WO2017115737A1 - 積層ポリエステルフィルム - Google Patents
積層ポリエステルフィルム Download PDFInfo
- Publication number
- WO2017115737A1 WO2017115737A1 PCT/JP2016/088618 JP2016088618W WO2017115737A1 WO 2017115737 A1 WO2017115737 A1 WO 2017115737A1 JP 2016088618 W JP2016088618 W JP 2016088618W WO 2017115737 A1 WO2017115737 A1 WO 2017115737A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester film
- film
- less
- laminated polyester
- coating layer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
- C08J7/0423—Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/672—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/048—Forming gas barrier coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/056—Forming hydrophilic coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
- B32B2307/736—Shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/744—Non-slip, anti-slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/746—Slipping, anti-blocking, low friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2230/00—Compositions for preparing biodegradable polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/123—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/123—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/127—Acids containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/06—Coating with compositions not containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31565—Next to polyester [polyethylene terephthalate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/31797—Next to addition polymer from unsaturated monomers
Definitions
- the present invention relates to a laminated polyester film provided with a polyester film having a flanged carboxylic acid unit and a coating layer. More specifically, the present invention relates to a laminated polyester film having excellent mechanical properties, transparency, heat resistance, gas barrier properties and excellent slipperiness, and a film roll formed by winding this film.
- Polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), which are thermoplastic resins with excellent heat resistance and mechanical properties, are used in a wide variety of fields such as plastic films, electronics, energy, packaging materials, and automobiles. It's being used.
- plastic films biaxially stretched PET films are widely used in the industrial and packaging fields because of their excellent balance of mechanical properties, heat resistance, dimensional stability, chemical resistance, optical properties, and other costs. Yes.
- the PET film imparted with hydrolysis resistance is also used as a film for a solar battery back sheet, and is used for various purposes as a functional film and a base film.
- packaging films In the field of packaging films, it is used for food packaging, bottle shrink labels, and gas barrier films.
- films having excellent gas barrier properties are used as packaging materials or gas barrier materials that require airtightness such as foods, pharmaceuticals, and electronic parts, and the demand for these films has been increasing in recent years.
- thermoplastic resin composition having a flange carboxylic acid unit can be used in the fields of industrial and packaging films. Met.
- thermoplastic resin compositions having several types of furandicarboxylic acid units centered on polybutylene furandicarboxylate (PBF)
- PPF polybutylene furandicarboxylate
- a polymer compound that regulates the degree of polymerization and can be used for applications such as electrical and electronic parts has been proposed.
- Patent Document 2 Furthermore, a polyester having a reduced viscosity and a terminal acid value and excellent mechanical strength has been proposed (Patent Documents 3 and 4).
- Patent Document 2 the transparency of the PBF hot-press molded product disclosed is low, and its use in the fields of industrial and packaging films is limited.
- the mechanical properties of the flange carboxylic acid structure 200 ⁇ m sheet product disclosed in Patent Documents 3 and 4 are low in elongation at break and strength at break, and could not be used in the fields of industrial and packaging films.
- a uniaxially stretched film obtained by blending polyethylene flange carboxylate (PEF), a PEF derivative, and a PEF derivative and a copolymerized polyester has been studied (Patent Documents 5 and 6).
- Patent Document 5 the elongation at break of a film obtained by uniaxially stretching it 5 to 16 times is improved as compared with a sheet made of a thermoplastic resin composition having a flanged carboxylic acid unit depending on the type and blending ratio of the blend.
- a sheet made of a thermoplastic resin composition having a flanged carboxylic acid unit depending on the type and blending ratio of the blend are listed.
- cyclohexanedimethanol copolymerized PET which is widely known to improve elongation at break, is not blended, a significant improvement in elongation at break is not observed, and it must be said that the effect is limited by the blending ratio. Neither was it used in the field of packaging and packaging films.
- Patent Document 6 discloses a PEF film that is uniaxially stretched about 1.6 times using a rolling roll. Although it has been shown that it is a plastic film with excellent gas barrier properties, it has only shown the advantage of barrier properties derived from the chemical structure of PEF, and the mechanical strength important as a packaging material has not been clarified. It has not been used in the field of packaging gas barrier films having carboxylic acid units.
- a barrier film having excellent slipperiness is required, and from the viewpoint of foreign matter detection in product inspection after food packaging and consumer-friendly design characteristics.
- a barrier film that is highly compatible with lubricity and transparency.
- a packaging material that has excellent continuous productivity in post-processing such as printing and laminating, can perform continuous processing in a roll-to-roll manner, and satisfies air tightness such as food, pharmaceuticals, and electronic parts.
- the present invention includes a polyester film having a biomass-derived flange carboxylic acid unit and a coating layer, and is a laminated polyester film that can be used for industrial use, packaging, etc., and has excellent mechanical properties and transparency. Another object of the present invention is to provide a laminated polyester film having heat resistance and gas barrier properties and excellent slipperiness. Another object of the present invention is to provide a film roll obtained by winding up this laminated polyester film.
- the film of the present invention is (1) a laminated polyester film comprising a polyester film and a coating layer, wherein the polyester film comprises a dicarboxylic acid component mainly composed of furan carboxylic acid, and a main component composed of ethylene glycol.
- a polyester resin composed of a glycol component to be biaxially oriented, and the coating layer is provided on at least one side of the polyester film, and a plane orientation coefficient ⁇ P of the laminated polyester film is 0.005 or more,
- a laminated polyester film having a thickness of 0.200 or less and a thickness of 1 ⁇ m or more and 300 ⁇ m or less.
- the oxygen permeability of the film at a temperature of 23 ° C. and a humidity of 65% is not less than 0.1 mL / m 2 / day / MPa and not more than 1000 mL / m 2 / day / MPa. It is a laminated polyester film.
- the coating layer includes at least one resin selected from a polyester resin, a urethane resin, and an acrylic resin.
- the coating layer further includes inorganic particles.
- the laminated polyester film according to any one of (1) to (5) which has a thermal shrinkage rate of 0.01% or more and 10% or less when heated at 150 ° C. for 30 minutes.
- the present invention includes a polyester film roll formed by winding the laminated polyester film according to any one of (1) to (9).
- a laminated polyester film provided with a polyester film having a flange carboxylic acid unit is excellent in excellent mechanical properties, transparency and heat resistance, it can be suitably used as an industrial or packaging film.
- it is excellent in continuous productivity in post-processing such as printing and laminating, and can be processed on a roll-to-roll basis, requiring airtightness of food, medicine, electronic parts, etc.
- Packaging material or gas barrier material can be provided.
- the laminated polyester film of the present invention includes a polyester film and a coating layer, and the coating layer is provided on at least one side of the polyester film. Moreover, the thin film layer may be provided on at least one side of the polyester film on which the coating layer is laminated.
- the polyester film used in the present invention is a biaxially oriented polyester film made of a polyethylene flange carboxylate-based resin mainly containing furan carboxylic acid as a dicarboxylic acid component and mainly ethylene glycol as a glycol component.
- the polyethylene furandicarboxylate resin contains ethylene glycol and furandicarboxylic acid as main components. “Mainly” refers to 80 mol% or more of furandicarboxylic acid in 100 mol% of all dicarboxylic acid components, and 80 mol% or more of ethylene glycol in 100 mol% of all glycol components.
- the copolymerization amount of the other dicarboxylic acid component and the glycol component is less than 20 mol%, preferably 10 mol% or less, and preferably 5 mol% or less with respect to the total dicarboxylic acid component or the total glycol component. It is particularly preferred.
- dicarboxylic acid components examples include terephthalic acid, isophthalic acid, phthalic acid, naphthalene dicarboxylic acid, aromatic dicarboxylic acids such as 4,4′-dicarboxybiphenyl and 5-sodium sulfoisophthalic acid, 1,4-cyclohexane.
- Alicyclic dicarboxylic acids such as dicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid, tetrahydrophthalic acid, oxalic acid, malonic acid, succinic acid, adipic acid
- aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, octadecanedioic acid, fumaric acid, maleic acid, itaconic acid, mesaconic acid, citraconic acid, and dimer acid.
- glycol components examples include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1, 3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-1,3-propanediol, 1,10-decanediol, dimethyloltricyclodecane, diethylene glycol, Aliphatic glycols such as triethylene glycol, bisphenol A, bisphenol S, bisphenol C, bisphenol Z, bisphenol AP, ethylene oxide adduct or propylene oxide adduct of 4,4′-biphenol, 1,2-cyclohexanedimethanol, , 3-cyclohexanedimethanol, 1, Examples include alicyclic glycols such as 4-cyclohexanedimethanol, polyethylene glycol, and
- a polymerization method of such a polyethylene furandicarboxylate resin As a polymerization method of such a polyethylene furandicarboxylate resin, a direct polymerization method in which furandicarboxylic acid and ethylene glycol and, if necessary, other dicarboxylic acid component and glycol component are directly reacted, and dimethyl ester of furandicarboxylic acid are used. Any production method such as a transesterification method in which an ester exchange reaction between ethylene glycol (including other dicarboxylic acid methyl esters as necessary) and ethylene glycol (including other glycol components as necessary) can be used.
- the resin component of the polyester film used in the present invention may include other resins such as polyamide, polystyrene, polyolefin, and polyester other than the above, but in terms of mechanical properties and heat resistance of the polyester film,
- the content is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less, and particularly preferably 5% by mass or less, based on the total resin components of the polyester film. It is most preferable that all the resin components are substantially polyethylene flange carboxylate resins).
- the intrinsic viscosity of the polyethylene flange carboxylate resin is preferably in the range of 0.30 dl / g or more and 1.20 dl / g or less, more preferably 0.55 dl / g or more and 1.00 dl / g or less. More preferably, it is 0.70 dl / g or more and 0.95 dl / g or less. If the intrinsic viscosity is lower than 0.30 dl / g, the polyester film is easily torn, and if it is higher than 1.20 dl / g, the increase in the filtration pressure becomes large and high-precision filtration becomes difficult, and the resin is extruded through the filter. It becomes difficult.
- the intrinsic viscosity of the polyester film resin is preferably in the range of 0.30 dl / g or more and 1.20 dl / g or less, more preferably 0.55 dl / g or more and 1.00 dl / g or less, Preferably they are 0.70 dl / g or more and 0.95 dl / g or less.
- the intrinsic viscosity is lower than 0.30 dl / g, the polyester film is easily torn, and when the intrinsic viscosity is higher than 1.20 dl / g, the effect of increasing the mechanical properties is saturated.
- the coating layer is provided on at least one side of the polyester film.
- the coating layer may be on both sides, or a multilayer laminated structure in which a coating layer is further provided on the coating layer may be adopted.
- the coating layer is a multilayer, it is preferable to contain particles described later in the coating layer on the outer side (anti-polyester film side), and it is more preferable to include inorganic particles described later.
- the coating layer preferably contains at least one resin selected from polyester resins, urethane resins, and acrylic resins.
- the polyester resin, acrylic resin, and urethane resin constituting the coating layer of the present invention have adhesiveness to the polyester film.
- the above resins may be used alone, or two or more different resins, for example, a polyester resin and a urethane resin, a polyester resin and an acrylic resin, or a combination of a urethane resin and an acrylic resin.
- polyester resin When a copolyester is used as the polyester resin, it is preferable to use an aromatic dicarboxylic acid component and ethylene glycol and branched glycol as the constituent components as the glycol component.
- the branched glycol include 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2-methyl-2-ethyl-1,3-propanediol, and 2-methyl-2-butyl.
- 1,3-propanediol 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-isopropyl-1,3-propanediol, 2-methyl-2-n-hexyl-1, 3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-butyl-1,3-propanediol, 2-ethyl-2-n-hexyl-1,3-propane Diols, 2,2-di-n-butyl-1,3-propanediol, 2-n-butyl-2-propyl-1,3-propanediol, and 2,2-di-n-hexyl-1,3 Propane diol.
- the lower limit of the molar ratio of the branched glycol component is preferably 10 mol%, more preferably 20 mol%, still more preferably 30 mol% with respect to the total glycol component.
- the upper limit is preferably 90 mol%, more preferably 80 mol%. If necessary, diethylene glycol, propylene glycol, butanediol, hexanediol, 1,4-cyclohexanedimethanol or the like may be used in combination.
- aromatic dicarboxylic acid component terephthalic acid, isophthalic acid, or furandicarboxylic acid is most preferable.
- the aromatic dicarboxylic acid component may be composed only of terephthalic acid, isophthalic acid, and furandicarboxylic acid, but other aromatic dicarboxylic acids, particularly in the range of 10 mol% or less with respect to the total dicarboxylic acid component.
- An aromatic dicarboxylic acid such as diphenylcarboxylic acid and 2,6-naphthalenedicarboxylic acid may be added and copolymerized.
- polyester resin When the polyester resin is used as an aqueous coating liquid, a water-soluble or water-dispersible polyester resin is used.
- a compound containing a sulfonate group For such water-solubilization or water-dispersion, a compound containing a sulfonate group, It is preferable to copolymerize a compound containing a carboxylate group.
- sulfoterephthalic acid for example, sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfonaphthaleneisophthalic acid-2,7-dicarboxylic acid and 5-
- sulfoterephthalic acid for example, 5-sulfoisophthalic acid, 4-sulfonaphthaleneisophthalic acid-2,7-dicarboxylic acid and 5-
- 4-sulfonaphthaleneisophthalic acid-2,7-dicarboxylic acid and 5- it is preferable to use (4-sulfophenoxy) isophthalic acid or an alkali metal salt thereof in the range of 1 to 10 mol% with respect to the total dicarboxylic acid component, and use 5-sulfoisophthalic acid or an alkali metal salt thereof. Is more preferable.
- the polyurethane resin used in the present invention contains at least a polyol component and a polyisocyanate component as constituent components, and may further contain a chain extender as necessary.
- a heat-reactive polyurethane resin for example, water-soluble or water-dispersible polyurethane in which a terminal isocyanate group is blocked with an active hydrogen group (hereinafter referred to as a block) is exemplified.
- polystyrene resin examples include polyvalent carboxylic acids (for example, malonic acid, succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or acid anhydrides thereof and polyhydric alcohols (for example, Reaction of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, neopentylglycol, 1,6-hexanediol, etc.) Polyester polyols obtained from polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and other polyether polyols, polycarbonate Door polyols and polyolefin polyols, and the like acrylic polyols
- Aliphatic diisocyanates such as 4,4-dicyclohexylmethane diisocyanate and 1,3-bis (isocyanatomethyl) cyclohexane, aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, or these And polyisocyanates obtained by adding a single compound or a plurality of these compounds in advance with trimethylolpropane or the like. From the viewpoint of barrier properties, aromatic diisocyanates, araliphatic diisocyanates, and alicyclic diisocyanates are preferred. Further, when the cyclic part has a substituent, the side chain of the aromatic ring or alicyclic ring is preferably a short chain, and the diisocyanate component is preferably symmetrical because the cohesion is improved.
- Examples of the blocking agent for the isocyanate group include bisulfites, phenols, alcohols, lactams, oximes and esters such as dimethyl malonate, diketones such as methyl acetoacetate, mercaptans, ureas, and imidazoles. And acid imides such as succinimide, amines such as diphenylamine, imines, and carbamates such as 2-oxazolidine.
- the water-soluble or water-dispersible polyurethane preferably has a hydrophilic group in the molecule.
- a compound having a hydrophilic group in the compound having at least one active hydrogen atom in the molecule to be used or a compound having hydrophilicity in the above-mentioned blocking agent examples include taurine, dimethylolpropionic acid, polyester polyol having carboxylic acid group or sulfonic acid group, polyoxyalkylene polyol, etc. Is mentioned.
- examples of the hydrophilic compound in the blocking agent include bisulfites and phenols containing a sulfonic acid group.
- the blocking agent When heat energy is applied to the resin during drying or heat setting during film production, the blocking agent is released from the isocyanate group, so the resin fixes a water-dispersible copolyester resin mixed in a self-crosslinked stitch. And reacts with the terminal groups of the resin.
- the water-soluble or water-dispersible polyurethane those using a hydrophilic compound as a blocking agent are preferable. These polyurethanes are poor in water resistance because the resin in the coating liquid preparation is hydrophilic, but when the thermal reaction is completed by coating, drying and heat setting, the hydrophilic group of the urethane resin, that is, the blocking agent is released, A coating film with good water resistance is obtained.
- the chemical composition of the urethane prepolymer used in the polyurethane resin includes (1) a compound having at least two active hydrogen atoms in the molecule and a molecular weight of 200 to 20,000, and (2) two or more in the molecule. (3) a compound having a terminal isocyanate group obtained by reacting a chain extender having at least two active hydrogen atoms in the molecule, if necessary, and (3) an organic polyisocyanate having an isocyanate group of .
- a compound having a molecular weight of 200 to 20,000 having at least two active hydrogen atoms in the molecule of (1) is that two or more hydroxyl groups, carboxyl groups, Particularly preferred compounds include an amino group or a mercapto group, and examples thereof include polyether polyol and polyester polyol.
- polyester polyol examples include polyvalent saturated or unsaturated carboxylic acids such as succinic acid, adipic acid, phthalic acid and maleic anhydride, or the carboxylic acid anhydride, ethylene glycol, diethylene glycol, 1,4-butanediol, Polyvalent saturated and unsaturated alcohols such as neopentyl glycol, 1,6-hexanediol and trimethylolpropane, polyalkylene ether glycols such as relatively low molecular weight polyethylene glycol and polypropylene glycol, or alcohols thereof It can be obtained by condensing the mixture.
- carboxylic acids such as succinic acid, adipic acid, phthalic acid and maleic anhydride
- carboxylic acid anhydride examples include polyvalent saturated or unsaturated carboxylic acids such as succinic acid, adipic acid, phthalic acid and maleic anhydride, or the carboxylic acid anhydride, ethylene glycol, diethylene glycol, 1,
- polyesters obtained from lactones and hydroxy acids polyesters obtained by adding ethylene oxide or propylene oxide or the like to previously produced polyesters can also be used.
- organic polyisocyanate (2) examples include isomers of toluylene diisocyanate, aromatic diisocyanates such as 4,4-diphenylmethane diisocyanate, aromatic aliphatic diisocyanates such as xylylene diisocyanate, isophorone diisocyanate and 4,4. -Addition of alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, or one or more of these compounds to trimethylolpropane, etc. Examples include polyisocyanates obtained.
- Examples of the chain extender having at least two active hydrogen atoms in the molecule (3) include glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, and 1,6-hexanediol, glycerin, triglyceride, and the like.
- Polyols such as methylolpropane and pentaerythritol, diamines such as ethylenediamine, hexamethylenediamine, and piperazine, amino alcohols such as monoethanolamine and diethanolamine, thiodiglycols such as thiodiethylene glycol, or water Is mentioned.
- a urethane prepolymer In order to synthesize a urethane prepolymer, it is usually 150 ° C. or lower by a single-stage or multi-stage isocyanate polyaddition method using the above (1) and (2), and further, if necessary, the above (3).
- the reaction is preferably performed at a temperature of 70 to 120 ° C. for 5 minutes to several hours.
- the ratio of the isocyanate group of (2) to the active hydrogen atom of (1) and (3) can be freely selected as long as it is 1 or more, but free isocyanate groups remain in the obtained urethane prepolymer. is required.
- the content of free isocyanate groups may be 10% by mass or less with respect to the total mass of the urethane prepolymer to be obtained.
- 7 In consideration of the stability of the aqueous solution of the urethane polymer after blocking, 7 It is preferable that it is below mass%.
- the obtained urethane prepolymer is preferably blocked with a terminal isocyanate group using bisulfite.
- the urethane prepolymer is mixed with an aqueous bisulfite solution, and the reaction is allowed to proceed with good stirring for about 5 minutes to 1 hour.
- the reaction temperature is preferably 60 ° C. or lower.
- the reaction mixture is diluted with water to an appropriate concentration to obtain a heat-reactive water-soluble urethane resin composition.
- the composition is adjusted to an appropriate concentration and viscosity when used.
- the bisulfite as a blocking agent is dissociated to regenerate active terminal isocyanate groups.
- a polyurethane polymer is produced by a polyaddition reaction that occurs within or between molecules of the prepolymer, or has the property of causing addition to other functional groups.
- Acrylic resin Water-dispersible or water-soluble acrylic resin in the case of using acrylic resin is, for example, acrylate and / or methacrylate resin, or copolymerizable with acrylic resin having unsaturated double bond such as styrene. And a copolymer with an aliphatic compound or an aromatic compound.
- acrylic-styrene copolymer resin having excellent hydrophilicity a water-dispersible acrylic-styrene random copolymer resin by emulsion polymerization is most preferable.
- particles are applied to the coating layer. It is preferable to contain. Thereby, the laminated polyester film of the present invention can obtain slipperiness, winding property, and scratch resistance while maintaining high transparency.
- the particles include inorganic particles and organic particles (heat-resistant polymer particles).
- Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide, barium sulfate, calcium fluoride, lithium fluoride, zeolite, What made molybdenum sulfide, mica, etc. into particles can be used.
- Organic particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, and polytetrafluoroethylene particles. Is mentioned.
- silica particles are preferable because the resin component and the refractive index are relatively close, and a highly transparent film can be easily obtained.
- the shape of the particles is not particularly limited, but particles that are close to spherical are preferable from the viewpoint of imparting easy slipperiness.
- the content of particles in the total amount of the coating layer is preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
- the content of the particles in the coating layer exceeds 20% by mass, the transparency is deteriorated and the adhesiveness of the film tends to be insufficient.
- the lower limit of the content of the particles is preferably 0.1% by mass, more preferably 1% by mass, and particularly preferably 3% by mass.
- the average particle size of the main particles P is preferably 10 to 10,000 nm, particularly preferably 200 to 1000 nm.
- the average particle size of the particles P is less than 100 nm, scratch resistance, slipping property, and winding property may be deteriorated.
- the average particle size of the particles P exceeds 10,000 nm, not only the particles are easily dropped, but also the haze tends to increase.
- the average particle size of the particles Q is preferably 20 to 150 nm, and more preferably 40 to 60 nm. When the average particle size is less than 20 nm, it is difficult to obtain sufficient blocking resistance, and scratch resistance tends to deteriorate.
- the particles P are silica particles
- the average particle size of the particles P is 10 to 10,000 nm
- an aggregate having an average primary particle size of 40 to 60 nm made of silica produced by a dry method is dropped from the coating layer. It is preferable because it is difficult. This is presumably because, in the film forming process, after applying the slippery modified layer, it can be made flat and stable by passing through a stretching process and a heat setting process.
- the particle P it is possible to use a particle having a ratio of the average particle size in the aggregated state to the average primary particle (average particle size in the aggregated state / average primary particle size) of 4 times or more. It is preferable from the point.
- the particles may contain two or more kinds of different kinds of particles, or the same kind of particles having different average particle diameters.
- the coating layer may contain a surfactant for the purpose of improving leveling properties during coating and defoaming the coating solution.
- the surfactant may be any of cationic, anionic and nonionic surfactants, but is preferably a silicone, acetylene glycol, or fluorine surfactant. These surfactants are preferably contained in a range that does not impair the adhesion to the polyester film, for example, in the range of 0.005 to 0.5% by mass in the coating layer forming coating solution.
- additives may be included.
- the additive include fluorescent dyes, fluorescent brighteners, plasticizers, ultraviolet absorbers, pigment dispersants, foam suppressors, antifoaming agents, preservatives, and antistatic agents.
- a method of providing a coating layer on a polyester film a method of applying a coating solution for forming a coating layer containing a solvent, particles, and a resin to the polyester film and drying it may be mentioned.
- the solvent include organic solvents such as toluene, water, and a mixed system of water and a water-soluble organic solvent.
- water alone or a mixture of a water-soluble organic solvent and water is used from the viewpoint of environmental problems. preferable.
- the thin film layer used in the present invention contains an inorganic compound as a main component, and the inorganic compound is at least one of aluminum oxide and silicon oxide.
- the “main component” means that the total amount of aluminum oxide and silicon oxide is more than 50% by mass, preferably 70% by mass or more, with respect to 100% by mass of the component constituting the thin film layer.
- the content is preferably 90% by mass or more, and most preferably 100% by mass (components other than aluminum oxide and silicon oxide are not contained as components constituting the thin film layer).
- aluminum oxide as used herein comprises at least one of various aluminum oxides such as AlO, Al 2 O, Al 2 O 3 , and the content of various aluminum oxides can be adjusted according to the production conditions of the thin film layer. it can.
- Silicon oxide is composed of at least one of various silicon oxides such as SiO, SiO 2 and Si 3 O 2 , and the content of various silicon oxides can be adjusted according to the production conditions of the thin film layer.
- Aluminum oxide or silicon oxide may contain a small amount of other components (up to 3% by mass based on all components) within a range in which the properties are not impaired.
- the thickness of the thin film layer is not particularly limited, but is preferably 5 to 500 nm, more preferably 10 to 200 nm, and still more preferably 15 to 50 nm from the viewpoint of gas barrier properties and flexibility of the film. If the thickness of the thin film layer is less than 5 nm, satisfactory gas barrier properties may be difficult to obtain. On the other hand, if it exceeds 500 nm, the corresponding effect of improving gas barrier properties cannot be obtained, and bending resistance and It is disadvantageous in terms of manufacturing cost.
- the plane orientation coefficient ( ⁇ P) of the laminated polyester film of the present invention is 0.005 or more and 0.200 or less, preferably 0.020 or more and 0.195 or less, more preferably 0.100 or more, 0.0. It is 195 or less, More preferably, it is 0.110 or more and 0.195 or less, More preferably, it is 0.120 or more and 0.195 or less, More preferably, it is 0.130 or more and 0.190 or less More preferably 0.135 or more and 0.180 or less, particularly preferably 0.140 or more and 0.170 or less, and most preferably 0.145 or more and 0.160 or less.
- the plane orientation coefficient ( ⁇ P) is less than 0.005, the mechanical properties of the film become insufficient, and post-processing such as film printing and bag making becomes difficult. This is not preferable because the film may be cut off on the coater.
- the laminated polyester film of the present invention preferably has a thermal shrinkage rate (hereinafter simply referred to as a thermal shrinkage rate) of 30% when heated at 150 ° C. for 30 minutes in both the MD direction and the TD direction, more preferably 30%. Or less, more preferably 20% or less, even more preferably 10% or less, particularly preferably 8% or less, and most preferably 4.5% or less. If the heat shrinkage rate is large, color misalignment during printing, film elongation on the printing press or coater will cause printing and coating operations to be difficult, and poor appearance due to film deformation due to high heat. To do.
- the heat shrinkage rate is preferably low, but 0.01% is considered the lower limit from the viewpoint of production.
- the oxygen permeability of the laminated polyester film at a temperature of 23 ° C. and a humidity of 65% is preferably 0.1 mL / m 2 / day / MPa or more and 1000 mL / m 2 / day / MPa or less, more preferably. Is 0.1 mL / m 2 / day / MPa or more and 200 mL / m 2 / day / MPa or less, more preferably 0.1 mL / m 2 / day / MPa or more and 100 mL / m 2 / day / MPa or less.
- 0.1 mL / m 2 / day / MPa is considered as the lower limit. It is possible to further improve the oxygen permeability by applying a method such as printing and coating to the film and a method by coextrusion.
- the water vapor permeability of the polyester film at a temperature of 37.8 ° C. and a humidity of 90% is preferably 0.1 g / m 2 / day or more and 40 g / m 2 / day or less, more preferably 30 g / m. m 2 / day or less, more preferably 20 g / m 2 / day or less. If it exceeds 40 g / m 2 / day, there is a possibility that the substance deteriorates due to water vapor that has permeated through the film, or the preservability of the food becomes poor. From the viewpoint of film production, 0.1 g / m 2 / day is considered the lower limit. It is possible to further improve the water vapor transmission rate by applying a method such as printing and coating to the film and a method by coextrusion.
- the polyester itself having a flanged carboxylic acid unit has a high oxygen barrier property (low oxygen permeability), but it can be a polyester film that satisfies the stretching process described later, or a main component of an inorganic compound.
- the oxygen barrier property is further improved.
- the refractive index (nx) (ny) in the MD direction and the perpendicular direction (TD direction) in the plane of the laminated polyester film is preferably 1.5700 or more, more preferably 1.6000 or more, and further preferably 1.6200. That's it.
- nx and ny are preferably less than 1.7000 from the standpoint of production and heat shrinkage.
- the laminated polyester film of the present invention preferably has a breaking strength of 75 MPa or more in both the MD direction and the TD direction.
- the preferable lower limit of the breaking strength is 100 MPa, the more preferable lower limit is 150 MPa, the still more preferable lower limit is 200 MPa, and the still more preferable lower limit is 220 MPa. If the breaking strength is less than 75 MPa, the mechanical strength of the film becomes insufficient, and problems such as elongation and misalignment tend to occur in the film processing step, which is not preferable. In consideration of the manufacturing point, the upper limit of the breaking strength is 1000 MPa.
- the laminated polyester film of the present invention preferably has a breaking elongation of 10% or more in both the MD direction and the TD direction.
- the preferable lower limit of the elongation at break is 15%, the more preferable lower limit is 20%, and the particularly preferable lower limit is 30%.
- the elongation at break is less than 10%, the mechanical elongation of the film becomes insufficient, and defects such as cracking and tearing are likely to occur in the film processing step, which is not preferable.
- the upper limit of elongation at break is 300%.
- the upper limit of the breaking elongation is preferably 150%, more preferably 100%, and still more preferably 80%.
- the polyester film of the present invention preferably has a static friction coefficient ( ⁇ s) of 1.0 or less and a dynamic friction coefficient ( ⁇ d) of 1.0 or less.
- the static friction coefficient ( ⁇ s) is further preferably 0.8 or less, and more preferably 0.6 or less.
- the dynamic friction coefficient ( ⁇ d) is further preferably 0.8 or less, and more preferably 0.6 or less. If the static friction coefficient ( ⁇ s) or the dynamic friction coefficient ( ⁇ d) exceeds 1.0, the slipperiness is deteriorated, and there is a possibility that scratches and wrinkles are generated due to rubbing during film running.
- the static friction coefficient ( ⁇ s) is a static friction coefficient between one surface and the other surface of the laminated polyester film of the present invention
- the dynamic friction coefficient ( ⁇ d) is one surface of the laminated polyester film of the present invention and the other surface. It is the coefficient of dynamic friction with the surface.
- the laminated polyester film of the present invention preferably has a total light transmittance of 75% or more.
- the total light transmittance of the laminated polyester film of the present invention is preferably 75% or more, more preferably 80% or more, further preferably 88.5% or more, and particularly preferably 89% or more.
- the higher the total light transmittance the better.
- the laminated polyester film of the present invention preferably has a haze of 15% or less.
- the haze in the laminated polyester film of the present invention is preferably 15% or less, more preferably 8% or less, further preferably 3% or less, and particularly preferably 1% or less.
- the haze is preferably low, but from the refractive index inherent to the polyester film, 0.1% seems to be the lower limit.
- the thickness of the laminated polyester film of the present invention is from 1 ⁇ m to 300 ⁇ m, preferably from 5 ⁇ m to 200 ⁇ m, more preferably from 10 ⁇ m to 100 ⁇ m, and particularly preferably from 10 ⁇ m to 40 ⁇ m.
- the thickness exceeds 300 ⁇ m, there is a problem in terms of cost, and the visibility tends to decrease when used as a packaging material.
- thickness is less than 1 micrometer, there exists a possibility that a mechanical characteristic may fall and the function as a film may not be fulfilled.
- the winding length and width are appropriately determined depending on the use of the film roll.
- the winding length of the film roll is preferably 100 m or more, more preferably 1000 m or more.
- the width of the film roll is preferably 200 mm or more, more preferably 1000 mm or more.
- the film raw material is dried or hot air dried so that the moisture content is less than 200 ppm.
- each raw material is weighed and mixed, supplied to an extruder, and melt extruded into a sheet. Furthermore, the molten sheet is brought into close contact with a rotating metal roll (casting roll) using an electrostatic application method and cooled and solidified to obtain an unstretched PEF sheet.
- a rotating metal roll casting roll
- high-precision filtration can be performed at any place where the molten resin is kept at 220 to 280 ° C. in order to remove foreign substances contained in the resin.
- the filter medium used for high-precision filtration of the molten resin is not particularly limited, but in the case of a stainless steel sintered filter medium, the removal performance of aggregates and high melting point organic substances mainly composed of Si, Ti, Sb, Ge, Cu Excellent and suitable.
- a multi-layer feed block for example, a merge block having a square merge portion
- a multi-manifold die may be used instead of the multilayer feed block.
- the unstretched film obtained by the above method is biaxially stretched and then heat-treated.
- a uniaxial stretching method is performed in the MD direction or the TD direction, and then stretching is performed in the MD direction and the TD direction at the same time.
- a simultaneous biaxial stretching method and a method using a linear motor can be employed as a driving method for simultaneous biaxial stretching.
- MD stretching can be performed by stretching in the MD direction by providing a speed difference using a heating roll. It is also possible to use an infrared heater or the like for heating.
- the subsequent TD stretching can be performed by guiding the MD stretched sheet to a tenter, gripping both ends with clips, and stretching in the TD direction while heating.
- the film after TD stretching is subsequently heat-treated in the tenter.
- the heat treatment can be performed while being pulled by TD stretching, but can also be performed while relaxing in the TD direction.
- the film after heat treatment can be rolled up with a winder with both ends cut off.
- Patent Documents 5 and 6 disclose a method for producing a PEF / PEF derivative film that has been uniaxially stretched 1.6 to 16 times.
- the method disclosed above cannot achieve mechanical properties that can be used for industrial and packaging purposes. Therefore, as a result of intensive studies, the present inventor has achieved high mechanical properties by performing the following stretching methods (i) to (vii).
- high barrier property can be achieved by producing a thin film layer as described in the following (viii).
- (I) Control of stretching ratio in MD direction of film In order to obtain the polyester film used in the present invention, it is desirable to stretch in the MD direction within a range of 1.1 to 10.0 times. By stretching in the MD direction at 1.1 times or more (preferably 1.5 times or more), a film having a plane orientation coefficient ⁇ P of 0.005 or more can be produced.
- the draw ratio in the MD direction is 2.5 times or more, more preferably 3.5 times or more, still more preferably 4.0 times or more, and particularly preferably 4.5 times or more.
- ⁇ P is 0.02 or more
- the refractive indexes nx and ny in the MD and TD directions are 1.5700 or more
- the film breaking strength is 100 MPa or more
- the film breaking elongation is 15%. It can be set as the film excellent in the above mechanical characteristics.
- the draw ratio in the MD direction is 10.0 times or less because the frequency of breakage is reduced.
- (Ii) Control of stretching temperature in MD direction of film In order to obtain the polyester film used in the present invention, it is desirable to stretch in the MD direction in the range of 90 ° C or higher and 150 ° C or lower. More preferably, it is 100 degreeC or more and 125 degrees C or less. A stretching temperature in the MD direction of 90 ° C. or higher is preferable because the frequency of breakage decreases. Since it can extend
- (Iii) Control of stretching ratio in TD direction of film In order to obtain the polyester film used in the present invention, it is desirable to stretch in the TD direction within a range of 1.1 to 10.0 times.
- a film having a plane orientation coefficient ⁇ P exceeding 0.005 can be produced by TD stretching 1.1 times or more (preferably 1.5 times or more).
- the draw ratio in the TD direction is 3.0 times or more, more preferably 3.5 times or more, still more preferably 4.0 times or more, and particularly preferably 4.5 times or more.
- ⁇ P is 0.02 or more
- the refractive index nx, ny in the MD direction and TD direction is 1.5700 or more
- the film breaking strength is 75 MPa or more and It can be set as the film excellent in the mechanical characteristic whose film breaking elongation is 15% or more.
- the draw ratio in the TD direction is 10.0 times or less, the frequency of breakage is reduced, which is preferable.
- (Iv) Control of stretching temperature in TD direction In order to obtain the polyester film used in the present invention, it is desirable to stretch in the TD direction in the range of 80 ° C to 200 ° C. More preferably, it is 95 ° C or higher and 135 ° C or lower. A stretching temperature in the TD direction of 80 ° C. or higher is preferable because the frequency of breakage is reduced. Since it can extend
- (V) Control of heat setting temperature of film In order to obtain the polyester film used in the present invention, it is preferable to perform heat setting treatment in the range of 110 ° C or higher and 220 ° C or lower.
- the temperature of the heat setting treatment is 220 ° C. or lower (preferably 210 ° C. or lower)
- the film is less likely to become opaque and the frequency of melt fracture is preferably reduced.
- the heat setting temperature is increased, the heat shrinkage rate is decreased, preferably 120 ° C. or higher, more preferably 140 ° C. or higher, still more preferably 160 ° C. or higher, particularly preferably 175 ° C. or higher, and most preferably 185 ° C. or higher.
- the plane orientation coefficient ⁇ P tends to increase due to the heat setting treatment.
- (Vi) Control of relaxation temperature in TD direction In order to obtain the polyester film used in the present invention, it is desirable to perform relaxation treatment in the TD direction in the range of 100 ° C to 200 ° C.
- the relaxation temperature in the TD direction is preferably 165 ° C. or higher and 195 ° C. or lower, more preferably 175 ° C. or higher and 195 ° C. or lower. This is desirable because the heat shrinkage rate can be reduced.
- (Vii) Control of relaxation rate in TD direction In order to obtain the polyester film used in the present invention, it is desirable to perform the relaxation rate in the TD direction in the range of 0.5% to 10.0%.
- the relaxation rate in the TD direction is preferably 2% or more and 6% or less. This is desirable because the heat shrinkage rate can be reduced.
- (Viii) Method for producing thin film layer For the production of the thin film layer, a known production method such as a vacuum vapor deposition method, a sputtering method, a PVD method (physical vapor deposition method) such as ion plating, or a CVD method (chemical vapor deposition method) is used. Although it is appropriately used, the physical vapor deposition method is preferable, and the vacuum vapor deposition method is more preferable. For example, in the vacuum deposition method, a mixture of Al 2 O 3 and SiO 2 or a mixture of Al and SiO 2 is used as a deposition source material, and the heating method is resistance heating, high-frequency induction heating, electron beam heating. Etc. can be used.
- the reactive gas oxygen, nitrogen, water vapor or the like may be introduced, or reactive vapor deposition using means such as ozone addition or ion assist may be used.
- the manufacturing conditions may be changed as long as the object of the present invention is not impaired, such as applying a bias to the substrate, raising the substrate temperature, or cooling the substrate. The same applies to other manufacturing methods such as sputtering and CVD.
- the polyester film After unstretched or uniaxially stretched After coating and drying the coating layer forming coating solution, it is preferable to stretch at least in a uniaxial direction and then perform heat treatment to form the coating layer.
- the coating layer may be formed on both sides of the polyester film, or may be formed only on one side, but the coating layer is formed on one side of the polyester film and the thin film layer is formed on the other side. It is preferable.
- the solid content concentration of the resin composition in the coating layer forming coating solution is preferably 2 to 35% by mass, particularly preferably 4 to 15% by mass.
- any known method can be used as a method for applying the coating layer forming coating solution to the film.
- reverse roll coating method gravure coating method, kiss coating method, die coater method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, impregnation coating method, curtain coating method, etc. It is done. These methods are applied alone or in combination.
- the thickness of the coating layer after drying is preferably 20 to 350 nm, and the coating amount after drying is preferably 0.02 to 0.5 g / m 2 .
- the coating amount of the coating layer is less than 0.02 g / m 2 , the effect on adhesiveness is almost lost. On the other hand, if the coating amount exceeds 0.5 g / m 2 , the transparency may deteriorate.
- the polyester film used in the present invention is produced by a method for producing a polyester film comprising a stretching step in which an unstretched film is stretched in the machine direction and in a direction perpendicular thereto to form a stretched film, and a relaxation step for relaxing the stretched film.
- the method is not limited to the specifically disclosed method as long as it is within the scope of the technical idea.
- it is important to perform high-precision control in a very narrow range with respect to the above-described production conditions based on the above technical idea.
- the breaking strength, breaking elongation and thermal shrinkage of the film can be controlled independently and in combination with the aforementioned stretching and heat treatment conditions. They can be arbitrarily selected, but as preferable conditions, by combining the above (i) to (vii), the plane orientation coefficient ( ⁇ P) is 0.100 or more (preferably 0.140 or more), and the heat shrinkage rate is 8%.
- a film having a film breaking strength of 150 MPa or more (more preferably 250 MPa or more) and a breaking elongation of 40% or more can be obtained.
- the stretching ratio in the MD direction is 4.0 times or more (preferably 4.5 times or more)
- the stretching ratio in the TD direction is 4.0 times or more (preferably 4.5 times or more)
- heat setting is performed.
- the plane orientation coefficient ( ⁇ P) is 0.140 or more, and the oxygen permeability at a temperature of 23 ° C. and a humidity of 65% is 0.1 to 1000 mL / m 2. It is possible to make a laminated polyester film that is / day / MPa.
- the function can be improved by surface-treating the film that has been stretched and heat-treated. Examples include printing and coating.
- a film that has been stretched and heat-treated or a surface-treated film is bonded to paper, so that it can be used for packaging, labels, design sheets, and the like.
- Breaking strength and breaking elongation A sample was cut into a strip shape having a length of 140 mm and a width of 10 mm, respectively, with a single-blade razor with respect to the MD direction and the TD direction of the film. Subsequently, the strip-shaped sample was pulled using Autograph AG-IS (manufactured by Shimadzu Corporation), and the breaking strength (MPa) and breaking elongation (%) in each direction were determined from the obtained load-strain curve.
- Autograph AG-IS manufactured by Shimadzu Corporation
- the measurement was performed in an atmosphere of 25 ° C. under conditions of a distance between chucks of 40 mm, a crosshead speed of 100 mm / min, and a load cell of 1 kN. In addition, this measurement was performed 5 times and the average value was used for evaluation.
- Oxygen permeability was measured under the conditions of a temperature of 23 ° C. and a humidity of 65% using an oxygen permeability measuring device (OX-TRAN 2/21 manufactured by MOCON) according to JIS K7126-2A. Measurements were made. The surface opposite to the coating layer was mounted so as to be the humidity control side.
- iii) Filling the color solution Fill the color solution with about 30 mL of color solution in a three-side sealed bag in a glove box that has been circulated with nitrogen for 15 minutes or more in advance, fill the nitrogen, and then close the bag with a sealer. It was possible to obtain a packaged container.
- Static friction coefficient ( ⁇ s) and dynamic friction coefficient ( ⁇ d) A film was cut into an area of 8 cm ⁇ 5 cm to prepare a sample.
- A-side one surface of the sample was designated as A-side and the opposite surface was designated as B-side. This was fixed to the bottom surface of a metal rectangular parallelepiped having a size of 6 cm ⁇ 5 cm and having a weight of 1.4 kg so that the A surface was on the outside.
- the 5 cm width direction of the sample was aligned with the 5 cm width direction of the metal cuboid, one side in the longitudinal direction of the sample was bent, and fixed to the side surface of the metal cuboid with an adhesive tape.
- the film thickness composition of the inorganic compound was measured with a calibration curve prepared in advance using an X-ray fluorescence analyzer (ZSX100e, manufactured by Rigaku Corporation). The conditions for the excitation X-ray tube were 50 kV and 70 mA. The calibration curve was obtained by the following procedure. Several types of films having an inorganic compound thin film composed of aluminum oxide and silicon oxide were produced, and the amounts of adhesion of aluminum oxide and silicon oxide were determined by inductively coupled plasma emission method (ICP method).
- ICP method inductively coupled plasma emission method
- each film whose adhesion amount was determined was analyzed with an X-ray fluorescence analyzer (ZSX100e, manufactured by Rigaku Corporation, conditions of an excitation X-ray tube: 50 kv, 70 mA), thereby fluorescent X-rays of aluminum oxide and silicon oxide of each sample.
- the strength was determined.
- a calibration curve was created by obtaining the relationship between the fluorescent X-ray intensity and the adhesion amount obtained by ICP. Since the adhesion amount obtained by ICP is basically mass, it was converted as follows in order to make it a film thickness composition. The film thickness was calculated on the assumption that the density of the inorganic oxide thin film was 80% of the bulk density, and that the volume was maintained even when aluminum oxide and silicon oxide were mixed.
- the aluminum oxide content wa (mass%) in the film and the silicon oxide content ws (mass%) in the film are expressed as follows: Ma (g / cm 2 )
- Ms (g / cm 2 ) the adhesion amount per unit area
- colloidal silica (Snowtex (registered trademark) manufactured by Nissan Chemical Industries, Ltd.) was prepared by using 0.6 parts by mass of a 10% by mass aqueous solution of a fluorine-based nonionic surfactant (Megafac (registered trademark) F444 manufactured by DIC) as particles P.
- OL 2.3 mass parts of a 20% by weight aqueous dispersion with an average particle size of 40 nm) and 3.5 parts of dry-process silica (Nippon Aerosil, Aerosil OX50; average particle size 200 nm, average primary particle size 40 nm) as particles Q 0.5 part by mass of a mass% aqueous dispersion was added.
- the pH of the coating solution for forming the coating layer was adjusted to 6.2 with 5% by weight aqueous sodium bicarbonate solution, and the mixture was finely filtered with a felt type polypropylene filter having a filtration particle size (initial filtration efficiency: 95%) of 10 ⁇ m.
- the layer forming coating solution A was prepared.
- the extruded resin was cast on a cooling drum having a surface temperature of 20 ° C. and brought into close contact with the surface of the cooling drum using an electrostatic application method to be cooled and solidified to produce an unstretched film having a thickness of 300 ⁇ m.
- the obtained unstretched sheet was stretched 5 times in the MD direction by a roll group having a peripheral speed difference after raising the film temperature with a roll group heated to 120 ° C. to obtain a uniaxially stretched film.
- the coating layer forming coating solution A prepared by the above method was applied to the uniaxially stretched film by the reverse roll method and dried.
- the coating amount (coating amount) of the coating layer forming coating solution A after drying was 0.1 g / m 2 .
- the obtained film was guided to a tenter and held with a clip, and TD stretching was performed.
- the conveyance speed was 5 m / min.
- the TD stretching temperature was 105 ° C., and the TD stretching ratio was 5 times.
- heat treatment was performed at 200 ° C. for 12 seconds, and 5% relaxation treatment was performed at 190 ° C. to obtain a polyester film.
- the obtained film properties are shown in Table 1.
- the heat setting temperature could be increased up to 200 ° C. by stretching the MD direction 5 times in the MD direction at 120 ° C., and extending the TD direction 105 ° C. in the TD direction 5 times. .
- the physical properties of the obtained laminated polyester film are as follows: thickness is 15.5 ⁇ m, heat shrinkage is 4.3% in the MD direction, 4.3% in the TD direction, and the breaking strength is 260 MPa in the MD direction and 255 MPa in the TD direction.
- the plane orientation coefficient ( ⁇ P) is 0.147, the oxygen permeability is 85 mL / m 2 / day / MPa, and has excellent mechanical properties, transparency, heat resistance, gas barrier properties, and easy slipping.
- a laminated polyester film having excellent properties could be obtained.
- Example 2 The resin used for the coating layer is polyurethane resin (WPB341 manufactured by Mitsui Chemicals), the inorganic particles are silica particles having an average particle size of 450 nm (MP4540M manufactured by Nissan Chemical Industries), and the amount of inorganic particles added to the entire coating layer forming resin composition is 0.
- WPB341 polyurethane resin
- the inorganic particles are silica particles having an average particle size of 450 nm (MP4540M manufactured by Nissan Chemical Industries)
- the amount of inorganic particles added to the entire coating layer forming resin composition is 0.
- a polyester film was obtained in the same manner as in Example 1 except that the content was 3% by mass. The obtained film properties are shown in Table 1.
- Example 3 The resin used for the coating layer is acrylic resin (BASF JONCRYL63J), the inorganic particles are silica particles having an average particle size of 450 nm (Nissan Chemical Industry MP4540M), and the amount of inorganic particles added to the entire coating layer forming resin composition is 0.00.
- a laminated polyester film was obtained in the same manner as in Example 1 except that the content was 3% by mass. The obtained film properties are shown in Table 1.
- Example 5 A laminated polyester film was obtained in the same manner as in Example 2 except that the addition amount of the inorganic particles was changed as shown in Table 1. The obtained film properties are shown in Table 1.
- Example 6 A laminated polyester film was obtained in the same manner as in Example 4 except that the inorganic particles were changed to mica particles having an average particle size of 3.0 ⁇ m (Somasif (registered trademark) MEB-3 manufactured by Katakura Corp. Agri). The obtained film properties are shown in Table 1.
- Example 7 A surfactant (Surfinol (registered trademark) SE-F manufactured by Air Products and Chemicals Co., Ltd.) was added, and the amount of the surfactant added to the entire coating layer forming resin composition was 0.03% by mass.
- a laminated polyester film was obtained in the same manner as in Example 6. The obtained film properties are shown in Table 1.
- Example 8 A laminated polyester film was obtained in the same manner as in Example 7 except that the ratio of isopropyl alcohol (IPA) as a solvent was 25%. The obtained film properties are shown in Table 1.
- IPA isopropyl alcohol
- Example 9 Obtained in Example 1 by the electron beam evaporation method using particulate Al 2 O 3 (purity 99.5%) and SiO 2 (purity 99.9%) having a size of about 3 to 5 mm as the evaporation source. was the coating layer of the laminated polyester film were formed simultaneously depositing Al 2 O 3 and SiO 2 on the opposite side Al 2 O 3 -SiO 2 system thin film layer.
- a vapor deposition material a circular crucible having a diameter of 40 mm was divided into two by a carbon plate, and granular Al 2 O 3 and granular SiO 2 were respectively added without mixing. Moreover, the said polyester film was installed in the support plate.
- each of Al 2 O 3 and SiO 2 is heated by irradiating an electron beam in a time-sharing manner, and the polyester film surface is heated and vaporized to mix Al 2 O 3 and SiO 2. And evaporated.
- the emission current of the electron gun was 205 mA
- the acceleration voltage was 6 kV
- the aluminum oxide charged in the crucible was equivalent to 160 mA ⁇ 6 kV
- the silicon oxide was equivalent to 45 mA ⁇ 6 kV.
- the vacuum pressure during vapor deposition was 1.1 ⁇ 10 ⁇ 4 Pa
- the temperature of the film support was 23 ° C.
- the thickness of the thin film layer was vapor-deposited so as to be 20 nm using a quartz vibrator type film thickness meter by changing the film forming speed to obtain a laminated polyester film having a coating layer and a thin film layer.
- the obtained film properties are shown in Table 1.
- Example 10 A polyester film provided with a coating layer and a thin film layer was obtained in the same manner as in Example 9 except that the laminated polyester film was changed to the laminated polyester film obtained in Example 5.
- the obtained film properties are shown in Table 1.
- Example 11 A polyester film having a coating layer and a thin film layer was obtained in the same manner as in Example 9 except that the laminated polyester film was changed to the laminated polyester film obtained in Example 8. The obtained film properties are shown in Table 1.
- the extruded resin was cast on a cooling drum having a surface temperature of 20 ° C. and brought into close contact with the surface of the cooling drum using an electrostatic application method to be cooled and solidified to produce an unstretched film having a thickness of 300 ⁇ m.
- the obtained unstretched sheet was stretched 5 times in the MD direction by a roll group having a peripheral speed difference after raising the film temperature with a roll group heated to 120 ° C. to obtain a uniaxially stretched film.
- the obtained uniaxially stretched film was guided to a tenter and held with a clip, and TD stretching was performed.
- the conveyance speed was 5 m / min.
- the TD stretching temperature was 105 ° C., and the TD stretching ratio was 5 times.
- heat treatment was performed at 200 ° C. for 12 seconds, and 5% relaxation treatment was performed at 190 ° C. to obtain a polyester film.
- the obtained film properties are shown in Table 2.
- Example 2 A polyester film was obtained in the same manner as described in Example 1 except that the film forming conditions of the polyester film were changed as shown in Table 2. The obtained film properties are shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Description
上述の観点から、PET等の石油誘導体を代替する再生可能なポリマーを提供することを目指して、多くの検討がなされている。フランジカルボン酸(FDCA)は、熱湯における溶解性や酸性試薬に対する安定性の点で、テレフタル酸に似ており、また平面構造であることも知られていることから、FDCAとジオールとが重縮合されたフラン系の材料が提案されている(特許文献1、非特許文献1)。
本発明で用いられるポリエステルフィルムは、ジカルボン酸成分として主にフランジカルボン酸が含まれ、グリコール成分として主にエチレングリコールが含まれるポリエチレンフランジカルボキシレート系樹脂よりなる二軸配向ポリエステルフィルムである。ここで、ポリエチレンフランジカルボキシレート系樹脂は、エチレングリコールおよびフランジカルボン酸を主な構成成分として含有する。「主に」とは、ジカルボン酸全成分100モル%中、フランジカルボン酸が80モル%以上であり、グリコール全成分100モル%中、エチレングリコールが80モル%以上である。
本発明の目的を阻害しない範囲であれば、他のジカルボン酸成分およびグリコール成分を共重合させても良い。他のジカルボン酸成分およびグリコール成分の共重合量は、全ジカルボン酸成分あるいは全グリコール成分に対して、それぞれ20モル%未満であり、10モル%以下であることが好ましく、5モル%以下であることが特に好ましい。
上記の他のジカルボン酸成分としては、テレフタル酸やイソフタル酸、フタル酸、ナフタレンジカルボン酸、4、4’-ジカルボキシビフェニル、5-ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸、テトラヒドロフタル酸等の脂環族ジカルボン酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、オクタデカン二酸、フマル酸、マレイン酸、イタコン酸、メサコン酸、シトラコン酸、ダイマー酸等の脂肪族ジカルボン酸等が挙げられる。
上記の他のグリコール成分としては、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、2-アミノ-2-エチル-1,3-プロパンジオール、2-アミノ-2-メチル-1,3-プロパンジオール、1,10-デカンジオール、ジメチロールトリシクロデカン、ジエチレングリコール、トリエチレングリコール等の脂肪族グリコール、ビスフェノールA、ビスフェノールS、ビスフェノールC、ビスフェノールZ、ビスフェノールAP、4,4’-ビフェノールのエチレンオキサイド付加体またはプロピレンオキサイド付加体、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等の脂環族グリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
また、前記ポリエステルフィルムの樹脂の固有粘度は、0.30dl/g以上、1.20dl/g以下の範囲が好ましく、より好ましくは0.55dl/g以上、1.00dl/g以下であり、さらに好ましくは0.70dl/g以上、0.95dl/g以下である。固有粘度が0.30dl/gよりも低いと、ポリエステルフィルムが裂けやすくなり、固有粘度が1.20dl/gより高いと、機械的特性を高くする効果が飽和状態となる。
被覆層は、上記ポリエステルフィルムの少なくとも片面に備えられている。被覆層は両面にあってもよく、被覆層上にさらに被覆層を設ける多層積層構成をとっても構わない。高い透明性と優れた易滑性の両立のためには被覆層を設けることが重要である。被覆層が多層の場合は、より外側(反ポリエステルフィルム側)の被覆層に後述の粒子を含有させるのが好ましく、後述の無機粒子を含有させるのがより好ましい。
ポリエステル樹脂として共重合ポリエステルを用いる場合、芳香族ジカルボン酸成分と、グリコール成分としてエチレングリコール及び分岐状グリコールを構成成分とすることが好ましい。前記の分岐状グリコールとは、例えば、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2-メチル-2-エチル-1,3-プロパンジオール、2-メチル-2-ブチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-メチル-2-イソプロピル-1,3-プロパンジオール、2-メチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-ブチル-1,3-プロパンジオール、2-エチル-2-n-ヘキシル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2-n-ブチル-2-プロピル-1,3-プロパンジオール、及び2,2-ジ-n-ヘキシル-1,3-プロパンジオールなどが挙げられる。
本発明で用いられるポリウレタン樹脂は、構成成分として、少なくともポリオール成分及びポリイソシアネート成分を含み、さらに必要に応じて鎖延長剤を含むことができる。熱反応型ポリウレタン樹脂を用いる場合には、例えば、末端イソシアネート基を活性水素基で封鎖(以下ブロックと言う)した、水溶性または水分散性ポリウレタンなどが挙げられる。
アクリル系樹脂を用いる場合の水分散性または水溶性のアクリル樹脂とは、例えば、アクリレートおよび/またはメタクリレート樹脂、あるいは、これらと、スチレンなどの不飽和二重結合を有する、アクリル樹脂と共重合可能な脂肪族化合物または芳香族化合物との共重合体が挙げられる。親水性に優れたアクリル-スチレン共重合樹脂として、乳化重合による水分散性アクリル-スチレンランダム共重合樹脂が最も好ましい。
耐スクラッチ性やロール状に巻取る際や巻出す際のハンドリング性(滑り性、走行性、ブロッキング性、巻取り時の随伴空気の空気抜け性など)を改善するために、被覆層に粒子を含有させることが好ましい。これにより、本発明の積層ポリエステルフィルムは、高い透明性を保持しながら、滑り性、巻き取り性、耐スクラッチ性を得ることができる。
本発明で用いられる薄膜層は、無機化合物を主たる成分としており、無機化合物は、酸化アルミニウム及び酸化珪素の少なくとも一方である。ここでの「主たる成分」とは、薄膜層を構成する成分100質量%に対し、酸化アルミニウム及び酸化珪素の合計量が50質量%超であることを意味し、好ましくは70質量%以上、より好ましくは90質量%以上、最も好ましくは100質量%(酸化アルミニウム、酸化珪素以外の成分が薄膜層を構成する成分として含有されていない)である。ここでいう酸化アルミニウムとは、AlO,Al2O,Al2O3等の各種アルミニウム酸化物の少なくとも1種以上からなり、各種アルミニウム酸化物の含有率は薄膜層の作製条件によって調整することができる。酸化珪素とは、SiO,SiO2,Si3O2等の各種珪素酸化物の少なくとも1種以上からなり、各種珪素酸化物の含有率は薄膜層の作製条件によって調整することができる。酸化アルミニウム又は酸化珪素には、成分中に、特性が損なわれない範囲で微量(全成分に対して高々3質量%まで)の他成分を含んでいてもよい。
本発明の積層ポリエステルフィルムの面配向係数(ΔP)は0.005以上、0.200以下であり、好ましくは0.020以上、0.195以下であり、より好ましくは0.100以上、0.195以下であり、さらに好ましくは0.110以上、0.195以下であり、よりさらに好ましくは0.120以上、0.195以下であり、より一層好ましくは0.130以上、0.190以下であり、さらに一層好ましくは0.135以上、0.180以下であり、特に好ましくは0.140以上、0.170以下であり、最も好ましくは0.145以上、0.160以下である。面配向係数(ΔP)が0.005未満では、フィルムの機械特性が不十分となり、フィルムの印刷や製袋などの後加工が困難となること、後の印刷やコーティングを行うときに印刷機やコーター上でフィルムが切れることなどが発生するため好ましくない。面配向係数は、JIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源としてアッベ屈折計によりフィルム面内の機械方向(MD方向)の屈折率(nx)、その直角方向(TD方向)の屈折率(ny)、および厚み方向の屈折率(nz)を測定し、下記式によって面配向係数(ΔP)を算出できる。
ΔP={(nx+ny)-2nz}÷2
両面に薄膜層が備えられている場合も同様の方法で測定できる。
なお、フィルムに印刷、コーティングなどの方法および共押出しなどによる方法などを付与することで、さらに酸素透過度を改善することは可能である。
本発明で用いられるポリエステルフィルムを得るためには1.1~10.0倍の範囲でMD方向に延伸を行うことが望ましい。1.1倍以上(好ましくは1.5倍以上)でMD方向に延伸することで、面配向係数ΔPが0.005以上であるフィルムを作製することができる。好ましくは、MD方向の延伸倍率が2.5倍以上、より好ましくは3.5倍以上、さらに好ましくは4.0倍以上、特に好ましくは4.5倍以上である。2.5倍以上とすることで、ΔPが0.02以上、さらにはMDおよびTD方向の屈折率nx、nyが1.5700以上となり、フィルム破断強度が100MPa以上かつフィルム破断伸度が15%以上の力学的特性に優れたフィルムとすることができる。MD方向の延伸倍率が10.0倍以下であると破断の頻度が少なくなり好ましい。MD延伸倍率を高くし適度に分子鎖を配向させることにより、熱固定工程の温度を高くでき、熱収縮率を下げることが出来る。
本発明で用いられるポリエステルフィルムを得るためには90℃以上150℃以下の範囲でMD方向に延伸を行うことが望ましい。さらに好ましくは100℃以上125℃以下である。MD方向の延伸温度が90℃以上では破断の頻度が少なくなり好ましい。150℃以下であると均一に延伸ができるため好ましい。
本発明で用いられるポリエステルフィルムを得るためには1.1~10.0倍の範囲でTD方向に延伸を行うことが望ましい。1.1倍以上(好ましくは1.5倍以上)TD延伸することで、面配向係数ΔPが0.005を超えるフィルムを作製することができる。好ましくは、TD方向の延伸倍率が3.0倍以上、より好ましくは3.5倍以上、さらに好ましくは4.0倍以上、特に好ましくは4.5倍以上である。TD方向の延伸倍率を3.0倍以上とすることで、ΔPが0.02以上、さらにはMD方向及びTD方向の屈折率nx、nyが1.5700以上となり、フィルム破断強度が75MPa以上かつフィルム破断伸度が15%以上の力学的特性に優れたフィルムとすることができる。TD方向の延伸倍率が10.0倍以下であると破断の頻度が少なくなり好ましい。
本発明で用いられるポリエステルフィルムを得るためには80℃以上200℃以下の範囲でTD方向に延伸を行うことが望ましい。さらに好ましくは95℃以上135℃以下である。TD方向の延伸温度が80℃以上では破断の頻度が少なくなり好ましい。200℃以下であると均一に延伸ができるため好ましい。
本発明で用いられるポリエステルフィルムを得るためには110℃以上、220℃以下の範囲で熱固定処理を行うことが好ましい。熱固定処理の温度が220℃以下(好ましくは210℃以下)であるとフィルムが不透明になり難く、溶融破断の頻度が少なくなり好ましい。熱固定温度を高くすると熱収縮率が低減するため好ましく、120℃以上がより好ましく、140℃以上がさらに好ましく、160℃以上がまたさらに好ましく、175℃以上が特に好ましく、185℃以上が最も好ましい。熱固定処理により面配向係数ΔPが大きくなる傾向にある。
本発明で用いられるポリエステルフィルムを得るためには100℃以上200℃以下の範囲でTD方向に緩和処理を行うことが望ましい。TD方向の緩和温度は、好ましくは165℃以上195℃以下、さらに好ましくは175℃以上195℃以下である。これにより、熱収縮率を低減できるため望ましい。
本発明で用いられるポリエステルフィルムを得るためにはTD方向の緩和率を0.5%以上10.0%以下の範囲で行うことが望ましい。TD方向の緩和率は、好ましくは2%以上6%以下である。これにより、熱収縮率を低減できるため望ましい。
薄膜層の作製には、真空蒸着法、スパッタ法、イオンプレ-ティングなどのPVD法(物理蒸着法)、あるいは、CVD法(化学蒸着法)などの公知の製法が適宜用いられるが、物理蒸着法であることが好ましく、中でも真空蒸着法であることがより好ましい。例えば、真空蒸着法においては、蒸着源材料としてAl2O3とSiO2の混合物やAlとSiO2の混合物等が用いられ、加熱方式としては、抵抗加熱、高周波誘導加熱、電子ビ-ム加熱等を用いることができる。また、反応性ガスとして、酸素、窒素、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を用いてもよい。また、基板にバイアス等を加えたり、基板温度を上昇、あるいは、冷却したり等、本発明の目的を損なわない限りにおいて、作製条件を変更してもよい。スパッタ法やCVD法等のほかの作製法でも同様である。
例えば、MD方向の延伸倍率及びTD方向の延伸倍率を高くし、より高い温度で熱固定処理を行なうことが、熱収縮率が8%以下、フィルム破断強度が150MPa以上のフィルムを得るために有効である。具体的には、MD方向の延伸倍率を4.0倍以上(好ましくは4.5倍以上)、TD方向の延伸倍率を4.0倍以上(好ましくは4.5倍以上)にし、熱固定工程の温度を165℃以上とすることにより、フィルムの破断強度が150MPa以上、熱収縮率が8%以下のフィルムを得ることが出来る。
フィルムのMD方向及びTD方向に対して、それぞれ長さ140mm及び幅10mmの短冊状に試料を片刃カミソリで切り出した。次いで、オートグラフAG-IS(株式会社島津製作所製)を用いて短冊状試料を引っ張り、得られた荷重-歪曲線から各方向の破断強度(MPa)および破断伸度(%)を求めた。
JIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源としてアッベ屈折計によりフィルム面内のMD方向の屈折率(nx)、およびその直角方向の屈折率(ny)、厚み方向の屈折率(nz)を測定し、下記式によって面配向係数(ΔP)を算出した。なお、接触液はヨウ化メチレンを用いた。
ΔP={(nx+ny)-2nz}÷2
被覆層が片面の場合:被覆層と反対側の面を3回測定し、それらの平均値とした。
被覆層が両面の場合:被覆層の面を両側とも3回ずつ測定し、それらの平均値とした。
JIS K 7136「プラスチック 透明材料のヘイズの求め方」に準拠して測定した。測定器には、日本電色工業社製NDH-5000型濁度計を用いた。
測定すべき方向に対し、フィルムを幅10mm、長さ250mmに切り取り、150mm間隔で印を付け、5gfの一定張力下で印の間隔(A)を測定した。次いで、フィルムを150℃の雰囲気中のオーブンに入れ、無荷重下で150±3℃で30分間加熱処理した後、5gfの一定張力下で印の間隔(B)を測定した。以下の式より熱収縮率を求めた。
熱収縮率(%)={(A-B)/A}×100
酸素透過度は、JIS K7126-2A法に準じて、酸素透過度測定装置(MOCON社製OX-TRAN2/21)を用いて、温度23℃、湿度65%の条件にて測定を行った。
被覆層と反対側の面を調湿側になるように装着した。
水蒸気透過率は、JIS K7129B法に準じて、水蒸気透過度測定装置(MOCON社製PERMATRAN-W3/33)を用いて、温度37.8℃、湿度90%の条件にて測定を行った。
被覆層と反対側の面を高湿度側になるように装着した。
ポリエステル樹脂を粉砕して乾燥した後、パラクロロフェノール/テトラクロロエタン=75/25(重量比)の混合溶媒に溶解した。ウベローデ粘度計を用いて、30℃で0.4g/dlの濃度の溶液の流下時間及び溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用い、Hugginsの定数が0.38であると仮定してポリエステル樹脂の固有粘度を算出した。
ミリトロンを用い、測定すべきフィルムの任意の4箇所より5cm角サンプル4枚を切り取り、一枚あたり各5点(計20点)測定してフィルム平均値を厚みとした。
i)呈色液の作製
水2Lと粉寒天6.6gをガラス容器に入れ95℃の湯中に容器を浸し1時間以上温め寒天を完全に溶解させる。50メッシュの金網を用いて溶液をろ過しゲル化した異物を取り除く。溶液にメチレンブルー0.04gを加える。事前に窒素を15分以上流通させたグローブボックス内で溶液にハイドロサルファイトナトリウム1.25gを加え均一に混ぜることで呈色液(無色)を得ることができた。
ii)フィルム包装容器の作製
実施例で作製した積層ポリエステルフィルム又は比較例で作製したポリエステルフィルムにポリエステル系接着剤を塗布後、厚み40μmの線状低密度ポリエチレンフィルム(LLDPEフィルム:東洋紡社製L4102)をドライラミネートし、40℃の環境下で3日間エージングを行いラミネートフィルムとした。このラミネートフィルムを用い、内寸:横70mm×縦105mmの三方シール袋を作製した。
iii)呈色液の充填
事前に窒素を15分以上流通させたグローブボックス内で三方シール袋に約30mLの呈色液を入れ、窒素を充填した後にシーラーで袋を閉じ、呈色液が充填された包装容器を得ることがでた。
iv)酸素透過性試験
寒天を室温で固めた後、呈色液が充填された包装容器を40℃の恒温室に移し72時間後の色変化を観察する。色変化について下記の基準で判定し、Aを合格とした。
A: 色の変化がほとんどない。
B: 色の変化はあるが小さい。
C: 色の変化が大きい。
積層ポリエステルフィルムを縦100mm×横100mmにカットしたフィルムサンプルを準備する。フィルムサンプルを130℃に加熱したオーブン内に5分入れ、外観の変化を観察する。外観変化について下記の基準で判定し、A及びBを合格とした。
A: 外観の変化がほとんどない。
B: 外観の変化が少しある。
C: 外観の変化が大きい。
8cm×5cmの面積にフィルムを切り出し、サンプルを作成した。便宜的にサンプルの片方の表面をA面、反対の表面をB面とした。これを大きさ6cm×5cmの底面を有する重さ1.4kgの金属製直方体底面にA面が外側になるように固定した。この時、サンプルの5cm幅方向と金属製直方体の5cm幅方向を合わせ、サンプルの長手方向の一辺を折り曲げ、金属直方体の側面に粘着テープで固定した。
次いで、同じフィルムから20cm×10cmの面積にサンプルを切り出し、平らな金属板にB面を上にして長手方向端部を粘着テープで固定した。この上にサンプルを貼り付けた金属製直方体の測定面を接するように置き、引っ張りスピード200mm/分として、23℃、65%RH条件下で静摩擦係数(μs)及び動摩擦係数(μd)を測定した。測定には東洋BALDWIN社製RTM-100を用い、静摩擦係数(μs)及び動摩擦係数(μd)はJIS K-7125に準拠して算出した。
実施例、比較例で得たフィルム原反を幅方向中心位置が巻き取りコアの中心となるようにフィルム幅300mmへスリットし、内径の3インチのコアに巻き取り速度5m/分で巻長100mになるように巻きあげて、ポリエステルフィルムロールを作製した。ポリエステルフィルムロールの外観について、下記の基準で判定し、A及びBを合格とした。
A: しわが見受けられない。
B: ロールの一部にしわが見える。
C: ロールの全面にしわが見える。
無機化合物の組成膜厚は蛍光X線分析装置(リガク社製ZSX100e)を用いて、予め作成した検量線により膜厚組成を測定した。なお、励起X線管の条件として50kV、70mAとした。
検量線は以下の手順で求めたものである。
酸化アルミニウムと酸化珪素とからなる無機化合物薄膜を持つフィルムを数種類作製し、誘導結合プラズマ発光法(ICP法)で酸化アルミニウムと酸化珪素それぞれの付着量を求めた。次いで、付着量を求めた各フィルムを蛍光X線分析装置(リガク社製ZSX100e、励起X線管の条件:50kv、70mA)で分析することにより各サンプルの酸化アルミニウムと酸化珪素との蛍光X線強度を求めた。そして、蛍光X線強度とICPで求めた付着量の関係を求めて検量線を作成した。
ICPで求めた付着量は基本的に質量であるのでこれを膜厚組成とするため以下のように変換した。
膜厚は、無機酸化薄膜の密度がバルク密度の8割であるとし、かつ 酸化アルミニウムと酸化珪素とが混合された状態であってもそれぞれ体積を保つとして算出した。
膜中における酸化アルミニウムの含有率wa(質量%)、膜中における酸化珪素の含有量ws(質量%)は、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、酸化珪素の単位面積当たりの付着量をMs(g/cm2)とすると、各々下記式(1)、(2)で求められる。
wa=100×[Ma/(Ma+Ms)] (1)
ws=100-wa (2)
すなわち、酸化アルミニウムの単位面積当たりの付着量をMa(g/cm2)、そのバルクの密度をρa(3.97g/cm3)とし、酸化珪素の単位面積当たりの付着量をMs(g/cm2)、そのバルクの密度をρs(2.65g/cm3)とすると、膜厚t(nm)は下記式(3)で求められる。
t=((Ma/(ρa×0.8)+Ms/(ρs×0.8))×107 (3)
蛍光X線分析装置で測定した膜厚の値は、TEMで実際に計測した膜厚と近いものであった。
透過型電子顕微鏡を用いて、積層ポリエステルフィルムの断面より被覆層の膜厚を測定した。
ジメチルテレフタレート(95質量部)、ジメチルイソフタレート(95質量部)、エチレングリコール(35質量部)、ネオペンチルグリコール(145質量部)、酢酸亜鉛(0.1質量部)、および三酸化アンチモン(0.1質量部)を反応容器に仕込み、180℃で3時間かけてエステル交換反応を行った。次に、5-ナトリウムスルホイソフタル酸(6.0質量部)を添加し、240℃で1時間かけてエステル化反応を行った後、250℃で減圧下(10~0.2mmHg)、2時間かけて重縮合反応を行い、数平均分子量が19,500で、軟化点が60℃である共重合ポリエステル(A)を得た。
原料として、Avantium社製ポリエチレン2,5-フランジカルボキシレート、IV=0.90を用いた。100℃で24時間減圧乾燥(1Torr)した後、二軸押出機(スクリュー径30mm、L/D=25)に供給した。二軸押出機に供給された原料を、押出機の溶融部、混練り部、配管、ギアポンプまでの樹脂温度は270℃、その後の配管では275℃とし、Tダイ(口金)よりシート状に溶融押し出した。
被覆層に用いる樹脂をポリウレタン樹脂(三井化学製WPB341)、無機粒子を平均粒径450nmのシリカ粒子(日産化学工業製MP4540M)とし、被覆層形成用樹脂組成物全体に対する無機粒子の添加量を0.3質量%とする以外は実施例1と同様にしてポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
被覆層に用いる樹脂をアクリル樹脂(BASF製JONCRYL63J)、無機粒子を平均粒径450nmのシリカ粒子(日産化学工業製MP4540M)とし、被覆層形成用樹脂組成物全体に対する無機粒子の添加量を0.3質量%とする以外は実施例1と同様の方法にて積層ポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
無機粒子の添加量を表1のように変更する以外は実施例2と同様の方法にて積層ポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
無機粒子を平均粒径3.0μmのマイカ粒子(片倉コープアグリ社製ソマシフ(登録商標)MEB-3)と変更する以外は実施例4と同様の方法にて積層ポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
界面活性剤(エアープロダクツアンドケミカルス社製サーフィノール(登録商標)SE-F)を添加し、被覆層形成用樹脂組成物全体に対する上記界面活性剤の添加量を0.03質量%とする以外は実施例6と同様の方法にて積層ポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
溶媒であるイソプロピルアルコール(IPA)の比率を25%とする以外は実施例7と同様の方法にて積層ポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
蒸着源として、3~5mm程度の大きさの粒子状のAl2O3(純度99.5%)とSiO2(純度99.9%)を用い、電子ビーム蒸着法で、実施例1で得られた積層ポリエステルフィルムの被覆層とは反対面上にAl2O3とSiO2を同時に蒸着しAl2O3-SiO2系薄膜層の形成を行った。蒸着材料は、直径40mmの円形の坩堝をカーボン板で2つに仕切り、それぞれに粒状のAl2O3、粒状のSiO2を混合せずに投入した。また、上記ポリエステルフィルムを支持板に設置した。加熱源として一台の電子銃を用い、Al2O3とSiO2のそれぞれを時分割で電子ビームを照射して加熱し、ポリエステルフィルム表面に加熱気化しAl2O3とSiO2とを混合して蒸着させた。その時の電子銃のエミッション電流は205mA、加速電圧は6kV、坩堝に投入された酸化アルミニウムには160mA×6kV相当の、酸化硅素には45mA×6kV相当の電力投入がされた。蒸着時の真空圧は1.1×10-4Paとし、フィルムの支持体の温度を23℃とした。薄膜層の厚みは製膜速度を変更することによって水晶振動子式膜厚計を使い20nmとなるように蒸着し、被覆層及び薄膜層を備えた積層ポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
積層ポリエステルフィルムを実施例5で得られた積層ポリエステルフィルムに変更する以外は実施例9と同様にして被覆層及び薄膜層を備えたポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
積層ポリエステルフィルムを実施例8で得られた積層ポリエステルフィルムに変更する以外は実施例9と同様にして被覆層及び薄膜層を備えたポリエステルフィルムを得た。得られたフィルム物性を表1に示す。
原料として、Avantium社製ポリエチレン2,5-フランジカルボキシレート、IV=0.90を用いた。100℃で24時間減圧乾燥(1Torr)した後、二軸押出機(スクリュー径30mm、L/D=25)に供給した。二軸押出機に供給された原料を、押出機の溶融部、混練り部、配管、ギアポンプまでの樹脂温度は270℃、その後の配管では275℃とし、Tダイ(口金)よりシート状に溶融押し出した。
ポリエステルフィルムの製膜条件を表2のように変更する以外は実施例1に記載と同様の方法にてポリエステルフィルムを得た。得られたフィルム物性を表2に示す。
熱固定温度を200℃、TD方向の緩和温度を190℃に変更する以外は比較例2と同様の方法にてポリエステルフィルムを製膜しようとしたところ、熱固定工程で破断し延伸フィルムを得ることが出来なかった。MD延伸倍率が3.4倍でTD延伸倍率が4.0倍である場合、熱固定温度を200℃にするとフィルムが耐えられず、破断してしまった。
Claims (10)
- ポリエステルフィルムと被覆層とを備えた積層ポリエステルフィルムであって、
上記ポリエステルフィルムは、フランジカルボン酸を主たる成分とするジカルボン酸成分と、エチレングリコールを主たる成分とするグリコール成分とからなる二軸配向ポリエステルフィルムであり、
上記被覆層は、上記ポリエステルフィルムの少なくとも片面に備えられており、
上記積層ポリエステルフィルムの面配向係数ΔPが0.005以上、0.200以下であり、厚さが1μm以上、300μm以下であることを特徴とする積層ポリエステルフィルム。 - 温度23℃、湿度65%下におけるフィルムの酸素透過度が0.1mL/m2/day/MPa以上、1000mL/m2/day/MPa以下である請求項1に記載の積層ポリエステルフィルム。
- 上記被覆層が、ポリエステル系樹脂、ウレタン系樹脂、及びアクリル系樹脂から選ばれる少なくとも1種の樹脂を含む請求項1または2に記載の積層ポリエステルフィルム。
- 上記被覆層が、さらに無機粒子を含む請求項1~3のいずれかに記載の積層ポリエステルフィルム。
- 静摩擦係数(μs)が1.0以下、動摩擦係数(μd)が1.0以下である請求項1~4のいずれか1項に記載の積層ポリエステルフィルム。
- 150℃、30分間加熱したときの熱収縮率が0.01%以上、30%以下である請求項1~5のいずれか1項に記載のポリエステルフィルム。
- 150℃、30分間加熱したときの熱収縮率が0.01%以上、20%以下である請求項1~5のいずれか1項に記載のポリエステルフィルム。
- 150℃、30分間加熱したときの熱収縮率が0.01%以上、10%以下である請求項1~5のいずれか1項に記載のポリエステルフィルム。
- 面配向係数ΔPが0.100以上、0.200以下である請求項1~8のいずれか1項に記載のポリエステルフィルム。
- 請求項1~9のいずれか1項に記載の積層ポリエステルフィルムを巻き取ってなるポリエステルフィルムロール。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/066,232 US11325362B2 (en) | 2015-12-28 | 2016-12-26 | Layered polyester film |
EP16881712.0A EP3398773B1 (en) | 2015-12-28 | 2016-12-26 | Laminated polyester film |
CN202310086641.2A CN116080233A (zh) | 2015-12-28 | 2016-12-26 | 层叠聚酯膜 |
CN201680076574.4A CN108430772A (zh) | 2015-12-28 | 2016-12-26 | 层叠聚酯膜 |
JP2017559175A JP6967455B2 (ja) | 2015-12-28 | 2016-12-26 | 積層ポリエステルフィルム |
CN202310094943.4A CN116021858A (zh) | 2015-12-28 | 2016-12-26 | 层叠聚酯膜 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-257296 | 2015-12-28 | ||
JP2015257296 | 2015-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017115737A1 true WO2017115737A1 (ja) | 2017-07-06 |
Family
ID=59225060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088618 WO2017115737A1 (ja) | 2015-12-28 | 2016-12-26 | 積層ポリエステルフィルム |
Country Status (6)
Country | Link |
---|---|
US (1) | US11325362B2 (ja) |
EP (1) | EP3398773B1 (ja) |
JP (1) | JP6967455B2 (ja) |
CN (3) | CN116021858A (ja) |
TW (1) | TWI851530B (ja) |
WO (1) | WO2017115737A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019104161A (ja) * | 2017-12-12 | 2019-06-27 | 株式会社クラレ | 多層構造体及びそれを用いた製品 |
WO2020027276A1 (ja) | 2018-08-03 | 2020-02-06 | 三菱ケミカル株式会社 | 積層体 |
US11312830B2 (en) | 2016-03-30 | 2022-04-26 | Toyobo Co., Ltd. | Polyester film |
US11318662B2 (en) | 2015-12-28 | 2022-05-03 | Toyobo Co., Ltd. | Layered polyester film |
US11325362B2 (en) | 2015-12-28 | 2022-05-10 | Toyobo Co., Ltd. | Layered polyester film |
US11325363B2 (en) | 2017-03-01 | 2022-05-10 | Toyobo Co., Ltd. | Laminate including polyester film having furandicarboxylate unit and heat-sealable resin layer, and packaging bag |
US11511473B2 (en) * | 2017-03-01 | 2022-11-29 | Toyobo Co., Ltd. | Method for producing polyester film having furandicarboxylate unit |
WO2024202870A1 (ja) * | 2023-03-24 | 2024-10-03 | 東洋紡株式会社 | ポリエステルフィルム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039848A1 (ja) * | 2019-08-29 | 2021-03-04 | 東レ株式会社 | ポリエステル組成物、およびポリエステル繊維 |
WO2021079868A1 (ja) * | 2019-10-25 | 2021-04-29 | 東洋紡株式会社 | レーザー印字可能なフィルムおよびそれを用いた包装体 |
DE102022134275A1 (de) | 2022-12-21 | 2024-06-27 | Tesa Se | Nachhaltiges Haftklebeband |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2551731A (en) | 1946-11-12 | 1951-05-08 | Celanese Corp | Polyesters from heterocyclic components |
JPH11320789A (ja) * | 1998-04-22 | 1999-11-24 | Mitsubishi Polyester Film Gmbh | 2軸延伸積層ポリエステルフィルム及びその使用ならびにその製造方法 |
JP2003200546A (ja) * | 2002-01-09 | 2003-07-15 | Toray Ind Inc | 蒸着用ポリエステルフィルム及び蒸着ポリエステルフィルム |
JP4881127B2 (ja) | 2005-11-07 | 2012-02-22 | キヤノン株式会社 | 高分子化合物およびその合成方法 |
JP2012229395A (ja) | 2011-04-11 | 2012-11-22 | Canon Inc | プラスチックフィルム |
JP2013155389A (ja) | 2007-04-24 | 2013-08-15 | Mitsubishi Chemicals Corp | フラン構造を含むポリエステル |
JP2014073598A (ja) * | 2012-10-03 | 2014-04-24 | Toray Ind Inc | ガスバリア性フィルム |
WO2014100265A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Global Technologies Llc | Multilayer films of fdca-based polyesters |
JP2015506389A (ja) | 2011-12-29 | 2015-03-02 | ナチュラ コスメティコス ソシエダッド アノニマ | 2,5−フランジカルボン酸からのポリ(エチレン2,5−フランジカルボキシレート)の製造方法、その使用、そのポリエステル化合物及び配合物 |
JP2015157411A (ja) * | 2014-02-24 | 2015-09-03 | 大日本印刷株式会社 | ガスバリアフィルム及びその製造方法 |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4439479A (en) * | 1982-01-15 | 1984-03-27 | Teijin Limited | Slippery biaxially stretched polyester films |
FR2644105B1 (fr) * | 1989-03-08 | 1991-07-05 | Rhone Poulenc Films | Films polyester composites, leur procede d'obtention et leur utilisation comme support de revetements finals d'application |
US5096784A (en) * | 1989-12-20 | 1992-03-17 | Hoechst Celanese Corporation | Polyester film with nodule surface |
USH1982H1 (en) * | 1996-06-20 | 2001-08-07 | Eastman Chemical Company | Primer coated amorphous plastic films |
CA2199334C (en) * | 1996-09-09 | 2006-04-18 | Kohzo Takahashi | A biaxially oriented polyester film for laminating metallic sheets |
JP4247847B2 (ja) | 1997-06-27 | 2009-04-02 | 東レ株式会社 | 透明蒸着用ポリエステルフィルム |
DE69913605T2 (de) * | 1998-06-05 | 2004-09-23 | Teijin Ltd. | Antistatische Polyesterfolie und Verfahren zu ihrer Herstellung |
JP2000119414A (ja) * | 1998-10-13 | 2000-04-25 | Toray Ind Inc | 蒸着用ポリエステルフィルム |
JP2001001399A (ja) | 1999-06-17 | 2001-01-09 | Unitika Ltd | ガスバリヤー性ポリエステルフィルムおよびその製造方法 |
JP2001232739A (ja) * | 2000-02-23 | 2001-08-28 | Toray Ind Inc | 蒸着用フィルムおよびそれを用いた蒸着フィルム |
JP5142421B2 (ja) * | 2000-06-05 | 2013-02-13 | 東レ株式会社 | 透明蒸着用2軸配向ポリエチレンテレフタレートフィルム |
JP4834923B2 (ja) * | 2001-06-18 | 2011-12-14 | 東レ株式会社 | 蒸着用ポリエステルフィルム及び蒸着ポリエステルフィルム |
JP2003071969A (ja) * | 2001-09-04 | 2003-03-12 | Toyo Metallizing Co Ltd | 透明ガスバリア性フィルム |
JP3982385B2 (ja) * | 2001-11-27 | 2007-09-26 | Jfeスチール株式会社 | 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法 |
KR100909752B1 (ko) * | 2002-03-07 | 2009-07-29 | 도레이 카부시키가이샤 | 폴리에스테르 필름 및 가스 배리어성 폴리에스테르 필름 |
DE10301786A1 (de) * | 2003-01-20 | 2004-07-29 | Mitsubishi Polyester Film Gmbh | Mehrschichtige transparente, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung |
TWI327105B (en) | 2005-04-28 | 2010-07-11 | Toyo Boseki | Thermal adhesive polyester film, production method of ic card or ic tag using it, and ic card or ic tag |
JP2007118476A (ja) * | 2005-10-31 | 2007-05-17 | Toray Ind Inc | 包装用二軸配向ポリエステルフィルム |
EP2040930A4 (en) * | 2006-07-17 | 2010-07-14 | Toray Plastics America Inc | BIAXIALLY ORIENTED LAMINATED POLYESTER FILM FOR TRANSFER APPLICATIONS |
WO2008021884A2 (en) * | 2006-08-08 | 2008-02-21 | Toray Plastics (America) , Inc. Lumirror Divison | Anti-iridescent easy handling ultraclear thermoplastic film |
WO2008029666A1 (fr) * | 2006-09-06 | 2008-03-13 | Toyo Boseki Kabushiki Kaisha | Film de polyester pour moulage |
WO2009110337A1 (ja) * | 2008-03-05 | 2009-09-11 | 東レ株式会社 | 熱賦形光学フィルム用ポリエステル樹脂およびそれを用いた二軸配向ポリエステルフィルム |
IT1387503B (it) | 2008-05-08 | 2011-04-13 | Novamont Spa | Poliestere biodegradabile alifatico-aromatico |
EP2423248A4 (en) * | 2009-04-23 | 2015-03-18 | Teijin Dupont Films Japan Ltd | BIAXIAL SUPPRESSED POLYESTER FOR SUNBATTERY |
CN102575029B (zh) | 2009-09-02 | 2014-10-15 | 纳幕尔杜邦公司 | 具有改善的拒油性的聚酯膜 |
US8637764B2 (en) * | 2009-09-14 | 2014-01-28 | Mitsubishi Plastics, Inc. | Biaxially oriented polyester film for sealing back surface of photovoltaics |
CN101899145B (zh) * | 2010-07-28 | 2012-07-11 | 江南大学 | 一种2,5-呋喃二甲酸基聚酯的制备方法 |
JP5635366B2 (ja) | 2010-10-27 | 2014-12-03 | 帝人デュポンフィルム株式会社 | 太陽電池裏面保護膜用ポリエステルフィルムの製造方法および太陽電池裏面保護膜用ポリエステルフィルム |
US8871319B2 (en) * | 2011-04-12 | 2014-10-28 | The Procter & Gamble Company | Flexible barrier packaging derived from renewable resources |
EP2697062A1 (en) | 2011-04-12 | 2014-02-19 | The Procter and Gamble Company | Flexible barrier packaging derived from renewable resources |
EP2527142A1 (en) | 2011-05-24 | 2012-11-28 | Cryovac, Inc. | Multilayer polyester film for ready meals |
US20130344345A1 (en) * | 2011-07-08 | 2013-12-26 | Toray Plastics (America), Inc. | Biaxially oriented bio-based polyester window films and laminates |
US10137625B2 (en) * | 2011-07-08 | 2018-11-27 | Toray Plastics (America), Inc. | Biaxially oriented bio-based polyester films and laminates |
US10800877B2 (en) * | 2011-10-14 | 2020-10-13 | Eastman Chemical Company | Polyester compositions containing furandicarboxylic acid or an ester thereof, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol |
MY176989A (en) * | 2011-10-24 | 2020-08-31 | Furanix Technologies Bv | A process for preparing a polymer product having a 2, 5 furandicarboxylate moiety within the polymer backbone to be used in bottle, film or fibre applications |
TW201336667A (zh) | 2011-12-16 | 2013-09-16 | Saudi Basic Ind Corp | 含有熱塑性聚酯的單軸定向膜 |
CN104053535B (zh) * | 2012-01-24 | 2016-08-24 | 东丽株式会社 | 聚酯膜及其制造方法 |
US20140004286A1 (en) * | 2012-06-27 | 2014-01-02 | Toray Plastics (America), Inc. | Lighter than air balloons from laminates comprising bio-based polyester films and bio-based polyethylene films |
WO2014021396A1 (ja) | 2012-08-03 | 2014-02-06 | 東洋紡株式会社 | ポリエステルフィルムおよびその製造方法 |
KR102022274B1 (ko) * | 2012-08-21 | 2019-09-18 | 도레이 카부시키가이샤 | 2축 배향 폴리에틸렌테레프탈레이트 필름 및 그 제조 방법 |
EP2935038A1 (en) * | 2012-12-20 | 2015-10-28 | Dow Global Technologies LLC | Barrier films of fdca-based polyesters |
US9580594B2 (en) | 2012-12-20 | 2017-02-28 | Dow Global Technologies Llc | FDCA-based polyesters |
KR102505572B1 (ko) * | 2013-04-19 | 2023-03-02 | 도요보 가부시키가이샤 | 액정표시장치, 편광판 및 편광자 보호 필름 |
EP2990455B1 (en) | 2013-04-26 | 2022-02-23 | Toyobo Co., Ltd. | Polyester film for sealant use, laminate, and packaging bag |
CN104228245A (zh) | 2013-06-09 | 2014-12-24 | 杜邦公司 | 包含含有聚(丁二酸丙二醇酯)或聚(对苯二甲酸-共-丁二酸丙二醇酯)的低温可热封层的层合体 |
US9580798B2 (en) * | 2013-06-27 | 2017-02-28 | Flex Films (Usa) Inc. | High-barrier polyethylene terephthalate film |
MY192313A (en) | 2013-11-13 | 2022-08-17 | Toyo Boseki | Biaxially stretched polyester film and method for producing same |
CN105849152B (zh) | 2013-12-19 | 2018-11-13 | 东洋纺株式会社 | 聚酯树脂 |
CN113334887A (zh) | 2014-03-07 | 2021-09-03 | 3M创新有限公司 | 耐久性挤出型染色聚酯膜 |
JP6749908B2 (ja) * | 2014-08-25 | 2020-09-02 | フラニックス・テクノロジーズ・ベーフェー | ポリ(エチレン−2,5−フランジカルボキシレート)を含む配向フィルムの製造方法 |
TWI535780B (zh) | 2014-10-24 | 2016-06-01 | 財團法人工業技術研究院 | 聚酯混掺物 |
EP3250377B1 (en) | 2015-01-28 | 2022-01-05 | Dow Global Technologies LLC | Multilayer film structures comprising renewable polyester compositions |
KR102713724B1 (ko) | 2015-07-03 | 2024-10-04 | 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님 | 플라즈마 개선된 처리에서 웹 기재의 처리를 위한 장치 |
EP3344687B1 (en) | 2015-09-02 | 2024-05-22 | Toyobo Co., Ltd. | Polyester film containing furandicarboxylate unit |
RU2726549C2 (ru) * | 2015-10-29 | 2020-07-14 | Тетра Лаваль Холдингз Энд Файнэнс С.А. | Ламинированная барьерная пленка и покрывающая край полоса для упаковки |
WO2017115737A1 (ja) | 2015-12-28 | 2017-07-06 | 東洋紡株式会社 | 積層ポリエステルフィルム |
WO2017115736A1 (ja) | 2015-12-28 | 2017-07-06 | 東洋紡株式会社 | 積層ポリエステルフィルム |
AU2017242303B2 (en) * | 2016-03-30 | 2020-12-10 | Furanix Technologies B.V. | Polyester film |
US20170368807A1 (en) | 2016-06-28 | 2017-12-28 | Toray Plastics (America), Inc. | Formable polyester films |
US11332574B2 (en) | 2016-07-15 | 2022-05-17 | Kuraray Co., Ltd. | Sealant film and method for producing same |
EP3544785B1 (en) | 2016-11-28 | 2021-06-09 | Furanix Technologies B.V. | Thermoformed article of poly(ethylene 2,5 furandicarboxylate) polyester |
EP3590711B1 (en) * | 2017-03-01 | 2023-11-22 | Toyobo Co., Ltd. | Laminate provided with heat-sealable resin layer and polyester film having furandicarboxylic acid unit, and packaging bag |
CN110382602B (zh) * | 2017-03-01 | 2022-05-27 | 东洋纺株式会社 | 具有呋喃二甲酸单元的聚酯膜的制造方法 |
-
2016
- 2016-12-26 WO PCT/JP2016/088618 patent/WO2017115737A1/ja active Application Filing
- 2016-12-26 US US16/066,232 patent/US11325362B2/en active Active
- 2016-12-26 CN CN202310094943.4A patent/CN116021858A/zh active Pending
- 2016-12-26 JP JP2017559175A patent/JP6967455B2/ja active Active
- 2016-12-26 TW TW105143162A patent/TWI851530B/zh active
- 2016-12-26 CN CN201680076574.4A patent/CN108430772A/zh active Pending
- 2016-12-26 CN CN202310086641.2A patent/CN116080233A/zh active Pending
- 2016-12-26 EP EP16881712.0A patent/EP3398773B1/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2551731A (en) | 1946-11-12 | 1951-05-08 | Celanese Corp | Polyesters from heterocyclic components |
JPH11320789A (ja) * | 1998-04-22 | 1999-11-24 | Mitsubishi Polyester Film Gmbh | 2軸延伸積層ポリエステルフィルム及びその使用ならびにその製造方法 |
JP2003200546A (ja) * | 2002-01-09 | 2003-07-15 | Toray Ind Inc | 蒸着用ポリエステルフィルム及び蒸着ポリエステルフィルム |
JP4881127B2 (ja) | 2005-11-07 | 2012-02-22 | キヤノン株式会社 | 高分子化合物およびその合成方法 |
JP2013155389A (ja) | 2007-04-24 | 2013-08-15 | Mitsubishi Chemicals Corp | フラン構造を含むポリエステル |
JP2015098612A (ja) | 2007-04-24 | 2015-05-28 | 三菱化学株式会社 | フラン構造を含むポリエステル |
JP2012229395A (ja) | 2011-04-11 | 2012-11-22 | Canon Inc | プラスチックフィルム |
JP2015506389A (ja) | 2011-12-29 | 2015-03-02 | ナチュラ コスメティコス ソシエダッド アノニマ | 2,5−フランジカルボン酸からのポリ(エチレン2,5−フランジカルボキシレート)の製造方法、その使用、そのポリエステル化合物及び配合物 |
JP2014073598A (ja) * | 2012-10-03 | 2014-04-24 | Toray Ind Inc | ガスバリア性フィルム |
WO2014100265A1 (en) * | 2012-12-20 | 2014-06-26 | Dow Global Technologies Llc | Multilayer films of fdca-based polyesters |
JP2015157411A (ja) * | 2014-02-24 | 2015-09-03 | 大日本印刷株式会社 | ガスバリアフィルム及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
Y. HACHIHAMA, T. SHONO, AND K. HYONO, TECHNOL. REPTS. OSAKA UNIV., vol. 8, - 1958, pages 475 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11318662B2 (en) | 2015-12-28 | 2022-05-03 | Toyobo Co., Ltd. | Layered polyester film |
US11325362B2 (en) | 2015-12-28 | 2022-05-10 | Toyobo Co., Ltd. | Layered polyester film |
US11312830B2 (en) | 2016-03-30 | 2022-04-26 | Toyobo Co., Ltd. | Polyester film |
US11325363B2 (en) | 2017-03-01 | 2022-05-10 | Toyobo Co., Ltd. | Laminate including polyester film having furandicarboxylate unit and heat-sealable resin layer, and packaging bag |
US11511473B2 (en) * | 2017-03-01 | 2022-11-29 | Toyobo Co., Ltd. | Method for producing polyester film having furandicarboxylate unit |
JP2019104161A (ja) * | 2017-12-12 | 2019-06-27 | 株式会社クラレ | 多層構造体及びそれを用いた製品 |
WO2020027276A1 (ja) | 2018-08-03 | 2020-02-06 | 三菱ケミカル株式会社 | 積層体 |
KR20210040951A (ko) | 2018-08-03 | 2021-04-14 | 미쯔비시 케미컬 주식회사 | 적층체 |
JPWO2020027276A1 (ja) * | 2018-08-03 | 2021-08-26 | 三菱ケミカル株式会社 | 積層体 |
JP7463962B2 (ja) | 2018-08-03 | 2024-04-09 | 三菱ケミカル株式会社 | 積層体 |
WO2024202870A1 (ja) * | 2023-03-24 | 2024-10-03 | 東洋紡株式会社 | ポリエステルフィルム |
Also Published As
Publication number | Publication date |
---|---|
US11325362B2 (en) | 2022-05-10 |
CN116080233A (zh) | 2023-05-09 |
JP6967455B2 (ja) | 2021-11-17 |
EP3398773A1 (en) | 2018-11-07 |
EP3398773B1 (en) | 2020-11-18 |
CN108430772A (zh) | 2018-08-21 |
TWI851530B (zh) | 2024-08-11 |
JPWO2017115737A1 (ja) | 2018-10-18 |
CN116021858A (zh) | 2023-04-28 |
TW201736141A (zh) | 2017-10-16 |
US20200269560A1 (en) | 2020-08-27 |
EP3398773A4 (en) | 2019-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6967455B2 (ja) | 積層ポリエステルフィルム | |
US11312830B2 (en) | Polyester film | |
JP7018427B2 (ja) | フランジカルボン酸ユニットを有するポリエステルフィルムとヒートシール性樹脂層とを備える積層体および包装袋 | |
JP7009216B2 (ja) | 積層ポリエステルフィルム | |
KR20220141339A (ko) | 적층 필름 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16881712 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017559175 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016881712 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016881712 Country of ref document: EP Effective date: 20180730 |