[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1192891A - Silicon steel sheet for electric automobile motor - Google Patents

Silicon steel sheet for electric automobile motor

Info

Publication number
JPH1192891A
JPH1192891A JP9273360A JP27336097A JPH1192891A JP H1192891 A JPH1192891 A JP H1192891A JP 9273360 A JP9273360 A JP 9273360A JP 27336097 A JP27336097 A JP 27336097A JP H1192891 A JPH1192891 A JP H1192891A
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
ppm
present
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9273360A
Other languages
Japanese (ja)
Inventor
Yoshihiko Oda
善彦 尾田
Nobuo Yamagami
伸夫 山上
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9273360A priority Critical patent/JPH1192891A/en
Priority to US09/041,335 priority patent/US6139650A/en
Priority to CA 2232129 priority patent/CA2232129C/en
Priority to KR1019980009115A priority patent/KR100268612B1/en
Priority to CN98105708A priority patent/CN1083494C/en
Priority to EP98104900A priority patent/EP0866144B1/en
Priority to DE69832313T priority patent/DE69832313T2/en
Publication of JPH1192891A publication Critical patent/JPH1192891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a silicon steel sheet capable of giving low iron loss over a wide range of frequency zone, having high magnetic flux density, and accordingly suitable for use in an electric automobile motor. SOLUTION: This steel sheet has a composition consisting of, by weight, <=0.005% C, 1.5-3.0% Si, 0.05-1.5% Mn, <=0.2% P, <=0.005% (including 0%) N, 0.1-1.0% Al, <=0.001% (including 0%) S, Sb and Sn in the amounts satisfying Sb+Sn/2=0.001 to 0.05%, and the balance essentially Fe and satisfying Si+Al<=3.5%. Further, sheet thickness is regulated to 0.1-0.35 μm, and the average crystalline grain size of the crystalline grains in the steel sheet is regulated to 70-200 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【従来の技術】電気自動車用モータは、数百〜1KHz程
度の非常に広い周波数域で使用される。このため、低周
波域から高周波域まで優れた磁気特性が要求される。し
かし、従来は1KHz程度の高周波域で優れた特性が得ら
れる電磁鋼板が使用されていた。このような高周波用途
の電磁鋼板に於いては、渦電流損を低減する観点から、
鋼板の薄肉化、固有抵抗の増大、結晶粒の細粒化が図ら
れている。
2. Description of the Related Art Motors for electric vehicles are used in a very wide frequency range of several hundreds to 1 KHz. For this reason, excellent magnetic characteristics are required from a low frequency range to a high frequency range. However, conventionally, an electromagnetic steel sheet that can obtain excellent characteristics in a high frequency range of about 1 KHz has been used. In magnetic steel sheets for such high-frequency applications, from the viewpoint of reducing eddy current loss,
The steel sheet is made thinner, the specific resistance is increased, and the crystal grains are made finer.

【0002】そのような例として、特開平3−2234
45号公報にはSi+Al量を2.0〜4.0%とし、板厚を0.1〜
0.25mm、結晶粒径を5〜60μmとした700Hz以上で使用
される高周波用無方向性電磁鋼板の発明が開示されてい
る。
[0002] As such an example, Japanese Patent Application Laid-Open No. Hei 3-2234 has been disclosed.
No. 45 discloses that the Si + Al content is set to 2.0 to 4.0% and the plate thickness is set to 0.1 to 4.0%.
The invention of a high-frequency non-oriented electrical steel sheet used at 700 Hz or higher with a crystal grain size of 0.25 mm and a crystal grain size of 5 to 60 μm is disclosed.

【0003】[0003]

【発明が解決すべき課題】しかし、この発明に於いては
700Hz程度の高周波域で良好な鉄損を得るために結晶粒
径が5〜60μm程度となっているので、50〜200Hz程度
の低・中周波域では良好な鉄損が得られないという問題
がある。このため、このような電磁鋼板は、低周波域か
ら高周波域まで優れた鉄損特性が要求される電気自動車
のモータ用コア材としては適切でない。
However, in the present invention,
In order to obtain good iron loss in the high frequency range of about 700 Hz, the crystal grain size is about 5 to 60 μm, so there is a problem that good iron loss cannot be obtained in the low and medium frequency range of about 50 to 200 Hz. is there. Therefore, such an electromagnetic steel sheet is not suitable as a core material for a motor of an electric vehicle that requires excellent iron loss characteristics from a low frequency range to a high frequency range.

【0004】また、従来のSi、Al量を4%程度まで高め
ることにより固有抵抗の増大をはかり、鉄損を低減する
手法に於いては、広い周波数域での鉄損低減効果が得ら
れるものの、飽和磁束密度が低下するため、電気自動車
用モータのようにトルクが要求されるモータにおいては
望ましくない。
[0004] Further, in the conventional method of increasing the specific resistance by increasing the amounts of Si and Al to about 4% to reduce the iron loss, the iron loss reduction effect in a wide frequency range can be obtained. In addition, since the saturation magnetic flux density decreases, it is not desirable for a motor requiring torque, such as a motor for an electric vehicle.

【0005】以上のように、従来の技術に於いては高磁
束密度、かつ広い周波数域で低鉄損である材料を得るこ
とは困難であった。
As described above, it is difficult to obtain a material having a high magnetic flux density and a low iron loss in a wide frequency range in the prior art.

【0006】本発明は、このような問題点を解決するた
めになされたもので、広い周波数帯域で低い鉄損が得ら
れ、かつ高磁束密度であり、よって、電気自動車のモー
タ用に使用されるのに適した電磁鋼板を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and has a low iron loss in a wide frequency band and a high magnetic flux density. Therefore, the present invention is used for a motor of an electric vehicle. It is an object of the present invention to provide an electromagnetic steel sheet that is suitable for use.

【0007】[0007]

【課題を解決するための手段】本発明の骨子は、S≦0.0
01%とし、さらにSbまたはSnを所定量添加した鋼板の板
厚を0.1〜0.35mmとし、加えて鋼板中の結晶粒の平均粒
径を所定範囲とすることにより、電気自動車用モータに
要求される高磁束密度かつ広い周波数域で低鉄損の電磁
鋼板を得ることにある。
The gist of the present invention is that S ≦ 0.0
01%, and further, by adding a predetermined amount of Sb or Sn to a steel sheet having a thickness of 0.1 to 0.35 mm and, in addition, by setting the average grain size of the crystal grains in the steel sheet to a predetermined range, the electric vehicle motor is required. To obtain an electromagnetic steel sheet having a high magnetic flux density and a low iron loss in a wide frequency range.

【0008】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:1.5〜3.0%、Mn:0.05〜1.5%、P:0.
2%以下、N:0.005%以下(0を含む)、Al:0.1〜1.0
%、Si+Al≦3.5%、S:0.001%以下(0を含む)、Sb+
Sn/2=0.001〜0.05%を含有し、残部が実質的にFeであ
り、板厚が0.1〜0.35mmで、鋼板中の結晶粒の平均粒径
が70〜200μmである電気自動車のモータ用電磁鋼板に
より解決される。
[0008] That is, the above-mentioned problem is that C: 0.
005% or less, Si: 1.5-3.0%, Mn: 0.05-1.5%, P: 0.
2% or less, N: 0.005% or less (including 0), Al: 0.1 to 1.0
%, Si + Al ≦ 3.5%, S: 0.001% or less (including 0), Sb +
Sn / 2 = 0.001 to 0.05%, the balance is substantially Fe, the thickness of the steel sheet is 0.1 to 0.35 mm, and the average grain size of the crystal grains in the steel sheet is 70 to 200 μm. Solved by magnetic steel sheets.

【0009】加えて、Sb+Sn/2の範囲を0.001〜0.005%
に限定することにより、より低い鉄損の鋼板を得ること
ができる。
In addition, the range of Sb + Sn / 2 is set to 0.001 to 0.005%.
By limiting to, a steel sheet with lower iron loss can be obtained.

【0010】ここに、「残部が実質的にFeである」とい
うのは、不可避不純物の他、本発明の作用効果を妨げな
い範囲で、微量の他の元素を含んだものも、本発明の範
囲内に含まれることを意味する。
Here, "the balance is substantially Fe" means that in addition to unavoidable impurities, those containing trace amounts of other elements within the range not impairing the effects of the present invention are also included in the present invention. It is included in the range.

【0011】なお、本明細書において、鋼板の含有元素
を示す%は特に断らない限り重量%を示し、ppmも重量p
pmを示す。
In the present specification, unless otherwise specified,% indicating an element contained in a steel sheet indicates weight%, and ppm means weight p.
Indicates pm.

【0012】(発明に至る経緯)本発明者らは、最初
に、鉄損に及ぼすS量の影響を調査するため、C:0.00
26%、Si:2.80%、Mn:0.21%、P:0.01%、Al:0.32
%、N:0.0015%としS量をtr.〜15ppmの範囲で変化させ
た鋼を実験室にて真空溶解し、熱延、酸洗後、75%H2
−25%N2雰囲気中で830℃×3hrの熱延板焼鈍を行っ
た。
(Circumstances leading to the invention) The present inventors first investigated the effect of the amount of S on iron loss.
26%, Si: 2.80%, Mn: 0.21%, P: 0.01%, Al: 0.32
%, N: 0.0015% and the S amount was changed in the range of tr. To 15 ppm. The steel was vacuum melted in a laboratory, hot rolled, pickled, and then 75% H 2.
The hot rolled sheet was annealed at 830 ° C. for 3 hours in a -25% N 2 atmosphere.

【0013】引き続きこの熱延焼鈍板を板厚0.5および
0.35mmまで冷間圧延し、10%H2−90%N2雰囲気中で90
0℃×2min間の仕上焼鈍を施した。磁気測定は25cmエプ
スタイン法により行った。
Subsequently, the hot-rolled annealed sheet was made to have a sheet thickness of 0.5
Was cold rolled to 0.35 mm, 90 with 10% H 2 -90% N 2 atmosphere
Finish annealing was performed at 0 ° C for 2 minutes. The magnetic measurement was performed by the 25 cm Epstein method.

【0014】電気自動車においては一般に周波数50Hz程
度の低周波域ではトルクが要求されるため1.5T程度で
励磁され、一方、400Hz程度の高周波域ではトルクはそ
れほど要求されないため、1.0T程度で駆動される。こ
のため、周波数50Hzでは1.5Tまで磁化した際の鉄損W
15/50で評価を行い、周波数400Hzでは1.0Tまで磁化し
た際の鉄損W10/400で評価を行った。図1に板厚0.5mm
の材料のS量と鉄損W15/50および鉄損W10/400の関係
を示す。
In general, an electric vehicle is excited at about 1.5 T because a torque is required in a low frequency range of about 50 Hz, and is driven at about 1.0 T because a torque is not so required in a high frequency range of about 400 Hz. You. For this reason, at a frequency of 50 Hz, the iron loss W when magnetized to 1.5 T
Evaluation was performed at 15/50 , and at a frequency of 400 Hz, evaluation was performed using iron loss W 10/400 when magnetized to 1.0 T. Figure 1 shows the thickness of 0.5mm
2 shows the relationship between the S content of the material No. 1 and the iron losses W 15/50 and W 10/400 .

【0015】図1より、0.5mm材における周波数50Hzで
の鉄損W15/50は、S≦10ppmとなった場合に大幅に低下
することがわかる。
FIG. 1 shows that the iron loss W 15/50 at a frequency of 50 Hz in a 0.5 mm material is significantly reduced when S ≦ 10 ppm.

【0016】一方、400Hzの鉄損W10/400はS量が低く
なった場合逆に増大することがわかる。この、S量の低
下による鉄損の変化の原因を調査するため、組織を光学
顕微鏡により観察した。その結果、S≦0.001%におい
て結晶粒が100μm程度と粗大になっていることが明ら
かとなった。これは鋼中のMnSが低減したためと考えら
れる。
On the other hand, it can be seen that the iron loss W 10/400 at 400 Hz increases when the S content decreases. In order to investigate the cause of the change in iron loss due to the decrease in the amount of S, the structure was observed with an optical microscope. As a result, it was clarified that the crystal grains were as coarse as about 100 μm when S ≦ 0.001%. This is considered to be because the MnS in the steel was reduced.

【0017】この組織変化より周波数50Hzと400Hzの鉄
損のS量依存性は以下のように理解することができる。
一般に、鉄損はヒステリシス損と渦電流損に分けること
ができる。結晶粒径が大きくなった場合には、ヒステリ
シス損は低下し渦電流損は増大することが知られてい
る。周波数50Hzにおいてはヒステリシス損が鉄損の支配
因子であるため、S低減およびそれに起因する結晶粒の
粗大化によりヒステリシス損が低下し、鉄損が低下する
こととなる。これに対し、周波数400Hzでは渦電流損が
鉄損の支配因子であるため、S低減およびそれに起因す
る結晶粒の粗大化により、渦電流損が増大し、鉄損が増
大することとなる。
From this structural change, the S content dependence of iron loss at frequencies of 50 Hz and 400 Hz can be understood as follows.
Generally, iron loss can be divided into hysteresis loss and eddy current loss. It is known that when the crystal grain size increases, the hysteresis loss decreases and the eddy current loss increases. At a frequency of 50 Hz, the hysteresis loss is a dominant factor of the iron loss. Therefore, the hysteresis loss is reduced due to the reduction of S and the resulting coarsening of the crystal grains, and the iron loss is reduced. On the other hand, at a frequency of 400 Hz, the eddy current loss is the dominant factor of the iron loss. Therefore, the reduction in S and the coarsening of the crystal grains resulting therefrom increase the eddy current loss and increase the iron loss.

【0018】以上のことより、0.5mm材においてSを低
減させることは低周波域の鉄損低減には効果的である
が、高周波域の鉄損低減には逆効果であることがわか
る。
From the above, it can be seen that reducing S in a 0.5 mm material is effective in reducing iron loss in a low frequency range, but is counterproductive in reducing iron loss in a high frequency range.

【0019】図2に0.35mm材のS量と鉄損の関係を示
す。図2より、0.35mm材における周波数50Hzでの鉄損W
15/50は、0.5mm材と同様、S≦10ppmとなった場合に大
幅に低下することがわかる。
FIG. 2 shows the relationship between the S content of 0.35 mm material and iron loss. From Fig.2, iron loss W at a frequency of 50Hz in 0.35mm material
It can be seen that 15/50 is significantly reduced when S ≦ 10 ppm, like the 0.5 mm material.

【0020】しかし、0.5mm材の結果と異なり、400Hzの
鉄損W10/400も、S量が低くなった場合に低下すること
がわかる。これは0.35mm材では板厚が減少しているため
に渦電流損が0.5mm材に比べ大幅に低下しており、400Hz
においても結晶粒径の粗大化によるヒステリシス損の低
減が、全鉄損を低下させるためである。
However, unlike the result of the 0.5 mm material, it can be seen that the iron loss W 10/400 at 400 Hz also decreases when the S content decreases. This is because the eddy current loss is significantly reduced in 0.35 mm material compared to 0.5 mm material due to the reduced thickness, and 400 Hz
This is because the reduction in hysteresis loss due to coarsening of the crystal grain size also reduces the total iron loss.

【0021】以上のことより0.35mm以下の板厚において
はSの低減は低周波域から高周波域までの鉄損を大幅に
低下させることがわかる。このため、本発明に於いて
は、S量の範囲を10ppm以下に、板厚を0.35mm以下に、
それぞれ限定する。
From the above, it can be seen that at a plate thickness of 0.35 mm or less, the reduction of S significantly reduces iron loss from a low frequency range to a high frequency range. For this reason, in the present invention, the range of the amount of S is 10 ppm or less, the plate thickness is 0.35 mm or less,
Each is limited.

【0022】また、S低減に伴う低周波域から高周波域
までの鉄損の低下は、0.35mm以下の板厚の電磁鋼板に於
いては板厚が薄くなるほど顕著に認められた。しかし、
板厚が0.1mm未満では冷間圧延が困難となり、さらに需
要家における鋼板積層時の手間が増大するため、本発明
に於いては板厚を0.1mm以上とする。
Further, the decrease in iron loss from the low frequency range to the high frequency range due to the reduction of S was remarkably recognized as the thickness became thinner in an electromagnetic steel sheet having a thickness of 0.35 mm or less. But,
If the sheet thickness is less than 0.1 mm, it becomes difficult to perform cold rolling, and furthermore, the labor required for laminating steel sheets increases, so the sheet thickness is set to 0.1 mm or more in the present invention.

【0023】次に0.35mm材において鉄損をさらに低減さ
せる手法について検討した。鉄損を低減させるための手
法としては一般にSi、Al量を増大し、固有抵抗を増大さ
せることが有効である。しかし、電気自動車用モータに
おいてはSi、Alの増大はトルクの低下をまねくため望ま
しくない。そこで、Si、Alの増大以外の手法について検
討することとした。
Next, a method for further reducing iron loss in a 0.35 mm material was examined. As a method for reducing iron loss, it is generally effective to increase the amounts of Si and Al and increase the specific resistance. However, in a motor for an electric vehicle, an increase in Si and Al is not desirable because it leads to a decrease in torque. Therefore, a method other than increasing Si and Al was examined.

【0024】ところで、図2において、S量が10ppm以
下となると鉄損の低下は緩やかとなり、Sをさらに低減
したとしても鉄損はW15/50で2.3W/kg程度、W10/400
で18.5W/kg程度にしかならない。
In FIG. 2, when the amount of S is 10 ppm or less, the iron loss decreases gradually. Even if the amount of S is further reduced, the iron loss is about 15 W / 50 at 2.3 W / kg and W 10/400.
Only about 18.5W / kg.

【0025】本発明者らは、S≦10ppmの極低S材にお
いて鉄損の低減が阻害されるのは、MnS以外の未知の要
因によるものではないかと考え、光学顕微鏡にて組織観
察を行った。その結果、S≦10ppmの領域で鋼板表層に
顕著な窒化層が認められた。これに対し、S>10ppmの
領域では窒化層は軽微となっていた。この窒化層は窒化
雰囲気で行われる熱延板焼鈍時および仕上焼鈍時に生じ
たものと考えられる。
The inventors of the present invention have considered that the reason why the reduction of iron loss is inhibited by the extremely low S material of S ≦ 10 ppm may be due to unknown factors other than MnS, and observed the structure with an optical microscope. Was. As a result, a remarkable nitride layer was recognized on the surface layer of the steel sheet in the region of S ≦ 10 ppm. In contrast, in the region where S> 10 ppm, the nitrided layer was slight. It is considered that this nitrided layer was formed during hot rolled sheet annealing and finish annealing performed in a nitriding atmosphere.

【0026】このS低減に伴う窒化反応促進の原因に関
しては次のように考えられる。すなわち、Sは表面およ
び粒界に濃化しやすい元素であることから、S>10ppm
の領域では、Sが鋼板表面へ濃化し、焼鈍時の窒素の吸
着を抑制しており、一方、S≦10ppmの領域ではSによ
る窒素吸着の抑制効果が低下したためと考えられる。
The cause of the acceleration of the nitridation reaction accompanying the reduction of S is considered as follows. That is, since S is an element which is easily concentrated on the surface and the grain boundaries, S> 10 ppm
It is probable that S was concentrated on the steel sheet surface in the region of (1) and suppressed the adsorption of nitrogen during annealing, while in the region of S ≦ 10 ppm, the effect of suppressing the adsorption of nitrogen by S was reduced.

【0027】本発明者らは、この極低S材において顕著
に生じる窒化層が鉄損の低下を抑制するのではないかと
考えた。このような考えの下に、本発明者らは窒素吸着
の抑制が可能でかつ極低S材の優れた粒成長性を妨げる
ことのない元素を添加することができれば、極低S材の
鉄損はさらに低減するのではないかという着想を抱き、
種々の検討を加えた結果、SbおよびSnの添加が有効であ
ることを見いだした。
The present inventors have considered that the nitride layer which is remarkably generated in this extremely low S material may suppress the decrease in iron loss. Under such a concept, the present inventors have found that if an element capable of suppressing nitrogen adsorption and adding an element that does not hinder the excellent grain growth of the ultra-low S material can be added, the iron of the ultra-low S material With the idea that losses could be further reduced,
As a result of various studies, it was found that the addition of Sb and Sn was effective.

【0028】図3に、図2で示したサンプルの成分に40
ppmのSbを添加したサンプルについて同一の条件で試験
を行った結果を示す。Sbの鉄損低減効果に着目すると、
S>10ppmの領域では、Sb添加により鉄損はW15/50で0.
02〜0.04W/kg程度、W10/400で0.2〜0.3W/kg程度し
か低下しないが、S≦10ppmの領域では、Sb添加により
鉄損はW15/50で0.20〜0.30W/kg程度、W10/400で1.5
W/kg程度低下しており、S量が少ない場合にSbの鉄損
低減効果は顕著に認められる。また、このサンプルでは
S量によらず窒化層は認められなかった。これはSbが鋼
板表層部に濃化し窒素の吸着を抑制したためと考えられ
る。
FIG. 3 shows that the components of the sample shown in FIG.
The results of a test performed under the same conditions for a sample to which Sb of ppm was added are shown. Focusing on the iron loss reduction effect of Sb,
In the region of S> 10 ppm, iron loss is reduced to W 15/50 by adding Sb.
Although it decreases only about 0.2 to 0.3 W / kg at about 02 to 0.04 W / kg and W 10/400 , in the region of S ≦ 10 ppm, the iron loss is about 0.20 to 0.30 W / kg at W 15/50 by adding Sb. , 1.5 for W 10/400
When the amount of S is small, the iron loss reducing effect of Sb is remarkably recognized. In this sample, no nitrided layer was observed regardless of the S content. This is probably because Sb concentrated in the surface layer of the steel sheet and suppressed the adsorption of nitrogen.

【0029】以上のことより、板厚0.35mmの極低S材に
Sbを添加することにより、磁束密度の低下を招くことな
く、広い周波数域で大幅な低鉄損化が可能となることが
明らかとなった。
From the above, the extremely low S material having a thickness of 0.35 mm can be obtained.
It has been clarified that the addition of Sb makes it possible to significantly reduce iron loss over a wide frequency range without lowering the magnetic flux density.

【0030】次にSbの最適添加量を調査するため、C:
0.0026%、Si:2.75%、Mn:0.30%、P:0.02%、Al:
0.35%、S:0.0004%、N:0.0020%としSb量をtr.〜700p
pmの範囲で変化させた鋼を実験室にて真空溶解し、熱延
後、酸洗を行った。引き続きこの熱延板に75%H2−25
%N2雰囲気中で830℃×3hrの熱延板焼鈍を施し、板厚
0.35mmまで冷間圧延し、10%H2−90%N2雰囲気中で90
0℃×2min間の仕上焼鈍を施した。図4はこのようにし
て得られたサンプルのSb量と鉄損W15/50およびW
10/400の関係を示したものである。
Next, to investigate the optimum amount of Sb, C:
0.0026%, Si: 2.75%, Mn: 0.30%, P: 0.02%, Al:
0.35%, S: 0.0004%, N: 0.0020%, Sb amount tr. ~ 700p
The steel changed in the range of pm was melted in a laboratory in vacuum, hot-rolled, and then pickled. 75% H 2 -25
% N subjected to hot band annealing of 830 ° C. × 3 hr in 2 atmosphere, the thickness
Was cold rolled to 0.35 mm, 90 with 10% H 2 -90% N 2 atmosphere
Finish annealing was performed at 0 ° C for 2 minutes. FIG. 4 shows the Sb content and the iron loss W 15/50 and W of the sample thus obtained.
It shows the 10/400 relationship.

【0031】図4より、Sb添加量が10ppm以上の領域で
鉄損が低下し、W15/50=2.0W/kg、W10/400=17W/
kgが達成されることがわかる。しかし、Sbをさらに添加
し、Sb>50ppmとなった場合には、鉄損はSb量の増大に
伴い緩やかに増大することもわかる。
FIG. 4 shows that iron loss decreases in the region where the amount of Sb added is 10 ppm or more, and W 15/50 = 2.0 W / kg and W 10/400 = 17 W /
It can be seen that kg is achieved. However, when Sb is further added and Sb> 50 ppm, the iron loss increases gradually with the increase in the amount of Sb.

【0032】このSb>50ppmの領域での鉄損増大原因を
調査するため、光学顕微鏡による組織観察を行った。そ
の結果、表層窒化層は認められなかったものの、平均結
晶粒径が若干小さくなっていた。この原因は明確ではな
いが、Sbが粒界に偏析しやすい元素であるため、Sbの粒
界ドラッグ効果により粒成長性が低下したものと考えら
れる。
In order to investigate the cause of the increase in iron loss in the region where Sb> 50 ppm, the structure was observed with an optical microscope. As a result, although no surface nitride layer was observed, the average crystal grain size was slightly smaller. Although the cause is not clear, it is considered that since Sb is an element that is easily segregated at the grain boundary, the grain growth property is reduced by the grain boundary drag effect of Sb.

【0033】但し、Sbを700ppmまで添加してもSbフリー
鋼と比べると鉄損は良好である。以上のことよりSbは10
ppm以上とし、コストの問題から上限を500ppmとする。
また鉄損の観点より、望ましくは10ppm以上、50ppm以
下、より望ましくは20ppm以上、40ppm以下とする。
However, even when Sb is added up to 700 ppm, the iron loss is better than that of Sb-free steel. From the above, Sb is 10
ppm or more, and the upper limit is set to 500 ppm due to cost issues.
From the viewpoint of iron loss, the content is desirably 10 ppm or more and 50 ppm or less, and more desirably 20 ppm or more and 40 ppm or less.

【0034】SnもSb同様表面偏析する元素であるため、
Sbと同様な窒化抑制効果が得られるものと考えられる。
そこで、Snの最適添加量を調査するため、C:0.0020
%、Si:2.85%、Mn:0.31%、P:0.02%、Al:0.30
%、S:0.0003%、N:0.0015%としSn量をtr.〜1400ppmの
範囲で変化させた鋼を実験室にて真空溶解し、熱延後、
酸洗を行った。引き続きこの熱延板に75%H2−25%N2
雰囲気中で830℃×3hrの熱延板焼鈍を施し、板厚0.35m
mまで冷間圧延し、10%H2−90%N2雰囲気中で900℃×
2min間の仕上焼鈍を施した。
Since Sn is also an element that segregates on the surface like Sb,
It is considered that the same nitriding suppression effect as that of Sb can be obtained.
Therefore, to investigate the optimum amount of Sn, C: 0.0020
%, Si: 2.85%, Mn: 0.31%, P: 0.02%, Al: 0.30
%, S: 0.0003%, N: 0.0015% and the amount of Sn was changed in the range of tr. To 1400 ppm.
Pickling was performed. Subsequently, 75% H 2 -25% N 2
Hot rolled sheet annealing at 830 ° C x 3hrs in atmosphere, 0.35m thick
cold rolled to 900 m in a 10% H 2 -90% N 2 atmosphere
Finish annealing was performed for 2 minutes.

【0035】図5はこのようにして得られたサンプルの
Sn量とW15/50およびW10/400の関係を示したものであ
る。
FIG. 5 shows the sample thus obtained.
It shows the relationship between the amount of Sn and W 15/50 and W 10/400 .

【0036】図5より、Sn添加量が20ppm以上の領域で
鉄損が低下し、W15/50=2.0W/kg、W10/400=17W/
kgが達成されることがわかる。しかし、Snをさらに添加
し、Sn>100ppmとなった場合には、鉄損はSn量の増大に
伴い緩やかに増大することもわかる。但し、Snを1400pp
mまで添加してもSnフリー鋼と比べると鉄損は良好であ
る。
FIG. 5 shows that iron loss decreases in the region where the amount of Sn added is 20 ppm or more, and W 15/50 = 2.0 W / kg and W 10/400 = 17 W /
It can be seen that kg is achieved. However, when Sn is further added and Sn> 100 ppm, the iron loss also increases gradually with an increase in the amount of Sn. However, Sn is 1400pp
Even when added up to m, the iron loss is better than that of Sn-free steel.

【0037】このSnとSbの鉄損に及ぼす影響の違いは以
下のように理解できる。すなわち、Snは偏析係数がSbよ
りも小さいため、表面偏析により窒化を抑えるために
は、Sbの2倍程度の量が必要となる。このため、Snは20p
pm以上の添加により鉄損が低下することとなる。一方、
Snの粒界偏析によるドラッグ効果により鉄損が増大し始
める添加量も、Sbに比べSnの偏析係数が小さいことよ
り、2倍程度となる。このため、Snは100ppm以上の添加
により鉄損が緩やかに増大することとなる。
The difference between the effects of Sn and Sb on iron loss can be understood as follows. That is, since Sn has a segregation coefficient smaller than that of Sb, an amount about twice as large as that of Sb is required to suppress nitriding by surface segregation. For this reason, Sn is 20p
The addition of pm or more will reduce iron loss. on the other hand,
The addition amount at which iron loss starts to increase due to the drag effect due to the grain boundary segregation of Sn is also about twice, since the segregation coefficient of Sn is smaller than that of Sb. For this reason, iron loss will increase moderately by addition of 100 ppm or more of Sn.

【0038】以上のことよりSnは20ppm以上とし、コス
トの問題から上限を1000ppmとする。また鉄損の観点よ
り、望ましくは20ppm以上、100ppm以下、より望ましく
は30ppm以上、90ppm以下とする。
From the above, Sn is set to 20 ppm or more, and the upper limit is set to 1000 ppm from the viewpoint of cost. From the viewpoint of iron loss, the content is desirably 20 ppm or more and 100 ppm or less, and more desirably 30 ppm or more and 90 ppm or less.

【0039】以上述べてきたように、SbとSnが窒化を抑
制するメカニズムは同一である。このためSbとSnを同時
に添加しても同様の窒化抑制効果を得ることができる。
ただし、SnがSbと同一の効果を発揮するためにはSbの2
倍の添加量が必要となる。このため、SbおよびSnを同時
添加する場合には、Sb+Sn/2で0.001%以上、0.05%以下
とし、より望ましくは0.001%以上、0.005%以下とす
る。
As described above, the mechanism by which Sb and Sn suppress nitriding is the same. For this reason, even when Sb and Sn are added simultaneously, the same nitriding suppression effect can be obtained.
However, in order for Sn to exhibit the same effect as Sb, 2
A double addition amount is required. Therefore, when Sb and Sn are added simultaneously, the content of Sb + Sn / 2 is set to 0.001% or more and 0.05% or less, and more preferably 0.001% or more and 0.005% or less.

【0040】次に、本発明の成分系を有する鋼板の結晶
粒の最適粒径について調査するため、C:0.0026%、S
i:2.65%、Mn:0.18%、P:0.01%、Al:0.30%、
S:0.0004%、N:0.0015%、Sb:0.004%とした鋼を
実験室にて真空溶解し、熱延後、酸洗を行った。引き続
き、この熱延板に75%H2−25%N2中で830℃×3hrの
熱延板焼鈍を施し、板厚0.35mmまで冷間圧延した。そし
て、10%H2−90%N2中で750〜1100℃×2minの仕上
焼鈍を施すことにより、仕上焼鈍後の結晶粒径を大きく
変化させた。
Next, in order to investigate the optimum grain size of the crystal grains of the steel sheet having the component system of the present invention, C: 0.0026%, S:
i: 2.65%, Mn: 0.18%, P: 0.01%, Al: 0.30%,
Steel containing 0.0004% of S, 0.0015% of N, and 0.004% of Sb was melted in a laboratory in a vacuum, hot-rolled, and then pickled. Subsequently, the hot-rolled sheet was annealed at 830 ° C. for 3 hours in 75% H 2 -25% N 2 and cold-rolled to a sheet thickness of 0.35 mm. Then, the finish annealing at 750 to 1100 ° C. for 2 minutes in 10% H 2 -90% N 2 greatly changed the crystal grain size after the finish annealing.

【0041】図6は、このようにして得られたサンプル
の平均粒径と鉄損W15/50及びW10/ 400の関係を示した
ものである。図6より、平均粒径が70μm未満では周波
数50Hzの鉄損値W15/50が急激に増大し、一方、平均粒
径が200μmを超えると、周波数400Hzの鉄損値W10/400
が急激に増大することが分かる。このことより、本発明
においては、鋼板の結晶粒の平均結晶粒径を70〜200μ
mに限定する。平均結晶粒径は、100〜180μmとするこ
とが更に好ましい。
[0041] Figure 6 illustrates the manner relation average particle diameter and the iron loss W 15/50 and W 10/400 samples obtained. As shown in FIG. 6, when the average particle size is less than 70 μm, the iron loss value W 15/50 at a frequency of 50 Hz sharply increases, while when the average particle size exceeds 200 μm, the iron loss value W 10/400 at a frequency of 400 Hz is obtained.
It can be seen that increases rapidly. From this, in the present invention, the average crystal grain size of the crystal grains of the steel sheet is 70 ~ 200μ
m. More preferably, the average crystal grain size is 100 to 180 μm.

【0042】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。Cは、磁気時効の
問題があるため0.005%以下とした。Siは鋼板の固有抵
抗を上げるために有効な元素であるため1.5%以上添加
する。一方、3.0%を超えると飽和磁束密度の低下に伴
い磁束密度が低下するため上限を3.0%とした。Mnは、
熱間圧延時の赤熱脆性を防止するために、0.05%以上必
要であるが、1.5%以上になると磁束密度を低下させる
ので0.05〜1.5%とした。Pは、鋼板の打ち抜き性を改
善するために必要な元素であるが、0.2%を超えて添加
すると鋼板が脆化するため0.2%以下とした。Nは、含
有量が多い場合にはAlNの析出量が多くなり、AlNが粗大
となった場合においても粒成長性が低下し鉄損を増大さ
せるため0.005%以下とした。Alは微量に添加すると微
細なAlNを生成し磁気特性を劣化させる。このため、下
限を0.1%とし、AlNを粗大化する必要がある。一方、
1.0%以上になると磁束密度を低下させるため上限は1.0
%以下とする。但し、Si+Al量が3.5%を超えた場合に
は、磁束密度が低下し、さらに、励磁電流が増大するた
め、Si+Alは3.5%以下とする。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described. C was made 0.005% or less because of the problem of magnetic aging. Since Si is an element effective for increasing the specific resistance of the steel sheet, 1.5% or more is added. On the other hand, if it exceeds 3.0%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit was made 3.0%. Mn is
In order to prevent red hot brittleness during hot rolling, 0.05% or more is necessary. However, when it exceeds 1.5%, the magnetic flux density is reduced. P is an element necessary for improving the punching property of the steel sheet, but if added in excess of 0.2%, the steel sheet becomes brittle, so P was set to 0.2% or less. N is set to 0.005% or less because the precipitation amount of AlN increases when the content is large, and even when AlN becomes coarse, the grain growth decreases and the iron loss increases. When Al is added in a small amount, fine AlN is generated and the magnetic characteristics are deteriorated. Therefore, it is necessary to set the lower limit to 0.1% and coarsen AlN. on the other hand,
If it exceeds 1.0%, the magnetic flux density decreases, so the upper limit is 1.0
% Or less. However, when the amount of Si + Al exceeds 3.5%, the magnetic flux density decreases and the exciting current increases. Therefore, the content of Si + Al is set to 3.5% or less.

【0043】(製造方法)本発明においては、S、Sb、S
nが所定の範囲内であれば、製造方法は通常の電磁鋼板
の製造方法でかまわない。すなわち、転炉で吹練した溶
鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造、
熱間圧延を行う。熱間圧延時の仕上焼鈍温度、巻取り温
度は特に規定する必要はなく、通常の温度でかまわな
い。また、熱延後の熱延板焼鈍は行っても良いが必須で
はない。次いで一回の冷間圧延、もしくは中間焼鈍をは
さんだ2回以上の冷間圧延により所定の板厚とした後
に、最終焼鈍を行う。本発明で限定した結晶粒径は、最
終焼鈍の温度を変化させることによって得る。
(Production method) In the present invention, S, Sb, S
As long as n is within a predetermined range, the manufacturing method may be an ordinary method for manufacturing an electromagnetic steel sheet. That is, the molten steel blown in the converter is degassed, adjusted to a predetermined component, and subsequently cast,
Hot rolling is performed. The finish annealing temperature and the winding temperature at the time of hot rolling do not need to be particularly defined, and may be ordinary temperatures. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, a final annealing is performed after a predetermined thickness is obtained by one cold rolling or two or more cold rollings including an intermediate annealing. The crystal grain size defined in the present invention is obtained by changing the temperature of the final annealing.

【0044】[0044]

【実施例】表1に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブを1150℃で1hr加熱した後、板厚2.0mmまで熱間
圧延を行った。熱延仕上げ温度は750℃とし、巻取り温
度は610℃とした。次にこの熱延板を酸洗し、表2、表
3に示す条件で熱延板焼鈍を行った。熱延板焼鈍雰囲気
は、75%H2−25%N2とした。その後、板厚0.1〜0.5mm
まで冷間圧延を行い、表2、表3に示す仕上焼鈍条件で
焼鈍を行った。仕上げ焼鈍雰囲気は、10%H2−90%N2
とした。
EXAMPLES Using the steel shown in Table 1, after degassing by blowing in a converter, the steel was adjusted to predetermined components and cast.
After the slab was heated at 1150 ° C. for 1 hour, hot rolling was performed to a thickness of 2.0 mm. The hot rolling finishing temperature was 750 ° C, and the winding temperature was 610 ° C. Next, the hot-rolled sheet was pickled and subjected to hot-rolled sheet annealing under the conditions shown in Tables 2 and 3. The hot rolled sheet annealing atmosphere was 75% H 2 -25% N 2 . After that, the plate thickness 0.1-0.5mm
Cold rolling was performed until the finish annealing conditions shown in Tables 2 and 3 were reached. Finish annealing atmosphere is 10% H 2 -90% N 2
And

【0045】磁気測定は25cmエプスタイン試験片(L+
C)/2を用いて行った。各鋼板の磁気特性を表2、表
3に併せて示す。なお、表1〜表3において、No.は鋼
板番号を示し、各表に共通である。
The magnetic measurement was performed on a 25 cm Epstein test piece (L +
C) / 2. Tables 2 and 3 also show the magnetic properties of each steel sheet. In Tables 1 to 3, No. indicates the steel sheet number, which is common to each table.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】表1〜表3において、No.1〜No.31の鋼板
の板厚は0.35mmであり、No.33〜No.36の鋼板の板厚は0.
20mm、No.36〜No.38の鋼板の板厚は0.50mmである。同じ
板厚同士で比較した場合、板厚が0.35mmのものについて
は、本発明の実施例であるNo.1〜No.16の鋼板は、いず
れも鉄損W15/50及びW10/400が低い。
In Tables 1 to 3, the steel sheets No. 1 to No. 31 have a thickness of 0.35 mm, and the steel sheets No. 33 to No. 36 have a thickness of 0.3 mm.
The thickness of the steel plates of 20 mm, No. 36 to No. 38 is 0.50 mm. When compared at the same sheet thickness, for those having a sheet thickness of 0.35 mm, the steel sheets of No. 1 to No. 16 which are examples of the present invention all have iron losses W 15/50 and W 10/400. Is low.

【0050】これに対し、No.17の鋼板は、結晶粒径が
本発明の範囲を下回っているため、W15/50の値が本発
明鋼に比して高くなっている。また、No.18の鋼板は、
結晶粒径が本発明の範囲を上回っているため、鉄損W
10/400の値が本発明鋼に比して高くなっている。
On the other hand, the steel sheet of No. 17 has a higher W 15/50 value than the steel of the present invention because the crystal grain size is below the range of the present invention. Also, No. 18 steel plate
Since the crystal grain size exceeds the range of the present invention, the iron loss W
The value of 10/400 is higher than the steel of the present invention.

【0051】No.19の鋼板は、S、Sb+Sn/2、結晶粒径
が本発明の範囲を外れているので、鉄損W15/50及びW
10/400が高くなっている。No.20の鋼板は、Sb+Sn/2が
本発明の範囲を外れているので、鉄損W15/50及びW
10/400が高くなっている。No.21の鋼板は、Sb+Sn/2と
結晶粒径が本発明の範囲を外れているので、鉄損W
15/50及びW10/400が高くなっている。
The steel sheet No.19 is, S, Sb + Sn / 2 , the crystal grain size is outside the scope of the present invention, the iron loss W 15/50 and W
10/400 is higher. In the steel sheet No. 20, since Sb + Sn / 2 is out of the range of the present invention, iron loss W 15/50 and W
10/400 is higher. Since the steel sheet No. 21 has a crystal grain size of Sb + Sn / 2 out of the range of the present invention, the iron loss W
15/50 and W 10/400 are higher.

【0052】No.22の鋼板は、Si+AlとSb+Sn/2が本発
明の範囲を外れているので、鉄損W15/50及びW10/400
が高くなっていると同時に、磁束密度B50が小さくなっ
ている。No.23の鋼板は、Siが本発明の範囲を下回って
いるので、鉄損W15/50及びW10/400が高くなってい
る。No.24の鋼板は、SiとSi+Alが本発明の範囲を上回
っているので、鉄損W15/50及びW10/400は低いが磁束
密度B50が小さくなっている。No.25の鋼板は、Si+Al
が本発明の範囲を上回っているので、鉄損W15/50及び
10/400は低いが磁束密度B50が小さくなっている。
In the steel sheet No. 22, since Si + Al and Sb + Sn / 2 are out of the range of the present invention, the iron losses W 15/50 and W 10/400
At the same time is high, the magnetic flux density B 50 is small. The steel sheet No. 23 has high iron losses W 15/50 and W 10/400 because Si is below the range of the present invention. In the steel sheet No. 24, since Si and Si + Al are beyond the range of the present invention, the iron losses W 15/50 and W 10/400 are low, but the magnetic flux density B 50 is small. No.25 steel plate is Si + Al
Exceeds the range of the present invention, the iron losses W 15/50 and W 10/400 are low, but the magnetic flux density B 50 is low.

【0053】No.26の鋼板は、Alと結晶粒径が本発明の
範囲を外れているので、鉄損W15/50及びW10/400が高
くなっているばかりでなく、磁束密度B50が小さくなっ
ている。NO.27の鋼板は、AlとSi+Alが本発明の範囲を
外れているので、鉄損W15/50及びW10/400は低いが磁
束密度B50が小さくなっている。No.28の鋼板は、結晶
粒径が本発明の範囲を外れているので、鉄損W15/50
びW10/400が高くなっている。なお、Mnも本発明の範囲
より低いので、熱間圧延時の赤熱脆性の問題がある。N
o.29の鋼板は、Mnが本発明の範囲より高いので、磁束密
度B50が小さくなっている。
Since the steel sheet of No. 26 has Al and the crystal grain size outside the range of the present invention, not only the iron loss W 15/50 and W 10/400 are increased but also the magnetic flux density B 50 Is getting smaller. In the steel sheet No. 27, since Al and Si + Al are out of the range of the present invention, the iron losses W 15/50 and W 10/400 are low, but the magnetic flux density B 50 is small. The steel sheet No. 28 has high core loss W 15/50 and W 10/400 because the crystal grain size is out of the range of the present invention. In addition, since Mn is lower than the range of the present invention, there is a problem of red hot brittleness during hot rolling. N
steel o.29, since Mn is higher than the range of the present invention, the magnetic flux density B 50 is small.

【0054】No.30の鋼板は、結晶粒径が本発明の範囲
を外れているので、鉄損W15/50及びW10/400が高くな
っている。なお、Cの範囲も本発明の範囲を外れている
ので、磁気時効の問題を有する。No.31の鋼板は、Nと
結晶粒径が本発明の範囲を外れているので、鉄損W
15/50及びW10/400が高くなっている。
The steel sheet No. 30 has high core loss W 15/50 and W 10/400 because the crystal grain size is out of the range of the present invention. Since the range of C is out of the range of the present invention, there is a problem of magnetic aging. In the steel sheet No. 31, since N and the crystal grain size are out of the range of the present invention, the iron loss W
15/50 and W 10/400 are higher.

【0055】板厚が0.20mmの鋼板についても、本発明鋼
であるNo.32とNo.33の鋼板は、No.34とNo.35の比較鋼に
比して鉄損W15/50及びW10/400が低い。No.34の鋼板
は、S、Sb+Sn/2、結晶粒径がいずれも本発明の範囲を
外れており、No.35の鋼板は、Sb+Sn/2が本発明の範囲
を外れているので、いずれも鉄損W15/50及びW10/400
が高くなっている。
Regarding the steel sheet having a thickness of 0.20 mm, the steel sheets of the present invention No. 32 and No. 33 have the iron loss W 15/50 and the iron loss W 15/50 compared with the comparative steels No. 34 and No. 35. W 10/400 is low. No. 34 steel sheet, S, Sb + Sn / 2, and crystal grain size are all out of the range of the present invention, and No. 35 steel sheet Sb + Sn / 2 is out of the range of the present invention. Also iron loss W 15/50 and W 10/400
Is high.

【0056】板厚が0.5mmの鋼板であるNo.36〜No.38の
鋼板は、いずれも鉄損W15/50及びW10/400が高くなっ
ている。
The steel sheets No. 36 to No. 38, each having a thickness of 0.5 mm, have high iron losses W 15/50 and W 10/400 .

【0057】[0057]

【発明の効果】以上説明したように、本発明において
は、鋼板の成分を、重量%で、C:0.005%以下、Si:
1.5〜3.0%、Mn:0.05〜1.5%、P:0.2%以下、N:0.
005%以下、Al:0.1〜1.0%、Si+Al≦3.5%、S:0.001
%以下、Sb+Sn/2=0.001〜0.05%を含有し、残部が実質
的にFeであるように規定し、かつ、板厚を0.1〜0.35mm
の範囲とし、さらに鋼板中の結晶粒の平均結晶粒径を70
〜200μmに規定しているので、電気自動車用モータコ
ア材に適した、磁束密度が高く、広い周波数域で鉄損の
低い鋼板を得ることができる。加えて、Sb+Sn/2の範囲
を0.001〜0.005%に限定することにより、より低い鉄損
を得ることができる。
As described above, in the present invention, the components of the steel sheet are expressed by weight%, C: 0.005% or less, Si:
1.5-3.0%, Mn: 0.05-1.5%, P: 0.2% or less, N: 0.
005% or less, Al: 0.1 to 1.0%, Si + Al ≦ 3.5%, S: 0.001
% Or less, Sb + Sn / 2 = 0.001 to 0.05%, the balance is specified to be substantially Fe, and the plate thickness is 0.1 to 0.35 mm.
And the average grain size of the crystal grains in the steel sheet is 70
Since the thickness is defined to be about 200 μm, it is possible to obtain a steel sheet having a high magnetic flux density and a low iron loss in a wide frequency range, which is suitable for a motor core material for an electric vehicle. In addition, lower iron loss can be obtained by limiting the range of Sb + Sn / 2 to 0.001 to 0.005%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】0.5mm材におけるS量と仕上焼鈍後の鉄損との
関係を示す図である。
FIG. 1 is a graph showing the relationship between the amount of S in a 0.5 mm material and iron loss after finish annealing.

【図2】0.35mm材におけるS量と仕上焼鈍後の鉄損との
関係を示す図である。
FIG. 2 is a graph showing the relationship between the amount of S in a 0.35 mm material and iron loss after finish annealing.

【図3】S、Sb量と仕上焼鈍後の鉄損との関係を示す図
である。
FIG. 3 is a diagram showing the relationship between the amounts of S and Sb and iron loss after finish annealing.

【図4】Sb量と仕上焼鈍後の鉄損との関係を示す図であ
る。
FIG. 4 is a graph showing the relationship between the amount of Sb and iron loss after finish annealing.

【図5】Sn量と仕上焼鈍後の鉄損との関係を示す図であ
る。
FIG. 5 is a graph showing the relationship between the amount of Sn and iron loss after finish annealing.

【図6】平均結晶粒径と仕上焼鈍後の鉄損との関係を示
す図である。
FIG. 6 is a diagram showing a relationship between an average crystal grain size and iron loss after finish annealing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:1.5〜
3.0%、Mn:0.05〜1.5%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、Si+Al≦3.5%、
S:0.001%以下(0を含む)、Sb+Sn/2=0.001〜0.05
%を含有し、残部が実質的にFeであり、板厚が0.1〜0.3
5mmで、鋼板中の結晶粒の平均結晶粒径が70〜200μmで
ある電気自動車のモータ用電磁鋼板。
(1) C: 0.005% or less by weight, Si: 1.5 to
3.0%, Mn: 0.05-1.5%, P: 0.2% or less, N: 0.005%
The following (including 0): Al: 0.1 to 1.0%, Si + Al ≦ 3.5%,
S: 0.001% or less (including 0), Sb + Sn / 2 = 0.001 to 0.05
%, The balance being substantially Fe, and having a thickness of 0.1 to 0.3.
Electromagnetic steel sheet for motors of electric vehicles, which is 5 mm and has an average crystal grain size of 70 to 200 μm in the steel sheet.
【請求項2】 重量%で、C:0.005%以下、Si:1.5〜
3.0%、Mn:0.05〜1.5%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、Si+Al≦3.5%、
S:0.001%以下(0を含む)、Sb+Sn/2=0.001〜0.005
%を含有し、残部が実質的にFeであり、板厚が0.1〜0.3
5mmで、鋼板中の結晶粒の平均結晶粒径が70〜200μmで
ある電気自動車のモータ用電磁鋼板。
2. C: 0.005% or less in weight%, Si: 1.5 to
3.0%, Mn: 0.05-1.5%, P: 0.2% or less, N: 0.005%
The following (including 0): Al: 0.1 to 1.0%, Si + Al ≦ 3.5%,
S: 0.001% or less (including 0), Sb + Sn / 2 = 0.001 to 0.005
%, The balance being substantially Fe, and having a thickness of 0.1 to 0.3.
Electromagnetic steel sheet for motors of electric vehicles, which is 5 mm and has an average crystal grain size of 70 to 200 μm in the steel sheet.
JP9273360A 1997-03-18 1997-09-22 Silicon steel sheet for electric automobile motor Pending JPH1192891A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9273360A JPH1192891A (en) 1997-09-22 1997-09-22 Silicon steel sheet for electric automobile motor
US09/041,335 US6139650A (en) 1997-03-18 1998-03-12 Non-oriented electromagnetic steel sheet and method for manufacturing the same
CA 2232129 CA2232129C (en) 1997-03-18 1998-03-16 Non-oriented electromagnetic steel sheet and method for manufacturing the same
KR1019980009115A KR100268612B1 (en) 1997-03-18 1998-03-17 Method of producing non oriented silicon steel sheets having an excellent electromagnetic property
CN98105708A CN1083494C (en) 1997-03-18 1998-03-17 Non-oriented electrical steel sheet and method for manufacturing the same
EP98104900A EP0866144B1 (en) 1997-03-18 1998-03-18 Non-oriented electromagnetic steel sheet and method for manufacturing the same
DE69832313T DE69832313T2 (en) 1997-03-18 1998-03-18 Non-oriented electromagnetic steel sheet and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9273360A JPH1192891A (en) 1997-09-22 1997-09-22 Silicon steel sheet for electric automobile motor

Publications (1)

Publication Number Publication Date
JPH1192891A true JPH1192891A (en) 1999-04-06

Family

ID=17526822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9273360A Pending JPH1192891A (en) 1997-03-18 1997-09-22 Silicon steel sheet for electric automobile motor

Country Status (1)

Country Link
JP (1) JPH1192891A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122361A1 (en) * 2004-06-09 2005-12-22 Jtekt Corporation Electric motor and electric power steering device
JP2008127600A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2008127612A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2008127608A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2012036459A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
EP2832866A4 (en) * 2012-03-27 2015-11-11 Nam-Hoe Heo (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
JP2019507243A (en) * 2015-12-23 2019-03-14 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
WO2021210672A1 (en) 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122361A1 (en) * 2004-06-09 2005-12-22 Jtekt Corporation Electric motor and electric power steering device
JPWO2005122361A1 (en) * 2004-06-09 2008-04-10 株式会社ジェイテクト Electric motor and electric power steering device
JP2008127600A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2008127612A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2008127608A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2012036459A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
EP2832866A4 (en) * 2012-03-27 2015-11-11 Nam-Hoe Heo (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
JP2019507243A (en) * 2015-12-23 2019-03-14 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
WO2021210672A1 (en) 2020-04-16 2021-10-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
KR20220152579A (en) 2020-04-16 2022-11-16 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101499371B1 (en) Method for producing non-oriented magnetic steel sheet
EP4137600A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JPH1192891A (en) Silicon steel sheet for electric automobile motor
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP3486230B2 (en) Manufacturing method of non-oriented electrical steel sheet for electric vehicles
TW202117035A (en) Non-oriented electromagnetic steel sheet and method for producing same
JP2000282191A (en) Steel sheet for laminated core excellent in magnetic property
JP2888227B2 (en) Magnetic steel sheet for high frequency motor
JP2888229B2 (en) Non-oriented electrical steel sheet for high frequency
JPH11293426A (en) Non-oriented silicon steel sheet excellent in fatigue property
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH1161260A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP3997656B2 (en) Manufacturing method of steel plate for electric power steering motor core
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JP2000282190A (en) Steel sheet for alternator core excellent in magnetic property
JP2003247052A (en) Nonoriented silicon steel sheet having excellent high frequency property
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss
CN115380131A (en) Non-oriented electromagnetic steel sheet and method for producing same
JPH11233328A (en) Non-oriented magnetic steel sheet having superior fatigue characteristic
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JP2000160303A (en) Nonoriented silicon steel sheet for high-frequency

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040712