[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017111548A1 - Non-directional electrical steel sheet and method for manufacturing same - Google Patents

Non-directional electrical steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2017111548A1
WO2017111548A1 PCT/KR2016/015225 KR2016015225W WO2017111548A1 WO 2017111548 A1 WO2017111548 A1 WO 2017111548A1 KR 2016015225 W KR2016015225 W KR 2016015225W WO 2017111548 A1 WO2017111548 A1 WO 2017111548A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
weight
steel sheet
electrical steel
oriented electrical
Prior art date
Application number
PCT/KR2016/015225
Other languages
French (fr)
Korean (ko)
Other versions
WO2017111548A8 (en
Inventor
이현주
김용수
신수용
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/065,494 priority Critical patent/US20190017135A1/en
Priority to JP2018533058A priority patent/JP7026620B2/en
Priority to CN201680076278.4A priority patent/CN108474078A/en
Publication of WO2017111548A1 publication Critical patent/WO2017111548A1/en
Publication of WO2017111548A8 publication Critical patent/WO2017111548A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling

Definitions

  • It relates to a non-oriented electrical steel sheet and a method of manufacturing the same.
  • Non-oriented electrical steel sheet is mainly used in the equipment that converts electrical energy into mechanical energy, which requires excellent magnetic properties to achieve high efficiency in the process.
  • Magnetic properties include iron loss and magnetic flux density. Low iron loss can reduce energy lost in energy conversion process, and high magnetic flux density can produce more power with the same electrical energy. Low iron loss and high magnetic flux density increase the motor's energy efficiency.
  • an element that increases resistivity is added or a method of rolling a steel sheet to a thin thickness is used.
  • a commonly used method for increasing the magnetic properties of non-oriented electrical steel sheets is to add Si as an alloying element.
  • Increasing the resistivity of the steel through the addition of Si has the advantage of lowering the high frequency iron loss, but the magnetic flux density is inferior and the workability is lowered.
  • the electrical steel sheet used for high-frequency applications can increase the iron loss reduction effect as the thickness is made thinner, the workability degradation due to the addition of Si becomes a fatal problem in the rolling mill.
  • the method of improving iron loss through high cleanliness of steel does not have a large effect of improving magnetic flux density, which is a disadvantage of deterioration of steel workability and increase of cost.
  • various methods have been proposed to manufacture a thin product thickness, add a special element that can improve the magnetism, or optimize grain size and texture.
  • a method of improving the magnetism by retaining the ND orientation has been proposed.
  • they are applied to the actual production process, there is a problem that the cost is rapidly increased, the production using the existing equipment is impossible, or the productivity is excessively lowered.
  • One embodiment of the present invention to provide a non-oriented electrical steel sheet having excellent magnetic properties and at the same time high productivity by precisely controlling the content of Si, Al, Mn in the additive components of the steel.
  • Another embodiment of the present invention is to provide a method for producing a non-oriented electrical steel sheet.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention is a weight 3 ⁇ 4 » Si: 2.5 to 3.3%, Al: 0.05 to 1% 'Mn: 0.05 to 1%, S: 0.01% or less (including 0% N: 0.005% or less (does not contain 0%), C: 0.005% or less (does not contain 0%), Ti: 0.005% or less (does not contain 0%) ⁇ Nb: 0.005% (Not including 0%), P: 0.001 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.0 () l to 0.1%, the balance includes Fe and inevitable impurities, and the following formula 1 to 3 are satisfied.
  • the density is calculated by the following formula 4 can be 7.57 to 7.67g / cm 3.
  • Tensile test elongation may be at least 24%.
  • the thickness may be 0.10 to 0.35 mm.
  • the slab may be heated to 1100 to 1200 ° C.
  • the step of preparing a hot-rolled sheet it may be hot rolled at finishing temperature of 800 to 1000 ° C.
  • It may further comprise the step of manufacturing a hot rolled sheet and annealing at 850 to 115CTC silver.
  • Slabs contain less than 0.001% by weight of B (does not contain 0% by weight), 0.005% by weight or less of Mg, Zr and V (does not contain 0% by weight) and 0.025% or less of Cu (0% by weight) It does not include)).
  • the prepared steel sheet has a density which is calculated by the following formula 4 it can be 7.57 to 7.67g / cm 3.
  • the prepared steel sheet may have a tensile test elongation of 24% or more.
  • the thickness may be between 0.1 and 0.35 mm thickness.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention is excellent in magnetic properties and at the same time excellent in productivity.
  • first, second, and third are used to describe various parts, components, regions, layers and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the present invention.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention in weight%, Si: 2.5 to 3.3%, A1: 0.05 to 1%, Mn: 0.05 to 1%, S: 0.01% or less (not including 0%) ), N: 0.005% or less (without OT), C: 0.005% or less (without OT), Ti: 0.005% or less (without 0%), Nb: 0.005% or less ((» P: 0.001 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1%, and the balance includes Fe and unavoidable impurities.
  • the reason for component limitation of a non-oriented electrical steel sheet is demonstrated.
  • Si serves to lower the iron loss by increasing the specific resistance of the material. If too little Si is added, the effect of improving the high frequency iron loss may be insufficient. In addition, when too much Si is added, the brittleness of the material may increase, leading to a sharp decrease in rolling productivity. Therefore, Si can be added in the above range . have.
  • A1 0.05 to 1% by weight
  • Aluminum (A1) plays a role of lowering iron loss by increasing specific resistance together with Mn. Although the increase in specific resistance is lower than that of Si, the specific resistance can be increased while maintaining the rolling property by adding an appropriate amount. When too little A1 is added, the high frequency iron loss effect is significantly reduced, and finely formed nitrides and sulfides deteriorate the magnetic properties. If too much A1 is added, the magnetic properties or rolling properties may deteriorate rapidly. Therefore, A1 can be added in the above-mentioned range.
  • Manganese (Mn), together with A1 increases the specific resistance to reduce the iron loss. If too little Mn is added, the high frequency iron loss effect is significantly reduced, and finely formed nitrides and sulfides degrade the magnetic properties. If you participate too much Mn. Magnetic properties or rollability may deteriorate rapidly. Therefore, Mn can be added in the above-mentioned range.
  • S Sulfur
  • S is an element inevitably present in the steel to form fine precipitates MnS, CuS and the like to deteriorate the magnetic properties, it is preferable to limit to 0.01% by weight or less, more specifically 0.005% by weight or less.
  • Nitrogen (N) not only forms fine and long A1N precipitates in the base material, but also combines with other impurities to form fine nitrides, inhibits grain growth and worsens iron loss, so more specifically, 0.003 wt% or less. It is good to restrict to the following.
  • carbon (c) causes magnetic aging and combines with other impurity elements to form carbides to lower the magnetic properties
  • the carbon (c) is preferably limited to 0.005 weight or less, more specifically 0.003 weight 3 ⁇ 4> or less.
  • Titanium (Ti) and niobium (Nb) form carbides or nitrides that ' deteriorate iron loss and promote the development of undesirable ⁇ 111 ⁇ textures that are undesirable for magnetism, so they are limited to 0.005% by weight or less, more specifically 0.003% by weight or less Good to do.
  • Phosphorus (P), tin (Sn), and antimony (Sb) segregate on the surface and grain boundaries of the steel sheet to suppress surface oxidation during annealing and to suppress recrystallization of the U11 ⁇ // ND orientation to improve texture. It plays a role. If a small amount of one element is added, the effect is remarkably reduced. If it is added excessively, grain growth is suppressed due to an increase in the amount of grain boundary segregation. It is not preferable because iron loss is deteriorated, the toughness of steel is lowered, and productivity is lowered. In particular, when the total of p, Sn, Sb is limited to the range of 0.025 to 0.15% by weight, the surface oxidation inhibition and texture improvement effect is maximized, the magnetic properties are significantly improved.
  • impurities such as B, Mg, ⁇ , V, and Cu
  • B impurities
  • Mg, Zr, V 0.005 wt% or less
  • Cu 0.025 wt% or less.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention satisfies the following formula 1 to formula 3.
  • the magnetic properties and the rollability is excellent at the same time, the magnetic properties or rollability may be rapidly deteriorated outside this range.
  • the non-oriented electrical steel sheet according to one embodiment of the present invention may have a density calculated by Equation 4 below 7.57 to 7.67 g / cm 3 . If the density is less than 7.5767 g / cm 3 , the magnetic flux density may deteriorate or the rolling property may be sharply lowered. If the density exceeds 7.67 g / cm 3 , the iron loss may be degraded, especially high frequency iron loss. Therefore, the density can be adjusted in the above-described range.
  • the non-oriented electrical steel sheet according to one embodiment of the present invention may have a tensile test elongation of 24% or more. Year . If the elongation is less than 24%, the rolling properties may be inferior, resulting in poor productivity. More specifically, the elongation may be 28 to 34%.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention has a thickness of 0.10 to
  • the slab is heated and hot rolled to produce a hot rolled sheet.
  • the reason for limiting the addition ratio of each composition is the same as the reason for limiting the composition of the non-oriented electrical steel sheet described above. Since the composition of the slab does not substantially vary in the processes of hot rolling, hot rolling annealing, hot rolling, recrystallization annealing, and the like, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.
  • the heated slabs are hot rolled to 2 to 2.3 mm to produce hot rolled plates.
  • Finishing temperature in the step of manufacturing a thermal plate may be 800 to 1000 ° C.
  • Hot rolled hot rolled sheet is annealed hot rolled sheet at a temperature of 850 to 1150 ° C. If the hot-rolled sheet annealing temperature is less than 850 ° C, the structure does not grow or finely grow, so there is little synergistic effect of the magnetic flux density; if the annealing temperature exceeds 1150 ° C, the magnetic properties deteriorate, and rolling due to the deformation of the plate shape Since workability may deteriorate, the temperature range is limited to 850 to 1150 ° C. More preferable annealing temperature of the hot rolled sheet is 950 to 115CTC. Hot-rolled sheet annealing is performed to increase the orientation favorable to the magnetic, if necessary, may be omitted.
  • the average grain size after hot-rolled sheet annealing is preferably 120 / m or more.
  • the hot rolled sheet is pickled and cold rolled to a predetermined sheet thickness. It may be applied differently depending on the thickness of the hot rolled sheet, by applying a reduction ratio of about 70 to 95% can be cold rolled so that the final thickness is 0.1 to 0.35 ⁇ .
  • the final hot rolled cold rolled sheet is subjected to final recrystallization annealing. If the final recrystallization annealing temperature is too low, does not re-crystallization occurs sufficiently layer, since the final recrystallization annealing temperature is too high, it becomes a magnetic flux density and a high-frequency iron loss by rapid growth occurs in the crystal grains to heat, enforcing at a temperature of 850 to 1150 ° C This is preferred.
  • the recrystallized annealing plate is insulated coated and shipped to the customer. Insulation coating can be organic, inorganic or organic-inorganic composite coating treatment, and other insulating coating can be used.
  • the slab as shown in Table 1 below, was heated at 1100 ° C., and hot-rolled to a finishing temperature of 870 ° C to prepare a hot rolled plate having a thickness of 2.3 kPa.
  • the hot rolled sheet was annealed at 1060 ° C. for 100 seconds, pickled, cold rolled to a thickness of 0.35 mm, and subjected to final recrystallization annealing at 1000 ° C. for 110 seconds.
  • Density was calculated by the formula of 7.865 + ( ⁇ 0.0611 * [Si] -0.102 * [Al] + 0.00589 * [Mn]).
  • magnetic properties such as magnetic flux density, iron loss, and high frequency iron loss
  • three or more specimens were cut into 60 ⁇ * 60 ⁇ size for each specimen, and the magnetic properties in the rolling direction and the vertical direction were measured with a single sheet tester. Averaged measured values are shown.
  • B50 is the magnetic flux density induced in the magnetic field of 5000A / m
  • W15 / 50 is the iron loss when the 1.5T magnetic flux density is induced at the frequency of 50Hz
  • W10 / 400 is the magnetic flux of 1.0T at the frequency of 400Hz.
  • the flexural test was carried out to predict the rolling productivity, and after the hot-rolled sheet annealing, the 2.3 ⁇ thick specimen was cut into 300 ⁇ * 35mm 3 and after the close flexural test at room temperature, the cracks on the outer surface and the corner of the flexure were bad. , If it does not occur, it is represented as good. Elongation showed the value obtained by the tensile test according to J IS No.5 standard.
  • Table 3 and the slab composition as shown in Table 4 was heated at 1130 ° C, hot-rolled to a finishing temperature of 870 ° C to prepare a hot rolled plate having a thickness of 2.0 kPa.
  • the hot rolled sheet was annealed at 103C C for 100 seconds, pickled, cold rolled to a thickness of 0.35 mm 3, and subjected to final recrystallization annealing at 990 ° C. for 110 seconds.
  • B7 is inferior to the magnetic properties because the sum of the P, Sn, Sb component content is less than the scope of the present invention, C7 is not only Mg component, but also the sum of the P, Sn, Sb component content also exceeds the scope of the present invention Inferior magnetic properties were also inferior to the flexural test results and elongation.
  • the present invention is not limited to the embodiments can be manufactured in a variety of different forms, those skilled in the art to which the present invention pertains to other specific forms without changing the technical spirit or essential features of the present invention It will be appreciated that it may be practiced. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

A non-directional electrical steel sheet according to an embodiment of the present invention comprises, in wt%, 2.5 to 3.3% of Si, 0.05 to 1% of Al, 0.05 to 1% of Mn, 0.01% or less of S (not including 0%), 0.005% or less of N (not including 0%), 0.005% or less of C (not including 0%), 0.005% or less of Ti (not including 0%), 0.005% or less of Nb (not including 0%), 0.001 to 0.1% of P, 0.001 to 0.1% of Sn, and 0.001 to 0.1% of Sb, with the remainder being Fe and unavoidable impurities, and satisfies Formulas 1 to 3 below. [Formula 1] 1.7 ≤ [Si]/([Al] + [Mn]) ≤ 2.9 [Formula 2] 50 ≤ 13.25+11.3*([Si]+[Al]+[Mn]/2) ≤ 60 [Formula 3] 0.025 ≤ [P]+[Sn]+[Sb] ≤ 0.15 (In Formulas 1 to 3, [Si], [Al], [Mn], [P], [Sn], and [Sb] represent the content (in wt%) of Si, Al, Mn, P, Sn, and Sb, respectively.)

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
무방향성 전기강판 및 그 제조방법  Non-oriented electrical steel sheet and manufacturing method
【기술분야】  Technical Field
무방향성 전기강판 및 그 제조방법에 관한 것이다.  It relates to a non-oriented electrical steel sheet and a method of manufacturing the same.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
무방향성 전기강판은 전기에너지를 기계적에너지로 변환시키는 기기에 주로 사용되는데, 그 과정에서 높은 효율을 발휘하기 위해 우수한 자기적 특성을 요구한다 . 자기적 특성으로는 철손과 자속밀도가 있는데 , 철손이 낮으면 에너지 변환과.정에서 손실되는 에너지를 줄일 수 있고, 자속밀도가 높으면 동일한 전기에너지로 더 큰 동력을 생산할 수 있으므로, 무방향성 전기강판의 철손이 낮고 자속밀도가 높으면 모터의 에너지 효율을 증가시킬 수 있다. 일반적으로 무방향성 전기강판의 철손을 낮추기 위해 비저항을 증가시키는 원소를 첨가하거나, 강판을 얇은 두께로 압연하는 방법을 사용하고 있다. ' 무방향성 전기강판의 자기적 특성을 증가시키기 위해 통상적으로 사용되는 방법은 Si를 합금원소로 첨가하는 것이다. Si의 첨가를 통해 강의 고유저항이 증가하면 고주파 철손이 낮아지는 장점아 있으나, 자속밀도가 열위해지고 가공성이 저하되어 너무 많이 첨가하면 냉간압연이 곤란해진다. 특히 고주파 용도로 사용되는 전기강판은 두께를 얇게 만들수록 철손 저감 효과를 증대시킬 수 있는데, Si 첨가에 의한 가공성 저하는 박물 압연에 치명적인 문제가 된다.  Non-oriented electrical steel sheet is mainly used in the equipment that converts electrical energy into mechanical energy, which requires excellent magnetic properties to achieve high efficiency in the process. Magnetic properties include iron loss and magnetic flux density. Low iron loss can reduce energy lost in energy conversion process, and high magnetic flux density can produce more power with the same electrical energy. Low iron loss and high magnetic flux density increase the motor's energy efficiency. In general, in order to lower the iron loss of non-oriented electrical steel sheet, an element that increases resistivity is added or a method of rolling a steel sheet to a thin thickness is used. A commonly used method for increasing the magnetic properties of non-oriented electrical steel sheets is to add Si as an alloying element. Increasing the resistivity of the steel through the addition of Si has the advantage of lowering the high frequency iron loss, but the magnetic flux density is inferior and the workability is lowered. In particular, the electrical steel sheet used for high-frequency applications can increase the iron loss reduction effect as the thickness is made thinner, the workability degradation due to the addition of Si becomes a fatal problem in the rolling mill.
Si 첨가에 따른 가공성 저하를 극복하기 위해 다른 비저항 증가 원소인 Al , Mn 등을 투입하기도 한다. 이들 원소의 첨가를 통해 철손은 감소시킬 수 있으나, 전체 합금량의 증가로 인해 자속밀도가 열화되고, 재료의 경도 증가와 가공성 열화로 인해 넁간압연이 곤란해지는 단점이 있다. 뿐만 아니라 ΑΓ과 Mn은 강판 내에 불가피하게 존재하는 불순물과 결합하여 질화물이나 황화물 등을 미세하게 석출시켜서 오히려 철손을 악화시키기도 한다. 이러한 이유로 무방향성 전기강판의 제강 단계에서 불순물을 극저로 관리하여, 자벽이동을 방해하는 미세석출물 생성을 억제함으로써 철손을 낮추는 방법을 사용하고 있다. 그러나 강의 고청정화를 통한 철손 개선 방법은 자속밀도 향상의 효과는 크지 않으며, 이는 오히려 제강 작업성 저하 및 비용 증가의 요인이 되는 단점이 있다. 무방향성 전기강판의 자성을 향상시키기 위해서 제품 두께를 얇게 제조하거나, 자성을 향상시킬 수 있는 특수원소를 첨가하거나, 결정립 크기 및 집합조직을 최적화하는 다양한 방법들이 제안되어 왔다. REM을 첨가하여 무방향성 전기강판의 자성을 향상시키는 방법, 열연판 소둔 후 결정립 크기를 크게 만들어 넁간압연 및 재결정 소둔하는 방법, 두께 50mm 이하의 주편을 이용하여, 주상정 조직에서 기인한 {001}//ND 방위를 잔류시켜 자성을 향상시키는 방법등이 제안되었다. 그러나 이들은 실제 생산공정에 적용하면 비용이 급격히 증가하거나, 기존 설비를 활용한 생산이 불가능하거나, 생산성이 지나치게 저하되는 문제점 등이 존재한다. In order to overcome the deterioration of workability due to the addition of Si, other resistivity increasing elements, such as Al and Mn, may be added. Iron loss can be reduced through the addition of these elements, but the magnetic flux density is deteriorated due to the increase of the total alloy amount, and the rolling is difficult due to the increase in hardness and the workability of the material. In addition, AΓ and Mn combine with impurities inevitably present in the steel sheet to finely deposit nitrides or sulfides, and thus worsen iron loss. For this reason, impurities are managed extremely low in the steelmaking stage of the non-oriented electrical steel sheet, thereby generating fine precipitates that hinder the movement of the wall. By suppressing, the method of reducing iron loss is used. However, the method of improving iron loss through high cleanliness of steel does not have a large effect of improving magnetic flux density, which is a disadvantage of deterioration of steel workability and increase of cost. In order to improve the magnetism of non-oriented electrical steel sheet, various methods have been proposed to manufacture a thin product thickness, add a special element that can improve the magnetism, or optimize grain size and texture. Method of improving the magnetism of non-oriented electrical steel by adding REM, making grain size larger after hot-rolled sheet annealing, rolling and recrystallizing annealing, using cast steel less than 50mm thick, caused by columnar tissue // A method of improving the magnetism by retaining the ND orientation has been proposed. However, if they are applied to the actual production process, there is a problem that the cost is rapidly increased, the production using the existing equipment is impossible, or the productivity is excessively lowered.
【발명의 내용】  [Content of invention]
[해결하고자 하는 과제】  Problem to be solved
본 발명의 일 실시예는 강의 첨가성분 중 Si, Al, Mn 의 함량을 정밀히 제어하여 자성이 우수하고 동시에 생산성이 높은 무방향성 전기강판을 제공하는 것이다.  One embodiment of the present invention to provide a non-oriented electrical steel sheet having excellent magnetic properties and at the same time high productivity by precisely controlling the content of Si, Al, Mn in the additive components of the steel.
본 발명의 또 다른 실시예는 무방향성 전기강판의 제조방법을 제공하는 것이다.  Another embodiment of the present invention is to provide a method for producing a non-oriented electrical steel sheet.
[과제의 해결 수단】  [Solution of problem]
본 발명의 일 실시예에 와한 무방향성 전기강판은 중량 ¾»로, Si: 2.5 내지 3.3%, Al: 0.05 내지 1%' Mn: 0.05 내지 1%, S: 0.01%이하 (0%를 포함하지 않는다), N: 0.005%이하 (0%를 포함하지 않는다), C: 0.005% 이하 (0%를 포함하지 않는다), Ti:0.005% 이하 (0%를 포함하지 않는다)ᅳ Nb: 0.005% 이하 (0%를 포함하지 않는다), P:0.001 내지 0.1%, Sn:0.001 내지 0.1%, 및 Sb:0.0()l 내지 0.1%를 포함하고, 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 내지 식 3를 만족한다.  The non-oriented electrical steel sheet according to an embodiment of the present invention is a weight ¾ », Si: 2.5 to 3.3%, Al: 0.05 to 1% 'Mn: 0.05 to 1%, S: 0.01% or less (including 0% N: 0.005% or less (does not contain 0%), C: 0.005% or less (does not contain 0%), Ti: 0.005% or less (does not contain 0%) ᅳ Nb: 0.005% (Not including 0%), P: 0.001 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.0 () l to 0.1%, the balance includes Fe and inevitable impurities, and the following formula 1 to 3 are satisfied.
[식 1]  [Equation 1]
1.7<[Si]/([Al] + [Mn])<2.9 50<13.25+11.3*([Si] + [Al] + [Mn]/2)<60 1.7 <[Si] / ([Al] + [Mn]) <2.9 50 <13.25 + 11.3 * ([Si] + [Al] + [Mn] / 2) <60
[식 3]  [Equation 3]
0.025 < [P] + [Sn] + [Sb] < 0.15  0.025 <[P] + [Sn] + [Sb] <0.15
(단, 식 1 내지 식 3에서 [Si], [A1], [Mn], [P], [Sn] 및 [Sb]은 각각 Si, Al, Mn, P, Sn 및 Sb의 함량 (중량 %)흘 나타낸다.)  (Wherein [Si], [A1], [Mn], [P], [Sn] and [Sb] in the formulas 1 to 3 are the contents of Si, Al, Mn, P, Sn and Sb (% by weight )
B를 0.001 증량 % 이하 (0 중량 ¾>를 포함하지 않는다), Mg, Zr 및 V를 각각 0.005 중량 % 이하 (0 중량 %를 포함하지 않는다) 및 Cu를 0.025 중량 % 이하 (0중량 %를 포함하지 않는다)를 더 포함할 수 있다.  Less than 0.001 wt% B (does not contain 0 weight ¾>), less than 0.005 wt% (without 0 wt%) and less than 0.025 wt% (with 0 wt%) of Mg, Zr and V, respectively May not be included).
하기 식 4로 계산되는 밀도가 7.57 내지 7.67g/cm3일 수 있다. The density is calculated by the following formula 4 can be 7.57 to 7.67g / cm 3.
[식 4]  [Equation 4]
7.865+ (-0.0611* [Si ]— 0.102* [Al ] +0.00589* [Mn] )  7.865+ (-0.0611 * [Si] — 0.102 * [Al] + 0.00589 * [Mn])
(단, 식 4에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량 (중량 %)을 나타낸다.)  (However, in formula 4, [Si], [Al] and [Mn] represent the contents (weight%) of Si, Al and Mn, respectively.)
인장시험 연신율이 24% 이상일 수 있다.  Tensile test elongation may be at least 24%.
두께가 0.10 내지 0.35mm일 수 있다.  The thickness may be 0.10 to 0.35 mm.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 중량 %로, Si: 2.5 내지 3.3%, A1: 0.05 내지 1%, Mn: 0.05 내지 1), S: 0.01%이하 (0%를 포함하지 않는다), N: 0.00 이하 ( 를 포함하지 않는다), C: 0.005% 이하 (0%를 포함하지 않는다), Ti :0.005% 이하 (0%를 포함하지 않는다), Nb: 0.005% 이하 (0%를 포함하지 않는다), P: 0.001 내지 0.1%, Sn:0.001 내지 0. , 및 Sb:0.001 내지 0.1%를 포함하고, 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 내지 식 3을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 쎄조하는 단계; 열연판을 냉간 압연하여 넁연판을 제조하는 단계; 및 넁연판을 재결정 소둔하는 단계를 포함한다.  Method for producing a non-oriented electrical steel sheet according to an embodiment of the present invention by weight%, Si: 2.5 to 3.3%, A1: 0.05 to 1%, Mn: 0.05 to 1), S: 0.01% or less (0% N: 0.00 or less (Does not contain), C: 0.005% or less (does not contain 0%), Ti: 0.005% or less (does not contain 0%), Nb: 0.005% or less ( 0%), P: 0.001 to 0.1%, Sn: 0.001 to 0., and Sb: 0.001 to 0.1%, the balance includes Fe and inevitable impurities, and the following Formulas 1 to 3 Heating the satisfactory slab and hot rolling to clean the hot rolled sheet; Cold rolling the hot rolled sheet to produce a molten sheet; And recrystallizing annealing the flexible plate.
[식 1]  [Equation 1]
1.7'<[Si]/([Al] + [Mn])<2.9 1.7 ' <[Si] / ([Al] + [Mn]) <2.9
[식 2]  [Equation 2]
50<13.25+11.3*([Si] + [Al] + [Mn]/2) 60  50 <13.25 + 11.3 * ([Si] + [Al] + [Mn] / 2) 60
(단, 식 1 및 식 2에서 [Si], [Al] 및 [Mn]은 각각 Si, ΑΓ및 Mn의 함량 (중량 %)을 나타낸다.) 열연판을 제조하는 단계에서, 슬라브를 1100 내지 1200°C로 가열할 수 있다. (However, [Si], [Al] and [Mn] in the formulas 1 and 2 represent the contents (% by weight) of Si, AΓ and Mn, respectively.) In the step of producing a hot rolled sheet, the slab may be heated to 1100 to 1200 ° C.
열연판을 제조하는 단계에서, 마무리온도 800 내지 1000°C에서 열간 압연 할 수 있다. In the step of preparing a hot-rolled sheet it may be hot rolled at finishing temperature of 800 to 1000 ° C.
열연판을 제조하고 850 내지 115CTC 은도에서 소둔하는 단계를 더 포함할 수 있다.  It may further comprise the step of manufacturing a hot rolled sheet and annealing at 850 to 115CTC silver.
슬라브는 B를 0.001 중량 % 이하 (0 중량 %를 포함하지 않는다), Mg, Zr 및 V를 각각 0.005 중량 % 이하 (0 중량 %를 포함하지 않는다) 및 Cu를 0.025 중량 % 이하 (0중량 %를 포함하지 않는다)를 더 포함할 수 있다.  Slabs contain less than 0.001% by weight of B (does not contain 0% by weight), 0.005% by weight or less of Mg, Zr and V (does not contain 0% by weight) and 0.025% or less of Cu (0% by weight) It does not include)).
제조된 강판은 하기 식 4로 계산되는 밀도가 7.57 내지 7.67g/cm3일 수 있다. The prepared steel sheet has a density which is calculated by the following formula 4 it can be 7.57 to 7.67g / cm 3.
. [식 4]  . [Equation 4]
7.865+C-0.0611* [Si ] -0. 102* [A1 ] +0.00589* [Mn] )  7.865 + C-0.0611 * [Si] -0. 102 * [A1] + 0.00589 * [Mn])
(단, 식 4에서 [Si ] , [A1 ] 및 [Mn]은 각각 Si , A1 및 Mn의 함량 (중량 ¾>)을 나타낸다. )  (However, in formula 4 [Si], [A1] and [Mn] represents the content of Si, A1 and Mn (weight ¾>), respectively.)
제조된 강판은 인장시험 연신율이 24% 이상일 수 있다.  The prepared steel sheet may have a tensile test elongation of 24% or more.
넁연판을 제조하는 단계에서, 0. 10 내지 0.35匪 두께로 넁간 맙연할 수 있다. 【발명의 효과】  In the step of manufacturing the lead plate, the thickness may be between 0.1 and 0.35 mm thickness. 【Effects of the Invention】
본 발명의 일 실시예에 의한 무방향성 전기강판은 자기적 특성이 우수하면서 동시에 생산성이 뛰어나다.  Non-oriented electrical steel sheet according to an embodiment of the present invention is excellent in magnetic properties and at the same time excellent in productivity.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
제 1, 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.  Terms such as first, second, and third are used to describe various parts, components, regions, layers and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는" 의 의미는 특정 특성, 영역, 정수, 단계, 동작 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, ^소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다. The terminology used herein is merely to refer to a specific embodiment. It does not intend to limit the present invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" specifies a particular characteristic, region, integer, step, operating element and / or component, and the presence of another characteristic, region, integer, step, operation, square and / or component or It does not exclude the addition.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다..  When a portion is referred to as "on" or "on" another portion, it may be directly on or on the other portion or may be accompanied by another portion therebetween. In contrast, when one part is mentioned "right above" another part, no other part is intervened.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.  Although not defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
또한, 특별히 언급하지 않는 한 ¾는 증량 %를 의미하며 , lppm 은  Also, unless noted otherwise, ¾ means percent increase and lppm is
0.0001중량 %이다. 0.0001% by weight.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 ·형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명의 일 실시예에 의한 무방향성 전기강판은 중량 %로, Si : 2.5 내지 3.3%, A1 : 0.05 내지 1%, Mn: 0.05 내지 1%, S: 0.01%이하 (0%를 포함하지 않는다), N: 0.005%이하 (OT를 포함하지 않는다), C: 0.005% 이하 (OT를 포함하지 않는다), Ti:0.005 이하 (0%를 포함하지 않는다), Nb: 0.005% 이하 ((»를 포함하지 않는다), P: 0.001 내지 0.1%, Sn: 0.001 내지 0.1%, 및 Sb:0.001 내지 0.1%를 포함하고, 잔부는 Fe 및 불가피한 불순물을. 포함한다. 먼저 무방향성 전기강판의 성분 한정의 이유부터 설명한다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The non-oriented electrical steel sheet according to an embodiment of the present invention in weight%, Si: 2.5 to 3.3%, A1: 0.05 to 1%, Mn: 0.05 to 1%, S: 0.01% or less (not including 0%) ), N: 0.005% or less (without OT), C: 0.005% or less (without OT), Ti: 0.005% or less (without 0%), Nb: 0.005% or less ((» P: 0.001 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1%, and the balance includes Fe and unavoidable impurities. First, the reason for component limitation of a non-oriented electrical steel sheet is demonstrated.
Si : 2.5 내지 3.3 중량 % Si: 2.5 to 3.3% by weight
규소 (Si )는 재료의 비저항을 높여 철손을 낮추어주는 역할을 한다. Si를 너무 적게 첨가할 경우, 고주파 철손 개선 효과가 부족할 수 있다. 또한 Si를 너무 많이 첨가할 경우 재료의 취성이 증가하여 압연생산성이 급격히 저하될 수 있다. 따라서 전술한 범위에서 Si를 첨가할 수 .있다. Silicon (Si) serves to lower the iron loss by increasing the specific resistance of the material. If too little Si is added, the effect of improving the high frequency iron loss may be insufficient. In addition, when too much Si is added, the brittleness of the material may increase, leading to a sharp decrease in rolling productivity. Therefore, Si can be added in the above range . have.
A1 : 0.05 내지 1 중량 %  A1: 0.05 to 1% by weight
알루미늄 (A1 )는 Mn과 함께 비저항을 높여 철손을 낮추어주는 역할을 한다. Si에 비해 비저항 증가량은 낮지만, 적정량 첨가를 통해 압연성을 유지하면서 비저항을 높일 수 있다. A1을 너무 적게 첨가하면, 고주파 철손 효과가 현저히 감소하고 질화물 및 황화물이 미세하게 형성되어 자기적 특성을 열화시킨다. A1을 너무 많이 첨가하면, 자기적 특성 또는 압연성이 급격히 열화될 수 있다. 따라서 전술한 범위에서 A1을 첨가할 수 있다.  Aluminum (A1) plays a role of lowering iron loss by increasing specific resistance together with Mn. Although the increase in specific resistance is lower than that of Si, the specific resistance can be increased while maintaining the rolling property by adding an appropriate amount. When too little A1 is added, the high frequency iron loss effect is significantly reduced, and finely formed nitrides and sulfides deteriorate the magnetic properties. If too much A1 is added, the magnetic properties or rolling properties may deteriorate rapidly. Therefore, A1 can be added in the above-mentioned range.
Mn: 0.05 내지 1 중량 %  Mn: 0.05 to 1 weight%
망간 (Mn)은 A1과 함께 비저항을 높여 철손을 낮추어주는 역할을 한다. Mn을 너무 적게 첨가하면, 고주파 철손 효과가 현저히 감소하고 질화물 및 황화물이 미세하게 형성되어 자기적 특성을 열화시킨다. Mn을 너무 많이 참가하면,. 자기적 특성 또는 압연성이 급격히 열화될 수 있다. 따라서 전술한 범위에서 Mn을 첨가할 수 있다.  Manganese (Mn), together with A1 increases the specific resistance to reduce the iron loss. If too little Mn is added, the high frequency iron loss effect is significantly reduced, and finely formed nitrides and sulfides degrade the magnetic properties. If you participate too much Mn. Magnetic properties or rollability may deteriorate rapidly. Therefore, Mn can be added in the above-mentioned range.
S : 0.01 중량 % 이하  S: 0.01% by weight or less
황 (S)는 강 내에 불가피하게 존재하는 원소로 미세한 석출물인 MnS, CuS 등을 형성하여 자기적 특성을 악화시키기 때문에 0.01 중량 % 이하, 보다 구체적으로는 0.005 중량 % 이하로 제한하는 것이 좋다.  Sulfur (S) is an element inevitably present in the steel to form fine precipitates MnS, CuS and the like to deteriorate the magnetic properties, it is preferable to limit to 0.01% by weight or less, more specifically 0.005% by weight or less.
N: 0.005 중량 ¾> 이하  N: 0.005 weight ¾> or less
질소 (N)은 모재 내부에 미세하고 긴 A1N 석출물을 형성할 뿐 아니라, 기타 불순물과 결합하여 미세한 질화물을 형성하여 결정립 성장을 억제하여 철손을 악화시키므로 0.005 중량 % 이하, 보다 구체적으로는 0.003 중량 % 이하로 제한하는 것이 좋다.  Nitrogen (N) not only forms fine and long A1N precipitates in the base material, but also combines with other impurities to form fine nitrides, inhibits grain growth and worsens iron loss, so more specifically, 0.003 wt% or less. It is good to restrict to the following.
C : 0.005 중량 % 이하 탄소 (c)는 자기시효를 일으키고 기타 불순물 원소와 결합하여 탄화물을 생성하여 자기적 특성을 저하시키므로 0.005 중량 )이하, 보다 구체적으로는 0.003 중량 ¾> 이하로 제한하는 것이 좋다. C: 0.005% by weight or less Since carbon (c) causes magnetic aging and combines with other impurity elements to form carbides to lower the magnetic properties, the carbon (c) is preferably limited to 0.005 weight or less, more specifically 0.003 weight ¾> or less.
Ti:0.005 중량 % 이하, Nb:0.005 중량 % 이하  Ti: 0.005 wt% or less, Nb: 0.005 wt% or less
티타늄 (Ti)와 니오븀 (Nb)는 탄화물 또는 질화물을 형성하여 ' 철손을 악화시키고 자성에 바람직하지 않은 {111} 집합조직 발달을 촉진하므로 0.005 중량 % 이하, 보다 구체적으로는 0.003 중량 % 이하로 제한하는 것이 좋다. Titanium (Ti) and niobium (Nb) form carbides or nitrides that ' deteriorate iron loss and promote the development of undesirable {111} textures that are undesirable for magnetism, so they are limited to 0.005% by weight or less, more specifically 0.003% by weight or less Good to do.
P:0.001 내지 0.1 증량 %, Sn:0.001 내지 0.1 중량 %, 및 Sb':0.001 내자 0.1 중량 %  P: 0.001 to 0.1 weight%, Sn: 0.001 to 0.1 weight%, and Sb ': 0.001 weight 0.1 weight%
인 (P), 주석 (Sn), 안티몬 (Sb)는 강판의 표면 및 결정립계에 편석하여, 소둔과정에서 발생하는 표면산화를 억제하고, U11}//ND 방위의 재결정을 억제하여 집합조직을 개선시키는 역할을 한다. 하나의 원소라도 적게 첨가되면 그 효과가 현저히 저하되며, 과량 첨가되면 결정립계 편석량 증가로 인해 결정립 성장이 억제되어 . 철손이 열화되고, 강의 인성이 저하되어 생산성이 저하되므로 바람직하지 않다. 특히 p, Sn, Sb의 합계가 0.025 내지 0.15 증량 % 범위로 제한할 때, 표면산화 억제 및 집합조직 개선 효과가 극대화되어 자기적 특성이 현저하게 개선된다.  Phosphorus (P), tin (Sn), and antimony (Sb) segregate on the surface and grain boundaries of the steel sheet to suppress surface oxidation during annealing and to suppress recrystallization of the U11} // ND orientation to improve texture. It plays a role. If a small amount of one element is added, the effect is remarkably reduced. If it is added excessively, grain growth is suppressed due to an increase in the amount of grain boundary segregation. It is not preferable because iron loss is deteriorated, the toughness of steel is lowered, and productivity is lowered. In particular, when the total of p, Sn, Sb is limited to the range of 0.025 to 0.15% by weight, the surface oxidation inhibition and texture improvement effect is maximized, the magnetic properties are significantly improved.
기타 불순물  Other impurities
전술한 원소 외에도 B, Mg, Λ , V, Cu 등의 불가피하게 흔입되는 불순물이 포함될 수 있다. 이들 원소는 미량이지만 강내 개재물 형성 등을 통한 자성 악화를 야기할 수 있으므로 B : 0.001 중량 % 이하, Mg, Zr, V : 각각 0.005 중량 % 이하, Cu : 0.025 중량 % 이하로 관리되어야 한다.  In addition to the above-described elements, impurities, such as B, Mg, Λ, V, and Cu, may be included inevitably. Although these elements are trace amounts, they may cause magnetic deterioration through the formation of inclusions in the steel, so they should be controlled to B: 0.001 wt% or less, Mg, Zr, V: 0.005 wt% or less and Cu: 0.025 wt% or less.
본 발명의 일 실시예에 의한 무방향성 전기강판은 하기 식 1 내지 식 3을 만족한다.  Non-oriented electrical steel sheet according to an embodiment of the present invention satisfies the following formula 1 to formula 3.
[식 1]  [Equation 1]
1.7< [Si]/([Al] + [Mn])<2.9  1.7 <[Si] / ([Al] + [Mn]) <2.9
[식 2]  [Equation 2]
50<13.25+11.3*([Si] + [Al] + [Mn]/2)<60  50 <13.25 + 11.3 * ([Si] + [Al] + [Mn] / 2) <60
[식 3] 0.025 < [P]+[Sn] + [Sb] < 0.15 [Equation 3] 0.025 <[P] + [Sn] + [Sb] <0.15
(단, 식 1 내지 식 3에서 [Si], [Al], [Mn], [P], [Sn] 및 [Sb]은 각각 Si, Al, Mn, P, Sn 및 Sb의 함량 (중량 %)을 나타낸다.)  (Wherein [Si], [Al], [Mn], [P], [Sn] and [Sb] in the formulas 1 to 3 are the contents of Si, Al, Mn, P, Sn and Sb (weight% ).)
식 1 내지 식 3을 만족할 때, 자기적 특성과 압연성이 동시에 우수하게 되며, 이 범위를 벗어나면 자기적 특성 또는 압연성이 급격히 열화될 수 있다.  When satisfying the formulas 1 to 3, the magnetic properties and the rollability is excellent at the same time, the magnetic properties or rollability may be rapidly deteriorated outside this range.
본 발명의 일 실시예에 의한 무방향성 전기강판은 하기 식 4로 계산되는 밀도가 7.57 내지 7.67g/cm3일 수 있다. 밀도가 7.5767g/cm3 미만이면, 자속밀도가 열화되거나 압연성이 급격히 저하될 수 있다. 밀도가 7.67 g/cm3을 초과하면, 철손이 열화되고 특히 고주파 철손이 심각하게 열화될 수 있다. 따라서 전술한 범위로 밀도를 조절할 수 있다. The non-oriented electrical steel sheet according to one embodiment of the present invention may have a density calculated by Equation 4 below 7.57 to 7.67 g / cm 3 . If the density is less than 7.5767 g / cm 3 , the magnetic flux density may deteriorate or the rolling property may be sharply lowered. If the density exceeds 7.67 g / cm 3 , the iron loss may be degraded, especially high frequency iron loss. Therefore, the density can be adjusted in the above-described range.
본 발명의 일 실시예에 의한 무방향성 전기강판은 인장시험 연신율이 24% 이상일 수 있다. 연.신율이 24% 미만이면 압연성이 열위하여 생산성이 나빠질 수 있다. 더욱 구체적으로 연신율은 28 내지 34% 일 수 있다. The non-oriented electrical steel sheet according to one embodiment of the present invention may have a tensile test elongation of 24% or more. Year . If the elongation is less than 24%, the rolling properties may be inferior, resulting in poor productivity. More specifically, the elongation may be 28 to 34%.
본 발명의 일 실시예에 의한 무방향성 전기강판은 두께가 0.10 내지 Non-oriented electrical steel sheet according to an embodiment of the present invention has a thickness of 0.10 to
0.35mm일 수 있다. 본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 중량 %로, Si: 2.5 내지 3.3%, Al: 0.05 내지 1%, Mn: 0.05 내지 1%, S: 0.01%이하 (0%를 포함하지 않는다), N: 0.005%이하 (0%를 포함하지 않는다), C: 0.005% 이하 (0¾>를 포함하지 않는다), Ti:0.005% 이하 (0%를 포함하지 않는다), Nb: 0.005% 이하(0%를 포함하지 않는다), Ρ: 0.001 내지 0.1%, Sn:0.001 내지 0.1%, 및 Sb:0.001 내지 0.1%를 포함하고, 잔부는 Fe 및 불가파한 불순물을 포함하고, 하기 식 1 내지 식 3을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계; 열연판을 넁간 압연하여 넁연판을 제조하는 단계; 및 넁연판을 재결정 소둔하는 단계를 포함한다. - [식 1] It may be 0.35 mm. Method for producing a non-oriented electrical steel sheet according to an embodiment of the present invention by weight%, Si: 2.5 to 3.3%, Al: 0.05 to 1%, Mn: 0.05 to 1%, S: 0.01% or less (0% N: 0.005% or less (does not contain 0%), C: 0.005% or less (does not contain 0¾>), Ti: 0.005% or less (does not contain 0%), Nb: 0.005 % Or less (not including 0%), Ρ: 0.001 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1%, the balance includes Fe and inevitable impurities, and the following formula Manufacturing a hot rolled sheet by heating and heating the slab satisfying Formulas 1 to 3; Rolling the hot rolled sheet to produce a rolled sheet; And recrystallizing annealing the flexible plate. -[Equation 1]
1.7<[Si]/([Al] + [Mn])<2.9  1.7 <[Si] / ([Al] + [Mn]) <2.9
. [식 2]  . [Equation 2]
50<13.25+11.3*([Si] + [Al] + [Mn]/2)<60 [식 3] 50 <13.25 + 11.3 * ([Si] + [Al] + [Mn] / 2) <60 [Equation 3]
0.025 < [P] + [Sn] + [Sb] < 0. 15  0.025 <[P] + [Sn] + [Sb] <0.15
(단, 식 i 내지 식 3에서 [Si ] , [Al ] , [Mn] , [P], [Sn] 및 [Sb]은 각각 Si , Al , Mn , P , Sn 및 Sb의 함량 (중량 %)을 나타낸다. )  (Wherein [Si], [Al], [Mn], [P], [Sn] and [Sb] in the formulas i to 3 are the contents of Si, Al, Mn, P, Sn and Sb (% by weight) ).)
먼저 슬라브를 가열한 후 열간 압연하여 열연판을 제조한다. 각 조성의 첨가 비율을 한정한 이유는 전술한 무방향성 전기강판의 조성 한정 이유와 동일하다. 후술할 열간 압연, 열연판 소둔, 넁간 압연, 재결정 소둔 등의 과정에서 슬라브의 조성은 실질적으로 변동되—지 아니하므로, 슬라브의 조성과 무방향성 전기강판의 조성이 실질적으로 동일하다.  First, the slab is heated and hot rolled to produce a hot rolled sheet. The reason for limiting the addition ratio of each composition is the same as the reason for limiting the composition of the non-oriented electrical steel sheet described above. Since the composition of the slab does not substantially vary in the processes of hot rolling, hot rolling annealing, hot rolling, recrystallization annealing, and the like, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.
슬라브를 가열로에 장입하여 1100 내지 1200°C로 가열 한다. Charge the slab into a furnace and heat it to 1100 to 1200 ° C.
가열된 슬라브는 2 내지 2.3mm로 열간 압연하여 열연판으로 제조된다. 열언판을 제조하는 단계에서 마무리온도는 800 내지 1000 °C 일 수 있다. The heated slabs are hot rolled to 2 to 2.3 mm to produce hot rolled plates. Finishing temperature in the step of manufacturing a thermal plate may be 800 to 1000 ° C.
열간압연 된 열연판은 850 내지 1150°C의 온도에서 열연판 소둔한다. 열연판 소둔 온도가 850°C 미만이면 조직이 성장하지 않거나 미세하게 성장하여 자속밀도의 상승 효과가 적으며, 소둔온도가 1150°C를 초과하면 자기특성아 오히려 열화되고, 판형상의 변형으로 인해 압연작업성이 나빠질 수 있으므로, 그 온도범위는 850 내지 1150°C로 제한한다. 보다 바람직한 열연판의 소둔온도는 950 내지 115CTC이다. 열연판 소둔은 필요에 따라 자성에 유리한 방위를 증가시키기 위하여 수행되는 것이며, 생략도 가능하다. 열연판 소둔 후 평균 결정립 직경은 120/ m 이상이 바람직하다. 열연판 소둔 후, 열연판을 산세하고 소정의 판두께가 되도록 냉간 압연한다. 열연판 두께에 따라 다르게 적용될 수 있으나, 약 70 내지 95%의 압하율을 적용하여 최종두께가 0. 10 내지 0.35瞧가 되도록 냉간 압연 할 수 있다. Hot rolled hot rolled sheet is annealed hot rolled sheet at a temperature of 850 to 1150 ° C. If the hot-rolled sheet annealing temperature is less than 850 ° C, the structure does not grow or finely grow, so there is little synergistic effect of the magnetic flux density; if the annealing temperature exceeds 1150 ° C, the magnetic properties deteriorate, and rolling due to the deformation of the plate shape Since workability may deteriorate, the temperature range is limited to 850 to 1150 ° C. More preferable annealing temperature of the hot rolled sheet is 950 to 115CTC. Hot-rolled sheet annealing is performed to increase the orientation favorable to the magnetic, if necessary, may be omitted. The average grain size after hot-rolled sheet annealing is preferably 120 / m or more. After annealing the hot rolled sheet, the hot rolled sheet is pickled and cold rolled to a predetermined sheet thickness. It may be applied differently depending on the thickness of the hot rolled sheet, by applying a reduction ratio of about 70 to 95% can be cold rolled so that the final thickness is 0.1 to 0.35 瞧.
최종 넁간압연된 냉연판은 최종 재결정 소둔을 실시한다. 최종 재결정 소둔 온도가 너무 낮으면 재결정이 층분히 발생하지 못하고, 최종 재결정 소둔 온도가 너무 높으면 결정립의 급격한 성장이 발생하여 자속밀도와 고주파 철손이 열위해지게 되므로, 850 내지 1150°C의 온도에서 시행함이 바람직하다. 재결정 소둔판은 절연 코팅 처리를 하여 고객사로 출하된다. 절연 코팅은 유기질, 무기질 또는 유무기 복합 코팅 처리를 할 수 있으며, 기타 절연이 가능한 코팅제를 사용할 수 있다. 고객사는 본 강판을 그대로 사용할 수 있으며, 필요에 따라 웅력제거소둔을 시행 후 사용할 수 있다. 이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다 . 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. The final hot rolled cold rolled sheet is subjected to final recrystallization annealing. If the final recrystallization annealing temperature is too low, does not re-crystallization occurs sufficiently layer, since the final recrystallization annealing temperature is too high, it becomes a magnetic flux density and a high-frequency iron loss by rapid growth occurs in the crystal grains to heat, enforcing at a temperature of 850 to 1150 ° C This is preferred. The recrystallized annealing plate is insulated coated and shipped to the customer. Insulation coating can be organic, inorganic or organic-inorganic composite coating treatment, and other insulating coating can be used. The customer can use this steel plate as it is, and can use it after conducting the spring removal annealing if necessary. Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are only for illustrating the present invention, and the present invention is not limited thereto.
실시예 1  Example 1
하기 표 1과 같이 조성되는 슬라브를 1100°C에서 가열하고, 870°C의 마무리온도로 열간압연하여 2.3誦의 두께의 열연판을 제조하였다. 열연판은 1060 °C에서 100초간 소둔하고, 산세한 다음 0.35mm 두께로 냉간 압연하고, 1000 °C에서 110초간 최종 재결정 소둔을 하였다. 각 시편에 대한 [Si ] /( [Al ]+[Mn] ) 값, 13.25+11.3* ( [Si ]+[Al ]+[Mn] /2) 값, [P]+[Sn] + [Sb] 값, 밀도, 자속밀도 (B50) , 철손 (W15/50) , 고주파 철손 (W10/400) , 굴곡시험 결과 및 연신율을 하기 표 2에 정리하였다. The slab, as shown in Table 1 below, was heated at 1100 ° C., and hot-rolled to a finishing temperature of 870 ° C to prepare a hot rolled plate having a thickness of 2.3 kPa. The hot rolled sheet was annealed at 1060 ° C. for 100 seconds, pickled, cold rolled to a thickness of 0.35 mm, and subjected to final recrystallization annealing at 1000 ° C. for 110 seconds. [Si] / ([Al] + [Mn]) values for each specimen, 13.25 + 11.3 * ([Si] + [Al] + [Mn] / 2) values, [P] + [Sn] + [Sb ], Density, magnetic flux density (B50), iron loss (W15 / 50), high frequency iron loss (W10 / 400), bending test results and elongation are summarized in Table 2 below.
밀도는 7.865+(-0.0611* [Si ]-0. 102* [Al ]+0.00589* [Mn] )의 식으로 계산된 값을 나타내었다. 자속밀도, 철손, 고주파 철손 등의 자기적 특성은 각각의 시편에 대해 3매 이상의 시편을 60隱 *60隱 크기로 절단하여 Single sheet tester로 압연방향과 수직방향의 자기적 특성을 측정하고, 두 방향의 측정값을 평균하여 나타내었다. 이 때, B50은 5000A/m의 자기장에서 유도되는 자속밀도이고, W15/50은 50Hz의 주파수로 1.5T의 자속밀도를 유기하였을 때의 철손이며, W10/400은 400Hz의 주파수로 1.0T의 자속밀도를 유기하였을 때의 철손을 의미한다. 굴곡시험은 압연생산성 예측을 위해 시행되었으며, 열연판 소둔 후 2.3誦 두께의 시편을 300隱 *35mm 3기로 절단하여 상온에서 밀착 굴곡 시험 후, 굴곡 외측 표면 및 모서리에 크랙 등의 균뎔이 발생하면 불량, 발생하지 않으면 양호로 나타내었다. 연신율은 J IS 5호 규격에 따라 인장시험하여 얻어지는 값을 나타내었다.  Density was calculated by the formula of 7.865 + (− 0.0611 * [Si] -0.102 * [Al] + 0.00589 * [Mn]). For magnetic properties such as magnetic flux density, iron loss, and high frequency iron loss, three or more specimens were cut into 60 隱 * 60 隱 size for each specimen, and the magnetic properties in the rolling direction and the vertical direction were measured with a single sheet tester. Averaged measured values are shown. At this time, B50 is the magnetic flux density induced in the magnetic field of 5000A / m, W15 / 50 is the iron loss when the 1.5T magnetic flux density is induced at the frequency of 50Hz, and W10 / 400 is the magnetic flux of 1.0T at the frequency of 400Hz. It means the iron loss when the density is induced. The flexural test was carried out to predict the rolling productivity, and after the hot-rolled sheet annealing, the 2.3 誦 thick specimen was cut into 300 隱 * 35mm 3 and after the close flexural test at room temperature, the cracks on the outer surface and the corner of the flexure were bad. , If it does not occur, it is represented as good. Elongation showed the value obtained by the tensile test according to J IS No.5 standard.
【표 1】 Table 1
Figure imgf000012_0001
Figure imgf000012_0001
1*1
Figure imgf000013_0001
1 * 1
Figure imgf000013_0001
예 비교Example comparison
A14 2.30 47.15 0.084 7.687 1.68 2.43 18.9 0|:¾ A14 2.30 47.15 0.084 7.687 1.68 2.43 18.9 0 |: ¾
o ϋ 34.8  o ϋ 34.8
예 표 1 및 표 2에서 나타나듯이, 본 발명의 조건을 만족하는 Α4, Α5, Α7, A8, A10, All, A12는 자기적 특성이 우수하였으며, 굴곡시험 결과 및 연신율도 모두 양호한 것으로 나타났다. 반면 [Si]/([Al] + [Mn]) 값이 본 발명의 범위를 초과하는 A3, A6은 자기적 특성이 열위하거나 굴곡시험 결과 및 연신율이 불량하게 나타났고, [Si]/([Al] + [Mn]) 값이 본 발명의 범위에 미달하는 A9, A13 역시 자기적 특성이 열위하거나 굴곡시험 결과 및 연신율이 불량한 것으로 나타났다. 13.25+11.3*([Si] + [Al] + [Mn]/2) 값이 본 발명의 범위를 초과하거나 미달하는 A2, A14도 자기적 특성이 열위하거나 굴곡시함 결과 및 연신율이 불량한 것으로 나타났다. 실시예 2  Examples As shown in Table 1 and Table 2, A4, A5, A7, A8, A10, All, A12 satisfying the conditions of the present invention had excellent magnetic properties, and the flexural test results and the elongation were all good. On the other hand, A3 and A6 whose [Si] / ([Al] + [Mn]) values exceed the range of the present invention are inferior in magnetic properties or poor in flexural test results and elongation, and [Si] / ([ Al] + [Mn]) value is less than the range of the present invention A9, A13 also showed inferior magnetic properties or poor bending test results and elongation. A2 and A14, whose values of 13.25 + 11.3 * ([Si] + [Al] + [Mn] / 2) exceed or fall below the range of the present invention, have also been shown to be inferior or inferior in magnetic properties and have poor elongation. . Example 2
하기 표 3 및 표 4과 같이 조성되는 슬라브를 1130°C에서 가열하고, 870°C의 마무리온도로 열간압연하여 2.0匪의 두께의 열연판을 제조하였다. 열연판은 103C C에서 100초간 소둔하고, 산세한 다음 0.35瞧 두께로 냉간 압연하고, 990°C에서 110초간 최종 재결정 소둔을 하였다. 각 시편에 대한 [Si]/([Al]+[Mn]) 값, 13.25+11.3*([Si]+[Al]+[Mn]/2) 값, [P] + [Sn]+[Sb] 값, 자속밀도 (B50)ᅳ 철손 (W15/50), 고주파 철손 (W10/400), 굴곡시험 결과 및 연신율을 하기 표 5에 정리하였다. Table 3 and the slab composition as shown in Table 4 was heated at 1130 ° C, hot-rolled to a finishing temperature of 870 ° C to prepare a hot rolled plate having a thickness of 2.0 kPa. The hot rolled sheet was annealed at 103C C for 100 seconds, pickled, cold rolled to a thickness of 0.35 mm 3, and subjected to final recrystallization annealing at 990 ° C. for 110 seconds. [Si] / ([Al] + [Mn]) values for each specimen, 13.25 + 11.3 * ([Si] + [Al] + [Mn] / 2) values, [P] + [Sn] + [Sb ], Magnetic flux density (B50) ᅳ iron loss (W15 / 50), high frequency iron loss (W10 / 400), bending test results and elongation are summarized in Table 5 below.
【표 3] [Table 3]
Si AI n P Sn Sb C S N 시편번호  Si AI n P Sn Sb C S N Specimen No.
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
B1 2.90 0.80 0.30 0.032 0.029 0.043 0.0032 0.0012 0.0029B1 2.90 0.80 0.30 0.032 0.029 0.043 0.0032 0.0012 0.0029
B2 2.90 0.80 0.30 0.012 0.035 0.029 0.0017 0.0011 0.0023B2 2.90 0.80 0.30 0.012 0.035 0.029 0.0017 0.0011 0.0023
B3 2.90 0.80 0.30 0.009 0.011 0.012 0.0025 0.0019 0.0031B3 2.90 0.80 0.30 0.009 0.011 0.012 0.0025 0.0019 0.0031
B4 2.90 0.80 0.30 0.032 0.013 0.021 0.0024 0.0034 0.0019 벼
Figure imgf000015_0002
Figure imgf000015_0001
Figure imgf000015_0003
B4 2.90 0.80 0.30 0.032 0.013 0.021 0.0024 0.0034 0.0019 rice plant
Figure imgf000015_0002
Figure imgf000015_0001
Figure imgf000015_0003
시편 식 1 식 2 식 3 B50 W15/50 W10/400 굴곡 Specimen Formula 1 Formula 2 Formula 3 B50 W15 / 50 W10 / 400 Bending
연신을 비.고 번호 (T) (W/kg) (W/kg) 시험  Higher Tension (T) (W / kg) (W / kg) Test
Bl 2.64 56.76 0.104 1.70 1.98 15.3 양호 29.7 발명예 Bl 2.64 56.76 0.104 1.70 1.98 15.3 Good 29.7 Invention example
B2 2.64 56.76 0.076 1.70 2.02 15.4 양호 30.2 발명예B2 2.64 56.76 0.076 1.70 2.02 15.4 Good 30.2 Invention example
B3 2.64 56.76 0.032 1.70 1.99 15.2 양호 29.9 발명예B3 2.64 56.76 0.032 1.70 1.99 15.2 Good 29.9 Invention example
B4 2.64 56.76 0.066 1.66 2.14 16.9 (: 28.9 비교예B4 2.64 56.76 0.066 1.66 2.14 16.9 (: 28.9 Comparative Example
B5 2.64 56.76 0.073 1.67 2.20 17.1 양호 30.7 비교예B5 2.64 56.76 0.073 1.67 2.20 17.1 Good 30.7 Comparative example
B6 2.64 56.76 0.089 1.67 2.15 17.0 양호 30.2 비교예B6 2.64 56.76 0.089 1.67 2.15 17.0 Good 30.2 Comparative example
B7 2.64 56.76 0.018 1.66 2.14 17.4 양호 31.1 비교예B7 2.64 56.76 0.018 1.66 2.14 17.4 Good 31.1 Comparative Example
CI 2.16 53.37 0.105 1.71 2.03 15.9 양호 31.2 발명예CI 2.16 53.37 0.105 1.71 2.03 15.9 Good 31.2 Invention example
C2 2.16 53.37 0.067 1.71 2.01 15.6 양호 30.1 발명예C2 2.16 53.37 0.067 1.71 2.01 15.6 Good 30.1 Invention example
C3 2.16 53.37 0.076 1.71 2.01 15.7 양호 30.2 발명예C3 2.16 53.37 0.076 1.71 2.01 15.7 Good 30.2 Invention example
C4 2.16 53.37 0.103 1.67 2.19 17.9 양호 30.9 비교예C4 2.16 53.37 0.103 1.67 2.19 17.9 Good 30.9 Comparative example
C5 2.16 53.37 0.084 1.68 2.18 17.7 양호 29.8 비교예C5 2.16 53.37 0.084 1.68 2.18 17.7 Good 29.8 Comparative example
C6 2.16 53.37 0.137 1.68 2.24 18.1 31.3 비교예C6 2.16 53.37 0.137 1.68 2.24 18.1 31.3 Comparative Example
C7 2.16 53.37 0.172 1.67 2.19 18.0 17.2 비교예 표 5에 나타나듯이 본 발명의 범위에 해당하는 Bl , Β2 , Β3 , CI , C2 , C3은 자기적 특성이 우수하면서 동시에 굴곡시험 결과도 모두 양호한 것으로 나타났다. 반면 Β4 , Β5 , Β6 , C4 , C5 , C6은 Β , Mg , Zr , V, Cu 중 하나 이상의 성분함량이 본 발명의 범위를 초과하여 자기적 특성이 열위하였다. B7은 P , Sn, Sb 성분함량의 합계가 본 발명의 범위에 미달하여 자기적 특성이 열위하였으며, C7은 Mg의 성분함량 뿐 아니라 P , Sn , Sb 성분함량의 합계 또한 본 발명의 범위를 초과하여 자기적 특성도 열위하면서 동시에 굴곡시험 결과 및 연신율도 불량하였다. 본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. C7 2.16 53.37 0.172 1.67 2.19 18.0 17.2 Comparative Example As shown in Table 5, B1, Β2, Β3, CI, C2, and C3, which are within the scope of the present invention, showed excellent magnetic properties and good bending test results. On the other hand, Β4, Β5, Β6, C4, C5, C6 have inferior magnetic properties because the content of one or more of Β, Mg, Zr, V, Cu exceeds the scope of the present invention. B7 is inferior to the magnetic properties because the sum of the P, Sn, Sb component content is less than the scope of the present invention, C7 is not only Mg component, but also the sum of the P, Sn, Sb component content also exceeds the scope of the present invention Inferior magnetic properties were also inferior to the flexural test results and elongation. The present invention is not limited to the embodiments can be manufactured in a variety of different forms, those skilled in the art to which the present invention pertains to other specific forms without changing the technical spirit or essential features of the present invention It will be appreciated that it may be practiced. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【청구범위】 【청구항 1】 중량 %로, Si: 2.5 내지 3.3¾, Al: 0.05 내지 1%, Mn: 0.05 내지 1%, S: 0.01%이하(0%를 포함하지 않는다), N: 0.005%이하 (0%를 포함하지 않는다), C: 0.005% 이하 (OT를 포함하지 않는다), Ti:0.005% 이하 (OT를 포함하지 않는다), Nb: 0.005% 이하 (0%를 포함하지 않는다), P: 0.001 내지 0.1%, Sn:0.001 내지 0.1%, 및 Sb:0.001 내지 0.1%를 포함하고, 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 내지 식 3을 만족하는 무방향성 전기강판. [식 1] 【Claim】 【Claim 1】 By weight %, Si: 2.5 to 3.3¾, Al: 0.05 to 1%, Mn: 0.05 to 1%, S: 0.01% or less (not including 0%), N: 0.005 % or less (does not include 0%), C: 0.005% or less (does not include OT), Ti: 0.005% or less (does not include OT), Nb: 0.005% or less (does not include 0%) , P: 0.001 to 0.1%, Sn: 0.001 to 0.1%, and Sb: 0.001 to 0.1%, the balance includes Fe and inevitable impurities, and satisfies the following Equations 1 to 3. [Equation 1]
1.7<[Si]/([Al] + [Mn])<2.9 1.7<[Si]/([Al] + [Mn])<2.9
[식 2] [Equation 2]
50<13.25+11.3*([Si] + [Al] + [Mn]/2)<60 50<13.25+11.3*([Si] + [Al] + [Mn]/2)<60
[식 3] [Equation 3]
0.025 < [P]+[Sn]+[Sb] < 0.15 0.025 < [P]+[Sn]+[Sb] < 0.15
(단, 식 1 내지 식 3에서 [Si], [Al], [Mn], [P], [Sn] 및 [Sb]은 각각 Si, Al, Mn, P, Sn 및 Sb의 함량 (중량 %)을 나타낸다.) (However, in Equations 1 to 3, [Si], [Al], [Mn], [P], [Sn], and [Sb] are the contents of Si, Al, Mn, P, Sn, and Sb, respectively (% by weight) ).)
【청구항 2】 【Claim 2】
제 1항에 있어서, In clause 1,
B를 0.001 중량 % 이하 (0 중량 %를 포함하지 않는다), Mg, Zr 및 V를 각각 0.005 중량 % 이하 (0 중량 %를 포함하지 않는다) 및 Cu를 0.025 증량 % 이하 (0중량 %를 포함하지 않는다)를 더 포함하는 무방향성 전기강판. B is 0.001% by weight or less (does not include 0% by weight), Mg, Zr and V are each 0.005% by weight or less (does not include 0% by weight), and Cu is 0.025% by weight or less (does not include 0% by weight) Non-oriented electrical steel sheet that further includes (does not apply).
【청구항 3】 【Claim 3】
게 1항에 있어서, In paragraph 1,
하기 식 4로 계산되는 밀도가 7.57 내지 7.67g/cm3인 무방향성 전기강판. A non-oriented electrical steel sheet with a density of 7.57 to 7.67 g/cm 3 calculated by Equation 4 below.
[식 4] [Equation 4]
7.865+(-0.0611* [Si ] -0.102* [Al ]+0.00589* [Mn] ) 7.865+(-0.0611* [Si ] -0.102* [Al ]+0.00589* [Mn] )
(단, 식 4에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량 (중량 ¾>)을 나타낸다.) 【청구항 4] (However, in Equation 4, [Si], [Al], and [Mn] represent the contents (weight ¾>) of Si, Al, and Mn, respectively.) [Claim 4]
제 1항에 있어서, In clause 1,
인장시험 연신율이 24% 이상인 무방향성 전기강판. Non-oriented electrical steel sheet with a tensile test elongation of 24% or more.
【청구항 5】 【Claim 5】
게 1항에 있어서, In paragraph 1,
두께가 0.10 내지 0.35睡 인 무방향성 전기강판. Non-oriented electrical steel sheet with a thickness of 0.10 to 0.35 睡.
【청구항 6】 【Claim 6】
중량 %로, Si: 2.5 내지 3.3%, A1: 0.05 내지 1%, Mn: 0.05 내지 1%, S: 0.01%아하 (0%를 포함하지 않는다), N: 0.005%이하 (0%를 포함하지 않는다), C: 0.005% 이하 ( 를 포함하지 않는다), Ti:0.005% 이하 (0%를 포함하지 않는다), Nb: 0.005% 이하 ((»를 포함하지 않는다), P:0.001 내지 0.1%, Sn:0.001 내지 0.1%, 및 Sb:0.001 내지 0.1%를 포함하고, 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 내지 식 3을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계; By weight %, Si: 2.5 to 3.3%, A1: 0.05 to 1%, Mn: 0.05 to 1%, S: 0.01% (does not include 0%), N: 0.005% or less (does not include 0%) (does not include), C: 0.005% or less (does not include), Ti: 0.005% or less (does not include 0%), Nb: 0.005% or less ((does not include »), P: 0.001 to 0.1%, Sn: 0.001 to 0.1%, Sb: 0.001 to 0.1%, the balance contains Fe and inevitable impurities, and the slab satisfying the following formulas 1 to 3 is heated and then hot rolled to produce a hot rolled sheet. step;
상기 열연판을 넁간 압연하여 넁연판을 제조하는 단계; 및 Manufacturing a nap-rolled plate by rolling the hot-rolled plate; and
상기 넁연판을 재결정 소둔하는 단계를 포함하는 무방향성 전기강판의 제조방법. A method of manufacturing a non-oriented electrical steel sheet comprising the step of recrystallization annealing the nap soft plate.
[식 1] [Equation 1]
1.7<[Si]/([Al] + [Mn])<2.9 1.7<[Si]/([Al] + [Mn])<2.9
[식 2] [Equation 2]
50<13.25+11.3*([Si] + [Al] + [Mn]/2)<60 50<13.25+11.3*([Si] + [Al] + [Mn]/2)<60
[식 3] [Equation 3]
0.025 < [P] + [Sn] + [Sb] < 0.15 0.025 < [P] + [Sn] + [Sb] < 0.15
(단, 식 1 내지 식 3에서 [Si], [Al], [Mn], [P], [Sn] 및 [Sb]은 각각 Si, Al, Mn, P, Sn 및 Sb의 함량 (중량 ¾>)을 나타낸다.) (However, in Formulas 1 to 3, [Si], [Al], [Mn], [P], [Sn], and [Sb] are the contents of Si, Al, Mn, P, Sn, and Sb, respectively (weight ¾ >).)
【청구항 7】 【Claim 7】
게 6항에 있어서, In paragraph 6,
상기 열연판을 제조하는 단계에서, 상기 슬라브를 1100 내지 120CTC로 가열하는 무방향성 전기강판의 제조방법 . In the step of manufacturing the hot-rolled sheet, a method of manufacturing a non-oriented electrical steel sheet in which the slab is heated to 1100 to 120 CTC.
【청구항 8】 제 6항에 있어서, 【Claim 8】 In clause 6,
상기 열연판을 제조하는 단계에서, 마무리온도 800 내지 iooo°c에서 열간 압연하는 무방향성 전기강판의 제조방법 . In the step of manufacturing the hot rolled sheet, a method of manufacturing a non-oriented electrical steel sheet by hot rolling at a finishing temperature of 800 to iooo ° c.
【청구항 9】 【Claim 9】
제 6항에 있어서, In clause 6,
열연판을 제조하고 850 내지 1150°C 온도에서 소둔하는 단계를 더 포함하는 무방향성 전기강판의 제조방법 . A method of manufacturing a non-oriented electrical steel sheet further comprising the step of manufacturing a hot-rolled sheet and annealing it at a temperature of 850 to 1150 ° C.
【청구항 10] [Claim 10]
제 6항에 있어서, In clause 6,
상기 슬라브는 B를. 0.001 중량 % 이하 (0 중량 %를 포함하지 않는다), The slab is B. 0.001% by weight or less (does not include 0% by weight),
Mg , Zr 및 V를 각각 0.005 중량 ¾> 이하 (0 증량 ¾>를 포함하지 않는다) 및 Cu를 0.025 중량 % 이하 (0중량 %를 포함하지 않는다)를 더 포함하는 무방향성 전기강판의 제조방법 . A method of manufacturing a non-oriented electrical steel sheet further comprising 0.005% by weight or less of Mg, Zr, and V (not including 0% by weight) and 0.025% by weight or less of Cu (not including 0% by weight).
【청구항 Hi 【Claim Hi
게 6항에 있어서, In paragraph 6,
제조된 강판은 하기 식 4로 계산되는 밀도가 7.57 내지 7.67g/cm3인 무방향성 전기강판의 제조방법 . The manufactured steel sheet has a density of 7.57 to 7.67 g/cm 3 calculated by Equation 4 below. Method for manufacturing a non-oriented electrical steel sheet.
[식 4] [Equation 4]
7.865+ (-0.0611* [Si ]-0. 102* [Α1 ]+0.00589* [Mn] ) 7.865+ (-0.0611* [Si ]-0. 102* [Α1 ]+0.00589* [Mn] )
(단, 식 4에서 [Si ] , [A1 ] 및 [Mn]은 각각 Si , A1 및 Mn의 함량 (중량 %)을 나타낸다. ) (However, in Equation 4, [Si], [A1], and [Mn] represent the contents (% by weight) of Si, A1, and Mn, respectively.)
【청구항 12】 【Claim 12】
제 6항에 있어서, In clause 6,
제조된 강판은 인장시험 연신율이 24% 이상인 무방향성 전기강판의 제조방법 . The manufactured steel sheet was manufactured using a method for manufacturing non-oriented electrical steel sheets with a tensile test elongation of 24% or more.
【청구항 13] [Claim 13]
제 6항에 있어서, In clause 6,
상기 넁연판을 제조하는 단계에서, 0. 10 내지 0.35隱 두께로 넁간 압연하는 무방향성 전기강판의 제조방법 . In the step of manufacturing the flat plate, a method of manufacturing a non-oriented electrical steel sheet that is rolled to a thickness of 0.10 to 0.35 mm.
PCT/KR2016/015225 2015-12-23 2016-12-23 Non-directional electrical steel sheet and method for manufacturing same WO2017111548A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/065,494 US20190017135A1 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and method for manufacturing the same
JP2018533058A JP7026620B2 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and its manufacturing method
CN201680076278.4A CN108474078A (en) 2015-12-23 2016-12-23 Non-oriented electromagnetic steel sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0185427 2015-12-23
KR1020150185427A KR101701194B1 (en) 2015-12-23 2015-12-23 Non-oriented electrical steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
WO2017111548A1 true WO2017111548A1 (en) 2017-06-29
WO2017111548A8 WO2017111548A8 (en) 2017-08-10

Family

ID=58109295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015225 WO2017111548A1 (en) 2015-12-23 2016-12-23 Non-directional electrical steel sheet and method for manufacturing same

Country Status (5)

Country Link
US (1) US20190017135A1 (en)
JP (1) JP7026620B2 (en)
KR (1) KR101701194B1 (en)
CN (1) CN108474078A (en)
WO (1) WO2017111548A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733901A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for preparing same
EP3733891A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for producing same
US20240096531A1 (en) * 2021-03-31 2024-03-21 Nippon Steel Corporation Non-oriented electrical steel sheet, motor core, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing motor core

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018181B1 (en) * 2017-12-26 2019-09-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102026271B1 (en) * 2017-12-26 2019-09-27 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102175065B1 (en) * 2018-11-30 2020-11-05 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
CN112430775A (en) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 High-strength non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof
US20220396848A1 (en) * 2019-11-12 2022-12-15 Lg Electronics Inc. Non-oriented electrical steel sheet and manufacturing method therefore
KR102297751B1 (en) * 2019-12-18 2021-09-02 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102325005B1 (en) * 2019-12-20 2021-11-11 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
CN116888295B (en) * 2021-03-31 2024-03-19 日本制铁株式会社 Non-oriented electromagnetic steel sheet, motor core, method for manufacturing non-oriented electromagnetic steel sheet, and method for manufacturing motor core
CN114058953B (en) * 2021-10-25 2022-10-14 马鞍山钢铁股份有限公司 Low-iron-loss non-oriented silicon steel suitable for winding processing and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
KR20080027913A (en) * 2005-07-07 2008-03-28 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
KR20090014383A (en) * 2006-06-16 2009-02-10 신닛뽄세이테쯔 카부시키카이샤 High-strength electromagnetic steel sheet and process for producing the same
KR20130087611A (en) * 2011-02-24 2013-08-06 제이에프이 스틸 가부시키가이샤 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR20150074930A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Non-oriented electrical steel steet and manufacturing method for the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192891A (en) * 1997-09-22 1999-04-06 Nkk Corp Silicon steel sheet for electric automobile motor
JP2001131717A (en) * 1999-11-05 2001-05-15 Kawasaki Steel Corp Low core loss nonoriented silicon steel sheet excellent in punchability
JP4258166B2 (en) * 2002-04-09 2009-04-30 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR100848022B1 (en) * 2002-12-24 2008-07-23 제이에프이 스틸 가부시키가이샤 Fe-cr-si non-oriented electromagnetic steel sheet and process for producing the same
JP4280224B2 (en) * 2004-11-04 2009-06-17 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent iron loss
JP4779474B2 (en) * 2005-07-07 2011-09-28 住友金属工業株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
KR100733345B1 (en) * 2005-12-27 2007-06-29 주식회사 포스코 Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
JP5338750B2 (en) * 2010-06-09 2013-11-13 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
WO2012087045A2 (en) * 2010-12-23 2012-06-28 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
JP5780013B2 (en) * 2011-06-28 2015-09-16 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
KR101682284B1 (en) * 2011-09-27 2016-12-05 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet
JP5724824B2 (en) * 2011-10-27 2015-05-27 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
CN102418034B (en) * 2011-12-14 2013-06-19 武汉钢铁(集团)公司 Production method for high-grade non-oriented silicon steel
JP5668767B2 (en) * 2013-02-22 2015-02-12 Jfeスチール株式会社 Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same
KR20140133100A (en) * 2013-05-09 2014-11-19 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same
KR20140133681A (en) * 2013-05-09 2014-11-20 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same
KR20150073719A (en) * 2013-12-23 2015-07-01 주식회사 포스코 Non-orinented electrical steel sheet and method for manufacturing the same
BR112017003178B1 (en) * 2014-08-21 2021-04-13 Jfe Steel Corporation ELECTROMAGNETIC STEEL SHEET NOT ORIENTED AND METHOD FOR MANUFACTURING THE SAME
KR101634092B1 (en) * 2015-10-27 2016-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same
KR101633249B1 (en) * 2015-10-27 2016-06-27 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same
BR112018009722B1 (en) * 2015-11-20 2022-04-05 Jfe Steel Corporation Method for producing an unoriented electrical steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
KR20080027913A (en) * 2005-07-07 2008-03-28 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
KR20090014383A (en) * 2006-06-16 2009-02-10 신닛뽄세이테쯔 카부시키카이샤 High-strength electromagnetic steel sheet and process for producing the same
KR20130087611A (en) * 2011-02-24 2013-08-06 제이에프이 스틸 가부시키가이샤 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR20150074930A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Non-oriented electrical steel steet and manufacturing method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733901A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for preparing same
EP3733891A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for producing same
US11408041B2 (en) 2017-12-26 2022-08-09 Posco Non-oriented electrical steel sheet and method for producing same
US11773463B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Non-oriented electrical steel sheet and method for preparing same
US20240096531A1 (en) * 2021-03-31 2024-03-21 Nippon Steel Corporation Non-oriented electrical steel sheet, motor core, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing motor core

Also Published As

Publication number Publication date
KR101701194B1 (en) 2017-02-01
WO2017111548A8 (en) 2017-08-10
CN108474078A (en) 2018-08-31
JP2019507243A (en) 2019-03-14
US20190017135A1 (en) 2019-01-17
JP7026620B2 (en) 2022-02-28

Similar Documents

Publication Publication Date Title
WO2017111548A1 (en) Non-directional electrical steel sheet and method for manufacturing same
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
KR101705235B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP7260546B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
KR20160073222A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20170075592A (en) Non-orientied electrical steel sheet and method for manufacturing the same
JP2023507435A (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
KR20140084895A (en) Non-oriented electrical steel steet and method for the same
KR20190077890A (en) Grain oriented electrical steel sheet method for manufacturing the same
KR20160078081A (en) Non-orinented electrical steel sheet and method for manufacturing the same
KR101892231B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101353463B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101701195B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102079771B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JPWO2016140373A1 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101919529B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20160061797A (en) Non-oriented electrical sheet, and method for manufacturing the same
KR20190078167A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2024517690A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
KR101630425B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150062246A (en) Non-oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879415

Country of ref document: EP

Kind code of ref document: A1