KR20140039755A - Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same - Google Patents
Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same Download PDFInfo
- Publication number
- KR20140039755A KR20140039755A KR1020120106393A KR20120106393A KR20140039755A KR 20140039755 A KR20140039755 A KR 20140039755A KR 1020120106393 A KR1020120106393 A KR 1020120106393A KR 20120106393 A KR20120106393 A KR 20120106393A KR 20140039755 A KR20140039755 A KR 20140039755A
- Authority
- KR
- South Korea
- Prior art keywords
- oxide
- air battery
- catalyst
- lithium air
- cathode
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/688—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 리튬공기전지 양극용 복합산화물 촉매에 관한 것으로, 더욱 상세하게는 양극 내 산소의 버퍼기능을 수행하여 전지의 방전상태를 안정적으로 유지토록 하기 위한 리튬공기전지 양극용 복합산화물 촉매, 이를 포함한 리튬공기전지용 양극 및 리튬공기전지에 관한 것이다.
The present invention relates to a composite oxide catalyst for a lithium air battery positive electrode, and more particularly, to a composite oxide catalyst for a lithium air battery positive electrode for maintaining a stable discharge state of a battery by performing a buffer function of oxygen in the positive electrode, including the same. A positive electrode for lithium air batteries and a lithium air battery.
일반적으로 리튬공기전지는 공기 중의 산소를 활물질로 이용한 양극(cathode)을 갖는 전지로, 양극에 있어서 산소의 산화환원 반응을 행함에 따라 전지의 충방전을 진행한다.In general, a lithium air battery is a battery having a cathode using oxygen in air as an active material, and the battery is charged and discharged by performing a redox reaction of oxygen at the cathode.
종래의 리튬이온전지는 단거리 이동에 쓰이는 플러그인 하이브리드 차량(PHEV: Plug-in Hybrid Electric Vehicle)의 에너지저장 요구는 만족시킬 수 있으나, 장거리 이동에 쓰이는 전기자동차(EV)의 경우 에너지 저장량이 부족하여 에너지저장 요구를 만족시키기 어려우며, 이에 더 많은 에너지를 저장할 수 있는 시스템이 요구되고 있다.Conventional lithium ion batteries can meet the energy storage requirements of plug-in hybrid electric vehicles (PHEVs) used for short-distance travel, but electric vehicles (EVs) used for long- There is a demand for a system capable of storing more energy, which is difficult to satisfy the storage requirement.
현재까지 알려진 에너지저장 시스템 중에는 리튬공기전지 시스템이 비교적 높은 이론용량을 가지고 있다.Among the known energy storage systems, lithium air battery systems have a relatively high theoretical capacity.
리튬공기전지는 방전시, 음극(anode)의 리튬금속으로부터 방출된 리튬 양이온이 전해질을 통해 양극으로 이동하고 양극에서 대기로부터 공급된 산소와 산화반응을 통해 리튬산화물(Li2O 또는 Li2O2)을 생성하며, 전자는 음극에서 양극으로 전기회로를 통해 이동한다.In the lithium air battery, during discharge, lithium cations emitted from lithium metal at the anode move to the anode through the electrolyte and are reacted with lithium oxide (Li 2 O or Li 2 O 2 through an oxidation reaction with oxygen supplied from the atmosphere at the cathode). ) Electrons move through the electrical circuit from cathode to anode.
[반응식 1][Reaction Scheme 1]
상기 반응식 1에서 알 수 있듯이, 리튬공기전지는 자동차의 에너지저장수단으로 적용될 시 일정한 산소의 공급이 중요한 요소로 작용하게 된다.As can be seen in the
그러나, 차량 운전 중 리튬공기전지에 공급되는 산소의 양을 일정하게 유지하기는 매우 어려우며, 특히 순간적인 산소 공급 불능상태가 발생할 경우 전지의 방전 역시 불능상태가 되는 문제가 있다.
However, it is very difficult to maintain a constant amount of oxygen supplied to a lithium air battery while driving a vehicle. In particular, there is a problem in that the discharge of the battery also becomes incapable when a momentary oxygen supply failure occurs.
본 발명은 상기와 같은 점을 개선하기 위해 고안한 것으로서, 양극 활물질로 사용되는 산소가 과량으로 공급되는 경우 산소를 흡수하여 저장하고 산소가 부족한 경우 저장한 산소를 방출함으로써 양극 내 산소 공급을 일정하게 유지할 수 있도록 하는 리튬공기전지용 복합산화물 촉매 및 이를 포함한 리튬공기전지용 양극을 제공하는데 그 목적이 있다.The present invention was devised to improve the above-mentioned point, and when oxygen used as the positive electrode active material is supplied in excess, oxygen is absorbed and stored, and when oxygen is insufficient, oxygen supply in the positive electrode is kept constant. An object of the present invention is to provide a composite oxide catalyst for a lithium air battery and a cathode for a lithium air battery including the same.
또한, 본 발명은 상기의 복합산화물 촉매를 포함한 양극을 채택하여 양극 내 산소 공급의 진동을 감소시키고 산화반응에 사용되는 산소 공급이 일정하게 유지되도록 함으로써 안정적인 전지의 방전상태를 유지하는 리튬공기전지를 제공하는데 목적이 있다.
In addition, the present invention adopts a positive electrode including the composite oxide catalyst to reduce the vibration of the oxygen supply in the positive electrode and to maintain a constant discharge state of the lithium battery by maintaining a constant oxygen supply used for the oxidation reaction The purpose is to provide.
상기한 목적을 달성하기 위하여 본 발명은, 지지체와 이 지지체에 담지되는 촉매물질로 이루어지며, 상기 지지체로는 Ce-Al 산화물, Ce-Zr 산화물, Al-Zr 산화물 중 선택된 1종이 사용되거나 혹은 2종 이상으로 된 혼합물이 사용되고, 상기 촉매물질로는 은(Ag) 산화물, 구리(Cu) 산화물, 백금(Pt) 산화물, 팔라듐(Pd) 산화물, 로듐(Rh) 산화물, 망간(Mn) 산화물, 철(Fe) 산화물, 및 페로브스카이트 중 선택된 1종 혹은 2종 이상으로 된 혼합물이 사용되며, 상기 페로브스카이트와 세리아 중 적어도 어느 하나를 함유하는 것을 특징으로 하는 리튬공기전지 양극용 복합산화물 촉매를 제공한다.In order to achieve the above object, the present invention is composed of a support material and a catalyst material supported on the support, wherein the support is selected from Ce-Al oxide, Ce-Zr oxide, Al-Zr oxide is used or 2 A mixture of two or more species is used, and the catalyst material is silver (Ag) oxide, copper (Cu) oxide, platinum (Pt) oxide, palladium (Pd) oxide, rhodium (Rh) oxide, manganese (Mn) oxide, iron (Fe) oxide, and a mixture of one or two or more selected from perovskite is used, and the composite oxide for lithium air battery positive electrode, characterized in that it contains at least one of the perovskite and ceria. To provide a catalyst.
또한 본 발명은, 상호 물리적으로 혼합되는 제1산화물과 제2산화물로 이루어지며, 상기 제1산화물로는 CeO2, Ce-Al 산화물, Ce-Zr 산화물, Al-Zr 산화물 중 선택된 1종 혹은 2종 이상으로 된 혼합물이 사용되고, 상기 제2산화물로는 은(Ag) 산화물, 구리(Cu) 산화물, 백금(Pt) 산화물, 팔라듐(Pd) 산화물, 로듐(Rh) 산화물, 망간(Mn) 산화물, 철(Fe) 산화물, 및 페로브스카이트 중 선택된 1종 혹은 2종 이상으로 된 혼합물이 사용되며, 상기 페로브스카이트와 세리아 중 적어도 어느 하나를 함유하는 것을 특징으로 하는 리튬공기전지 양극용 복합산화물 촉매를 제공한다.In addition, the present invention comprises a first oxide and a second oxide which are physically mixed with each other, wherein the first oxide is selected from CeO 2 , Ce-Al oxide, Ce-Zr oxide, Al-Zr oxide A mixture of two or more species is used, and the second oxide may be silver (Ag) oxide, copper (Cu) oxide, platinum (Pt) oxide, palladium (Pd) oxide, rhodium (Rh) oxide, manganese (Mn) oxide, Iron (Fe) oxide, and a mixture of one or two or more selected from the perovskite is used, a composite for lithium air battery positive electrode comprising at least one of the perovskite and ceria It provides an oxide catalyst.
또한 본 발명은, 양극 활물질인 산소의 산화환원 촉매로서 도전성 재료에 담지되는 촉매를 포함하며, 상기 촉매로는 상기의 복합산화물 촉매를 채택한 것을 특징으로 하는 리튬공기전지용 양극을 제공한다.In addition, the present invention includes a catalyst supported on a conductive material as a redox catalyst of oxygen as a cathode active material, and the catalyst provides a cathode for a lithium air battery, wherein the composite oxide catalyst is employed.
아울러 본 발명은, 리튬 이온의 흡장과 방출이 가능한 음극과, 산소를 양극 활물질로 하는 양극, 및 상기 양극과 음극 사이에 개재되는 전해질을 구비하며, 상기 양극으로는 상기의 리튬공기전지용 양극을 채택한 것을 특징으로 하는 리튬공기전지를 제공한다.
In addition, the present invention includes a negative electrode capable of occluding and releasing lithium ions, a positive electrode having oxygen as a positive electrode active material, and an electrolyte interposed between the positive electrode and the negative electrode, wherein the positive electrode for a lithium air battery is employed as the positive electrode. Provided is a lithium air battery.
본 발명에 따른 복합산화물 촉매를 함유한 리튬공기전지는 양극 내 산소가 과량 공급되는 경우 산소를 흡수하여 저장하고 산소가 부족한 경우 저장해둔 산소를 방출함으로써 산소의 버퍼기능을 수행하는 복합산화물 촉매를 양극 내에 포함함에 의해 산화반응에 사용되는 산소 공급을 일정하게 유지할 수 있고, 이에 따라 산소 공급의 요동이 감소되고 일정한 산소 공급이 이루어져 전지의 방전상태를 보다 안정적으로 유지할 수 있게 되며, 이로써 높은 충방전 용량을 구현하여 전지의 성능이 향상되는 효과를 얻을 수 있다.
The lithium air battery containing the composite oxide catalyst according to the present invention positively absorbs and stores oxygen when the oxygen is supplied in the positive electrode and releases the stored oxygen when the oxygen is insufficient. It is possible to maintain a constant supply of oxygen used in the oxidation reaction by including in the inside, thereby reducing the fluctuation of the oxygen supply and a constant supply of oxygen to maintain a stable discharge state of the battery, thereby high charge and discharge capacity By implementing this it is possible to obtain the effect of improving the performance of the battery.
도 1은 본 발명에 따른 리튬공기전지용 복합산화물 촉매를 나타낸 모식도,
도 2는 페로브스카이트 구조(Perovskite structure)의 단위격자를 나타낸 도면,
도 3은 본 발명의 효과를 예증하기 위한 평가예 1의 코인셀 평가조건을 나타낸 도면,
도 4는 본 발명의 실시예 1에 따른 리튬공기전지 코인셀 및 기존의 산소 산화환원 촉매를 이용하여 제조한 비교예 1에 따른 리튬공기전지 코인셀의 시간에 따른 출력전압을 비교하여 나타낸 그래프,
도 5는 본 발명의 실시예 2에 따른 리튬공기전지 코인셀 및 비교예 1에 따른 리튬공기전지 코인셀의 시간에 따른 출력전압을 비교하여 나타낸 그래프.1 is a schematic diagram showing a composite oxide catalyst for a lithium air battery according to the present invention,
2 is a view showing a unit grid of the Perovskite structure (Perovskite structure),
3 is a view showing a coin cell evaluation condition of Evaluation Example 1 for illustrating the effect of the present invention,
4 is a graph showing a comparison of output voltage over time of a lithium air battery coin cell according to Comparative Example 1 manufactured using a lithium air battery coin cell and a conventional oxygen redox catalyst according to Example 1 of the present invention;
5 is a graph showing a comparison between the output voltage over time of the lithium air battery coin cell according to Example 2 of the present invention and the lithium air battery coin cell according to Comparative Example 1.
이하, 본 발명이 해당하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명을 설명하기로 한다. Hereinafter, the present invention will be described so that the present invention can be easily implemented by those skilled in the art.
본 발명은 리튬공기전지용 양극의 복합산화물 촉매에 관한 것으로, 양극(cathode)의 활물질로서 공급되는 산소의 공급을 일정하게 유지하여 전지의 방전상태를 안정적으로 유지하고 전지 성능을 향상시키고자 한다.The present invention relates to a composite oxide catalyst of a cathode for a lithium air battery, to maintain a constant supply of oxygen supplied as an active material of the cathode (cathode) to maintain a stable discharge state of the battery and to improve battery performance.
이에 본 발명에서는 양극에 함유되는 촉매로서 페로브스카이트 혹은 세리아(산화세륨)와 같은 산화물을 함유하는 복합산화물 촉매를 이용한 리튬공기전지용 양극 및 이를 채용한 리튬공기전지를 제공한다.Accordingly, the present invention provides a cathode for a lithium air battery using a composite oxide catalyst containing an oxide such as perovskite or ceria (cerium oxide) as a catalyst contained in the cathode, and a lithium air battery employing the same.
상기의 복합산화물 촉매는 페로브스카이트와 세리아 중 적어도 어느 하나를 포함함으로써 리튬공기전지에 산소가 과량 공급되는 경우 산소를 흡수하여 저장하고 산소가 부족한 경우 저장해둔 산소를 방출하는 산소의 버퍼기능을 수행하여 양극 내 산화반응에 사용되는 산소 공급을 일정하게 유지시켜줄 수 있게 된다. The composite oxide catalyst includes at least one of perovskite and ceria to absorb and store oxygen when oxygen is excessively supplied to a lithium air battery and to buffer oxygen to release stored oxygen when oxygen is insufficient. It is possible to maintain a constant oxygen supply used for the oxidation reaction in the anode.
도 1에 나타낸 바와 같이, 본 발명에 따른 리튬공기전지용 복합산화물 촉매는 지지체를 이용하여 제조하거나 또는 물리적 혼합을 통해 제조할 수 있다.As shown in FIG. 1, the composite oxide catalyst for lithium air battery according to the present invention may be prepared using a support or may be prepared through physical mixing.
먼저, 지지체를 이용하여 제조하는 경우, 상기 복합산화물 촉매는 지지체와 이 지지체에 담지되는 촉매물질로 이루어지며, 상기 촉매물질과 지지체의 질량비는 1 : 1 ~ 200일 수 있다(지지체 : 촉매물질 = 1 ~ 200 : 1).First, when prepared using a support, the composite oxide catalyst is composed of a support and a catalyst material supported on the support, the mass ratio of the catalyst material and the support may be 1: 1 ~ 200 (support: catalyst material = 1 to 200: 1).
상기 지지체로는 Ce-Al 산화물, Ce-Zr 산화물, Al-Zr 산화물 중 선택된 1종 이상의 산화물을 사용할 수 있고, 촉매물질로는 은(Ag) 산화물, 구리(Cu) 산화물, 백금(Pt) 산화물, 팔라듐(Pd) 산화물, 로듐(Rh) 산화물, 망간(Mn) 산화물, 철(Fe) 산화물, 및 페로브스카이트(Perovskite) 중 선택된 1종 이상의 산화물을 사용할 수 있다.As the support, one or more oxides selected from Ce-Al oxide, Ce-Zr oxide, and Al-Zr oxide may be used, and the catalyst material may be silver (Ag) oxide, copper (Cu) oxide, or platinum (Pt) oxide. At least one oxide selected from among palladium (Pd) oxide, rhodium (Rh) oxide, manganese (Mn) oxide, iron (Fe) oxide, and perovskite may be used.
물리적 혼합을 통해 제조하는 경우, 복합산화물 촉매는 지지체 없이 상호 물리적으로 혼합(mixing)되는 제1산화물과 제2산화물로 이루어지며, 상기 제1산화물과 제2산화물의 질량비는 1 : 0.1 ~ 200일 수 있다(제1산화물 : 제2산화물 = 1 : 0.1 ~ 200).When manufactured through physical mixing, the composite oxide catalyst is composed of a first oxide and a second oxide that are physically mixed with each other without a support, and the mass ratio of the first oxide and the second oxide is 1: 0.1 to 200 days (First oxide: second oxide = 1: 0.1 to 200).
상기 제1산화물로는 CeO2, Ce-Al 산화물, Ce-Zr 산화물, Al-Zr 산화물 중 선택된 1종 이상의 산화물을 사용할 수 있고, 제2산화물로는 은(Ag) 산화물, 구리(Cu) 산화물, 백금(Pt) 산화물, 팔라듐(Pd) 산화물, 로듐(Rh) 산화물, 망간(Mn) 산화물, 철(Fe) 산화물, 및 페로브스카이트 중 선택된 1종 이상의 산화물을 사용할 수 있다.As the first oxide, one or more oxides selected from CeO 2 , Ce-Al oxide, Ce-Zr oxide, and Al-Zr oxide may be used, and the second oxide may be silver (Ag) oxide or copper (Cu) oxide. At least one oxide selected from among platinum (Pt) oxide, palladium (Pd) oxide, rhodium (Rh) oxide, manganese (Mn) oxide, iron (Fe) oxide, and perovskite may be used.
상기의 복합산화물 촉매는 세리아와 페로브스카이트 중 적어도 하나 이상을 함유함으로써 리튬공기전지에 적용시 양극에 공급되는 산소의 공급 진동을 저감하고 산화반응에 사용되는 산소의 공급을 일정하게 유지할 수 있도록 해주며, 또한 구성물의 다양한 혼합을 통하여 전지의 성능 향상을 가능하게 한다.The composite oxide catalyst contains at least one of ceria and perovskite so as to reduce the supply vibration of oxygen supplied to the cathode when applied to a lithium air battery and to maintain a constant supply of oxygen used for the oxidation reaction. In addition, it is possible to improve the performance of the battery through the various mixing of the components.
도 2는 페로브스카이트 구조(Perovskite structure)의 단위격자를 나타낸 것이다.2 shows a unit grid of a Perovskite structure.
페로브스카이트는 도 2와 같은 ABO3 결정구조를 가지는 금속산화물로서, 도 2의 A 위치에는 란탄(La) 등과 란탄 등을 부분치환한 성분원소(이하, '치환성분'이라고 함)가 적용될 수 있고, 도 2의 B 위치에는 망간, 철, 크롬 등이 적용될 수 있으며, 상기 치환성분으로는 칼륨(K), 스트론튬(Sr) 등이 사용될 수 있다. 이때 란탄과 치환성분의 비율은 1 : 0.01 ~ 1.5 일 수 있다(란탄 : 치환성분 = 1 : 0.01 ~ 1.5). Perovskite is a metal oxide having an ABO 3 crystal structure as shown in FIG. 2, and a component element (hereinafter, referred to as a "substituted component") partially substituted with lanthanum (La) and lanthanum may be applied to the A position of FIG. 2. 2, manganese, iron, chromium, or the like may be applied to the B position of FIG. 2, and potassium (K), strontium (Sr), or the like may be used as the substitution component. At this time, the ratio of the lanthanum and the substituted component may be 1: 0.01 to 1.5 (lanthanum: substituted component = 1: 0.01 ~ 1.5).
이러한 페로브스카이트는 A,B 위치에 다양한 성분원소를 적용함에 의해 다양한 물성을 보일 수 있는데, A 위치 성분원소의 부분치환에 의해 격자 산소의 흡수와 방출이 용이해져 반응성이 뛰어나게 할 수 있고 촉매의 산화, 환원 성질을 향상시킬 수 있다. Such perovskite can show various physical properties by applying various component elements in A and B positions. The partial permutation of the component A positions facilitates the absorption and release of lattice oxygen, making it highly reactive and Oxidation and reducing properties can be improved.
예를 들어, 페로브스카이트의 La3 +를 Sr2 +로 부분치환하는 경우 Co4 +가 생기면서 가 생성되는데, 이때 불안정한 Co4 +는 격자산소가 이탈하면서 안정한 Co3 +로 바뀌게 되고, 그 결과 산소의 결합이 발생되며, 그 결합에 의해 산소의 확산이 용이해지므로 산소 확산계수가 증가하게 되고, 결국 촉매의 산화력 및 환원력이 상승되어진다.For example, if the perovskite La partially substituted by Sr 2 + 3 + 4 + Co in the tree while the animation In this case, unstable Co 4 + is transformed into stable Co 3 + as the lattice oxygen is released, and as a result, oxygen bonds are generated, and the diffusion of oxygen is facilitated by the bonds, thereby increasing the oxygen diffusion coefficient. As a result, the oxidizing and reducing power of the catalyst are increased.
한편, 일반적으로 리튬공기전지는 리튬 이온의 흡장 및 방출이 가능한 음극과, 공기 중의 산소를 양극 활물질로 하는 양극, 및 상기 양극과 음극 사이에 개재되는 전해질을 구비한 구조로 알려져 있다.On the other hand, a lithium air battery is generally known as a structure having a negative electrode capable of storing and releasing lithium ions, a positive electrode using oxygen in the air as a positive electrode active material, and an electrolyte interposed between the positive electrode and the negative electrode.
이러한 리튬공기전지의 양극 및 음극은 각각 집전체와 도전성 재료 및 바인더를 포함하고, 상기 양극의 경우 도전성 재료를 담지체로 한 촉매가 첨가될 수 있다.The positive electrode and the negative electrode of the lithium air battery each include a current collector, a conductive material, and a binder. In the case of the positive electrode, a catalyst having a conductive material as a carrier may be added.
본 발명에 따른 리튬공기전지용 양극은 공기 중에 산소를 양극 활물질로 하고, 상기 산소의 산화환원 촉매로서 전술한 바와 같은 복합산화물 촉매가 도전성 재료(예를 들어, 탄소계 물질)에 담지되어 포함되며, 도전성 재료와 복합산화물 촉매의 질량비는 1 : 0 ~ 2일 수 있다(도전성 재료 : 복합산화물 촉매 = 1 : 0 ~ 2).In the positive electrode for a lithium air battery according to the present invention, oxygen is used as a positive electrode active material in air, and a complex oxide catalyst as described above is contained as a redox catalyst of oxygen supported on a conductive material (for example, a carbon-based material), The mass ratio of the conductive material and the composite oxide catalyst may be 1: 0 to 2 (conductive material: composite oxide catalyst = 1: 0 to 2).
상기 도전성 재료로는 그래파이트(graphite) 계열, 탄소나노튜브(CNT) 계열, 및 기상용화된 Ketjen Black, Denka Black, Super C, Super S 등의 카본블랙 계열의 탄소계 물질이 사용될 수 있다.
As the conductive material, carbon-based materials such as graphite-based, carbon nanotube (CNT) -based, and carbon black-based materials such as Ketjen Black, Denka Black, Super C, and Super S may be used.
이하, 본 발명의 이해를 돕기 위하여 실시예와 비교예를 제시하나, 하기 실시예들은 본 발명을 예증하기 위한 것일 뿐, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, examples and comparative examples are provided to help the understanding of the present invention, but the following examples are only for illustrating the present invention, and the present invention is not limited thereto.
실시예Example 1 One
지지체 Ce0 .6Zr0 .4O2에 촉매물질 MnO2를 담지하여 복합산화물 촉매를 제조한 뒤, 이 복합산화물 촉매를 담지한 도전재 KB(Ketjen Black) 90wt% 를 바인더 Kynar2801 10wt% 와 혼합한 다음, 이 혼합물을 양극 집전체인 니켈폼 위에 도포하고 120℃에서 12시간 동안 건조시키는 습식제작법으로 리튬공기전지용 양극을 제조하였다. 이때 KB와 복합산화물 촉매의 질량비는 KB : MnO2/Ce0 .6Zr0 .4O2 = 40 : 8/32 로 하였다.Support Ce 0 .6 Zr 0 .4 O 2 after producing the composite oxide catalyst by supporting a catalytic substance on the MnO 2, the conductive material carrying the mixed oxide catalyst KB (Ketjen Black) 90wt% to 10wt% binder Kynar2801 mixed with Then, the mixture was coated on nickel foam, which is a positive electrode current collector, and a lithium air battery positive electrode was manufactured by a wet manufacturing method which was dried at 120 ° C. for 12 hours. The mass ratio of the KB and the complex oxide catalyst KB: MnO 2 / Ce 0 .6 Zr 0 .4
음극으로서 리튬금속 박막을 사용하고, 상기 제조한 양극과 음극 사이에 배치되는 전해질로서 PC(polycarbonate) 전해액 150㎕를 사용하여 리튬공기전지 코인셀을 제조하였다.
A lithium air battery coin cell was manufactured by using a lithium metal thin film as a negative electrode and using 150 μl of a PC (polycarbonate) electrolyte as an electrolyte disposed between the prepared positive and negative electrodes.
실시예Example 2 2
제1산화물 Ce0 .5Zr0 .5O2와 제2산화물 MnO2를 혼합하여 복합산화물 촉매를 제조한 뒤, 이 복합산화물 촉매를 담지한 도전재 KB 90wt% 를 바인더 Kynar2801 10wt% 와 혼합한 다음, 이 혼합물을 양극 집전체인 니켈폼 위에 도포하고 120℃에서 12시간 동안 건조시키는 습식제작법으로 리튬공기전지용 양극을 제조하였다. 이때 KB와 복합산화물 촉매의 질량비는 KB : MnO2 : Ce0 .5Zr0 .5O2 = 2 : 1 : 1로 하였다.First oxide Ce 0 .5 Zr 0 .5 O 2 and the second a mixture of oxide compound oxide MnO 2 after preparing the catalyst, a mixed oxide catalyst supported by the conductive material, 90wt% of a binder KB Kynar2801 10wt% with a mixed Next, the mixture was coated on nickel foam, which is a positive electrode current collector, and a lithium air battery positive electrode was manufactured by a wet manufacturing method of drying at 120 ° C. for 12 hours. The mass ratio of the KB and the complex oxide catalyst KB: was set to 1: MnO 2: Ce 0 .5
음극으로서 리튬금속 박막을 사용하고, 상기 제조한 양극과 음극 사이에 배치되는 전해질로서 PC 전해액 150㎕를 사용하여 리튬공기전지 코인셀을 제조하였다.
A lithium air battery coin cell was manufactured using a lithium metal thin film as a negative electrode and 150 μl of a PC electrolyte as an electrolyte disposed between the prepared positive and negative electrodes.
비교예Comparative Example 1 One
산소의 산화환원 촉매인 MnO2를 담지한 양극 도전재 KB 90wt% 를 바인더 Kynar2801 10wt% 와 혼합한 다음, 이 혼합물을 양극 집전체인 니켈폼 위에 도포하고 120℃에서 12시간 동안 건조시키는 습식제작법으로 리튬공기전지용 양극을 제조하였다. 이때 KB와 MnO2의 질량비는 1 : 1로 하였다.90 wt% of a cathode conductive material KB carrying MnO 2 , a redox catalyst of oxygen, was mixed with 10 wt% of a binder Kynar2801, and then the mixture was coated on a nickel foam, which is a cathode current collector, and dried at 120 ° C. for 12 hours. A positive electrode for a lithium air battery was prepared. At this time, the mass ratio of KB and MnO 2 was 1: 1.
음극으로서 리튬금속 박막을 사용하고, 상기 제조한 양극과 음극 사이에 배치되는 전해질로서 PC 전해액 150㎕를 사용하여 리튬공기전지 코인셀을 제조하였다.
A lithium air battery coin cell was manufactured using a lithium metal thin film as a negative electrode and 150 μl of a PC electrolyte as an electrolyte disposed between the prepared positive and negative electrodes.
평가예Evaluation example 1 One
도 3과 같이 18시간 동안 각각 6시간씩 차례로 대기중에서의 평가, 아르곤(Ar) 분위기에서의 평가, 대기중에서의 평가를 수행하여 리튬공기전지 코인셀의 전기화학적 특성을 평가하는데, 전류량을 100mA/g-carbon으로 하여 실시예 1, 2 및 비교예 1에 따른 리튬공기전지 코인셀의 시간에 따른 전압을 각각 측정 평가하였으며, 그 결과를 도 4 및 도 5에 나타내었다. To evaluate the electrochemical characteristics of the lithium air battery coin cell by performing an evaluation in the air, an argon (Ar) atmosphere, and the evaluation in the air for 6 hours each for 18 hours as shown in FIG. 3, the current amount is 100 mA / As the g-carbon, voltages of the lithium air battery coin cells according to Examples 1 and 2 and Comparative Example 1 were measured and evaluated, respectively, and the results are shown in FIGS. 4 and 5.
도 4는 본 발명의 실시예 1에 따른 리튬공기전지 코인셀 및 기존의 산소 산화환원 촉매를 이용하여 제조한 비교예 1에 따른 리튬공기전지 코인셀의 시간에 따른 출력전압을 비교하여 나타낸 그래프이고, 도 5는 본 발명의 실시예 2에 따른 리튬공기전지 코인셀 및 비교예 1에 따른 리튬공기전지 코인셀의 시간에 따른 출력전압을 비교하여 나타낸 그래프이다.4 is a graph showing a comparison of output voltage over time of a lithium air battery coin cell according to Comparative Example 1 manufactured using a lithium air battery coin cell and a conventional oxygen redox catalyst according to Example 1 of the present invention. 5 is a graph illustrating output voltages of a lithium air battery coin cell according to Example 2 and a lithium air battery coin cell according to Comparative Example 1 in comparison with time.
도 4에 보이듯이, 실시예 1의 리튬공기전지 코인셀은 대기중에서의 평가 이후 아르곤 분위기에서 평가시 산소 공급이 없으나 세리아를 포함한 지지체(Ce0 .6Zr0 .4O2)가 대기중 평가시 흡수저장한 산소를 사용함으로 비교예 1의 코인셀 대비 방전상태가 더 긴 시간 동안 유지됨을 확인할 수 있었으며, 또한 아르곤 분위기에서의 평가 이후(12시간 이후) 대기중 평가에서 다시 산소가 공급되었을 때 전압회복능력도 비교예 1의 코인셀 대비 상대적으로 우수한 것을 확인할 수 있었다.Lithium-air battery of Fig. 4, Example 1, as shown in coin cell was evaluated, but this evaluation after the oxygen supply in an atmosphere of argon in the air support including ceria (Ce 0 .6 Zr 0 .4 O 2) is evaluated in the air When the oxygen was absorbed and stored, the discharge state was maintained for a longer time compared to the coin cell of Comparative Example 1, and when oxygen was supplied again in the atmospheric evaluation after the evaluation in argon atmosphere (after 12 hours). It was confirmed that the voltage recovery ability is also relatively superior to the coin cell of Comparative Example 1.
그리고, 도 5에 보이듯이, 실시예 2의 리튬공기전지 코인셀 역시 대기중에서의 평가 이후(6시간 이후) 아르곤 분위기에서의 평가시 산소 공급이 없으나 세리아를 포함한 Ce0 .5Zr0 .5O2를 함유하고 있음으로 대기중 평가시 흡수저장한 산소를 사용함에 의해 비교예 1의 코인셀 대비 방전상태가 더 긴 시간 동안 유지됨을 확인할 수 있었으며, 또한 제1산화물(Ce0 .5Zr0 .5O2)과 제2산화물(MnO2)의 혼합물을 이용함에 의해 단일 성분의 촉매(MnO2)만 이용한 비교예 1의 코인셀 대비 전압 회복 및 유지에 더욱 효과적임을 확인할 수 있었다.And, Figure 5 As shown in Example 2, the lithium air battery is also of a coin cell (after 6 hours) after the evaluation of the atmosphere Ce 0 .5 Although there is no evaluation of the oxygen supply in an argon atmosphere containing ceria Zr 0 .5 O containing 2 and that the coin cell was discharged state compared to the Comparative example 1 by the use of the oxygen stored by absorption at the time of the evaluation in the atmosphere to determine the retained for a longer time, and the first oxide (Ce 0 .5 Zr 0. By using a mixture of 5 O 2 ) and the second oxide (MnO 2 ) it was confirmed that the more effective in the recovery and maintenance of voltage compared to the coin cell of Comparative Example 1 using only a single catalyst (MnO 2 ).
이상으로 본 발명의 실시예에 대해 상세히 설명하였는바, 본 발명의 권리범위는 상술한 실시예에 한정되지 않으며, 다음의 특허청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 포함된다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the scope of the present invention is not limited to the disclosed exemplary embodiments. Modified forms are also included within the scope of the present invention.
Claims (8)
It is composed of a support material and a catalyst material supported on the support, and the support material is one selected from Ce-Al oxide, Ce-Zr oxide, Al-Zr oxide, or a mixture of two or more thereof is used, the catalyst material Furnaces include silver (Ag) oxide, copper (Cu) oxide, platinum (Pt) oxide, palladium (Pd) oxide, rhodium (Rh) oxide, manganese (Mn) oxide, iron (Fe) oxide, and perovskite. A mixture of one or more selected ones is used, and the composite oxide catalyst for a cathode of a lithium air battery, characterized in that it contains at least one of the perovskite and ceria.
상기 촉매물질과 지지체의 질량비는 1 : 1 ~ 200인 것을 특징으로 하는 리튬공기전지 양극용 복합산화물 촉매.
The method according to claim 1,
The mass ratio of the catalyst material and the support is a composite oxide catalyst for a cathode of a lithium air battery, characterized in that 1: 1 to 200.
It consists of a first oxide and a second oxide that are physically mixed with each other, the first oxide is CeO 2 , Ce-Al oxide, Ce-Zr oxide, Al-Zr oxide selected from the group consisting of one or two or more As the second oxide, silver (Ag) oxide, copper (Cu) oxide, platinum (Pt) oxide, palladium (Pd) oxide, rhodium (Rh) oxide, manganese (Mn) oxide, iron (Fe) oxide And a mixture of one or two or more selected from perovskite is used, and the composite oxide catalyst for a cathode of a lithium air battery, characterized in that it contains at least one of the perovskite and ceria.
상기 제1산화물과 제2산화물의 질량비는 1 : 0.1 ~ 200인 것을 특징으로 하는 리튬공기전지 양극용 복합산화물 촉매.
The method of claim 3,
The mass ratio of the first oxide and the second oxide is 1: 0.1 ~ 200 composite oxide catalyst for a cathode of a lithium air battery, characterized in that.
A catalyst for carrying a conductive material as a redox catalyst of oxygen, which is a positive electrode active material, wherein the composite oxide catalyst according to any one of claims 1 to 4 is adopted.
상기 도전성 재료와 복합산화물 촉매의 질량비는 1 : 0 ~ 2인 것을 특징으로 하는 리튬공기전지용 양극.
The method of claim 5,
A mass ratio of the conductive material and the composite oxide catalyst is 1: 0 to 2, characterized in that the lithium air battery positive electrode.
상기 도전성 재료로는 그래파이트 계열, 탄소나노튜브 계열, 및 카본블랙 계열의 탄소계 물질 중 선택된 1종 혹은 2종 이상으로 된 혼합물이 사용되는 것을 특징으로 하는 리튬공기전지용 양극.
The method of claim 5,
The cathode material for a lithium air battery, characterized in that a mixture of one or two or more selected from graphite-based, carbon nanotube-based, and carbon black-based carbon-based materials is used.
상기 양극으로는 청구항 5 내지 7 중 어느 한 항의 리튬공기전지용 양극을 채택한 것을 특징으로 하는 리튬공기전지.
A negative electrode capable of occluding and releasing lithium ions, a positive electrode having oxygen as a positive electrode active material, and an electrolyte interposed between the positive electrode and the negative electrode,
Lithium air battery, characterized in that the positive electrode for the lithium air battery of any one of claims 5 to 7 adopted as the positive electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120106393A KR20140039755A (en) | 2012-09-25 | 2012-09-25 | Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120106393A KR20140039755A (en) | 2012-09-25 | 2012-09-25 | Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20140039755A true KR20140039755A (en) | 2014-04-02 |
Family
ID=50650310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120106393A KR20140039755A (en) | 2012-09-25 | 2012-09-25 | Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20140039755A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017126855A1 (en) * | 2016-01-20 | 2017-07-27 | 주식회사 엘지화학 | Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor |
US10505203B2 (en) | 2016-01-20 | 2019-12-10 | Lg Chem, Ltd. | Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor |
KR20200056313A (en) | 2018-11-14 | 2020-05-22 | 고려대학교 산학협력단 | CuGeO3 AND GRAPHENE COMPOSITE MATERIAL AS ELECTROCATALYST AND METHOD FOR PRODUCING THE SAME |
KR20200137517A (en) | 2019-05-30 | 2020-12-09 | 고려대학교 산학협력단 | Catalyst for oxygen reduction reaction and oxygen evolution reaction and method for manufacturing of the same |
-
2012
- 2012-09-25 KR KR1020120106393A patent/KR20140039755A/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017126855A1 (en) * | 2016-01-20 | 2017-07-27 | 주식회사 엘지화학 | Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor |
US10505203B2 (en) | 2016-01-20 | 2019-12-10 | Lg Chem, Ltd. | Positive electrode of lithium-air battery having side reaction prevention film to which metal catalyst is partially introduced, lithium-air battery having same, and manufacturing method therefor |
KR20200056313A (en) | 2018-11-14 | 2020-05-22 | 고려대학교 산학협력단 | CuGeO3 AND GRAPHENE COMPOSITE MATERIAL AS ELECTROCATALYST AND METHOD FOR PRODUCING THE SAME |
KR20200137517A (en) | 2019-05-30 | 2020-12-09 | 고려대학교 산학협력단 | Catalyst for oxygen reduction reaction and oxygen evolution reaction and method for manufacturing of the same |
US11123717B2 (en) | 2019-05-30 | 2021-09-21 | Korea University Research And Business Foundation | Catalyst for oxygen reduction reaction and oxygen evolution reaction and method for manufacturing of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Strontium-doped perovskite oxide La1-xSrxMnO3 (x= 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries | |
Zhu et al. | MnO x decorated CeO 2 nanorods as cathode catalyst for rechargeable lithium–air batteries | |
KR101899483B1 (en) | Lithium air battery | |
JP5625059B2 (en) | Metal-air secondary battery | |
CN103636058A (en) | Lithium-air battery | |
JP5792567B2 (en) | Electrocatalyst with oxygen reduction ability | |
US20140255803A1 (en) | Graphene supported bifunctional catalysts | |
Li et al. | Three-dimensional graphene network supported ultrathin CeO2 nanoflakes for oxygen reduction reaction and rechargeable metal-air batteries | |
JP2015026483A (en) | Positive electrode for sodium batteries, and sodium battery | |
US9056782B2 (en) | Technique for manufacturing platinum-manganese dioxide/carbon complex for use in positive electrode of lithium-air battery | |
KR20150057260A (en) | positive active electrode for lithium air battery, and lithium air battery employing the same | |
Yang et al. | CeO 2@ NiCo 2 O 4 nanowire arrays on carbon textiles as high performance cathode for Li-O 2 batteries | |
CN104393310A (en) | Air electrode material of high-activity lithium air battery and preparation method of nano-composite catalyst material | |
CN104716405A (en) | Lithium-air battery structure | |
KR20140039755A (en) | Mixed oxide catalyst, cathode for lithium air battery and lithium air battery including the same | |
US9397345B2 (en) | Cathodes for lithium-air battery cells with acid electrolytes | |
JP2014216299A (en) | Sodium ion secondary battery | |
JP6187868B2 (en) | Composite cathode for lithium air battery, method for producing the same, and lithium air battery | |
WO2006090907A1 (en) | Catalyst for fuel cell, membrane electrode assembly, and solid polymer electrolyte fuel cell | |
JP5690353B2 (en) | Non-aqueous secondary battery | |
CN104377368A (en) | High efficient air electrode carbon material of lithium-air battery and preparation method thereof | |
JP2013118145A (en) | Metal-air secondary battery | |
JP2012252995A (en) | Metal air secondary battery | |
CN115395031A (en) | High-entropy alloy ORR and OER catalytic material and preparation method thereof | |
JP7249629B2 (en) | Air electrode for lithium-air battery, lithium-air battery, and method for producing air electrode for lithium-air battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |