WO2017121384A1 - 一种无线帧的传输方法以及无线网络设备 - Google Patents
一种无线帧的传输方法以及无线网络设备 Download PDFInfo
- Publication number
- WO2017121384A1 WO2017121384A1 PCT/CN2017/071133 CN2017071133W WO2017121384A1 WO 2017121384 A1 WO2017121384 A1 WO 2017121384A1 CN 2017071133 W CN2017071133 W CN 2017071133W WO 2017121384 A1 WO2017121384 A1 WO 2017121384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subframes
- radio frame
- subframe
- special
- uplink
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0092—Indication of how the channel is divided
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to a method for transmitting a wireless frame and a wireless network device.
- 5G 5th Generation, 5th Generation Mobile Communication Technology
- 5G 5th Generation, 5th Generation Mobile Communication Technology
- 5th Generation Mobile Communication Technology an important feature in the future 5G (5th Generation, 5th Generation Mobile Communication Technology) system is to introduce more transmission antennas, such as distributed MIMO based on multi-cell cooperation.
- the performance of MIMO transmission depends on the acquisition of the downlink channel state, that is, the more time-efficient the acquisition of the downlink channel state, the better the performance of the MIMO transmission.
- the downlink channel state can be obtained by transmitting a sounding signal (sounding signal) in the uplink.
- sounding signal sounding signal
- the shorter the transmission period of the sounding signal the more time-efficient the channel state acquired by the base station.
- the transmission period of the sounding signal is long, and the timeliness of the channel state acquired by the base station is poor.
- the embodiment of the present invention provides a method for transmitting a radio frame and a radio network device, which can increase the number of subframes used for uplink transmission in a radio frame, thereby increasing a subframe carrying the detection signal, and shortening a transmission period of the detection signal. Improve the timeliness of the base station acquiring channel status.
- a first aspect of the embodiments of the present invention provides a method for transmitting a radio frame, where the method is applicable to a base station, including: transmitting radio frame configuration information to a user equipment; and receiving, by the user equipment, radio information sent according to the radio frame configuration information.
- a frame the radio frame including at least three special subframes.
- the radio frame configuration information refers to information including an uplink subframe, a downlink subframe, and a special subframe configuration manner in the radio frame.
- the method is also applicable to another user equipment.
- a second aspect of the embodiments of the present invention provides a method for transmitting a radio frame, where the method is applicable to a user equipment, including: receiving radio frame configuration information sent by a base station; and transmitting a radio frame to the base station according to the radio frame configuration information.
- the radio frame includes at least three special subframes.
- the radio frame configuration information refers to information including an uplink subframe, a downlink subframe, and a special subframe configuration manner in the radio frame.
- the method can also be applied to another base station.
- the radio frame includes ten to ten subframes, and the second and seventh subframes of the radio frame are the special subframe.
- the third, fourth, fifth, eighth, ninth, and tenth subframes of the radio frame are uplink subframes, and the first and sixth subframes of the radio frame At least one of the subframes is the special subframe; or the third, fourth, eighth, and ninth subframes of the radio frame are uplink subframes, and the first and the first of the radio frames At least one of the five, sixth, and tenth subframes is the special subframe; or the third and eighth subframes of the radio frame are uplink subframes, and the first of the radio frames At least one of the fourth, fifth, sixth, ninth, and tenth subframes is the special subframe; or the third, fourth, and fourth of the wireless frame
- the fifth, eighth, and ninth subframes are uplink subframes, and at least one of the first, sixth, and
- At least one of the special sub- The frame carries a sounding signal.
- at least one uplink subframe in the radio frame carries a detection signal.
- the method further includes: acquiring a downlink channel state according to the probe signal carried by the radio frame.
- the wireless frame has at least two The special subframes of different ratios, the ratio of the special subframes modulating the number of downlink pilot slots and uplink pilot slots in the special subframe.
- the second and seventh subframes in the radio frame are special subframes of a matching type, and the special subframes except the second and seventh subframes in the radio frame are another A special sub-frame of the matching type.
- the radio frame In conjunction with the first or second aspect, and any one of the first to third aspects of the first or second aspect, in a fourth possible implementation of the first or second aspect, in the radio frame
- the ratio of the special subframes other than the second and seventh subframes is 12 downlink pilot slots and 1 uplink pilot slot. It should be understood that the more the number of special subframes in the radio frame, the fewer the number of downlink subframes, which causes a certain loss to the downlink transmission. To compensate for the loss, only one uplink pilot is configured for the special subframe.
- the time slots are configured to maximize 12 downlink pilot time slots for downlink transmission.
- the radio frame in conjunction with the first or second aspect, and any one of the first to fourth aspects of the first or second aspect, in a fifth possible implementation of the first or second aspect, in the radio frame
- the ratio of the special subframes other than the second and seventh subframes is predefined, or is configured by system message or higher layer signaling, or is configured by RRC signaling.
- the radio frame is Configured by system messages or higher layer signaling.
- a third aspect of the embodiments of the present invention provides a method for transmitting a radio frame, where the method may be applied to a base station, including: sending radio frame configuration information to a user equipment; and receiving, by the user equipment, the radio sent according to the radio frame configuration information.
- the radio frame includes ten to ten subframes, and a second subframe of the radio frame is the special subframe, wherein the radio frame has only the third and fourth And the fifth subframe is an uplink subframe, and at least one of the first, sixth, seventh, eighth, ninth, and tenth subframes of the radio frame is the special a subframe; or the third and fourth subframes in the radio frame are uplink subframes, and the first, fifth, sixth, seventh, and eighth of the radio frames At least one of the ninth and tenth subframes is the special subframe; or that only the third subframe of the radio frame is the uplink subframe, and the first of the radio frames , fourth, fifth, sixth, seventh, eighth, ninth and tenth Frame in at least one subframe of the special subframe.
- the special subframe includes a downlink pilot time slot, a guard interval, and an uplink pilot time slot.
- the downlink pilot time slot, the guard interval and the uplink pilot time slot are sequentially arranged.
- the method is also applicable to another user equipment.
- a fourth aspect of the embodiments of the present invention provides a method for transmitting a radio frame, where the method can be applied to a user equipment, including: receiving radio frame configuration information sent by a base station; and transmitting a radio frame to the base station according to the radio frame configuration information.
- the second subframe of the radio frame is the special subframe, wherein only the third, fourth, and fifth subframes in the radio frame are uplink subframes, and the radio frame At least one of the first, sixth, seventh, eighth, ninth, and tenth subframes is the special subframe; or there is only a third of the radio frames
- the fourth subframe is an uplink subframe, and at least one of the first, fifth, sixth, seventh, eighth, ninth, and tenth subframes of the radio frame is The special subframe; or only the third subframe in the radio frame is the uplink subframe, and the first, fourth, fifth, sixth, and seventh of the radio frame At least one of the eighth, ninth, and tenth subframes is the special subframe.
- the method can also be applied to another base station.
- At least one of the special subframes in the radio frame carries a detection signal.
- at least one uplink subframe in the radio frame carries a detection signal.
- the method further includes: acquiring a downlink channel state according to the probe signal carried by the radio frame.
- the wireless frame has at least two different ratios
- the special subframe the ratio of the special subframes reflects the number of downlink pilot slots and uplink pilot slots in the special subframe.
- the second subframe in the radio frame is a special subframe of a matching type, and the special subframes in the radio frame except the second subframe are special subtypes of another matching type. frame.
- the second one of the radio frames is 12 downlink pilot slots and 1 uplink pilot slot. It should be understood that the more the number of special subframes in the radio frame, the fewer the number of downlink subframes, which causes a certain loss to the downlink transmission. To compensate for the loss, only one uplink pilot is configured for the special subframe.
- the time slots are configured to maximize 12 downlink pilot time slots for downlink transmission.
- the second one of the radio frames is predefined, or is configured by system message or higher layer signaling, or is configured by RRC signaling.
- the radio frame is a system message or High-level signaling configuration.
- a fifth aspect of the embodiments of the present invention provides a method for transmitting a radio frame, where the method is applicable to a base station, including: sending radio frame configuration information to a user equipment, where the configuration information includes indicating a radio frame for transmitting an uplink signal. The information of the downlink subframe is received; and the uplink signal sent by the user equipment on the downlink subframe used for transmitting the uplink signal according to the radio frame configuration information is received.
- the method is also applicable to another user equipment.
- a sixth aspect of the embodiments of the present invention provides a method for transmitting a radio frame, where the method is applicable to a user equipment, including: receiving radio frame configuration information sent by a base station, where the configuration information includes indicating that the radio frame is used to send an uplink signal.
- the downlink subframe information is sent to the base station in the downlink subframe for transmitting the uplink signal according to the radio frame configuration information.
- the method can also be applied to another base station.
- the uplink signal comprises a sounding signal.
- at least one uplink subframe in the radio frame carries a detection signal.
- the receiving, by the user equipment, according to the radio frame configuration information further comprising: according to the detection signal carried by the radio frame, Get the downlink channel status.
- the receiving the user equipment, according to the radio frame configuration information, in the sending The uplink signal sent on the downlink subframe of the uplink signal includes: receiving, by the user equipment, sending, according to the radio frame configuration information, the last or last symbol in the downlink subframe used for sending the uplink signal Upstream signal.
- the performing, according to the radio frame configuration information, in the downlink for sending an uplink signal And sending, by the frame, the uplink signal to the base station, according to the radio frame configuration information, sending an uplink signal to the base station on a last or last plurality of symbols in the downlink subframe used for transmitting the uplink signal.
- the downlink for sending an uplink signal The resource unit corresponding to the symbol used to transmit the uplink signal on the subframe does not map the downlink data.
- the The downlink data mapped by the resource unit corresponding to the symbol used to transmit the uplink signal in the downlink subframe of the uplink signal is punctured.
- the The downlink subframe of the uplink signal is configured by system message or high layer signaling.
- a seventh aspect of the embodiments of the present invention provides a wireless network device, where the wireless network device may be a base station, and has a behavior function for implementing the method provided by the foregoing first aspect or the third aspect or the fifth aspect, where the function may pass
- the hardware implementation can also be implemented by hardware implementation of the corresponding software.
- the hardware or software includes one or more modules corresponding to the functions described above.
- An eighth aspect of the embodiments of the present invention provides a wireless network device, where the wireless network device may be a user equipment, and has a behavior function that implements the method provided in the foregoing second aspect or the fourth aspect or the sixth aspect, where the function may be Through hardware implementation, the corresponding software implementation can also be performed by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- a ninth invention of the present invention provides a communication system including a first wireless network device and a second wireless network device.
- the first wireless network device and the second wireless network device are respectively used to implement the foregoing first and second aspects, or the third and fourth aspects, or the methods provided by the fifth and sixth aspects, respectively .
- the user equipment and the base station perform uplink transmission of the radio frame
- the radio frame includes at least three special subframes, or the radio frame includes at least two special subframes, or the radio frame includes an uplink for sending
- the downlink subframe of the signal can increase the number of subframes used for uplink transmission in the radio frame.
- FIG. 1 is an application scenario diagram of a communication system according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a conventional radio frame according to an embodiment of the present invention.
- FIG. 3 is a schematic flowchart of a method for transmitting a radio frame according to an embodiment of the present invention
- FIG. 4 is a schematic flowchart of another method for transmitting a radio frame according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a radio frame according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a wireless network device according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of another wireless network device according to an embodiment of the present invention.
- the technical solutions of the embodiments of the present invention can be applied to various communication systems, such as a TDD system of LTE (Long Term Evolution), a distributed MIMO system based on multi-cell cooperation, or a Massive MIMO system based on a large-scale antenna group.
- 1 is a simplified application scenario diagram of various embodiments of the present invention. The figure includes at least a base station and a plurality of user equipments in the same cell, where the user equipment sends a message to the base station, that is, uplink transmission.
- the base station sends a message to the user equipment called downlink transmission.
- the transmission channel between the user equipment and the base station is called a channel, and includes an uplink channel and a downlink channel. Since the uplink channel and the downlink channel have reciprocity, the downlink channel state can send a sounding signal to the base station through the user equipment in the same cell (sounding signal) ) to get.
- Embodiments of the present invention describe various aspects in connection with a wireless network device, which may be a base station, which may be used for communicating with one or more user equipments, or for one or more functions with partial user equipment.
- the base station performs communication (such as communication between a macro base station and a micro base station, such as an access point).
- the base station may be a BTS (Base Transceiver Station) in TD-SCDMA (Time Division Synchronous Code Division Multiple Access), or may be an eNB (Evolutional Node B, evolved base station) in LTE. It can also be a base station in a future network.
- the wireless network device can also be a user equipment, and the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
- User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
- the user equipment may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a smart phone, a WLL (wireless local loop) station, a PDA (Personal Digital Assistant), a knee A desktop computer, a handheld communication device, a handheld computing device, a satellite wireless device, a wireless modem card, and/or other processing device for communicating over a wireless system.
- a base station may also be referred to as an access point, a node, or some other network entity, and may include some or all of the functionality of the above network entities.
- the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
- the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
- the embodiment of the present invention is described by taking the communication between the base station and the user equipment as an example. It can be understood that the embodiment of the present invention can be applied to communication between the first wireless network device and the second wireless network device, for example, a base station and Communication between user equipment, or, base station and another Communication between base stations, or communication between a user equipment and another user equipment. The following describes the communication between the base station and the user equipment as an example.
- module or the like as used in the embodiments of the present invention is intended to refer to a computer-related entity, which may be hardware, firmware, a combination of hardware and software, software, or software in operation.
- a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
- an application running on a computing device and the computing device can be a component.
- One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers.
- these components can execute from various computer readable media having various data structures thereon.
- These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
- the network interacts with other systems to communicate in a local and/or remote process.
- Embodiments of the invention present various aspects, embodiments or features in a system that can include a plurality of devices, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
- information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the distinction is not emphasized.
- the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
- the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
- the embodiment of the present invention can be applied to a scenario of Time Division Duplexing (TDD), and can also be applied to a scenario of Frequency Division Duplexing (FDD).
- TDD Time Division Duplexing
- FDD Frequency Division Duplexing
- each radio frame has a length of 10 milliseconds, including 10 sub-frames of 1 millisecond length, as shown in SF#0 to SF#9 in the figure.
- a subframe of a radio frame is divided into an uplink subframe, a downlink subframe, and a special subframe according to its function.
- the uplink subframe is used to carry uplink data information or signaling information
- the downlink subframe is used to carry downlink data information.
- signaling information, and the special subframe can be used to carry uplink data information or signaling information, and can also be used to carry downlink data information or signaling information.
- the existing wireless communication protocol standard stipulates that the second subframe (SF#1) of each radio frame is fixed as a special subframe, and the seventh subframe (SF#6) may be a special subframe, and other subframes may be based on Different configurations are set as uplink subframes or downlink subframes. For example, refer to Table 1. Different configurations of radio frame structures are shown in the table.
- U indicates an uplink subframe
- D indicates a downlink subframe
- S indicates a special subframe.
- the sounding signal depends on the uplink transmission mode sent by the user equipment to the base station, the sounding signal can only be transmitted on the uplink subframe and the special subframe. It can be seen that the sounding signal can be sent in the existing wireless frame. The number of subframes is small, and the transmission period is limited, which is difficult to meet the timeliness of obtaining the downlink channel state.
- FIG. 3 is a schematic flowchart of a method for transmitting a radio frame according to an embodiment of the present invention.
- the flow of the method for transmitting a radio frame in this embodiment as shown in the figure may include:
- the base station determines radio frame configuration information.
- the radio frame configuration information is used to indicate a subframe type to which ten subframes of a radio frame are respectively allocated, where the subframe type includes an uplink subframe, a downlink subframe, and a special subframe, and the radio frame configuration information is configured in a radio frame. Generated at the time.
- the base station acquires radio frame configuration information generated when the radio frame is configured, and sends the radio frame configuration information to the user equipment.
- the base station sends the radio frame configuration information to the user equipment by using the system message or the high layer signaling, for example, carrying the radio frame configuration information on the SIB1 message in the broadcast message.
- the user equipment determines radio frame configuration information.
- the user equipment receives the radio frame configuration information sent by the base station.
- the radio frame configuration information may be notified by using a system message or a high layer signaling.
- the user equipment receives the radio frame configuration information sent by the base station by using the system message or the high layer signaling.
- the user equipment performs uplink transmission of the radio frame according to the radio frame configuration information.
- the user equipment sends a radio frame to the base station according to the radio frame configuration information.
- the radio frame that is sent by the user equipment to the base station according to the radio frame configuration information includes at least three special subframes.
- the second subframe of the existing radio frame is fixed as a special subframe
- the seventh subframe may be a special subframe, that is, no more than two special subframes, and the wireless in this embodiment
- the frame includes at least three special subframes.
- the second and seventh subframes of the radio frame sent by the user equipment are special subframes, and the third, fourth, fifth, eighth, and ninth sums of the radio frames.
- the tenth subframe is an uplink subframe, and the first and/or sixth subframe of the radio frame is a special subframe; or the third, fourth, eighth, and ninth subframes of the radio frame are uplink subframes.
- a frame at least one of the first, fifth, sixth, and tenth subframes of the radio frame is a special subframe; or the third and eighth subframes of the radio frame are uplink subframes, and wireless At least one of the first, fourth, fifth, sixth, ninth, and tenth subframes of the frame is a special subframe; or the third, fourth, and fourth of the radio frame
- the five, eighth, and ninth subframes are uplink subframes, and at least one of the first, sixth, and tenth subframes of the radio frame is a special subframe.
- the above embodiment can be understood as replacing some or all of the downlink subframes in the existing radio frames with configuration numbers 0, 1, 2, and 6 into special subframes. Since the special subframe can be used for both uplink transmission and downlink transmission, the present embodiment increases the uplink transmission capability while retaining the downlink transmission capability. Further, in order to maximize the uplink transmission capability, all the downlink subframes in the existing radio frames with configuration numbers 0, 1, 2, and 6 can be replaced with special subframes, and the configuration numbers are 7, 8, and 9. And four radio frames of 10, as shown in Table 2.
- radio frames with configuration numbers 7, 8, 9, and 10 can be used for uplink transmission, that is, the uplink transmission period can be reduced to 1 ms.
- the second subframe of the radio frame sent by the user equipment to the base station according to the radio frame configuration information is a special subframe
- the third and fourth sums of the radio frame are only
- the fifth subframe is an uplink subframe
- at least one of the first, sixth, seventh, eighth, ninth, and tenth subframes of the radio frame is a special subframe
- a radio frame And only the third and fourth subframes are uplink subframes, and the first, fifth, sixth, seventh, eighth, ninth, and tenth subframes of the radio frame
- At least one subframe is a special subframe; or only a third subframe in the radio frame is an uplink subframe, and the first, fourth, fifth, sixth, seventh of the radio frame, At least one of the eighth, ninth, and tenth subframes is a special subframe.
- the present embodiment can be understood as replacing some or all of the downlink subframes in the existing radio frames with configuration numbers 3, 4, and 5 into special subframes.
- all the downlink subframes in the existing radio frames with configuration numbers 3, 4, and 5 can be replaced with special subframes, and three configurations numbers 11, 12, and 13 are obtained.
- a radio frame is shown in Table 3.
- neither the first implementation manner nor the foregoing second implementation manner changes the structure of the existing radio frame (such as the length of the radio frame and the number of subframes), and can communicate with the current communication protocol. Fully compatible and therefore implementable.
- the special subframe includes a Downlink Pilot Time Slot (DwPTS), a Guard Point (GP), and an Uplink Pilot Time Slot (UpPTS), DwPTS, GP, and UpPTS.
- the DwPTS is used for downlink transmission
- the UpPTS is used for uplink transmission.
- the special subframe can be used for both uplink transmission and downlink transmission.
- the ratio of the special subframes of the radio frame in the embodiment of the present invention may be different, that is, the special subframes of the at least two different ratios may exist in the radio frame, the special sub-frame
- the ratio of the frame can reflect the number of DwPTS and UpPTS in the special subframe.
- the existing communication protocol has been specified as shown in Table 4 or Table 5.
- the second and seventh subframes in the radio frame are special subframes of a matching type, and the second and seventh subframes of the radio frame are other than the second subframe and the seventh subframe.
- the special subframe is a special subframe of another matching type.
- the second and seventh subframes in the radio frame are special subframes corresponding to the matching ratio 1 in Table 4.
- the other special subframes are configured in Table 4.
- the second subframe in the radio frame For a special type of special subframe, the special subframe other than the second subframe in the radio frame is another special subframe of the matching type.
- the second subframe in the radio frame is in Table 4.
- the special subframe corresponding to the ratio 1 and the other special subframes are the special subframes corresponding to the ratio 6 in Table 4.
- the ratio of the special subframes other than the second and seventh subframes in the radio frame is the ratio 4 in Table 4, that is, including 12 DwPTSs and one. UpPTS.
- the ratio of the special subframes other than the second subframe in the radio frame is the ratio 4 in Table 4, that is, includes 12 DwPTSs and one UpPTS. It should be understood that the more the number of special subframes in the radio frame, the fewer the number of downlink subframes, which causes a certain loss to the downlink transmission.
- Table 4 and Table 5 the ratio 4 in Table 4 is known. It includes the most DwPTS, which makes most of the time slots of this special subframe still used for downlink transmission, ensuring the loss of downlink transmission is minimal.
- the ratio of the special subframes other than the second and seventh subframes in the radio frame is predefined, or is configured by using system messages or high layer signaling. Or it is configured by Radio Resource Control (RRC).
- RRC Radio Resource Control
- the ratio of the special subframes other than the second subframe in the radio frame is predefined, or is configured through system message or high layer signaling, or is controlled by the radio resource layer. Order configuration.
- the configuration of the special subframes of the radio frame other than the second subframe is configured by using the system message or the high layer signaling, or the specific implementation manner of the radio resource control layer signaling may be:
- the system message or the high layer signaling, or the information indicating the ratio of the special subframes other than the second subframe in the radio frame is sent to the user equipment by using the RRC signaling, and the user equipment receives the information and determines the ratio.
- the base station performs uplink transmission of the radio frame according to the radio frame configuration information.
- the base station receives a radio frame that is sent by the user equipment according to the radio frame configuration information.
- At least one special subframe exists in the radio frame to carry the detection signal.
- at least one uplink subframe exists in the radio frame to carry the detection signal.
- the base station after receiving the radio frame sent by the user equipment according to the radio frame configuration information, acquires the downlink channel status according to the detection signal carried by the radio frame. It can be seen that, in the embodiment of the present invention, a subframe in which a radio frame can transmit a sounding signal is increased relative to an existing radio frame, so that a transmission period of the sounding signal is reduced, and timeliness of acquiring a downlink channel state is enhanced, thereby improving wireless transmission. performance.
- the transmission period of the probe signal can reach 1 ms. It should be understood that the minimum transmission period of the detection signal under TDD is 5 ms, and the minimum transmission period of the detection signal under FDD is less than 5 ms. Thus, it can be seen that the configuration under FDD can be used even when configuring the transmission period and offset of the detection signal.
- I Send cycle (ms) Offset 0 ⁇ 1 2 I 2 to 6 5 I-2 7 to 16 10 I-7 17 ⁇ 36 20 I-17 37 ⁇ 76 40 I-37 77 ⁇ 156 80 I-77 157-316 160 I-157 317-636 320 I-317 637 ⁇ 1023 - -
- the configuration under another FDD is as shown in Table 7.
- Table 7 the configuration under another FDD is as shown in Table 7.
- the same reason I indicates an index number, and the value of the offset is used to indicate how many subframes relative to the first subframe are the starting subframes carrying the sounding signal.
- the configuration of the index number is 1, the transmission period of the sounding signal is 2 ms, and the offset is 1, that is, the base station receives the sounding signal sent by the user equipment every 2 ms from the second subframe of the wireless frame;
- the detection period of the detection signal is 5 ms
- the radio frame includes at least three special subframes, or the radio frame includes at least two special subframes, which can be used to increase the radio frame for uplink.
- the number of transmitted subframes reduces the transmission period of the sounding signal, which enhances the timeliness of acquiring the downlink channel state, thereby improving the performance of the wireless transmission.
- FIG. 4 is a schematic flowchart diagram of another method for transmitting a radio frame according to an embodiment of the present invention.
- the flow of the method for transmitting a radio frame in this embodiment as shown in the figure may include:
- the base station determines radio frame configuration information.
- the radio frame configuration information is information of a subframe type in which ten subframes of the radio frame are respectively allocated, and the subframe type includes an uplink subframe, a downlink subframe, and a special subframe, where the radio frame configuration information further includes Information indicating a downlink subframe for transmitting an uplink signal in the radio frame, the radio frame configuration information being generated at the time of radio frame configuration.
- the base station acquires radio frame configuration information generated when the radio frame is configured, and sends the radio frame configuration information to the user equipment.
- the base station sends the radio frame configuration information to the user equipment by using the system message or the high layer signaling, for example, carrying the radio frame configuration information on the SIB1 message in the broadcast message.
- the user equipment determines radio frame configuration information.
- the user equipment receives the radio frame configuration information sent by the base station.
- the radio frame configuration information may be notified by using a system message or a high layer signaling.
- the user equipment receives the radio frame configuration information sent by the base station by using the system message or the high layer signaling.
- the user equipment performs uplink signal transmission on a downlink subframe used for transmitting an uplink signal according to the radio frame configuration information.
- the user equipment sends an uplink signal to the base station in the downlink subframe for sending the uplink signal according to the radio frame configuration information.
- the downlink subframe is only used for the downlink transmission, and the embodiment of the present invention allows the user equipment to send the uplink to the base station in the downlink subframe for sending the uplink signal. signal.
- the user equipment sends an uplink signal to the base station on the last or last plurality of symbols in the downlink subframe used for sending the uplink signal according to the radio frame configuration information, as shown in FIG. 5 .
- the downlink subframe is mainly used for downlink transmission. Therefore, in the embodiment of the present invention, only a few symbols in the downlink subframe are configured to send an uplink signal, which makes the downlink subframe still large. Part of the symbol is used for downlink transmission to avoid loss of downlink transmission.
- the selection manner of the downlink subframe for transmitting the uplink signal may be added to the prior art by adding the special subframe described in the embodiment shown in FIG.
- the scheme that is, the scheme in which the downlink subframe of the prior art is changed to a special subframe is not described here.
- the base station performs uplink signal transmission on the downlink subframe used for transmitting the uplink signal according to the radio frame configuration information.
- the base station receives an uplink signal sent by the user equipment on the downlink subframe used for transmitting the uplink signal according to the radio frame configuration information.
- At least one uplink subframe in the radio frame carries a detection signal.
- the uplink signal carries a detection signal.
- the base station receives the uplink signal sent by the user equipment according to the radio frame configuration information, and sends the downlink channel state according to the sounding signal carried by the radio frame. It can be seen that, in the embodiment of the present invention, a subframe in which a radio frame can transmit a sounding signal is increased relative to an existing radio frame, so that a transmission period of the sounding signal is reduced, and timeliness of acquiring a downlink channel state is enhanced, thereby improving wireless transmission. performance.
- the resource unit corresponding to the symbol does not map the downlink data, such as the Physical Downlink Shared Channel (PDSCH), in the downlink transmission.
- the downlink data mapped by the resource unit corresponding to the symbol is punctured.
- the mapping refers to putting logical data into resource units, for example, putting audio data into resource units; and performing puncturing refers to invalidating logical data that has been mapped to resource units.
- the user equipment and the base station perform radio frame transmission
- the radio frame includes a downlink subframe for transmitting an uplink signal, which can increase the number of subframes used for uplink transmission in the radio frame, so that The transmission period of the detection signal is reduced, which enhances the timeliness of acquiring the downlink channel state, thereby improving the performance of the wireless transmission.
- FIG. 6 is a schematic structural diagram of a wireless network device according to an embodiment of the present invention.
- the wireless network device may be a base station in a method for transmitting a wireless frame described in FIG. 3, or may be a method for transmitting a wireless frame described in FIG. User equipment in .
- the wireless network device in the embodiment of the present invention may include at least an information determining module 310 and a wireless frame transmission module 320, where:
- the information determining module 310 is configured to determine radio frame configuration information.
- the radio frame configuration information is used to indicate a subframe type to which ten subframes of a radio frame are respectively allocated, and the subframe type includes an uplink subframe, a downlink subframe, and a special subframe.
- the information determining module 310 is configured to determine the wireless frame configuration information, and send the wireless frame configuration information to the user equipment; if the wireless network device is the user equipment, the information determining module 310 is further used to: Receiving radio frame configuration information sent by the base station.
- the wireless frame transmission module 320 is configured to perform uplink transmission of the wireless frame according to the wireless frame configuration information.
- the wireless frame transmission module 320 sends a wireless frame to the base station according to the wireless frame configuration information; if the wireless network device is a user equipment, the wireless frame transmission module 320 receives the user equipment according to the wireless The radio frame to which the frame configuration information is sent.
- the second and seventh subframes of the radio frame are the special subframe
- the third, fourth, fifth, and eighth of the radio frame are , the ninth and tenth subframes are uplink subframes, the first and/or sixth subframes of the radio frame are the special subframes; or the third and fourth of the radio frames
- the eighth and ninth subframes are uplink subframes, and at least one of the first, fifth, sixth, and tenth subframes of the radio frame is the special subframe;
- the third and eighth subframes of the radio frame are uplink subframes, and at least one of the first, fourth, fifth, sixth, ninth, and tenth subframes of the radio frame
- the subframe is the special subframe; or the third, fourth, fifth, eighth, and ninth subframes of the radio frame are uplink subframes, and the first and the first of the radio frames At least one of the six and tenth subframes is the special subframe.
- At least one of the special subframes in the radio frame carries a detection signal.
- the ratio of the special subframes reflects the downlink pilot slots and the uplink pilot slots in the special subframe. Quantity.
- the ratio of the special subframes except the second and seventh subframes in the radio frame is 12 downlink pilot slots and 1 uplink pilot slot.
- the ratio of the special subframes other than the second and seventh subframes in the radio frame is predefined, or is configured by system message or high layer signaling, or is controlled by radio resources. Layer signaling configuration.
- the radio frame is configured by using a system message or a high layer signaling.
- the second subframe of the radio frame is the special subframe
- only the third, fourth, and fifth subframes in the radio frame are An uplink subframe
- at least one of the first, sixth, seventh, eighth, ninth, and tenth subframes of the radio frame is the special subframe
- the wireless There are and only the third and fourth subframes in the frame are uplink subframes
- the first, fifth, sixth, seventh, eighth, ninth, and tenth of the radio frame At least one of the subframes is the special subframe; or only the third subframe of the radio frame is the uplink subframe
- the first, fourth, and At least one of the five, sixth, seventh, eighth, ninth, and tenth subframes is the special subframe.
- At least one of the special subframes in the radio frame carries a detection signal.
- the ratio of the special subframes reflects the downlink pilot slots and the uplink pilot slots in the special subframe. Quantity.
- the ratio of the special subframes except the second subframe in the radio frame is 12 downlink pilot slots and 1 uplink pilot slot.
- the ratio of the special subframes other than the second subframe in the radio frame is predefined, or is configured by system message or high layer signaling, or is configured by radio resource control layer signaling. of.
- the radio frame is configured by using a system message or a high layer signaling.
- the wireless network device in the embodiment of the present invention may also be the base station in the method for transmitting the wireless frame described in FIG. 4, or may be the user equipment in the method for transmitting the wireless frame described in FIG. 4, where:
- the information determining module 310 is configured to determine radio frame configuration information.
- the radio frame configuration information is used to indicate a subframe type in which ten subframes of the radio frame are respectively allocated, and the subframe type includes an uplink subframe, a downlink subframe, and a special subframe, where the radio frame configuration information further includes an indication.
- the information determining module 310 determines the wireless frame configuration information, and sends the wireless frame configuration information to the user equipment; if the wireless network device is the user equipment, the information determining module 310 receives the wireless information sent by the base station. Frame configuration information.
- the radio frame transmission module 320 is configured to perform uplink signal transmission on a downlink subframe used for transmitting an uplink signal according to the radio frame configuration information.
- the wireless frame transmission module 320 sends a wireless frame to the base station according to the wireless frame configuration information; if the wireless network device is a user equipment, the wireless frame transmission module 320 receives the user equipment according to the wireless The radio frame to which the frame configuration information is sent.
- the uplink signal includes a sounding signal.
- the wireless frame transmission module 320 is specifically configured to receive, according to the wireless frame configuration information, the last one of the downlink subframes used for sending the uplink signal by the user equipment. Or the uplink signal sent on the last plurality of symbols; if the wireless network device is the user equipment, the wireless frame transmission module 320 is specifically configured to: according to the wireless frame configuration information, the last or last plurality of the downlink subframes The uplink signal is sent to the base station symbolically.
- the resource unit corresponding to the symbol used for transmitting the uplink signal in the downlink subframe for transmitting the uplink signal does not map the downlink data.
- the downlink data mapped by the resource unit corresponding to the symbol used for transmitting the uplink signal in the downlink subframe for transmitting the uplink signal is punctured.
- the downlink subframe used for sending the uplink signal is configured by using a system message or a high layer signaling.
- FIG. 7 is a schematic structural diagram of another wireless network device according to an embodiment of the present invention.
- the wireless network device may be a base station in a method for transmitting a wireless frame described in FIG. 3, or may be a wireless frame as described in FIG. User equipment in the transmission method.
- the wireless network device can include at least one processor 401, such as a CPU, at least one communication bus 402, at least one modulator/demodulator 403, memory 404, and wireless interface 405.
- the communication bus 402 is used to implement connection communication between these components; the wireless interface 405 is used for signaling with other node devices.
- the memory 404 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
- the memory 404 may also be at least one storage device located away from the foregoing processor 401.
- a set of program codes is stored in the memory 404, and the processor 401 is configured to call the program code stored in the memory 404 to perform the following operations:
- the radio frame includes at least three special subframes; or
- the radio frame includes ten subframes of the first to tenth, and the second subframe of the radio frame is the special subframe, where
- the third, fourth, and fifth subframes in the radio frame are uplink subframes, and the first, sixth, seventh, eighth, and ninth of the radio frames And at least one of the tenth subframes is the special subframe; or
- the third and fourth subframes in the radio frame are uplink subframes, and the first, fifth, sixth, seventh, eighth, and ninth of the radio frames And at least one of the tenth subframes is the special subframe; or
- the third subframe in the radio frame is the uplink subframe, and the first, fourth, fifth, sixth, seventh, eighth, and At least one of the nine and tenth subframes is the special subframe;
- the processor 401 is configured to call the program code stored in the memory 404 to perform the following operations:
- the specific operation of the determining, by the processor 401, the wireless frame configuration information is: determining the wireless frame configuration information, and transmitting the wireless frame configuration information to the user equipment; if the wireless network device is the user equipment, The specific operation of the processor 401 to determine the radio frame configuration information is: receiving radio frame configuration information sent by the base station.
- the specific operation of the processor 401 to perform uplink transmission of the wireless frame according to the wireless frame configuration information is: sending a wireless frame to the base station according to the wireless frame configuration information;
- the device is a user equipment, and the specific operation of the processor 401 to perform uplink transmission of the radio frame according to the radio frame configuration information is: receiving a radio frame sent by the user equipment according to the radio frame configuration information.
- the specific operation of the processor 401 to perform uplink signal transmission on the downlink subframe for transmitting the uplink signal according to the radio frame configuration information is: according to the radio frame
- the configuration information is sent to the base station in the downlink subframe for transmitting the uplink signal;
- the processor 401 is configured to send the uplink signal according to the radio frame configuration information.
- the specific operation of transmitting the uplink signal on the subframe is: receiving, by the user equipment, the uplink signal sent on the downlink subframe used for transmitting the uplink signal according to the radio frame configuration information.
- the embodiment of the invention further provides a communication system, which may include a first wireless network device and/or a second wireless network device.
- the first wireless network device may be the base station in the foregoing embodiment
- the second wireless network device may be the user equipment in the foregoing embodiment.
- the first wireless network device and the second wireless network device may also be a base station and another Base station, or user equipment and another user equipment. among them:
- the first wireless network device is configured to send the wireless frame configuration information to the second wireless network device.
- a second wireless network device configured to receive wireless frame configuration information sent by the first wireless network device, and send a wireless frame to the first wireless network device according to the wireless frame configuration information
- the first wireless network device is further configured to receive a wireless frame that is sent by the second wireless network device according to the wireless frame configuration information.
- the radio frame includes at least three special subframes
- the radio frame includes ten subframes of the first to tenth, and the second subframe of the radio frame is the special subframe, where
- the third, fourth, and fifth subframes in the radio frame are uplink subframes, and the first, sixth, seventh, eighth, and ninth of the radio frames And at least one of the tenth subframes is the special subframe; or
- the third and fourth subframes in the radio frame are uplink subframes, and the first, fifth, sixth, seventh, eighth, and ninth of the radio frames And at least one of the tenth subframes is the special subframe; or
- the third subframe in the radio frame is the uplink subframe, and the first, fourth, fifth, sixth, seventh, eighth, and At least one of the nine and tenth subframes is the special subframe.
- the first wireless network device is configured to send the wireless frame configuration information to the second wireless network device.
- a second wireless network device configured to receive radio frame configuration information sent by the first radio network device, and send, to the first radio network device, an uplink on a downlink subframe used to send an uplink signal according to the radio frame configuration information signal;
- the first wireless network device is further configured to receive, by the second wireless network device, an uplink signal that is sent on a downlink subframe used for transmitting an uplink signal according to the radio frame configuration information.
- the user equipment and the base station perform radio frame transmission
- the radio frame includes at least three special subframes, or the radio frame includes at least two special subframes, or the radio frame includes an uplink signal for sending
- the downlink subframe can increase the number of subframes used for uplink transmission in the radio frame.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种无线帧的传输方法,包括:确定无线帧配置信息;根据所述无线帧配置信息进行无线帧的上行传输,所述无线帧包括至少三个特殊子帧。相应的,本发明实施例还公开了一种无线网设备。采用本发明,可以实现增加无线帧中用于上行传输的子帧的数量,进而增加用于发送探测信号的子帧的数量,从而提高获取下行信道状态的时效性。
Description
本发明涉及无线通信技术领域,尤其涉及一种无线帧的传输方法以及无线网络设备。
随着无线通信技术的演进,在未来的5G(the 5th Generation,第五代移动通信技术)系统中,一个重要的特征就是引入更多的传输天线,例如基于多小区协作的分布式MIMO(Multiple-Input Multiple-Output,多输入多输出)系统,或者基于大规模天线群的Massive MIMO系统。在下行数据传输中,MIMO传输的性能依赖于下行信道状态的获取,即下行信道状态的获取越有时效性,MIMO传输的性能就越好。
在TDD(Time Division Duplexing,时分双工)系统中,由于上、下行信道使用相同的频率,即上、下行信道存在互易性,下行信道状态可以通过上行发送探测信号(sounding信号)来获取。应理解地,探测信号的发送周期越短,基站获取的信道状态就越有时效性。然而,当前TDD系统中探测信号的发送周期较长,基站获取的信道状态的时效性差。
发明内容
本发明实施例提供了一种无线帧的传输方法以及无线网络设备,可以实现增加无线帧中用于上行传输的子帧的数量,从而可以增加承载探测信号的子帧,缩短探测信号的发送周期,改善基站获取信道状态的时效性。
本发明实施例第一方面提供了一种无线帧的传输方法,该方法可应用于基站,包括:向用户设备发送无线帧配置信息;接收所述用户设备根据所述无线帧配置信息发送的无线帧,所述无线帧包括至少三个特殊子帧。其中,所述无线帧配置信息是指包括无线帧中上行子帧、下行子帧和特殊子帧配置方式的信息。可选的,该方法还可应用于另一用户设备中。
本发明实施例第二方面提供了一种无线帧的传输方法,该方法可应用于用户设备,包括:接收基站发送的无线帧配置信息;根据所述无线帧配置信息向所述基站发送无线帧,所述无线帧包括至少三个特殊子帧。其中,所述无线帧配置信息是指包括无线帧中上行子帧、下行子帧和特殊子帧配置方式的信息。可选的,该方法还可应用于另一基站中。
在第一或第二方面的第一种可能实现方式中,所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个和第七个子帧为所述特殊子帧,其中:所述无线帧的第三个、第四个、第五个、第八个、第九个和第十个子帧为上行子帧,所述无线帧的第一个和第六个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第五个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个和第八个子帧为上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第五个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧。应理解的,所述特殊子帧包
括下行导频时隙、保护间隔和上行导频时隙。相应的,所述下行导频时隙、所述保护间隔和所述上行导频时隙依次排列。
结合第一或第二方面以及第一或第二方面的第一种可能实现方式,在第一或第二方面的第二种可能实现方式中,所述无线帧中存在至少一个所述特殊子帧携带探测信号。可选的,所述无线帧中存在至少一个上行子帧携带探测信号。进一步的,所述接收所述用户设备根据所述无线帧配置信息发送的无线帧之后,还包括:根据所述无线帧携带的探测信号,获取下行信道状态。
结合第一或第二方面以及第一或第二方面的第一或第二种可能实现方式,在第一或第二方面的第三种可能实现方式中,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比体现所述特殊子帧中的下行导频时隙和上行导频时隙的数量。可选的,所述无线帧中第二个和第七个子帧为一种配比类型的特殊子帧,所述无线帧中除第二个和第七个子帧外的其它特殊子帧为另一种配比类型的特殊子帧。
结合第一或第二方面以及第一或第二方面的第一至第三种中任意一种可能实现方式,在第一或第二方面的第四种可能实现方式中,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。应理解的,无线帧中的特殊子帧的数量越多,下行子帧的数量就越少,这对下行传输造成一定的损失,为了弥补该损失,只对特殊子帧配置1个上行导频时隙,最大化地配置12个下行导频时隙以用于下行传输。
结合第一或第二方面以及第一或第二方面的第一至第四种中任意一种可能实现方式,在第一或第二方面的第五种可能实现方式中,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
结合第一或第二方面以及第一或第二方面的第一至第五种中任意一种可能实现方式,在第一或第二方面的第六种可能实现方式中,所述无线帧是通过系统消息或高层信令配置的。
本发明实施例第三方面提供了一种无线帧的传输方法,该方法可以应用于基站,包括:向用户设备发送无线帧配置信息;接收所述用户设备根据所述无线帧配置信息发送的无线帧,所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个子帧为所述特殊子帧,其中,所述无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,所述无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个和第四个子帧为上行子帧,所述无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个子帧为所述上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧。应理解的,所述特殊子帧包括下行导频时隙、保护间隔和上行导频时隙。相应的,所述下行导频时隙、所述保护间隔和所述上行导频时隙依次排列。可选的,该方法还可应用于另一用户设备中。
本发明实施例第四方面提供了一种无线帧的传输方法,该方法可以应用于用户设备,包括:接收基站发送的无线帧配置信息;根据所述无线帧配置信息向所述基站发送无线帧,所述无线帧的第二个子帧为所述特殊子帧,其中,所述无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,所述无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个和第四个子帧为上行子帧,所述无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个子帧为所述上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧。可选的,该方法还可应用于另一基站中。
在第三或第四方面的第一种可能实现方式中,所述无线帧中存在至少一个所述特殊子帧携带探测信号。可选的,所述无线帧中存在至少一个上行子帧携带探测信号。进一步的,所述接收所述用户设备根据所述无线帧配置信息发送的无线帧之后,还包括:根据所述无线帧携带的探测信号,获取下行信道状态。
结合第三或第四方面以及第三或第四方面的第一种可能实现方式,在第三或第四方面的第二种可能实现方式中,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比体现所述特殊子帧中的下行导频时隙和上行导频时隙的数量。可选的,所述无线帧中第二个子帧为一种配比类型的特殊子帧,所述无线帧中除第二个子帧外的其它特殊子帧为另一种配比类型的特殊子帧。
结合第三或第四方面以及第三或第四方面的第一或第二种可能实现方式,在第三或第四方面的第三种可能实现方式中,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。应理解的,无线帧中的特殊子帧的数量越多,下行子帧的数量就越少,这对下行传输造成一定的损失,为了弥补该损失,只对特殊子帧配置1个上行导频时隙,最大化地配置12个下行导频时隙以用于下行传输。
结合第三或第四方面以及第三或第四方面的第一至第三种可能实现方式,在第三或第四方面的第四种可能实现方式中,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
结合第三或第四方面以及第三或第四方面的第一至第四种可能实现方式,在第三或第四方面的第五种可能实现方式中,所述无线帧是通过系统消息或高层信令配置的。
本发明实施例第五方面提供了一种无线帧的传输方法,该方法可应用于基站,包括:向用户设备发送无线帧配置信息,所述配置信息包括指示无线帧中用于发送上行信号的下行子帧的信息;接收所述用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上发送的上行信号。可选的,该方法还可应用于另一用户设备中。
本发明实施例第六方面提供了一种无线帧的传输方法,该方法可应用于用户设备,包括:接收基站发送的无线帧配置信息,所述配置信息包括指示无线帧中用于发送上行信号的下行子帧的信息;根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上向所述基站发送上行信号。可选的,该方法还可应用于另一基站中。
在第五或第六方面的第一种可能实现方式中,所述上行信号包括探测信号。可选的,所述无线帧中存在至少一个上行子帧携带探测信号。进一步的,所述接收所述用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上发送的上行信号之后,还包括:根据所述无线帧携带的探测信号,获取下行信道状态。
结合第五方面以及第五方面的第一种可能实现方式,在第五方面的第二种可能实现方式中,所述接收所述用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上发送的上行信号,包括:接收所述用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧中的最后一个或最后多个符号上发送的上行信号。
结合第六方面以及第六方面的第一种可能实现方式,在第六方面的第二种可能实现方式中,所述根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上向所述基站发送上行信号,包括:根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧中的最后一个或最后多个符号上向所述基站发送上行信号。
结合第五或第六方面以及第五或第六方面的第一或第二种可能实现方式,在第五或第六方面的第三种可能实现方式中,所述用于发送上行信号的下行子帧上被用于发送所述上行信号的符号对应的资源单元未映射下行数据。
结合第五或第六方面以及第五或第六方面的第一至第三种中任意一种可能实现方式,在第五或第六方面的第四种可能实现方式中,所述用于发送上行信号的下行子帧中被用于发送所述上行信号的符号对应的资源单元所映射的下行数据被打孔。
结合第五或第六方面以及第五或第六方面的第一至第三种中任意一种可能实现方式,在第五或第六方面的第五种可能实现方式中,所述用于发送上行信号的下行子帧是通过系统消息或高层信令配置的。
本发明实施例第七方面提供了一种无线网络设备,所述无线网络设备可以是基站,具有实现上述第一方面或第三方面或第五方面提供的方法的行为功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例第八方面提供了一种无线网络设备,所述无线网络设备可以是用户设备,具有实现上述第二方面或第四方面或第六方面提供的方法的行为功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例第九发明提供一种通信系统,包括第一无线网络设备和第二无线网络设备。其中,第一无线网络设备和第二无线网络设备分别用于实现上述第一方面和第二方面,或是,第三方面和第四方面,或是,第五方面和第六方面提供的方法。
由上可见,本发明实施例中,用户设备与基站进行无线帧的上行传输,无线帧包括至少三个特殊子帧,或者无线帧包括至少两个特殊子帧,或者无线帧包括用于发送上行信号的下行子帧,可以实现增加无线帧中用于上行传输的子帧的数量。
图1是本发明实施例提供的一种通信系统的应用场景图;
图2是本发明实施例提供的一种现有无线帧的结构示意图;
图3是本发明实施例提供的一种无线帧的传输方法的流程示意图;
图4是本发明实施例提供的另一种无线帧的传输方法的流程示意图;
图5是本发明实施例提供的一种无线帧的结构示意图;
图6是本发明实施例提供的一种无线网络设备的结构示意图;
图7是本发明实施例提供的另一种无线网络设备的结构示意图。
本发明实施例的技术方案可以应用于各种通信系统,例如:LTE(Long Term Evolution,长期演进)的TDD系统、基于多小区协作的分布式MIMO系统或基于大规模天线群的Massive MIMO系统,未来演进的5G(the 5th Generation,第五代移动通信)系统,M2M(Machine to Machine,机器与机器通信)系统,D2D(Device to Device,设备与设备通信)系统,或多个基站协同的系统等。图1是本发明实施例针对各种通信系统简化后的应用场景图,如图所示至少包括基站和处于同一小区内的多个用户设备,其中,用户设备向基站发送消息称为上行传输,基站向用户设备发送消息称为下行传输。用户设备与基站之间的传输通道称为信道,包括上行信道和下行信道,由于上行信道与下行信道存在互易性,下行信道状态可以通过同一小区内的用户设备向基站发送探测信号(sounding信号)来获取。
本发明实施例结合无线网络设备来描述各个方面,该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是TD-SCDMA(Time Division Synchronous Code Division Multiple Access,时分同步码分多址)中的BTS(Base Transceiver Station,基站),也可以是LTE中的eNB(Evolutional Node B,演进型基站),还可以是未来网络中的基站。该无线网络设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如D2D通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话初始协议)电话、智能电话、WLL(wireless local loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字助理)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。另外,基站还可以称为接入点、节点或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。本发明实施例以基站和用户设备之间的通信为例进行描述,可以理解的是,本发明实施例可以应用于第一无线网络设备和第二无线网络设备之间的通信,比如,基站和用户设备之间的通信,或是,基站和另一
基站之间的通信,或是,用户设备和另一用户设备之间的通信。以下以基站和用户设备之间的通信为例进行描述。
如本发明实施例所使用的术语“模块”等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
本发明实施例将围绕可包括多个设备、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例既可以应用于时分双工(Time Division Duplexing,TDD)的场景,也可以适用于频分双工(Frequency Division Duplexing,FDD)的场景。
本发明实施例依托无线通信网络中TDD的场景进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。为便于理解本发明实施例的技术方案,这里介绍一下现有无线通信协议标准中规定的无线帧(radio frame)。请参阅图2,每个无线帧的长度为10毫秒,包括10个1毫秒长的子帧(subframe),如图中SF#0至SF#9所示。无线帧的子帧根据其功能不同分为上行子帧、下行子帧和特殊子帧,其中,上行子帧用于承载上行的数据信息或信令信息,下行子帧用于承载下行的数据信息或信令信息,而特殊子帧既可用于承载上行的数据信息或信令信息,也可用于承载下行的数据信息或信令信息。现有无线通信协议标准还规定,每个无线帧的第二个子帧(SF#1)固定为特殊子帧,第七个子帧(SF#6)可以为特殊子帧,而其它子帧可以根据不同的配置设为上行子帧或下行子帧,例如:请参阅表1,无线帧的结构的不同配置如表所示,U表示上行子帧,D表示下行子帧,S表示特殊子帧。需要指出的是,由于探测信号依靠的是由用户设备发送至基站的上行传输方式,因此探测信号只能在上行子帧和特殊子帧上发送。可见,现有的无线帧中能发送sounding信
号的子帧较少,发送周期受限,难以满足获取下行信道状态的时效性。
表1
图3是本发明实施例中一种无线帧的传输方法的流程示意图。如图所示本实施例中的无线帧的传输方法的流程可以包括:
S101,基站确定无线帧配置信息。
所述无线帧配置信息用于指示无线帧的十个子帧分别被分配的子帧类型,所述子帧类型包括上行子帧、下行子帧和特殊子帧,该无线帧配置信息在无线帧配置时生成。
具体的,基站获取在无线帧配置时生成的无线帧配置信息,并向用户设备发送该无线帧配置信息。可选的,基站通过系统消息或高层信令向用户设备发送无线帧配置信息,例如在广播消息中的SIB1消息上携带无线帧配置信息。
S102,用户设备确定无线帧配置信息。
具体的,用户设备接收基站发送的无线帧配置信息。相应的,无线帧配置信息可以是通过系统消息或高层信令通知的,具体实现过程中,用户设备接收基站通过系统消息或高层信令发送来的无线帧配置信息。
S103,用户设备根据无线帧配置信息进行无线帧的上行传输。
具体的,用户设备根据所述无线帧配置信息向基站发送无线帧。
作为一种可选的实施方式,用户设备根据无线帧配置信息向基站发送的无线帧包括至少三个特殊子帧。由上文可知,现有的无线帧的第二个子帧固定为特殊子帧,第七个子帧可以为特殊子帧,也就是说最多不超过两个特殊子帧,而本实施方式中的无线帧至少包括三个特殊子帧。具体实现过程中,用户设备发送的无线帧的第二个和第七个子帧为特殊子帧,另外:无线帧的第三个、第四个、第五个、第八个、第九个和第十个子帧为上行子帧,无线帧的第一个和/或第六个子帧为特殊子帧;或无线帧的第三个、第四个、第八个和第九个子帧为上行子帧,无线帧的第一个、第五个、第六个和第十个子帧中的至少一个子帧为特殊子帧;或无线帧的第三个和第八个子帧为上行子帧,无线帧的第一个、第四个、第五个、第六个、第九个和第十个子帧中的至少一个子帧为特殊子帧;或无线帧的第三个、第四个、第五个、第八个和第九个子帧为上行子帧,无线帧的第一个、第六个和第十个子帧中的至少一个子帧为特殊子帧。
需要指出的是,通过对比表1可知,上述实施方式可理解为将配置号为0、1、2和6的现有无线帧中的部分或全部下行子帧替换为特殊子帧。由于特殊子帧既可用于上行传输又可用于下行传输,故本实施方式在保留了下行传输能力同时,增加了上行传输能力。进一步的,为了最大程度地提升上行传输能力,可以将配置号为0、1、2和6的现有无线帧中的全部下行子帧替换为特殊子帧,得到配置号为7、8、9和10的四种无线帧,如表2所示。
表2
可见,配置号为7、8、9和10的四种无线帧,每个子帧均可用于上行传输,即上行传输周期可减小到1ms。
作为另一种可选的实施方式,用户设备根据无线帧配置信息向基站发送的无线帧的第二个子帧为特殊子帧,另外:无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为特殊子帧;或无线帧中有且仅有第三个和第四个子帧为上行子帧,无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为特殊子帧;或无线帧中有且仅有第三个子帧为上行子帧,无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为特殊子帧。
同理,通过对比表1可知,本实施方式可理解为将配置号为3、4和5的现有无线帧中的部分或全部下行子帧替换为特殊子帧。相应的,为了最大程度地提升上行传输能力,可以将配置号为3、4和5的现有无线帧中的全部下行子帧替换为特殊子帧,得到配置号为11、12和13的三种无线帧,如表3所示。
表3
可见,配置号为11、12和13的三种无线帧,每个子帧均可用于上行传输,即上行传输周期可减小到1ms。
需要说明的是,无论是上述第一种实施方式,还是上述第二种实施方式,均未改变现有的无线帧的结构(如无线帧的长度和子帧的数量),能够与当前的通信协议完全兼容,因而可实施性好。
应理解的,特殊子帧包括下行导频时隙(Downlink Pilot Time Slot,DwPTS)、保护间隔(Guard Point,GP)和上行导频时隙(Uplink Pilot Time Slot,UpPTS),DwPTS、GP和UpPTS依次排列,其中,DwPTS用于下行传输,UpPTS用于上行传输,可见特殊子帧既可以用于上行传输又可以用于下行传输。与现有的无线帧不同的是,本发明实施例中无线帧的各个特殊子帧的配比可以不相同,即无线帧中可以存在至少两种不同配比的特殊子帧,所述特殊子帧的配比可以体现特殊子帧中的DwPTS和UpPTS的数量,现有通信协议已规定的配比如表4或表5所示。
表4
表5
进一步可选的,对于上述第一种实施方式,无线帧中第二个和第七个子帧为一种配比类型的特殊子帧,无线帧中除第二个和第七个子帧外的其它特殊子帧为另一种配比类型的特殊子帧,例如:无线帧中第二个和第七个子帧为表4中配比1对应的特殊子帧,其它特殊子帧为表4中配比6对应的特殊子帧。对于上述第二种实施方式,无线帧中第二个子帧
为一种配比类型的特殊子帧,无线帧中除第二个子帧外的其它特殊子帧为另一种配比类型的特殊子帧,例如:无线帧中第二个子帧为表4中配比1对应的特殊子帧,其它特殊子帧为表4中配比6对应的特殊子帧。
更进一步的,对于上述第一种实施方式,无线帧中除第二个和第七个子帧外的其它特殊子帧的配比为表4中的配比4,即包括12个DwPTS和1个UpPTS。对于上述第二种实施方式,无线帧中除第二个子帧外的其它特殊子帧的配比为表4中的配比4,即包括12个DwPTS和1个UpPTS。应理解的,无线帧中的特殊子帧的数量越多,下行子帧的数量就越少,这对下行传输造成一定的损失,通过分析表4和表5可知,表4中的配比4包括最多的DwPTS,这使得该特殊子帧仍有大部分时隙用于下行传输,确保下行传输的损失最小。
可选的,对于上述第一种实施方式,无线帧中除第二个和第七个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令(Radio Resource Control,RRC)配置的。对于上述第二种实施方式,无线帧中除第二个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。可选的,无线帧中除第二个子帧外的其它特殊子帧的配比通过系统消息或高层信令进行配置,或者通过无线资源控制层信令进行配置的具体实现方式可以为:基站通过系统消息或高层信令,或者通过无线资源控制层信令向用户设备发送体现无线帧中除第二个子帧外的其它特殊子帧的配比的信息,用户设备接收该信息并确定配比。
S104,基站根据无线帧配置信息进行无线帧的上行传输。
具体的,基站接收用户设备根据所述无线帧配置信息发送的无线帧。
可选的,无线帧中存在至少一个特殊子帧携带探测信号。又可选的,无线帧中存在至少一个上行子帧携带探测信号。相应的,基站接收用户设备根据无线帧配置信息发送的无线帧之后,根据无线帧携带的探测信号,获取下行信道状态。可见,本发明实施例中无线帧能发送探测信号的子帧相对于现有的无线帧增多,使得探测信号的发送周期减小,增强了获取下行信道状态的时效性,从而提高了无线传输的性能。
需要指出的是,对于无线帧只包括上行子帧和特殊子帧的情况,如表2和表3所示,其探测信号的发送周期可以达到1ms。应理解的,TDD下探测信号的最小发送周期为5ms,FDD下探测信号的最小发送周期小于5ms,由此可见,在配置探测信号的发送周期和偏移时,甚至可以使用FDD下的配置。
例如,一种FDD下的配置如表6所示,其中I表示索引号,偏移的值用于指示相对于第1个子帧起第多少个子帧为携带探测信号的起始子帧。假设使用索引号为0的配置,则探测信号的发送周期为2ms,偏移为0,即基站从无线帧的第1个子帧开始每隔2ms接收用户设备发送的探测信号;假设使用索引号为3的配置,则探测信号的发送周期为5ms,偏移为1(=3-2),即基站从无线帧的第2个子帧开始每隔5ms接收用户设备发送的探测信号。
表6
索引号(I) | 发送周期(ms) | 偏移 |
0~1 | 2 | I |
2~6 | 5 | I-2 |
7~16 | 10 | I-7 |
17~36 | 20 | I-17 |
37~76 | 40 | I-37 |
77~156 | 80 | I-77 |
157~316 | 160 | I-157 |
317~636 | 320 | I-317 |
637~1023 | - | - |
又如,另一种FDD下的配置如表7所示,同理I表示索引号,偏移的值用于指示相对于第1个子帧起第多少个子帧为携带探测信号的起始子帧。假设使用索引号为1的配置,则探测信号的发送周期为2ms,偏移为1,即基站从无线帧的第2个子帧开始每隔2ms接收用户设备发送的探测信号;假设使用索引号为4的配置,则探测信号的发送周期为5ms,偏移为2(=4-2),即基站从无线帧的第3个子帧开始每隔5ms接收用户设备发送的探测信号。
表7
索引号(I) | 发送周期(ms) | 偏移 |
0~1 | 2 | I |
2~6 | 5 | I-2 |
7~16 | 10 | I-7 |
17~31 | - | - |
由上可见,本发明实施例中,用户设备与基站进行无线帧的传输,无线帧包括至少三个特殊子帧,或者无线帧包括至少两个特殊子帧,可以实现增加无线帧中用于上行传输的子帧的数量,使得探测信号的发送周期减小,增强了获取下行信道状态的时效性,从而提高了无线传输的性能。
图4是本发明实施例中另一种无线帧的传输方法的流程示意图。如图所示本实施例中的无线帧的传输方法的流程可以包括:
S201,基站确定无线帧配置信息。
所述无线帧配置信息是记录无线帧的十个子帧分别被分配的子帧类型的信息,所述子帧类型包括上行子帧、下行子帧和特殊子帧,其中该无线帧配置信息还包括指示无线帧中用于发送上行信号的下行子帧的信息,该无线帧配置信息在无线帧配置时生成。
具体的,基站获取在无线帧配置时生成的无线帧配置信息,并向用户设备发送该无线帧配置信息。可选的,基站通过系统消息或高层信令向用户设备发送无线帧配置信息,例如在广播消息中的SIB1消息上携带无线帧配置信息。
S202,用户设备确定无线帧配置信息。
具体的,用户设备接收基站发送的无线帧配置信息。相应的,无线帧配置信息可以是通过系统消息或高层信令通知的,具体实现过程中,用户设备接收基站通过系统消息或高层信令发送来的无线帧配置信息。
S203,用户设备根据所述无线帧配置信息,在用于发送上行信号的下行子帧上进行上行信号的传输。
具体的,用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上向基站发送上行信号。
应理解的,在现有的通信协议中,下行子帧仅用于下行传输,而本发明实施例通过预先配置后允许用户设备在所述用于发送上行信号的下行子帧上向基站发送上行信号。
可选的,用户设备根据无线帧配置信息,在所述用于发送上行信号的下行子帧中的最后一个或最后多个符号上向基站发送上行信号,如图5所示。应理解的,该下行子帧的主要还是用于下行传输,因此本发明实施例只配置该下行子帧中靠后的若干个符号用于发送上行信号,这使得该该下行子帧仍有大部分符号用于下行传输,避免下行传输的损失。
可以理解的是,用于发送上行信号的下行子帧(即图5所示的目标下行子帧)的选择方式可以参考图3所示实施例中所描述的较现有技术新增特殊子帧的方案(即将现有技术的下行子帧变为了特殊子帧的方案),在此不予赘述。
S204,基站根据所述无线帧配置信息,在用于发送上行信号的下行子帧上进行上行信号的传输。
具体的,基站接收用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上发送的上行信号。
可选的,所述无线帧中存在至少一个上行子帧携带探测信号。又可选的,所述上行信号携带有探测信号。相应的,基站接收用户设备根据无线帧配置信息,在所述用于发送上行信号的下行子帧上发送的上行信号之后,根据无线帧携带的探测信号获取下行信道状态。可见,本发明实施例中无线帧能发送探测信号的子帧相对于现有的无线帧增多,使得探测信号的发送周期减小,增强了获取下行信道状态的时效性,从而提高了无线传输的性能。
需要指出的是,为了预留下行子帧上被用于发送上行信号的符号,在下行传输时,该符号对应的资源单元不映射下行数据,如物理下行共享信道(Physical Downlink Shared Channel,PDSCH),或者该符号对应的资源单元所映射的下行数据被打孔。其中,所述映射是指将逻辑数据放到资源单元,例如将音频数据放入资源单元;所述打孔是指使已映射到资源单元的逻辑数据失效。
由上可见,本发明实施例中,用户设备与基站进行无线帧的传输,无线帧包括用于发送上行信号的下行子帧,可以实现增加无线帧中用于上行传输的子帧的数量,使得探测信号的发送周期减小,增强了获取下行信道状态的时效性,从而提高了无线传输的性能。
图6是本发明实施例中一种无线网络设备的结构示意图,该无线网络设备可以为图3所描述的无线帧的传输方法中的基站,也可以为图3所描述的无线帧的传输方法中的用户设备。如图所示本发明实施例中的无线网络设备至少可以包括信息确定模块310和无线帧传输模块320,其中:
信息确定模块310,用于确定无线帧配置信息。
所述无线帧配置信息用于指示无线帧的十个子帧分别被分配的子帧类型,所述子帧类型包括上行子帧、下行子帧和特殊子帧。
具体的,若无线网络设备为基站,则信息确定模块310用于确定无线帧配置信息,并向用户设备发送该无线帧配置信息;若无线网络设备为用户设备,则信息确定模块310还用于接收基站发送的无线帧配置信息。
无线帧传输模块320,用于根据所述无线帧配置信息进行无线帧的上行传输。
具体的,若无线网络设备为基站,则无线帧传输模块320根据所述无线帧配置信息向基站发送无线帧;若无线网络设备为用户设备,则无线帧传输模块320接收用户设备根据所述无线帧配置信息发送的无线帧。
作为一种可选的实施方式,所述无线帧的第二个和第七个子帧为所述特殊子帧,其中,所述无线帧的第三个、第四个、第五个、第八个、第九个和第十个子帧为上行子帧,所述无线帧的第一个和/或第六个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第五个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个和第八个子帧为上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第五个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧。
另可选的,所述无线帧中存在至少一个所述特殊子帧携带探测信号。
又可选的,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比体现所述特殊子帧中的下行导频时隙和上行导频时隙的数量。
进一步的,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。
更进一步的,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
可选的,所述无线帧是通过系统消息或高层信令配置的。
作为另一种可选的实施方式,所述无线帧的第二个子帧为所述特殊子帧,其中,所述无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,所述无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个和第四个子帧为上行子帧,所述无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个子帧为所述上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧。
可选的,所述无线帧中存在至少一个所述特殊子帧携带探测信号。
又可选的,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比体现所述特殊子帧中的下行导频时隙和上行导频时隙的数量。
进一步的,所述无线帧中除第二个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。
更进一步的,所述无线帧中除第二个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
可选的,所述无线帧是通过系统消息或高层信令配置的。
需要指出的是,以上只是对本发明实施例中无线网络设备的简述,具体实现过程、实施方式和示例,详见图3所描述的实施例,这里不再赘述。
本发明实施例中的无线网络设备还可以为图4所描述的无线帧的传输方法中的基站,也可以为图4所描述的无线帧的传输方法中的用户设备,其中:
信息确定模块310,用于确定无线帧配置信息。
所述无线帧配置信息用于指示无线帧的十个子帧分别被分配的子帧类型,所述子帧类型包括上行子帧、下行子帧和特殊子帧,其中该无线帧配置信息还包括指示无线帧中用于发送上行信号的下行子帧的信息。
具体的,若无线网络设备为基站,则信息确定模块310确定无线帧配置信息,并向用户设备发送该无线帧配置信息;若无线网络设备为用户设备,则信息确定模块310接收基站发送的无线帧配置信息。
无线帧传输模块320,用于根据所述无线帧配置信息,在用于发送上行信号的下行子帧上进行上行信号的传输。
具体的,若无线网络设备为基站,则无线帧传输模块320根据所述无线帧配置信息向基站发送无线帧;若无线网络设备为用户设备,则无线帧传输模块320接收用户设备根据所述无线帧配置信息发送的无线帧。
可选的,所述上行信号包括探测信号。
进一步可选的,若无线网络设备为基站,则无线帧传输模块320具体用于接收所述用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧中的最后一个或最后多个符号上发送的上行信号;若无线网络设备为用户设备,则无线帧传输模块320具体用于根据所述无线帧配置信息,在所述下行子帧中的最后一个或最后多个符号上向所述基站发送上行信号。
另可选的,所述用于发送上行信号的下行子帧上被用于发送所述上行信号的符号对应的资源单元未映射下行数据。
又可选的,所述用于发送上行信号的下行子帧中被用于发送所述上行信号的符号对应的资源单元所映射的下行数据被打孔。
还可选的,所述用于发送上行信号的下行子帧是通过系统消息或高层信令配置的。
需要指出的是,以上只是对本发明实施例中无线网络设备的简述,具体实现过程、实施方式和示例,详见图4所描述的实施例,这里不再赘述。
图7是本发明实施例中的另一种无线网络设备的结构示意图,该无线网络设备可以为图3所描述的无线帧的传输方法中的基站,也可以为图3所描述的无线帧的传输方法中的用户设备。如图7所示,该无线网络设备可以包括:至少一个处理器401,例如CPU,至少一个通信总线402,至少一个调制/解调器403,存储器404,无线接口405。其中,通信总线402用于实现这些组件之间的连接通信;无线接口405用于与其他节点设备进行信令
或数据的通信;存储器404可以是高速RAM存储器,也可以是非易失的存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器404还可以是至少一个位于远离前述处理器401的存储装置。存储器404中存储一组程序代码,处理器401用于调用存储器404中存储的程序代码,执行以下操作:
确定无线帧配置信息;
根据所述无线帧配置信息进行无线帧的上行传输,
其中,所述无线帧包括至少三个特殊子帧;或者,
所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个子帧为所述特殊子帧,其中,
所述无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,所述无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或
所述无线帧中有且仅有第三个和第四个子帧为上行子帧,所述无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或
所述无线帧中有且仅有第三个子帧为所述上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;
或者,处理器401用于调用存储器404中存储的程序代码,执行以下操作:
确定无线帧配置信息;
根据所述无线帧配置信息,在用于发送上行信号的下行子帧上进行上行信号的传输。
可选的,若无线网络设备为基站,则处理器401确定无线帧配置信息的具体操作为:确定无线帧配置信息,并向用户设备发送该无线帧配置信息;若无线网络设备为用户设备,则处理器401确定无线帧配置信息的具体操作为:接收基站发送的无线帧配置信息。
又可选的,若无线网络设备为基站,则处理器401根据所述无线帧配置信息进行无线帧的上行传输的具体操作为:根据所述无线帧配置信息向基站发送无线帧;若无线网络设备为用户设备,则处理器401根据所述无线帧配置信息进行无线帧的上行传输的具体操作为:接收用户设备根据所述无线帧配置信息发送的无线帧。
又可选的,若无线网络设备为基站,则处理器401根据所述无线帧配置信息,在用于发送上行信号的下行子帧上进行上行信号的传输的具体操作为:根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上向基站发送上行信号;若无线网络设备为用户设备,则处理器401根据所述无线帧配置信息,在用于发送上行信号的下行子帧上进行上行信号的传输的具体操作为:接收用户设备根据所述无线帧配置信息,在所述用于发送上行信号的下行子帧上发送的上行信号。
本发明实施例还提供一种通信系统,可以包括第一无线网络设备和/或第二无线网络设备。其中第一无线网络设备可以为前述实施例中的基站,第二无线网络设备可以为前述实施例中的用户设备。可选的,第一无线网络设备和第二无线网络设备还可以为基站和另一
基站,或是,用户设备和另一用户设备。其中:
第一无线网络设备,用于向第二无线网络设备发送无线帧配置信息。
第二无线网络设备,用于接收第一无线网络设备发送的无线帧配置信息;根据所述无线帧配置信息向第一无线网络设备发送无线帧;
第一无线网络设备,还用于接收第二无线网络设备根据所述无线帧配置信息发送的无线帧。
其中,可选的,所述无线帧包括至少三个特殊子帧;
或者,
可选的,所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个子帧为所述特殊子帧,其中,
所述无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,所述无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或
所述无线帧中有且仅有第三个和第四个子帧为上行子帧,所述无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或
所述无线帧中有且仅有第三个子帧为所述上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧。
具体描述可以参考前述实施例中的描述,在此不予赘述。
或者,
第一无线网络设备,用于向第二无线网络设备发送无线帧配置信息。
第二无线网络设备,用于接收第一无线网络设备发送的无线帧配置信息;根据所述无线帧配置信息,在用于发送上行信号的下行子帧上向所述第一无线网络设备发送上行信号;
第一无线网络设备,还用于接收第二无线网络设备根据所述无线帧配置信息,在用于发送上行信号的下行子帧上发送的上行信号。
具体描述可以参考前述实施例中的描述,在此不予赘述。
由上可见,本发明实施例中,用户设备与基站进行无线帧的传输,无线帧包括至少三个特殊子帧,或者无线帧包括至少两个特殊子帧,或者无线帧包括用于发送上行信号的下行子帧,可以实现增加无线帧中用于上行传输的子帧的数量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
Claims (24)
- 一种无线帧的传输方法,其特征在于,所述方法包括:确定无线帧配置信息;根据所述无线帧配置信息进行无线帧的上行传输,所述无线帧包括至少三个特殊子帧。
- 如权利要求1所述的方法,其特征在于,所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个和第七个子帧为所述特殊子帧,其中:所述无线帧的第三个、第四个、第五个、第八个、第九个和第十个子帧为上行子帧,所述无线帧的第一个和/或第六个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第五个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个和第八个子帧为上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第五个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧。
- 如权利要求1或2所述的方法,其特征在于,所述无线帧中存在至少一个所述特殊子帧携带探测信号。
- 如权利要求1-3中任意一项所述的方法,其特征在于,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比体现所述特殊子帧中的下行导频时隙和上行导频时隙的数量。
- 如权利要求1-4中任意一项所述的方法,其特征在于,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。
- 如权利要求1-5中任意一项所述的方法,其特征在于,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
- 一种无线帧的传输方法,其特征在于,所述方法包括:确定无线帧配置信息;根据所述无线帧配置信息进行无线帧的上行传输,所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个子帧为所述特殊子帧,其中,所述无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,所述无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个和第四个子帧为上行子帧,所述无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个子帧为所述上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧。
- 如权利要求7所述的方法,其特征在于,所述无线帧中存在至少一个所述特殊子帧携带探测信号。
- 如权利要求7或8所述的方法,其特征在于,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比体现所述特殊子帧中的下行导频时隙和上行导频时隙的数量。
- 如权利要求7-9中任意一项所述的方法,其特征在于,所述无线帧中除第二个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。
- 如权利要求7-10中任意一项所述的方法,其特征在于,所述无线帧中除第二个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
- 一种无线网络设备,其特征在于,所述基站包括:信息确定模块,用于确定无线帧配置信息;无线帧传输模块,用于根据所述无线帧配置信息进行无线帧的上行传输,所述无线帧包括至少三个特殊子帧。
- 如权利要求12所述的无线网络设备,其特征在于,所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个和第七个子帧为所述特殊子帧,其中:所述无线帧的第三个、第四个、第五个、第八个、第九个和第十个子帧为上行子帧,所述无线帧的第一个和/或第六个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第五个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个和第八个子帧为上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧的第三个、第四个、第五个、第八个和第九个子帧为上行子帧,所述无线帧的第一个、第六个和第十个子帧中的至少一个子帧为所述特殊子帧。
- 如权利要求12或13所述的无线网络设备,其特征在于,所述无线帧中存在至少 一个所述特殊子帧携带探测信号。
- 如权利要求12-14中任意一项所述的无线网络设备,其特征在于,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比为所述特殊子帧中的下行导频时隙和上行导频时隙的数量。
- 如权利要求12-15中任意一项所述的无线网络设备,其特征在于,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。
- 如权利要求12-16中任意一项所述的无线网络设备,其特征在于,所述无线帧中除第二个和第七个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
- 如权利要求12-17中任意一项所述的无线网络设备,其特征在于,所述无线网络设备为基站或用户设备。
- 一种无线网络设备,其特征在于,所述基站包括:信息确定模块,用于确定无线帧配置信息;无线帧传输模块,用于根据所述无线帧配置信息进行无线帧的上行传输,所述无线帧包括第一至第十的十个子帧,所述无线帧的第二个子帧为所述特殊子帧,其中,所述无线帧中有且仅有第三个、第四个和第五个子帧为上行子帧,所述无线帧的第一个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个和第四个子帧为上行子帧,所述无线帧的第一个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧;或所述无线帧中有且仅有第三个子帧为所述上行子帧,所述无线帧的第一个、第四个、第五个、第六个、第七个、第八个、第九个和第十个子帧中的至少一个子帧为所述特殊子帧。
- 如权利要求19所述的无线网络设备,其特征在于,所述无线帧中存在至少一个所述特殊子帧携带探测信号。
- 如权利要求19或20所述的无线网络设备,其特征在于,所述无线帧中存在至少两种不同配比的特殊子帧,所述特殊子帧的配比体现所述特殊子帧中的下行导频时隙和上行导频时隙的数量。
- 如权利要求19-21中任意一项所述的无线网络设备,其特征在于,所述无线帧中除第二个子帧外的其它特殊子帧的配比为12个下行导频时隙和1个上行导频时隙。
- 如权利要求19-22中任意一项所述的无线网络设备,其特征在于,所述无线帧中除第二个子帧外的其它特殊子帧的配比是预定义的,或者是通过系统消息或高层信令配置的,或者是通过无线资源控制层信令配置的。
- 如权利要求19-23中任意一项所述的无线网络设备,其特征在于,所述无线网络设备为基站或用户设备。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17738197.7A EP3393072B1 (en) | 2016-01-15 | 2017-01-13 | Wireless frame transmission method and wireless network device |
US16/034,713 US20180324799A1 (en) | 2016-01-15 | 2018-07-13 | Radio frame transmission method and wireless network device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610028038.9 | 2016-01-15 | ||
CN201610028038.9A CN106982465B (zh) | 2016-01-15 | 2016-01-15 | 一种无线帧的传输方法以及无线网络设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/034,713 Continuation US20180324799A1 (en) | 2016-01-15 | 2018-07-13 | Radio frame transmission method and wireless network device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017121384A1 true WO2017121384A1 (zh) | 2017-07-20 |
Family
ID=59310800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/071133 WO2017121384A1 (zh) | 2016-01-15 | 2017-01-13 | 一种无线帧的传输方法以及无线网络设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180324799A1 (zh) |
EP (1) | EP3393072B1 (zh) |
CN (1) | CN106982465B (zh) |
WO (1) | WO2017121384A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3161988T3 (pl) * | 2014-06-24 | 2023-05-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Sposób i aparaty do obsługiwania sieci komunikacji bezprzewodowej |
CN110519031B (zh) | 2017-11-17 | 2020-12-25 | 华为技术有限公司 | 信息传输方法及设备 |
US11553471B2 (en) * | 2019-03-29 | 2023-01-10 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931456A (zh) * | 2010-08-09 | 2010-12-29 | 中兴通讯股份有限公司 | 一种移动通信系统的无线帧及测量参考信号的发送方法 |
WO2013170415A1 (en) * | 2012-05-14 | 2013-11-21 | Renesas Mobile Corporation | Methods and apparatuses for enabling provision of an additional special subframe configuration |
CN104348602A (zh) * | 2013-08-09 | 2015-02-11 | 北京三星通信技术研究有限公司 | 一种混合双工通信方法、基站及终端 |
CN104737489A (zh) * | 2012-10-24 | 2015-06-24 | 高通股份有限公司 | 用于lte-a中的mimo操作的增强型srs传输 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101162986B (zh) * | 2007-11-09 | 2011-12-07 | 中兴通讯股份有限公司 | 一种时分双工系统下行特殊时隙上的信号发送方法 |
WO2010102450A1 (zh) * | 2009-03-11 | 2010-09-16 | 华为技术有限公司 | 识别不同帧结构的方法、装置和系统 |
CN101808409B (zh) * | 2010-04-01 | 2015-03-25 | 中兴通讯股份有限公司 | 一种lte-a系统中测量参考信号的配置方法和系统 |
US9602251B2 (en) * | 2012-01-27 | 2017-03-21 | Sharp Kabushiki Kaisha | Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems |
US8953478B2 (en) * | 2012-01-27 | 2015-02-10 | Intel Corporation | Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback |
CN108282325B (zh) * | 2012-03-19 | 2022-03-08 | 北京三星通信技术研究有限公司 | 一种lte tdd的特殊子帧信号传输方法和设备 |
US20130286902A1 (en) * | 2012-04-27 | 2013-10-31 | Qualcomm Incorporated | Flexible special subframe configuration for tdd in lte |
CN104349474B (zh) * | 2013-08-09 | 2018-10-30 | 电信科学技术研究院 | 一种通信方法及设备 |
CN105099632B (zh) * | 2014-04-23 | 2019-12-13 | 北京三星通信技术研究有限公司 | 一种上行探测参考信号传输的方法和设备 |
EP3143715A1 (en) * | 2014-05-15 | 2017-03-22 | Nokia Solutions and Networks Oy | Method and apparatus for transmitting and/or receiving reference signals |
-
2016
- 2016-01-15 CN CN201610028038.9A patent/CN106982465B/zh active Active
-
2017
- 2017-01-13 WO PCT/CN2017/071133 patent/WO2017121384A1/zh active Application Filing
- 2017-01-13 EP EP17738197.7A patent/EP3393072B1/en active Active
-
2018
- 2018-07-13 US US16/034,713 patent/US20180324799A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101931456A (zh) * | 2010-08-09 | 2010-12-29 | 中兴通讯股份有限公司 | 一种移动通信系统的无线帧及测量参考信号的发送方法 |
WO2013170415A1 (en) * | 2012-05-14 | 2013-11-21 | Renesas Mobile Corporation | Methods and apparatuses for enabling provision of an additional special subframe configuration |
CN104737489A (zh) * | 2012-10-24 | 2015-06-24 | 高通股份有限公司 | 用于lte-a中的mimo操作的增强型srs传输 |
CN104348602A (zh) * | 2013-08-09 | 2015-02-11 | 北京三星通信技术研究有限公司 | 一种混合双工通信方法、基站及终端 |
Non-Patent Citations (3)
Title |
---|
CATR: "CONSIDERATIONS ON ADDITIONAL SPECIAL SUBFRAME CONFIGURATION FOR LTE TDD", 3GPP TSG RAN WG1 MEETING #68BIS, R1-121696, 20 March 2012 (2012-03-20), XP050599957 * |
HUAWEI: "INCREASING SRS CAPACITY TO SUPPORT UL MIMO", 3GPPTSG RAN WG1 MEETING #59, R1-094707, 13 November 2009 (2009-11-13), XP050389107 * |
See also references of EP3393072A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3393072B1 (en) | 2022-03-09 |
EP3393072A4 (en) | 2018-12-26 |
US20180324799A1 (en) | 2018-11-08 |
CN106982465B (zh) | 2021-02-23 |
EP3393072A1 (en) | 2018-10-24 |
CN106982465A (zh) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10313073B2 (en) | Transmission of reference signals | |
US20210250159A1 (en) | Resource configuration method and apparatus | |
US11968682B2 (en) | Uplink dynamic grant-free transmission method and apparatus | |
EP3512112A1 (en) | Method and apparatus for use in data transmission | |
JP2022174214A (ja) | マルチコードワード伝送方法及び装置 | |
WO2018165986A1 (zh) | 同步信号块检测方法、同步信号块传输方法、装置及系统 | |
CN109644431B (zh) | 上行信息传输方法、装置及系统 | |
CN105934917A (zh) | 一种下行控制信道传输方法及设备 | |
CN108880776A (zh) | 用于联合fdd及tdd载波聚合的上行链路控制信令 | |
WO2016161977A1 (zh) | 载波聚合中的pucch资源配置方法及其设备 | |
EP3544347B1 (en) | Method for transmitting information, network device and terminal device | |
US12021795B2 (en) | Communication method and network device | |
WO2018126787A1 (zh) | 一种上行免授权用户激活检测方法、装置及基站 | |
WO2020169063A1 (zh) | 一种数据传输方法及通信装置 | |
JP2020509645A (ja) | 下りリンク制御情報送信方法、下りリンク制御情報受信方法および装置 | |
WO2019047632A1 (zh) | 用于传输下行数据的资源的确定和配置方法、终端和基站 | |
EP3242525A1 (en) | Data transmission method and apparatus | |
CN113747586A (zh) | 资源分配方法、装置、系统、计算机设备和存储介质 | |
EP3076730A1 (en) | Information transmission method, user equipment and base station | |
WO2017121384A1 (zh) | 一种无线帧的传输方法以及无线网络设备 | |
EP3661311A1 (en) | Resource indication method, communication device and network device | |
TWI472254B (zh) | 處理分時雙工系統中資源配置的方法及其通訊裝置 | |
WO2016169479A1 (zh) | 一种数据传输方法及设备 | |
CN111181887B (zh) | 一种序列的生成及处理方法和装置 | |
WO2015039626A1 (zh) | 一种发送和接收数据的方法、系统及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17738197 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017738197 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017738197 Country of ref document: EP Effective date: 20180719 |