀계 바인더, 폴리이미드계 바인더, 폴리에스테르계 바인더, 실리콘계 바인더 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 보다 구체적으로는 폴리테트라플루오르에틸렌 (Polytetrafluoroethylene, PTFE), 폴리비닐리덴 플루오라이드 (PVDF: Polyvinylidene fluoride) 및 그 공중합체 또는 셀룰로오즈를 적용 가능하며, 보다 바람직하게는 폴리비닐리덴플루오라이드(PVDF: poly vinylidene fluoride)를 사용할 수 있다.The binder serves to bond the carbon-based conductive material and to fix them to the current collector. In the present invention, the kind is not particularly limited, and any binder known in the art may be used. For example, one type selected from the group consisting of an acrylic binder, a fluororesin binder, a rubber binder, a cellulose binder, a polyalcohol binder, a polyolefin binder, a polyimide binder, a polyester binder, a silicone binder, and a combination thereof may be used. More specifically, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) and copolymers or celluloses thereof may be applied, and more preferably polyvinylidene fluoride (PVDF: poly vinylidene fluoride) may be used.
상기 슬러리 형성을 위한 용매로는 물 또는 유기 용매가 가능하며, 유기 용매는 이소프로필 알코올, N-메틸피롤리돈(N-Methyl-2-pyrrolidone: NMP), 아세톤 및 이들의 조합으로 이루어진 군에서 선택된 1종을 적용하는 것이 가능하다.The solvent for forming the slurry may be water or an organic solvent, the organic solvent in the group consisting of isopropyl alcohol, N-methylpyrrolidone (N-Methyl-2-pyrrolidone: NMP), acetone and combinations thereof It is possible to apply the selected one.
다음으로, 상기 코팅된 탄소계 도전재를 포함하도록 다공성 집전체 전면에 걸쳐 전도성 금속 산화물을 증착하여 부반응 방지막을 형성한다.Next, a conductive metal oxide is deposited on the entire surface of the porous current collector to include the coated carbon-based conductive material to form an anti-reaction film.
상기 다공성 기재 위에 코팅하는 방법에는 제한이 없으나, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등으로 코팅할 수 있다.There is no limitation on the method of coating on the porous substrate, for example, doctor blade coating, dip coating, gravure coating, slit die coating, spin coating Coating may be performed by coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, or the like.
또한 상기 코팅 후, 100 ~ 150℃로 가열된 진공 오븐에서 12 ~ 36 시간 동안 건조할 수 있다. 상기 건조하는 단계를 통해, 슬러리 중에 포함된 용매를 증발시킴으로 인해서, 탄소계 도전재와 집전체의 결착력을 도모함과 동시에 다공성 집전체의 내부 프레임까지 탄소계 도전재를 고르게 분산시켜 결합시키게 된다.In addition, after the coating, it may be dried for 12 to 36 hours in a vacuum oven heated to 100 ~ 150 ℃. Through the drying step, the solvent contained in the slurry is evaporated, thereby facilitating binding force between the carbon-based conductive material and the current collector, and simultaneously dispersing and bonding the carbon-based conductive material to the inner frame of the porous current collector.
다음으로, 상기 코팅된 탄소계 도전재를 포함하도록 다공성 집전체 전면에 걸쳐 전도성 금속 산화물을 증착하여 부반응 방지막을 형성한다. 바람직하게는 상기 탄소계 도전재가 코팅된 다공성 집전체에 상술한 전도성 금속 산화물 중 선택된 1종을 건식 증착하며, 일례로 스퍼터링(Sputtering) 또는 열 기상 증착(Thermal Evaporation) 방법으로 증착할 수 있다.Next, a conductive metal oxide is deposited on the entire surface of the porous current collector to include the coated carbon-based conductive material to form an anti-reaction film. Preferably, at least one selected from the above-described conductive metal oxides is dry deposited on the carbon-based conductive material coated porous current collector, and may be deposited by, for example, a sputtering or thermal vapor deposition method.
보다 구체적으로는 이온빔 스퍼터링(Ion beam sputtering), DC 스퍼터링(dcsputtering), RF-스퍼터링(RF-sputtering) 또는 열 증발 진공 증착(Thermal evaporation deposition)으로 증착할 수 있으며, 이러한 방법은 상온에서 높은 증착율과 비독성 가스의 방출, 작업의 용이성, 안전성 등이 있으며, 대면적의 기판에 증착이 가능하다는 특징이 있다. 또한 이러한 방법은 부반응 방지막의 두께 조절이 용이할 뿐만 아니라, 원자층 증착법(ALD)에 비해 비용이 저렴하고, 비교적 고른 증착 표면을 양산할 수 있는 장점이 있다.More specifically, it can be deposited by ion beam sputtering, DC sputtering, RF-sputtering, or thermal evaporation deposition, and this method is characterized by high deposition rate at room temperature and There is a release of non-toxic gas, ease of operation, safety, etc., and it is possible to deposit on a large-area substrate. In addition, such a method is not only easy to control the thickness of the side reaction prevention film, but also inexpensive compared to atomic layer deposition (ALD), and has the advantage of producing a relatively even deposition surface.
다음으로, 상기 부반응 방지막에 금속 촉매를 도입하여 리튬-공기 전지용 양극을 제조한다. 금속 촉매를 부반응 방지막에 도입시키는 방법에는 제한이 없으며, 일례로, 상기 제조된 부반응 방지막이 코팅된 탄소계 도전재를 금속 전구체가 담긴 비커에 침지한 후, 증류수에 침지하는 과정의 반복을 통해 금속 산화물을 도입하는 것이 가능하다. 상기 금속 전구체가 담긴 비커에서 금속 양이온을 수득하고, 증류수에서 산소 음이온을 수득하는 간단한 공정을 통해 금속 산화물의 도입이 가능하다.Next, a metal catalyst is introduced into the side reaction prevention film to prepare a lithium-air battery positive electrode. The method of introducing the metal catalyst into the side reaction prevention film is not limited. For example, after the carbon-based conductive material coated with the prepared side reaction prevention film is immersed in a beaker containing a metal precursor, the metal is repeatedly immersed in distilled water. It is possible to introduce oxides. Metal oxides can be introduced through a simple process of obtaining metal cations in a beaker containing the metal precursors and obtaining oxygen anions in distilled water.
상기한 공정을 거쳐 제조된 양극은 리튬-공기 전지에 용이하게 도입하여 전해질과 탄소계 도전재 간의 접촉을 원천적으로 차단한다.The positive electrode manufactured through the above process is easily introduced into a lithium-air battery to fundamentally block contact between the electrolyte and the carbon-based conductive material.
리튬-공기 전지Lithium-air battery
본 발명은 도 1에 도시된 바와 같이, 양극(100); 음극(200); 그 사이에 개재되는 분리막(300) 및 이들에 함침되는 전해액(400) 구비하는 리튬-공기 전지를 제공한다. 본 발명의 일 구현예에 따른 리튬-공기 전지는 전술한 실시 상태들에 따른 다공성 코팅층 적어도 일면에 구비된 분리막을 포함하는 것으로, 금속 공기 전지의 통상적인 구성 및 성분을 가질 수 있다. 이때 상기 양극(100)에서 다공성 집전체(10)의 탄소계 도전재(20), 부반응 방지막(30) 및 금속 촉매(40)가 형성되는 일면은 전해액(400)에 함침되도록 배치되는 것이 바람직하다. The present invention, as shown in Figure 1, the anode 100; Cathode 200; Provided is a lithium-air battery having a separator 300 interposed therebetween and an electrolyte solution 400 impregnated therebetween. Lithium-air battery according to an embodiment of the present invention includes a separator provided on at least one surface of the porous coating layer according to the above-described embodiments, it may have a conventional configuration and components of the metal-air battery. At this time, the one surface on which the carbon-based conductive material 20, the side reaction prevention film 30, and the metal catalyst 40 of the porous current collector 10 is formed on the positive electrode 100 is preferably disposed to be impregnated in the electrolyte 400. .
리튬-공기 전지의 구동시 전극(100, 200)은 이와 접하는 전해액(400)에 의해 부반응이 발생한다. 즉, 리튬 이온과 전해액 내 용매와 반응하여 리튬 카보네이트 또는 리튬 카르복실레이트의 물질이 생성되며, 이는 전지 특성의 저하를 야기한다. 상기 부반응은 음극(200)보다는 주로 양극(100)에서 발생한다. 이에 본 발명에서는 부반응 방지막(30)과 금속 촉매(40)를 전해액(400)에 함침되도록 배치함으로써 상기 양극(100)에서 발생하는 부반응을 억제하거나 생성된 반응물의 분해를 촉진한다. 더불어 금속 촉매(40) 자체의 전기화학적 반응성을 향상시키는 효과를 나타내, 결과적으로 리튬-공기 전지의 전지 용량을 증가시킴과 동시에 사이클 특성을 향상시킨다.When the lithium air battery is driven, side reactions of the electrodes 100 and 200 are caused by the electrolyte 400 in contact with the electrodes. In other words, a material of lithium carbonate or lithium carboxylate is produced by reacting with lithium ions and a solvent in the electrolyte, which causes deterioration of battery characteristics. The side reaction occurs mainly at the anode 100 rather than at the cathode 200. Accordingly, in the present invention, the side reaction prevention layer 30 and the metal catalyst 40 are disposed to be impregnated in the electrolyte solution 400 to suppress side reactions occurring in the anode 100 or to promote decomposition of the generated reactants. In addition, it exhibits the effect of improving the electrochemical reactivity of the metal catalyst 40 itself, as a result of increasing the battery capacity of the lithium-air battery and at the same time improve the cycle characteristics.
도 1에서 본 발명의 일 구현예에 따른 리튬-공기 전지의 단면 구조를 개략적으로 나타내었다. 이때 양극, 음극 및 전해질은 당 기술 분야에 공지된 것들을 적용할 수 있다.1 schematically shows a cross-sectional structure of a lithium-air battery according to an embodiment of the present invention. At this time, the positive electrode, the negative electrode and the electrolyte may be applied to those known in the art.
본 발명의 리튬-공기 전지는 전술한 양극(100)을 적용하며, 상기 양극(100)의 두께는 특별히 한정하지 않으나, 바람직하게는 10 ~ 100㎛일 수 있으며, 보다 바람직하게는 상기 양극의 두께는 20 ~ 60㎛일 수 있다.Lithium-air battery of the present invention applies the above-described positive electrode 100, the thickness of the positive electrode 100 is not particularly limited, but may be preferably 10 ~ 100㎛, more preferably the thickness of the positive electrode May be 20 to 60 μm.
본 발명의 일 구현예에 따르면, 상기 음극(200)의 음극 활물질은 리튬 금속, 리튬 금속 기반의 합금, 리튬 화합물 및 리튬 삽입(Intercalation) 물질로 이루어진 군으로부터 선택될 수 있다. According to one embodiment of the invention, the negative electrode active material of the negative electrode 200 may be selected from the group consisting of lithium metal, lithium metal-based alloys, lithium compounds and lithium intercalation (Intercalation) material.
특히 리튬 금속 기반의 합금으로는 예컨대, Na, K, Rb, Cs, Fr, Be, Ma, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어지는 군에서 선택되는 1종 이상의 물질과 리튬과의 합금일 수 있으며, 리튬 화합물은 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성하는 물질일 수 있으며, 예컨대, 산화주석(SnO2), 티타늄나이트레이트(TiN) 또는 리콘(Recon)일 수 있다. 또한 리튬 삽입 물질이란 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션 할 수 있는 물질을 의미하며, 예컨대, 결정질 탄소, 비정질 탄소 또는 이들의 혼합물 일 수 있다.In particular, the lithium metal-based alloy, for example, an alloy of lithium with one or more materials selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Ma, Ca, Sr, Ba, Ra, Al and Sn The lithium compound may be a material that reacts with lithium ions to reversibly form a lithium-containing compound. For example, the lithium compound may be tin oxide (SnO 2 ), titanium nitrate (TiN), or recon. In addition, the lithium intercalating material means a material capable of reversibly intercalating or deintercalating lithium ions, and may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
상기 음극(200)의 두께는 특별히 한정되지 않으나, 50㎛ 이상일 수 있다. 상기 음극의 두께의 상한치는 특별히 한정하지 않고 두꺼울수록 좋으나. 상용화 가능성을 고려할 때, 상기 음극의 두께는 50 ~ 500㎛일 수 있다.The thickness of the cathode 200 is not particularly limited, but may be 50 μm or more. The upper limit of the thickness of the cathode is not particularly limited, but thicker is better. In consideration of the possibility of commercialization, the thickness of the cathode may be 50 ~ 500㎛.
상기 양극(100)과 음극(200) 사이는 통상적인 분리막(300)이 개재될 수 있다. 상기 분리막(300)은 전극을 물리적으로 분리하는 기능을 갖는 것으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 낮은 저항성을 갖고, 전해액 함습 능력이 우수한 것이 바람직하다.A conventional separator 300 may be interposed between the anode 100 and the cathode 200. The separator 300 has a function of physically separating the electrode, and can be used without particular limitation as long as it is used as a conventional separator, and in particular, has a low resistance to ion migration of the electrolyte, and an excellent electrolyte-moisture capability. Do.
또한 상기 분리막(300)은 양극(100)과 음극(200)을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막(300)은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막은 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층일 수 있다.In addition, the separator 300 enables transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode 100 and the negative electrode 200 from each other. The separator 300 may be made of a porous and nonconductive or insulating material. The separator may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.Specifically, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 전해액(400)은 이온화 가능한 리튬염 및 유기 용매를 포함하는 비수성 전해액이다. 예컨대, 상기 비수성 전해액의 용매는 에틸렌카보네이트(Ethylene carbonate: EC), 프로필렌카보네이트(Propylene carbonate: PC) 등의 카보네이트, 디에틸렌카보네이트(Diethylene carbonate) 등의 쇄상 카보네이트, 1,2-디옥산(1,2-Dioxane) 등의 에테르류, 아세토니트릴(Acetonitrile: AN) 등의 니트릴류, 아미드류를 사용할 수 있으나, 이에 한정되는 것은 아니다. 이들 중 하나 또는 복수개를 조합하여 사용할 수 있다.According to one embodiment of the invention, the electrolyte 400 is a non-aqueous electrolyte containing an ionizable lithium salt and an organic solvent. For example, the solvent of the non-aqueous electrolyte solution is carbonate such as ethylene carbonate (EC), propylene carbonate (PC), chain carbonate such as diethylene carbonate, 1,2-dioxane (1 Ethers such as 2,2-Dioxane), nitriles such as acetonitrile (AN), and amides may be used, but are not limited thereto. One or more of these can be used in combination.
또한, 상기 리튬염으로는 LiPF6 , LiBF4, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiF, LiBr, LiCl, LiI 및 LiB(C2O4)2, LiCF3SO3, LiN(SO2CF3)2(Li-TFSI), LiN(SO2C2F5)2 및 LiC(SO2CF3)3으로 이루어진 군에서 선택되는 하나 또는 둘 이상을 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 리튬염의 농도는 0.1 ~ 2.0M 범위 내에서 사용할 수 있다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로, 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다. The lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 C 2 F 5 ) 2 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiF, LiBr, LiCl, LiI and LiB (C 2 O 4 ) 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 (Li-TFSI), LiN (SO 2 C 2 F 5 ) 2 and LiC (SO 2 CF 3), but it may use one or two or more selected from the group consisting of 3, and the like. The concentration of the lithium salt can be used within the range of 0.1 ~ 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
본 발명에 따른 리튬-공기 전지의 형태는 제한되지 않으며, 예를 들어, 코인형, 평판형, 원통형, 뿔형, 버튼형, 시트형 또는 적층형일 수 있다. 또한, 전기 자동차 등 대형 전지에 적용하는 것도 가능하다. 또한 본 발명에 따른 리튬-공기 전지는 금속 1차 전지, 금속 2차 전지에 모두 사용 가능하다. 또한, 전기 자동차 등에 이용하는 대형 전지에도 적용할 수 있다. 이에 나아가 본 발명에 따른 리튬-공기 전지를 단위 셀로 포함하는 전지 모듈을 제작하는 것도 가능하다.The form of the lithium-air battery according to the present invention is not limited, and may be, for example, coin, flat, cylindrical, horn, button, sheet or stacked. It is also possible to apply to large batteries such as electric vehicles. In addition, the lithium-air battery according to the present invention can be used for both the metal primary battery and the metal secondary battery. The present invention can also be applied to large batteries used in electric vehicles. In addition, it is also possible to manufacture a battery module comprising a lithium-air battery according to the present invention as a unit cell.
이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not intended to limit the scope of the present invention, which will be construed as to help the understanding of the present invention.
<실시예 1><Example 1>
Step 1. 다공성 집전체에 양극 활물질 코팅 Step 1. Coating the positive electrode active material on the porous current collector
탄소계 도전재(CNT) 0.8g에 바인더(PVDF)가 N-메틸피롤리돈(N-Methyl-2-pyrrolidone: NMP) 용매에 용해된 kf1100 를 1.695g 첨가하여 도전재 대 바인더 비율을 8 : 2가 되도록 1차 슬러리를 제조하였다. 이후, N-메틸피롤리돈(NMP)를 추가로 25g 첨가하여 코팅이 가능한 2차 슬러리를 제조하였다. 상기 2차 슬러리를 이용하여 카본 페이퍼(Carbon paper) 위에 블레이드 코팅하였다. 코팅 후 미리 120℃로 가열된 진공 오븐에서 24시간 이상 건조시켰다.To 0.8 g of carbon-based conductive material (CNT), 1.695 g of kf1100 in which binder (PVDF) was dissolved in N-methylpyrrolidone (NMP) solvent was added. The primary slurry was prepared to be 2. Thereafter, an additional 25 g of N-methylpyrrolidone (NMP) was added to prepare a second slurry that can be coated. The secondary slurry was used for blade coating on carbon paper. After coating it was dried for at least 24 hours in a vacuum oven previously heated to 120 ℃.
Step 2. 부반응 방지막 코팅 Step 2. Side reaction prevention coating
부반응 방지막으로써 인듐주석산화물(ITO, Indium Tin Oxide) 층을 코팅하기 위해 스퍼터링 공정을 이용하였다. 증착 공정은 상온에서 진행되었으며, 아르곤(Ar) 분위기에서 약 10 nm의 두께를 갖도록 진행하였다.A sputtering process was used to coat the indium tin oxide (ITO) layer as a side reaction prevention layer. The deposition process was performed at room temperature, and proceeded to have a thickness of about 10 nm in an argon (Ar) atmosphere.
Step 3. 금속 촉매 도입 Step 3. Introduction of metal catalyst
산화루테늄 촉매를 도입하기 위해 루테늄 전구체 용액을 준비하였다. 비이커에 염화루테늄(RuCl2)을 증류수에 10mM 농도를 갖도록 용해시킨 전구체 용액을 준비하였다. 또 다른 비이커에는 같은 양의 증류수를 준비하고 60℃로 가열하였다.A ruthenium precursor solution was prepared to introduce a ruthenium oxide catalyst. A precursor solution in which ruthenium chloride (RuCl 2 ) was dissolved in distilled water to have a concentration of 10 mM in a beaker was prepared. In another beaker, the same amount of distilled water was prepared and heated to 60 ° C.
상기 Step 2에서 부반응 방지막이 코팅된 양극을 루테늄 이온이 포함된 수용액과 60℃로 가열된 증류수에 각각 15초, 30초간 침지 하였다가 꺼내는 과정을 5회 반복하였다. 산소 음이온이 증류수로부터 담지되기 때문에 별도의 세척 과정은 포함시키지 않았다. 상기 금속 촉매가 도입된 리튬-공기 전지용 양극을 미리 120℃로 가열된 진공 오븐에서 24시간 이상 건조시켰다.In Step 2, the anode-coated anode was coated in an aqueous solution containing ruthenium ions and immersed in distilled water heated to 60 ° C. for 15 seconds and 30 seconds, and then taken out five times. Since oxygen anions are supported from distilled water, no separate washing procedure is included. The positive electrode for lithium-air battery into which the metal catalyst was introduced was dried in a vacuum oven previously heated to 120 ° C. for at least 24 hours.
Step 4. 리튬-공기 전지 제조Step 4. Lithium-Air Battery Manufacturing
상기 Step 3에서 제조된 양극을 이용하여, 아르곤(Ar) 분위기의 글러브박스(Glove box)에서 코인셀(Coin cell)형태로 조립하였다. 스테인레스틸 재질의 타공된 하판에 양극, 분리막(Glass fiber), 리튬 음극, 가스킷(Gasket), 스테인레스스틸 코인, 스프링, 상판을 차례로 올려놓고 압력을 가해 코인셀을 조립하였다. 전해액은 1M LiTFSI가 용해된 테트라에틸렌글리콜 디메틸에테르(TEGDME: tetraethylenglycol dimethylether)를 사용하였다.Using the anode prepared in Step 3, it was assembled in the form of a coin cell (Gin box) in a glove box of argon (Ar) atmosphere. The coin cell was assembled by putting a positive electrode, a glass fiber, a lithium negative electrode, a gasket, a stainless steel coin, a spring, and a top plate in order to the stainless steel perforated bottom plate. Tetraethylene glycol dimethyl ether (TEGDME) in which 1 M LiTFSI was dissolved was used.
<비교예 1>Comparative Example 1
탄소계 도전재만이 코팅된 양극을 이용하여 상기 실시예 1과 동일한 방법(Step 2 와 Step 3 제외)으로 리튬-공기 전지를 제조하였다.A lithium-air battery was manufactured by the same method as in Example 1 (except Step 2 and Step 3) using the cathode coated with only a carbon-based conductive material.
<비교예 2>Comparative Example 2
상기 실시예 1의 탄소계 도전재에 금속촉매인 산화루테늄이 코팅된 양극을 이용하여 상기 실시예 1과 동일한 방법(Step 2 제외)으로 리튬-공기 전지를 제조하였다.A lithium-air battery was manufactured in the same manner as in Example 1 (except Step 2), by using a cathode coated with ruthenium oxide as a metal catalyst on the carbon-based conductive material of Example 1.
<실험예 1>Experimental Example 1
완성된 코인셀은 1기압의 산소 분위기에서 방전 및 충전 실험을 진행하였다. 방전, 충전 실험은 탄소 무게 대비 1,000mAh/g의 용량 기준, 0.3C/0.1C의 방/충전 속도로 진행하였다. 탄소계 도전재(CNT) 양극과 부반응 방지막 및 촉매층을 담지한 양극을 사용한 리튬 공기 전지의 충방전 곡선 및 사이클 용량 비교는 도 2 및 도 3에 나타나었다.The completed coin cell was subjected to a discharge and charge experiment in an oxygen atmosphere of 1 atm. Discharge and charge experiments were conducted at a discharge / charge rate of 0.3 C / 0.1 C based on a capacity of 1,000 mAh / g relative to the weight of carbon. Comparison of charge and discharge curves and cycle capacities of a lithium-air battery using a carbon-based conductive material (CNT) anode, an anode carrying a side reaction prevention film, and a catalyst layer is shown in FIGS. 2 and 3.
도 2의 충방전 곡선을 살펴보면, 실시예 1의 리튬-공기 전지가 비교예 1의 리튬-공기 전지에 비하여 전압이 낮으므로, 과전압이 저감된 것을 확인할 수 있으며, 비교예 2에 비해서는 다소 과전압이 높게 측정되었으나, 이는 무시할 만한 수준인 것으로 나타났다. 또한 도 3의 사이클 용량 곡선을 살펴보면, 비교예 1의 방전 용량이 30 사이클 진행 시 크게 하락하였으며, 비교예 2는 20 사이클을 진행하기도 전에 크게 하락하는 반면, 실시예 1의 방전 용량은 50 사이클이 진행될 때까지 처음 상태를 유지하는 것을 확인하였다.Looking at the charge and discharge curve of Figure 2, the lithium-air battery of Example 1 has a lower voltage than the lithium-air battery of Comparative Example 1, it can be seen that the overvoltage is reduced, compared to Comparative Example 2 somewhat overvoltage Was measured high, but this appeared to be negligible. In addition, the cycle capacity curve of FIG. 3 shows that the discharge capacity of Comparative Example 1 is greatly reduced when 30 cycles are progressed, while Comparative Example 2 is greatly reduced before proceeding with 20 cycles, while the discharge capacity of Example 1 is 50 cycles. It was confirmed to maintain the initial state until progress.
이상에서 본 발명의 바람직한 실시예 1에 대하여 상세하게 설명하였지만, 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although preferred embodiment 1 of the present invention has been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the present invention.
상기한 리튬-황 전지를 포함하는 전지팩은 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전력 저장장치의 전원으로 사용될 수 있다.The battery pack including the lithium-sulfur battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), power Can be used as a power source for storage.

Claims (11)

  1. 다공성 집전체;Porous current collectors;
    상기 다공성 집전체의 일면에 코팅되는 탄소계 도전재;A carbon-based conductive material coated on one surface of the porous current collector;
    상기 탄소계 도전재의 표면에 코팅되는 부반응 방지막; 및A side reaction prevention film coated on the surface of the carbon-based conductive material; And
    상기 부반응 방지막의 표면에 산발적으로 부분 도입되는 금속 촉매;를 포함하며,And a metal catalyst sporadically introduced into the surface of the side reaction prevention film.
    상기 부반응 방지막은 전도성 금속 산화물을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.The side reaction prevention film is a lithium-air battery positive electrode, characterized in that it comprises a conductive metal oxide.
  2. 제1항에 있어서,The method of claim 1,
    상기 전도성 금속 산화물은 인듐주석산화물, 인듐아연산화물, 안티몬주석산화물, 불화주석산화물, 알루미늄아연산화물, 마그네슘인듐산화물, 아연갈륨산화물, 갈륨인듐산화물, 인듐-갈륨-아연산화물, 니오븀-스트론튬-티타늄산화물, 인듐카드뮴산화물, BZO, SZO, 인듐 산화물 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.The conductive metal oxide may be indium tin oxide, indium zinc oxide, antimony tin oxide, tin fluoride oxide, aluminum zinc oxide, magnesium indium oxide, zinc gallium oxide, gallium indium oxide, indium gallium zinc oxide, niobium-strontium-titanium oxide And an indium cadmium oxide, BZO, SZO, indium oxide, and a combination thereof.
  3. 제1항에 있어서,The method of claim 1,
    상기 부반응 방지막의 두께는 5 ~ 30 nm인 것을 특징으로 하는 리튬-공기 전지용 양극.The thickness of the side reaction prevention film is a lithium-air battery positive electrode, characterized in that 5 ~ 30 nm.
  4. 제1항에 있어서,The method of claim 1,
    상기 탄소계 도전재는 흑연계, 활성탄계, 카본 블랙계, 탄소 섬유, 탄소 나노구조체 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.The carbon-based conductive material is a cathode for a lithium-air battery, characterized in that it comprises one selected from the group consisting of graphite, activated carbon, carbon black, carbon fiber, carbon nanostructures and combinations thereof.
  5. 제1항에 있어서,The method of claim 1,
    상기 금속 촉매는 루테늄, 팔라듐, 백금, 금, 니켈, 구리, 은, 아연, 납, 카드뮴, 주석, 티타늄 및 이들의 합금, 이의 산화물, 황화물 또는 셀레늄화물인 것을 특징으로 하는 리튬-공기 전지용 양극.The metal catalyst is ruthenium, palladium, platinum, gold, nickel, copper, silver, zinc, lead, cadmium, tin, titanium and alloys thereof, oxides, sulfides or selenides thereof, the cathode for a lithium-air battery.
  6. 제1항에 있어서,The method of claim 1,
    상기 금속 촉매는 상기 탄소계 도전재 100 중량부에 대해 10 ~ 50 중량부로 포함되는 것을 특징으로 하는 리튬-공기 전지용 양극.The metal catalyst is a positive electrode for a lithium-air battery, characterized in that contained in 10 to 50 parts by weight based on 100 parts by weight of the carbon-based conductive material.
  7. 제1항에 있어서,The method of claim 1,
    상기 금속 촉매의 평균 입경은 1 ~ 10 nm인 것을 특징으로 하는 리튬-공기 전지용 양극.The average particle diameter of the metal catalyst is a lithium-air battery positive electrode, characterized in that 1 to 10 nm.
  8. 리튬-공기 전지용 양극 제조방법에 있어서,In the positive electrode manufacturing method for a lithium-air battery,
    i) 다공성 집전체에 탄소계 도전재를 코팅하는 단계;i) coating a carbon-based conductive material on the porous current collector;
    ii) 상기 탄소계 도전재의 표면에 부반응 방지막을 증착하는 단계; 및ii) depositing an anti-reaction film on the surface of the carbon-based conductive material; And
    iii) 상기 부반응 방지막에 금속 촉매를 도입시키는 단계;를 포함하며,iii) introducing a metal catalyst into the side reaction prevention film;
    상기 부반응 방지막은 전도성 금속 산화물을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극 제조방법.The side reaction prevention film is a positive electrode manufacturing method for a lithium-air battery, characterized in that it comprises a conductive metal oxide.
  9. 제8항에 있어서,The method of claim 8,
    상기 ii) 단계의 증착은 스퍼터링 또는 열 기상 증착으로 수행하는 것을 특징으로 하는 리튬-공기 전지용 양극 제조방법.The deposition of step ii) is a method for producing a cathode for a lithium-air battery, characterized in that performed by sputtering or thermal vapor deposition.
  10. 제8항에 있어서,The method of claim 8,
    상기 전도성 금속 산화물은 인듐주석산화물, 인듐아연산화물, 안티몬주석산화물, 불화주석산화물, 알루미늄아연산화물, 마그네슘인듐산화물, 아연갈륨산화물, 갈륨인듐산화물, 인듐-갈륨-아연산화물, 니오븀-스트론튬-티타늄산화물, 인듐카드뮴산화물, BZO, SZO, 인듐 산화물 및 이들의 조합으로 이루어진 군으로부터 선택된 1종을 포함하는 것을 특징으로 하는 리튬-공기 전지용 양극.The conductive metal oxide may be indium tin oxide, indium zinc oxide, antimony tin oxide, tin fluoride oxide, aluminum zinc oxide, magnesium indium oxide, zinc gallium oxide, gallium indium oxide, indium gallium zinc oxide, niobium-strontium-titanium oxide And an indium cadmium oxide, BZO, SZO, indium oxide, and a combination thereof.
  11. 리튬 음극; 양극; 이들 사이에 개재되는 분리막 및 전해질을 포함하는 리튬-공기 전지에 있어서,Lithium cathode; anode; In a lithium-air battery comprising a separator and an electrolyte interposed therebetween,
    상기 양극은 제1항 내지 제7항 중 어느 한 항의 리튬-공기 전지용 양극인 것을 특징으로 하는 리튬-공기 전지.The positive electrode is a lithium-air battery, characterized in that the positive electrode for a lithium-air battery of any one of claims 1 to 7.
PCT/KR2017/000535 2016-01-20 2017-01-16 Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor WO2017126855A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018500714A JP6494854B2 (en) 2016-01-20 2017-01-16 Lithium-air battery positive electrode having side reaction prevention film partially introduced with metal catalyst, lithium-air battery including the same, and method for producing the same
CN201780003170.7A CN108028392B (en) 2016-01-20 2017-01-16 Positive electrode for lithium-air battery having side reaction preventing layer partially incorporating metal catalyst, lithium-air battery having the same, and method for manufacturing the same
EP17741621.1A EP3316366B1 (en) 2016-01-20 2017-01-16 Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor
US15/743,387 US10505203B2 (en) 2016-01-20 2017-01-16 Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160006885 2016-01-20
KR10-2016-0006885 2016-01-20
KR1020170007064A KR102024899B1 (en) 2016-01-20 2017-01-16 Cathode for lithium-air battery using passivation layer with metal catalyst, manufacturing method thereof and lithium-air battery comprising the same
KR10-2017-0007064 2017-01-16

Publications (1)

Publication Number Publication Date
WO2017126855A1 true WO2017126855A1 (en) 2017-07-27

Family

ID=59362536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000535 WO2017126855A1 (en) 2016-01-20 2017-01-16 Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017126855A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181901A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
KR20140030482A (en) * 2012-08-30 2014-03-12 한국과학기술연구원 A cathode for lithium air secondary battery, a fabricating method thereof and lithium air secondary battery using the same
KR20140039755A (en) * 2012-09-25 2014-04-02 현대자동차주식회사 Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same
KR20140052139A (en) * 2012-10-19 2014-05-07 한양대학교 산학협력단 Cathode for lithium-air battery, method of manufacturing the same and lithium-air battery including the same
KR20150031213A (en) * 2013-09-13 2015-03-23 주식회사 엘지화학 Cathode for lithium air battery and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181901A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery
KR20140030482A (en) * 2012-08-30 2014-03-12 한국과학기술연구원 A cathode for lithium air secondary battery, a fabricating method thereof and lithium air secondary battery using the same
KR20140039755A (en) * 2012-09-25 2014-04-02 현대자동차주식회사 Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same
KR20140052139A (en) * 2012-10-19 2014-05-07 한양대학교 산학협력단 Cathode for lithium-air battery, method of manufacturing the same and lithium-air battery including the same
KR20150031213A (en) * 2013-09-13 2015-03-23 주식회사 엘지화학 Cathode for lithium air battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR102024899B1 (en) Cathode for lithium-air battery using passivation layer with metal catalyst, manufacturing method thereof and lithium-air battery comprising the same
RU2619080C1 (en) Cathode for lithium-sulfur battery and method of its preparation
WO2014014274A1 (en) Carbon-silicon composite, method for preparing same, and cathode active material comprising carbon-silicon composite
KR102639662B1 (en) A negative electrode for a lithium secondary battery formed with a ferroelectric polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
WO2019132394A1 (en) Binder for lithium-sulfur battery, positive electrode comprising same, and lithium-sulfur battery
KR102268180B1 (en) Electrolyte complex for lithium-sulfur battery, electrochemical devices including the same and method for preparing electrochemical devices
WO2018016737A1 (en) Lithium secondary battery comprising cathode active material for synthesizing lithium cobalt oxide, and manufacturing method therefor
WO2021210814A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2019013557A2 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
WO2016010403A1 (en) Lithium air battery and method for manufacturing same
US20140093791A1 (en) Air electrode for metal air battery
WO2019059662A2 (en) Metal secondary battery having metal electrode
WO2018062844A2 (en) Lithium secondary battery negative electrode including protection layer made of conductive fabric, and lithium secondary battery including same
WO2022149751A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2014027841A1 (en) Method for manufacturing positive electrode for lithium-sulfur battery and lithium-sulfur battery
WO2019022358A1 (en) Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2022149877A1 (en) Electrolyte for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2017126855A1 (en) Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor
WO2021230661A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR102651781B1 (en) A negative electrode for a lithium secondary battery formed with a highly Elongated polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
WO2020226330A1 (en) Functional separator, manufacturing method therefor, and lithium secondary battery comprising same
WO2015137728A1 (en) Electrode active material containing reduced titanium oxide and electrochemical device using same
WO2015076602A1 (en) Electrode assembly having improved flexural rigidity, method for preparing same, and electrochemical battery comprising same
WO2022114650A1 (en) Binder composition for manufacturing lithium-sulfur battery cathode, and lithium-sulfur battery cathode manufactured therefrom
WO2022092691A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018500714

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15743387

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017741621

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE