[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017104885A1 - Crucible for metal thin film deposition and evaporation source for metal thin film deposition - Google Patents

Crucible for metal thin film deposition and evaporation source for metal thin film deposition Download PDF

Info

Publication number
WO2017104885A1
WO2017104885A1 PCT/KR2015/014031 KR2015014031W WO2017104885A1 WO 2017104885 A1 WO2017104885 A1 WO 2017104885A1 KR 2015014031 W KR2015014031 W KR 2015014031W WO 2017104885 A1 WO2017104885 A1 WO 2017104885A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
thin film
metal thin
metal
depositing
Prior art date
Application number
PCT/KR2015/014031
Other languages
French (fr)
Korean (ko)
Inventor
박현식
최재수
오영만
Original Assignee
주식회사 선익시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 선익시스템 filed Critical 주식회사 선익시스템
Priority to CN201580085778.XA priority Critical patent/CN108713262B/en
Publication of WO2017104885A1 publication Critical patent/WO2017104885A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to a crucible for metal thin film deposition and an evaporation source for metal thin film deposition. More specifically, the present invention relates to a crucible for depositing a metal thin film and an evaporation source for depositing a metal thin film that can be prevented from being damaged even when the crucible is heated to a high temperature and then cooled to deposit a vaporized material of a metal.
  • OLED Organic Luminescence Emitting Device
  • OLED is a self-luminous device that emits light when a current flows through a fluorescent organic compound.It is light and thin because it does not need a backlight for applying light to a non-emitting device.
  • the flat panel display device can be manufactured.
  • the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer which are the remaining constituent layers except the anode and the cathode electrode, are organic thin films, and the anode and the cathode electrodes are metal thin films.
  • the organic thin film and the metal thin film of the organic electroluminescent device may be deposited on a substrate by vacuum thermal evaporation.
  • the vacuum thermal evaporation method may be performed by placing an substrate in a vacuum chamber and filling an evaporation source (called a raw material or a deposition material) with an evaporation source.
  • the crucible is heated to deposit evaporated particles on the substrate.
  • magnesium (Mg) is 500 to 600 ° C
  • silver (Ag) is at least 1000 ° C
  • Aluminum (Al) is evaporated to about 1000 °C so that the crucible of the evaporation source is heated to a very high temperature.
  • the evaporation material of the evaporation source is exhausted during the deposition process, the evaporation material is charged again.
  • the temperature of the crucible is gradually increased to recharge the evaporation material of the metal because the evaporation material is sublimed at a very high temperature. Should be cooled slowly. This is because if the crucible is rapidly cooled, the crucible is damaged by stressing the crucible due to the rapid volume reduction of the evaporation material of the metal.
  • the cooling of the crucible has a great influence on the process tack time.
  • the evaporation material of the metal needs to be increased again for deposition. This significantly increases the process tack time.
  • the present invention provides a crucible for depositing a metal thin film and an evaporation source for depositing a metal thin film that can be prevented from being damaged even when the crucible is heated to a high temperature and then cooled to deposit a vaporized material of a metal.
  • the present invention provides a crucible for depositing a metal thin film and an evaporation source for depositing a metal thin film, which can be prevented from being damaged by rapid cooling of the crucible, thereby reducing the metal evaporation material filling time, thereby reducing the overall process time.
  • a metal thin film deposition crucible for forming a metal thin film on a substrate while the evaporation material of the metal is received and melted and sublimed according to heating, the body portion having an open top; A stepped part extending inwardly from an inner wall of the body part to form a first melting hole in a depth direction in the center of the body part, and a plurality of concentric circles along the stepped part with respect to the first melting hole; A crucible for depositing a metal thin film, in which a second melting hole is formed, is provided.
  • the stepped portion may be downwardly formed at a position higher than a maximum liquid level of the molten metal evaporation material.
  • a diffusion unit may be formed on the first melting hole and the second melting hole to integrate the first melting hole and the second melting hole.
  • the second melting hole may have a circular cross section or a circular arc shape.
  • the depth of the second melting hole may be smaller than the depth of the first melting hole.
  • the metal thin film deposition crucible may include: an inner housing in which the body portion is built so that an outer surface of the metal thin film is in contact with an inner surface thereof;
  • the inner housing may further include an outer housing in which the inner housing is embedded such that the outer surface of the inner housing contacts.
  • the inner housing may be made of a material containing aluminum nitride (AIN: aluminum nitride), and the outer housing may be made of a material containing pyrolytic boron nitride (PBN).
  • AIN aluminum nitride
  • PBN pyrolytic boron nitride
  • the metal evaporation material may be aluminum.
  • the metal thin film deposition crucible Is provided on the outer periphery of the crucible is provided with an evaporation source for metal thin film deposition comprising a heater unit for heating the crucible so that the metal evaporation material is melted and sublimed.
  • the crucible even if the crucible is heated and cooled to a high temperature to heat the evaporation material of the metal, it is possible to prevent the crucible from being damaged.
  • 1 is a view showing the stress simulation results of the crucible according to the heating of the evaporation source.
  • Figure 2 is a perspective view schematically showing a crucible for metal thin film deposition according to a first embodiment of the present invention.
  • Figure 3 is a plan view schematically showing a crucible for depositing a metal thin film according to a first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. 3.
  • FIG. 5 is a cross-sectional view schematically showing an evaporation source for metal thin film deposition having a crucible for metal thin film deposition according to a first embodiment of the present invention.
  • FIG. 6 is a state diagram of use of the evaporation source for metal thin film deposition having the crucible for metal thin film deposition according to the first embodiment of the present invention.
  • Figure 7 is a plan view schematically showing a crucible for metal thin film deposition according to a second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along line BB ′ of FIG. 7.
  • FIG. 9 is a plan view schematically showing a crucible for depositing a metal thin film according to a third embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line CC ′ of FIG. 9.
  • FIG. 11 is a plan view schematically showing a part of the crucible for depositing a metal thin film according to a fourth embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a crucible for metal thin film deposition according to a fourth embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a view showing the stress simulation results of the crucible according to the heating of the evaporation source. 1 illustrates a stress state of the crucible 100 when a crucible 100 made of graphite material is filled with aluminum with an evaporation material and heated, and the molten aluminum melts as it is heated. The phase change to the liquid aluminum, it was found that the highest stress 300 is generated at the interface between the free surface 200 and the crucible 100 of the molten aluminum.
  • a crucible for depositing a metal thin film which can be prevented from being damaged when the evaporation source is cooled for recharging the evaporation material or maintaining the deposition apparatus while heated to a high temperature for the deposition of metal evaporation material. I would like to present.
  • FIG. 2 is a perspective view schematically showing a crucible 10 for depositing a metal thin film according to a first embodiment of the present invention
  • FIG. 3 is a schematic view illustrating a crucible 10 for depositing a metal thin film according to a first embodiment of the present invention.
  • 4 is a cross-sectional view taken along line AA ′ of FIG. 3.
  • 5 is a cross-sectional view schematically showing an evaporation source for depositing a metal thin film having a crucible 10 for depositing a metal thin film according to a first embodiment of the present invention
  • FIG. 6 is a view showing a first embodiment of the present invention. It is a state of use of the evaporation source 30 for metal thin film deposition provided with the crucible 10 for metal thin film deposition.
  • the crucible 10 the body portion 12, the diffusion portion 14, the first melting hole 16, the stepped portion 18, the second melting hole 20, and the flange 22.
  • the metal evaporation material 24, the liquid level 26, the heater portion 28, the evaporation source 30, and the substrate 32 are shown.
  • the crucible 10 for depositing a metal thin film is a crucible 10 for depositing a metal thin film to form a metal thin film on the substrate 32 while the metal evaporation material 24 is received and melted and sublimed with heating.
  • a top portion of the container shape body portion 12 is opened; And a stepped portion 18 extending inwardly from an inner wall of the body portion 12 so that a first melting hole 16 is formed in a depth direction in the center of the body portion 12.
  • a plurality of second melting holes 20 are formed along the stepped portion 18 in a concentric manner around the melting hole 16.
  • the evaporation material 24 of the metal is accommodated in the crucible 10 for depositing the metal thin film according to the present embodiment, and the metal evaporation material 24 is sublimed while being heated to form a metal thin film on the substrate 32. Done. At this time, as the metal evaporation material 24, magnesium (Mg), silver (Ag), aluminum (Al) may be applied.
  • the body portion 12 has a container shape with an open top.
  • a metal evaporation material 24 in a pellet form may be accommodated in the body part 12, and the metal evaporation material 24 is sublimed while the metal evaporation material 24 melts as the heater part is heated around the body part 12. It blows off to the substrate 32 through the open top of the part 12.
  • the inside of the body part 12 includes melting holes 16 and 20 through which the metal evaporation material 24 is melted, and a diffusion part 14 communicating with the melting holes 16 and 20 thereon.
  • the melting holes 16 and 20 are where the above-mentioned solid metal evaporation material 24 is melted and accommodated, and the metal evaporation material 24 melted in the melting holes 16 and 20 diffuses as the phase changes into gas. It blows off to the board
  • the diffusion part 14 is ejected toward the substrate 32 while the evaporation materials 24 phase-changed into gases in the plurality of melting holes 16 and 20 are mixed with each other.
  • the stepped portion 18 is formed to extend inward from the inner wall of the body portion 12 so that the first melting hole 16 is formed in the center of the body portion 12 in the depth direction.
  • the stepped portion 18 is formed to extend toward the center from the inside of the body portion 12, the stepped portion 18 is formed along the inside of the body portion 12 is formed in the center of the body portion 12
  • the first melting hole 16 may be formed.
  • the metal evaporation material 24 described above is melted and received in the first melting hole 16.
  • the thickness of the crucible 10 forms a step in the depth direction of the crucible 10.
  • the plurality of second melting holes 20 are spaced apart from each other in the depth direction in the step portion 18 along the outer circumference of the step portion 18 in the form of concentric circles around the first melting hole 16. Like the first melting hole 16, the metal evaporation material 24 is melted and accommodated in the second melting hole 20.
  • the thickness of the crucible 10 is increased in the breaker portion 18 so that heat generated from the heater portion is transferred into the crucible 10. It is difficult to transfer, making it difficult to control the high temperature metal evaporation material 24.
  • the stepped portion 18 is formed downward at a position higher than the highest liquid level 26 of the molten metal evaporation material 24.
  • the evaporation material 24 of the metal contained in the crucible 10 is melted by heating to phase-change into a liquid evaporation material 24, the free surface and the crucible of the evaporation material 24 in the molten state Since the highest stress is generated at the interface of the (10), in order to prevent the crucible (10) from being damaged, the stepped portion (18) is a crucible at a position higher than the highest level (26) of the molten metal evaporation material (24). 10) is formed downward in the depth direction.
  • the liquid level 26 of the evaporation material 24 in the molten state is located at the step 18. Therefore, damage to the crucible 10 is prevented.
  • the height of the stepped portion 18 may be determined when the crucible 10 is designed. That is, the height of the stepped portion 18 may be determined by determining the volume of the metal evaporation material 24 accommodated and melting in the crucible 10 and the volume of the melting holes 16 and 20 inside the crucible 10. have.
  • the diffusion part 14 which integrates the first melting hole 16 and the second melting hole 20 is formed on the first melting hole 16 and the second melting hole 20.
  • the first melting is achieved by setting the formation height of the stepped portion 18 to a position higher than the highest liquid level 26 of the molten metal evaporation material 24 but below a predetermined depth at the upper end of the body portion 12.
  • An upper portion of the hole 16 and the second melting hole 20 may be formed with one diffusion part 14 which is integrated while communicating with the first melting hole 16 and the second melting hole 20.
  • Evaporating material 24 in a gaseous state sublimed while melting in the first melting hole 16 and the second melting hole 20 flows into the diffusion part 14 and is mixed with each other and ejected in a predetermined distribution from the top of the crucible 10. do.
  • the gas state is ejected from each of the first melting hole 16 and the second melting hole 20. Since the distribution of the evaporation material 24 is different from each other, it is difficult to deposit a predetermined thickness on the substrate 32.
  • the cross section of the second melting hole 20 may have a circular or rounded arc shape. 3, the second melting hole 20 has a circular cross section.
  • the stress due to the phase change of the metal evaporation material 24 may be dispersed without being concentrated in one place.
  • stress may be concentrated in accordance with the phase change of the metal evaporation material 24 in the corner portion of the polygon, which may cause damage to the crucible.
  • the depth of the second melting hole 20 may be smaller than the depth of the first melting hole 16. Accordingly, the thickness of the bottom of the second melting hole 20 is thicker than the thickness of the bottom of the first melting hole 16.
  • the liquid level 26 of the evaporation material 24 in the molten state is gradually lowered.
  • the evaporation material 24 in the crucible 10 is almost exhausted and the liquid level 26 of the evaporation material 24 is exhausted.
  • the crucible 10 is located at the bottom of the crucible 10
  • the second melting hole 20 is located outside of the crucible 10, when the liquid level 26 of the evaporation material 24 is lowered, damage may occur at the bottom thereof.
  • the depth of the second melting hole 20 is formed to be smaller than the depth of the first melting hole 16 so as to be formed thicker than the thickness.
  • the crucible 10 for depositing a metal thin film may be made of refractory materials, such as graphite, pyrolytic boron nitride (PBN), boron nitride (BN), alumina (Al 2 O 3 ), At least one material selected from aluminum nitride (AlN), molybdenum (Mo), tungsten (W), and tantalum (Ta) may be used.
  • refractory materials such as graphite, pyrolytic boron nitride (PBN), boron nitride (BN), alumina (Al 2 O 3 ), At least one material selected from aluminum nitride (AlN), molybdenum (Mo), tungsten (W), and tantalum (Ta) may be used.
  • FIG. 5 shows an evaporation source 30 for depositing a metal thin film having a crucible 10 for depositing a metal thin film according to the present embodiment
  • FIG. 6 is provided with a crucible 10 for depositing a metal thin film according to the present embodiment.
  • a state of use of an evaporation source 30 for depositing a metal thin film is shown.
  • the above-described metal thin film deposition crucible 10 is inserted into the metal thin film deposition evaporation source 30 for heating it, and as the heater unit 28 heats the crucible 10, the metal evaporation inside the crucible 10.
  • the material 24 is melted and sublimed to perform deposition on the substrate 32.
  • the heater 28 is disposed on the outer circumference of the crucible 10 to heat the crucible 10 so that the metal evaporation material 24 is melted and sublimed.
  • the outer circumference of the heater unit 28 may be provided with a reflector (not shown) for reflecting the heat generated from the heater unit 28 back toward the crucible 10.
  • the heater unit 28 may be manufactured in a cylindrical shape in which a heating wire is disposed therein, and a flange 22 is formed at an upper end of the crucible 10 for depositing a metal thin film, so that the crucible 10 is disposed in the heater unit 28.
  • the flange 22 may be configured to be supported by the heater unit 28 while being inserted.
  • the evaporation source 30 for depositing the metal thin film having the crucible 10 for depositing the metal thin film according to the present embodiment is, as shown in FIG. 6, the substrate 32 in a vacuum chamber (not shown) in a vacuum state. Are arranged opposite.
  • the solid metal evaporation material 24 is melted in accordance with the heating of the crucible 10 and is phase-changed into the liquid metal evaporation material 24, and then the substrate is ejected from the crucible 10 while being sublimated into a gas and disposed to face each other. Is deposited on 32.
  • FIG. 7 is a plan view schematically illustrating a crucible 10 for depositing a metal thin film according to a second embodiment of the present invention
  • FIG. 8 is a cross-sectional view taken along line BB ′ of FIG. 7.
  • the crucible 10 the body portion 12, the diffusion portion 14, the first melting hole 16, the stepped portion 18, the second melting hole 20 ′, and the flange 22.
  • Metal evaporation material 24 and liquid level 26 are shown.
  • a cross section of each second melting hole 20 ′ formed concentrically on the outer circumference of the first melting hole 16 is formed in an arc shape having a rounded corner.
  • the plurality of second melting holes 20 ′ form a circular shape as a whole.
  • the cross section of the second melting hole 20 ′ is formed in an arc shape having rounded corners, so that the stress due to the phase change of the evaporation material 24 of the metal may be dispersed without being concentrated in one place.
  • the height of the step portion 18 is formed downward at a position higher than the highest liquid level 26 of the metal evaporation material 24 to be melted, and the second melting hole 20 ') Is formed smaller than the depth of the first melting hole (16).
  • Other components are the same as those of the first embodiment described above, and thus description thereof will be omitted.
  • FIG. 9 is a plan view schematically illustrating a crucible 10 for depositing a metal thin film according to a third exemplary embodiment of the present invention
  • FIG. 10 is a cross-sectional view taken along the line CC ′ of FIG. 9.
  • the crucible 10 the body portion 12, the diffusion portion 14, the first melting hole 16, the stepped portion 18, the second melting hole 20 ′′ and the flange ( 22, metal evaporation material 24, liquid level 26 is shown.
  • the crucible 10 for depositing the metal thin film according to the present embodiment has a shape in which two concentric second melting holes 20 ′ and 20 ′′ are formed around the first melting hole 16. As the second melt holes 20 'and 20' 'are formed in multiple, the cross-sectional size of the first melt holes 16 is reduced, and concentric second melt holes 20' and 20 '' are formed around the second melt holes 20 'and 20' '. Concentric form of multiple forms. In the present embodiment, the depth of the outermost second melting hole 20 ′ may be smaller than the depth of the inner second melting hole 20 ′′ for the same reason as described above.
  • FIG. 11 is a schematic cross-sectional view of a crucible 10 for depositing a metal thin film according to a fourth embodiment of the present invention.
  • 12 is a plan view schematically illustrating a body 12 of the crucible 10 for depositing a metal thin film according to a fourth embodiment of the present invention
  • FIG. 13 is a cross-sectional view taken along the line D-D 'of FIG. 12. to be.
  • the crucible 10 the body part 12, the diffusion part 14, the first melting hole 16, the stepped part 18, the second melting hole 20, and the metal evaporation material 24 are illustrated.
  • the liquid level 26, the inner housing 34, and the outer housing 36 are shown.
  • the crucible 10 for depositing a metal thin film according to the present embodiment is configured in multiple forms to enhance the strength of the crucible 10.
  • the crucible 10 for depositing a metal thin film according to the present embodiment has a shape in which an inner housing 34 and an outer housing 36 are disposed on an outer side of the body portion 12 of the above-described type. That is, the crucible 10 according to the present embodiment has an inner housing 34 in which the body portion 12 is embedded so that the outer surface of the body portion 12 is in contact with the inner surface, and an outer surface of the inner housing 34 on the inner surface. It includes an outer housing 36 in which the inner housing 34 is built in contact.
  • the crucible 10 is composed of a body portion 12, an inner housing 34, and an outer housing 36 to improve the strength of the crucible 10 to prevent breakage of the crucible 10.
  • the inner housing 34 and the outer housing 36 may be made of refractory.
  • the inner housing 34 is formed of a material including aluminum nitride (AIN), and the outer housing 36 is formed. It was formed of a material containing pyrolytic boron nitride (PBN: Pyrolytic Boron Nitride). Pyrolysis boron nitride is a refractory material so that the heat heated in the heater unit 28 is evenly distributed into the crucible 10 through the outer housing 36 due to the properties of the material, and aluminum nitride is a material having excellent heat resistance and high thermal conductivity. It serves to directly transfer the heat transferred from the outer housing 36 made of boron nitride to the inner body portion 12.
  • PBN Pyrolytic Boron Nitride
  • the inner body portion 12 may be formed as shown in the first to third embodiments above. However, referring to FIG. 13, when the bottom of the body portion 12 is formed to have a thick thickness to prevent breakage at the bottom, the depths of the first melting hole 16 and the second melting hole 20 are the same. Can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An aspect of the present invention provides a crucible for metal thin film deposition, in which a vaporized material of a metal is contained and melted then sublimated by heating to form a metal thin film on a substrate, the crucible comprising: a body part of a container shape with an open upper end; and a stepped part extending inward from an inner wall of the body part so as to form a first melting hole in a depth direction at the center of the body part, wherein a plurality of second melting holes are concentrically formed along the stepped part around the first melting hole.

Description

금속 박막 증착용 도가니 및 금속 박막 증착용 증발원Crucible for metal thin film deposition and evaporation source for metal thin film deposition
본 발명은 금속 박막 증착용 도가니 및 금속 박막 증착용 증발원에 관한 것이다. 보다 상세하게는, 금속의 증발물질을 증착하기 위해 고온으로 도가니를 가열한 후 냉각하더라도 도가니의 파손이 방지될 수 있는 금속 박막 증착용 도가니 및 금속 박막 증착용 증발원에 관한 것이다.The present invention relates to a crucible for metal thin film deposition and an evaporation source for metal thin film deposition. More specifically, the present invention relates to a crucible for depositing a metal thin film and an evaporation source for depositing a metal thin film that can be prevented from being damaged even when the crucible is heated to a high temperature and then cooled to deposit a vaporized material of a metal.
유기 전계 발광소자(Organic Luminescence Emitting Device: OLED)는 형광성 유기화합물에 전류가 흐르면 빛을 내는 전계 발광현상을 이용하는 자발광소자로서, 비발광소자에 빛을 가하기 위한 백라이트가 필요하지 않기 때문에 경량이고 박형의 평판표시장치를 제조할 수 있다.Organic Luminescence Emitting Device (OLED) is a self-luminous device that emits light when a current flows through a fluorescent organic compound.It is light and thin because it does not need a backlight for applying light to a non-emitting device. The flat panel display device can be manufactured.
유기 전계 발광 소자는, 애노드 및 캐소드 전극을 제외한 나머지 구성층인 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등이 유기 박막으로 되어 있고, 애노드 및 캐소드 전극은 금속 박막으로 되어 있다.In the organic electroluminescent device, the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer, which are the remaining constituent layers except the anode and the cathode electrode, are organic thin films, and the anode and the cathode electrodes are metal thin films.
유기 전계 발광 소자의 유기 박막과 금속 박막은 진공열증착법으로 기판 상에 증착될 수 있는데, 진공열증착법은 진공챔버 내에 기판을 배치하고, 증발물질(원료 물질 또는 증착 물질이라고 함)이 채워진 증발원의 도가니를 가열하여 도가니에서 증발되는 증발입자를 기판 상에 증착하는 방식으로 이루어진다. The organic thin film and the metal thin film of the organic electroluminescent device may be deposited on a substrate by vacuum thermal evaporation. The vacuum thermal evaporation method may be performed by placing an substrate in a vacuum chamber and filling an evaporation source (called a raw material or a deposition material) with an evaporation source. The crucible is heated to deposit evaporated particles on the substrate.
일반적으로 유기물 재료의 증발을 진행되는 동안 증발원의 온도는 대략 300℃에 이르게 되나, 전극 등의 금속 박막을 형성하는 경우에는 마그네슘(Mg)은 500~600℃, 은(Ag)은 1000℃ 이상, 알루미늄(Al)은 1000℃ 내외에서 증발하게 되어 증발원의 도가니가 매우 고온으로 가열되게 된다.In general, during evaporation of organic materials, the temperature of the evaporation source reaches approximately 300 ° C. However, when forming a metal thin film such as an electrode, magnesium (Mg) is 500 to 600 ° C, silver (Ag) is at least 1000 ° C, Aluminum (Al) is evaporated to about 1000 ℃ so that the crucible of the evaporation source is heated to a very high temperature.
한편, 증착이 진행되는 동안 증발원의 증발물질이 소진되면 다시 증발물질을 충전하게 되는데, 금속 증착의 경우 매우 고온에서 증발물질의 승화가 이루어지기 때문에 금속의 증발물질의 재충전을 위해서는 도가니의 온도를 단계적으로 서서히 냉각시켜야 한다. 도가니를 급하게 냉각하면 금속의 증발물질의 급격한 체적 감소로 인해 도가니에 스트레스를 가하여 도가니가 파손되기 때문이다.On the other hand, when the evaporation material of the evaporation source is exhausted during the deposition process, the evaporation material is charged again. In the case of metal deposition, the temperature of the crucible is gradually increased to recharge the evaporation material of the metal because the evaporation material is sublimed at a very high temperature. Should be cooled slowly. This is because if the crucible is rapidly cooled, the crucible is damaged by stressing the crucible due to the rapid volume reduction of the evaporation material of the metal.
그런데, 이러한 도가니의 냉각은 공정 택 타임에 큰 영향을 끼치게 되는데, 도가니의 단계적인 냉각과 함께 냉각 후 도가니에 증발물질이 충전되면 증착을 위해 다시 도가니의 온도를 높여야 하기 때문에 금속의 증발물질의 충전에 의해 공정 택 타임이 상당히 증가하게 된다.However, the cooling of the crucible has a great influence on the process tack time. When the evaporation material is charged into the crucible after cooling with the stepwise cooling of the crucible, the evaporation material of the metal needs to be increased again for deposition. This significantly increases the process tack time.
본 발명은, 금속의 증발물질을 증착하기 위해 고온으로 도가니를 가열한 후 냉각하더라도 도가니의 파손이 방지될 수 있는 금속 박막 증착용 도가니 및 금속 박막 증착용 증발원을 제공한다.The present invention provides a crucible for depositing a metal thin film and an evaporation source for depositing a metal thin film that can be prevented from being damaged even when the crucible is heated to a high temperature and then cooled to deposit a vaporized material of a metal.
또한, 도가니의 급속한 냉각에도 파손이 방지되어 금속 증발물질 충전시간을 감소시켜 전체적으로 공정의 택 타임을 줄일 수 있는 금속 박막 증착용 도가니 및 금속 박막 증착용 증발원을 제공한다.In addition, the present invention provides a crucible for depositing a metal thin film and an evaporation source for depositing a metal thin film, which can be prevented from being damaged by rapid cooling of the crucible, thereby reducing the metal evaporation material filling time, thereby reducing the overall process time.
본 발명의 일 측면에 따르면, 금속의 증발물질이 수용되고 가열에 따라 용융되어 승화되면서 기판에 금속 박막을 형성하는 금속 박막 증착용 도가니로서, 상단이 개방된 용기 형상의 몸체부와; 상기 몸체부 내부의 중앙에 깊이 방향으로 제1 용융홀이 형성되도록 상기 몸체부의 내벽에서 내측으로 연장되어 형성되는 단턱부를 포함하며, 상기 제1 용융홀을 중심으로 동심원 형태로 상기 단턱부를 따라 복수의 제2 용융홀이 형성되는, 금속 박막 증착용 도가니가 제공된다.According to an aspect of the present invention, a metal thin film deposition crucible for forming a metal thin film on a substrate while the evaporation material of the metal is received and melted and sublimed according to heating, the body portion having an open top; A stepped part extending inwardly from an inner wall of the body part to form a first melting hole in a depth direction in the center of the body part, and a plurality of concentric circles along the stepped part with respect to the first melting hole; A crucible for depositing a metal thin film, in which a second melting hole is formed, is provided.
상기 단턱부는, 상기 융용된 금속 증발물질의 최고 액위(liquid level)보다 높은 위치에서 하향 형성될 수 있다.The stepped portion may be downwardly formed at a position higher than a maximum liquid level of the molten metal evaporation material.
상기 제1 용융홀 및 상기 제2 용융홀의 상부에는 상기 제1 용융홀 및 상기 제2 용융홀을 통합하는 확산부가 형성될 수 있다.A diffusion unit may be formed on the first melting hole and the second melting hole to integrate the first melting hole and the second melting hole.
상기 제2 용융홀은, 단면이 원형 또는 모서리가 둥근 원호 형상일 수 있다.The second melting hole may have a circular cross section or a circular arc shape.
상기 제2 용융홀의 깊이는 상기 제1 용융홀의 깊이 보다 작을 수 있다.The depth of the second melting hole may be smaller than the depth of the first melting hole.
상기 금속 박막 증착용 도가니는, 내면에 상기 몸체부의 외면이 접하도록 상기 몸체부가 내장되는 내부하우징과; 내면에 상기 내부하우징의 외면이 접하도록 상기 내부하우징이 내장되는 외부하우징을 더 포함할 수 있다.The metal thin film deposition crucible may include: an inner housing in which the body portion is built so that an outer surface of the metal thin film is in contact with an inner surface thereof; The inner housing may further include an outer housing in which the inner housing is embedded such that the outer surface of the inner housing contacts.
상기 내부하우징은 질화알루미늄(AIN:aluminum nitride)을 포함하는 재질로 이루어질 수 있고, 상기 외부하우징은 열분해 질화붕소(PBN:Pyrolytic Boron Nitride)를 포함하는 재질로 이루어질 수 있다.The inner housing may be made of a material containing aluminum nitride (AIN: aluminum nitride), and the outer housing may be made of a material containing pyrolytic boron nitride (PBN).
상기 금속 증발물질은 알루미늄(Aluminum)일 수 있다. The metal evaporation material may be aluminum.
본 발명의 다른 측면에 따르면, 상기 금속 박막 증착용 도가니와; 상기 도가니의 외주에 배치되어 상기 금속 증발물질이 용융되어 승화되도록 상기 도가니를 가열하는 히터부를 포함하는, 금속 박막 증착용 증발원이 제공된다.According to another aspect of the present invention, the metal thin film deposition crucible; Is provided on the outer periphery of the crucible is provided with an evaporation source for metal thin film deposition comprising a heater unit for heating the crucible so that the metal evaporation material is melted and sublimed.
본 발명의 실시예에 따르면, 금속의 증발물질을 가열하기 위해 고온으로 도가니를 가열하고 냉각하더라도 도가니의 파손이 방지할 수 있다.According to the embodiment of the present invention, even if the crucible is heated and cooled to a high temperature to heat the evaporation material of the metal, it is possible to prevent the crucible from being damaged.
또한, 도가니의 급속한 냉각에도 파손이 방지되어 금속 증발물질 충전시간을 감소시켜 전체적으로 공정의 택 타임을 줄일 수 있다.In addition, breakage is prevented even by rapid cooling of the crucible, thereby reducing the metal evaporation material filling time, thereby reducing the overall tack time of the process.
도 1은 증발원의 가열에 따른 도가니의 응력 시뮬레이션 결과를 나타낸 도면.1 is a view showing the stress simulation results of the crucible according to the heating of the evaporation source.
도 2는 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니를 개략적으로 도시한 사시도. Figure 2 is a perspective view schematically showing a crucible for metal thin film deposition according to a first embodiment of the present invention.
도 3은 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니를 개략적으로 도시한 평면도.Figure 3 is a plan view schematically showing a crucible for depositing a metal thin film according to a first embodiment of the present invention.
도 4는 도 3의 A-A'선에 따른 단면도.4 is a cross-sectional view taken along line AA ′ of FIG. 3.
도 5는 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니를 구비한 금속 박막 증착용 증발원을 개략적으로 도시한 단면도.5 is a cross-sectional view schematically showing an evaporation source for metal thin film deposition having a crucible for metal thin film deposition according to a first embodiment of the present invention.
도 6은 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니를 구비한 금속 박막 증착용 증발원의 사용상태도.6 is a state diagram of use of the evaporation source for metal thin film deposition having the crucible for metal thin film deposition according to the first embodiment of the present invention.
도 7은 본 발명의 제2 실시예에 따른 금속 박막 증착용 도가니를 개략적으로 도시한 평면도.Figure 7 is a plan view schematically showing a crucible for metal thin film deposition according to a second embodiment of the present invention.
도 8은 도 7의 B-B'선에 따른 단면도.8 is a cross-sectional view taken along line BB ′ of FIG. 7.
도 9는 본 발명의 제3 실시예에 따른 금속 박막 증착용 도가니를 개략적으로 도시한 평면도.9 is a plan view schematically showing a crucible for depositing a metal thin film according to a third embodiment of the present invention.
도 10은 도 9의 C-C'선에 따른 단면도.10 is a cross-sectional view taken along the line CC ′ of FIG. 9.
도 11은 본 발명의 제4 실시예에 따른 금속 박막 증착용 도가니의 일부를 개략적으로 도시한 평면도.11 is a plan view schematically showing a part of the crucible for depositing a metal thin film according to a fourth embodiment of the present invention.
도 12는 도 11의 D-D'선에 따른 단면도.12 is a cross-sectional view taken along the line D-D 'of FIG.
도 13은 본 발명의 제4 실시예에 따른 금속 박막 증착용 도가니를 개략적으로 도시한 단면도.13 is a schematic cross-sectional view of a crucible for metal thin film deposition according to a fourth embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
이하, 본 발명에 따른 금속 박막 증착용 도가니 및 금속 박막 증착용 증발원 을 첨부한 도면을 참조하여 상세히 설명하기로 하며, 첨부한 도면을 참조하여 설명함에 있어서, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, a crucible for depositing a metal thin film and an evaporation source for depositing a metal thin film according to the present invention will be described in detail with reference to the accompanying drawings. In the description with reference to the accompanying drawings, the same or corresponding components are the same reference numerals. And duplicate description thereof will be omitted.
먼저, 본 실시예에 따른 금속 박막 증착용 도가니를 살펴보기 전에, 도 1을 참조하여, 증착 과정에서의 도가니의 응력 상태를 살펴본다. 도 1은 증발원의 가열에 따른 도가니의 응력 시뮬레이션 결과를 나타낸 도면이다. 도 1은 그라파이트(graphite) 재질의 도가니(100)에 알루미늄(Aluminum)을 증발물질로 충전하고 가열하여 용융 상태일 때 도가니(100)의 응력 상태를 도시한 것으로서, 가열에 따라 고체의 알루미늄이 용융되어 액체의 알루미늄으로 상변화하게 되는데, 용융 상태의 알루미늄의 자유표면(200)과 도가니(100)의 경계면에서 최고 응력(300)이 발생함을 알 수 있었다. First, before examining the crucible for metal thin film deposition according to the present embodiment, the stress state of the crucible in the deposition process will be described with reference to FIG. 1. 1 is a view showing the stress simulation results of the crucible according to the heating of the evaporation source. 1 illustrates a stress state of the crucible 100 when a crucible 100 made of graphite material is filled with aluminum with an evaporation material and heated, and the molten aluminum melts as it is heated. The phase change to the liquid aluminum, it was found that the highest stress 300 is generated at the interface between the free surface 200 and the crucible 100 of the molten aluminum.
이러한 시뮬레이션과 동일한 조건으로 실제 도가니의 응력 실험을 진행하였는데, 도가니(100)에 알루미늄을 충전하고 증발원을 가열하여 용융시킨 상태에서 급격한 냉각을 진행한 경우 시뮬레이션 결과에서 보여준 바와 같이 용융된 알루미늄의 자유표면(200)의 위치에서 도가니(100)에 균열이 발생하였다. Stress experiments of the crucible were carried out under the same conditions as those of the simulation. In the case where the crucible 100 was filled with aluminum and suddenly cooled while the evaporation source was heated and melted, as shown in the simulation results, the free surface of the molten aluminum was shown. A crack occurred in the crucible 100 at the position of 200.
도가니(100) 내부의 고체의 알루미늄이 가열에 따라 용융되어 액체 상태로 상변화가 되면 체적이 증가하면서 용융 상태의 알루미늄의 자유표면(200)의 경계면에서 최고 응력(300)이 발생하고, 이 상태에서 급격한 냉각이 되면 용융 상태의 알루미늄이 고체 상태의 알루미늄으로 상변화되어 체적이 급격히 감소하면서 수축되어 경계면에서 도가니(100)에 응력을 유발하여 균열이 발생하게 되는 것이다.When the solid aluminum in the crucible 100 melts with heating and becomes phase change into a liquid state, the volume increases and a maximum stress 300 is generated at the boundary surface of the free surface 200 of the molten aluminum. In the case of rapid cooling in the molten state of the aluminum phase changes to solid aluminum, the volume is rapidly reduced and contracted, causing stress in the crucible (100) at the interface will cause cracks.
이상과 같은 결과로부터 본 발명에서는 금속의 증발물질의 증착을 위하여 고온으로 가열한 상태에서 증발물질의 재충전이나 증착장치의 유지관리를 위하여 증발원을 냉각할 때 파손이 방지될 수 있는 금속 박막 증착용 도가니를 제시하고자 한다.From the above results, in the present invention, a crucible for depositing a metal thin film which can be prevented from being damaged when the evaporation source is cooled for recharging the evaporation material or maintaining the deposition apparatus while heated to a high temperature for the deposition of metal evaporation material. I would like to present.
도 2는 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니(10)를 개략적으로 도시한 사시도이고, 도 3은 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니(10)를 개략적으로 도시한 평면도이며, 도 4는 도 3의 A-A'선에 따른 단면도이다. 그리고, 도 5는 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니(10)를 구비한 금속 박막 증착용 증발원을 개략적으로 도시한 단면도이고, 도 6은 본 발명의 제1 실시예에 따른 금속 박막 증착용 도가니(10)를 구비한 금속 박막 증착용 증발원(30)의 사용상태도이다.2 is a perspective view schematically showing a crucible 10 for depositing a metal thin film according to a first embodiment of the present invention, and FIG. 3 is a schematic view illustrating a crucible 10 for depositing a metal thin film according to a first embodiment of the present invention. 4 is a cross-sectional view taken along line AA ′ of FIG. 3. 5 is a cross-sectional view schematically showing an evaporation source for depositing a metal thin film having a crucible 10 for depositing a metal thin film according to a first embodiment of the present invention, and FIG. 6 is a view showing a first embodiment of the present invention. It is a state of use of the evaporation source 30 for metal thin film deposition provided with the crucible 10 for metal thin film deposition.
도 2 내지 도 6에는, 도가니(10), 몸체부(12), 확산부(14), 제1 용융홀(16), 단턱부(18), 제2 용융홀(20), 플랜지(22), 금속 증발물질(24), 액위(liquid level)(26), 히터부(28), 증발원(30), 기판(32)이 도시되어 있다.2 to 6, the crucible 10, the body portion 12, the diffusion portion 14, the first melting hole 16, the stepped portion 18, the second melting hole 20, and the flange 22. The metal evaporation material 24, the liquid level 26, the heater portion 28, the evaporation source 30, and the substrate 32 are shown.
본 실시예에 따른 금속 박막 증착용 도가니(10)는, 금속 증발물질(24)이 수용되고 가열에 따라 용융되어 승화되면서 기판(32)에 금속 박막을 형성하는 금속 박막 증착용 도가니(10)로서, 상단이 개방된 용기 형상의 몸체부(12)와; 상기 몸체부(12) 내부의 중앙에 깊이 방향으로 제1 용융홀(16)이 형성되도록 상기 몸체부(12)의 내벽에서 내측으로 연장되어 형성되는 단턱부(18)를 포함하며, 상기 제1 용융홀(16)을 중심으로 동심원 형태로 상기 단턱부(18)를 따라 복수의 제2 용융홀(20)이 형성된다.The crucible 10 for depositing a metal thin film according to the present embodiment is a crucible 10 for depositing a metal thin film to form a metal thin film on the substrate 32 while the metal evaporation material 24 is received and melted and sublimed with heating. A top portion of the container shape body portion 12 is opened; And a stepped portion 18 extending inwardly from an inner wall of the body portion 12 so that a first melting hole 16 is formed in a depth direction in the center of the body portion 12. A plurality of second melting holes 20 are formed along the stepped portion 18 in a concentric manner around the melting hole 16.
본 실시예에 따른 금속 박막 증착용 도가니(10)에는 금속의 증발물질(24)이 수용되며, 가열에 따라 금속의 증발물질(24)이 용융되면서 승화되어 기판(32) 상에 금속 박막을 형성하게 된다. 이때 금속 증발물질(24)로는, 마그네슘(Mg), 은(Ag), 알루미늄(Al) 등이 적용될 수 있다.The evaporation material 24 of the metal is accommodated in the crucible 10 for depositing the metal thin film according to the present embodiment, and the metal evaporation material 24 is sublimed while being heated to form a metal thin film on the substrate 32. Done. At this time, as the metal evaporation material 24, magnesium (Mg), silver (Ag), aluminum (Al) may be applied.
몸체부(12)는, 상단이 개방된 용기 형상을 이루게 된다. 몸체부(12)의 내부에는 펠릿(pellet) 형태의 금속 증발물질(24)이 수용될 수 있으며, 몸체부(12) 주변이 히터부의 가열에 따라 금속 증발물질(24)이 용융되면서 승화하여 몸체부(12)의 개방된 상단을 통해 기판(32)으로 분출된다. The body portion 12 has a container shape with an open top. A metal evaporation material 24 in a pellet form may be accommodated in the body part 12, and the metal evaporation material 24 is sublimed while the metal evaporation material 24 melts as the heater part is heated around the body part 12. It blows off to the substrate 32 through the open top of the part 12.
몸체부(12)의 내부는 금속 증발물질(24)의 용융이 이루어지는 용융홀(16, 20)과, 그 상부에 용융홀(16, 20)과 연통되는 확산부(14)로 이루어진다. 용융홀(16, 20)은 상술한 고체의 금속 증발물질(24)이 용융되어 수용되는 곳이며, 용융홀(16, 20)에서 융용된 금속의 증발물질(24)이 기체로 상변화되면서 확산부(14)를 통해 기판(32)으로 분출된다. 확산부(14)는 여러 개의 용융홀(16, 20)에서 기체로 상변화된 증발물질(24)이 서로 섞이면서 기판(32)을 향하여 분출된다. The inside of the body part 12 includes melting holes 16 and 20 through which the metal evaporation material 24 is melted, and a diffusion part 14 communicating with the melting holes 16 and 20 thereon. The melting holes 16 and 20 are where the above-mentioned solid metal evaporation material 24 is melted and accommodated, and the metal evaporation material 24 melted in the melting holes 16 and 20 diffuses as the phase changes into gas. It blows off to the board | substrate 32 through the part 14. The diffusion part 14 is ejected toward the substrate 32 while the evaporation materials 24 phase-changed into gases in the plurality of melting holes 16 and 20 are mixed with each other.
단턱부(18)는, 몸체부(12) 내부의 중앙에 깊이 방향으로 제1 용융홀(16)이 형성되도록 몸체부(12)의 내벽에서 내측으로 연장되어 형성된다. 단턱부(18)는 몸체부(12)의 내부에서 중앙을 향하여 연장되어 형성되는데, 단턱부(18)가 몸체부(12)의 내부를 따라 연장되어 형성됨에 따라 몸체부(12)의 중앙에는 제1 용융홀(16)이 형성될 수 있다. 제1 용융홀(16)에는 상술한 금속 증발물질(24)이 용융되면서 수용된다. 단턱부(18)의 형성에 따라 도가니(10)의 깊이 방향으로 도가니(10)의 두께가 단차를 이루게 된다.The stepped portion 18 is formed to extend inward from the inner wall of the body portion 12 so that the first melting hole 16 is formed in the center of the body portion 12 in the depth direction. The stepped portion 18 is formed to extend toward the center from the inside of the body portion 12, the stepped portion 18 is formed along the inside of the body portion 12 is formed in the center of the body portion 12 The first melting hole 16 may be formed. The metal evaporation material 24 described above is melted and received in the first melting hole 16. As the stepped portion 18 is formed, the thickness of the crucible 10 forms a step in the depth direction of the crucible 10.
제2 용융홀(20)은, 제1 용융홀(16)을 중심으로 동심원 형태로 단턱부(18)의 외주를 따라 단턱부(18)에 깊이 방향으로 서로 이격되어 다수 개가 형성된다. 제2 용융홀(20)에는 제1 용융홀(16)과 마찬가지로 금속 증발물질(24)이 용융되면서 수용된다. The plurality of second melting holes 20 are spaced apart from each other in the depth direction in the step portion 18 along the outer circumference of the step portion 18 in the form of concentric circles around the first melting hole 16. Like the first melting hole 16, the metal evaporation material 24 is melted and accommodated in the second melting hole 20.
제2 용융홀(20)이 제1 용융홀(16)을 중심으로 동심원 형태로 단턱부(18)를 따라 형성됨에 따라 도가니(10) 외부의 히터부(28)에서 가열하는 열이 도가니(10)의 내부로 용이하게 도달될 수 있다. As the second melting hole 20 is formed along the step 18 in a concentric manner with respect to the first melting hole 16, heat heated by the heater part 28 outside the crucible 10 is crucible 10. Can be easily reached inside.
제2 용융홀(20)을 형성하지 않고 단턱부(18)만 형성되는 경우, 단터부(18)에서 도가니(10)의 두께가 증가하게 되어 히터부에서 발생된 열이 도가니(10) 내부로 전달되기 어려워 고온의 금속 증발물질(24)의 제어가 어렵게 된다. When only the stepped portion 18 is formed without forming the second melting hole 20, the thickness of the crucible 10 is increased in the breaker portion 18 so that heat generated from the heater portion is transferred into the crucible 10. It is difficult to transfer, making it difficult to control the high temperature metal evaporation material 24.
한편, 단턱부(18)는 융용된 금속 증발물질(24)의 최고 액위(26)(liquid level)보다 높은 위치에서 하향 형성된다. 상술한 바와 같이, 도가니(10)에 수용된 금속의 증발물질(24)은 가열에 따라 용융되어 액체의 증발물질(24)로 상변화하게 되는데, 용융 상태의 증발물질(24)의 자유표면과 도가니(10)의 경계면에서 최고 응력이 발생하기 때문에 이에 따른 도가니(10)의 파손을 방지하기 위하여 단턱부(18)는 융용된 금속 증발물질(24)의 최고 액위(26)보다 높은 위치에서 도가니(10)의 깊이 방향으로 하향 형성된다. 이에 따라, 증착과정에서 금속 증발물질(24)의 재충전이나 유지관리를 위하여 증발원(30)의 가동을 멈추더라도 용융 상태의 증발물질(24)의 액위(26)가 단턱부(18)에 위치하기 때문에 도가니(10)의 파손이 방지된다.Meanwhile, the stepped portion 18 is formed downward at a position higher than the highest liquid level 26 of the molten metal evaporation material 24. As described above, the evaporation material 24 of the metal contained in the crucible 10 is melted by heating to phase-change into a liquid evaporation material 24, the free surface and the crucible of the evaporation material 24 in the molten state Since the highest stress is generated at the interface of the (10), in order to prevent the crucible (10) from being damaged, the stepped portion (18) is a crucible at a position higher than the highest level (26) of the molten metal evaporation material (24). 10) is formed downward in the depth direction. Accordingly, even if the evaporation source 30 is stopped for recharging or maintaining the metal evaporation material 24 in the deposition process, the liquid level 26 of the evaporation material 24 in the molten state is located at the step 18. Therefore, damage to the crucible 10 is prevented.
증착과정에서 금속 증발물질(24)의 재충전 시 도가니(10)을 급격히 냉각(cool down)하더라도 도가니(10)의 파손이 일어나지 않기 때문에 증착공정을 멈추고 바로 금속 증발물질(24)의 충전이 가능하고, 이로 인해 재증착을 위한 도가니의 가열 시간을 줄일 수 있어 전체적인 공정 택 타임을 상당히 줄일 수 있다.When recharging the metal evaporation material 24 in the deposition process, even if the crucible 10 is rapidly cooled down, the crucible 10 is not damaged, so the deposition process is stopped and the metal evaporation material 24 can be charged immediately. This, in turn, reduces the heating time of the crucible for redeposition, significantly reducing the overall process tack time.
단턱부(18)의 높이는 도가니(10) 설계 시 결정될 수 있다. 즉, 도가니(10)에 수용되고 용융되는 금속 증발물질(24)의 체적을 결정하고 도가니(10) 내부의 용융홀(16, 20)의 체적을 결정하여 단턱부(18)의 높이를 결정할 수 있다.The height of the stepped portion 18 may be determined when the crucible 10 is designed. That is, the height of the stepped portion 18 may be determined by determining the volume of the metal evaporation material 24 accommodated and melting in the crucible 10 and the volume of the melting holes 16 and 20 inside the crucible 10. have.
제1 용융홀(16)과 제2 용융홀(20)의 상부에는, 제1 용융홀(16) 및 제2 용융홀(20)을 통합하는 확산부(14)가 형성된다. 단턱부(18)의 형성 높이를 융용된 금속 증발물질(24)의 최고 액위(26)(liquid level)보다 높은 위치에 설정하되 몸체부(12)의 상단에서 일정 깊이 이하로 함으로써, 제1 용융홀(16) 및 제2 용융홀(20)의 상부에는 제1 용융홀(16) 및 제2 용융홀(20)과 연통되면서 통합되는 하나의 확산부(14)가 형성될 수 있다. 제1 용융홀(16)과 제2 용융홀(20)에서 용융되면서 승화되는 기체 상태의 증발물질(24)이 확산부(14)로 유입되어 서로 섞이면서 도가니(10)의 상단에서 일정 분포로 분출된다. 확산부(14) 없이 제1 용융홀 및 제2 용융홀(20)이 도가니(10) 상단까지 연장되는 경우, 제1 용융홀(16) 및 제2 용융홀(20) 각각에서 분출되는 기체 상태의 증발물질(24)의 분포가 서로 달라 기판(32)에 일정한 두께로 증착하는 것이 어렵게 된다.The diffusion part 14 which integrates the first melting hole 16 and the second melting hole 20 is formed on the first melting hole 16 and the second melting hole 20. The first melting is achieved by setting the formation height of the stepped portion 18 to a position higher than the highest liquid level 26 of the molten metal evaporation material 24 but below a predetermined depth at the upper end of the body portion 12. An upper portion of the hole 16 and the second melting hole 20 may be formed with one diffusion part 14 which is integrated while communicating with the first melting hole 16 and the second melting hole 20. Evaporating material 24 in a gaseous state sublimed while melting in the first melting hole 16 and the second melting hole 20 flows into the diffusion part 14 and is mixed with each other and ejected in a predetermined distribution from the top of the crucible 10. do. In the case where the first melting hole and the second melting hole 20 extend to the upper end of the crucible 10 without the diffusion part 14, the gas state is ejected from each of the first melting hole 16 and the second melting hole 20. Since the distribution of the evaporation material 24 is different from each other, it is difficult to deposit a predetermined thickness on the substrate 32.
제2 용융홀(20)의 단면은 원형 또는 모서리가 둥근 원호 형상으로 이루어질 수 있다. 본 실시예는 도 3에 도시된 바와 같이, 제2 용융홀(20)이 원형의 단면을 갖는 형태이다. 제2 용융홀(20)의 단면을 원형 또는 모서리가 둥근 원호 형상으로 형성함으로써 금속 증발물질(24)의 상변화에 따른 응력이 한 곳에 집중되지 않고 분산될 수 있다. 예를 들면, 제2 용융홀(20)의 단면을 다각형으로 형성하는 경우 다각형의 모서리 부분에서 금속 증발물질(24)의 상변화에 따라 응력이 집중되어 도가니에 파손이 일어날 수 있다.The cross section of the second melting hole 20 may have a circular or rounded arc shape. 3, the second melting hole 20 has a circular cross section. By forming the cross section of the second melting hole 20 in a circular or rounded arc shape, the stress due to the phase change of the metal evaporation material 24 may be dispersed without being concentrated in one place. For example, when the cross section of the second melting hole 20 is formed into a polygon, stress may be concentrated in accordance with the phase change of the metal evaporation material 24 in the corner portion of the polygon, which may cause damage to the crucible.
그리고, 제2 용융홀(20)의 깊이는 제1 용융홀(16)의 깊이 보다 작을 수 있다. 이에 따라 제2 용융홀(20) 바닥의 두께가 제1 용융홀(16) 바닥의 두께 보다 두껍게 형성된다. 증착 공정이 진행되는 동안 용융 상태의 증발물질(24)의 액위(26)가 점점 낮아 지게 되는데, 도가니(10) 내부의 증발물질(24)이 거의 소진되어 증발물질(24)의 액위(26)가 도가니(10) 바닥부에 위치하는 경우 도가니(10)의 바닥부에서 파손이 발생할 우려가 있다. 특히, 제2 용융홀(20)의 경우 도가니(10) 내부에서 외측에 위치하기 때문에 증발물질(24)의 액위(26)가 낮아지면 바닥부에서 파손이 발생할 우려가 있어 제1 용융홀(16)의 두께 보다 두껍게 형성되도록 제2 용융홀(20)의 깊이를 제1 용융홀(16)의 깊이 보다 작게 형성하는 것이다.In addition, the depth of the second melting hole 20 may be smaller than the depth of the first melting hole 16. Accordingly, the thickness of the bottom of the second melting hole 20 is thicker than the thickness of the bottom of the first melting hole 16. During the deposition process, the liquid level 26 of the evaporation material 24 in the molten state is gradually lowered. The evaporation material 24 in the crucible 10 is almost exhausted and the liquid level 26 of the evaporation material 24 is exhausted. In the case where the crucible 10 is located at the bottom of the crucible 10, there is a fear that damage occurs. In particular, since the second melting hole 20 is located outside of the crucible 10, when the liquid level 26 of the evaporation material 24 is lowered, damage may occur at the bottom thereof. The depth of the second melting hole 20 is formed to be smaller than the depth of the first melting hole 16 so as to be formed thicker than the thickness.
본 실시예에 따른 금속 박막 증착용 도가니(10)는 내화물로 이루어질 수 있는데, 그라파이트(graphite), 열분해 질화 붕소(Pyrolytic Boron Nitride: PBN), 질화붕소(BN), 알루미나(Al2O3), 질화 알루미늄(Aluminum Nitride: AlN), 몰리브덴(Mo), 텅스텐(W) 및 탄탈륨(Ta)에서 하나 이상 선택된 물질일 수 있다.The crucible 10 for depositing a metal thin film according to the present embodiment may be made of refractory materials, such as graphite, pyrolytic boron nitride (PBN), boron nitride (BN), alumina (Al 2 O 3 ), At least one material selected from aluminum nitride (AlN), molybdenum (Mo), tungsten (W), and tantalum (Ta) may be used.
도 5에는 본 실시예에 따른 금속 박막 증착용 도가니(10)를 구비한 금속 박막 증착용 증발원(30)이 도시되어 있고, 도 6에는 본 실시예에 따른 금속 박막 증착용 도가니(10)를 구비한 금속 박막 증착용 증발원(30)의 사용상태도가 도시되어 있다.5 shows an evaporation source 30 for depositing a metal thin film having a crucible 10 for depositing a metal thin film according to the present embodiment, and FIG. 6 is provided with a crucible 10 for depositing a metal thin film according to the present embodiment. A state of use of an evaporation source 30 for depositing a metal thin film is shown.
상술한 금속 박막 증착용 도가니(10)는 이를 가열하기 위한 금속 박막 증착용 증발원(30) 내부에 삽입되어, 히터부(28)가 도가니(10)를 가열함에 따라 도가니(10) 내부의 금속 증발물질(24)이 용융되어 승화되면서 기판(32)에 대한 증착을 수행하게 된다. 히터부(28)는 도가니(10)의 외주에 배치되어 금속 증발물질(24)이 용융되어 승화되도록 도가니(10)를 가열한다. 히터부(28)의 외주에는 히터부(28)에서 발생한 열이 다시 도가니(10)를 향하도록 반사시키는 반사부(미도시)가 구비될 수 있다.The above-described metal thin film deposition crucible 10 is inserted into the metal thin film deposition evaporation source 30 for heating it, and as the heater unit 28 heats the crucible 10, the metal evaporation inside the crucible 10. The material 24 is melted and sublimed to perform deposition on the substrate 32. The heater 28 is disposed on the outer circumference of the crucible 10 to heat the crucible 10 so that the metal evaporation material 24 is melted and sublimed. The outer circumference of the heater unit 28 may be provided with a reflector (not shown) for reflecting the heat generated from the heater unit 28 back toward the crucible 10.
히터부(28)는 내부에 열선이 배치된 원통 형상으로 제조될 수 있고 금속 박막 증착용 도가니(10)의 상단에는 플랜지(22)가 형성되어, 도가니(10)가 히터부(28) 내부에 삽입되면서 플랜지(22)가 히터부(28)에 지지되도록 구성될 수 있다.The heater unit 28 may be manufactured in a cylindrical shape in which a heating wire is disposed therein, and a flange 22 is formed at an upper end of the crucible 10 for depositing a metal thin film, so that the crucible 10 is disposed in the heater unit 28. The flange 22 may be configured to be supported by the heater unit 28 while being inserted.
본 실시예에 따른 금속 박막 증착용 도가니(10)를 구비한 금속 박막 증착용 증발원(30)은, 도 6에 도시된 바와 같이, 진공 상태의 진공 챔버(미도시)의 내부에서 기판(32)에 대향하여 배치된다. 도가니(10)의 가열에 따라 고체의 금속 증발물질(24)이 용융되면서 액체의 금속 증발물질(24)로 상변화한 후, 다시 기체로 승화되면서 도가니(10)에서 분출되어 대향하여 배치되는 기판(32) 상에 증착된다.The evaporation source 30 for depositing the metal thin film having the crucible 10 for depositing the metal thin film according to the present embodiment is, as shown in FIG. 6, the substrate 32 in a vacuum chamber (not shown) in a vacuum state. Are arranged opposite. The solid metal evaporation material 24 is melted in accordance with the heating of the crucible 10 and is phase-changed into the liquid metal evaporation material 24, and then the substrate is ejected from the crucible 10 while being sublimated into a gas and disposed to face each other. Is deposited on 32.
도 7은 본 발명의 제2 실시예에 따른 금속 박막 증착용 도가니(10)를 개략적으로 도시한 평면도이고, 도 8은 도 7의 B-B'선에 따른 단면도이다.FIG. 7 is a plan view schematically illustrating a crucible 10 for depositing a metal thin film according to a second embodiment of the present invention, and FIG. 8 is a cross-sectional view taken along line BB ′ of FIG. 7.
도 7 및 도 8에는, 도가니(10), 몸체부(12), 확산부(14), 제1 용융홀(16), 단턱부(18), 제2 용융홀(20’), 플랜지(22), 금속 증발물질(24), 액위(26)가 도시되어 있다.7 and 8, the crucible 10, the body portion 12, the diffusion portion 14, the first melting hole 16, the stepped portion 18, the second melting hole 20 ′, and the flange 22. ), Metal evaporation material 24 and liquid level 26 are shown.
본 실시예에 따른 금속 박막 증착용 도가니(10)는, 제1 용융홀(16)의 외주에 동심원 상으로 형성되는 각 제2 용융홀(20')의 단면이 모서리가 둥근 원호 형상으로 형성되어 복수의 제2 용융홀(20')이 전체적으로 원형 형태를 이루게 된다. 제2 용융홀(20')의 단면이 모서리가 둥근 원호 형상으로 형성되어 내부의 금속의 증발물질(24)의 상변화에 따른 응력이 한 곳에 집중되지 않고 분산될 수 있다. 본 실시예도 상기 제1 실시예와 마찬가지로 단턱부(18)의 높이가 융용될 금속 증발물질(24)의 최고 액위(26)(liquid level)보다 높은 위치에서 하향 형성되며, 제2 용융홀(20')의 깊이는 제1 용융홀(16)의 깊이 보다 작게 형성된다. 이외의 기타 구성요소는 상술한 제1 실시예와 동일하므로 그 설명을 생략한다.In the crucible 10 for depositing the metal thin film according to the present exemplary embodiment, a cross section of each second melting hole 20 ′ formed concentrically on the outer circumference of the first melting hole 16 is formed in an arc shape having a rounded corner. The plurality of second melting holes 20 ′ form a circular shape as a whole. The cross section of the second melting hole 20 ′ is formed in an arc shape having rounded corners, so that the stress due to the phase change of the evaporation material 24 of the metal may be dispersed without being concentrated in one place. In this embodiment, like the first embodiment, the height of the step portion 18 is formed downward at a position higher than the highest liquid level 26 of the metal evaporation material 24 to be melted, and the second melting hole 20 ') Is formed smaller than the depth of the first melting hole (16). Other components are the same as those of the first embodiment described above, and thus description thereof will be omitted.
도 9는 본 발명의 제3 실시예에 따른 금속 박막 증착용 도가니(10)를 개략적으로 도시한 평면도이고, 도 10은 도 9의 C-C'선에 따른 단면도이다.9 is a plan view schematically illustrating a crucible 10 for depositing a metal thin film according to a third exemplary embodiment of the present invention, and FIG. 10 is a cross-sectional view taken along the line CC ′ of FIG. 9.
도 9 및 도 10에는, 도가니(10), 몸체부(12), 확산부(14), 제1 용융홀(16), 단턱부(18), 제2 용융홀(20''), 플랜지(22), 금속 증발물질(24), 액위(26)가 도시되어 있다.9 and 10, the crucible 10, the body portion 12, the diffusion portion 14, the first melting hole 16, the stepped portion 18, the second melting hole 20 ″ and the flange ( 22, metal evaporation material 24, liquid level 26 is shown.
본 실시예에 따른 금속 박막 증착용 도가니(10)는, 제1 용융홀(16)을 중심으로 두 개의 동심원 형태의 제2 용융홀(20', 20'')이 형성된 형태이다. 제2 용융홀(20', 20'')이 다중으로 형성됨에 따라 제1 용융홀(16)의 단면 크기가 줄어 들고 그 주위에 동심원 형태의 제2 용융홀(20', 20'')이 동심원 형태로 다중으로 형성된 형태이다. 본 실시예에 있어서 최외측의 제2 용융홀(20')의 깊이는 상기와 같은 이유로 내측의 제2 용융홀(20'')의 깊이 보다 작을 수 있다.The crucible 10 for depositing the metal thin film according to the present embodiment has a shape in which two concentric second melting holes 20 ′ and 20 ″ are formed around the first melting hole 16. As the second melt holes 20 'and 20' 'are formed in multiple, the cross-sectional size of the first melt holes 16 is reduced, and concentric second melt holes 20' and 20 '' are formed around the second melt holes 20 'and 20' '. Concentric form of multiple forms. In the present embodiment, the depth of the outermost second melting hole 20 ′ may be smaller than the depth of the inner second melting hole 20 ″ for the same reason as described above.
도 11은 본 발명의 제4 실시예에 따른 금속 박막 증착용 도가니(10)를 개략적으로 도시한 단면도이다. 그리고, 도 12는 본 발명의 제4 실시예에 따른 금속 박막 증착용 도가니(10)의 몸체부(12)를 개략적으로 도시한 평면도이고, 도 13은 도 12의 D-D'선에 따른 단면도이다.11 is a schematic cross-sectional view of a crucible 10 for depositing a metal thin film according to a fourth embodiment of the present invention. 12 is a plan view schematically illustrating a body 12 of the crucible 10 for depositing a metal thin film according to a fourth embodiment of the present invention, and FIG. 13 is a cross-sectional view taken along the line D-D 'of FIG. 12. to be.
도 11 내지 도 13에는 도가니(10), 몸체부(12), 확산부(14), 제1 용융홀(16), 단턱부(18), 제2 용융홀(20), 금속 증발물질(24), 액위(26), 내부하우징(34), 외부하우징(36)이 도시되어 있다.11 to 13, the crucible 10, the body part 12, the diffusion part 14, the first melting hole 16, the stepped part 18, the second melting hole 20, and the metal evaporation material 24 are illustrated. ), The liquid level 26, the inner housing 34, and the outer housing 36 are shown.
본 실시예에 따른 따른 금속 박막 증착용 도가니(10)는, 도가니(10)의 강도를 강화하기 위하여 다중으로 구성한 형태이다. 도 11을 참조하면, 본 실시예에 따른 금속 박막 증착용 도가니(10)는 상술한 형태의 몸체부(12)의 외측에 내부하우징(34)과 외부하우징(36)을 둔 형태이다. 즉, 본 실시에에 따른 도가니(10)는, 내면에 몸체부(12)의 외면이 접하도록 몸체부(12)가 내장되는 내부하우징(34)과, 내면에 내부하우징(34)의 외면이 접하도록 내부하우징(34)이 내장되는 외부하우징(36)을 포함한다. 도가니(10)를, 몸체부(12), 내부하우징(34) 및 외부하우징(36)으로 구성하여 도가니(10)의 강도를 개선하여 도가니(10)의 파손을 방지한 형태이다.The crucible 10 for depositing a metal thin film according to the present embodiment is configured in multiple forms to enhance the strength of the crucible 10. Referring to FIG. 11, the crucible 10 for depositing a metal thin film according to the present embodiment has a shape in which an inner housing 34 and an outer housing 36 are disposed on an outer side of the body portion 12 of the above-described type. That is, the crucible 10 according to the present embodiment has an inner housing 34 in which the body portion 12 is embedded so that the outer surface of the body portion 12 is in contact with the inner surface, and an outer surface of the inner housing 34 on the inner surface. It includes an outer housing 36 in which the inner housing 34 is built in contact. The crucible 10 is composed of a body portion 12, an inner housing 34, and an outer housing 36 to improve the strength of the crucible 10 to prevent breakage of the crucible 10.
내부하우징(34)과 외부하우징(36)은 내화물로 이루어질 수 있는데, 본 실시예에서는 내부하우징(34)을 질화알루미늄(AIN:aluminum nitride)을 포함하는 재질로 형성하고, 외부하우징(36)을 열분해 질화붕소(PBN:Pyrolytic Boron Nitride)를 포함하는 재질로 형성하였다. 열분해 질화붕소는 내화물으로서 재질의 특성 상 히터부(28)에서 가열되는 열을 외부하우징(36)을 통해 도가니(10) 내부로 고르게 확산되도록 하며, 질화알루미늄은 내열성이 뛰어나고 열전도율이 높은 물질로서 열분해 질화붕소로 이루어진 외부하우징(36)에서 확산되어 전달된 열을 내부의 몸체부(12)로 바로 전달하는 역할을 한다. The inner housing 34 and the outer housing 36 may be made of refractory. In this embodiment, the inner housing 34 is formed of a material including aluminum nitride (AIN), and the outer housing 36 is formed. It was formed of a material containing pyrolytic boron nitride (PBN: Pyrolytic Boron Nitride). Pyrolysis boron nitride is a refractory material so that the heat heated in the heater unit 28 is evenly distributed into the crucible 10 through the outer housing 36 due to the properties of the material, and aluminum nitride is a material having excellent heat resistance and high thermal conductivity. It serves to directly transfer the heat transferred from the outer housing 36 made of boron nitride to the inner body portion 12.
내부의 몸체부(12)는 상기의 제1 내지 제3 실시예에서 제시한 바와 같이 형성될 수 있다. 다만, 도 13을 참조하면, 바닥에서의 파손을 방지하기 위하여 몸체부(12)의 바닥의 두께를 두껍게 형성한 경우, 제1 용융홀(16)과 제2 용융홀(20)의 깊이를 동일하게 형성할 수 있다. The inner body portion 12 may be formed as shown in the first to third embodiments above. However, referring to FIG. 13, when the bottom of the body portion 12 is formed to have a thick thickness to prevent breakage at the bottom, the depths of the first melting hole 16 and the second melting hole 20 are the same. Can be formed.
이외의 기타 구성요소는 상술한 제1 실시예와 동일하므로 그 설명을 생략한다.Other components are the same as those of the first embodiment described above, and thus description thereof will be omitted.
이상에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.Although the above has been described with reference to embodiments of the present invention, those skilled in the art may variously modify the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. And can be changed easily.

Claims (9)

  1. 금속의 증발물질이 수용되고 가열에 따라 용융되어 승화되면서 기판에 금속 박막을 형성하는 금속 박막 증착용 도가니로서, A crucible for depositing a metal thin film to form a metal thin film on a substrate while the evaporation material of the metal is received and melted and sublimed with heating.
    상단이 개방된 용기 형상의 몸체부와;A container-shaped body having an open top;
    상기 몸체부 내부의 중앙에 깊이 방향으로 제1 용융홀이 형성되도록 상기 몸체부의 내벽에서 내측으로 연장되어 형성되는 단턱부를 포함하며,A stepped portion extending inward from an inner wall of the body portion to form a first melting hole in a depth direction in the center of the body portion,
    상기 제1 용융홀을 중심으로 동심원 형태로 상기 단턱부를 따라 복수의 제2 용융홀이 형성되는 것을 특징으로 하는, 금속 박막 증착용 도가니.Crucible for depositing a metal thin film, characterized in that a plurality of second molten holes are formed along the stepped portion in a concentric manner around the first molten hole.
  2. 제1항에 있어서,The method of claim 1,
    상기 단턱부는,The stepped portion,
    상기 융용된 금속 증발물질의 최고 액위(liquid level)보다 높은 위치에서 하향 형성되는 것을 특징으로 하는, 금속 박막 증착용 도가니.Crucible for depositing metal thin film, characterized in that formed downward at a position higher than the highest liquid level (liquid level) of the molten metal evaporation material.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1 용융홀 및 상기 제2 용융홀의 상부에는 상기 제1 용융홀 및 상기 제2 용융홀을 통합하는 확산부가 형성되는 것을 특징으로 하는, 금속 박막 증착용 도가니.Crucible for metal thin film deposition, characterized in that the diffusion portion integrating the first melting hole and the second melting hole is formed on the first melting hole and the second melting hole.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2 용융홀은,The second melting hole,
    단면이 원형 또는 모서리가 둥근 원호 형상인 것을 특징으로 하는, 금속 박막 증착용 도가니.Crucible for depositing metal thin film, characterized in that the cross section is circular or rounded corners.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2 용융홀의 깊이는 상기 제1 용융홀의 깊이 보다 작은 것을 특징으로 하는, 금속 박막 증착용 도가니.Crucible for depositing a metal thin film, characterized in that the depth of the second molten hole is smaller than the depth of the first molten hole.
  6. 제1항에 있어서,The method of claim 1,
    내면에 상기 몸체부의 외면이 접하도록 상기 몸체부가 내장되는 내부하우징과;An inner housing in which the body portion is built so that an outer surface of the body portion is in contact with an inner surface thereof;
    내면에 상기 내부하우징의 외면이 접하도록 상기 내부하우징이 내장되는 외부하우징을 더 포함하는, 금속 박막 증착용 도가니.A crucible for depositing a metal thin film further comprising an outer housing in which the inner housing is embedded such that an outer surface of the inner housing is in contact with an inner surface thereof.
  7. 제6항에 있어서,The method of claim 6,
    상기 내부하우징은 질화알루미늄(AIN:aluminum nitride)을 포함하는 재질로 이루어지고,The inner housing is made of a material containing aluminum nitride (AIN),
    상기 외부하우징은 열분해 질화붕소(PBN:Pyrolytic Boron Nitride)를 포함하는 재질로 이루어지는 것을 특징으로 하는, 금속 박막 증착용 도가니.The outer housing is a crucible for metal thin film deposition, characterized in that made of a material containing pyrolytic boron nitride (PBN: Pyrolytic Boron Nitride).
  8. 제1항에 있어서,The method of claim 1,
    상기 금속 증발물질은 알루미늄(Aluminum)인 것을 특징으로 하는, 금속 박막 증착용 도가니.The metal evaporation material is aluminum (Aluminum), characterized in that the crucible for metal thin film deposition.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 금속 박막 증착용 도가니와;A crucible for depositing a metal thin film according to any one of claims 1 to 8;
    상기 도가니의 외주에 배치되어 상기 금속 증발물질이 용융되어 승화되도록 상기 도가니를 가열하는 히터부를 포함하는, 금속 박막 증착용 증발원.And a heater part disposed on an outer circumference of the crucible to heat the crucible so that the metal evaporation material is melted and sublimed.
PCT/KR2015/014031 2015-12-18 2015-12-21 Crucible for metal thin film deposition and evaporation source for metal thin film deposition WO2017104885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580085778.XA CN108713262B (en) 2015-12-18 2015-12-21 Crucible for metal film deposition and evaporation source for metal film deposition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0181752 2015-12-18
KR1020150181752A KR101761700B1 (en) 2015-12-18 2015-12-18 Crucible for metal thin film deposition and evaporation source having the same

Publications (1)

Publication Number Publication Date
WO2017104885A1 true WO2017104885A1 (en) 2017-06-22

Family

ID=59056908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014031 WO2017104885A1 (en) 2015-12-18 2015-12-21 Crucible for metal thin film deposition and evaporation source for metal thin film deposition

Country Status (3)

Country Link
KR (1) KR101761700B1 (en)
CN (1) CN108713262B (en)
WO (1) WO2017104885A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190055642A1 (en) * 2017-08-17 2019-02-21 Wuhan China Star Optoelectronics Semiconductor Dis play Technology Co., Ltd. Vapor evaporation source

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209619438U (en) * 2019-01-17 2019-11-12 云谷(固安)科技有限公司 A kind of evaporation source and evaporated device
KR20200134531A (en) 2019-05-22 2020-12-02 주식회사 선익시스템 Crucible Member Having Heat Shield
CN114502767B (en) * 2019-11-29 2023-10-27 Lg电子株式会社 Crucible for deposition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733305B2 (en) * 1987-03-20 1995-04-12 三菱マテリアル株式会社 Method for manufacturing double quartz crucible
KR20080013686A (en) * 2006-08-08 2008-02-13 순천향대학교 산학협력단 Apparatus for depositing thin films over large-area substrates
KR20130073406A (en) * 2011-12-23 2013-07-03 주식회사 원익아이피에스 High temperature evaporation having heatsink assembly
KR20130073407A (en) * 2011-12-23 2013-07-03 주식회사 원익아이피에스 High temperature evaporation having outer heating container
KR20140042656A (en) * 2012-09-28 2014-04-07 가부시키가이샤 히다치 하이테크놀로지즈 Evaporation source, vacuum deposition apparatus, and method of manufacturing organic el display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110095982A (en) * 2010-02-20 2011-08-26 진중 김 Multi storage thermal evaporation source for cigs thin films

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733305B2 (en) * 1987-03-20 1995-04-12 三菱マテリアル株式会社 Method for manufacturing double quartz crucible
KR20080013686A (en) * 2006-08-08 2008-02-13 순천향대학교 산학협력단 Apparatus for depositing thin films over large-area substrates
KR20130073406A (en) * 2011-12-23 2013-07-03 주식회사 원익아이피에스 High temperature evaporation having heatsink assembly
KR20130073407A (en) * 2011-12-23 2013-07-03 주식회사 원익아이피에스 High temperature evaporation having outer heating container
KR20140042656A (en) * 2012-09-28 2014-04-07 가부시키가이샤 히다치 하이테크놀로지즈 Evaporation source, vacuum deposition apparatus, and method of manufacturing organic el display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190055642A1 (en) * 2017-08-17 2019-02-21 Wuhan China Star Optoelectronics Semiconductor Dis play Technology Co., Ltd. Vapor evaporation source
US10801101B2 (en) * 2017-08-17 2020-10-13 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Vapor evaporation source

Also Published As

Publication number Publication date
CN108713262A (en) 2018-10-26
KR101761700B1 (en) 2017-07-28
CN108713262B (en) 2021-02-26
KR20170073171A (en) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2017104885A1 (en) Crucible for metal thin film deposition and evaporation source for metal thin film deposition
JP5008624B2 (en) Deposition method, vapor deposition equipment
CN1679375B (en) Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
KR100826743B1 (en) Organic thin film manufacturing apparatus
JP6436544B1 (en) Evaporation source apparatus and control method thereof
US9290842B2 (en) Electrode cover and evaporation device
KR100592304B1 (en) Heating vessel and deposition apparatus having the same
JP5798452B2 (en) Evaporation source
JP3863988B2 (en) Vapor deposition equipment
KR20040068000A (en) Using compacted organic materials in making white light emitting oleds
JP3817054B2 (en) Vapor source crucible and vapor deposition apparatus
JP4846650B2 (en) Electrode cover and vapor deposition device
KR101206162B1 (en) Thermal Induced Sublimation Technology with downward evaporation for large-sized OLED manufacturing
WO2021085685A1 (en) Material deposition arrangement, vacuum deposition system, and method for manufacturing a material deposition arrangement
KR101436898B1 (en) Evaporation source and evaporation apparatus having the same
KR102716691B1 (en) Baking device of heater for evaporation source
KR200365703Y1 (en) Apparatus for vapor deposition of thin film
WO2019031647A1 (en) Oled organic thin-film layer forming method using rf sputtering device, rf sputtering device, and device for forming target used in rf sputtering device
CN106337165B (en) Deposition source, deposition apparatus, and method of manufacturing display apparatus using the deposition apparatus
JP2003222472A (en) Crucible
WO2021107223A1 (en) Crucible for deposition
KR100680146B1 (en) OELD panel manufacturing method using sublimation of dopant mixture
KR100583044B1 (en) Apparatus for linearly heating deposition source material
CN209508394U (en) Evaporation source device, film forming device, and electronic device manufacturing device
KR20040103725A (en) A system of organic deposition by double heating sources for an OELD and its fabrication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910806

Country of ref document: EP

Kind code of ref document: A1