WO2017125089A1 - 自移动设备及自移动设备的控制方法 - Google Patents
自移动设备及自移动设备的控制方法 Download PDFInfo
- Publication number
- WO2017125089A1 WO2017125089A1 PCT/CN2017/072098 CN2017072098W WO2017125089A1 WO 2017125089 A1 WO2017125089 A1 WO 2017125089A1 CN 2017072098 W CN2017072098 W CN 2017072098W WO 2017125089 A1 WO2017125089 A1 WO 2017125089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- steering
- wheel
- track
- moving device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000033001 locomotion Effects 0.000 claims description 21
- 230000005484 gravity Effects 0.000 claims description 17
- 230000008093 supporting effect Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 description 24
- 238000005520 cutting process Methods 0.000 description 11
- 244000025254 Cannabis sativa Species 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001960 triggered effect Effects 0.000 description 3
- 238000009966 trimming Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 2
- 241001417527 Pempheridae Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
- A01D34/006—Control or measuring arrangements
- A01D34/008—Control or measuring arrangements for automated or remotely controlled operation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B39/00—Other machines specially adapted for working soil on which crops are growing
- A01B39/12—Other machines specially adapted for working soil on which crops are growing for special purposes, e.g. for special culture
- A01B39/18—Other machines specially adapted for working soil on which crops are growing for special purposes, e.g. for special culture for weeding
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B39/00—Other machines specially adapted for working soil on which crops are growing
- A01B39/08—Other machines specially adapted for working soil on which crops are growing with rotating tools such as weeding machines
- A01B39/085—Other machines specially adapted for working soil on which crops are growing with rotating tools such as weeding machines the rotating tools being actively driven
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B39/00—Other machines specially adapted for working soil on which crops are growing
- A01B39/28—Other machines specially adapted for working soil on which crops are growing with special additional arrangements
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B49/00—Combined machines
- A01B49/02—Combined machines with two or more soil-working tools of different kind
- A01B49/022—Combined machines with two or more soil-working tools of different kind at least one tool being actively driven
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D55/00—Endless track vehicles
- B62D55/06—Endless track vehicles with tracks without ground wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D55/00—Endless track vehicles
- B62D55/08—Endless track units; Parts thereof
- B62D55/14—Arrangement, location, or adaptation of rollers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B39/00—Other machines specially adapted for working soil on which crops are growing
- A01B39/20—Tools; Details
- A01B39/22—Tools; Mounting tools
Definitions
- the present invention relates to the field of power tools, and in particular, to a self-mobile device and a self-mobile device control method.
- a lawn mower uses a crawler as a running mechanism, and the crawler type traveling mechanism includes a driving wheel, a guiding wheel, and a crawler belt covering the driving wheel and the guiding wheel.
- the track between the drive and guide wheels of such a tracked travel mechanism is grounded.
- the crawler type walking mechanism has the following defects: 1. When turning with a small turning radius, the crawler belt is easy to grind and destroy the lawn; 2. The minimum turning radius is large, and the passability is poor; 3. The driving torque is large when turning.
- a self-moving device comprising: a housing; a moving module mounted on the housing, the moving module comprising a crawler belt driven by a driving motor to drive the self-moving device to move; the self-moving device further comprising a control module and an adjustment And the control module controls the adjusting device to adjust a grounding length of the crawler belt, such that a grounding length of the crawler belt when the self-moving device is turned is smaller than a grounding length of the crawler belt when the self-moving device moves linearly.
- the track grounding length is small when steering, the contact area between the track and the lawn is small, the damage of the track to the lawn can be reduced, the minimum turning radius of the self-moving device can be reduced, and the machine passability can be improved. At the same time, it can also reduce the driving force of the motor.
- the crawler includes a ground side and a remote side opposite the ground side, the roller being movable between the ground side and the far side to enable the
- the crawler type automatic walking device may be in the first working state and the second working state, respectively.
- control module controls the ground length of the track to be greater than or equal to 300 mm when the mobile device moves linearly.
- control module controls the ground length of the track to be less than 300 mm when the mobile device is turned.
- control module controls the movement radius of the mobile module to drive the mobile device to be less than or equal to 0.5 m.
- control module controls the steering radius of the mobile module to drive the mobile device to be zero.
- the moving module comprises a wheel set, the track is wound around the wheel set, the wheel set comprises a front wheel and a rear wheel, and the grounding length of the track is the front wheel and the The distance of the rear wheel in the horizontal direction;
- the adjusting device includes a horizontal adjusting mechanism that adjusts a distance between the front wheel and the rear wheel in a horizontal direction.
- the moving module includes a wheel set, the track is wound around the wheel set, the wheel set includes a front wheel and a rear wheel, and the adjusting device includes a roller, the weight A wheel is located between the front wheel and the rear wheel.
- the track wraps the roller.
- the grounding length of the track is less than or equal to the distance between the roller and the front wheel, or less than or equal to the roller and the wheel The distance between the rear wheels.
- the grounding length of the crawler belt is a distance between the front wheel and the rear wheel in a horizontal direction.
- the adjusting device includes a lifting mechanism coupled to the roller, the lifting mechanism driving the roller to descend to reduce a grounding length of the crawler; The roller is raised to increase the grounding length of the track.
- control module controls the lifting mechanism to drive the roller to descend before steering from the mobile device; and the control module determines that the self-moving device completes the steering, Controlling the lifting mechanism to drive the roller to rise.
- the distance between the center of gravity of the self-moving device and the center of the roller along the moving direction of the mobile device is less than or equal to 100 mm.
- the distance between the center of gravity of the self-moving device and the center of the roller along the moving direction of the mobile device is zero.
- the self-mobile device is an automatic lawn mower.
- the adjusting device includes a steering wheel that is vertically assembled to the bottom of the housing, the steering wheel having a first position and a second position in a height direction of the housing, wherein In the first position, the bottom of the steering wheel is higher than the bottom of the track, and in the second position, the steering wheel raises one end of the track to be higher than the other end of the track;
- the control module controls the steering wheel to be in the second position when the self-moving device is turned, and the control module controls the steering wheel to be in the first position when the self-moving device moves linearly.
- a steering wheel is arranged at the bottom of the housing, and the steering wheel is lowered from the front of the mobile device to lift the one end of the track to the ground, and the steering wheel is used to assist the support, and then the steering is performed to reduce the load.
- the area which reduces the damage to the turf by the track when turning.
- the housing includes a front portion and a rear portion in a moving direction from the mobile device, the steering wheel assembly being coupled to a front portion of the housing.
- control module includes a limit detection sensor mounted to the housing for monitoring position information between the mobile device and the limit, and the control module controls the steering according to the received position information.
- the wheel moves from the first position to the second position.
- the limit detection sensor is a distance sensor, and when the limit detection sensor detects that the distance between the mobile device and the limit reaches a predetermined standard, the control module controls the steering wheel to move to the second Positioning and controlling the drive motor to drive the moving module to steer from the mobile device.
- the limit detection sensor is a collision detection switch, and when the limit detection sensor touches the limit, the control module controls the steering wheel to move to the second position, And controlling the driving motor to drive the moving module to turn from the mobile device.
- the boundary is an electronic boundary
- the limit detection sensor is one or more position sensors
- the control module controls the steering wheel motion after any of the position sensors crosses the limit And to the second position, and controlling the driving motor to drive the moving module to turn from the mobile device.
- control module controls the drive motor to drive the mobile module to move the mobile module to retreat before the mobile device is turned.
- the boundary is an obstacle or an electronic boundary.
- the drive motor drives the moving module to steer the mobile device such that the drive motor causes differential movement of the tracks on either side of the housing.
- the moving module further includes a guiding wheel and a driving wheel, and the crawler belts on both sides of the housing are correspondingly provided with the guiding wheel and the driving wheel, and the driving motor is provided with a pair for respectively driving the shell A driving wheel on both sides of the body, or one of the driving motors is provided, and a differential is disposed between the driving motor and the driving wheels on both sides.
- control module includes a signal receiver that receives an external steering command, and after the signal receiver receives the steering command, the control module controls the steering wheel to move to the second position, and Controlling the drive motor drives the mobile module to steer from the mobile device.
- the signal receiver is a wireless or wired signal receiver; or the signal receiver is a trigger switch, and the control module controls the steering wheel to move to the second position when the trigger switch is triggered And controlling the drive motor to drive the moving module to steer from the mobile device.
- the housing has opposite front ends and rear ends, and the advancing direction of the self-moving device coincides with the direction of the rear end to the front end, and the steering wheel is eccentrically disposed on the The bottom of the housing is biased toward the front end.
- the steering wheel is provided with one or more to provide one or more support points when in the second position.
- the adjustment device includes a support structure mounted to the housing;
- the control module controls the support structure to extend or retract the housing from the bottom of the housing;
- the control module controls the support structure to protrude from the bottom of the housing before controlling the steering from the mobile device, At least a portion of the track is pivoted away from the work plane;
- the control module determines that the support structure is retracted from the housing after the mobile device has completed steering.
- the self-moving device has a simple and reasonable structural design. Before the mobile device is turned, the support structure can extend out of the casing to support the self-moving device from the lawn, thereby reducing contact friction between the track and the lawn, thereby reducing the pair of tracks. The wear of the lawn; after the steering is completed, the support structure is retracted back to the housing, and the operation is continued from the mobile device, which does not affect the working ability of the self-moving device, and ensures the working effect of the mobile device and is convenient to use.
- the ground length of the track is zero when the support structure extends from the bottom of the housing.
- the self-moving device includes a steering mechanism that rotatably connects the housing to a support structure that controls the steering when the support structure extends from the bottom of the housing The mechanism drives the housing to rotate about the support structure to steer the self-moving device.
- the support structure is located at a center of gravity of the self-mobile device.
- the self-moving device further includes a driving structure, the driving structure is mounted on the housing; the control module and the supporting structure are connected by the driving structure, and the control module is capable of controlling The driving structure drives the support structure to extend or retract.
- the self-mobile device further includes a height sensor electrically connected to the control module; the control module is capable of controlling the height sensor to detect a height of the trimmed object in the lawn, To control the extension length of the support structure.
- the support structure has an extended length greater than or equal to the height of the trimmed object.
- the support structure retracts the housing, the ends of the support structure being flush with the bottom of the housing.
- the support structure includes a support rod
- the control module is controllable
- the support rod extends or retracts relative to the housing.
- the number of the support rods is at least two, and the cross-sectional dimensions of at least two of the support rods are sequentially changed; the axes of at least two of the support rods are coincident and sleeved; the control The module controls at least two of the support rods to extend in sequence or sequentially.
- the support structure further includes a support chassis disposed at an end of the support rod away from the housing; the support rod is in contact with the lawn through the chassis.
- the cross-sectional area of the chassis is 1.2 to 5 times the cross-sectional area of the support bar.
- the support structure is a cylinder
- the cylinder includes a cylinder block and a telescopic rod extending or retracted relative to the cylinder block; the cylinder block is mounted to the housing, The telescopic rod can be extended or retracted relative to the housing.
- a self-moving device control method the self-moving device includes a housing; a moving module mounted to the housing; the moving module includes a crawler belt driven by a driving motor to drive the self-moving device to move, the self-moving
- the control method of the device includes the following steps:
- the control After controlling the self-moving device to complete the steering, the control increases the grounding length of the track.
- the self-moving device includes a wheel set, the track is wound around the wheel set, the wheel set includes a front wheel and a rear wheel, and the self-mobile device further includes a roller.
- the support roller is located between the front wheel and the rear wheel; the control method of the self-mobile device comprises the steps of:
- the roller After controlling the self-moving device to complete the steering, the roller is controlled to rise to increase the grounding length of the track.
- the self-moving device includes a wheel set, the track is wound around the wheel set, the wheel set includes a front wheel and a rear wheel, and the ground length of the track is the front wheel and The rear wheel The distance in the horizontal direction;
- the control method of the self-mobile device includes the steps of:
- the control After controlling the self-moving device to complete the steering, the control increases the distance between the front wheel and the rear wheel in the horizontal direction.
- the self-moving device includes a steering wheel that is vertically assembled to the bottom of the housing; and the control method of the self-mobile device includes the steps of:
- the steering wheel is controlled to rise such that the bottom of the steering wheel is higher than the bottom of the track.
- control module receives a steering command or steering information that conforms to a preset standard, and controls the steering wheel to move from the first position to the second position such that one end of the track is compared to the track The other end is raised; the control module controls the drive motor to drive the mobile module to steer from the mobile device.
- control module controls the steering wheel to return to the first position from the second position when the steering is completed.
- control module controls the drive motor to drive the mobile module to step from the mobile device:
- the control module controls the driving motor to drive the moving module to retreat the preset distance from the mobile device.
- control module controls the drive motor to drive the mobile module to turn the mobile device into:
- the drive motor causes differential movement of the ground portion of the track on both sides of the housing to drive the steering from the mobile device.
- steering command or steering information is any of the following:
- the self-mobile device includes a support structure mounted to the housing; and the control method of the self-mobile device includes the steps of:
- the support structure After controlling the self-moving device to complete the steering, the support structure is controlled to retract the housing.
- the support structure controls the housing to rotate about the support structure as it extends from the bottom of the housing to steer the self-moving device.
- FIG. 1 is a schematic structural diagram of a self-mobile device according to a first embodiment of the present invention
- FIG. 2 is a schematic view of the self-moving device shown in FIG. 1 when moving linearly;
- Figure 3 is a schematic view of the self-moving device shown in Figure 1;
- FIG. 4 is a schematic diagram of a control module of the self-mobile device shown in FIG. 1;
- FIG. 5 is a schematic view showing the force applied when the crawler belt is grounded between the roller and the front wheel or the rear wheel when the mobile device is turned;
- FIG. 6 is a schematic diagram of a linear movement of a mobile device according to a second embodiment of the present invention.
- Figure 7 is a schematic view of the moving device shown in Figure 6;
- FIG. 8 is a schematic flowchart diagram of a method for controlling a self-mobile device according to a first embodiment of the present invention
- FIG. 9 is a schematic diagram of a linear movement of a mobile device according to a third embodiment of the present invention.
- Figure 10 is a schematic view of the self-moving device shown in Figure 9.
- Figure 11 is a schematic view of the fourth embodiment of the present invention when it is turned from a mobile device.
- the crawler-type self-moving equipment can be widely used in heavy machinery such as excavators, cranes, tanks, etc. because it can be applied to harsh environments, and can also be applied to lawn mowers to adapt to high and low turf lawns.
- heavy machinery such as excavators, cranes, tanks, etc.
- the grounding length is usually increased as much as possible.
- the crawler type is used in power tools such as lawn mowers with small load. There are no related studies on the requirements of mobile devices.
- the self-mobile device is an automatic lawn mower 1 .
- the self-mobile device may also be an unattended device such as an automatic vacuum cleaner or an automatic snow sweeper.
- the automatic mower 1 includes a housing 110, a moving module 120, and a cutting module 130. The moving module 120 and the cutting module 130 are mounted to the housing 110.
- the housing 110 has a front end and a rear end. As shown in FIG. 1, the left side is the front end of the housing 110, and the right side is the rear end. When the automatic mower 1 is advanced, the advancing direction coincides with the direction from the rear end to the front end, that is, the right-to-left direction in FIG.
- the moving module 120 includes a wheel set, the wheel set includes a front wheel 123 and a rear wheel 124, the front wheel 123 is a guide wheel, the rear wheel 124 is a driving wheel, and the track 122 is wound around the wheel set and mounted on both sides of the housing 110;
- a motor hereinafter also referred to as a traveling motor drives the moving module 120 to drive the automatic mower 1 to move.
- the crawler belt 122 can be rotated and the automatic lawn mower 1 can be driven forward.
- the steering of the automatic mower 1 is also achieved by driving the drive wheel to the drive wheel.
- Method 1 The drive motor is provided with a pair.
- the tracks 122 on either side of the housing 110 are each driven by separate drive motors.
- the two drive motors output different rotational speeds, so that the crawler belts 122 on both sides of the housing 110 are differentially moved, thereby achieving steering of the automatic mower 1.
- the differential 122 is used to realize the differential movement of the crawler belts 122 on both sides of the housing 110, thereby realizing the steering of the automatic lawn mower 1.
- the drive motor is a drive motor.
- the cutting module 130 includes a cutter head 132 and a cutting blade 133 that are driven by a cutting motor 131 to perform a cutting operation.
- the cutter head 132 is rotated about its own central axis, and the cutter head 132 is provided with a plurality of cutting blades 133 in its circumferential direction.
- the cutting motor 131 is a cutting motor.
- the automatic mower 1 further includes a control module (not shown) and an adjustment device 80.
- the control module controls the movement module 120 to drive the automatic mower 1 to move, and controls the cutting module 130 to perform a cutting operation.
- the control module is further configured to control the adjustment device 80 to adjust the grounding length of the track 122 such that the grounding length of the track 122 when the automatic mower 1 is turned is less than the grounding length of the track 122 when the automatic mower 1 moves linearly.
- the grounding length of the crawler belt 122 is small when the automatic lawn mower 1 is turned, the contact area between the crawler belt 122 and the lawn is small, the damage of the crawler belt 122 to the lawn can be reduced, and the automatic lawn mower 1 can also be reduced.
- the control module controls the grounding length of the crawler belt 122 to be greater than or equal to 300 mm.
- the grounding length of the crawler belt 122 when the automatic lawn mower 1 moves linearly is set to 300 mm, the automatic lawn mower 1 can be ensured to have a good climbing ability, obstacle resistance, and the like. It can be understood that when the automatic mower 1 moves linearly, the grounding length of the crawler belt 122 can be 300 mm, 350 mm, 400 mm, 450 mm, 500 mm, etc., and can be set according to actual needs.
- the control module controls the grounding length of the track 122. Less than 300mm.
- the grounding length of the crawler belt 122 when the automatic lawn mower 1 is turned is less than 300 mm, it is advantageous to drive the motor to drive the automatic lawn mower 1 to turn, and the steering radius can be controlled within 0.5 m. It can be understood that when the automatic mower 1 is turned, the control module controls the ground length of the crawler belt 122 to be 250 mm, 200 mm, 150 mm, 100 mm, and the like.
- control module controls the movement module 120 to drive the automatic lawn mower 1 to have a steering radius of less than or equal to 0.5 m.
- the steering radius when the control module controls the mobile module 120 to drive the automatic mower 1 to turn can be zero.
- the adjusting device 80 includes a roller 125, the roller 125 is located between the front wheel 123 and the rear wheel 124, and the track 122 covers the roller 125.
- the adjustment device 80 can include one, two or more roller wheels 125.
- the grounding length of the track 122 is less than or equal to the distance between the roller 125 and the front wheel 123, or less than or equal to the distance between the roller 125 and the rear wheel 124. distance.
- the track 122 between the roller 125 and the rear wheel 124 or the track 122 between the roller 125 and the front wheel 302 is grounded; when there are two rollers 125, The track 122 between the two roller wheels 125 is grounded, that is, the ground length of the track of the automatic mower 1 is smaller than the distance between the front wheel 123 and the rear wheel 124.
- the grounding length of the crawler belt 122 is the distance between the front wheel 123 and the rear wheel 124 in the horizontal direction.
- the adjusting device 80 further includes a lifting mechanism, and the lifting mechanism is connected to the roller 125, and can drive the roller 125 to descend to reduce the grounding length of the track 122; the lifting mechanism can drive the roller 125 to rise.
- the track 122 includes a ground side 1221 and a remote side 1222 opposite the ground side 1221.
- the roller 125 can be moved between the ground side 1221 and the remote side 1222 such that the automatic mower 1 can be in a steering and linear movement mode, respectively.
- the ground side 1221 of the crawler belt 122 is a side close to the ground 2, and in this embodiment, a portion between the rear wheel 124 and the front wheel 123 and covering the roller 125.
- the grounding length of the track of the automatic mower 1 is smaller than that of the front wheel 123
- the distance from the rear wheel 124, that is, the side of the roller 125 close to the ground side 1221 and the front wheel 123 and the rear wheel 124 are respectively located at the common tangent of the side of the front wheel 123 and the rear wheel 124 close to the ground side 1221.
- the track 122 between the rear wheel 124 and the front wheel 123 is grounded, that is, the ground length of the track 122 of the automatic mower 1 is equal to the distance between the front wheel 123 and the rear wheel 124. That is, the tangent to the side of the roller 125 close to the ground side 1221 and the common tangent of the front wheel 123 and the side of the rear wheel 124 close to the ground side 1221.
- the automatic lawn mower 1 lifting mechanism includes a lifting and lowering drive member 802 connected to the housing 110, a push rod 804, a push rod bracket 806, and a roller bracket 808 supporting the roller 125.
- the push rod bracket 806, another portion can be driven to expand and contract by the lifting and lowering driving member 802.
- the roller supporting bracket 808 is connected to the telescopic end of the push rod 804, so that the driving roller 125 can be driven to move up and down under the driving of the lifting driving member 802.
- the lift drive member 802 can be a motor.
- the lifting mechanism may further include a transmission mechanism connected between the lifting driving member 802 and the push rod 804.
- the transmission mechanism includes a worm wheel connected to the lifting driving member and a worm connected between the worm wheel and the push rod 804, and the worm meshes with the worm wheel, thereby
- the roller 125 can be moved linearly under the rotation of the lifting drive member.
- the transmission mechanism can also be other structures such as a screw nut structure.
- the adjusting device 80 further includes a sensing component for sensing whether the automatic mower 1 needs to change state, and the control module is configured to control the lifting according to the state sensed by the sensing component.
- the member 802 is driven to control the position of the roller 125.
- the sensing component includes a limit detection sensor, and the limit detection sensor includes an obstacle sensing sensor.
- the control module can be sensed according to the sensing.
- the component sensed state controls the lift drive 802 to activate and controls the roller 125 to move away from the distal side 1222 of the track 122 to reduce the ground length of the track 122 of the automatic mower 1 after the steering is completed.
- the control module then controls the counter drive 802 to rotate in reverse, thereby controlling the roller 125 to move toward the distal side 1222 of the track 122 to increase the ground length of the track 122 of the automatic mower 1.
- the automatic mower 1 can change the grounding length in time according to the actual situation of the walking environment, thereby ensuring the stability during normal walking, and ensuring that the lawn is not damaged during the steering and good communication. Passive, can greatly meet the needs of users.
- the adjustment device 80 can also be autonomously steered according to other actual needs without relying on the sensing of the sensing element to be steerable.
- the center of gravity of the automatic mower 1 and the center of the roller 125 are along the moving direction of the automatic mower 1 by less than or equal to 100 mm, so that the center of gravity of the automatic mower 1 is vertical. It is a small range from the vertical line where the center of the roller 125 is located.
- the automatic lawn mower 1 can be used to maintain the balance of the machine as much as possible when the roller 12 is grounded in the turning state, and maintain the line contact state where only the roller 125 is grounded as much as possible, even if it is not in the above line contact.
- the state also allows the automatic mower 1 to concentrate the pressure on the track at the roller, and the pressure from the roller to the front wheel (or the rear wheel) is gradually reduced, so the degree of grinding is still small at this time.
- the center of gravity of the automatic mower 1 and the center of the roller 125 are zero along the direction of movement of the automatic mower 1.
- the vertical line of the center of gravity of the automatic mower 1 coincides with the vertical line where the center of the roller 125 is located.
- the vertical line where the center of gravity of the automatic mower 1 is located coincides with the vertical line where the center of the roller 125 is located includes two cases, one of which is that the center of gravity of the automatic mower 1 coincides with the roller 125; The other is that the roller 125 is located on a vertical line where the center of gravity of the automatic mower 1 is located.
- the above vertical line means a direction perpendicular to the horizontal plane.
- the first case is to reduce the most ideal state of damage to the lawn, that is, only the track 122 at the roller 125 is grounded, that is, the track 122 and the ground are Line contact, the contact area is the smallest at this time, and the damage to the lawn is minimal.
- the turning radius of the automatic mower 1 can be zero, which is basically the in-situ steering;
- the second case is when there is a supporting roller 125, The crawler belt 122 on the ground side 1221 side between the heavy wheel 125 and the rear wheel 124 or the crawler belt 122 on the ground side 1221 side between the front wheel 302 and the front wheel 302 is grounded.
- the grounding length of the track of the automatic mower 1 is smaller than the distance between the front wheel 302 and the rear wheel 304.
- the degree of sanding is determined by the amount of slippage of the track. The greater the amount of slip, the more severe the grinding, and the amount of slip is proportional to the grounding length of the track, which is inversely proportional to the turning radius of the automatic mower. Therefore, the grounding length of the track Long time, must be controlled
- the steering radius of the automatic mower is greater than the preset value.
- the line contact during steering is unstable, and the automatic mower may be tilted forward, that is, switched to the second case described above, although the front wheel is grounded, due to the center of gravity and support of the automatic mower
- the vertical line of the center of the heavy wheel coincides or the distance is small, the pressure is concentrated at the roller or near the roller, and the pressure from the roller to the front wheel is gradually reduced, so the degree of grinding is still small. , far less than the degree of grinding under the condition that the pressure is evenly distributed between the front wheel and the roller; the back tilt of the machine is the same, and the specific pressure distribution is shown in Figure 5.
- the rear wheel 124 and the front wheel 123 of the automatic mower 1 are rotatably coupled to opposite ends of the housing 110, respectively.
- the grounding length of the crawler belt 122 is the distance between the front wheel 123 and the rear wheel 124 in the horizontal direction
- the adjusting device 80 includes a horizontal adjusting mechanism for adjusting the front wheel 123 and The distance of the rear wheel 124 in the horizontal direction.
- the adjusting device 80 further includes a supporting wheel 126.
- the supporting wheel 126 is located between the front wheel 123 and the rear wheel 124.
- the distance between the front wheel 123 and the rear wheel 124 is small ( As shown in Fig. 7), when the automatic mower 1 moves linearly, the distance between the front wheel 123 and the rear wheel 124 is large (see Fig. 6).
- the rear wheel 124 is horizontally movable relative to the front wheel 123
- the horizontal adjustment mechanism is coupled to the idler wheel 126, and can drive the roller 126 to move up and down to drive the rear wheel 124 to move horizontally, thereby adjusting the front wheel 123 and The distance of the rear wheel 124 in the horizontal direction.
- the front wheel 302 can also be arranged to be horizontally displaceable.
- the present invention further provides a control method of the automatic lawn mower 1 .
- the control method of the automatic lawn mower 1 includes the following steps:
- the automatic lawn mower 1 includes a roller 125.
- the roller 125 is located between the front wheel 123 and the rear wheel 124.
- the control method of the automatic lawn mower 1 further includes the following steps:
- control roller 125 is lowered to reduce the grounding length of the track 122;
- control roller 125 is raised to increase the grounding length of the track 122.
- the grounding length of the track 122 is the distance between the front wheel 123 and the rear wheel 124 in the horizontal direction; the control method of the automatic mower 1 includes the steps of:
- the control Before controlling the automatic lawn mower 1 to turn, the control reduces the distance between the front wheel 123 and the rear wheel 124 in the horizontal direction;
- the control increases the distance between the front wheel 123 and the rear wheel 124 in the horizontal direction.
- control method of the automatic mower 1 further includes the step before the step S110:
- the walking environment of the automatic mower 1 is sensed and it is judged whether or not it needs to turn according to the walking environment.
- the step S100 of sensing the walking environment of the automatic mower 1 and determining whether it needs to turn according to the walking environment is specifically: sensing whether there is an obstacle, and if it is detected that there is an obstacle, determining that a turn is required, if There is no need to turn when sensing without obstacles.
- the automatic mower 1 includes a steering wheel 150 disposed at the bottom of the housing 110.
- the steering wheel 150 is mounted to the bottom of the housing 110 in a liftable manner. Under the control of the control module, the steering wheel 150 has a first position as shown in FIG. 9 in the height direction of the housing 110, and a second position as shown in FIG. In the first position, the bottom of the steering wheel 150 is higher than the bottom of the track 122 and does not affect the normal travel of the track 122.
- the steering wheel 150 In the second position, the steering wheel 150 is lowered relative to the housing 110 as compared to the first position, and the bottom of the steering wheel 150 is lower than the bottom of the track 122 such that one end of the track 122 is raised and the other end is grounded. In other words, the steering wheel 150 will be lowered to replace the one end of the crawler belt 122 to support the automatic lawn mower 1.
- the control module controls the position of the steering wheel 150 and controls the drive motor to impart power to the track 122 upon receipt of the steering command or steering information. Specifically, when the automatic mower 1 needs to be turned, the control The module reduces the steering wheel 150 from the first position to the second position, while the control module controls the drive motor to effect differential movement of the ground portion of the track 122 on either side of the housing 110 to effect steering. Since one end of the crawler belt 122 is raised, the entire crawler belt 122 has a small landing area. Therefore, when the crawler belt 122 is differentially moved to drive the automatic lawn mower 1 to turn, the crawler belt 122 has less damage to the turf. After the steering is completed, the control module raises the steering wheel 150 from the second position to the first position without affecting the advancement of the mowing.
- the steering wheel 150 When the drive wheel is disposed close to the rear end of the housing 110, since the overall rear portion of the automatic mower 1 is relatively heavy, the steering wheel 150 is eccentrically disposed at the bottom of the housing 110, which is generally disposed near the front end of the housing 110. When the steering wheel 150 is lowered to its second position, the steering wheel 150 raises the front end of the housing 110.
- the lifting of the steering wheel 150 can be achieved by a hydraulic mechanism, or by an electric rocker arm, or by a gear mechanism, or by a gear or rack mechanism, or by a screw mechanism. However, it is also possible that the steering wheel 150 raises the rear end of the housing 110.
- the land portion of the track 122 on both sides of the housing 110 can achieve differential motion.
- the number of the steering wheels 150 is one, and the steering wheel 150 is disposed at an intermediate position of the front end of the housing 110 so as to have better stability in place of the crawler belt 122 supporting the automatic lawn mower 1.
- the number of the steering wheels 150 may also be plural, such as two, three or more, and the automatic mower 1 is supported by the crawler belts 122 on both sides of the casing 110, so that the automatic mower 1 has more than four support points. To ensure better stability when steering.
- the plurality of steering wheels 150 may be evenly distributed along a straight line, or a plurality of steering wheels 150 may form a triangular or circular support.
- the steering wheel 150 is a universal wheel.
- the automatic mower 1 is capable of automatically cruising the mowing in a defined working area and enabling automatic steering according to the position of the limit.
- the boundary is the collective name of the boundary and the obstacle.
- the boundary is the periphery of the entire work area. It is usually connected end to end, and the work area is closed.
- the boundary can be either physical or electronic, that is, the boundary can be formed by walls, fences, railings, etc., or the virtual boundary can be issued by the boundary signal generating device.
- a signal such as an electromagnetic signal or an optical signal.
- An obstacle is a part or area within the working range that cannot walk on it. Domains, such as indoor sofas, bed cabinets, or outdoor ponds, flower beds, etc.
- obstacles can also be physical or electronic, physical obstacles can be formed by the aforementioned obstacles themselves, and electronic obstacles can be bordered by
- the signal generating device emits a virtual obstacle signal formation.
- the virtual boundary signal and the virtual obstacle signal may be the same signal or different signals, and are selected by specific requirements.
- the automatic mower 1 includes a limit detection sensor 162.
- the limit detection sensor 162 is used to monitor position information between the automatic mower 1 and the limit.
- the control module controls the steering wheel 150 to switch between its first position and the second position based on the position information received by the limit detection sensor 162.
- the steering wheel 150 is controlled to move from the first position to the second position to assist the track 122 to support the housing 110, thereby assisting in completing the steering.
- the limit detection sensor 162 is used to detect the relative positional relationship between the automatic mower 1 and the limit, and may specifically include one or more of a distance, an angle, and an inner and outer position.
- the composition and principle of the limit detection sensor 162 can be various, such as infrared type, ultrasonic type, collision detection type, magnetic induction type and the like.
- the limit detection sensor 162 can be a distance sensor.
- the control module controls the steering wheel 150 to move from the first position to the second position, and controls the drive motor to cause the track 122 on both sides of the housing 110. Achieve differential motion to achieve steering.
- the limit detection sensor 162 can also be a collision type detection switch.
- the control module controls the steering wheel 150 to move from the first position to the second position, and controls the driving motor to realize differential motion of the crawler belts 122 on both sides of the housing 110, thereby achieving steering.
- the limit detection sensor 162 may also be a position sensor disposed in pairs on the housing 110.
- the control module determines whether each sensor is located inside or outside the limit according to the signal of the position sensor. When any sensor changes from being within the limit to being outside the limit, the control module determines that the sensor has Out of bounds, the steering wheel 150 is controlled to move from the first position to the second position, and the drive motor is controlled to effect differential movement of the track 122 on either side of the housing 110 to effect steering.
- the control module before the automatic mower 1 is turned, the control module first controls the driving motor to drive the moving module 120 to retreat a certain distance, so that the automatic mower 1 is far away from the limit, thereby ensuring that there is sufficient without touching the limit. Turning space. It is also possible not to retreat.
- the limit detection sensor 162 is a distance sensor, a suitable sensing distance can be set to ensure sufficient steering space. The lowering of the steering wheel 150 can be accomplished during the retreat to save time in steering.
- the automatic mower 1 can also perform steering after receiving an external steering command, and does not need to rely on the detection result of the limit detection sensor 162, and can be turned at any time.
- control module includes a signal receiver that receives steering commands from the outside world.
- the signal receiver can be a wireless or wired signal receiver to receive control commands from the outside world by wire or wirelessly.
- the control module controls the steering wheel 150 to move from the first position to the second position, and controls the drive motor to differentially move the track 122 on both sides of the housing 110 to achieve steering. .
- the above structure can also be applied to an artificially controlled lawn mower, for example, a ride-on lawn mower that can be riding, and the forward and the steering of the lawn mower are completely controlled by the operator according to the mowing situation.
- the grass machine does not need to set the limit detection sensor 162.
- the signal receiver can be a steering trigger switch.
- the operator presses the steering trigger switch, and the control module moves the steering wheel 150 from the first position to the second position, so that the steering wheel 150 can then act to assist the steering.
- control module includes a controller for controlling the lifting of the steering wheel 150, and also for controlling the steering of the lawn mower based on the steering information or the steering command.
- control module has a plurality of controllers, wherein the lifting of the steering wheel 150 has a controller for special control, and the steering of the lawn mower additionally has a controller for special control.
- the same number of controllers can be provided to control each steering wheel separately. It is also possible to control all the steering wheels at the same time by one controller; at this time, the controller can also control the steering of the lawn mower at the same time, or it is also possible to additionally set a controller to specifically control the lawn mower. The turn.
- the invention also provides a steering method of the above crawler mower, the steps are as follows:
- the control module receives the steering command or the steering information according to the preset standard, and controls the steering wheel 150 to move from the first position to the second position, so that one end of the track 122 is raised and the other end is grounded.
- the steering command or the steering information may be any one of the following: a steering command from the outside, a distance between the lawn mower and the limit reaching a predetermined standard, a touch information of the lawn mower and the limit, and mowing The relative position information of the machine and the limit, or the information that the steering trigger switch set in the control system is triggered.
- the steering information is automatically monitored and acquired by the limit detection sensor 162 in real time.
- the steering command is issued by the operator.
- the control module controls the driving motor to drive the moving module 120 to turn the lawn mower.
- the control module controls the driving motor to drive the moving module 120 to turn the lawn mower into: the driving motor realizes differential motion of the landing portion of the crawler belt 122 on both sides of the housing 110, thereby driving the lawn mower to turn.
- control module first controls the drive motor to move the mobile module 120 back a certain distance, so that the mower is far from the limit, thereby ensuring sufficient steering space without touching the limit.
- control module controls the steering wheel 150 to move from the second position to the first position such that the steering wheel 150 does not affect the subsequent normal travel of the track 122.
- the bottom of the casing 110 is provided with a steering wheel 150.
- the steering wheel 150 is controlled to descend, and one end of the crawler belt 122 is lifted away.
- the steering wheel 150 is used to assist the support to complete the steering, and the landing area of the track 122 during steering is reduced, thereby reducing the damage of the track 122 to the turf.
- the automatic mower 1 includes a support structure 300 in which the support structure 300 is mounted. There is a certain distance between the bottom of the housing 110 and the lawn through the support structure 300. Thus, when the automatic mower 1 is turned, due to the above-mentioned distance, the crawler belt 122 is not in contact with the lawn, and the crawler belt 122 is prevented from rubbing the lawn.
- the support structure 300 can extend or retract relative to the housing 110. That is, the support structure 300 can perform a telescopic movement.
- the support structure 300 is operated, at which time the support structure 300 extends out of the housing 110.
- the support structure 300 is retracted to the housing 110. In this way, the support structure 300 can be prevented from interfering with the trimming operation of the automatic lawn mower 1 , and the automatic lawn mower 1 can ensure that the support structure 300 does not contact the lawn when the lawn mower is trimmed, thereby ensuring smooth operation of the automatic lawn mower 1 and ensuring automatic operation.
- the trimming effect of the mower 1 is easy to use.
- the support structure 300 can extend from the bottom of the housing 110 relative to the housing 110 to support the track 122 or portions of the track 122 from the lawn. It should be noted that after the support structure 300 protrudes from the bottom of the housing 110, the support structure 300 can lift the crawler belt 122 away from the lawn, so that the automatic lawn mower 1 can be steered to prevent the crawler belt 122 from coming into contact with the lawn.
- the housing 110 is rotated about the support structure 300, and the support structure 300 is retracted to the housing 110 after the steering is completed. Specifically, before the automatic lawn mower 1 needs to be turned, the support structure 300 protrudes from the bottom of the housing 110.
- the support structure 300 is retracted to the housing 110, at which time the automatic mower 1 can continue to trim the lawn.
- the automatic lawn mower 1 is realized only by the support structure 300 being in contact with the lawn during steering, so that the track 122 can be prevented from coming into contact with the lawn, thereby avoiding damage to the lawn by the crawler belt 122 when the automatic lawn mower 1 is turned.
- the support structure 300 can perform other operations besides steering after the track 122 is detached from the lawn.
- the rotational movement of the automatic mower 1 is performed around the support structure 300, and does not drive the support structure 300 to rotate together.
- the support structure 300 does not cause friction with the lawn and damages the lawn.
- the housing 110 can also drive the support structure 300 to rotate together. Since the contact area of the support structure 300 with the lawn is significantly smaller than the contact area between the crawler belt 122 and the lawn, damage to the lawn is small.
- control module and the support structure 300 are connected by a driving structure, and the control module controls The drive structure drives the support structure 300 to extend or retract.
- control module controls the driving structure to drive the supporting structure 300 out of the bottom of the housing 110, so that the supporting structure 300 supports the housing 110; after the automatic mower 1 completes the steering, the control module controls the driving.
- the structure drives the support structure 300 to retract the housing 110.
- the control module is also coupled to a steering mechanism that controls the steering mechanism drive housing 110 to automatically rotate.
- the control module can control the angle at which the steering mechanism rotates the housing 110.
- the steering mechanism can also ensure that the steering of the housing 110 does not interfere with the support structure 300, and the housing 110 is ensured to be stable.
- the steering mechanism includes a bearing that is mounted to the support structure 300. When the steering mechanism rotates the control housing 110, the bearing can prevent the support structure 300 from interfering with other components of the steering mechanism, ensuring a stable steering of the housing.
- the automatic mower 1 further includes a height sensor electrically connected to the control module.
- the control module is capable of controlling the height sensor to detect the height of the trimmed object in the lawn to control the extended length of the support structure 300.
- the control module can control the height sensor to detect the actual height of the grass on the lawn, the height sensor transmits the actual height signal of the grass to the control module, and the control module controls the driving structure to drive the support structure 300 to extend the required length to Avoid contact of the track 122 with the lawn.
- the control module also controls the support structure 300 to extend a fixed length, for example, the support structure 300 is fixedly extended by 60 mm to 80 mm to avoid the purpose of avoiding the contact of the track 122 with the lawn.
- the extension length of the support structure 300 is greater than or equal to the height of the object to be trimmed. That is, the extended length of the support structure 300 should be greater than or equal to the height of the grass on the lawn.
- the housing 110 can be supported such that the distance between the track 122 and the lawn is greater than or equal to the height of the grass, so that when the housing 110 is turned, the track 122 does not interact with the lawn. The grass is in contact to avoid damage to the lawn.
- the support structure 300 is retracted to the housing 110, and the end of the support structure 300 is flush with the bottom of the housing 110. That is, after the support structure 300 is retracted into the housing 110, the end of the support structure 300 is in the same plane as the bottom of the housing 110. In this way, the automatic mower 1 is being trimmed In the industry, the support structure 300 does not affect the lawn. At the same time, the support structure 300 does not need to be retracted into the housing 110, reducing the movement stroke of the support structure 300 and improving efficiency.
- the support structure 300 is located at the center of gravity of the automatic mower 1. Since the support structure 300 supports the housing 110, the support structure 300 carries the entire weight of the automatic mower 1. In order to prevent the housing 110 from falling during the steering, the automatic lawn mower 1 is ensured to rotate smoothly, and the support structure 300 should be located at the center of gravity of the automatic lawn mower 1. After the support structure 300 supports the housing 110, the housing 110 can maintain balance.
- the support structure 300 includes a support rod 310 that can control the support rod 310 to extend or retract relative to the housing 110.
- the housing 110 is supported by the support rod 310, and the support rod 310 is extended or retracted by the control module.
- the cross-sectional shape of the support rod 310 may be polygonal, circular or elliptical.
- the number of the support rods 310 may also be at least two, and the cross-sectional dimensions of the at least two support rods 310 are sequentially changed; the axes of the at least two support rods 310 are coincident and sleeved; and the control module controls the at least two support rods 310. Extend in sequence or retract in sequence. That is, the extension length of the support structure 300 is at least twice the length of the support rod 310, and thus, the length range of the support rod 310 can be increased, so that the housing 110 of the present invention can be supported at any height.
- the cross-sectional size of the support bar 310 is gradually increased, the support bar 310 having the largest cross-sectional size is located at the outermost side, and the support bar 310 having the smallest cross-sectional size is located at the innermost side.
- the support rods 310 are arranged from the outside to the inside in accordance with the sectional size of the support rods 310 from large to small.
- the support structure 300 further includes a support chassis 320 disposed at an end of the support rod 310 away from the housing 110.
- the support rod 310 is in contact with the lawn through the chassis 320. Since the support structure 300 supports the housing 110, the support structure 300 carries the entire weight of the automatic mower 1. If the housing 110 is supported only by the support rod 310, the end of the support rod 310 away from the housing 110 may fall into the lawn and easily damage the lawn.
- the chassis 320 can increase the contact area of the support rod 310 with the lawn, avoid the weight concentration of the housing 110, ensure the support effect of the support structure 300, and prevent the support structure 300 from falling into the lawn, thereby avoiding damage to the lawn.
- the cross-sectional area of the chassis 320 is 1.2 to 5 times the cross-sectional area of the support bar 310.
- the contact area of the support structure 300 with the lawn is increased by the chassis 320 to facilitate the support structure 300 to support the housing 110. If the cross-sectional area of the chassis 320 is too small, the supporting effect of the chassis 320 is not much different from that of the support bar 310. If the cross-sectional area of the chassis 320 is too large, the trimming operation of the housing 110 may be affected, and at the same time, the size of the housing 110 may be increased.
- the height of the chassis 320 is 0.15 to 0.6 times the cross-sectional area of the support bar 310 to facilitate extension and retraction of the support structure 300.
- the chassis 320 may also be a hollow structure, that is, there is a hollow at the contact of the chassis 320 with the lawn. That is, the area in which the chassis 320 is in contact with the lawn is smaller than the area of the chassis 320. This can reduce the contact area between the chassis 320 and the lawn, avoid damage to the lawn, and reduce the impact on the lawn.
- the support structure 300 is a cylinder
- the cylinder includes a cylinder block and a telescopic rod that extends or retracts relative to the cylinder block.
- the cylinder block is mounted in the housing 110, and the telescopic rod can be extended or retracted relative to the housing 110.
- the housing 110 can also be supported by the cylinders to facilitate the steering operation of the housing 110, thereby avoiding the abrasion of the lawn.
- the drive structure can be a gear transmission structure or a pump.
- the support structure 300 is the support rod 310, the support structure 300 can be extended and retracted by a gear transmission structure or the like.
- the support structure 300 is a cylinder, the telescopic rod can be extended and retracted by the pump.
- the drive structure can also be other structures capable of driving the support structure 300 to achieve extension and retraction.
- the automatic lawn mower 1 of the present invention can also be a lawn mower other than the crawler mower, which prevents the lawn mower from coming into contact with the lawn during steering, thereby avoiding damage to the lawn and facilitating use.
- the automatic lawn mower 1 is preferably a crawler type lawn mower.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Environmental Sciences (AREA)
- Soil Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Harvester Elements (AREA)
- Guiding Agricultural Machines (AREA)
- Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
Abstract
一种自移动设备(1),包括移动模块(120)、控制模块和调节装置(80)。移动模块(120)包括履带(122),其由驱动马达驱动以带动自移动设备(1)移动;控制模块控制调节装置(80)调节履带(122)的接地长度,使得自移动设备(1)转向时履带(122)的接地长度小于自移动设备(1)直线移动时履带(122)的接地长度。还提供了一种自移动设备(1)的控制方法。该自移动设备,由于转向时履带接地长度较小,减少了履带对草坪的损伤,还减小了自移动设备的最小转弯半径,提高了机器的通过性,同时还减小了马达的驱动力。
Description
本发明涉及动力工具技术领域,特别涉及一种自移动设备及自移动设备的控制方法。
一种割草机采用履带作为行走机构,履带式行走机构包括驱动轮、引导轮和包覆驱动轮和引导轮的履带。通常,这种履带式行走机构的驱动轮和引导轮之间的履带接地。这种履带式行走机构存在以下缺陷:1、以较小转弯半径转弯时,履带容易磨草,破坏草坪;2、最小转弯半径较大,通过性较差;3、转弯时驱动扭矩较大。
发明内容
基于此,有必要提供一种转弯时对草坪损伤较小、通过性较好的自移动设备。
还有必要提供一种自移动设备的控制方法。
一种自移动设备,包括:壳体;移动模块,安装于壳体,所述移动模块包括履带,由驱动马达驱动以带动所述自移动设备移动;所述自移动设备还包括控制模块和调节装置,所述控制模块控制所述调节装置调节所述履带的接地长度,使得所述自移动设备转向时所述履带的接地长度,小于所述自移动设备直线移动时所述履带的接地长度。
本自移动设备中,由于在转向时履带接地长度较小,履带与草坪的接触面积较小,可减少履带对草坪的损伤,还可以减小自移动设备的最小转弯半径,提高机器的通过性,同时还能减小马达的驱动力。
在其中一实施例中,所述履带包括接地侧和与所述接地侧相对的远地侧,所述支重轮可在所述接地侧和所述远地侧之间移动,以使所述履带式自动行走设备可分别处于所述第一工作状态和所述第二工作状态。
在其中一实施例中,所述自移动设备直线移动时,所述控制模块控制所述履带的接地长度大于或等于300mm。
在其中一实施例中,所述自移动设备转向时,所述控制模块控制所述履带的接地长度小于300mm。
在其中一实施例中,所述控制模块控制所述移动模块带动所述自移动设备转向时的转向半径小于等于0.5m。
在其中一实施例中,所述控制模块控制所述移动模块带动所述自移动设备转向时的转向半径为零。
在其中一实施例中,所述移动模块包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述履带的接地长度为所述前轮与所述后轮在水平方向上的距离;所述调节装置包括水平调节机构,调节所述前轮与所述后轮在水平方向上的距离。
在其中一实施例中,所述移动模块包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述调节装置包括支重轮,所述支重轮位于所述前轮和所述后轮之间。
在其中一实施例中,所述履带包覆所述支重轮。
在其中一实施例中,所述自移动设备转向时,所述履带的接地长度小于或等于所述支重轮与所述前轮之间的距离,或者小于或等于所述支重轮与所述后轮之间的距离。
在其中一实施例中,所述自移动设备直线移动时,所述履带的接地长度为所述前轮与所述后轮在水平方向上的距离。
在其中一实施例中,所述调节装置包括升降机构,与所述支重轮连接,所述升降机构带动所述支重轮下降,以减小所述履带的接地长度;所述升降机构带动所述支重轮上升,以增大所述履带的接地长度。
在其中一实施例中,所述控制模块控制自移动设备转向前,控制所述升降机构带动所述支重轮下降;所述控制模块判断所述自移动设备完成转向后,
控制所述升降机构带动所述支重轮上升。
在其中一实施例中,所述自移动设备的重心与所述支重轮的中心沿所述自移动设备的移动方向的距离小于或等于100mm。
在其中一实施例中,所述自移动设备的重心与所述支重轮的中心沿所述自移动设备的移动方向的距离为零。
在其中一实施例中,所述自移动设备为自动割草机。
在其中一实施例中,所述调节装置包括转向轮,可升降地组配于所述壳体底部,所述转向轮在壳体的高度方向上具有第一位置和第二位置,其中在所述第一位置,所述转向轮的底部高于履带的底部,在所述第二位置,所述转向轮使所述履带的一端相较于履带的另一端被抬高;
所述自移动设备转向时,控制模块控制所述转向轮位于第二位置,所述自移动设备直线移动时,控制模块控制所述转向轮位于第一位置。
上述自移动设备,壳体底部设置有转向轮,自移动设备转向前控制转向轮下降,以将履带的一端抬高离地,改为利用转向轮辅助支撑,然后再进行转向,减小履带着地面积,从而减小转弯时履带对于草皮的损伤。
在其中一实施例中,所述壳体包括沿自移动设备移动方向的前部和后部,所述转向轮组配于所述壳体的前部。
在其中一个实施例中,所述控制模块包括安装于壳体的界限侦测传感器,用以监测自移动设备与界限之间的位置信息,所述控制模块根据接收到的位置信息控制所述转向轮由第一位置运动至第二位置。
在其中一个实施例中,所述界限侦测传感器为距离传感器,当界限侦测传感器检测到自移动设备与界限之间的距离达到预定标准时,所述控制模块控制所述转向轮运动至第二位置,并控制所述驱动马达带动移动模块使自移动设备转向。
在其中一个实施例中,所述界限侦测传感器为碰撞式检测开关,当界限侦测传感器触碰到界限时,所述控制模块控制所述转向轮运动至第二位置,
并控制所述驱动马达带动移动模块使自移动设备转向。
在其中一个实施例中,所述界限为电子边界,所述界限侦测传感器为一个或多个的位置传感器,当任一个位置传感器越过所述界限后,所述控制模块控制所述转向轮运动至第二位置,并控制所述驱动马达带动移动模块使自移动设备转向。
在其中一个实施例中,所述控制模块控制所述驱动马达带动移动模块使自移动设备转向之前,先使所述驱动马达带动移动模块后退。
在其中一个实施例中,所述界限为障碍或为电子边界。
在其中一个实施例中,所述驱动马达带动移动模块使自移动设备转向为:所述驱动马达使壳体两侧的履带实现差速运动。
在其中一个实施例中,所述移动模块还包括引导轮和驱动轮,壳体两侧的履带均对应设置有所述引导轮和驱动轮,所述驱动马达设有一对,分别用以驱动壳体两侧的驱动轮,或所述驱动马达设有一个,所述驱动马达与两侧的驱动轮之间设置有差速器。
在其中一个实施例中,所述控制模块包括接收外界的转向指令的信号接收器,当所述信号接收器接收到转向指令后,所述控制模块控制所述转向轮运动至第二位置,并控制所述驱动马达带动移动模块使自移动设备转向。
在其中一个实施例中,所述信号接收器为无线或有线信号接收器;或信号接收器为触发开关,所述触发开关被触发时,所述控制模块控制所述转向轮运动至第二位置,并控制所述驱动马达带动移动模块使自移动设备转向。
在其中一个实施例中,所述壳体具有相对的前端和后端,所述自移动设备工作时的前进方向与所述后端至前端的方向一致,所述转向轮偏心地设置于所述壳体底部,其偏向所述前端。
在其中一个实施例中,所述转向轮设置有一个或多个,以在处于第二位置时提供一个或多个的支撑点。
在其中一实施例中,所述调节装置包括支撑结构,安装于所述壳体;所
述控制模块控制所述支撑结构从所述壳体底部伸出或者缩回所述壳体;所述控制模块控制自移动设备转向前,控制所述支撑结构从所述壳体底部伸出,以将所述履带的至少部分支离工作平面;所述控制模块判断自移动设备完成转向后,控制所述支撑结构缩回所述壳体。
本自移动设备,结构设计简单合理,自移动设备在转向前,支撑结构能够伸出壳体,以将自移动设备支离草坪,能够减小履带与草坪之间的接触摩擦,进而减小履带对草坪的磨损;转向完成后,支撑结构再缩回壳体,自移动设备再继续进行作业,不会影响自移动设备的作业能力,保证自移动设备的工作效果,便于使用。
在其中一实施例中,所述支撑结构从所述壳体底部伸出时,所述履带的接地长度为零。
在其中一实施例中,所述自移动设备包括转向机构,可转动的连接所述壳体与支撑结构,所述支撑结构从所述壳体底部伸出时,所述控制模块控制所述转向机构带动所述壳体绕所述支撑结构转动,使所述自移动设备转向。
在其中一实施例中,所述支撑结构位于所述自移动设备的重心。
在其中一个实施例中,所述自移动设备还包括驱动结构,所述驱动结构安装于所述壳体;所述控制模块与所述支撑结构通过所述驱动结构连接,所述控制模块能够控制所述驱动结构带动所述支撑结构伸出或者缩回。
在其中一个实施例中,所述自移动设备还包括高度传感器,所述高度传感器与所述控制模块电连接;所述控制模块能够控制所述高度传感器检测所述草坪中被修剪物的高度,以控制所述支撑结构的伸出长度。
在其中一个实施例中,所述支撑结构的伸出长度大于等于所述被修剪物的高度。
在其中一个实施例中,所述支撑结构缩回所述壳体,所述支撑结构的端部与所述壳体的底部相平齐。
在其中一个实施例中,所述支撑结构包括支撑杆,所述控制模块能够控
制所述支撑杆相对于所述壳体伸出或者缩回所述壳体。
在其中一个实施例中,所述支撑杆的数量为至少两个,至少两个所述支撑杆的截面尺寸依次变化;至少两个所述支撑杆的轴线相重合且套设设置;所述控制模块控制至少两个所述支撑杆依次伸出或依次缩回。
在其中一个实施例中,所述支撑结构还包括支撑底盘,所述底盘设置于所述支撑杆远离所述壳体的一端;所述支撑杆通过所述底盘与所述草坪相接触。
在其中一个实施例中,所述底盘的截面面积为所述支撑杆的截面面积的1.2倍~5倍。
在其中一个实施例中,所述支撑结构为气缸,气缸包括气缸缸体及相对于所述气缸缸体伸出或者缩回的伸缩杆;所述气缸缸体安装于所述壳体,所述伸缩杆能够相对于所述壳体伸出或者缩回。
一种自移动设备的控制方法,所述自移动设备包括壳体;移动模块,安装于壳体;所述移动模块包括履带,由驱动马达驱动以带动所述自移动设备移动,所述自移动设备的控制方法包括步骤:
控制所述自移动设备转向前,控制减小所述履带的接地长度;
控制所述自移动设备完成转向后,控制增大所述履带的接地长度。
在其中一实施例中,所述自移动设备包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述自移动设备还包括支重轮,所述支重轮位于所述前轮和所述后轮之间;所述自移动设备的控制方法包括步骤:
控制所述自移动设备转向前,控制所述支重轮下降以减小所述履带的接地长度;
控制所述自移动设备完成转向后,控制所述支重轮上升以增大所述履带的接地长度。
在其中一实施例中,所述自移动设备包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述履带的接地长度为所述前轮与所述后轮
在水平方向上的距离;所述自移动设备的控制方法包括步骤:
控制所述自移动设备转向前,控制减小前轮与后轮在水平方向上的距离;
控制所述自移动设备完成转向后,控制增大前轮与后轮在水平方向上的距离。
在其中一实施例中,所述自移动设备包括转向轮,可升降地组配于所述壳体底部;所述自移动设备的控制方法包括步骤:
控制所述自移动设备转向前,控制所述转向轮下降,使得所述履带的一端相较于履带的另一端被抬高;
控制所述自移动设备完成转向后,控制所述转向轮上升,使得所述转向轮的底部高于履带的底部。
在其中一个实施例中,所述控制模块接收转向指令或与预设标准相符合的转向信息,并控制转向轮由第一位置运动至第二位置,使所述履带的一端相较于履带的另一端被抬高;所述控制模块控制所述驱动马达带动移动模块使自移动设备转向。
在其中一个实施例中,当所述转向完成后,所述控制模块控制转向轮由第二位置返回至第一位置。
在其中一个实施例中,所述控制模块控制所述驱动马达带动移动模块使自移动设备转向的步骤之前:
控制模块控制所述驱动马达带动移动模块使自移动设备先后退预设距离。
在其中一个实施例中,所述控制模块控制所述驱动马达带动移动模块使自移动设备转向为:
所述驱动马达使壳体两侧的履带的着地部分实现差速运动,进而带动自移动设备转向。
在其中一个实施例中,其中所述转向指令或转向信息为以下所述的任一种:
来自外界的转向指令、达到预定标准的自移动设备与界限的距离信息、
自移动设备与界限的触碰信息、自移动设备与界限的相对位置信息,或控制模块中设置的转向触发开关被触发的信息。
在其中一实施例中,所述自移动设备包括支撑结构,安装于所述壳体;所述自移动设备的控制方法包括步骤:
控制所述自移动设备转向前,控制所述支撑结构从所述壳体底部伸出,以将所述履带的至少部分支离工作平面;
控制所述自移动设备完成转向后,控制所述支撑结构缩回所述壳体。
在其中一个实施例中,所述支撑结构从所述壳体底部伸出时,控制所述壳体绕所述支撑结构转动,使所述自移动设备转向。
图1为本发明第一实施例的自移动设备的结构示意图;
图2为图1所示自移动设备直线移动时的示意图;及
图3为图1所示自移动设备转向时的示意图;
图4为图1所示自移动设备的控制模块的示意图;
图5为图1所示自移动设备转向时支重轮与前轮或后轮之间履带接地时的受力示意图;
图6为本发明第二实施例的自移动设备直线移动时的示意图;
图7为图6所示自移动设备转向时的示意图;
图8为本发明第一实施例的自移动设备的控制方法的流程示意图;
图9为本发明第三实施例的自移动设备直线移动时的示意图;
图10为图9所示自移动设备转向时的示意图。
图11为本发明第四实施例的自移动设备转向时的示意图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使
对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在两者之间的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在两者之间的元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
首先,需要说明的是,履带式自移动设备由于能适用于恶劣的环境,广泛使用于挖掘机、起重机、坦克等重型机械中,也可适用于割草机,以适应高低起伏的草坪。对于挖掘机、起重机、坦克等重型机械而言,由于负载较大,为了保证机器的稳定性,通常尽量增大接地长度,目前行业内对于负载较小的割草机等动力工具中对履带式自移动设备的要求并无相关研究。
请参阅图1,本发明的第一实施例中,自移动设备为自动割草机1,在其他实施例中,自移动设备也可以是自动吸尘器、自动扫雪机等适合无人值守的设备。本实施例中,自动割草机1包括壳体110、移动模块120和切割模块130,移动模块120和切割模块130安装于壳体110。
壳体110具有前端和后端。如图1所示,左侧为壳体110的前端,右侧为后端。自动割草机1前进时,前进方向与后端至前端的方向一致,即图1中自右至左的方向。
移动模块120包括轮组,轮组包括前轮123和后轮124,前轮123为引导轮,后轮124为驱动轮;履带122,绕设于轮组,安装于壳体110两侧;驱动马达(下文中也称为行走马达),驱动移动模块120带动自动割草机1移动。
驱动马达带动驱动轮工作时,使履带122作回转运动的同时能够带动自动割草机1前进。自动割草机1的转向同样通过驱动马达对驱动轮的驱动来实现。方式至少包括以下两种:
方式一、驱动马达设置有一对。壳体110两侧的履带122分别由独立的驱动马达驱动。当需要转向时,两个驱动马达输出不同的转速,使得壳体110两侧的履带122实现差速运动,进而实现自动割草机1的转向。
方式二、驱动马达仅设置有一个,利用差速器使得壳体110两侧的履带122实现差速运动,进而实现自动割草机1的转向。
本实施例中,驱动马达为驱动电机。
切割模块130包括刀盘132和切割刀片133,由切割马达131驱动以执行切割作业。刀盘132绕自身中心轴线旋转,刀盘132在其圆周方向上设置有多个的切割刀片133。切割马达131为切割电机。
本实施例中,自动割草机1还包括控制模块(图未示)和调节装置80。控制模块控制移动模块120带动自动割草机1移动,并控制切割模块130执行切割作业。控制模块还用于控制调节装置80调节履带122的接地长度,使得自动割草机1转向时履带122的接地长度,小于自动割草机1直线移动时履带122的接地长度。
本实施例中,由于自动割草机1在转向时履带122接地长度较小,履带122与草坪的接触面积较小,可减少履带122对草坪的损伤,还可以减小自动割草机1的最小转弯半径,提高机器的通过性,同时根据公式履带转向阻力矩Mμ=μGL/4,其中,μ为转向阻力系数,G为机器重力,L为履带接地长度,可见履带接地长度越小,转向阻力矩越小,对应的自动割草机1的驱动马达输出功率越小,因此减小履带接地长度还能减小驱动马达的驱动力。
本实施例中,自动割草机1在直线移动时,控制模块控制履带122的接地长度大于或等于300mm。当自动割草机1直线移动时的履带122的接地长度设置为300mm时,可保证自动割草机1具有较好的爬坡、越障能力等。可以理解,自动割草机1直线移动时候,履带122的接地长度可为300mm、350mm、400mm、450mm、500mm等,可根据实际需求设定。
本实施例中,自动割草机1转向时,控制模块控制履带122的接地长度
小于300mm。当自动割草机1转向时的履带122的接地长度小于300mm时,有利于驱动马达驱动自动割草机1转向,同时可以将转向半径控制在0.5m以内。可以理解,自动割草机1转向时,控制模块控制履带122的接地长度可为250mm、200mm、150mm、100mm等。
本实施例中,控制模块控制移动模块120带动自动割草机1转向时的转向半径小于等于0.5m。具体地,控制模块控制移动模块120带动自动割草机1转向时的转向半径可为零。
参阅图1-图3,本实施例中,调节装置80包括支重轮125,支重轮125位于前轮123和后轮124之间,履带122包覆支重轮125。具体在本实施例中,可以理解,调节装置80可包括一个、两个或两个以上的支重轮125。
在本实施例中,自动割草机1转向时,履带122的接地长度小于或等于支重轮125与前轮123之间的距离,或者小于或等于支重轮125与后轮124之间的距离。具体地,当只有一个支重轮125时,支重轮125与后轮124之间履带122或支重轮125与前轮302之间的履带122接地;当有两个支重轮125时,两个支重轮125之间的履带122接地,也就是说自动割草机1的履带的接地长度小于前轮123与后轮124之间的距离。
本实施例中,自动割草机1直线移动时,履带122的接地长度为前轮123与后轮124在水平方向上的距离。
本实施例中,调节装置80还包括升降机构,升降机构与支重轮125连接,并可带动支重轮125下降,以减小履带122的接地长度;升降机构可带动支重轮125上升,以增大履带122的接地长度。具体地,履带122包括接地侧1221和与接地侧1221相对的远地侧1222。支重轮125可在接地侧1221和远地侧1222之间移动,以使自动割草机1可分别处于转向和直线移动模式。需要说明的是,履带122的接地侧1221为靠近地面2的一侧,本实施例中为后轮124和前轮123之间并包覆支重轮125的部分。
当自动割草机1转向时,自动割草机1的履带的接地长度小于前轮123
与后轮124之间的距离,也就是说支重轮125靠近接地侧1221的一侧与前轮123和后轮124分别位于前轮123与后轮124靠近接地侧1221的一侧的公切线的两侧。当自动割草机1直线移动时,后轮124与前轮123之间的履带122接地,也就是说自动割草机1的履带122的接地长度等于前轮123与后轮124之间的距离,也就是支重轮125靠近接地侧1221的一侧的切线和前轮123与后轮124靠近接地侧1221的一侧的公切线重合。
本实施例中,自动割草机1升降机构包括连接于壳体110的升降驱动件802、推杆804、推杆支架806和支撑支重轮125的支重轮支架808,推杆804一部分连于推杆支架806,另一部分可由升降驱动件802驱动伸缩,支重轮支架808连接于推杆804可伸缩的一端,从而在升降驱动件802的驱动下可驱动支重轮125移动而升降。具体地,升降驱动件802可为电机。升降机构还可包括连接于升降驱动件802和推杆804之间的传动机构,传动机构包括连接于升降驱动件的蜗轮和连接于蜗轮和推杆804之间的蜗杆,蜗杆与蜗轮啮合,从而在升降驱动件的转动下支重轮125可做直线移动。可以理解,传动机构也可以是丝杠螺母结构等其他结构。
本实施例中,请参阅图4,调节装置80还包括感测元件,感测元件用于感测自动割草机1是否需要改变状态,控制模块用于根据感测元件感测的状态控制升降驱动件802,从而控制支重轮125的位置。具体地,感测元件包括界限侦测传感器,界限侦测传感器包括障碍感测传感器,当感测元件感测到边界或有障碍物时,自动割草机1需要转向,控制模块可根据感测元件感测的状态控制升降驱动件802启动,并控制支重轮125向远离履带122的远地侧1222的方向移动,以减小自动割草机1的履带122的接地长度,转向完成后,控制模块再控制升降驱动件802反向转动,从而控制支重轮125向靠近履带122的远地侧1222的方向移动,以增大自动割草机1的履带122的接地长度。这样,自动割草机1可根据行走环境的实际情况,适时改变其接地长度,既能保证正常行走时的稳定性,也能保证转向时不损伤草坪及良好的通
过性,可极大地满足使用者的需求。可以理解,调节装置80也可根据其他实际需要自主转向,而不依赖于感测元件的感测方可转向。
本实施例中,自动割草机1的重心与支重轮125的中心沿所述自动割草机1的移动方向的距离小于或等于100mm,使自动割草机1的重心所在的竖直直线与支重轮125的中心所在的竖直直线相距一个较小的范围。这样,可利于自动割草机1在转弯状态时在仅支重轮125接地时尽可能地保持机器平衡,尽可能地保持在仅支重轮125接地的线接触状态,即使不处于上述线接触状态也可使自动割草机1对履带的压力集中在支重轮处,从支重轮至前轮(或后轮)的压力逐渐减小,因此此时磨草程度仍然较小。在另一实施例中,自动割草机1的重心与支重轮125的中心沿所述自动割草机1的移动方向的距离为零。为自动割草机1在转向时尽量处于履带122与地面为线接触,优选地,自动割草机1的重心所在的竖直直线与支重轮125的中心所在的竖直直线重合。具体地,自动割草机1的重心所在的竖直直线与支重轮125的中心所在的竖直直线重合包括两种情况,一种是自动割草机1的重心与支重轮125重合;另一种是支重轮125位于自动割草机1的重心所在的竖直直线上。上述竖直直线是指与水平面垂直的方向。
当自动割草机1转向时,可能存在两种情况,第一种情况是减小对草坪的损伤最为理想的状态,即仅支重轮125处的履带122接地,亦即履带122与地面为线接触,此时接触面积最小,对草坪损伤最小,此时自动割草机1的转弯半径可为零,基本为原地转向;第二种情况是,当有一个支重轮125时,支重轮125与后轮124之间的接地侧1221一侧的履带122或支重轮125与前轮302之间的接地侧1221一侧的履带122接地,当有两个支重轮125时,两个支重轮125之间的接地侧1221一侧的履带122接地,也就是说自动割草机1的履带的接地长度小于前轮302与后轮304之间的距离。磨草程度由履带的滑移量决定,滑移量越大,磨草越严重,而滑移量与履带的接地长度成正比,与自动割草机的转向半径成反比,因此,履带接地长度长时,须控制
自动割草机的转向半径大于预设值。在上述第一种情况下,转向时的线接触是不稳定的,自动割草机可能前倾,即转换到上述第二种情况,虽然前轮接地,但由于自动割草机的重心与支重轮中心所在竖直直线重合或相距距离较小,压力集中在支重轮处或在支重轮附近,从支重轮至前轮的压力逐渐减小,因此此时磨草程度仍然较小,远小于压力在前轮与支重轮之间平均分布情况下的磨草程度;机器后倾的情况相同,具体压力分布请参阅图5。
本实施例中,自动割草机1的后轮124和前轮123分别可转动连接于壳体110的两相对端。
请参阅图6和图7,在本发明第二实施例中,履带122的接地长度为前轮123与后轮124在水平方向上的距离,调节装置80包括水平调节机构,调节前轮123与后轮124在水平方向上的距离。
本实施例中,调节装置80还包括托轮126,托轮126位于前轮123和后轮124之间,自动割草机1转向时,前轮123和后轮124之间的距离较小(见图7),自动割草机1直线移动时,前轮123和后轮124之间的距离较大(见图6)。
本实施例中,后轮124可相对前轮123水平移动地设置,水平调节机构与托轮126连接,并可带动托轮126上下移动,以带动后轮124水平移动,从而调节前轮123与后轮124在水平方向上的距离。可以理解,也可设置为前轮302可水平移动地设置。
请参阅图8,本发明还提供一种自动割草机1的控制方法,该自动割草机1的控制方法包括以下步骤:
S110:控制自动割草机1转向前,控制减小所述履带122的接地长度;
S130:控制自动割草机1完成转向后,控制增大所述履带122的接地长度。
在其中一实施例中,自动割草机1包括支重轮125,支重轮125位于前轮123和后轮124之间,该自动割草机1的控制方法还包括以下步骤:
控制自动割草机1转向前,控制支重轮125下降以减小履带122的接地长度;
控制自动割草机1完成转向后,控制支重轮125上升以增大履带122的接地长度。
在另一实施例中,履带122的接地长度为前轮123与后轮124在水平方向上的距离;该自动割草机1的控制方法包括步骤:
控制自动割草机1转向前,控制减小前轮123与后轮124在水平方向上的距离;
控制自动割草机1完成转向后,控制增大前轮123与后轮124在水平方向上的距离。
本实施例中,该自动割草机1的控制方法还包括位于步骤S110之前的步骤:
感测自动割草机1的行走环境并根据行走环境判断其是否需要转弯。
本实施例中,感测自动割草机1的行走环境并根据行走环境判断其是否需要转弯的步骤S100具体为:感测是否有障碍物,如果感测到有障碍物则判断需要转弯,如果感测没有障碍物则不需要转弯。
参阅图9和图10,本发明的第三实施例中,自动割草机1包括转向轮150,设置在壳体110底部。转向轮150可升降地安装在壳体110底部。在控制模块的控制下,转向轮150在壳体110的高度方向上具有如图9所示的第一位置,及如图10所示的第二位置。在第一位置,转向轮150的底部高于履带122的底部,不影响履带122的正常行走。在第二位置,与第一位置相比,转向轮150相对于壳体110下降,转向轮150的底部低于履带122的底部,使得履带122的一端被抬高,另一端着地。换言之,转向轮150下降后将代替履带122的一端来支撑自动割草机1。
控制模块在接收到转向指令或转向信息时,控制转向轮150的位置及控制驱动马达给予履带122的动力输出。具体地,当自动割草机1需要转向时,控
制模块使转向轮150由第一位置下降到第二位置,同时控制模块控制驱动马达使壳体110两侧的履带122的着地部分实现差速运动,进而实现转向。由于履带122的一端被抬高,整个履带122着地面积小,故履带122差速运动带动自动割草机1转向时,履带122对草皮的损伤较小。转向完成后,控制模块使转向轮150由第二位置升到第一位置,不影响继续前进割草。
当驱动轮设置为靠近壳体110后端时,由于自动割草机1整体后部相对较重,转向轮150偏心地设置在壳体110底部,其通常设置靠近壳体110的前端。转向轮150下降到其第二位置时,转向轮150将壳体110的前端抬高。转向轮150的升降可以利用液压机构实现,或用电动摇臂实现,或利用齿轮机构实现,或利用齿轮、齿条机构实现,或利用螺杆机构实现。但也可以是转向轮150将壳体110的后端抬高。
另外,无论驱动轮的位置靠近壳体110前端或后端,壳体110两侧的履带122的着地部分都能实现差速运动。
转向轮150的数量为一个,转向轮150设置在壳体110的前端的中间位置,以便代替履带122支撑自动割草机1时有较好的稳定性。转向轮150数量也可以是设置多个,如2个、3个及以上,与壳体110两侧的履带122共同支撑自动割草机1,使自动割草机1有4个以上的支撑点,保证转向时具有较好的稳定性。多个转向轮150可以沿直线均布,也可以是几个转向轮150形成三角形或圆形的支撑。
本实施例中,转向轮150为万向轮。
本实施例中,自动割草机1能够在界限限定的工作区域内自动巡航割草,并能根据界限的位置实现自动转向。
其中,界限是边界和障碍的统称。边界是整个工作区域的外围,通常首尾相连,将工作区域封闭,边界可以是实体的也可以是电子的,即可以由墙壁、篱笆,栏杆等形成边界,也可以由边界信号发生装置发出虚拟边界信号,如电磁信号或光信号。障碍是位于工作范围内的无法在其上行走的部分或区
域,如室内的沙发、床柜,或室外的水塘、花台等,类似的,障碍也可以是实体的或者电子的,实体的障碍可以由前述的障碍物自身形成,电子的障碍可以由边界信号发生装置发出虚拟障碍信号形成。虚拟边界信号和虚拟障碍信号可以为同一种信号也可以为不同的信号,由具体需求选择。
参阅图9或图10,自动割草机1包括界限侦测传感器162。界限侦测传感器162用以监测自动割草机1与界限之间的位置信息。控制模块根据界限侦测传感器162所接收到的位置信息控制转向轮150在其第一位置与第二位置之间转换。控制模块判断需要转向时,控制转向轮150由第一位置运动到第二位置,以辅助履带122支撑壳体110,进而辅助完成转向。
界限侦测传感器162用于侦测自动割草机1和界限的相对位置关系,具体可能包括距离、角度,界限内外方位中的一种或几种。界限侦测传感器162的组成和原理可以为多种,如可以为红外线式、超声波式、碰撞检测式,磁感应式等等。
界限侦测传感器162可以是距离传感器。当距离传感器检测到自动割草机1与界限之间的距离达到预定标准时,控制模块即控制转向轮150由第一位置运动到第二位置,并控制驱动马达使壳体110两侧的履带122实现差速运动,从而实现转向。
界限侦测传感器162也可以是碰撞式检测开关。当碰撞式检测开关触碰到界限时,控制模块即控制转向轮150由第一位置运动到第二位置,并控制驱动马达使壳体110两侧的履带122实现差速运动,从而实现转向。
当界限为电子边界时,界限侦测传感器162还可以是成对设置在壳体110上的位置传感器。自动割草机1在界限附近工作时,控制模块根据位置传感器的信号判断每个传感器是位于界限内侧还是外侧,当任一个传感器从位于界限内变为位于界限外,控制模块就判断该传感器已经出界,即控制转向轮150由第一位置运动到第二位置,并控制驱动马达使壳体110两侧的履带122实现差速运动,从而实现转向。
本发明中,在自动割草机1转向之前,控制模块先控制驱动马达带动移动模块120后退一定的距离,使自动割草机1远离界限,从而保证在不触碰界限的情况下能有足够的转向空间。也可以不后退,如界限侦测传感器162为距离传感器时,可以设置合适的感应距离,保证足够的转向空间。转向轮150的下降可以在后退的过程中完成,以节约转向的用时。
自动割草机1还可以是在接收到外界的转向指令后进行转向,不需要依赖于界限侦测传感器162的侦测结果,可以随时转向。
具体地,控制模块包括接收外界的转向指令的信号接收器。信号接收器可以为无线或有线信号接收器,以通过有线或无线的方式接收来自外界的控制指令。当所述信号接收器接收到转向指令后,控制模块即控制转向轮150由第一位置运动到第二位置,并控制驱动马达使壳体110两侧的履带122实现差速运动,从而实现转向。
当然,上述结构也可以应用于人为控制的割草机,例如,可供乘骑的乘骑式割草机,割草机的前进和转向完全由操作者根据割草情况主动控制,此时割草机不需要设置界限侦测传感器162。
此时,信号接收器可以是转向触发开关。当需要转向时,操作者按下该转向触发开关,控制模块使转向轮150由第一位置运动到第二位置,使转向轮150着地接下来能够发挥辅助转向的作用。
本实施中,控制模块包括一个控制器,用以控制转向轮150的升降,同时还用以根据转向信息或转向指令控制割草机的转向。
在其他的实施例中,也可以是控制模块有多个控制器,其中转向轮150的升降有一个控制器来专门控制,同时割草机的转向另外有一个控制器来专门控制。
当转向轮150有多个时,可以设置同样数量的控制器来分别控制各转向轮。也可以是利用一个控制器同时控制所有的转向轮;此时,该控制器还可以同时控制割草机的转向,当然也可以是另外设置一个控制器来专门控制割草机
的转向。
本发明还提供了一种上述履带式割草机的转向方法,步骤如下:
S210、控制模块接收转向指令或符合预设标准的转向信息,并控制转向轮150由第一位置运动至第二位置,使履带122的一端被抬高,另一端着地。
本步骤中,转向指令或转向信息可以是以下所述的任意一种:来自外界的转向指令、达到预定标准的割草机与界限的距离信息、割草机与界限的触碰信息、割草机与界限的相对位置信息,或控制系统中设置的转向触发开关被触发的信息。
当割草机为自动割草机1时,转向信息由界限侦测传感器162自动实时监测获取。割草机为非自动割草机1时,转向指令则由操作人员操控发出。
S220、控制模块控制驱动马达带动移动模块120使割草机转向。
控制模块控制驱动马达带动移动模块120使割草机转向为:驱动马达使壳体110两侧的履带122的着地部分实现差速运动,进而带动割草机转向。
此外,在转向前,控制模块先控制驱动马达使移动模块120后退一定的距离,使割草机远离界限,从而保证在不触碰界限的情况下能有足够的转向空间。
当转向完成后,控制模块控制转向轮150由第二位置运动至第一位置,使转向轮150不影响履带122接下来的正常行走。
综上,本实施例的自动割草机1及其转向方法,壳体110底部设置有转向轮150,自动割草机1需要转向时控制转向轮150下降,并将履带122的一端抬高离地,利用转向轮150辅助支撑完成转向,减小转向时履带122的着地面积,从而减小履带122对于草皮的损伤。
参见图11,本发明的第四实施例中,自动割草机1包括支撑结构300,支撑结构300安装于壳体110中。通过支撑结构300使得壳体110的底部与草坪之间存在一定的距离。这样,自动割草机1在转向时,由于上述距离的存在,使得履带122不与草坪相接触,避免履带122磨坏草坪。
同时,支撑结构300能够相对于壳体110伸出或者缩回壳体110。也就是说,支撑结构300可以做伸缩运动。当自动割草机1需要转向时,支撑结构300才工作,此时支撑结构300伸出壳体110。当自动割草机1不需要转向时或者转向完成后,支撑结构300缩回壳体110。这样能够避免支撑结构300对自动割草机1的修剪作业产生干涉,保证自动割草机1在修剪草坪时,支撑结构300不会与草坪相接触,保证自动割草机1运行平稳,保证自动割草机1的修剪效果,便于使用。
支撑结构300能够从壳体110的底部相对于壳体110伸出,以将履带122或部分履带122支离草坪。需要说明的是,支撑结构300从壳体110的底部伸出后,支撑结构300能够将履带122支离草坪,这样,能够对自动割草机1进行转向操作,以避免履带122与草坪相接触。自动割草机1进行转向操作时,壳体110绕支撑结构300转动,转向完成后支撑结构300缩回壳体110。具体的,自动割草机1需要转向前,支撑结构300从壳体110的底部伸出,此时,壳体110的底部与草坪之间存在空间,使得履带122不与草坪相接触,避免自动割草机1转向时履带122损坏草坪。当自动割草机1转动到所需位置后,支撑结构300缩回壳体110,此时,自动割草机1可以继续对草坪进行修剪作业。自动割草机1在转向时,仅仅通过支撑结构300与草坪相接触来实现,这样,能够避免履带122与草坪相接触,从而避免自动割草机1转向时履带122对草坪的损坏。当然,支撑结构300将履带122支离草坪后还可以进行除转向外的其他操作。
需要说明的是,自动割草机1的转动运动是绕支撑结构300进行的,不会带动支撑结构300一同转动,支撑结构300不会与草坪之间产生摩擦,损坏草坪。当然,壳体110也可以带动支撑结构300一同转动,由于支撑结构300与草坪的接触面积明显要小于履带122与草坪的接触面积,因此,对草坪的损伤小。
本实施例中,控制模块与支撑结构300通过驱动结构连接,控制模块控
制驱动结构带动支撑结构300伸出或者缩回。自动割草机1需要转向时,控制模块控制驱动结构带动支撑结构300伸出壳体110的底部,使得支撑结构300将壳体110支撑起来;自动割草机1完成转向后,控制模块控制驱动结构带动支撑结构300缩回壳体110。
控制模块还与转向机构连接,控制模块控制转向机构驱动壳体110自动转动。控制模块能控制转向机构使壳体110转动所需的角度。并且,转向机构还能够保证壳体110的转向与支撑结构300不会发生干涉,保证壳体110转向平稳。转向机构包括轴承,轴承安装于支撑结构300上。转向机构在控制壳体110转动时,轴承能够使得支撑结构300与转向机构的其他部件不会发生干涉,保证壳体转向平稳。
进一步地,自动割草机1还包括高度传感器,高度传感器与控制模块电连接。控制模块能够控制高度传感器检测草坪中被修剪物的高度,以控制支撑结构300的伸出长度。在本发明中,控制模块能够控制高度传感器检测草坪上草的实际高度,高度传感器将草的实际高度信号传输给控制模块,控制模块再控制驱动结构带动支撑结构300伸出所需的长度,以避免履带122与草坪相接触。当然,在本发明的其他实施例中,控制模块也控制支撑结构300伸出固定的长度,比如支撑结构300固定伸出60mm~80mm,以达到避免履带122与草坪相接触的目的。
再进一步地,支撑结构300的伸出长度大于等于被修剪物的高度。也就是说,支撑结构300的伸出长度应当大于等于草坪上草的高度。支撑结构300伸出壳体110后,能够将壳体110支撑起来,使得履带122与草坪之间的距离大于等于草的高度,这样,壳体110在转向时,履带122不会与草坪中的草相接触,进而避免草坪损坏。
更进一步地,支撑结构300缩回壳体110,支撑结构300的端部与壳体110的底部相平齐。也就是说,支撑结构300缩回壳体110后,支撑结构300的端部与壳体110的底部在同一平面内。这样,自动割草机1在进行修剪作
业时,支撑结构300不会对草坪产生影响。同时,支撑结构300无需缩回壳体110中,减少支撑结构300的运动行程,提高效率。
作为一种可实施方式,支撑结构300位于自动割草机1的重心。由于支撑结构300将壳体110支撑起来后,支撑结构300承载自动割草机1的全部重量。为避免壳体110在转向时发生偏坠现象,保证自动割草机1转动平稳,支撑结构300应当位于自动割草机1重心位置,保证支撑结构300支起壳体110后,壳体110能够保持平衡。
作为一种可实施方式,支撑结构300包括支撑杆310,控制模块能够控制支撑杆310相对于壳体110伸出或者缩回壳体110。在本实施例中,壳体110是通过支撑杆310支撑起来的,并通过控制模块控制支撑杆310伸出或者缩回。并且,支撑杆310的截面形状可以为多边形、圆形或椭圆形。
当然,支撑杆310的数量也可以为至少两个,至少两个支撑杆310的截面尺寸依次变化;至少两个支撑杆310的轴线相重合且套设设置;控制模块控制至少两个支撑杆310依次伸出或依次缩回。也就是说,支撑结构300的伸出长度为支撑杆310的长度的至少两倍,这样,能够增加支撑杆310的长度范围,使得本发明的壳体110能够被支撑起任意高度。
支撑杆310的数量为至少两个时,支撑杆310的截面尺寸逐渐增加,截面尺寸最大的支撑杆310位于最外侧,截面尺寸最小的支撑杆310位于最内侧。按照支撑杆310的截面尺寸从大到小,使支撑杆310从外到内排布。
进一步地,支撑结构300还包括支撑底盘320,底盘320设置于支撑杆310远离壳体110的一端。支撑杆310通过底盘320与草坪相接触。由于支撑结构300将壳体110支撑起来后,支撑结构300承载自动割草机1的全部重量。若仅由支撑杆310支撑壳体110,支撑杆310远离壳体110的一端可能会陷入草坪中,容易损坏草坪。底盘320能够增加支撑杆310与草坪的接触面积,避免壳体110的重量集中,保证支撑结构300的支撑效果,避免支撑结构300陷入草坪中,进而避免损坏草坪。
再进一步地,底盘320的截面面积为支撑杆310的截面面积的1.2倍~5倍。通过底盘320增加支撑结构300与草坪的接触面积,便于支撑结构300支撑壳体110。若底盘320的截面面积过小,底盘320的支撑效果与支撑杆310的支撑效果相差不大。若底盘320的截面面积过大,会影响壳体110的修剪作业,同时,还会增加壳体110的尺寸。底盘320的高度为支撑杆310的截面面积的0.15倍~0.6倍,以便于支撑结构300的伸出与缩回。
并且,在本发明中,底盘320还可以为镂空结构,即底盘320与草坪相接触处存在镂空。也就是说,底盘320与草坪相接触的面积小于底盘320的面积。这样能够减小底盘320与草坪的接触面积,避免损坏草坪,降低对草坪的影响。
作为一种可实施方式,支撑结构300为气缸,气缸包括气缸缸体及相对于气缸缸体伸出或者缩回的伸缩杆。气缸缸体安装于壳体110中,伸缩杆能够相对于壳体110伸出或者缩回。通过气缸也能够将壳体110支撑起来,便于壳体110的转向操作,进而避免磨坏草坪。
驱动结构可以为齿轮传动结构,也可以为泵。当支撑结构300为支撑杆310时,可以通过齿轮传动结构等驱动支撑结构300伸出与缩回。当支撑结构300为气缸时,可以通过泵驱动伸缩杆伸出与缩回。当然,驱动结构还可以为其他能够驱动支撑结构300能够实现伸出与缩回的结构。
本发明的自动割草机1也可以为除履带式割草机以外的其他类型的割草机,避免割草机在转向时与草坪相接触,进而避免损坏草坪,便于使用。在本发明中,自动割草机1优选履带式割草机。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (27)
- 一种自移动设备,包括:壳体;移动模块,安装于壳体,所述移动模块包括履带,由驱动马达驱动以带动所述自移动设备移动;其特征在于,所述自移动设备还包括控制模块和调节装置,所述控制模块控制所述调节装置调节所述履带的接地长度,使得所述自移动设备转向时所述履带的接地长度,小于所述自移动设备直线移动时所述履带的接地长度。
- 根据权利要求1所述的自移动设备,其特征在于,所述自移动设备直线移动时,所述控制模块控制所述履带的接地长度大于或等于300mm。
- 根据权利要求1所述的自移动设备,其特征在于,所述自移动设备转向时,所述控制模块控制所述履带的接地长度小于300mm。
- 根据权利要求1所述的自移动设备,其特征在于,所述控制模块控制所述移动模块带动所述自移动设备转向时的转向半径小于等于0.5m。
- 根据权利要求4所述的自移动设备,其特征在于,所述控制模块控制所述移动模块带动所述自移动设备转向时的转向半径为零。
- 根据权利要求1所述的自移动设备,其特征在于,所述移动模块包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述履带的接地长度为所述前轮与所述后轮在水平方向上的距离;所述调节装置包括水平调节机构,调节所述前轮与所述后轮在水平方向上的距离。
- 根据权利要求1所述的自移动设备,其特征在于,所述移动模块包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述调节装置包括支重轮,所述支重轮位于所述前轮和所述后轮之间。
- 根据权利要求7所述的自移动设备,其特征在于,所述履带包覆所述支重轮。
- 根据权利要求7所述的自移动设备,其特征在于,所述自移动设备转向时,所述履带的接地长度小于或等于所述支重轮与所述前轮之间的距离,或者小于或等于所述支重轮与所述后轮之间的距离。
- 根据权利要求7所述的自移动设备,其特征在于,所述自移动设备直线移动时,所述履带的接地长度为所述前轮与所述后轮在水平方向上的距离。
- 根据权利要求7所述的自移动设备,其特征在于,所述调节装置包括升降机构,与所述支重轮连接,所述升降机构带动所述支重轮下降,以减小所述履带的接地长度;所述升降机构带动所述支重轮上升,以增大所述履带的接地长度。
- 根据权利要求11所述的自移动设备,其特征在于,所述控制模块控制自移动设备转向前,控制所述升降机构带动所述支重轮下降;所述控制模块判断所述自移动设备完成转向后,控制所述升降机构带动所述支重轮上升。
- 根据权利要求7所述的自移动设备,其特征在于,所述自移动设备的重心与所述支重轮的中心沿所述自移动设备的移动方向的距离小于或等于100mm。
- 根据权利要求13所述的自移动设备,其特征在于,所述自移动设备的重心与所述支重轮的中心沿所述自移动设备的移动方向的距离为零。
- 根据权利要求1所述的自移动设备,其特征在于,所述自移动设备为自动割草机。
- 根据权利要求1所述的自移动设备,其特征在于,所述调节装置包括转向轮,可升降地组配于所述壳体底部,所述转向轮在壳体的高度方向上具有第一位置和第二位置,其中在所述第一位置,所述转向轮的底部高于履带的底部,在所述第二位置,所述转向轮使所述履带的一端相较于履带的另一端被抬高;所述自移动设备转向时,控制模块控制所述转向轮位于第二位置,所述自移动设备直线移动时,控制模块控制所述转向轮位于第一位置。
- 根据权利要求16所述的自移动设备,其特征在于,所述壳体包括沿自移动设备移动方向的前部和后部,所述转向轮组配于所述壳体的前部。
- 根据权利要求1所述的自移动设备,其特征在于,所述调节装置包括支撑结构,安装于所述壳体;所述控制模块控制所述支撑结构从所述壳体底部伸出或者缩回所述壳体;所述控制模块控制自移动设备转向前,控制所述支撑结构从所述壳体底部伸出,以将所述履带的至少部分支离工作平面;所述控制模块判断自移动设备完成转向后,控制所述支撑结构缩回所述壳体。
- 根据权利要求18所述的自移动设备,其特征在于,所述支撑结构从所述壳体底部伸出时,所述履带的接地长度为零。
- 根据权利要求18所述的自移动设备,其特征在于,所述自移动设备包括转向机构,可转动的连接所述壳体与支撑结构,所述支撑结构从所述壳体底部伸出时,所述控制模块控制所述转向机构带动所述壳体绕所述支撑结构转动,使所述自移动设备转向。
- 根据权利要求18所述的自移动设备,其特征在于,所述支撑结构位于所述自移动设备的重心。
- 一种自移动设备的控制方法,所述自移动设备包括壳体;移动模块,安装于壳体;所述移动模块包括履带,由驱动马达驱动以带动所述自移动设备移动;其特征在于,所述自移动设备的控制方法包括步骤:控制所述自移动设备转向前,控制减小所述履带的接地长度;控制所述自移动设备完成转向后,控制增大所述履带的接地长度。
- 根据权利要求22所述的自移动设备的控制方法,其特征在于,所述自移动设备包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述自移动设备还包括支重轮,所述支重轮位于所述前轮和所述后轮之间;所述自移动设备的控制方法包括步骤:控制所述自移动设备转向前,控制所述支重轮下降以减小所述履带的接地长度;控制所述自移动设备完成转向后,控制所述支重轮上升以增大所述履带的接地长度。
- 根据权利要求22所述的自移动设备的控制方法,其特征在于,所述自移动设备包括轮组,所述履带绕设于所述轮组,所述轮组包括前轮和后轮,所述履带的接地长度为所述前轮与所述后轮在水平方向上的距离;所述自移动设 备的控制方法包括步骤:控制所述自移动设备转向前,控制减小前轮与后轮在水平方向上的距离;控制所述自移动设备完成转向后,控制增大前轮与后轮在水平方向上的距离。
- 根据权利要求22所述的自移动设备的控制方法,其特征在于,所述自移动设备包括转向轮,可升降地组配于所述壳体底部;所述自移动设备的控制方法包括步骤:控制所述自移动设备转向前,控制所述转向轮下降,使得所述履带的一端相较于履带的另一端被抬高;控制所述自移动设备完成转向后,控制所述转向轮上升,使得所述转向轮的底部高于履带的底部。
- 根据权利要求22所述的自移动设备的控制方法,其特征在于,所述自移动设备包括支撑结构,安装于所述壳体;所述自移动设备的控制方法包括步骤:控制所述自移动设备转向前,控制所述支撑结构从所述壳体底部伸出,以将所述履带的至少部分支离工作平面;控制所述自移动设备完成转向后,控制所述支撑结构缩回所述壳体。
- 根据权利要求26所述的自移动设备的控制方法,其特征在于,所述支撑结构从所述壳体底部伸出时,控制所述壳体绕所述支撑结构转动,使所述自移动设备转向。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780001402.5A CN107920463B (zh) | 2016-01-21 | 2017-01-22 | 自移动设备及自移动设备的控制方法 |
EP17741120.4A EP3406119A4 (en) | 2016-01-21 | 2017-01-22 | SELF-MOVING DEVICE AND METHOD FOR CONTROLLING THE SELF-MOVING DEVICE |
US16/040,041 US20180317368A1 (en) | 2016-01-21 | 2018-07-19 | Self-Moving Device and Control Method for Self-Moving Device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610039085.3A CN106982585B (zh) | 2016-01-21 | 2016-01-21 | 履带式割草机及其转向方法 |
CN201610039085.3 | 2016-01-21 | ||
CN201610569231.3A CN107624368B (zh) | 2016-07-19 | 2016-07-19 | 割草机 |
CN201610569231.3 | 2016-07-19 | ||
CN201610997080.1 | 2016-11-11 | ||
CN201610997080.1A CN108073179A (zh) | 2016-11-11 | 2016-11-11 | 自移动设备及自移动设备的控制方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/040,041 Continuation US20180317368A1 (en) | 2016-01-21 | 2018-07-19 | Self-Moving Device and Control Method for Self-Moving Device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017125089A1 true WO2017125089A1 (zh) | 2017-07-27 |
Family
ID=59361560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/072098 WO2017125089A1 (zh) | 2016-01-21 | 2017-01-22 | 自移动设备及自移动设备的控制方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180317368A1 (zh) |
EP (1) | EP3406119A4 (zh) |
CN (1) | CN107920463B (zh) |
WO (1) | WO2017125089A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11172609B2 (en) | 2016-06-30 | 2021-11-16 | Tti (Macao Commercial Offshore) Limited | Autonomous lawn mower and a system for navigating thereof |
US20220151145A1 (en) * | 2020-10-08 | 2022-05-19 | Mdb Srl | Radio-controlled vehicle |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017198226A1 (zh) * | 2016-05-19 | 2017-11-23 | 苏州宝时得电动工具有限公司 | 自移动设备及其控制方法 |
US11950527B2 (en) * | 2019-05-28 | 2024-04-09 | Mtd Products Inc | Device and method for calibrating outdoor power equipment and quality of cut |
US20210276593A1 (en) * | 2020-02-25 | 2021-09-09 | Next Energy, LLC | Automated and interchangeable functional device |
CN113632634A (zh) * | 2021-07-29 | 2021-11-12 | 赵元凤 | 一种市政工程用草坪修剪机 |
CN114424702A (zh) * | 2022-03-14 | 2022-05-03 | 未岚大陆(北京)科技有限公司 | 自移动设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1962342A (zh) * | 2006-11-30 | 2007-05-16 | 湖南江麓机械集团有限公司 | 沙漠植被车用动态同步履带行驶装置 |
CN201398293Y (zh) * | 2009-04-02 | 2010-02-10 | 农业部南京农业机械化研究所 | 烟田管理作业拖拉机 |
JP2012064152A (ja) * | 2010-09-17 | 2012-03-29 | Kubota Corp | 作業車 |
CN102696294A (zh) * | 2012-06-13 | 2012-10-03 | 华南理工大学 | 一种水田用重心可调式除草机器人 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8909224D0 (en) * | 1989-04-22 | 1989-06-07 | Hunt Jeffrey E | Self-propelled mowing apparatus |
US5316381A (en) * | 1992-11-13 | 1994-05-31 | Deere & Company | Tensioning and suspension system for a tracked vehicle |
JP3198217B2 (ja) * | 1994-07-27 | 2001-08-13 | 本田技研工業株式会社 | 揺動型作業車両 |
JPH10100948A (ja) * | 1996-10-01 | 1998-04-21 | Hiroshi Ochiai | 無限軌道車 |
JP3809675B2 (ja) * | 1996-10-16 | 2006-08-16 | 井関農機株式会社 | クローラ式トラクタ |
IL122062A (en) * | 1997-10-29 | 2000-08-13 | Galileo Mobility Instr Ltd | Transporting system |
US7690738B2 (en) * | 2005-05-31 | 2010-04-06 | Wilt H William B | Dynamically changing track support for tracked vehicle |
CN101626946B (zh) * | 2006-11-13 | 2013-06-05 | 雷神萨科斯公司 | 用于轻型机器人车辆的悬架系统和该车辆的支承方法 |
CA2744681C (en) * | 2010-06-28 | 2018-08-28 | Camoplast Solideal Inc. | All-terrain vehicle (atv) propellable on wheels or endless tracks |
IT1403165B1 (it) * | 2010-12-15 | 2013-10-04 | Oto Melara Spa | Sistema cingolato a geometria variabile. |
US9096281B1 (en) * | 2014-07-30 | 2015-08-04 | Engineering Services Inc. | Dual mode mobile robot |
-
2017
- 2017-01-22 WO PCT/CN2017/072098 patent/WO2017125089A1/zh active Application Filing
- 2017-01-22 EP EP17741120.4A patent/EP3406119A4/en active Pending
- 2017-01-22 CN CN201780001402.5A patent/CN107920463B/zh active Active
-
2018
- 2018-07-19 US US16/040,041 patent/US20180317368A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1962342A (zh) * | 2006-11-30 | 2007-05-16 | 湖南江麓机械集团有限公司 | 沙漠植被车用动态同步履带行驶装置 |
CN201398293Y (zh) * | 2009-04-02 | 2010-02-10 | 农业部南京农业机械化研究所 | 烟田管理作业拖拉机 |
JP2012064152A (ja) * | 2010-09-17 | 2012-03-29 | Kubota Corp | 作業車 |
CN102696294A (zh) * | 2012-06-13 | 2012-10-03 | 华南理工大学 | 一种水田用重心可调式除草机器人 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11172609B2 (en) | 2016-06-30 | 2021-11-16 | Tti (Macao Commercial Offshore) Limited | Autonomous lawn mower and a system for navigating thereof |
US20220151145A1 (en) * | 2020-10-08 | 2022-05-19 | Mdb Srl | Radio-controlled vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN107920463A (zh) | 2018-04-17 |
US20180317368A1 (en) | 2018-11-08 |
CN107920463B (zh) | 2022-01-18 |
EP3406119A1 (en) | 2018-11-28 |
EP3406119A4 (en) | 2019-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017125089A1 (zh) | 自移动设备及自移动设备的控制方法 | |
US10869424B2 (en) | Power tool, lawn mower, and control method thereof | |
US8220806B2 (en) | Surface milling system | |
EP3459334B1 (en) | Self-moving device and control method thereof | |
KR101526334B1 (ko) | 예초용 로봇 | |
EP3997975A1 (en) | Mowing machine | |
JP2016208950A (ja) | ガード機構及び芝刈機 | |
JPH08504521A (ja) | 自走ランダム移動電気機械および対応する電気機械の移動を制御する方法 | |
KR20100032488A (ko) | 자동 잔디깍기장치 | |
JP6719744B2 (ja) | 自走草刈機 | |
CN113348847B (zh) | 智能割草机及其割草方法 | |
EP3791708A1 (en) | Lawn mower robot | |
CN205469357U (zh) | 用于跨越障碍的多功能仿蚁机器人 | |
CN106982585B (zh) | 履带式割草机及其转向方法 | |
EP3585145B1 (en) | Self-propelled robotic lawnmower comprising wheels arranged with a negative camber angle | |
KR20150081850A (ko) | 승용 관리기 | |
KR101503397B1 (ko) | 이동형 로봇 | |
JP3653142B2 (ja) | 自走型茶園管理機の走行装置 | |
CA2970872A1 (en) | Manually steered auger mover | |
JP2567508B2 (ja) | 芝刈り用の作業車の旋回装置 | |
CN107624368B (zh) | 割草机 | |
CN220033919U (zh) | 越障行走叉车 | |
CN219749997U (zh) | 一种agv机器人自动导引装置 | |
CN220191470U (zh) | 自移动割草设备 | |
AU2018101484A4 (en) | Power tool, lawn mower, and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741120 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017741120 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017741120 Country of ref document: EP Effective date: 20180821 |