[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017126536A1 - Resin composition, resin sheet with support, multilayered printed wiring board, and semiconductor device - Google Patents

Resin composition, resin sheet with support, multilayered printed wiring board, and semiconductor device Download PDF

Info

Publication number
WO2017126536A1
WO2017126536A1 PCT/JP2017/001510 JP2017001510W WO2017126536A1 WO 2017126536 A1 WO2017126536 A1 WO 2017126536A1 JP 2017001510 W JP2017001510 W JP 2017001510W WO 2017126536 A1 WO2017126536 A1 WO 2017126536A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
parts
resin
meth
Prior art date
Application number
PCT/JP2017/001510
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 卓也
慎也 喜多村
誠司 四家
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2017562838A priority Critical patent/JP6858351B2/en
Priority to CN201780007395.XA priority patent/CN108495878B/en
Priority to KR1020187010037A priority patent/KR20180103819A/en
Publication of WO2017126536A1 publication Critical patent/WO2017126536A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/303Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one or more carboxylic moieties in the chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a resin composition, a resin sheet with a support using the same, a multilayer printed wiring board, and a semiconductor device.
  • thermosetting resin is mainly used as a resin composition as a material for the insulating layer, and a hole for obtaining conduction between insulating layers is generally performed by laser processing.
  • drilling by laser processing has a problem that the processing time becomes longer as the high-density substrate having a larger number of holes is obtained. Therefore, in recent years, there has been a demand for a resin sheet that can be collectively punched in a development process by using a resin composition that is cured by light or the like and dissolved by development.
  • Patent Document 1 discloses a composition that can be developed into an aqueous alkaline solution using an acid-modified novolak epoxy acrylate.
  • Patent Document 2 the photosensitive resin composition which improved the mechanical characteristic by containing a specific hardening
  • Patent Document 3 discloses a photosensitive resin composition for use in an interlayer insulating layer of a multilayer printed wiring board.
  • a cured product using a conventional acrylate cannot provide sufficient physical properties, and there is a limit to the formation of a protective film having high heat resistance and an interlayer insulating layer.
  • the use is limited to an etching resist or a solder resist for printed wiring boards, and the heat resistance is not sufficient for use as an interlayer insulating layer.
  • the glass transition temperature is 115 ° C., and the heat resistance is not sufficient.
  • the photosensitive resin composition described in Patent Document 3 is developed using an organic solvent as a developing solution, and is an aqueous type that does not use an organic solvent such as an alkaline aqueous solution that is mainly used in developing solutions in the field of printed wiring boards. The developability with a developer is not sufficient.
  • the present invention has been made in view of the above problems, and when used in a multilayer printed wiring board, a resin composition having excellent heat resistance and developability, a resin sheet with a support, and the like To provide a multilayer printed wiring board and a semiconductor device using the above.
  • the present inventors represent a compound (A) represented by the following formula (1) and having an acid value of 30 mgKOH / g or more and 120 mgKOH / g or less, a photocuring initiator (B), a maleimide compound (C) and / or
  • the present inventors have found that the above problems can be solved by using a resin composition containing blocked isocyanate (D), and have completed the present invention.
  • each of the plurality of R 1 independently represents a hydrogen atom or a methyl group
  • each of the plurality of R 2 independently represents a hydrogen atom or a methyl group
  • each of the plurality of R 3 represents, Independently, it represents a substituent represented by the following formula (2), a substituent represented by the following formula (3), or a hydroxy group.
  • R 4 represents a hydrogen atom or a methyl group
  • E an epoxy resin
  • the resin composition according to [1] or [2] further including a compound (F) having an ethylenically unsaturated group other than the compound (A).
  • a resin sheet with a support comprising the resin composition according to any one of [1] to [4], which is applied to the support.
  • a multilayer printed wiring board having the resin composition according to any one of [1] to [4].
  • a semiconductor device comprising the resin composition according to any one of [1] to [4].
  • cured with the active energy ray which is excellent in coating-film property, heat resistance, and developability, and has a suitable property for the protective film of a multilayer printed wiring board, and an interlayer insulation layer, Resin with support Sheets, multilayer printed wiring boards using them, and semiconductor devices can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified within the scope of the gist.
  • (meth) acryloyl group means both “acryloyl group” and the corresponding “methacryloyl group”
  • “(meth) acrylate” means “acrylate” and the corresponding “methacrylate”.
  • (Meth) acrylic acid” means both "acrylic acid” and the corresponding "methacrylic acid”.
  • “resin solid content” or “resin solid content in the resin composition” means a component excluding the solvent and the inorganic filler (G) in the resin composition unless otherwise specified.
  • the “resin solid content of 100 parts by mass” means that the total of the components excluding the solvent and the inorganic filler (G) in the resin composition is 100 parts by mass.
  • the resin composition of this embodiment contains the compound (A), a photocuring initiator (B), a maleimide compound (C) and / or a blocked isocyanate (D).
  • A a photocuring initiator
  • B a maleimide compound
  • D a blocked isocyanate
  • Compound (A) used in the present embodiment is a compound represented by the formula (1).
  • Compound (A) may be used alone, may contain isomers such as structural isomers and stereoisomers, and may be used in appropriate combination of two or more compounds having different structures.
  • R ⁇ 1 > represents a hydrogen atom or a methyl group each independently. Among them, it is preferable to include a viewpoint from hydrogen atoms to improve the reactivity of the photocuring reaction, more preferably all of R 1 is a hydrogen atom.
  • R ⁇ 2 > represents a hydrogen atom or a methyl group each independently. Among them, preferably comprises a methyl group from the viewpoint of improving the heat resistance of the cured product, and more preferably all of R 2 is a methyl group.
  • R ⁇ 3 > represents the substituent represented by the said Formula (2), the substituent represented by the said Formula (3), or a hydroxy group each independently. Among these, it is preferable that a hydroxyl group is included from a viewpoint of improving heat resistance. Moreover, in this embodiment, it is also preferable from a viewpoint of improving developability to use the compound (A) containing the substituent represented by said Formula (2) among several R ⁇ 3 >. In the present embodiment, it is also preferable to use the compound (A) containing a substituent represented by the formula (3) among the plurality of R 3 from the viewpoint of improving heat resistance.
  • R 4 represents a hydrogen atom or a methyl group. Among these, a hydrogen atom is preferable from the viewpoint of improving the reactivity of the photocuring reaction.
  • the plurality of R 3 have a ratio of the substituent represented by the formula (2) of 20% or more and 85% or less of all the substituents of R 3 , and the formula (3). Is preferably 5% to 70%, and the hydroxy group is preferably 10% to 75%.
  • the compound (A) preferably contains at least one of the following compounds (A1) to (A5) because the reactivity of the photocuring reaction, the heat resistance of the cured product and the developability can be improved. More preferably, at least compound (A1) is included, more preferably any two or more of (A1) to (A5) are included, and any one of compound (A1) and compounds (A2) to (A5) is included. More preferably, it contains more than one species. As the compound (A), it is also preferable that at least the compounds (A2) and (A3) are included.
  • Such compounds may be commercially available, for example, KAYARAD (registered trademark) ZCR-6001H, KAYARAD (registered trademark) ZCR-6002H, KAYARAD (registered trademark) ZCR-6006H, KAYARAD (registered trademark) ZCR- 6007H (above, trade name, manufactured by Nippon Kayaku Co., Ltd.).
  • the acid value of the compound (A) is 30 mgKOH / g or more from the viewpoint of improving developability, and the developability is further improved, so that it is 50 mgKOH / g or more. preferable.
  • the acid value of the compound (A) is 120 mgKOH / g or less, and since dissolution can be further prevented, it is 110 mgKOH / g or less. Is preferred.
  • the “acid value” in the present embodiment indicates a value measured by a method according to JISK 0070: 1992.
  • the content of the compound (A) is not particularly limited, but from the viewpoint of curing the resin composition with active energy rays, the resin solid content in the resin composition is 100 parts by mass. 1 part by mass or more, preferably 2 parts by mass or more, more preferably 3 parts by mass or more, still more preferably 10 parts by mass or more, even more preferably 25 parts by mass or more. It is still more preferable, and it is still more preferable to set it as 30 mass parts or more. Further, from the viewpoint of sufficiently curing with active energy rays and improving heat resistance and developability, it is preferably 99 parts by mass or less with respect to 100 parts by mass of the resin solid content in the resin composition, and 98 parts by mass. More preferably, it is more preferably 97 parts by mass or less, still more preferably 90 parts by mass or less, still more preferably 75 parts by mass or less, and even more preferably 73 parts by mass or less. Most preferred.
  • Photocuring initiator (B) used for this embodiment is not specifically limited, A well-known thing can be used in the field
  • Examples of the photocuring initiator (B) include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, and parachlorobenzoyl peroxide.
  • Organic peroxides exemplified by oxides, di-tert-butyl-di-perphthalate, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1- Dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxyhexylphenyl ketone, 2-methyl-1- [4- (methylthio) phenyl]- -Acetophenones such as morpholino-propan-1-one, anthraquinones such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone Thioxanthones such as 2-chlorothioxanthone, ket
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (from the viewpoint of reactivity suitable for multilayer printed wiring board applications and high reliability for metal conductors)
  • a radical photocuring initiator of acetophenones such as ISFacure (registered trademark) 369 manufactured by BASF Japan Ltd. is preferable.
  • photocuring initiators (B) can be used alone or in combination of two or more, and both radical and cationic initiators may be used in combination.
  • the content of the photocuring initiator (B) in the resin composition of the present embodiment is not particularly limited. From the viewpoint of sufficiently curing the resin composition with active energy rays and improving heat resistance, the resin composition. It is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, still more preferably 0.3 parts by mass or more, relative to 100 parts by mass of the resin solid content therein. It is still more preferable to set it as 1 mass part or more. Further, from the viewpoint of preventing the heat curing after photocuring and preventing the heat resistance from being lowered, the content is preferably 30 parts by mass or less with respect to 100 parts by mass of the resin solid content in the resin composition. More preferably, it is more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less.
  • either the maleimide compound (C) or the blocked isocyanate (D) can be used, and these can be used in combination.
  • the maleimide compound (C) from the viewpoint of improving the coating properties, heat resistance and developability, it is preferable to use the maleimide compound (C), further improving the heat resistance and developability, and further improving the coating properties. More preferably, the maleimide compound (C) and the blocked isocyanate (D) are used in combination.
  • the maleimide compound (C) and the blocked isocyanate (D) are described in detail below.
  • the maleimide compound (C) used in the present embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule. Specific examples thereof include, for example, N-phenylmaleimide, phenylmethanemaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane.
  • 4,4-diphenylmethane bismaleimide bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4 -Maleimidophenyl) methane, polytetramethylene oxide-bis (4-maleimidobenzoate), o-phenylenebismaleimide, m-phenylenebismaleimide, p-phenylenebismaleimide, o-phenylenebiscitraconimide, m-phenylenebiscitraconimide , P-fe Renbiscitraconimide, 2,2-bis (4- (4-maleimidophenoxy) -phenyl) propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane bismaleimide, 4-methyl-1, 3-phenylene bismaleimide, 1,6-bismaleimide- (2,
  • a maleimide compound represented by the following formula (4) and a maleimide compound represented by the following formula (5) are preferable, and the following formula (4) ) Is more preferred.
  • a commercially available product can be used as the maleimide compound represented by the following formula (4), and examples thereof include BMI-2300 (manufactured by Daiwa Kasei Kogyo Co., Ltd.).
  • the maleimide compound represented by the following formula (5) a commercially available product can be used, and examples thereof include MIR-3000 (manufactured by Nippon Kayaku Co., Ltd.).
  • These maleimide compounds (C) can be used singly or in appropriate combination of two or more.
  • each of the plurality of R 5 independently represents a hydrogen atom or a methyl group.
  • N 1 represents an integer of 1 or more, preferably an integer of 1 to 10).
  • each of the plurality of R 6 independently represents a hydrogen atom or a methyl group.
  • N 2 represents an integer of 1 or more, preferably an integer of 1 to 5).
  • the content of the maleimide compound (C) in the resin composition of the present embodiment is not particularly limited, but from the viewpoint of sufficiently curing the resin composition and improving heat resistance, the resin solid content 100 in the resin composition is 100%. It is preferable to set it as 0.01 mass part or more with respect to a mass part, It is more preferable to set it as 0.02 mass part or more, It is still more preferable to set it as 0.03 mass part or more, 0.5 mass part or more Even more preferably.
  • the blocked isocyanate (D) used in the present embodiment is not particularly limited as long as it is inactive at room temperature (25 ° C.), but the blocking agent is reversibly dissociated to regenerate isocyanate groups when heated.
  • Examples of the blocked skeleton of the blocked isocyanate (D) include isocyanurate type, biuret type, and adduct type, and isocyanurate type is preferable from the viewpoint of heat resistance. These blocked isocyanates (D) can be used singly or in appropriate combination of two or more.
  • Examples of the blocking agent that is inactive at room temperature (25 ° C.) but reversibly dissociates when heated include at least one compound selected from diketones, oximes, phenols, alkanols, and caprolactams. Specific examples include methyl ethyl ketone oxime and ⁇ -caprolactam.
  • the dissociation temperature of the blocking agent is not particularly limited, but is preferably 120 ° C. or higher from the viewpoint of sufficiently curing the resin composition and improving heat resistance. Moreover, the thing below 200 degreeC is preferable from a viewpoint of making a block agent fully dissociate and hardening a resin composition.
  • the above blocking agent is dissociated during heating and discharged as a gas. Therefore, it is preferable to use a blocking agent having a small molecular weight because it causes a volume reduction. Specifically, it is preferable to use a methyl ethyl ketone oxime type.
  • Such blocked isocyanates are readily available as commercial products, for example, Sumidur (registered trademark) BL-3175, BL-4265, BL-5375, BL-1100, BL-1265, , Sumika Covestrourethane Co., Ltd.), Coronate (registered trademark) 2507, Coronate (registered trademark) 2554 (trade name, manufactured by Tosoh Corporation), Duranate (registered trademark) TPA-B80E, Duranate (Registered Trademark) 17B-60PX (above, trade name, manufactured by Asahi Kasei Chemicals Corporation) and the like.
  • the blocked skeleton is at least one selected from the group of isocyanurate type, selected from Sumidur (registered trademark) BL-3175 and Duranate (registered trademark) TPA-B80E.
  • isocyanurate type selected from Sumidur (registered trademark) BL-3175 and Duranate (registered trademark) TPA-B80E.
  • the content of the blocked isocyanate (D) in the resin composition of the present embodiment is not particularly limited, but from the viewpoint of sufficiently curing the resin composition and improving heat resistance, the resin solid content in the resin composition It is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, further preferably 0.3 parts by mass or more, and 0.5 parts by mass with respect to 100 parts by mass. It is even more preferable to use the above. Further, from the viewpoint of suppressing the volume reduction of the resin composition and being excellent in developability, it is 5.0 parts by mass or less or less than 5.0 parts by mass with respect to 100 parts by mass of resin solid content in the resin composition. It is preferably 4.0 parts by mass or less or less than 4.0 parts by mass, more preferably 3.0 parts by mass or less or less than 3.0 parts by mass.
  • the maleimide compound (C) and the blocked isocyanate (D) are used in combination, their content is not particularly limited, but from the viewpoint of sufficiently curing the resin composition and improving heat resistance, It is preferable to set it as 0.11 mass part or more with respect to 100 mass parts of resin solid content of this, It is more preferable to set it as 0.5 mass part or more, It is still more preferable to set it as 1 mass part or more, 3 mass parts It is even more preferable to use the above. Moreover, from a viewpoint that the volume reduction of a resin composition is suppressed, it is excellent in developability, and a more favorable coating film is obtained, it shall be 55 mass parts or less with respect to 100 mass parts of resin solid content in a resin composition. It is preferably 25 parts by mass or less, more preferably 15 parts by mass, still more preferably 13 parts by mass or less, and still more preferably 10 parts by mass.
  • epoxy resin (E) In order to improve the developability and the heat resistance of the cured product, the epoxy resin (E) can be used in combination with the resin composition of the present embodiment.
  • the epoxy resin (E) used in the present embodiment is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. Specific examples thereof include, for example, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, Cresol novolak type epoxy resin, xylene novolak type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, naphthylene ether type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, Trifunctional phenolic epoxy resin, tetrafunctional phenolic epoxy resin, triglycidyl isocyanurate, glycidyl ester epoxy resin, alicyclic Poxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novol
  • biphenyl aralkyl type epoxy resins it is preferably at least one selected from the group consisting of biphenyl aralkyl type epoxy resins, naphthylene ether type epoxy resins, polyfunctional phenol type epoxy resins, and naphthalene type epoxy resins, and biphenyl aralkyl type epoxy resins are more preferable. .
  • epoxy resins (E) can be used singly or in appropriate combination of two or more.
  • the content of the epoxy resin (E) is not particularly limited, but from the viewpoint of improving the heat resistance of the cured product, the resin solid content in the resin composition is 100 parts by mass. 1.0 part by mass or more, preferably 1.5 parts by mass or more, more preferably 2.0 parts by mass or more, and even more preferably 8 parts by mass or more. . Further, from the viewpoint of improving the developability of the resin composition, it is preferably 90 parts by mass or less and more preferably 70 parts by mass or less with respect to 100 parts by mass of the resin solid content in the resin composition. Preferably, it is 50 mass parts or less, More preferably, it is 25 mass parts or less.
  • the resin composition of the present embodiment is used in combination with a compound (F) having an ethylenically unsaturated group in order to increase the reactivity to active energy rays (for example, ultraviolet rays) and improve the developability and heat resistance. Is also possible.
  • the compound (F) having an ethylenically unsaturated group used in the present embodiment is other than the compound (A) represented by the formula (1) and having an acid value of 30 mgKOH / g or more and 120 mgKOH / g or less.
  • a compound having a (meth) acryloyl group methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate monomethyl ether , Phenylethyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, nonanediol di (meth) acrylate, glycol di (meth) acrylate, diethylenedi (meth) a Relate,
  • urethane (meth) acrylates that have (meth) acryloyl groups and urethane bonds in the same molecule
  • polyester (meth) acrylates that have (meth) acryloyl groups and ester bonds in the same molecule
  • epoxy resins Epoxy (meth) acrylates derived from the above and having a (meth) acryloyl group, and reactive oligomers in which these bonds are used in combination.
  • the urethane (meth) acrylate is a reaction product of a hydroxyl group-containing (meth) acrylate, a polyisocyanate, and other alcohols used as necessary.
  • hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerin (meta) such as glycerin mono (meth) acrylate, glycerin di (meth) acrylate, etc.
  • Sugar alcohol (meth) acrylates such as acrylates, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, toluene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate , Isophorone diisocyanate, norbornene diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate Dicyclohexane diisocyanate, and their isocyanurate, by reacting polyisocyanates such as buret reactants, the urethane (meth) acrylates.
  • polyisocyanates such as buret reactants, the urethane (meth) acrylates.
  • the above epoxy (meth) acrylates are carboxylate compounds of a compound having an epoxy group and (meth) acrylic acid.
  • phenol novolac type epoxy (meth) acrylate cresol novolac type epoxy (meth) acrylate, trishydroxyphenylmethane type epoxy (meth) acrylate, dicyclopentadienephenol type epoxy (meth) acrylate, bisphenol A type epoxy (meth) acrylate Bisphenol F type epoxy (meth) acrylate, biphenol type epoxy (meth) acrylate, bisphenol A novolak type epoxy (meth) acrylate, naphthalene skeleton-containing epoxy (meth) acrylate, glyoxal type epoxy (meth) acrylate, heterocyclic epoxy ( And (meth) acrylate and the like, and acid anhydride-modified epoxy (meth) acrylate and the like.
  • Examples of the compound having a vinyl group include vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, hydroxyethyl vinyl ether, and ethylene glycol divinyl ether.
  • Examples of styrenes include styrene, methyl styrene, ethyl styrene, divinyl benzene, ⁇ -methyl styrene, and oligomers thereof.
  • Other vinyl compounds include triallyl isocyanurate, trimethallyl isocyanurate, bisallyl nadiimide and the like.
  • the heat resistance of the resulting cured product tends to be further improved.
  • the content of the compound (F) having an ethylenically unsaturated group is not particularly limited, but from the viewpoint of improving developability, the resin solid content in the resin composition is 100 mass. 0.5 parts by mass or more with respect to parts, preferably 1.0 parts by mass or more, more preferably 1.5 parts by mass or more, and more preferably 5 parts by mass or more. Is more preferable, and it is most preferable to set it to 15 parts by mass or more. Further, from the viewpoint of improving the heat resistance of the cured product, it is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, with respect to 100 parts by mass of the resin solid content in the resin composition. 50 parts by mass or less, more preferably 25 parts by mass or more.
  • an inorganic filler (G) can be used in combination in order to improve various properties such as coating properties, developability and heat resistance.
  • the inorganic filler (G) used in the present embodiment is not particularly limited as long as it has insulating properties.
  • silica for example, natural silica, fused silica, amorphous silica, hollow silica, etc.
  • an aluminum compound for example, Boehmite, aluminum hydroxide, alumina, etc.
  • magnesium compounds eg, magnesium oxide, magnesium hydroxide, etc.
  • calcium compounds eg, calcium carbonate, etc.
  • molybdenum compounds eg, molybdenum oxide, zinc molybdate, etc.
  • barium compounds eg, sulfuric acid
  • talc eg, natural talc, calcined talc, etc.
  • mica mica
  • glass eg, short fiber glass, spherical glass, fine powder glass (eg, E glass, T glass, D glass, etc.)) Etc.) and silicone powder.
  • glass eg, short fiber glass, spherical glass, fine powder glass (eg, E glass, T glass, D glass, etc.)) Etc
  • one or more selected from the group consisting of silica, aluminum hydroxide, boehmite, magnesium oxide, magnesium hydroxide, and barium sulfate is preferable.
  • These inorganic fillers (G) may be surface-treated with a silane coupling agent described later.
  • silica is preferable and fused silica is particularly preferable from the viewpoint of improving the heat resistance of the cured product and obtaining good coating properties.
  • Specific examples of silica include SFP-130MC manufactured by Denka Corporation, SC2050-MB, SC1050-MLE, YA010C-MFN, YA050C-MJA manufactured by Admatechs Corporation.
  • These inorganic fillers (G) can be used singly or in appropriate combination of two or more.
  • the content of the inorganic filler (G) is not particularly limited, but from the viewpoint of improving the heat resistance of the cured product, the resin solid content in the resin composition is 100 parts by mass. It is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and still more preferably 20 parts by mass or more. Further, from the viewpoint of improving the developability of the resin composition, it is preferably 400 parts by mass or less, more preferably 350 parts by mass or less, with respect to 100 parts by mass of the resin solid content in the resin composition. Preferably, the amount is 300 parts by mass or less, and more preferably 100 parts by mass or less.
  • a silane coupling agent and / or a wet dispersant is used in combination. It is also possible.
  • silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for inorganic surface treatment.
  • Specific examples include, for example, aminosilanes such as ⁇ -aminopropyltriethoxysilane and N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane; epoxysilanes such as ⁇ -glycidoxypropyltrimethoxysilane Acrylic silanes such as ⁇ -acryloxypropyltrimethoxysilane; cationic silanes such as N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride; phenylsilane silane cups A ring agent is mentioned.
  • These silane coupling agents can be used alone or in combination of two or more.
  • the content of the silane coupling agent is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
  • the wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints.
  • Specific examples include wet dispersing agents such as DISPERBYK (registered trademark) -110, 111, 118, 180, 161, BYK (registered trademark) -W996, W9010, and W903 manufactured by Big Chemie Japan Co., Ltd. . These wetting and dispersing agents can be used singly or in appropriate combination of two or more.
  • the content of the wetting and dispersing agent is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
  • thermosetting accelerator In the resin composition of the present embodiment, a thermosetting accelerator can be used in combination as long as the characteristics of the present embodiment are not impaired.
  • thermosetting accelerator is not particularly limited, and examples thereof include organic peroxides exemplified by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, and the like.
  • Azo compounds such as azobisnitrile; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline , N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, tertiary amines such as N-methylpiperidine; phenols such as phenol, xylenol, cresol, resorcin, catechol; lead naphthenate, stearic acid lead, Organic metal salts such as zinc phthalate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, and acetylacetone iron; these organic metal salts are dissolved in hydroxyl-containing compounds such as phenol and bisphenol Inorganic metal salts
  • thermosetting accelerators can be used singly or in appropriate combination of two or more.
  • the content of the thermosetting accelerator is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
  • the resin composition of the present embodiment may contain a solvent as necessary.
  • a solvent for example, when an organic solvent is used, the viscosity at the time of preparing the resin composition can be adjusted.
  • the kind of solvent will not be specifically limited if it can melt
  • organic solvents can be used singly or in appropriate combination of two or more.
  • thermosetting resins thermoplastic resins and oligomers thereof, elastomers, etc.
  • Flame retardant compound not mentioned so far; combined use of additives and the like is also possible. These are not particularly limited as long as they are generally used.
  • flame retardant compounds include nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, phosphate compounds of phosphorus compounds, aromatic condensed phosphate esters, and halogen-containing condensed phosphate esters.
  • Additives include UV absorbers, antioxidants, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, surface conditioners, brighteners, polymerization inhibitors, etc. It is done. These components can be used alone or in appropriate combination of two or more.
  • the content of other components is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
  • the resin composition of the present embodiment comprises a compound (A), a photocuring initiator (B), a maleimide compound (C) and / or a blocked isocyanate (D), and, if desired, an epoxy resin (E), ethylenic It is prepared by appropriately mixing a compound (F) having an unsaturated group, an inorganic filler (G), a silane coupling agent, a wetting and dispersing agent, a thermosetting accelerator, an organic solvent and other components.
  • the resin composition of this embodiment can be used suitably as a varnish at the time of producing the resin sheet with a support body of this embodiment mentioned later.
  • the manufacturing method of the resin composition of this embodiment is not specifically limited, For example, the method of mix
  • a known process for uniformly dissolving or dispersing each component can be performed as necessary.
  • the dispersibility of the inorganic filler (G) in the resin composition can be improved by performing the stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability.
  • the stirring, mixing, and kneading processes described above are, for example, a stirring device for dispersion such as an ultrasonic homogenizer, a device for mixing such as a three-roll, ball mill, bead mill, and sand mill, or a revolving or rotating type.
  • an organic solvent can be used as needed.
  • the type of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition, and specific examples thereof are as described above.
  • the resin composition of the present embodiment can be used for applications where an insulating resin composition is required, and is not particularly limited, but a photosensitive film, a photosensitive film with a support, a resin sheet with a support, Used for insulating resin sheets such as prepreg, circuit boards (for laminated boards, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding materials, semiconductor encapsulants, hole-filling resins, component-filling resins, etc. be able to. Especially, it can be conveniently used as a resin composition for insulating layers of a multilayer printed wiring board or a solder resist.
  • the resin sheet with a support of the present embodiment comprises the support and a resin composition layer that is formed on the surface of the support and includes the resin composition of the present embodiment. It is the resin sheet with a support body apply
  • the resin sheet with a support can be produced by applying the resin composition onto a support and drying.
  • the support used in the resin sheet with a support of the present embodiment is not particularly limited, but a known one can be used, and a resin film is preferable.
  • the resin film include polyimide film, polyamide film, polyester film, polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polypropylene (PP) film, polyethylene (PE) film, polyethylene naphthalate film, and polyvinyl alcohol.
  • resin films such as films and triacetyl acetate films. Among these, a PET film is preferable.
  • the resin film having a release agent coated on the surface thereof can be suitably used in order to facilitate peeling from the resin composition layer.
  • the thickness of the resin film is preferably in the range of 5 ⁇ m to 100 ⁇ m, and more preferably in the range of 10 ⁇ m to 50 ⁇ m. If the thickness is less than 5 ⁇ m, the support tends to be broken when the support is peeled off before development, and if the thickness exceeds 100 ⁇ m, the resolution when exposed from the support tends to decrease. is there.
  • the resin film has excellent transparency.
  • the resin composition layer may be protected with a protective film.
  • a protective film By protecting the resin composition layer side with a protective film, it is possible to prevent adhesion or scratches of dust or the like to the surface of the resin composition layer.
  • the protective film a film made of the same material as the above resin film can be used.
  • the thickness of the protective film is not particularly limited, but is preferably in the range of 1 ⁇ m to 50 ⁇ m, and more preferably in the range of 5 ⁇ m to 40 ⁇ m. When the thickness is less than 1 ⁇ m, the handleability of the protective film tends to be lowered, and when it exceeds 50 ⁇ m, the inexpensiveness tends to be inferior.
  • the protective film preferably has a smaller adhesive force between the resin composition layer and the protective film than the adhesive force between the resin composition layer and the support.
  • the production method of the resin sheet with a support of the present embodiment is not particularly limited.
  • the resin sheet of the present embodiment is applied to a support such as a PET film and the organic solvent is removed by drying.
  • Examples thereof include a method for producing a body-attached resin sheet.
  • the coating can be performed by a known method using, for example, a roll coater, comma coater, gravure coater, die coater, bar coater, lip coater, knife coater, squeeze coater or the like.
  • the drying can be performed, for example, by a method of heating in a dryer at 60 to 200 ° C. for 1 to 60 minutes.
  • the amount of the residual organic solvent in the resin composition layer is preferably 5% by mass or less with respect to the total mass of the resin composition layer from the viewpoint of preventing diffusion of the organic solvent in the subsequent step.
  • the thickness of the resin composition layer with respect to the support is preferably 1.0 ⁇ m or more in terms of the resin composition layer thickness of the resin sheet with the support, from the viewpoint of improving the handleability. Further, from the viewpoint of improving the transmittance and improving the developability, the thickness is preferably 300 ⁇ m or less.
  • the resin sheet with a support of the present embodiment can be used as an interlayer insulating layer of a multilayer printed wiring board.
  • the multilayer printed wiring board of the present embodiment can be obtained by, for example, stacking and curing one or more of the above-described resin sheets with a support.
  • the multilayer printed wiring board of the present embodiment includes an interlayer insulating layer containing the resin composition of the present embodiment, and can be specifically manufactured by the following method.
  • the resin composition layer side of the resin sheet with a support of the present embodiment is laminated on one or both sides of a circuit board using a vacuum laminator.
  • the circuit board include a glass epoxy board, a metal board, a ceramic board, a silicon board, a semiconductor sealing resin board, a polyester board, a polyimide board, a BT resin board, and a thermosetting polyphenylene ether board.
  • the circuit board refers to a board on which a conductor layer (circuit) patterned on one or both sides of the board is formed.
  • the surface of the conductor layer may be previously roughened by blackening treatment, copper etching, or the like.
  • the laminating step when the resin sheet with a support has a protective film, the protective film is peeled and removed, and then the resin sheet with the support and the circuit board are preheated as necessary, and the resin composition layer is removed. Crimp to circuit board while pressing and heating.
  • a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used.
  • the conditions for the laminating step are not particularly limited.
  • the pressure bonding temperature (laminating temperature) is preferably 50 ° C. to 140 ° C.
  • the pressure bonding pressure is preferably 1 kgf / cm 2 to 15 kgf / cm 2
  • the pressure bonding time Is preferably 5 seconds to 300 seconds
  • lamination is performed under reduced pressure so that the air pressure is 20 mmHg or less.
  • the laminating step may be a batch type or a continuous type using a roll.
  • the vacuum laminating method can be performed using a commercially available vacuum laminator. As a commercially available vacuum laminator, for example, a 2-stage build-up laminator manufactured by Nikko Materials Co., Ltd. can be exemplified.
  • an exposure process is performed in which a predetermined portion of the resin composition layer is irradiated with active energy rays to cure the resin composition layer of the irradiated portion.
  • the active energy ray may be irradiated through a mask pattern or a direct drawing method in which an active energy ray is directly irradiated.
  • Examples of active energy rays include ultraviolet rays, visible rays, electron beams, X-rays and the like, and ultraviolet rays are particularly preferable.
  • the irradiation amount of ultraviolet rays is about 10 mJ / cm 2 to 1000 mJ / cm 2 .
  • There are two methods for exposing the mask pattern a contact exposure method in which the mask pattern is brought into close contact with the printed wiring board, and a non-contact exposure method in which exposure is carried out using parallel light rays without being brought into close contact. It doesn't matter.
  • the support body exists on a resin composition layer, you may expose from a support body and may expose after a support body peels.
  • the developer is not particularly limited as long as it selectively elutes an unexposed portion, but a developer such as an alkaline aqueous solution, an aqueous developer, or an organic solvent is used. .
  • a development step using an alkaline aqueous solution is particularly preferable.
  • These developers can be used singly or in combination of two or more.
  • a developing method it can carry out by well-known methods, such as spraying, rocking immersion, brushing, and scraping, for example.
  • the alkaline aqueous solution used as the developer is not particularly limited.
  • potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, 4-sodium borate, ammonia And amines are examples of potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, 4-sodium borate, ammonia And amines.
  • the concentration of the alkaline aqueous solution is preferably 0.1% by mass to 60% by mass with respect to the total amount of the developer. Moreover, the temperature of aqueous alkali solution can be adjusted according to developability. Furthermore, these aqueous alkali solutions can be used singly or in combination of two or more.
  • development methods include a dip method, a paddle method, a spray method, a high-pressure spray method, brushing, and slapping, and the high-pressure spray method is suitable for improving the resolution.
  • the spray pressure when the spray method is employed is preferably 0.02 MPa to 0.5 MPa.
  • a post-bake step is performed to form an insulating layer (cured product).
  • the post-bake process include an ultraviolet irradiation process using a high-pressure mercury lamp and a heating process using a clean oven. Case of ultraviolet irradiation can adjust its dose optionally, the irradiation can be carried out, for example 0.05J / cm 2 ⁇ 10J / cm 2 of about dose.
  • the heating conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. It is selected in the range of 30 minutes to 150 minutes at ⁇ 200 ° C.
  • a conductor layer is formed on the surface of the insulating layer by dry plating or wet plating.
  • dry plating known methods such as vapor deposition, sputtering, and ion plating can be used.
  • vapor deposition method vacuum vapor deposition method
  • a metal film can be formed on the insulating layer by placing the support in a vacuum vessel and evaporating the metal by heating.
  • sputtering method for example, the support is placed in a vacuum vessel, an inert gas such as argon is introduced, a direct current voltage is applied, the ionized inert gas is made to collide with the target metal, and the struck metal is used.
  • a metal film can be formed on the insulating layer.
  • the surface of the insulating layer is roughened by performing swelling treatment with a swelling liquid, roughening treatment with an oxidizing agent, and neutralization treatment with a neutralizing liquid in this order.
  • the swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 1 to 20 minutes.
  • the swelling liquid include an alkaline solution, and examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution.
  • Examples of commercially available swelling liquids include Updes (registered trademark) MDS-37 manufactured by Uemura Kogyo Co., Ltd.
  • the roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 5 to 30 minutes.
  • the oxidizing agent include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as Updes (registered trademark) MDE-40 and Updes (registered trademark) ELC-SH manufactured by Uemura Kogyo Co., Ltd.
  • the neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 1 to 10 minutes.
  • the neutralizing solution is preferably an acidic aqueous solution, and a commercially available product is Updes (registered trademark) MDN-62 manufactured by Uemura Kogyo Co., Ltd.
  • a conductor layer is formed by combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a pattern formation method thereafter for example, a subtractive method, a semi-additive method, or the like can be used.
  • the semiconductor device of this embodiment includes an interlayer insulating layer containing the resin composition of this embodiment, and can be specifically manufactured by the following method.
  • a semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present embodiment.
  • the conduction location is a location for transmitting an electrical signal in the multilayer printed wiring board, and the location may be the surface or an embedded location.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the semiconductor chip mounting method for manufacturing the semiconductor device of the present embodiment is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, a bump Examples include a mounting method using a none buildup layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • BBUL none buildup layer
  • ACF anisotropic conductive film
  • NCF non-conductive film
  • a semiconductor device can be manufactured by laminating the resin sheet with a support of this embodiment on a semiconductor chip. After lamination, it can be produced by using the same method as the above multilayer printed wiring board.
  • Example 1 (Production of resin composition and resin sheet with support)
  • PGMEA propylene glycol monomethyl ether acetate
  • PGMEA propylene glycol monomethyl ether acetate
  • PAYARAD registered trademark
  • ZCR-6002H nonvolatile content 65 mass%, acid value: 60 mgKOH / g, manufactured by Nippon Kayaku Co., Ltd.
  • 2-benzyl-2-dimethylamino-1- (4- Morpholinophenyl) -butanone-1 (Irgacure (registered trademark) 369, manufactured by BASF Japan Ltd.) 5 parts by mass
  • maleimide compound (C) maleimide compound
  • BMI-2300 manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • epoxy resin (E) biphenyl aralkyl type epoxy
  • the KAYARAD (registered trademark) ZCR-6002H is a mixture containing at least one of the compound (A1) and the compounds (A2) to (A5).
  • the obtained laminate was subjected to an exposure step of irradiating ultraviolet rays of 200 mJ / cm 2 , the support was peeled off, and developed with a 1% by mass aqueous sodium carbonate solution to obtain a laminate for evaluation.
  • the resin sheet with the support was irradiated with 200 mJ / cm 2 of ultraviolet rays, and further subjected to a post-baking step of heat treatment at 180 ° C. for 120 minutes, and then the support was peeled off to obtain a cured product for evaluation.
  • Example 2 As the compound (A), a PGMEA solution of TrisP-PA epoxy acrylate compound (KAYARAD (registered trademark) ZCR-6002H, non-volatile content 65% by mass, acid value: 60 mgKOH / g, manufactured by Nippon Kayaku Co., Ltd.) 82.1 mass Parts (53.4 parts by mass in terms of nonvolatile content), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (Irgacure (registered trademark) 369, manufactured by BASF Japan Ltd.) 5 parts by mass, as blocked isocyanate compound (D), Sumidur (registered trademark) BL-3175 (solvent naphtha solution, non-volatile content: 75% by mass (including blocking agent), manufactured by Sumika Covestro Urethane Co., Ltd.
  • KAYARAD registered trademark
  • ZCR-6002H non-volatile content 65% by mass, acid value: 60 mgKOH
  • Example 3 As compound (A), a PGMEA solution of TrisP-PA epoxy acrylate compound (KAYARAD (registered trademark) ZCR-6002H, nonvolatile content 65 mass%, acid value: 60 mg KOH / g, manufactured by Nippon Kayaku Co., Ltd.) 80.5 mass Parts (52.3 parts by mass in terms of nonvolatile content), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (Irgacure (registered trademark) 369, manufactured by BASF Japan Ltd.) 5 parts by mass, maleimide compound (C) as maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 3.5 parts by mass, and blocked isocyanate compound (D) as Sumidur (registered trademark) BL-3175 (Solvent naphtha solution, non-volatile content 75% by mass (including blocking agent), Sumika Cobest wax letter (Product
  • cresol novolac epoxy acrylate (EA-7420, nonvolatile content 73 mass%, acid value: 1 mg KOH / g, manufactured by Shin-Nakamura Chemical Co., Ltd.) 72.3 parts by mass (52 in terms of nonvolatile content) .8 parts by mass) was used in the same manner as in Example 1 to obtain a resin sheet with a support, a laminate for evaluation, and a cured product for evaluation.
  • a finger was lightly pressed against the resin surface edge of each A4-sized resin sheet with a support, and the degree of sticking to the finger was evaluated according to the following criteria.
  • ⁇ Developability> After visually observing the development surface of each evaluation laminate, it was observed with a SEM (magnification 1000 times), and the presence or absence of a residue was evaluated according to the following criteria. ⁇ : There is no development residue in the range of 30 mm square, and the developability is excellent. X: There is a development residue in the range of 30 mm square, and the developability is inferior.
  • Examples 1 to 3 have high heat resistance (Tg) and excellent developability. Among them, Example 3 has particularly good coating properties. On the other hand, Comparative Examples 1 to 5 are insufficient in either heat resistance (Tg) or developability. Therefore, according to this invention, the resin composition excellent in heat resistance and developability, the resin sheet with a support body, a multilayer printed wiring board, and a semiconductor device are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a resin composition which, when used to produce a multilayered printed wiring board, imparts excellent heat resistance and developability; a resin sheet having a support attached thereto; a multilayered printed wiring board including same; and a semiconductor device. The resin composition comprises a compound (A) represented by formula (1) and having an acid value of 30-120 mg-KOH/g, a photocuring initiator (B), and a maleimide compound (C) and/or a blocked isocyanate (D).

Description

樹脂組成物、支持体付き樹脂シート、多層プリント配線板及び半導体装置Resin composition, resin sheet with support, multilayer printed wiring board, and semiconductor device
 本発明は、樹脂組成物、それを用いた支持体付き樹脂シート、多層プリント配線板及び半導体装置に関する。 The present invention relates to a resin composition, a resin sheet with a support using the same, a multilayer printed wiring board, and a semiconductor device.
 多層プリント配線板の小型化、高密度化により、多層プリント配線板に用いられる積層板を薄型化する検討が盛んに行なわれている。薄型化に伴い、絶縁層についても薄型化が求められ、ガラスクロスを含まない樹脂シートが求められている。絶縁層の材料となる樹脂組成物は熱硬化性樹脂が主流であり、絶縁層間で導通を得るための穴あけは一般的にレーザー加工にて行われている。
 一方、レーザー加工による穴あけは、穴数が多い高密度基板になるほど加工時間が長くなるという問題がある。そのため、近年は光線等により硬化し、現像で溶解する樹脂組成物を用いることにより、現像工程で一括穴あけ加工することが可能となる樹脂シートが求められている。
2. Description of the Related Art Studies are being actively made to reduce the thickness of laminated boards used in multilayer printed wiring boards by reducing the size and increasing the density of multilayer printed wiring boards. As the thickness is reduced, the insulating layer is also required to be reduced in thickness, and a resin sheet that does not include glass cloth is required. A thermosetting resin is mainly used as a resin composition as a material for the insulating layer, and a hole for obtaining conduction between insulating layers is generally performed by laser processing.
On the other hand, drilling by laser processing has a problem that the processing time becomes longer as the high-density substrate having a larger number of holes is obtained. Therefore, in recent years, there has been a demand for a resin sheet that can be collectively punched in a development process by using a resin composition that is cured by light or the like and dissolved by development.
 このような樹脂組成物においては、アルカリ現像タイプが主流であり、現像を可能にするために酸無水物基やカルボキシル基含有のアクリレートが使用されている。たとえば、特許文献1では、酸変性ノボラック型エポキシアクリレートを用いたアルカリ水溶液に現像可能な組成物が開示されている。特許文献2では、特定の硬化剤を含有することで機械的特性を向上させた感光性樹脂組成物が開示されている。特許文献3では、多層プリント配線板の層間絶縁層用途の感光性樹脂組成物について開示されている。 In such a resin composition, an alkali development type is the mainstream, and an acrylate containing an acid anhydride group or a carboxyl group is used to enable development. For example, Patent Document 1 discloses a composition that can be developed into an aqueous alkaline solution using an acid-modified novolak epoxy acrylate. In patent document 2, the photosensitive resin composition which improved the mechanical characteristic by containing a specific hardening | curing agent is disclosed. Patent Document 3 discloses a photosensitive resin composition for use in an interlayer insulating layer of a multilayer printed wiring board.
特開昭61-243869号公報Japanese Patent Laid-Open No. 61-243869 特開2006-047501号公報JP 2006-047501 A 国際公開第2015/002071号パンフレットInternational Publication No. 2015/002071 Pamphlet
 しかしながら、従来のアクリレートを用いた硬化物では十分な物性が得られず、高い耐熱性を有する保護膜、及び層間絶縁層の形成には限界がある。
 また、特許文献1に記載の組成物では、その用途はプリント配線板用のエッチングレジストやソルダーレジストに限られており、層間絶縁層として用いるには耐熱性が十分ではない。特許文献2に記載の感光性樹脂組成物では、ガラス転移温度が115℃であり、耐熱性が十分ではない。特許文献3に記載の感光性樹脂組成物では、現像液に有機溶剤を用いて現像しており、プリント配線板分野の現像液で主流となっているアルカリ水溶液等の有機溶剤を用いない水系の現像液での現像性は十分ではない。
However, a cured product using a conventional acrylate cannot provide sufficient physical properties, and there is a limit to the formation of a protective film having high heat resistance and an interlayer insulating layer.
In the composition described in Patent Document 1, the use is limited to an etching resist or a solder resist for printed wiring boards, and the heat resistance is not sufficient for use as an interlayer insulating layer. In the photosensitive resin composition described in Patent Document 2, the glass transition temperature is 115 ° C., and the heat resistance is not sufficient. The photosensitive resin composition described in Patent Document 3 is developed using an organic solvent as a developing solution, and is an aqueous type that does not use an organic solvent such as an alkaline aqueous solution that is mainly used in developing solutions in the field of printed wiring boards. The developability with a developer is not sufficient.
 そこで、本発明は、上記問題点に鑑みてなされたものであり、多層プリント配線板に用いた際に、耐熱性、現像性を優れたものとする樹脂組成物、支持体付き樹脂シート、それらを用いた多層プリント配線板及び半導体装置を提供することにある。 Accordingly, the present invention has been made in view of the above problems, and when used in a multilayer printed wiring board, a resin composition having excellent heat resistance and developability, a resin sheet with a support, and the like To provide a multilayer printed wiring board and a semiconductor device using the above.
発明を解決するための手段Means for Solving the Invention
 本発明者らは、下記式(1)で表され、酸価が30mgKOH/g以上120mgKOH/g以下の化合物(A)と、光硬化開始剤(B)と、マレイミド化合物(C)及び/又はブロック化イソシアネート(D)と、を含有する樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors represent a compound (A) represented by the following formula (1) and having an acid value of 30 mgKOH / g or more and 120 mgKOH / g or less, a photocuring initiator (B), a maleimide compound (C) and / or The present inventors have found that the above problems can be solved by using a resin composition containing blocked isocyanate (D), and have completed the present invention.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (式(1)中、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、下記式(2)で表される置換基、下記式(3)で表される置換基又はヒドロキシ基を表す。)。 (In Formula (1), each of the plurality of R 1 independently represents a hydrogen atom or a methyl group, each of the plurality of R 2 independently represents a hydrogen atom or a methyl group, and each of the plurality of R 3 represents, Independently, it represents a substituent represented by the following formula (2), a substituent represented by the following formula (3), or a hydroxy group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (式(3)中、Rは、水素原子又はメチル基を表す。)。 (In formula (3), R 4 represents a hydrogen atom or a methyl group).
 すなわち、本発明は以下の内容を含む。
 〔1〕前記式(1)で表され、酸価が30mgKOH/g以上120mgKOH/g以下の化合物(A)と、光硬化開始剤(B)と、マレイミド化合物(C)及び/又はブロック化イソシアネート(D)と、を含有する樹脂組成物。
 〔2〕エポキシ樹脂(E)を更に含む、〔1〕に記載の樹脂組成物。
 〔3〕前記化合物(A)以外であって、エチレン性不飽和基を有する化合物(F)を更に含む、〔1〕又は〔2〕に記載の樹脂組成物。
 〔4〕無機充填材(G)を更に含む、〔1〕~〔3〕のいずれか一項に記載の樹脂組成物。
 〔5〕支持体に塗布された、〔1〕~〔4〕のいずれか一項に記載の樹脂組成物を有する支持体付き樹脂シート。
 〔6〕〔1〕~〔4〕のいずれか一項に記載の樹脂組成物を有する多層プリント配線板。
 〔7〕〔1〕~〔4〕のいずれか一項に記載の樹脂組成物を有する半導体装置。
That is, the present invention includes the following contents.
[1] A compound (A) represented by the formula (1) having an acid value of 30 mgKOH / g or more and 120 mgKOH / g or less, a photocuring initiator (B), a maleimide compound (C) and / or a blocked isocyanate. (D) and a resin composition containing.
[2] The resin composition according to [1], further comprising an epoxy resin (E).
[3] The resin composition according to [1] or [2], further including a compound (F) having an ethylenically unsaturated group other than the compound (A).
[4] The resin composition according to any one of [1] to [3], further including an inorganic filler (G).
[5] A resin sheet with a support, comprising the resin composition according to any one of [1] to [4], which is applied to the support.
[6] A multilayer printed wiring board having the resin composition according to any one of [1] to [4].
[7] A semiconductor device comprising the resin composition according to any one of [1] to [4].
 本発明によれば、塗膜性、耐熱性及び現像性に優れ、多層プリント配線板の保護膜、及び層間絶縁層に好適な物性を有する活性エネルギー線で硬化する樹脂組成物、支持体付き樹脂シート、それらを用いた多層プリント配線板及び半導体装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the resin composition hardened | cured with the active energy ray which is excellent in coating-film property, heat resistance, and developability, and has a suitable property for the protective film of a multilayer printed wiring board, and an interlayer insulation layer, Resin with support Sheets, multilayer printed wiring boards using them, and semiconductor devices can be provided.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその要旨の範囲内で、適宜に変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified within the scope of the gist.
 なお、本明細書における「(メタ)アクリロイル基」とは「アクリロイル基」及びそれに対応する「メタクリロイル基」の両方を意味し、「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」の両方を意味し、「(メタ)アクリル酸」とは「アクリル酸」及びそれに対応する「メタクリル酸」の両方を意味する。また、本実施形態において、「樹脂固形分」又は「樹脂組成物中の樹脂固形分」とは、特に断りのない限り、樹脂組成物における、溶剤及び無機充填材(G)を除いた成分をいい、「樹脂固形分100質量部」とは、樹脂組成物における、溶剤及び無機充填材(G)を除いた成分の合計が100質量部であることをいうものとする。 In the present specification, “(meth) acryloyl group” means both “acryloyl group” and the corresponding “methacryloyl group”, and “(meth) acrylate” means “acrylate” and the corresponding “methacrylate”. "(Meth) acrylic acid" means both "acrylic acid" and the corresponding "methacrylic acid". Further, in the present embodiment, “resin solid content” or “resin solid content in the resin composition” means a component excluding the solvent and the inorganic filler (G) in the resin composition unless otherwise specified. The “resin solid content of 100 parts by mass” means that the total of the components excluding the solvent and the inorganic filler (G) in the resin composition is 100 parts by mass.
 本実施形態の樹脂組成物は、前記化合物(A)、光硬化開始剤(B)、マレイミド化合物(C)及び/又はブロック化イソシアネート(D)を含有する。以下、各成分について説明する。 The resin composition of this embodiment contains the compound (A), a photocuring initiator (B), a maleimide compound (C) and / or a blocked isocyanate (D). Hereinafter, each component will be described.
 <化合物(A)>
 本実施形態に用いる化合物(A)は、前記式(1)で表される化合物である。化合物(A)は、1種単独で用いてもよく、構造異性体および立体異性体などの異性体を含んでいてもよく、互いに構造が異なる化合物を2種以上適宜組み合わせて用いてもよい。
<Compound (A)>
The compound (A) used in the present embodiment is a compound represented by the formula (1). Compound (A) may be used alone, may contain isomers such as structural isomers and stereoisomers, and may be used in appropriate combination of two or more compounds having different structures.
 前記式(1)中、複数のRは、各々独立に、水素原子又はメチル基を表す。その中でも、光硬化反応の反応性を向上させる観点から水素原子を含むことが好ましく、より好ましくはRの全てが水素原子である。
 複数のRは、各々独立に、水素原子又はメチル基を表す。その中でも、硬化物の耐熱性を向上させる観点からメチル基を含むことが好ましく、より好ましくはRの全てがメチル基である。
In said formula (1), several R < 1 > represents a hydrogen atom or a methyl group each independently. Among them, it is preferable to include a viewpoint from hydrogen atoms to improve the reactivity of the photocuring reaction, more preferably all of R 1 is a hydrogen atom.
Several R < 2 > represents a hydrogen atom or a methyl group each independently. Among them, preferably comprises a methyl group from the viewpoint of improving the heat resistance of the cured product, and more preferably all of R 2 is a methyl group.
 複数のRは、各々独立に、前記式(2)で表される置換基、前記式(3)で表される置換基又はヒドロキシ基を表す。その中でも、耐熱性を向上させる観点から、ヒドロキシル基を含むことが好ましい。また、本実施形態では、複数のRのうち、前記式(2)で表される置換基を含む化合物(A)を用いることも、現像性を向上させる観点から、好ましい。本実施形態では、複数のRのうち、前記式(3)で表される置換基を含む化合物(A)を用いることも、耐熱性を向上させる観点から、好ましい。前記式(3)中、Rは水素原子又はメチル基を表す。その中でも、光硬化反応の反応性を向上させる観点から、水素原子であることが好ましい。 Several R < 3 > represents the substituent represented by the said Formula (2), the substituent represented by the said Formula (3), or a hydroxy group each independently. Among these, it is preferable that a hydroxyl group is included from a viewpoint of improving heat resistance. Moreover, in this embodiment, it is also preferable from a viewpoint of improving developability to use the compound (A) containing the substituent represented by said Formula (2) among several R < 3 >. In the present embodiment, it is also preferable to use the compound (A) containing a substituent represented by the formula (3) among the plurality of R 3 from the viewpoint of improving heat resistance. In the formula (3), R 4 represents a hydrogen atom or a methyl group. Among these, a hydrogen atom is preferable from the viewpoint of improving the reactivity of the photocuring reaction.
 複数のRは、現像性を向上させる観点から、全てのRの置換基のうち、前記式(2)で表される置換基の比率が20%以上85%以下、前記式(3)で表される置換基の比率が5%以上70%以下、ヒドロキシ基の比率が10%以上75%以下であることが好ましい。 From the viewpoint of improving developability, the plurality of R 3 have a ratio of the substituent represented by the formula (2) of 20% or more and 85% or less of all the substituents of R 3 , and the formula (3). Is preferably 5% to 70%, and the hydroxy group is preferably 10% to 75%.
 化合物(A)としては、以下の化合物(A1)~(A5)のいずれか一種以上を含むことが、光硬化反応の反応性、硬化物の耐熱性および現像性を向上させることができるため好ましく、少なくとも化合物(A1)を含むことがより好ましく、(A1)~(A5)のいずれか2種以上を含むこともより好ましく、化合物(A1)および化合物(A2)~(A5)のいずれか1種以上を含むことがさらに好ましい。化合物(A)としては、少なくとも化合物(A2)及び(A3)を含むことも好ましい。 The compound (A) preferably contains at least one of the following compounds (A1) to (A5) because the reactivity of the photocuring reaction, the heat resistance of the cured product and the developability can be improved. More preferably, at least compound (A1) is included, more preferably any two or more of (A1) to (A5) are included, and any one of compound (A1) and compounds (A2) to (A5) is included. More preferably, it contains more than one species. As the compound (A), it is also preferable that at least the compounds (A2) and (A3) are included.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 このような化合物は市販品を利用することもでき、例えば、KAYARAD(登録商標)ZCR-6001H、KAYARAD(登録商標)ZCR-6002H、KAYARAD(登録商標)ZCR-6006H、KAYARAD(登録商標)ZCR-6007H(以上、商品名、日本化薬(株)製)などが挙げられる。 Such compounds may be commercially available, for example, KAYARAD (registered trademark) ZCR-6001H, KAYARAD (registered trademark) ZCR-6002H, KAYARAD (registered trademark) ZCR-6006H, KAYARAD (registered trademark) ZCR- 6007H (above, trade name, manufactured by Nippon Kayaku Co., Ltd.).
 本実施形態の樹脂組成物において、化合物(A)の酸価は、現像性を向上させる観点から、30mgKOH/g以上であり、より現像性が向上することから、50mgKOH/g以上であることが好ましい。また、活性エネルギー線で硬化させた後に現像液による溶解を防止する観点から、化合物(A)の酸価は、120mgKOH/g以下であり、より溶解を防止できることから、110mgKOH/g以下であることが好ましい。なお、本実施形態における「酸価」は、JISK 0070:1992に準じた方法で測定される値を示す。 In the resin composition of the present embodiment, the acid value of the compound (A) is 30 mgKOH / g or more from the viewpoint of improving developability, and the developability is further improved, so that it is 50 mgKOH / g or more. preferable. In addition, from the viewpoint of preventing dissolution by the developer after curing with active energy rays, the acid value of the compound (A) is 120 mgKOH / g or less, and since dissolution can be further prevented, it is 110 mgKOH / g or less. Is preferred. The “acid value” in the present embodiment indicates a value measured by a method according to JISK 0070: 1992.
 本実施形態の樹脂組成物において、化合物(A)の含有量は、特に限定されないが、樹脂組成物を活性エネルギー線で硬化させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、1質量部以上とすることが好ましく、2質量部以上とすることがより好ましく、3質量部以上とすることが更に好ましく、10質量部以上とすることが更により好ましく、25質量部以上とすることが更により好ましく、30質量部以上とすることが更により好ましい。また、活性エネルギー線で十分に硬化させ、耐熱性及び現像性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、99質量部以下とすることが好ましく、98質量部以下とすることがより好ましく、97質量部以下とすることが更に好ましく、90質量部以下とすることが更により好ましく、75質量部以下とすることが更により好ましく、73質量部以下とすることが最も好ましい。 In the resin composition of the present embodiment, the content of the compound (A) is not particularly limited, but from the viewpoint of curing the resin composition with active energy rays, the resin solid content in the resin composition is 100 parts by mass. 1 part by mass or more, preferably 2 parts by mass or more, more preferably 3 parts by mass or more, still more preferably 10 parts by mass or more, even more preferably 25 parts by mass or more. It is still more preferable, and it is still more preferable to set it as 30 mass parts or more. Further, from the viewpoint of sufficiently curing with active energy rays and improving heat resistance and developability, it is preferably 99 parts by mass or less with respect to 100 parts by mass of the resin solid content in the resin composition, and 98 parts by mass. More preferably, it is more preferably 97 parts by mass or less, still more preferably 90 parts by mass or less, still more preferably 75 parts by mass or less, and even more preferably 73 parts by mass or less. Most preferred.
 <光硬化開始剤(B)>
 本実施形態に用いる光硬化開始剤(B)は、特に限定されないが、一般に光硬化性樹脂組成物に用いられる分野で公知のものを使用することができる。
<Photocuring initiator (B)>
Although the photocuring initiator (B) used for this embodiment is not specifically limited, A well-known thing can be used in the field | area generally used for a photocurable resin composition.
 光硬化開始剤(B)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物、アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシンクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン等のアセトフェノン類、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等のアントラキノン類、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類、アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等のベンゾフェノン類、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド類、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]等のオキシムエステル類等のラジカル型光硬化開始剤や、p-メトキシフェニルジアゾニウムフロロホスホネート、N,N-ジエチルアミノフェニルジアゾニウムヘキサフロロホスホネート等のルイス酸のジアゾニウム塩、ジフェニルヨードニウムヘキサフロロホスホネート、ジフェニルヨードニウムヘキサフロロアンチモネート等のルイス酸のヨードニウム塩、トリフェニルスルホニウムヘキサフロロホスホネート、トリフェニルスルホニウムヘキサフロロアンチモネート等のルイス酸のスルホニウム塩、トリフェニルホスホニウムヘキサフロロアンチモネート等のルイス酸のホスホニウム塩、その他のハロゲン化物、トリアジン系開始剤、ボーレート系開始剤、及びその他の光酸発生剤等のカチオン系光重合開始剤が挙げられる。 Examples of the photocuring initiator (B) include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, and parachlorobenzoyl peroxide. Organic peroxides exemplified by oxides, di-tert-butyl-di-perphthalate, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1- Dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxyhexylphenyl ketone, 2-methyl-1- [4- (methylthio) phenyl]- -Acetophenones such as morpholino-propan-1-one, anthraquinones such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone Thioxanthones such as 2-chlorothioxanthone, ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal, benzophenones such as benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4′-bismethylaminobenzophenone, 2 , 4,6-trimethylbenzoyldiphenylphosphine oxide, phosphine oxides such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1,2, Radical photocuring initiators such as oxime esters such as octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], p-methoxyphenyldiazonium fluorophosphonate, N, N-diethylamino Lewis acid diazonium salts such as phenyldiazonium hexafluorophosphonate, Lewis acid iodonium salts such as diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroantimonate, Lewis such as triphenylsulfonium hexafluorophosphonate, triphenylsulfonium hexafluoroantimonate Sulfonium salts of acids, phosphonium salts of Lewis acids such as triphenylphosphonium hexafluoroantimonate, other halides, triazine initiators, borate Examples thereof include cationic photopolymerization initiators such as system initiators and other photoacid generators.
 その中でも、多層プリント配線板用途に適した反応性があり、金属導体に対する信頼性が高いという観点から、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASFジャパン(株)製、Irgacure(登録商標)369)等のアセトフェノン類のラジカル型光硬化開始剤が好ましい。 Among them, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (from the viewpoint of reactivity suitable for multilayer printed wiring board applications and high reliability for metal conductors) A radical photocuring initiator of acetophenones such as ISFacure (registered trademark) 369 manufactured by BASF Japan Ltd. is preferable.
 これらの光硬化開始剤(B)は、1種単独又は2種以上を適宜混合して使用することも可能であり、ラジカル系とカチオン系の双方の開始剤を併せて用いても良い。 These photocuring initiators (B) can be used alone or in combination of two or more, and both radical and cationic initiators may be used in combination.
 本実施形態の樹脂組成物における光硬化開始剤(B)の含有量は、特に限定されないが、樹脂組成物を活性エネルギー線で十分に硬化させ、耐熱性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、0.1質量部以上とすることが好ましく、0.2質量部以上とすることがより好ましく、0.3質量部以上とすることが更に好ましく、1質量部以上とすることが更により好ましい。また、光硬化後の熱硬化を阻害し耐熱性を低下することを防止するという観点から、樹脂組成物中の樹脂固形分100質量部に対して、30質量部以下とすることが好ましく、25質量部以下とすることがより好ましく、20質量部以下とすることが更に好ましく、10質量部以下とすることが更により好ましい。 The content of the photocuring initiator (B) in the resin composition of the present embodiment is not particularly limited. From the viewpoint of sufficiently curing the resin composition with active energy rays and improving heat resistance, the resin composition. It is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, still more preferably 0.3 parts by mass or more, relative to 100 parts by mass of the resin solid content therein. It is still more preferable to set it as 1 mass part or more. Further, from the viewpoint of preventing the heat curing after photocuring and preventing the heat resistance from being lowered, the content is preferably 30 parts by mass or less with respect to 100 parts by mass of the resin solid content in the resin composition. More preferably, it is more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less.
 本実施形態の樹脂組成物においては、マレイミド化合物(C)とブロック化イソシアネート(D)のどちらか一方を用いることができ、これらを併用することも可能である。その中でも塗膜性、耐熱性及び現像性を向上させるという観点から、マレイミド化合物(C)を用いることが好ましく、耐熱性及び現像性をさらに向上させ、塗膜性もさらに向上させるという観点から、マレイミド化合物(C)とブロック化イソシアネート(D)を併用することが更に好ましい。以下にマレイミド化合物(C)及びブロック化イソシアネート(D)について詳細に述べる。 In the resin composition of the present embodiment, either the maleimide compound (C) or the blocked isocyanate (D) can be used, and these can be used in combination. Among them, from the viewpoint of improving the coating properties, heat resistance and developability, it is preferable to use the maleimide compound (C), further improving the heat resistance and developability, and further improving the coating properties. More preferably, the maleimide compound (C) and the blocked isocyanate (D) are used in combination. The maleimide compound (C) and the blocked isocyanate (D) are described in detail below.
 <マレイミド化合物(C)>
 本実施形態に用いるマレイミド化合物(C)は、分子中に一個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、例えば、N-フェニルマレイミド、フェニルメタンマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、4,4-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、ポリテトラメチレンオキシド-ビス(4-マレイミドベンゾエート)、o-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、o-フェニレンビスシトラコンイミド、m-フェニレンビスシトラコンイミド、p-フェニレンビスシトラコンイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、4,4-ジフェニルメタンビスシトラコンイミド、2,2-ビス[4-(4-シトラコンイミドフェノキシ)フェニル]プロパン、ビス(3,5-ジメチル-4-シトラコンイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-シトラコンイミドフェニル)メタン、ビス(3,5-ジエチル-4-シトラコンイミドフェニル)メタン、ポリフェニルメタンマレイミド、下記式(4)で表されるマレイミド化合物、下記式(5)で表されるマレイミド化合物、及びこれらマレイミド化合物のプレポリマー、又はマレイミド化合物とアミン化合物とのプレポリマーが挙げられる。
<Maleimide compound (C)>
The maleimide compound (C) used in the present embodiment is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule. Specific examples thereof include, for example, N-phenylmaleimide, phenylmethanemaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane. 4,4-diphenylmethane bismaleimide, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4 -Maleimidophenyl) methane, polytetramethylene oxide-bis (4-maleimidobenzoate), o-phenylenebismaleimide, m-phenylenebismaleimide, p-phenylenebismaleimide, o-phenylenebiscitraconimide, m-phenylenebiscitraconimide , P-fe Renbiscitraconimide, 2,2-bis (4- (4-maleimidophenoxy) -phenyl) propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane bismaleimide, 4-methyl-1, 3-phenylene bismaleimide, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 4,4-diphenyl ether bismaleimide, 4,4-diphenyl sulfone bismaleimide, 1,3-bis (3-maleimide) Phenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, 4,4-diphenylmethane biscitraconimide, 2,2-bis [4- (4-citraconimidophenoxy) phenyl] propane, bis (3,5 -Dimethyl-4-citraconimidophenyl) methane, bis (3-ethyl-5- Til-4-citraconimidophenyl) methane, bis (3,5-diethyl-4-citraconimidophenyl) methane, polyphenylmethanemaleimide, a maleimide compound represented by the following formula (4), represented by the following formula (5) Maleimide compounds, and prepolymers of these maleimide compounds, or prepolymers of maleimide compounds and amine compounds.
 その中でも、良好な塗膜性が得られ、耐熱性に優れるという観点から、下記式(4)で表されるマレイミド化合物及び下記式(5)で表されるマレイミド化合物が好ましく、下記式(4)で表されるマレイミド化合物がより好ましい。下記式(4)で表されるマレイミド化合物としては、市販品を利用することもでき、例えば、BMI-2300(大和化成工業(株)社製)が挙げられる。下記式(5)で表されるマレイミド化合物としては、市販品を利用することもでき、例えば、MIR-3000(日本化薬(株)社製)が挙げられる。
 これらのマレイミド化合物(C)は1種単独又は2種以上を適宜混合して使用することも可能である。
Among these, from the viewpoint of obtaining good coating properties and excellent heat resistance, a maleimide compound represented by the following formula (4) and a maleimide compound represented by the following formula (5) are preferable, and the following formula (4) ) Is more preferred. A commercially available product can be used as the maleimide compound represented by the following formula (4), and examples thereof include BMI-2300 (manufactured by Daiwa Kasei Kogyo Co., Ltd.). As the maleimide compound represented by the following formula (5), a commercially available product can be used, and examples thereof include MIR-3000 (manufactured by Nippon Kayaku Co., Ltd.).
These maleimide compounds (C) can be used singly or in appropriate combination of two or more.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (式(4)中、複数のRは、各々独立に、水素原子又はメチル基を表す。nは、1以上の整数を表し、好ましくは1~10の整数を表す。)。 (In the formula (4), each of the plurality of R 5 independently represents a hydrogen atom or a methyl group. N 1 represents an integer of 1 or more, preferably an integer of 1 to 10).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 (式(5)中、複数のRは、各々独立に、水素原子又はメチル基を表す。nは、1以上の整数を表し、好ましくは1~5の整数を表す。)。 (In the formula (5), each of the plurality of R 6 independently represents a hydrogen atom or a methyl group. N 2 represents an integer of 1 or more, preferably an integer of 1 to 5).
 本実施形態の樹脂組成物におけるマレイミド化合物(C)の含有量は、特に限定されないが、樹脂組成物を十分に硬化させ、耐熱性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、0.01質量部以上とすることが好ましく、0.02質量部以上とすることがより好ましく、0.03質量部以上とすることが更に好ましく、0.5質量部以上とすることが更により好ましい。また、現像性を良好にするという観点から、樹脂組成物中の樹脂固形分100質量部に対して、50質量部以下とすることが好ましく、45質量部以下とすることがより好ましく、40質量部以下とすることが更に好ましく、20質量部以下とすることが更により好ましく、10質量部以下とすることがより更により好ましく、7質量部以下とすることが最も好ましい。 The content of the maleimide compound (C) in the resin composition of the present embodiment is not particularly limited, but from the viewpoint of sufficiently curing the resin composition and improving heat resistance, the resin solid content 100 in the resin composition is 100%. It is preferable to set it as 0.01 mass part or more with respect to a mass part, It is more preferable to set it as 0.02 mass part or more, It is still more preferable to set it as 0.03 mass part or more, 0.5 mass part or more Even more preferably. Moreover, from a viewpoint of making developability favorable, it is preferable to set it as 50 mass parts or less with respect to 100 mass parts of resin solid content in a resin composition, It is more preferable to set it as 45 mass parts or less, 40 masses More preferably, it is more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less, and most preferably 7 parts by mass or less.
 <ブロック化イソシアネート(D)>
 本実施形態に用いるブロック化イソシアネート(D)は、常温(25℃)では不活性であるが加熱するとブロック剤が可逆的に解離してイソシアネート基を再生するものであれば特に限定されない。
 ブロック化イソシアネート(D)の被ブロック化骨格として、例えば、イソシアヌレート型、ビウレット型、アダクト型が挙げられ、耐熱性という観点からイソシアヌレート型が好ましい。
 これらのブロック化イソシアネート(D)は、1種単独又は2種以上を適宜混合して使用することも可能である。
<Blocked isocyanate (D)>
The blocked isocyanate (D) used in the present embodiment is not particularly limited as long as it is inactive at room temperature (25 ° C.), but the blocking agent is reversibly dissociated to regenerate isocyanate groups when heated.
Examples of the blocked skeleton of the blocked isocyanate (D) include isocyanurate type, biuret type, and adduct type, and isocyanurate type is preferable from the viewpoint of heat resistance.
These blocked isocyanates (D) can be used singly or in appropriate combination of two or more.
 常温(25℃)では不活性であるが加熱すると可逆的に解離するブロック剤としては、ジケトン類、オキシム類、フェノール類、アルカノール類及びカプロラクタム類から選ばれる少なくとも一種の化合物が挙げられる。具体的には、メチルエチルケトンオキシム、ε-カプロラクタム等が挙げられる。
 ブロック剤の解離温度は、特に限定されないが、樹脂組成物を十分に硬化させて耐熱性を向上させるという観点から、120℃以上のものが好ましい。また、ブロック剤を十分に解離させて樹脂組成物を硬化させるという観点から、200℃以下のものが好ましい。
Examples of the blocking agent that is inactive at room temperature (25 ° C.) but reversibly dissociates when heated include at least one compound selected from diketones, oximes, phenols, alkanols, and caprolactams. Specific examples include methyl ethyl ketone oxime and ε-caprolactam.
The dissociation temperature of the blocking agent is not particularly limited, but is preferably 120 ° C. or higher from the viewpoint of sufficiently curing the resin composition and improving heat resistance. Moreover, the thing below 200 degreeC is preferable from a viewpoint of making a block agent fully dissociate and hardening a resin composition.
 上記ブロック剤は加熱時に解離して、ガスとして排出される。そのため体積減少の原因となることから、ブロック剤としては、分子量の小さいものを用いることが好ましい。具体的には、メチルエチルケトンオキシムタイプのものを用いることが好ましい。 The above blocking agent is dissociated during heating and discharged as a gas. Therefore, it is preferable to use a blocking agent having a small molecular weight because it causes a volume reduction. Specifically, it is preferable to use a methyl ethyl ketone oxime type.
 このようなブロック化イソシアネートは市販品として容易に入手可能であり、例えば、スミジュール(登録商標)BL-3175、BL-4265、BL-5375、BL-1100,BL-1265、(以上、商品名、住化コベストロウレタン(株)社製)、コロネート(登録商標)2507、コロネート(登録商標)2554(以上、商品名、東ソー(株)社製)、デュラネート(登録商標)TPA-B80E、デュラネート(登録商標)17B-60PX(以上、商品名、旭化成ケミカルズ(株)社製)等が挙げられる。
 これらの中でも、被ブロック化骨格がイソシアヌレート型の、スミジュール(登録商標)BL-3175、デュラネート(登録商標)TPA-B80Eより選択される一種以上であることが好ましい。このような種類のブロック化イソシアネートを含むことにより、得られる硬化物の耐熱性がより向上する傾向にある。
Such blocked isocyanates are readily available as commercial products, for example, Sumidur (registered trademark) BL-3175, BL-4265, BL-5375, BL-1100, BL-1265, , Sumika Covestrourethane Co., Ltd.), Coronate (registered trademark) 2507, Coronate (registered trademark) 2554 (trade name, manufactured by Tosoh Corporation), Duranate (registered trademark) TPA-B80E, Duranate (Registered Trademark) 17B-60PX (above, trade name, manufactured by Asahi Kasei Chemicals Corporation) and the like.
Among these, it is preferable that the blocked skeleton is at least one selected from the group of isocyanurate type, selected from Sumidur (registered trademark) BL-3175 and Duranate (registered trademark) TPA-B80E. By including such kind of blocked isocyanate, the heat resistance of the resulting cured product tends to be further improved.
 本実施形態の樹脂組成物におけるブロック化イソシアネート(D)の含有量は、特に限定されないが、樹脂組成物を十分に硬化させ、耐熱性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、0.1質量部以上とすることが好ましく、0.2質量部以上とすることがより好ましく、0.3質量部以上とすることが更に好ましく、0.5質量部以上とすることが更により好ましい。また、樹脂組成物の体積減少を抑制し、現像性により優れるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、5.0質量部以下又は5.0質量部未満とすることが好ましく、4.0質量部以下又は4.0質量部未満とすることがより好ましく、3.0質量部以下又は3.0質量部未満とする事が更に好ましい。 The content of the blocked isocyanate (D) in the resin composition of the present embodiment is not particularly limited, but from the viewpoint of sufficiently curing the resin composition and improving heat resistance, the resin solid content in the resin composition It is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, further preferably 0.3 parts by mass or more, and 0.5 parts by mass with respect to 100 parts by mass. It is even more preferable to use the above. Further, from the viewpoint of suppressing the volume reduction of the resin composition and being excellent in developability, it is 5.0 parts by mass or less or less than 5.0 parts by mass with respect to 100 parts by mass of resin solid content in the resin composition. It is preferably 4.0 parts by mass or less or less than 4.0 parts by mass, more preferably 3.0 parts by mass or less or less than 3.0 parts by mass.
 マレイミド化合物(C)とブロック化イソシアネート(D)を併用した場合、これらの含有量は、特に限定されないが、樹脂組成物を十分に硬化させ、耐熱性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、0.11質量部以上とすることが好ましく、0.5質量部以上とすることがより好ましく、1質量部以上とすることが更に好ましく、3質量部以上とすることが更により好ましい。また、樹脂組成物の体積減少を抑制し、現像性により優れ、より良好な塗膜が得られるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、55質量部以下とすることが好ましく、25質量部以下とすることがより好ましく、15質量部とすることが更に好ましく、13質量部以下とすることが更により好ましく、10質量部とすることが更により好ましい。 When the maleimide compound (C) and the blocked isocyanate (D) are used in combination, their content is not particularly limited, but from the viewpoint of sufficiently curing the resin composition and improving heat resistance, It is preferable to set it as 0.11 mass part or more with respect to 100 mass parts of resin solid content of this, It is more preferable to set it as 0.5 mass part or more, It is still more preferable to set it as 1 mass part or more, 3 mass parts It is even more preferable to use the above. Moreover, from a viewpoint that the volume reduction of a resin composition is suppressed, it is excellent in developability, and a more favorable coating film is obtained, it shall be 55 mass parts or less with respect to 100 mass parts of resin solid content in a resin composition. It is preferably 25 parts by mass or less, more preferably 15 parts by mass, still more preferably 13 parts by mass or less, and still more preferably 10 parts by mass.
 <エポキシ樹脂(E)>
 本実施形態の樹脂組成物には、現像性及び硬化物の耐熱性を向上させるために、エポキシ樹脂(E)を併用することも可能である。
<Epoxy resin (E)>
In order to improve the developability and the heat resistance of the cured product, the epoxy resin (E) can be used in combination with the resin composition of the present embodiment.
 本実施形態に用いるエポキシ樹脂(E)は、1分子中に2個以上のエポキシ基を有する化合物であれば、特に限定されない。その具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、トリグリシジルイソシアヌレート、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物、及びこれらのハロゲン化物が挙げられる。 The epoxy resin (E) used in the present embodiment is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. Specific examples thereof include, for example, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, Cresol novolak type epoxy resin, xylene novolak type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, naphthylene ether type epoxy resin, phenol aralkyl type epoxy resin, anthracene type epoxy resin, Trifunctional phenolic epoxy resin, tetrafunctional phenolic epoxy resin, triglycidyl isocyanurate, glycidyl ester epoxy resin, alicyclic Poxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, phenol aralkyl novolak type epoxy resin, naphthol aralkyl novolak type epoxy resin, aralkyl novolak type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, di Cyclopentadiene-type epoxy resins, polyol-type epoxy resins, phosphorus-containing epoxy resins, glycidylamine, epoxidized compounds such as butadiene, compounds obtained by reaction of hydroxyl-containing silicone resins with epichlorohydrin, and halogens thereof A compound.
 その中でも、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂からなる群より選択される一種以上であることが好ましく、ビフェニルアラルキル型エポキシ樹脂がより好ましい。このような種類のエポキシ樹脂を含むことにより、得られる硬化物の耐熱性がより向上する傾向にある。
 これらのエポキシ樹脂(E)は、1種単独又は2種以上を適宜混合して使用することも可能である。
Among them, it is preferably at least one selected from the group consisting of biphenyl aralkyl type epoxy resins, naphthylene ether type epoxy resins, polyfunctional phenol type epoxy resins, and naphthalene type epoxy resins, and biphenyl aralkyl type epoxy resins are more preferable. . By including such kind of epoxy resin, the heat resistance of the obtained cured product tends to be further improved.
These epoxy resins (E) can be used singly or in appropriate combination of two or more.
 本実施形態の樹脂組成物において、エポキシ樹脂(E)の含有量は、特に限定されないが、硬化物の耐熱性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、1.0質量部以上とすることが好ましく、1.5質量部以上とすることがより好ましく、2.0質量部以上とすることが更に好ましく、8質量部以上とすることが更により好ましい。また、樹脂組成物の現像性を良好にするという観点から、樹脂組成物中の樹脂固形分100質量部に対して、90質量部以下とすることが好ましく、70質量部以下とすることがより好ましく、50質量部以下とすることが更に好ましく、25質量部以下とすることが更に好ましい。 In the resin composition of the present embodiment, the content of the epoxy resin (E) is not particularly limited, but from the viewpoint of improving the heat resistance of the cured product, the resin solid content in the resin composition is 100 parts by mass. 1.0 part by mass or more, preferably 1.5 parts by mass or more, more preferably 2.0 parts by mass or more, and even more preferably 8 parts by mass or more. . Further, from the viewpoint of improving the developability of the resin composition, it is preferably 90 parts by mass or less and more preferably 70 parts by mass or less with respect to 100 parts by mass of the resin solid content in the resin composition. Preferably, it is 50 mass parts or less, More preferably, it is 25 mass parts or less.
 <エチレン性不飽和基を有する化合物(F)>
 本実施形態の樹脂組成物には、活性エネルギー線(例えば、紫外線)に対する反応性を高め、現像性及び耐熱性を向上させるために、エチレン性不飽和基を有する化合物(F)を併用することも可能である。本実施形態に用いるエチレン性不飽和基を有する化合物(F)は、前記式(1)で表され、酸価が30mgKOH/g以上120mgKOH/g以下の化合物(A)以外であり、1分子中に1個以上のエチレン性不飽和基を有する化合物であれば、特に限定されないが、例えば、(メタ)アクリロイル基、ビニル基等を有する化合物が挙げられる。これらのエチレン性不飽和基を有する化合物(F)は、1種単独又は2種以上を適宜混合して使用することも可能である。
<Compound (F) having an ethylenically unsaturated group>
The resin composition of the present embodiment is used in combination with a compound (F) having an ethylenically unsaturated group in order to increase the reactivity to active energy rays (for example, ultraviolet rays) and improve the developability and heat resistance. Is also possible. The compound (F) having an ethylenically unsaturated group used in the present embodiment is other than the compound (A) represented by the formula (1) and having an acid value of 30 mgKOH / g or more and 120 mgKOH / g or less. Although it will not specifically limit if it is a compound which has 1 or more ethylenically unsaturated groups, For example, the compound which has a (meth) acryloyl group, a vinyl group, etc. is mentioned. These compounds (F) having an ethylenically unsaturated group can be used singly or in appropriate combination of two or more.
 (メタ)アクリロイル基を有する化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレートモノメチルエーテル、フェニルエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、グリコールジ(メタ)アクリレート、ジエチレンジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルイソシアヌレート、ポリプロピレングリコールジ(メタ)アクリレート、アジピン酸エポキシジ(メタ)アクリレート、ビスフェノールエチレンオキサイドジ(メタ)アクリレート、水素化ビスフェノールエチレンオキサイド(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ε-カプロラクトン変性ヒドロキシピバリン酸ネオペングリコールジ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリエチロールプロパントリ(メタ)アクリレート、及びそのエチレンオキサイド付加物、ペンタエリスリトールトリ(メタ)アクリレート、及びそのエチレンオキサイド付加物、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、及びそのエチレンオキサイド付加物等が挙げられる。 As a compound having a (meth) acryloyl group, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate monomethyl ether , Phenylethyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, nonanediol di (meth) acrylate, glycol di (meth) acrylate, diethylenedi (meth) a Relate, polyethylene glycol di (meth) acrylate, tris (meth) acryloyloxyethyl isocyanurate, polypropylene glycol di (meth) acrylate, adipic acid epoxy di (meth) acrylate, bisphenol ethylene oxide di (meth) acrylate, hydrogenated bisphenol ethylene oxide (Meth) acrylate, bisphenol di (meth) acrylate, ε-caprolactone modified hydroxypivalic acid neopent glycol di (meth) acrylate, ε-caprolactone modified dipentaerythritol hexa (meth) acrylate, ε-caprolactone modified dipentaerythritol poly ( (Meth) acrylate, dipentaerythritol poly (meth) acrylate, trimethylolpropane tri (meth) a Relate, triethylolpropane tri (meth) acrylate, and its ethylene oxide adduct, pentaerythritol tri (meth) acrylate, and its ethylene oxide adduct, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, And ethylene oxide adducts thereof.
 この他にも、(メタ)アクリロイル基とウレタン結合を同一分子内に併せ持つウレタン(メタ)アクリレート類、同様に(メタ)アクリロイル基とエステル結合を同一分子内に併せ持つポリエステル(メタ)アクリレート、エポキシ樹脂から誘導され、(メタ)アクリロイル基を併せ持つエポキシ(メタ)アクリレート類、これらの結合が複合的に用いられている反応性オリゴマー等も挙げられる。 In addition, urethane (meth) acrylates that have (meth) acryloyl groups and urethane bonds in the same molecule, polyester (meth) acrylates that have (meth) acryloyl groups and ester bonds in the same molecule, and epoxy resins Epoxy (meth) acrylates derived from the above and having a (meth) acryloyl group, and reactive oligomers in which these bonds are used in combination.
 上記ウレタン(メタ)アクリレート類とは、水酸基含有(メタ)アクリレートとポリイソシアネート、必要に応じて用いられるその他アルコール類との反応物である。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等のグリセリン(メタ)アクリレート類、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の糖アルコール(メタ)アクリレート類と、トルエンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、キシレンジイソシアネート、水添キシレンジイソシアネート、ジシクロヘキサンメチレンジイソシアネート、及びそれらのイソシアヌレート、ビュレット反応物等のポリイソシアネート等を反応させ、ウレタン(メタ)アクリレート類となる。 The urethane (meth) acrylate is a reaction product of a hydroxyl group-containing (meth) acrylate, a polyisocyanate, and other alcohols used as necessary. For example, hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerin (meta) such as glycerin mono (meth) acrylate, glycerin di (meth) acrylate, etc. ) Sugar alcohol (meth) acrylates such as acrylates, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, toluene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate , Isophorone diisocyanate, norbornene diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate Dicyclohexane diisocyanate, and their isocyanurate, by reacting polyisocyanates such as buret reactants, the urethane (meth) acrylates.
 上記エポキシ(メタ)アクリレート類とは、エポキシ基を有する化合物と(メタ)アクリル酸とのカルボキシレート化合物である。例えば、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、トリスヒドロキシフェニルメタン型エポキシ(メタ)アクリレート、ジシクロペンタジエンフェノール型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビフェノール型エポキシ(メタ)アクリレート、ビスフェノールAノボラック型エポキシ(メタ)アクリレート、ナフタレン骨格含有エポキシ(メタ)アクリレート、グリオキサール型エポキシ(メタ)アクリレート、複素環式エポキシ(メタ)アクリレート等、及びこれらの酸無水物変性エポキシ(メタ)アクリレート等が挙げられる。 The above epoxy (meth) acrylates are carboxylate compounds of a compound having an epoxy group and (meth) acrylic acid. For example, phenol novolac type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, trishydroxyphenylmethane type epoxy (meth) acrylate, dicyclopentadienephenol type epoxy (meth) acrylate, bisphenol A type epoxy (meth) acrylate Bisphenol F type epoxy (meth) acrylate, biphenol type epoxy (meth) acrylate, bisphenol A novolak type epoxy (meth) acrylate, naphthalene skeleton-containing epoxy (meth) acrylate, glyoxal type epoxy (meth) acrylate, heterocyclic epoxy ( And (meth) acrylate and the like, and acid anhydride-modified epoxy (meth) acrylate and the like.
 ビニル基を有する化合物としては、エチルビニルエーテル、プロピルビニルエーテル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル等のビニルエーテル類が挙げられる。スチレン類としては、スチレン、メチルスチレン、エチルスチレン、ジビニルベンゼン、α-メチルスチレン、及びこれらのオリゴマー等が挙げられる。その他ビニル化合物としてはトリアリルイソシアヌレート、トリメタアリルイソシアヌレート、ビスアリルナジイミド等が挙げられる。 Examples of the compound having a vinyl group include vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, hydroxyethyl vinyl ether, and ethylene glycol divinyl ether. Examples of styrenes include styrene, methyl styrene, ethyl styrene, divinyl benzene, α-methyl styrene, and oligomers thereof. Other vinyl compounds include triallyl isocyanurate, trimethallyl isocyanurate, bisallyl nadiimide and the like.
 これらの中でも、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート、ナフタレン骨格含有エポキシ(メタ)アクリレート、ビスアリルナジイミドからなる群より選択される1種以上であることが好ましく、ジペンタエリスリトールヘキサ(メタ)アクリレートがより好ましい。このような種類のエチレン性不飽和基を有する化合物を含むことにより、得られる硬化物の耐熱性がより向上する傾向にある。 Among these, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, cresol novolac type epoxy (meth) acrylate, bisphenol A type epoxy (meth) acrylate, naphthalene skeleton-containing epoxy (meth) acrylate, bisary One or more selected from the group consisting of lunadiimide is preferred, and dipentaerythritol hexa (meth) acrylate is more preferred. By including the compound having such an ethylenically unsaturated group, the heat resistance of the resulting cured product tends to be further improved.
 本実施形態の樹脂組成物において、エチレン性不飽和基を有する化合物(F)の含有量は、特に限定されないが、現像性を良好にするという観点から、樹脂組成物中の樹脂固形分100質量部に対して、0.5質量部以上とすることが好ましく、1.0質量部以上とすることがより好ましく、1.5質量部以上とすることが更に好ましく、5質量部以上とすることが更により好ましく、15質量部以上とすることが最も好ましい。また、硬化物の耐熱性を良好にするという観点から、樹脂組成物中の樹脂固形分100質量部に対して、90質量部以下とすることが好ましく、70質量部以下とすることがより好ましく、50質量部以下とすることが更に好ましく、25質量部以上とすることが更により好ましい。 In the resin composition of the present embodiment, the content of the compound (F) having an ethylenically unsaturated group is not particularly limited, but from the viewpoint of improving developability, the resin solid content in the resin composition is 100 mass. 0.5 parts by mass or more with respect to parts, preferably 1.0 parts by mass or more, more preferably 1.5 parts by mass or more, and more preferably 5 parts by mass or more. Is more preferable, and it is most preferable to set it to 15 parts by mass or more. Further, from the viewpoint of improving the heat resistance of the cured product, it is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, with respect to 100 parts by mass of the resin solid content in the resin composition. 50 parts by mass or less, more preferably 25 parts by mass or more.
 <無機充填材(G)>
 本実施形態の樹脂組成物には、塗膜性、現像性や耐熱性等の諸特性を向上させるために、無機充填材(G)を併用することも可能である。本実施形態に用いる無機充填材(G)は、絶縁性を有するものであれば、特に限定されないが、例えば、シリカ(例えば天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等)、アルミニウム化合物(例えばベーマイト、水酸化アルミニウム、アルミナ等)、マグネシウム化合物(例えば酸化マグネシウム、水酸化マグネシウム等)、カルシウム化合物(例えば炭酸カルシウム等)、モリブデン化合物(例えば酸化モリブデン、モリブデン酸亜鉛等)、バリウム化合物(例えば硫酸バリウム、ケイ酸バリウム等)、タルク(例えば天然タルク、焼成タルク等)、マイカ(雲母)、ガラス(例えば短繊維状ガラス、球状ガラス、微粉末ガラス(例えばEガラス、Tガラス、Dガラス等)等)、シリコーンパウダーなどが挙げられる。
<Inorganic filler (G)>
In the resin composition of the present embodiment, an inorganic filler (G) can be used in combination in order to improve various properties such as coating properties, developability and heat resistance. The inorganic filler (G) used in the present embodiment is not particularly limited as long as it has insulating properties. For example, silica (for example, natural silica, fused silica, amorphous silica, hollow silica, etc.), an aluminum compound (for example, Boehmite, aluminum hydroxide, alumina, etc.), magnesium compounds (eg, magnesium oxide, magnesium hydroxide, etc.), calcium compounds (eg, calcium carbonate, etc.), molybdenum compounds (eg, molybdenum oxide, zinc molybdate, etc.), barium compounds (eg, sulfuric acid) Barium, barium silicate, etc.), talc (eg, natural talc, calcined talc, etc.), mica (mica), glass (eg, short fiber glass, spherical glass, fine powder glass (eg, E glass, T glass, D glass, etc.)) Etc.) and silicone powder.
 その中でも、シリカ、水酸化アルミニウム、ベーマイト、酸化マグネシウム、水酸化マグネシウム、及び硫酸バリウムからなる群から選択される一種以上であることが好ましい。 Among them, one or more selected from the group consisting of silica, aluminum hydroxide, boehmite, magnesium oxide, magnesium hydroxide, and barium sulfate is preferable.
 これらの無機充填材(G)は、後述のシランカップリング剤などで表面処理されていてもよい。 These inorganic fillers (G) may be surface-treated with a silane coupling agent described later.
 特に、硬化物の耐熱性を向上させ、また良好な塗膜性が得られるという観点から、シリカが好ましく、溶融シリカがとりわけ好ましい。シリカの具体例としては、デンカ(株)製のSFP-130MC等、(株)アドマテックス製のSC2050―MB、SC1050-MLE、YA010C-MFN、YA050C-MJA等が挙げられる。
 これらの無機充填材(G)は、1種単独又は2種以上を適宜混合して使用することも可能である。
In particular, silica is preferable and fused silica is particularly preferable from the viewpoint of improving the heat resistance of the cured product and obtaining good coating properties. Specific examples of silica include SFP-130MC manufactured by Denka Corporation, SC2050-MB, SC1050-MLE, YA010C-MFN, YA050C-MJA manufactured by Admatechs Corporation.
These inorganic fillers (G) can be used singly or in appropriate combination of two or more.
 本実施形態の樹脂組成物において、無機充填材(G)の含有量は、特に限定されないが、硬化物の耐熱性を向上させるという観点から、樹脂組成物中の樹脂固形分100質量部に対して、5質量部以上とすることが好ましく、10質量部以上とすることがより好ましく、20質量部以上とすることが更に好ましい。また、樹脂組成物の現像性を良好にするという観点から、樹脂組成物中の樹脂固形分100質量部に対して、400質量部以下とすることが好ましく、350質量部以下とすることがより好ましく、300質量部以下とすることが更に好ましく、100質量部以下とすることが更により好ましい。 In the resin composition of the present embodiment, the content of the inorganic filler (G) is not particularly limited, but from the viewpoint of improving the heat resistance of the cured product, the resin solid content in the resin composition is 100 parts by mass. It is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and still more preferably 20 parts by mass or more. Further, from the viewpoint of improving the developability of the resin composition, it is preferably 400 parts by mass or less, more preferably 350 parts by mass or less, with respect to 100 parts by mass of the resin solid content in the resin composition. Preferably, the amount is 300 parts by mass or less, and more preferably 100 parts by mass or less.
 <シランカップリング剤及び湿潤分散剤>
 本実施形態の樹脂組成物には、無機充填材の分散性、ポリマーおよび/または樹脂と、無機充填材との接着強度を向上させるために、シランカップリング剤及び/又は湿潤分散剤を併用することも可能である。
<Silane coupling agent and wetting and dispersing agent>
In the resin composition of this embodiment, in order to improve the dispersibility of the inorganic filler, the adhesion strength between the polymer and / or resin and the inorganic filler, a silane coupling agent and / or a wet dispersant is used in combination. It is also possible.
 これらのシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン系;γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系;γ-アクリロキシプロピルトリメトキシシラン等のアクリルシラン系;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等のカチオニックシラン系;フェニルシラン系のシランカップリング剤が挙げられる。これらのシランカップリング剤は、1種単独又は2種以上を適宜組み合わせて使用することも可能である。 These silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for inorganic surface treatment. Specific examples include, for example, aminosilanes such as γ-aminopropyltriethoxysilane and N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane; epoxysilanes such as γ-glycidoxypropyltrimethoxysilane Acrylic silanes such as γ-acryloxypropyltrimethoxysilane; cationic silanes such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride; phenylsilane silane cups A ring agent is mentioned. These silane coupling agents can be used alone or in combination of two or more.
 本実施形態の樹脂組成物において、シランカップリング剤の含有量は、特に限定されないが、通常、樹脂組成物100質量部に対して、0.1~10質量部である。 In the resin composition of the present embodiment, the content of the silane coupling agent is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
 湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。具体例としては、例えば、ビッグケミー・ジャパン(株)製のDISPERBYK(登録商標)-110、111、118、180、161、BYK(登録商標)-W996、W9010、W903等の湿潤分散剤が挙げられる。これらの湿潤分散剤は、1種単独又は2種以上を適宜混合して使用することも可能である。 The wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints. Specific examples include wet dispersing agents such as DISPERBYK (registered trademark) -110, 111, 118, 180, 161, BYK (registered trademark) -W996, W9010, and W903 manufactured by Big Chemie Japan Co., Ltd. . These wetting and dispersing agents can be used singly or in appropriate combination of two or more.
 本実施形態の樹脂組成物において、湿潤分散剤の含有量は、特に限定されないが、通常、樹脂組成物100質量部に対して、0.1~10質量部である。 In the resin composition of the present embodiment, the content of the wetting and dispersing agent is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
 <熱硬化促進剤>
 本実施形態の樹脂組成物においては、本実施形態の特性が損なわれない範囲において、熱硬化促進剤を併用することも可能である。
<Thermosetting accelerator>
In the resin composition of the present embodiment, a thermosetting accelerator can be used in combination as long as the characteristics of the present embodiment are not impaired.
 熱硬化促進剤としては、特に限定されないが、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物;アゾビスニトリル等のアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物;1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、トリフェニルイミダゾール(TPIZ)等のイミダゾール化合物などが挙げられる。 The thermosetting accelerator is not particularly limited, and examples thereof include organic peroxides exemplified by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, and the like. Azo compounds such as azobisnitrile; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N-ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline , N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, tertiary amines such as N-methylpiperidine; phenols such as phenol, xylenol, cresol, resorcin, catechol; lead naphthenate, stearic acid lead, Organic metal salts such as zinc phthalate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, and acetylacetone iron; these organic metal salts are dissolved in hydroxyl-containing compounds such as phenol and bisphenol Inorganic metal salts such as tin chloride, zinc chloride and aluminum chloride; Dioctyl tin oxide, other organic tin compounds such as alkyl tin and alkyl tin oxide; 1,2-dimethylimidazole, 1-benzyl-2-phenylimidazole, Examples thereof include imidazole compounds such as triphenylimidazole (TPIZ).
 これらの熱硬化促進剤は、1種単独又は2種以上を適宜混合して使用することも可能である。 These thermosetting accelerators can be used singly or in appropriate combination of two or more.
 本実施形態の樹脂組成物において、熱硬化促進剤の含有量は、特に限定されないが、通常、樹脂組成物100質量部に対して、0.1~10質量部である。 In the resin composition of the present embodiment, the content of the thermosetting accelerator is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
 <有機溶剤>
 本実施形態の樹脂組成物には、必要に応じて溶剤を含有していてもよい。例えば、有機溶剤を用いると、樹脂組成物の調製時における粘度を調整することができる。溶剤の種類は、樹脂組成物中の樹脂の一部又は全部を溶解可能なものであれば、特に限定されない。その具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブ等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド等のアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートが挙げられる。
<Organic solvent>
The resin composition of the present embodiment may contain a solvent as necessary. For example, when an organic solvent is used, the viscosity at the time of preparing the resin composition can be adjusted. The kind of solvent will not be specifically limited if it can melt | dissolve part or all of resin in a resin composition. Specific examples thereof include, but are not particularly limited to, for example, ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; propylene glycol monomethyl ether and acetate thereof Is mentioned.
 これらの有機溶剤は、1種単独又は2種以上を適宜混合して使用することも可能である。 These organic solvents can be used singly or in appropriate combination of two or more.
 <その他の成分>
 本実施形態の樹脂組成物には、本実施形態の特性が損なわれない範囲において、これまでに挙げられていない熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類等の種々の高分子化合物;これまでに挙げられていない難燃性の化合物;添加剤等の併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、メラミンやベンゾグアナミン等の窒素含有化合物、オキサジン環含有化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等が挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、重合禁止剤等が挙げられる。
 これらの成分は、1種単独又は2種以上を適宜混合して使用することも可能である。
<Other ingredients>
In the resin composition of the present embodiment, various polymer compounds such as thermosetting resins, thermoplastic resins and oligomers thereof, elastomers, etc., which have not been mentioned so far, as long as the characteristics of the present embodiment are not impaired. Flame retardant compound not mentioned so far; combined use of additives and the like is also possible. These are not particularly limited as long as they are generally used. Examples of flame retardant compounds include nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, phosphate compounds of phosphorus compounds, aromatic condensed phosphate esters, and halogen-containing condensed phosphate esters. Additives include UV absorbers, antioxidants, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, surface conditioners, brighteners, polymerization inhibitors, etc. It is done.
These components can be used alone or in appropriate combination of two or more.
 本実施形態の樹脂組成物において、その他の成分の含有量は、特に限定されないが、通常、樹脂組成物100質量部に対して、それぞれ0.1~10質量部である。 In the resin composition of the present embodiment, the content of other components is not particularly limited, but is usually 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.
 本実施形態の樹脂組成物は、化合物(A)、光硬化開始剤(B)、マレイミド化合物(C)及び/又はブロック化イソシアネート(D)、及び所望に応じてエポキシ樹脂(E)、エチレン性不飽和基を有する化合物(F)、無機充填材(G)、シランカップリング剤、湿潤分散剤、熱硬化促進剤、有機溶剤やその他の成分を適宜混合することにより調製される。本実施形態の樹脂組成物は、後述する本実施形態の支持体付き樹脂シートを作製する際のワニスとして、好適に使用することができる。 The resin composition of the present embodiment comprises a compound (A), a photocuring initiator (B), a maleimide compound (C) and / or a blocked isocyanate (D), and, if desired, an epoxy resin (E), ethylenic It is prepared by appropriately mixing a compound (F) having an unsaturated group, an inorganic filler (G), a silane coupling agent, a wetting and dispersing agent, a thermosetting accelerator, an organic solvent and other components. The resin composition of this embodiment can be used suitably as a varnish at the time of producing the resin sheet with a support body of this embodiment mentioned later.
 <樹脂組成物の製造方法>
 本実施形態の樹脂組成物の製造方法は、特に限定されず、例えば、上述した各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。
<Method for producing resin composition>
The manufacturing method of the resin composition of this embodiment is not specifically limited, For example, the method of mix | blending each component mentioned above in a solvent sequentially and fully stirring is mentioned.
 樹脂組成物の製造時には、必要に応じて各成分を均一に溶解又は分散させるための公知の処理(攪拌、混合、混練処理等)を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことにより、樹脂組成物に対する無機充填材(G)の分散性を向上させることができる。上記の攪拌、混合、混練処理は、例えば、超音波ホモジナイザー等の分散を目的とした攪拌装置、三本ロール、ボールミル、ビーズミル、サンドミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。また、本実施形態の樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されず、その具体例は、上述したとおりである。 In the production of the resin composition, a known process (such as stirring, mixing, and kneading process) for uniformly dissolving or dispersing each component can be performed as necessary. Specifically, the dispersibility of the inorganic filler (G) in the resin composition can be improved by performing the stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability. The stirring, mixing, and kneading processes described above are, for example, a stirring device for dispersion such as an ultrasonic homogenizer, a device for mixing such as a three-roll, ball mill, bead mill, and sand mill, or a revolving or rotating type. It can carry out suitably using well-known apparatuses, such as a mixing apparatus. Moreover, when preparing the resin composition of this embodiment, an organic solvent can be used as needed. The type of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition, and specific examples thereof are as described above.
 <用途>
 本実施形態の樹脂組成物は、絶縁性の樹脂組成物が必要とされる用途に使用することができ、特に限定されないが、感光性フィルム、支持体付き感光性フィルム、支持体付き樹脂シート、プリプレグ等の絶縁樹脂シート、回路基板(積層板用途、多層プリント配線板用途等)、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等の用途に使用することができる。なかでも、多層プリント配線板の絶縁層用樹脂組成物やソルダーレジストとして好適に使用することができる。
<Application>
The resin composition of the present embodiment can be used for applications where an insulating resin composition is required, and is not particularly limited, but a photosensitive film, a photosensitive film with a support, a resin sheet with a support, Used for insulating resin sheets such as prepreg, circuit boards (for laminated boards, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding materials, semiconductor encapsulants, hole-filling resins, component-filling resins, etc. be able to. Especially, it can be conveniently used as a resin composition for insulating layers of a multilayer printed wiring board or a solder resist.
 <支持体付き樹脂シート>
 本実施形態の支持体付き樹脂シートは、支持体と、該支持体の表面に形成され、本実施形態の樹脂組成物を含む樹脂組成物層とを備える、上述の樹脂組成物を支持体の片面又は両面に塗布した支持体付き樹脂シートである。支持体付き樹脂シートは、樹脂組成物を支持体上に塗布、及び乾燥して製造することができる。
<Resin sheet with support>
The resin sheet with a support of the present embodiment comprises the support and a resin composition layer that is formed on the surface of the support and includes the resin composition of the present embodiment. It is the resin sheet with a support body apply | coated to the single side | surface or both surfaces. The resin sheet with a support can be produced by applying the resin composition onto a support and drying.
 本実施形態の支持体付き樹脂シートにおいて使用される支持体は、特に限定されないが、公知のものを使用することができ、樹脂フィルムであることが好ましい。樹脂フィルムとしては、例えば、ポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、ポリエチレンナフタレートフィルム、ポリビニルアルコールフィルム、トリアセチルアセテートフィルム等の樹脂フィルムが挙げられる。その中でもPETフィルムが好ましい。 The support used in the resin sheet with a support of the present embodiment is not particularly limited, but a known one can be used, and a resin film is preferable. Examples of the resin film include polyimide film, polyamide film, polyester film, polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polypropylene (PP) film, polyethylene (PE) film, polyethylene naphthalate film, and polyvinyl alcohol. Examples thereof include resin films such as films and triacetyl acetate films. Among these, a PET film is preferable.
 上記樹脂フィルムは、樹脂組成物層からの剥離を容易にするため、剥離剤を表面に塗布してあるものが好適に使用できる。樹脂フィルムの厚さは、5μm~100μmの範囲であることが好ましく、10μm~50μmの範囲であることがより好ましい。この厚さが5μm未満では、現像前に行う支持体剥離の際に支持体が破れやすくなる傾向があり、厚さが100μmを超えると、支持体上から露光する際の解像度が低下する傾向がある。 The resin film having a release agent coated on the surface thereof can be suitably used in order to facilitate peeling from the resin composition layer. The thickness of the resin film is preferably in the range of 5 μm to 100 μm, and more preferably in the range of 10 μm to 50 μm. If the thickness is less than 5 μm, the support tends to be broken when the support is peeled off before development, and if the thickness exceeds 100 μm, the resolution when exposed from the support tends to decrease. is there.
 また、紫外線等の活性エネルギー線による露光時の光の散乱を低減するため、樹脂フィルムは透明性に優れるものが好ましい。 Also, in order to reduce light scattering during exposure by active energy rays such as ultraviolet rays, it is preferable that the resin film has excellent transparency.
 さらに、本実施形態における支持体付き樹脂シートにおいて、その樹脂組成物層は、保護フィルムで保護されていてもよい。
 樹脂組成物層側を保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムとしては上記の樹脂フィルムと同様の材料により構成されたフィルムを用いることができる。保護フィルムの厚さは特に限定されないが、1μm~50μmの範囲であることが好ましく、5μm~40μmの範囲であることがより好ましい。厚さが1μm未満では、保護フィルムの取り扱い性が低下する傾向があり、50μmを超えると廉価性に劣る傾向がある。なお、保護フィルムは、樹脂組成物層と支持体との接着力に対して、樹脂組成物層と保護フィルムとの接着力の方が小さいものが好ましい。
Furthermore, in the resin sheet with a support in the present embodiment, the resin composition layer may be protected with a protective film.
By protecting the resin composition layer side with a protective film, it is possible to prevent adhesion or scratches of dust or the like to the surface of the resin composition layer. As the protective film, a film made of the same material as the above resin film can be used. The thickness of the protective film is not particularly limited, but is preferably in the range of 1 μm to 50 μm, and more preferably in the range of 5 μm to 40 μm. When the thickness is less than 1 μm, the handleability of the protective film tends to be lowered, and when it exceeds 50 μm, the inexpensiveness tends to be inferior. The protective film preferably has a smaller adhesive force between the resin composition layer and the protective film than the adhesive force between the resin composition layer and the support.
 本実施形態の支持体付き樹脂シートの製造方法は、特に限定されないが、例えば、本実施形態の樹脂組成物をPETフィルムなどの支持体に塗布して有機溶剤を乾燥により除去することにより、支持体付き樹脂シートを製造する方法などが挙げられる。 The production method of the resin sheet with a support of the present embodiment is not particularly limited. For example, the resin sheet of the present embodiment is applied to a support such as a PET film and the organic solvent is removed by drying. Examples thereof include a method for producing a body-attached resin sheet.
 上記塗布は、例えば、ロールコーター、コンマコーター、グラビアコーター、ダイコーター、バーコーター、リップコーター、ナイフコーター、スクイズコーター等を用いた公知の方法で行うことができる。上記乾燥は、例えば、60~200℃の乾燥機中で、1~60分加熱させる方法などにより行うことができる。 The coating can be performed by a known method using, for example, a roll coater, comma coater, gravure coater, die coater, bar coater, lip coater, knife coater, squeeze coater or the like. The drying can be performed, for example, by a method of heating in a dryer at 60 to 200 ° C. for 1 to 60 minutes.
 樹脂組成物層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止する観点から、樹脂組成物層の総質量に対して5質量%以下とすることが好ましい。支持体に対する樹脂組成物層の厚みは、取り扱い性を向上させるという観点から、支持体付き樹脂シートの樹脂組成物層厚で1.0μm以上とすることが好ましい。また、透過率を向上させて現像性を良好にするという観点から、300μm以下とすることが好ましい。 The amount of the residual organic solvent in the resin composition layer is preferably 5% by mass or less with respect to the total mass of the resin composition layer from the viewpoint of preventing diffusion of the organic solvent in the subsequent step. The thickness of the resin composition layer with respect to the support is preferably 1.0 μm or more in terms of the resin composition layer thickness of the resin sheet with the support, from the viewpoint of improving the handleability. Further, from the viewpoint of improving the transmittance and improving the developability, the thickness is preferably 300 μm or less.
 本実施形態の支持体付き樹脂シートは、多層プリント配線板の層間絶縁層として使用することができる。 The resin sheet with a support of the present embodiment can be used as an interlayer insulating layer of a multilayer printed wiring board.
 本実施形態の多層プリント配線板は、例えば、上述の支持体付き樹脂シートを1枚以上重ねて硬化して得ることができる。 The multilayer printed wiring board of the present embodiment can be obtained by, for example, stacking and curing one or more of the above-described resin sheets with a support.
 <多層プリント配線板>
 本実施形態の多層プリント配線板は、本実施形態の樹脂組成物を含む層間絶縁層を備え、具体的には以下の方法により製造することができる。
<Multilayer printed wiring board>
The multilayer printed wiring board of the present embodiment includes an interlayer insulating layer containing the resin composition of the present embodiment, and can be specifically manufactured by the following method.
 (ラミネート工程)
 本実施形態の支持体付き樹脂シートの樹脂組成物層側を、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板としては、例えば、ガラスエポキシ基板、金属基板、セラミック基板、シリコン基板、半導体封止樹脂基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成された基板をいう。また、導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっている基板も、ここでいう回路基板に含まれる。なお、導体層表面には、黒化処理、銅エッチング等により予め粗面化処理が施されていてもよい。ラミネート工程において、支持体付き樹脂シートが保護フィルムを有している場合には該保護フィルムを剥離除去した後、必要に応じて支持体付き樹脂シート及び回路基板をプレヒートし、樹脂組成物層を加圧及び加熱しながら回路基板に圧着する。本実施形態の支持体付き樹脂シートにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。
(Lamination process)
The resin composition layer side of the resin sheet with a support of the present embodiment is laminated on one or both sides of a circuit board using a vacuum laminator. Examples of the circuit board include a glass epoxy board, a metal board, a ceramic board, a silicon board, a semiconductor sealing resin board, a polyester board, a polyimide board, a BT resin board, and a thermosetting polyphenylene ether board. Here, the circuit board refers to a board on which a conductor layer (circuit) patterned on one or both sides of the board is formed. Further, in a multilayer printed wiring board in which conductor layers and insulating layers are alternately laminated, a substrate that is a conductor layer (circuit) in which one or both surfaces of the outermost layer of the multilayer printed wiring board are patterned, It is included in the circuit board here. The surface of the conductor layer may be previously roughened by blackening treatment, copper etching, or the like. In the laminating step, when the resin sheet with a support has a protective film, the protective film is peeled and removed, and then the resin sheet with the support and the circuit board are preheated as necessary, and the resin composition layer is removed. Crimp to circuit board while pressing and heating. In the resin sheet with a support of this embodiment, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used.
 ラミネート工程の条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは50℃~140℃とし、圧着圧力を好ましくは1kgf/cm~15kgf/cm、圧着時間を好ましくは5秒間~300秒間とし、空気圧を20mmHg以下とする減圧下でラミネートするのが好ましい。また、ラミネート工程は、バッチ式であってもロールを用いる連続式であってもよい。真空ラミネート法は、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニッコー・マテリアルズ(株)製2ステージビルドアップラミネーター等を挙げることができる。 The conditions for the laminating step are not particularly limited. For example, the pressure bonding temperature (laminating temperature) is preferably 50 ° C. to 140 ° C., the pressure bonding pressure is preferably 1 kgf / cm 2 to 15 kgf / cm 2 , and the pressure bonding time. Is preferably 5 seconds to 300 seconds, and lamination is performed under reduced pressure so that the air pressure is 20 mmHg or less. The laminating step may be a batch type or a continuous type using a roll. The vacuum laminating method can be performed using a commercially available vacuum laminator. As a commercially available vacuum laminator, for example, a 2-stage build-up laminator manufactured by Nikko Materials Co., Ltd. can be exemplified.
 (露光工程)
 ラミネート工程により、回路基板上に支持体付き樹脂シートが設けられた後、樹脂組成物層の所定部分に活性エネルギー線を照射し、照射部の樹脂組成物層を硬化させる露光工程を行う。活性エネルギー線の照射は、マスクパターンを通してもよいし、直接活性エネルギー線を照射する直接描画法を用いてもよい。
(Exposure process)
After the resin sheet with a support is provided on the circuit board by the laminating process, an exposure process is performed in which a predetermined portion of the resin composition layer is irradiated with active energy rays to cure the resin composition layer of the irradiated portion. The active energy ray may be irradiated through a mask pattern or a direct drawing method in which an active energy ray is directly irradiated.
 活性エネルギー線としては、例えば、紫外線、可視光線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線の照射量はおおむね10mJ/cm~1000mJ/cmである。マスクパターンを通す露光方法にはマスクパターンをプリント配線板に密着させて行う接触露光法と、密着させずに平行光線を使用して露光する非接触露光法とがあるが、どちらを用いてもかまわない。また、樹脂組成物層上に支持体が存在している場合は、支持体上から露光してもよいし、支持体を剥離後に露光してもよい。 Examples of active energy rays include ultraviolet rays, visible rays, electron beams, X-rays and the like, and ultraviolet rays are particularly preferable. The irradiation amount of ultraviolet rays is about 10 mJ / cm 2 to 1000 mJ / cm 2 . There are two methods for exposing the mask pattern: a contact exposure method in which the mask pattern is brought into close contact with the printed wiring board, and a non-contact exposure method in which exposure is carried out using parallel light rays without being brought into close contact. It doesn't matter. Moreover, when the support body exists on a resin composition layer, you may expose from a support body and may expose after a support body peels.
 (現像工程)
 露光工程後、樹脂組成物層上に支持体が存在している場合にはその支持体を除去した後、ウエット現像で、光硬化されていない部分(未露光部)を除去して現像することにより、絶縁層のパターンを形成することができる。
(Development process)
After the exposure step, if a support is present on the resin composition layer, the support is removed, and then development is performed by removing the uncured portion (unexposed portion) by wet development. Thus, the pattern of the insulating layer can be formed.
 上記ウエット現像の場合、現像液としては、未露光部分を選択的に溶出するものであれば、特に限定されるものではないが、アルカリ性水溶液、水系現像液、有機溶剤等の現像液が用いられる。本実施形態においては、特にアルカリ性水溶液による現像工程が好ましい。これらの現像液は、1種単独で又は2種類以上を組み合わせて用いることができる。また、現像方法としては、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法で行うことができる。 In the case of the above-described wet development, the developer is not particularly limited as long as it selectively elutes an unexposed portion, but a developer such as an alkaline aqueous solution, an aqueous developer, or an organic solvent is used. . In the present embodiment, a development step using an alkaline aqueous solution is particularly preferable. These developers can be used singly or in combination of two or more. Moreover, as a developing method, it can carry out by well-known methods, such as spraying, rocking immersion, brushing, and scraping, for example.
 現像液として使用されるアルカリ水溶液は、特に限定されるものではないが、例えば、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、4-ホウ酸ナトリウム、アンモニア、アミン類等が挙げられる。 The alkaline aqueous solution used as the developer is not particularly limited. For example, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, 4-sodium borate, ammonia And amines.
 上記アルカリ水溶液の濃度は、現像液全量に対して0.1質量%~60質量%であることが好ましい。また、アルカリ水溶液の温度は、現像性にあわせて調節することができる。さらに、これらのアルカリ水溶液は、1種単独で又は2種類以上を組み合わせて用いることができる。 The concentration of the alkaline aqueous solution is preferably 0.1% by mass to 60% by mass with respect to the total amount of the developer. Moreover, the temperature of aqueous alkali solution can be adjusted according to developability. Furthermore, these aqueous alkali solutions can be used singly or in combination of two or more.
 本実施形態のパターン形成においては、必要に応じて、上記した2種類以上の現像方法を併用して用いてもよい。現像の方式には、ディップ方式、パドル方式、スプレー方式、高圧スプレー方式、ブラッシング、スラッピング等があり、高圧スプレー方式が解像度向上のためには好適である。スプレー方式を採用する場合のスプレー圧としては、0.02MPa~0.5MPaが好ましい。 In the pattern formation of this embodiment, two or more kinds of development methods described above may be used in combination as necessary. Development methods include a dip method, a paddle method, a spray method, a high-pressure spray method, brushing, and slapping, and the high-pressure spray method is suitable for improving the resolution. The spray pressure when the spray method is employed is preferably 0.02 MPa to 0.5 MPa.
 (ポストベーク工程)
 上記現像工程終了後、ポストベーク工程を行い、絶縁層(硬化物)を形成する。ポストベーク工程としては、高圧水銀ランプによる紫外線照射工程やクリーンオーブンを用いた加熱工程等が挙げられる。紫外線を照射させる場合は必要に応じてその照射量を調整することができ、例えば0.05J/cm~10J/cm程度の照射量で照射を行うことができる。また加熱の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分間~180分間の範囲、より好ましくは160℃~200℃で30分間~150分間の範囲で選択される。
(Post bake process)
After the development step, a post-bake step is performed to form an insulating layer (cured product). Examples of the post-bake process include an ultraviolet irradiation process using a high-pressure mercury lamp and a heating process using a clean oven. Case of ultraviolet irradiation can adjust its dose optionally, the irradiation can be carried out, for example 0.05J / cm 2 ~ 10J / cm 2 of about dose. The heating conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. It is selected in the range of 30 minutes to 150 minutes at ˜200 ° C.
 (めっき工程)
 次に、乾式めっき又は湿式めっきにより絶縁層表面に導体層を形成する。乾式めっきとしては、蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法を使用することができる。蒸着法(真空蒸着法)は、例えば、支持体を真空容器内に入れ、金属を加熱蒸発させることにより絶縁層上に金属膜形成を行うことができる。スパッタリング法も、例えば、支持体を真空容器内に入れ、アルゴン等の不活性ガスを導入し、直流電圧を印加して、イオン化した不活性ガスをターゲット金属に衝突させ、叩き出された金属により絶縁層上に金属膜形成を行うことができる。
(Plating process)
Next, a conductor layer is formed on the surface of the insulating layer by dry plating or wet plating. As the dry plating, known methods such as vapor deposition, sputtering, and ion plating can be used. In the vapor deposition method (vacuum vapor deposition method), for example, a metal film can be formed on the insulating layer by placing the support in a vacuum vessel and evaporating the metal by heating. In the sputtering method, for example, the support is placed in a vacuum vessel, an inert gas such as argon is introduced, a direct current voltage is applied, the ionized inert gas is made to collide with the target metal, and the struck metal is used. A metal film can be formed on the insulating layer.
 湿式めっきの場合は、形成された絶縁層の表面に対して、膨潤液による膨潤処理、酸化剤による粗化処理及び中和液による中和処理をこの順に行うことによって絶縁層表面を粗化する。膨潤液による膨潤処理は、絶縁層を50℃~80℃で1分間~20分間膨潤液に浸漬させることで行われる。膨潤液としてはアルカリ溶液が挙げられ、該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。市販されている膨潤液としては、例えば、上村工業(株)製のアップデス(登録商標)MDS-37等を挙げることができる。 In the case of wet plating, the surface of the insulating layer is roughened by performing swelling treatment with a swelling liquid, roughening treatment with an oxidizing agent, and neutralization treatment with a neutralizing liquid in this order. . The swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 1 to 20 minutes. Examples of the swelling liquid include an alkaline solution, and examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution. Examples of commercially available swelling liquids include Updes (registered trademark) MDS-37 manufactured by Uemura Kogyo Co., Ltd.
 酸化剤による粗化処理は、絶縁層を60℃~80℃で5分間~30分間酸化剤溶液に浸漬させることで行われる。酸化剤としては、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等を挙げることができる。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%~10質量%とするのが好ましい。市販されている酸化剤としては、例えば、上村工業(株)製アップデス(登録商標)MDE-40、アップデス(登録商標)ELC-SH等のアルカリ性過マンガン酸溶液が挙げられる。中和液による中和処理は、30℃~50℃で1分間~10分間中和液に浸漬させることで行われる。中和液としては、酸性の水溶液が好ましく、市販品としては、上村工業(株)製のアップデス(登録商標)MDN-62が挙げられる。 The roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 5 to 30 minutes. Examples of the oxidizing agent include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can. The concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass. Examples of commercially available oxidizing agents include alkaline permanganate solutions such as Updes (registered trademark) MDE-40 and Updes (registered trademark) ELC-SH manufactured by Uemura Kogyo Co., Ltd. The neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 1 to 10 minutes. The neutralizing solution is preferably an acidic aqueous solution, and a commercially available product is Updes (registered trademark) MDN-62 manufactured by Uemura Kogyo Co., Ltd.
 次いで、無電解めっきと電解めっきとを組み合わせて導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解めっきのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、サブトラクティブ法、セミアディティブ法などを用いることができる。 Next, a conductor layer is formed by combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a pattern formation method thereafter, for example, a subtractive method, a semi-additive method, or the like can be used.
 <半導体装置>
 本実施形態の半導体装置は、本実施形態の樹脂組成物を含む層間絶縁層を備え、具体的には以下の方法により製造することができる。本実施形態の多層プリント配線板の導通箇所に、半導体チップを実装することにより半導体装置を製造することができる。ここで、導通箇所とは、多層プリント配線板における電気信号を伝える箇所のことであって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
<Semiconductor device>
The semiconductor device of this embodiment includes an interlayer insulating layer containing the resin composition of this embodiment, and can be specifically manufactured by the following method. A semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present embodiment. Here, the conduction location is a location for transmitting an electrical signal in the multilayer printed wiring board, and the location may be the surface or an embedded location. The semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
 本実施形態の半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。 The semiconductor chip mounting method for manufacturing the semiconductor device of the present embodiment is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, a bump Examples include a mounting method using a none buildup layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
 また、本実施形態の支持体付き樹脂シートを半導体チップにラミネートすることによっても、半導体装置を製造することができる。ラミネート後は前述の多層プリント配線板と同様の方法を用いて製造することができる。 Also, a semiconductor device can be manufactured by laminating the resin sheet with a support of this embodiment on a semiconductor chip. After lamination, it can be produced by using the same method as the above multilayer printed wiring board.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 〔実施例1〕
 (樹脂組成物及び支持体付き樹脂シートの作成)
 化合物(A)として、TrisP-PAエポキシアクリレート化合物のプロピレングリコールモノメチルエーテルアセテート(以下PGMEAと略す場合がある。)溶液(KAYARAD(登録商標)ZCR-6002H、不揮発分65質量%、酸価:60mgKOH/g、日本化薬(株)製)81.2質量部(不揮発分換算で52.8質量部)、光硬化開始剤(B)として、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Irgacure(登録商標)369、BASFジャパン(株)製)5質量部、マレイミド化合物(C)として、マレイミド化合物(BMI-2300、大和化成工業(株)製)3.5質量部、エポキシ樹脂(E)として、ビフェニルアラルキル型エポキシ樹脂(NC3000H、日本化薬(株)製)19.8質量部、エチレン性不飽和基を有する化合物(F)として、ジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA、日本化薬(株)製)18.9質量部、無機充填材(G)として、エポキシシラン処理シリカのメチルエチルケトン(以下MEKと略す場合がある)スラリー(SC2050MB、平均粒径0.5μm、不揮発分70質量%、(株)アドマテックス製)71.4質量部(不揮発分換算で50質量部)を配合し、超音波ホモジナイザーで攪拌してワニス(樹脂組成物の溶液)を得た。これらのワニスを厚さ38μmのPETフィルム(ユニピール(登録商標)TR1-38、ユニチカ(株)製、商品名)上に塗布し、80℃で7分間加熱乾燥して、PETフィルムを支持体とし樹脂組成物層の厚さが30μmである支持体付き樹脂シートを得た。
[Example 1]
(Production of resin composition and resin sheet with support)
As the compound (A), a TrisP-PA epoxy acrylate compound in propylene glycol monomethyl ether acetate (hereinafter sometimes abbreviated as PGMEA) solution (KAYARAD (registered trademark) ZCR-6002H, nonvolatile content 65 mass%, acid value: 60 mgKOH / g, manufactured by Nippon Kayaku Co., Ltd.) 81.2 parts by mass (52.8 parts by mass in terms of nonvolatile content), 2-benzyl-2-dimethylamino-1- (4- Morpholinophenyl) -butanone-1 (Irgacure (registered trademark) 369, manufactured by BASF Japan Ltd.) 5 parts by mass, maleimide compound (C), maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 3 .5 parts by mass, as epoxy resin (E), biphenyl aralkyl type epoxy resin (NC300 H, manufactured by Nippon Kayaku Co., Ltd.) 19.8 parts by mass, as compound (F) having an ethylenically unsaturated group, dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.) 18.9 parts by mass, as inorganic filler (G), methyl ethyl ketone (hereinafter sometimes abbreviated as MEK) slurry of epoxysilane-treated silica (SC2050MB, average particle size 0.5 μm, nonvolatile content 70% by mass, AD Co., Ltd.) 71.4 parts by mass (manufactured by Mattex) (50 parts by mass in terms of non-volatile content) was blended and stirred with an ultrasonic homogenizer to obtain a varnish (resin composition solution). These varnishes were coated on a 38 μm thick PET film (Unipeel® TR1-38, trade name, manufactured by Unitika Co., Ltd.) and dried by heating at 80 ° C. for 7 minutes to use the PET film as a support. A resin sheet with a support having a resin composition layer thickness of 30 μm was obtained.
 なお、前記KAYARAD(登録商標)ZCR-6002Hは、上記化合物(A1)および上記化合物(A2)~(A5)のいずれか一種以上を含む混合物である。 The KAYARAD (registered trademark) ZCR-6002H is a mixture containing at least one of the compound (A1) and the compounds (A2) to (A5).
 (内層回路基板の作成)
 内層回路を形成したガラス布基材BT樹脂両面銅張積層板(銅箔厚さ18μm、厚み0.2mm、三菱ガス化学(株)製CCL(登録商標)-HL832NS)の両面をメック(株)製CZ8100にて銅表面の粗化処理を行い、内層回路基板を得た。
(Creation of inner layer circuit board)
Both sides of glass cloth base material BT resin double-sided copper-clad laminate (copper foil thickness 18μm, thickness 0.2mm, Mitsubishi Gas Chemical Co., Ltd. CCL (registered trademark) -HL832NS) on which inner layer circuit is formed MEC A copper surface was roughened with CZ8100 manufactured to obtain an inner layer circuit board.
 (評価用積層体の作製)
 前記支持体付き樹脂シートの樹脂面を内層回路基板上に配置し、真空ラミネーター(ニッコー・マテリアルズ(株)製)を用いて、30秒間真空引き(5.0MPa以下)を行った後、圧力10kgf/cm、温度70℃で30秒間の積層成形を行った。さらに圧力10kgf/cm、温度70℃で60秒間の積層成形を行うことで内層回路基板と樹脂組成物層と支持体が積層された積層体を得た。得られた積層体に200mJ/cmの紫外線を照射する露光工程を施し、支持体をはがし取って、1質量%の炭酸ナトリウム水溶液で現像し、評価用積層体とした。
(Preparation of evaluation laminate)
The resin surface of the resin sheet with the support is placed on an inner layer circuit board, and after vacuuming (5.0 MPa or less) for 30 seconds using a vacuum laminator (Nikko Materials Co., Ltd.), pressure Lamination molding was performed at 10 kgf / cm 2 and a temperature of 70 ° C. for 30 seconds. Furthermore, the laminated body by which the inner-layer circuit board, the resin composition layer, and the support body were laminated | stacked by performing lamination molding for 60 seconds at a pressure of 10 kgf / cm < 2 > and temperature of 70 degreeC was obtained. The obtained laminate was subjected to an exposure step of irradiating ultraviolet rays of 200 mJ / cm 2 , the support was peeled off, and developed with a 1% by mass aqueous sodium carbonate solution to obtain a laminate for evaluation.
 (評価用硬化物の作製)
 前記支持体付き樹脂シートに200mJ/cmの紫外線を照射し、さらに180℃、120分間加熱処理するポストベーク工程を施した後、支持体をはがし取って評価用硬化物とした。
(Production of cured product for evaluation)
The resin sheet with the support was irradiated with 200 mJ / cm 2 of ultraviolet rays, and further subjected to a post-baking step of heat treatment at 180 ° C. for 120 minutes, and then the support was peeled off to obtain a cured product for evaluation.
 〔実施例2〕
 化合物(A)として、TrisP-PAエポキシアクリレート化合物のPGMEA溶液(KAYARAD(登録商標)ZCR-6002H、不揮発分65質量%、酸価:60mgKOH/g、日本化薬(株)製)82.1質量部(不揮発分換算で53.4質量部)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Irgacure(登録商標)369、BASFジャパン(株)製)5質量部、ブロック化イソシアネート化合物(D)として、スミジュール(登録商標)BL-3175(ソルベントナフサ溶液、不揮発分75質量%(但し、ブロック剤は含む)、住化コベストロウレタン(株)製、商品名)3.3質量部(不揮発分換算で2.5質量部(但し、ブロック剤は含む))、ビフェニルアラルキル型エポキシ樹脂(NC3000H、日本化薬(株)製)19.9質量部、ジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA、日本化薬(株)製)19.2質量部、エポキシシラン処理シリカのMEKスラリー(SC2050MB、平均粒径0.5μm、不揮発分70質量%、(株)アドマテックス製)71.4質量部(不揮発分換算で50質量部)を配合し、超音波ホモジナイザーで攪拌してワニス(樹脂組成物の溶液)を得た。以降は実施例1と同様にして支持体付き樹脂シート、評価用積層体、評価用硬化物を得た。
[Example 2]
As the compound (A), a PGMEA solution of TrisP-PA epoxy acrylate compound (KAYARAD (registered trademark) ZCR-6002H, non-volatile content 65% by mass, acid value: 60 mgKOH / g, manufactured by Nippon Kayaku Co., Ltd.) 82.1 mass Parts (53.4 parts by mass in terms of nonvolatile content), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (Irgacure (registered trademark) 369, manufactured by BASF Japan Ltd.) 5 parts by mass, as blocked isocyanate compound (D), Sumidur (registered trademark) BL-3175 (solvent naphtha solution, non-volatile content: 75% by mass (including blocking agent), manufactured by Sumika Covestro Urethane Co., Ltd. , Product name) 3.3 parts by mass (2.5 parts by mass in terms of non-volatile content (however, the blocking agent is included)), biphenyla Rukyle type epoxy resin (NC3000H, manufactured by Nippon Kayaku Co., Ltd.) 19.9 parts by mass, dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA, manufactured by Nippon Kayaku Co., Ltd.) 19.2 parts by mass, epoxy silane MEK slurry of treated silica (SC2050MB, average particle size 0.5 μm, non-volatile content 70% by mass, manufactured by Admatex Co., Ltd.) 71.4 parts by mass (50 parts by mass in terms of non-volatile content) was blended, and an ultrasonic homogenizer was used. Stirring gave a varnish (resin composition solution). Thereafter, in the same manner as in Example 1, a resin sheet with a support, a laminate for evaluation, and a cured product for evaluation were obtained.
 〔実施例3〕
 化合物(A)として、TrisP-PAエポキシアクリレート化合物のPGMEA溶液(KAYARAD(登録商標)ZCR-6002H、不揮発分65質量%、酸価:60mgKOH/g、日本化薬(株)製)80.5質量部(不揮発分換算で52.3質量部)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Irgacure(登録商標)369、BASFジャパン(株)製)5質量部、マレイミド化合物(C)として、マレイミド化合物(BMI-2300、大和化成工業(株)製)3.5質量部、ブロック化イソシアネート化合物(D)として、スミジュール(登録商標)BL-3175(ソルベントナフサ溶液、不揮発分75質量%(但し、ブロック剤は含む)、住化コベストロウレタン(株)製商品名)3.3質量部(不揮発分換算で2.5質量部(但し、ブロック剤は含む))、ビフェニルアラルキル型エポキシ樹脂(NC3000H、日本化薬(株)製)18質量部、ジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA、日本化薬(株)製)18.7質量部、エポキシシラン処理シリカのMEKスラリー(SC2050MB、平均粒径0.5μm、不揮発分70質量%、(株)アドマテックス製)71.4質量部(不揮発分換算で50質量部)を配合し、超音波ホモジナイザーで攪拌してワニス(樹脂組成物の溶液)を得た。以降は実施例1と同様にして支持体付き樹脂シート、評価用積層体、評価用硬化物を得た。
Example 3
As compound (A), a PGMEA solution of TrisP-PA epoxy acrylate compound (KAYARAD (registered trademark) ZCR-6002H, nonvolatile content 65 mass%, acid value: 60 mg KOH / g, manufactured by Nippon Kayaku Co., Ltd.) 80.5 mass Parts (52.3 parts by mass in terms of nonvolatile content), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (Irgacure (registered trademark) 369, manufactured by BASF Japan Ltd.) 5 parts by mass, maleimide compound (C) as maleimide compound (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.) 3.5 parts by mass, and blocked isocyanate compound (D) as Sumidur (registered trademark) BL-3175 (Solvent naphtha solution, non-volatile content 75% by mass (including blocking agent), Sumika Cobest wax letter (Product name) 3.3 parts by mass (2.5 parts by mass in terms of non-volatile content (including block agent)), biphenyl aralkyl epoxy resin (NC3000H, Nippon Kayaku Co., Ltd.) 18 parts by mass Part, dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA, Nippon Kayaku Co., Ltd.) 18.7 parts by mass, epoxysilane-treated silica MEK slurry (SC2050MB, average particle size 0.5 μm, nonvolatile content 70 mass) %, 71.4 parts by mass (manufactured by Admatechs Co., Ltd.) (50 parts by mass in terms of non-volatile content), and stirred with an ultrasonic homogenizer to obtain a varnish (resin composition solution). Thereafter, in the same manner as in Example 1, a resin sheet with a support, a laminate for evaluation, and a cured product for evaluation were obtained.
 〔比較例1〕
 化合物(A)の代わりにビスフェノールF型エポキシアクリレート(KAYARAD(登録商標)ZFR-1553H、不揮発分68質量%、酸価:70mgKOH/g、日本化薬(株)製)77.6質量部(不揮発分換算で52.8質量部)を用いた以外は実施例1と同様にしてワニスを調製し、支持体付き樹脂シート、評価用積層体、評価用硬化物を得た。
[Comparative Example 1]
77.6 parts by mass (non-volatile) of bisphenol F type epoxy acrylate (KAYARAD (registered trademark) ZFR-1553H, non-volatile content 68% by mass, acid value: 70 mg KOH / g, manufactured by Nippon Kayaku Co., Ltd.) instead of compound (A) A varnish was prepared in the same manner as in Example 1 except that 52.8 parts by mass in terms of minutes was used, and a resin sheet with a support, a laminate for evaluation, and a cured product for evaluation were obtained.
 〔比較例2〕
 化合物(A)の代わりにクレゾールノボラック型エポキシアクリレート(EA-7140、不揮発分73質量%、酸価:70mgKOH/g、新中村化学工業(株)製)72.3質量部(不揮発分換算で52.8質量部)を用いた以外は実施例1と同様にしてワニスを調製し、支持体付き樹脂シート、評価用積層体、評価用硬化物を得た。
[Comparative Example 2]
Instead of the compound (A), cresol novolak type epoxy acrylate (EA-7140, non-volatile content 73 mass%, acid value: 70 mg KOH / g, manufactured by Shin-Nakamura Chemical Co., Ltd.) 72.3 parts by mass (non-volatile conversion 52 .8 parts by mass) was used in the same manner as in Example 1 to obtain a resin sheet with a support, a laminate for evaluation, and a cured product for evaluation.
 〔比較例3〕
 化合物(A)の代わりにクレゾールノボラック型エポキシアクリレート(EA-7420、不揮発分73質量%、酸価:1mgKOH/g、新中村化学工業(株)製)72.3質量部(不揮発分換算で52.8質量部)を用いた以外は実施例1と同様にしてワニスを調製し、支持体付き樹脂シート、評価用積層体、評価用硬化物を得た。
[Comparative Example 3]
Instead of the compound (A), cresol novolac epoxy acrylate (EA-7420, nonvolatile content 73 mass%, acid value: 1 mg KOH / g, manufactured by Shin-Nakamura Chemical Co., Ltd.) 72.3 parts by mass (52 in terms of nonvolatile content) .8 parts by mass) was used in the same manner as in Example 1 to obtain a resin sheet with a support, a laminate for evaluation, and a cured product for evaluation.
 〔比較例4〕
 化合物(A)の代わりにビフェニルアラルキル型エポキシアクリレート(KAYARAD(登録商標)ZCR-1642H、不揮発分60質量%、酸価:99mgKOH/g、日本化薬(株)製)88質量部(不揮発分換算で52.8質量部)を用いた以外は実施例1と同様にしてワニスを調製し、支持体付き樹脂シート、評価用積層体、評価用硬化物を得た。
[Comparative Example 4]
Instead of compound (A), biphenyl aralkyl type epoxy acrylate (KAYARAD (registered trademark) ZCR-1642H, non-volatile content 60 mass%, acid value: 99 mg KOH / g, manufactured by Nippon Kayaku Co., Ltd.) 88 mass parts (non-volatile conversion) A varnish was prepared in the same manner as in Example 1 except that 52.8 parts by mass) was used, and a resin sheet with a support, an evaluation laminate, and an evaluation cured product were obtained.
 〔比較例5〕
 化合物(A)の代わりにジシクロペンタジエン型エポキシアクリレート(KAYARAD(登録商標)ZXR-1807H、不揮発分66質量%、酸価:103mgKOH/g、日本化薬(株)製)80質量部(不揮発分換算で52.8質量部)を用いた以外は実施例1と同様にしてワニスを調製し、支持体付き樹脂シート、評価用積層体、評価用硬化物を得た。
[Comparative Example 5]
80 parts by mass (nonvolatile content) of dicyclopentadiene type epoxy acrylate (KAYARAD (registered trademark) ZXR-1807H, non-volatile content 66% by mass, acid value: 103 mgKOH / g, manufactured by Nippon Kayaku Co., Ltd.) instead of compound (A) A varnish was prepared in the same manner as in Example 1 except that 52.8 parts by mass in terms of conversion was used, and a resin sheet with a support, a laminate for evaluation, and a cured product for evaluation were obtained.
 〔物性測定評価〕
 実施例1~3及び比較例1~5で得たワニスを用いて作製した、各支持体付き樹脂シート、各評価用積層体及び各評価用硬化物を、以下の方法により測定し、評価した。それらの結果をまとめて表1に示す。
(Measurement of physical properties)
Each resin sheet with a support, each evaluation laminate, and each evaluation cured product prepared using the varnishes obtained in Examples 1 to 3 and Comparative Examples 1 to 5 were measured and evaluated by the following methods. . The results are summarized in Table 1.
 <塗膜性>
 A4サイズの各支持体付き樹脂シートの樹脂表面端部に指を軽く押し付け、指に対する張り付き程度を以下の基準で評価した。
 ◎:指に対する張り付きが認められない。支持体付き樹脂シートの端部が浮き上がらない。
 ○:指に対する張り付きがほとんど認められない。支持体付き樹脂シートの端部が指に張り付くが、高さ30mm未満で指から剥がれて落下する。
 ×:指に対する張り付きが認められる。支持体付き樹脂シートの端部が指に張り付き、高さ30mm以上浮き上がる。
<Coating properties>
A finger was lightly pressed against the resin surface edge of each A4-sized resin sheet with a support, and the degree of sticking to the finger was evaluated according to the following criteria.
A: Sticking to the finger is not recognized. The end of the resin sheet with the support does not float up.
○: Sticking to the finger is hardly recognized. Although the edge part of the resin sheet with a support body sticks to a finger | toe, it peels off from a finger | toe and falls by less than 30 mm in height.
X: Sticking to the finger is recognized. The edge part of the resin sheet with a support body sticks to a finger | toe, and 30 mm or more in height rises.
 <耐熱性(ガラス転移温度)>
 各評価用硬化物をDMA装置(TAインスツルメント社製動的粘弾性測定装置DMAQ800)を用いて10℃/分で昇温し、LossModulusのピーク位置をガラス転移温度(Tg、℃)とした。
<Heat resistance (glass transition temperature)>
The cured product for evaluation was heated at 10 ° C./min using a DMA device (dynamic viscoelasticity measuring device DMAQ800 manufactured by TA Instruments), and the peak position of Loss Modulus was defined as the glass transition temperature (Tg, ° C.). .
 <現像性>
 各評価用積層体の現像面を目視で観察した後、SEMにて観察(倍率1000倍)し、残渣の有無を下記基準で評価した。
 ○:30mm角の範囲に現像残渣はなく、現像性が優れている。
 ×:30mm角の範囲に現像残渣があり、現像性が劣っている。
<Developability>
After visually observing the development surface of each evaluation laminate, it was observed with a SEM (magnification 1000 times), and the presence or absence of a residue was evaluated according to the following criteria.
○: There is no development residue in the range of 30 mm square, and the developability is excellent.
X: There is a development residue in the range of 30 mm square, and the developability is inferior.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1から明らかなように、実施例1~3は耐熱性(Tg)が高く、現像性も優れている。その中でも、実施例3は塗膜性が特に良好である。これに対して、比較例1~5は耐熱性(Tg)及び現像性のいずれかが不十分である。従って、本発明によれば、耐熱性、及び現像性に優れた樹脂組成物、支持体付き樹脂シート、多層プリント配線板及び半導体装置が得られる。 As is clear from Table 1, Examples 1 to 3 have high heat resistance (Tg) and excellent developability. Among them, Example 3 has particularly good coating properties. On the other hand, Comparative Examples 1 to 5 are insufficient in either heat resistance (Tg) or developability. Therefore, according to this invention, the resin composition excellent in heat resistance and developability, the resin sheet with a support body, a multilayer printed wiring board, and a semiconductor device are obtained.

Claims (7)

  1.  下記式(1)で表され、酸価が30mgKOH/g以上120mgKOH/g以下の化合物(A)と、光硬化開始剤(B)と、マレイミド化合物(C)及び/又はブロック化イソシアネート(D)と、を含有する樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のRは、各々独立に、下記式(2)で表される置換基、下記式(3)で表される置換基又はヒドロキシ基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     (式(3)中、Rは、水素原子又はメチル基を表す。)
    A compound (A) represented by the following formula (1) and having an acid value of 30 mgKOH / g to 120 mgKOH / g, a photocuring initiator (B), a maleimide compound (C) and / or a blocked isocyanate (D) And a resin composition containing.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), each of the plurality of R 1 independently represents a hydrogen atom or a methyl group, each of the plurality of R 2 independently represents a hydrogen atom or a methyl group, and each of the plurality of R 3 represents, Independently, it represents a substituent represented by the following formula (2), a substituent represented by the following formula (3), or a hydroxy group.
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3), R 4 represents a hydrogen atom or a methyl group.)
  2.  エポキシ樹脂(E)を更に含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further comprising an epoxy resin (E).
  3.  前記化合物(A)以外であって、エチレン性不飽和基を有する化合物(F)を更に含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, further comprising a compound (F) having an ethylenically unsaturated group other than the compound (A).
  4.  無機充填材(G)を更に含む、請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further comprising an inorganic filler (G).
  5.  支持体に塗布された、請求項1~4のいずれか一項に記載の樹脂組成物を有する支持体付き樹脂シート。 A resin sheet with a support, comprising the resin composition according to any one of claims 1 to 4, which is applied to the support.
  6.  請求項1~4のいずれか一項に記載の樹脂組成物を有する多層プリント配線板。 A multilayer printed wiring board comprising the resin composition according to any one of claims 1 to 4.
  7.  請求項1~4のいずれか一項に記載の樹脂組成物を有する半導体装置。 A semiconductor device comprising the resin composition according to any one of claims 1 to 4.
PCT/JP2017/001510 2016-01-20 2017-01-18 Resin composition, resin sheet with support, multilayered printed wiring board, and semiconductor device WO2017126536A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017562838A JP6858351B2 (en) 2016-01-20 2017-01-18 Resin composition, resin sheet with support, multilayer printed wiring board and semiconductor device
CN201780007395.XA CN108495878B (en) 2016-01-20 2017-01-18 Resin composition, resin sheet with support, multilayer printed wiring board, and semiconductor device
KR1020187010037A KR20180103819A (en) 2016-01-20 2017-01-18 Resin composition, resin sheet with support, multilayer printed wiring board and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-008454 2016-01-20
JP2016008454 2016-01-20

Publications (1)

Publication Number Publication Date
WO2017126536A1 true WO2017126536A1 (en) 2017-07-27

Family

ID=59361763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001510 WO2017126536A1 (en) 2016-01-20 2017-01-18 Resin composition, resin sheet with support, multilayered printed wiring board, and semiconductor device

Country Status (5)

Country Link
JP (1) JP6858351B2 (en)
KR (1) KR20180103819A (en)
CN (1) CN108495878B (en)
TW (1) TWI770001B (en)
WO (1) WO2017126536A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062570A (en) * 2016-10-13 2018-04-19 三菱瓦斯化学株式会社 Resin composition, resin sheet, printed wiring board, and semiconductor device
JP2020030227A (en) * 2018-08-20 2020-02-27 三菱瓦斯化学株式会社 Film-forming material for lithography, film-forming composition for lithography, underlay film for lithography and patterning method
WO2021033441A1 (en) * 2019-08-20 2021-02-25 東京応化工業株式会社 Curable composition, cured product and method for forming insulating film
KR20210023845A (en) * 2018-06-26 2021-03-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Film-forming material for lithography, film-forming composition for lithography, underlayer film for lithography, and method for forming patterns
CN113646393A (en) * 2019-06-28 2021-11-12 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081355B (en) * 2018-09-25 2021-10-22 浙江工业职业技术学院 Portable fuel cell automobile power supply equipment
KR102430118B1 (en) * 2019-06-28 2022-08-05 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
US11643493B2 (en) * 2019-12-11 2023-05-09 Mitsubishi Gas Chemical Company, Inc. Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100009A (en) * 1989-09-13 1991-04-25 Nippon Kayaku Co Ltd Unsaturated polycarboxylic acid resin, resin composition containing same, solder resist resin composition and cured product thereof
JP2010224169A (en) * 2009-03-23 2010-10-07 Taiyo Ink Mfg Ltd Curable-resin composition and dry film and printed wiring board using the same
WO2011010457A1 (en) * 2009-07-21 2011-01-27 太陽ホールディングス株式会社 Photocurable resin composition
JP2011256271A (en) * 2010-06-09 2011-12-22 Jnc Corp Curable composition, use thereof and new compound
JP2013068896A (en) * 2011-09-26 2013-04-18 Fujifilm Corp Polymerizable compound and polymerizable composition
JP2014074927A (en) * 2013-12-26 2014-04-24 Taiyo Holdings Co Ltd Photocurable resin composition
JP2015064546A (en) * 2013-08-28 2015-04-09 太陽インキ製造株式会社 Photosensitive resin composition, dry film, cured product, and printed wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717737B2 (en) * 1987-11-30 1995-03-01 太陽インキ製造株式会社 Photosensitive thermosetting resin composition and method for forming solder resist pattern
TW268031B (en) * 1993-07-02 1996-01-11 Ciba Geigy
JP2003149807A (en) * 2001-11-15 2003-05-21 Nippon Kayaku Co Ltd Flame-retardant photosensitive resin composition having flexibility and cured body thereof
JP5650477B2 (en) * 2010-07-23 2015-01-07 太陽ホールディングス株式会社 Conductive resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100009A (en) * 1989-09-13 1991-04-25 Nippon Kayaku Co Ltd Unsaturated polycarboxylic acid resin, resin composition containing same, solder resist resin composition and cured product thereof
JP2010224169A (en) * 2009-03-23 2010-10-07 Taiyo Ink Mfg Ltd Curable-resin composition and dry film and printed wiring board using the same
WO2011010457A1 (en) * 2009-07-21 2011-01-27 太陽ホールディングス株式会社 Photocurable resin composition
JP2011256271A (en) * 2010-06-09 2011-12-22 Jnc Corp Curable composition, use thereof and new compound
JP2013068896A (en) * 2011-09-26 2013-04-18 Fujifilm Corp Polymerizable compound and polymerizable composition
JP2015064546A (en) * 2013-08-28 2015-04-09 太陽インキ製造株式会社 Photosensitive resin composition, dry film, cured product, and printed wiring board
JP2014074927A (en) * 2013-12-26 2014-04-24 Taiyo Holdings Co Ltd Photocurable resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062570A (en) * 2016-10-13 2018-04-19 三菱瓦斯化学株式会社 Resin composition, resin sheet, printed wiring board, and semiconductor device
KR20210023845A (en) * 2018-06-26 2021-03-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Film-forming material for lithography, film-forming composition for lithography, underlayer film for lithography, and method for forming patterns
KR102703439B1 (en) * 2018-06-26 2024-09-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Film-forming material for lithography, film-forming composition for lithography, lower layer film for lithography and pattern-forming method
JP2020030227A (en) * 2018-08-20 2020-02-27 三菱瓦斯化学株式会社 Film-forming material for lithography, film-forming composition for lithography, underlay film for lithography and patterning method
JP7258279B2 (en) 2018-08-20 2023-04-17 三菱瓦斯化学株式会社 Film-forming material for lithography, film-forming composition for lithography, underlayer film for lithography, and pattern forming method
CN113646393A (en) * 2019-06-28 2021-11-12 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
CN113646393B (en) * 2019-06-28 2023-09-19 三菱瓦斯化学株式会社 Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
WO2021033441A1 (en) * 2019-08-20 2021-02-25 東京応化工業株式会社 Curable composition, cured product and method for forming insulating film
JP2021031541A (en) * 2019-08-20 2021-03-01 東京応化工業株式会社 Curable composition, cured product and method for forming insulating film
JP7428491B2 (en) 2019-08-20 2024-02-06 東京応化工業株式会社 Curable composition, cured product, and method for forming insulating film

Also Published As

Publication number Publication date
JPWO2017126536A1 (en) 2018-11-08
CN108495878B (en) 2020-12-22
TW201736963A (en) 2017-10-16
CN108495878A (en) 2018-09-04
KR20180103819A (en) 2018-09-19
TWI770001B (en) 2022-07-11
JP6858351B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6858351B2 (en) Resin composition, resin sheet with support, multilayer printed wiring board and semiconductor device
JP6880510B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, printed wiring board and semiconductor device
JP7076263B2 (en) Curable resin compositions, dry films, cured products, and electronic components
JP6939784B2 (en) Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
JP6748663B2 (en) Curable composition, dry film, cured product and printed wiring board
JP2023059897A (en) photosensitive film
KR20150098216A (en) Printed wiring board
JP6913305B2 (en) Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
JP6705412B2 (en) Photosensitive resin composition
JP6972495B2 (en) Resin composition, resin sheet, multilayer printed wiring board and semiconductor device
JP6836740B2 (en) Resin composition, resin sheet, printed wiring board and semiconductor device
KR102626371B1 (en) Method for manufacturing printed wiring board
TWI818912B (en) Curable resin compositions, dry films, cured products and printed wiring boards
JP6857325B2 (en) Resin composition, resin sheet, printed wiring board and semiconductor device
KR102543365B1 (en) Curable composition, dry film, cured product and printed wiring board
TW202400720A (en) Photosensitive resin film, printed wiring board, semiconductor package, and method for manufacturing printed wiring board
JP2022037501A (en) Photosensitive resin composition
JP2021044386A (en) Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187010037

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017562838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741413

Country of ref document: EP

Kind code of ref document: A1