[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017199717A1 - 活性炭、並びにそれを用いた吸着フィルターおよび浄水器 - Google Patents

活性炭、並びにそれを用いた吸着フィルターおよび浄水器 Download PDF

Info

Publication number
WO2017199717A1
WO2017199717A1 PCT/JP2017/016530 JP2017016530W WO2017199717A1 WO 2017199717 A1 WO2017199717 A1 WO 2017199717A1 JP 2017016530 W JP2017016530 W JP 2017016530W WO 2017199717 A1 WO2017199717 A1 WO 2017199717A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
adsorption
water
adsorption filter
chloroform
Prior art date
Application number
PCT/JP2017/016530
Other languages
English (en)
French (fr)
Inventor
哲也 花本
人見 充則
嘉成 小橋
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60325012&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017199717(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2018518191A priority Critical patent/JP6902536B2/ja
Priority to US16/301,666 priority patent/US10843168B2/en
Priority to KR1020187036209A priority patent/KR102311122B1/ko
Publication of WO2017199717A1 publication Critical patent/WO2017199717A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Definitions

  • the present invention relates to activated carbon and an adsorption filter and water purifier using the same.
  • Trihalomethane is a generic name for compounds in which 3 of the 4 hydrogen atoms in the methane molecule are substituted by halogen, and its representative examples are chloroform, dichlorobromomethane, chlorodibromomethane, bromoform, and the like.
  • 1,1,1-trichloroethane which is an organic halogen compound in which three hydrogen atoms of ethane are replaced with chlorine atoms, is a substance to be removed from a water purifier.
  • Patent Document 1 discloses that the specific surface area is 900 to 1100 m 2 / g, and the pore diameter occupies the total pore volume of pores having a pore diameter of 0 to 2.0 nm in the measurement of pore distribution by the MP method.
  • the total pore volume of pores of 0.6 nm or less is 40 to 45% of the total pore volume, and in the measurement of pore distribution by the DH method, it accounts for the total pore volume of pores having a pore diameter of 1 to 100 nm.
  • activated carbon having a total pore volume of pores having a pore diameter of 2.0 nm or less of 20 to 23% of the total pore volume and a surface oxide amount of 0.05 to 0.14 meq / g.
  • the dV / dlogR value is (a) the pore diameter D is 10 to 40 mm. And at least one peak value in the range of dV / dlogR value in the range of 0.03 to 0.2, and (b) dV / dlogR value in the range of 6 to 9 cm and dV / dlogR value of 1.0 to At least one peak value in the range of 7.0, and a small diameter pore having a pore diameter D of 6 to 9 mm on the inner surface of a large number of large diameter pores having a pore diameter D of 10 to 50 mm
  • An activated carbon is disclosed, which has an adsorption capacity of 118 to 220 ppb ⁇ ton when water is passed through the trihalomethane.
  • JP 2013-220413 A Japanese Patent No. 3528685
  • an object of the present invention is to provide activated carbon that satisfies the above requirements, and an adsorption filter and a water purifier using the activated carbon.
  • the activated carbon according to one aspect of the present invention is an activated carbon for removing an organic compound, using the BET specific surface area calculated by the nitrogen adsorption method and the pore volume calculated from the HK method, using the following formula:
  • the average pore diameter obtained by the above is 1.615 to 1.625 nm.
  • D 4000 ⁇ V / S (In the formula, D: average pore diameter (nm), V: pore volume (mL / g), S: specific surface area (m 2 / g))
  • activated carbon having high adsorption performance for volatile organic compounds, in particular, activated carbon having very excellent adsorption performance for chloroform and 1,1,1-trichloroethane.
  • FIG. 1 is a graph showing the relationship between the average pore diameter obtained by the above formula and the static adsorption performance of volatile organic compounds in water, measured in the examples.
  • FIG. 2 is a graph showing the relationship between the average pore diameter obtained by the above formula and the dynamic adsorption performance of volatile organic compounds in water, measured in the examples.
  • FIG. 3 is a graph showing chloroform adsorption performance of activated carbon in Examples and Comparative Examples.
  • FIG. 4 is a graph showing the adsorption performance of 1,1,1-trichloroethane on activated carbon in Examples and Comparative Examples.
  • the activated carbon of this embodiment has an average pore diameter of 1.615 to 1.625 nm obtained by the following formula using the BET specific surface area calculated by the nitrogen adsorption method and the pore volume calculated by the HK method. It is characterized by being.
  • D 4000 ⁇ V / S (In the formula, D: average pore diameter (nm), V: pore volume (mL / g), S: specific surface area (m 2 / g))
  • the activated carbon of this embodiment is an activated carbon for removing organic compounds, and is particularly suitable for removing volatile organic compounds such as trihalomethane such as chloroform, 1,1,1-trichloroethane, dichlorobromomethane, chlorodibromomethane, and bromoform. Used for. Further, among these volatile organic compounds, it is conventionally considered that it is very difficult to achieve both adsorption and removal of chloroform and 1,1,1-trichloroethane. However, the activated carbon of the present embodiment has an ability to adsorb and remove them. Are better.
  • pores suitable for chloroform adsorption are first formed and then changed to pores suitable for 1,1,1-trichloroethane. This is considered to be because pores suitable for 1,1,1-trichloroethane adsorption are formed while maintaining pores suitable for adsorption.
  • the average pore diameter obtained by the above formula is further preferably 1.616 to 1.623 nm, and more preferably 1.618 to 1.621 nm.
  • the average pore diameter is less than 1.615 or exceeds 1.625 nm, the adsorption removal ability for a desired volatile organic compound is lowered.
  • the activated carbon of the present embodiment satisfies the range of the average pore diameter obtained by the above formula, other configurations are not particularly limited, and for example, two or more different activated carbons may be included.
  • the activated carbon of the present embodiment preferably has a BET specific surface area calculated by a nitrogen adsorption method of about 1000 to 1350 m 2 / g. More preferably, it is about 1050 to 1300 m 2 / g, more preferably about 1100 to 1250 m 2 / g.
  • a nitrogen adsorption method of about 1000 to 1350 m 2 / g. More preferably, it is about 1050 to 1300 m 2 / g, more preferably about 1100 to 1250 m 2 / g.
  • the shape of the activated carbon of the present embodiment may be any shape such as a particle shape, a fiber shape (thread shape, woven cloth (cloth) shape, felt shape), and can be appropriately selected depending on the application, but has high adsorption performance per volume. Particulate form is preferred.
  • the 10% particle diameter (D10) in the volume-based cumulative particle size distribution is about 15 to 35 ⁇ m, and the 50% particle in the volume-based cumulative particle size distribution.
  • Powdered activated carbon having a diameter (D50) of about 30 to 150 ⁇ m can be used.
  • a shape in such a range is considered to be excellent in moldability and strength when formed into a molded body in addition to the above-mentioned adsorption removal performance.
  • the numerical values of D10, D50, and D90 are values measured by a laser diffraction / scattering method, and are performed by, for example, a wet particle size distribution measuring apparatus (Microtrac MT3300EX II) manufactured by Nikkiso Co., Ltd.
  • the activated carbon of the present embodiment can also be obtained by carbonizing and / or activating a carbonaceous material (for example, coconut shell or phenol resin). When carbonization is required, it can be carried out usually at a temperature of about 400 to 800 ° C., preferably about 500 to 800 ° C., more preferably about 550 to 750 ° C. while blocking oxygen or air.
  • a carbonaceous material for example, coconut shell or phenol resin.
  • an activation method there are activation methods such as a gas activation method and a chemical activation method, but when used for water purification, a gas activation method with little residual impurities is preferable. Since the activated carbon of the present invention forms sharp specific pores, it is necessary to form pores while improving crystallinity.
  • the activation temperature is too high, the crystallinity is too high to make it difficult to form sharp pores, or it reacts rapidly with the activation gas, making it difficult to form sharp pores.
  • the activation temperature is too low, since the crystallinity is low, the reactivity with the activation gas increases and it becomes difficult to form sharp pores. Therefore, activation is performed until the activation temperature is about 850 to 950 ° C. and the activation gas and a specific specific surface area (800 to 1000 m 2 / g) or a specific pore volume (benzene adsorption amount: 23 to 28% by mass) over several hours. Then, by reacting rapidly with the activation gas at 850 ° C. to 1000 ° C.
  • pores suitable for chloroform adsorption such as 1,1,1-trichloroethane. It is considered that pores capable of adsorbing substances having a somewhat large molecular size can be formed.
  • carbonaceous material for example, plant-type carbonaceous materials (For example, fruit shells, such as wood, sawdust, charcoal, a coconut shell, and a walnut shell, fruit seeds, pulp manufacture by-products, lignin, molasses etc.) Plant-derived materials), mineral carbonaceous materials (eg, peat, lignite, lignite, bituminous coal, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch, and other mineral-derived materials), synthetic resin systems Carbonaceous materials (for example, materials derived from synthetic resins such as phenolic resins, polyvinylidene chloride, acrylic resins), natural fiber based carbonaceous materials (for example, natural fibers such as cellulose, natural fibers such as regenerated fibers such as rayon) Material).
  • plant-type carbonaceous materials for example, fruit shells, such as wood, sawdust, charcoal, a coconut shell, and a walnut shell, fruit seeds, pulp manufacture by-products, lignin,
  • carbonaceous materials can be used alone or in combination of two or more.
  • activated carbon using coconut shell as a raw material is preferable because micropores related to the adsorption performance of volatile organic compounds defined in JIS S 3201 (2010) are easily developed.
  • Activated activated carbon is washed to remove ash and chemicals when plant or mineral carbonaceous materials such as coconut shells containing impurities such as alkali metals, alkaline earth metals and transition metals are used. To do. Mineral acid and water are used for washing, and hydrochloric acid with high washing efficiency is preferable as the mineral acid.
  • the adsorption capacity of activated carbon depends on the application, but the benzene adsorption amount (saturated adsorption amount when aerated at a concentration of 1/10 of the benzene saturation concentration at 20 ° C.) is 28 to 33. It is preferable to be about mass%.
  • the activated carbon of this embodiment can be used for various uses by adjusting the benzene adsorption amount of the activated carbon according to the use.
  • the adsorption filter of this embodiment contains the activated carbon and a polymer binder.
  • the polymer binder is not particularly limited as long as it can be formed by entanglement with fibrous activated carbon and particulate activated carbon by fibrillation when the shape is fibrous, regardless of whether it is a synthetic product or a natural product. It can be used widely.
  • a binder include acrylic fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, cellulose fiber, nylon fiber, aramid fiber, and pulp.
  • the fiber length of the fibrous binder is preferably 4 mm or less.
  • fibrous binders may be used in combination of two or more. Particular preference is given to using polyacrylonitrile fibers or pulp as binder. Thereby, a molded object density and a molded object intensity
  • the polymer binder having a powder shape is not particularly limited as long as it can form particulate activated carbon, and examples thereof include polyethylene powder, polypropylene powder, and ethylene / acrylic acid copolymer resin powder.
  • powdery binders may be used in combination of two or more. Particular preference is given to using polyethylene powder as binder. Thereby, it is thought that a molded object density and a molded object intensity
  • strength can be raised further and a performance fall can be suppressed.
  • the water permeability of the fibrous polymer binder is about 10 to 150 mL in terms of CSF value.
  • the CSF value is a value measured according to JIS P8121 “Pulp Freeness Test Method” Canadian Standard Freeness Method. The CSF value can be adjusted by fibrillating the binder, for example.
  • the CSF value of the fibrous polymer binder When the CSF value of the fibrous polymer binder is less than 10 mL, water permeability cannot be obtained, the strength of the molded product is lowered, and the pressure loss may be increased. On the other hand, when the CSF value exceeds 150 mL, the powdered activated carbon cannot be sufficiently retained, and the strength of the molded body is lowered and the adsorption performance may be inferior.
  • the adsorption filter of the embodiment may contain a functional component other than this as long as the effect of the present invention is not inhibited.
  • a functional component other than this as long as the effect of the present invention is not inhibited.
  • any zeolite-based powder (lead adsorbent), ion exchange resin or chelate resin capable of adsorbing and removing soluble lead, or various adsorbents containing silver ions and / or silver compounds to impart antibacterial properties The amount may be added, but usually 0.1 to 30 parts by mass is added.
  • the mixing ratio of each component in the adsorption filter using the fibrous polymer binder of the present embodiment is preferably a mixture 100 of the activated carbon and the functional component from the viewpoint of the adsorption effect of volatile organic compounds, moldability, and the like.
  • the polymer binder is about 4 to 10 parts by mass with respect to parts by mass. If the amount of the polymer binder is less than 4 parts by mass, sufficient strength may not be obtained and the molded article may not be molded. Moreover, when the amount of the polymer binder exceeds 10 parts by mass, the adsorption performance may be deteriorated. More preferably, 4.5 to 6 parts by mass of the polymer binder is blended with 100 parts by mass of the mixture of activated carbon and functional component.
  • the production of the adsorption filter using the fibrous polymer binder of the present embodiment is performed by any method and is not particularly limited.
  • a slurry suction method is preferable in terms of efficient production. More specifically, for example, as described in Japanese Patent Application Laid-Open No. 10-5580, a double tubular mold having a large number of suction holes is prepared and the slurry is sucked from the center. Thus, a cylindrical adsorption filter (molded body) can be produced.
  • the powdery polymer binder generally has a melt mass flow rate (MFR g / 10 minutes) defined by JIS K 7210-1999 of 30 or less, preferably 20 or less, more preferably 10 Hereinafter, it is more preferably 2 or less. If the melt mass flow rate exceeds 30, the surface of the activated carbon may be coated and the adsorption performance may be reduced.
  • MFR g / 10 minutes melt mass flow rate defined by JIS K 7210-1999
  • the adsorption filter using the powdery polymer binder of the present embodiment may contain a functional component other than the powdery binder as long as the effect of the present invention is not impaired.
  • a functional component other than the powdery binder for example, any zeolite-based powder (lead adsorbent), ion exchange resin or chelate resin capable of adsorbing and removing soluble lead, or various adsorbents containing silver ions and / or silver compounds to impart antibacterial properties
  • the amount may be added, but usually 0.1 to 30 parts by mass is added.
  • the mixing ratio of each component in the adsorption filter using the powdered polymer binder of the present embodiment is preferably the mixture of activated carbon and functional component 100 from the viewpoints of the adsorption effect of volatile organic compounds, moldability, and the like.
  • the polymer binder is about 10 to 50 parts by mass with respect to parts by mass. If the amount of the polymer binder is less than 10 parts by mass, sufficient strength may not be obtained and the molded article may not be molded. Moreover, when the amount of the polymer binder exceeds 50 parts by mass, the adsorption performance may be deteriorated. More preferably, 15 to 35 parts by mass of the polymer binder is blended with 100 parts by mass of the mixture of activated carbon and functional component.
  • the production of the adsorption filter using the powdery polymer binder of the present embodiment is performed by any method and is not particularly limited. More specifically, for example, as described in Japanese Patent Application Laid-Open No. 2005-119902, the polymer binder and particulate activated carbon are put into a Henschel mixer and uniformly stirred and mixed.
  • a cylindrical adsorption filter (molded article) can be produced by uniformly filling the film with heat and fusing under pressure.
  • the water flow conditions and the like are not limited to words, but trihalomethanes in the raw water and the permeated water are used at a space velocity (SV) of 300 to 6500 / hr so that the pressure loss does not become extremely large. Plot the relationship between each removal rate calculated from the concentration of volatile organic compounds such as the ratio of the amount of water (L) flown from the start of water flow and the volume (cc) of the cartridge (cumulative permeate L / cc) Thus, the performance of the adsorption filter can be confirmed.
  • SV space velocity
  • the water flow method was performed in accordance with the domestic water purifier test method defined in JIS S 3201 (2010), and the point where the water flow rate was below 80% was defined as the removal capability.
  • the adsorption filter of the present embodiment is used as a water purification material, so that the performance can be sufficiently exhibited even at a flow rate where SV exceeds 1000 / hr, and the container can be greatly downsized.
  • the chloroform filtration capacity is preferably 25 liters or more per 1 cc of the adsorption filter at a space velocity of 2000 to 5000 / hr.
  • the adsorption filter of the present embodiment is very useful because it exhibits high performance under high SV conditions.
  • the concentration of volatile organic compounds in raw water and permeated water can be measured by a known analytical method. For example, the concentration of chloroform or 1,1,1-trichloroethane is collected in a container and sealed. The gas phase portion can be sampled and measured by a method such as analysis with a gas chromatograph.
  • the adsorption filter of this embodiment is used as, for example, a water purification filter.
  • a water purification filter for example, after the adsorption filter of the present embodiment is produced by the above production method, it can be obtained by shaping and drying and then cutting it into a desired size and shape. Although it may compress on a shaping stand in order to adjust the shape of a filter, since the surface of an activated carbon molding may be consolidated when it compresses too much, it is good to keep it to the minimum. Further, if necessary, a cap may be attached to the tip portion or a nonwoven fabric may be attached to the surface.
  • the adsorption filter of this embodiment can be filled in a housing and used as a cartridge for water purification.
  • the cartridge is loaded into a water purifier and used for water flow.
  • a total filtration method or a circulation filtration method for filtering the whole amount of raw water is adopted.
  • the cartridge loaded in the water purifier in the present embodiment may be used by filling the housing with a water purification filter, for example, but further known nonwoven fabric filters, various adsorbents, mineral additives, ceramic filter media, hollow fiber membranes, etc. It can also be used in combination.
  • activated carbon can be directly filled into a water purification cartridge and used.
  • the water purifier included by this invention is a water purifier using the above-mentioned activated carbon or the above-mentioned adsorption filter.
  • the activated carbon according to one aspect of the present invention is an activated carbon for removing an organic compound, and is obtained by the following formula using a BET specific surface area calculated by a nitrogen adsorption method and a pore volume calculated by the HK method.
  • the average pore diameter is 1.615 to 1.625 nm.
  • D 4000 ⁇ V / S (In the formula, D: average pore diameter (nm), V: pore volume (mL / g), S: specific surface area (m 2 / g))
  • the activated carbon preferably has a specific surface area of 1000 to 1350 m 2 / g. Thereby, the effect mentioned above is acquired more reliably.
  • the activated carbon is preferably activated carbon made from coconut husk. Thereby, it is considered that both chloroform and 1,1,1-trichloroethane can be sufficiently adsorbed.
  • An adsorption filter according to another aspect of the present invention includes the activated carbon and a polymer binder. With such a configuration, it is possible to provide an adsorption filter having an excellent adsorption / removal capability for a volatile organic compound.
  • the chloroform filtration capacity is preferably 25 L or more per 1 cc of the adsorption filter.
  • a water purifier according to a further aspect of the present invention is characterized by using the activated carbon or the adsorption filter. With such a configuration, it is possible to provide a useful water purifier having an excellent ability to absorb and remove volatile organic compounds.
  • the sample was sieved with a sieve having a JIS standard sieve opening of 0.3 to 0.15 mm, and the particle size was adjusted so that the average particle size was 0.23 mm.
  • a sample weight of 60 ml was weighed from the calculated packing density, and the sample was packed into a column having an inner diameter of 33 mm ⁇ and a height of 77 mm while lightly vibrating.
  • the sample is packed in a column in the same manner as the dynamic adsorption amount in the chloroform adsorption performance, and 1,1,1-trichloroethane prepared water is passed through the procedure according to JIS S3201, and the removal rate becomes 80%.
  • the amount of dynamic adsorption was determined from the amount of water flow. In this evaluation, a dynamic adsorption amount of 20.0 L / mL or more was regarded as acceptable.
  • each activated carbon particle The physical properties and adsorption performance of each activated carbon particle are as shown in Table 1 below.
  • the preparation method of each activated carbon is as follows: (Activated carbon sample A) Adjust the particle size of coconut shell charcoal made from Philippine coconut shell to 0.425-1.00mm, heat 1kg of the coconut shell charcoal to 500 ° C and flow nitrogen gas at 5L / min to batch type rotary kiln (RK). I put it in. After heating to 920 ° C. after the addition, steam was flowed at 5 L / min in addition to nitrogen gas and activated for 8 hours. The obtained activated carbon had a benzene adsorption performance of 25%.
  • the activated carbon obtained was activated at 900 ° C. for 10 minutes in a fluidized furnace (FB) with LPG combustion gas at 50 L / min until the benzene adsorption performance reached 30%, then washed with hydrochloric acid and dried at 120 ° C. for 5 hours. did.
  • Activated carbon sample B Using the same coconut shell charcoal as in the activated carbon sample A, the RK activation temperature was changed to 900 ° C., and the activation was carried out for 12 hours by flowing water vapor at 5 L / min. Thereafter, similarly to the activated carbon sample A, activation was performed at 900 ° C. for 10 minutes until the benzene adsorption performance reached 30%, washed with hydrochloric acid, and dried at 120 ° C. for 5 hours.
  • activated carbon sample C (Activated carbon sample C) Until RK activation, the same operation as that of the activated carbon sample A was performed, and activated carbon having a benzene adsorption performance of 25% was activated at an FB activation temperature of 930 ° C. for 7 minutes to obtain activated carbon having a benzene adsorption performance of 30%. Washing and drying were carried out in the same manner as in the activated carbon sample A.
  • Activated carbon sample D Adjust the particle size of coconut shell charcoal obtained by carbonizing Philippine coconut shells to 0.425 to 1.00 mm, and activate FB at an activation temperature of 920 ° C. using LPG combustion gas 50 L / min until benzene adsorption performance reaches 30% It went for 1 hour. The obtained activated carbon was washed with hydrochloric acid and then dried at 120 ° C. for 5 hours.
  • Activated carbon sample E Adjust the particle size of coconut shell charcoal obtained by carbonizing Philippine coconut shell to 0.425 to 1.00 mm, and activate FB at an activation temperature of 920 ° C. using LPG combustion gas of 50 L / min until the benzene adsorption performance reaches 33% 1.1 hours. The obtained activated carbon was washed with hydrochloric acid and then dried at 120 ° C. for 5 hours.
  • Activated carbon sample F Adjusting the particle size of coconut shell charcoal made from Philippine coconut shell to 0.425 to 1.00 mm, FB activation at an activation temperature of 920 ° C. using LPG combustion gas of 50 L / min until benzene adsorption performance reaches 45% 1.75 hours. The obtained activated carbon was washed with hydrochloric acid and then dried at 120 ° C. for 5 hours.
  • Activated carbon sample G Adjust the particle size of coconut shell charcoal from Philippine coconut shell to 0.425 to 1.00 mm, and activate FB at an activation temperature of 920 ° C. using LPG combustion gas 50 L / min until benzene adsorption performance reaches 54% It went for 3 hours. The obtained activated carbon was washed with hydrochloric acid and then dried at 120 ° C. for 5 hours.
  • Activated carbon sample H Adjust the particle size of coconut shell charcoal obtained by carbonizing Philippine coconut shell to 0.425-1.00mm, FB activation at activating temperature 920 ° C until benzene adsorption performance reaches 25% using LPG combustion gas 50L / min The activated carbon thus obtained was activated for 2 hours using RK while flowing nitrogen at 5 L / min and water vapor at 5 L / min at 920 ° C. until the benzene adsorption performance reached 30%. The obtained activated carbon was washed with hydrochloric acid and then dried at 120 ° C. for 5 hours.
  • Activated carbon sample I Philippine coconut shell carbonized coconut shell charcoal is adjusted to a particle size of 0.425 to 1.00 mm, RK activation at an activation temperature of 920 ° C. is 5 L / min for nitrogen, and 5 L / min for water vapor. 10 hours until%. The obtained activated carbon was washed with hydrochloric acid and then dried at 120 ° C. for 5 hours.
  • Acrylic fiber binder CSF value 90ml (Lead adsorbent) ⁇ Titanosilicate lead adsorbent
  • Example 1 Evaluation of activated carbon> With respect to the activated carbon samples A to G (Examples 1 to 3 and Comparative Examples 1 to 6) shown in Table 1 below, the physical properties and the adsorption performance were measured using the evaluation methods described above. The results are shown in Table 1. The results of the adsorption performance are also shown in the graphs of FIGS.
  • a hollow cylindrical shape having an outer diameter of 27.5 mm, an inner diameter of 10 mm, and a height of 101 mm using a mold having a large number of small holes of 3 mm and suctioning at 350 mmHg, and having an outer diameter of 28 mm, an inner diameter of 10 mm, and a height of 100 mm.
  • a molded body (adsorption filter) was obtained.
  • the molded body is loaded into a transparent plastic housing having a diameter of 32 mm, a length of 100 mm, and an internal amount of 80 cc, and water is passed from the outside to the inside.
  • Chloroform, 1,1,1 in accordance with the household water purifier test method -Trichloroethane was added to a total concentration of 0.060 ⁇ 0.020 mg / L and 0.300 ⁇ 0.060 mg / L, respectively, and water was passed at the flow rate and SV shown in Table 2 below.
  • Table 2 shows the results of the evaluation tests described above for the adsorption filters of Examples 4 to 7 (using activated carbon A) and Comparative Examples 7 to 13 (using activated carbon D or E). The filtration capacity is also shown in the graphs of FIGS.
  • the present invention has wide industrial applicability in the technical fields related to activated carbon, adsorption filters and water purifiers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本発明は、有機化合物除去用活性炭であって、窒素吸着法により算出されたBET式比表面積と、HK法から算出された細孔容積とを用いて、下記式により得られる平均細孔径が1.615~1.625nmである活性炭に関する。 D=4000×V/S (式中、D:平均細孔径(nm),V:細孔容積(mL/g),S:比表面積(m/g)を表す)

Description

活性炭、並びにそれを用いた吸着フィルターおよび浄水器
 本発明は、活性炭、並びにそれを用いた吸着フィルターおよび浄水器に関する。
 近年、水道水の水質に関する安全衛生上の関心が高まってきており、水道水中に含まれる遊離残留塩素、トリハロメタン類などのVOC(揮発性有機化合物)、農薬、黴臭などの有害物質を除去することが望まれている。
 特に、雑菌繁殖を防止するために水道水等に利用されている塩素は無毒な物質ではなく、残留塩素濃度の高い水道水で髪や肌を洗浄すると髪や肌の蛋白質を変性させて傷めてしまうおそれがある。また、水道水中に溶存している微量のトリハロメタンは、発ガン性物質であることが疑われている。近年の健康志向の高まりの中で、トリハロメタン等を除去し得る浄水器の重要性はますます高まっている。
 トリハロメタンとは、メタン分子の4個の水素原子の内、3個がハロゲンによって置換された化合物の総称であり、クロロホルム、ジクロロブロモメタン、クロロジブロモメタン、ブロモホルムなどがその代表例であり、類似の化合物として、エタンの水素原子のうち3個を塩素原子に置き換えた有機ハロゲン化合物である1,1,1-トリクロロエタンが浄水器の除去対象物質となっている。
 これら揮発性有機化合物の中でも、とりわけ、クロロホルムと1,1,1-トリクロロエタンの吸着除去を両立させることが非常に難しいことはすでにわかってきている。
 従来、これらの有害物質を除去するため、活性炭を使用した浄水器を用いることが知られている。
 例えば、特許文献1には、比表面積を900~1100m/gとし、MP法による細孔分布の測定において、細孔直径0~2.0nmの細孔の全細孔容積に占める細孔直径0.6nm以下の細孔の総細孔容積を全細孔容積の40~45%とし、DH法による細孔分布の測定において、細孔直径1~100nmの細孔の全細孔容積に占める細孔直径2.0nm以下の細孔の総細孔容積を全細孔容積の20~23%とし、表面酸化物量を0.05~0.14meq/gとした活性炭からなることを特徴とする浄水器用活性炭が開示されている。
 また、特許文献2には、パラメータdV/dlogR(V:細孔容積、R:細孔半径)で表した細孔径分布において、dV/dlogR値が、(a)細孔直径Dが10Å~40Åの範囲でdV/dlogR値が0.03~0.2の範囲に少なくとも1個以上のピーク値と、(b)細孔直径Dが6Å~9Åの範囲でdV/dlogR値が1.0~7.0の範囲に少なくとも1個以上のピーク値と、を備え、細孔直径Dが10Å~50Åの多数の大口径細孔の内表面に細孔直径Dが6Å~9Åの小口径細孔が形成されており、トリハロメタンの通水時の吸着容量が118~220ppb・tonであることを特徴とする活性炭が開示されている。
 しかし、上記特許文献1および2記載の技術をもってしても、クロロホルムと1,1,1-トリクロロエタンの両方が十分に吸着除去されているとは言い難い。
 浄水器に求められる性能も年々高まっており、揮発性有機化合物、とりわけ、クロロホルムと1,1,1-トリクロロエタンの吸着除去を両立させることができる吸着材が求められている。
特開2013-220413号公報 特許第3528685号公報
 本発明の目的は、上記課題に鑑みて、上記要求を満たす活性炭並びにそれを用いた吸着フィルターおよび浄水器を提供することである。
 本発明者らは、鋭意検討した結果、下記構成を有する活性炭によって、前記課題が解決することを見出し、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。
 すなわち、本発明の一局面に係る活性炭は、有機化合物除去用活性炭であって、窒素吸着法により算出されたBET式比表面積と、HK法から算出された細孔容積とを用いて、下記式により得られる平均細孔径が1.615~1.625nmであることを特徴とする。
D=4000×V/S
(式中、D:平均細孔径(nm),V:細孔容積(mL/g),S:比表面積(m/g)を表す)
 本発明によれば、揮発性有機化合物に対し高吸着性能を有する活性炭、特に、クロロホルムと1,1,1-トリクロロエタンの吸着性能において非常に優れた活性炭を提供できる。
図1は、実施例において測定した、上記式で得られる平均細孔径と水中の揮発性有機化合物の静的吸着性能との関係を示したグラフである。 図2は、実施例において測定した、上記式で得られる平均細孔径と水中の揮発性有機化合物の動的吸着性能との関係を示したグラフである。 図3は、実施例・比較例における活性炭のクロロホルムの吸着性能を示したグラフである。 図4は、実施例・比較例における活性炭の1,1,1-トリクロロエタンの吸着性能を示したグラフである。
 以下、本発明に係る実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。
 本実施形態の活性炭は、窒素吸着法により算出されたBET式比表面積と、HK法から算出された細孔容積とを用いて、下記式により得られる平均細孔径が1.615~1.625nmであることを特徴とする。
D=4000×V/S
(式中、D:平均細孔径(nm),V:細孔容積(mL/g),S:比表面積(m/g)を表す)
 本実施形態の活性炭は、有機化合物除去用活性炭であり、特に、クロロホルム、1,1,1-トリクロロエタン、ジクロロブロモメタン、クロロジブロモメタン、ブロモホルムなどのトリハロメタン等の揮発性有機化合物の除去用に好適に使用される。さらに、これら揮発性有機化合物の中でも、とりわけ、クロロホルムと1,1,1-トリクロロエタンの吸着除去を両立させることは従来非常に難しいとされていが、本実施形態の活性炭はそれらの吸着除去能力に優れている。
 これは、従来の活性炭では、先にクロロホルム吸着に適した細孔が形成された後、1,1,1-トリクロロエタンに適した細孔へ変化していくが、本実施形態の活性炭は、クロロホルム吸着に適した細孔を維持しつつ、1,1,1-トリクロロエタン吸着に適した細孔を形成するためであるためと考えられる。
 上記式により得られる平均細孔径は、さらに、1.616~1.623nmであることが好ましく、1.618~1.621nmであることがより好ましい。
 本実施形態の活性炭において、前記平均細孔径が1.615未満、あるいは、1.625nmを超えると、所望の揮発性有機化合物に対する吸着除去能力が低下する。
 本実施形態の活性炭は、上記式により得られる平均細孔径の範囲を満足する限り、その他の構成については特に限定はされず、例えば、二種類以上の異なる活性炭を含んでいてもよい。
 また、本実施形態の活性炭は、窒素吸着法により算出されるBET比表面積が1000~1350m/g程度であることが好ましい。さらに好ましくは1050~1300m/g程度、より好ましくは1100~1250m/g程度である。比表面積が大きすぎると、揮発性有機化合物が吸着し難くなり、小さすぎると、揮発性有機化合物等の除去性能が低下するおそれがある。
 本実施形態の活性炭の形状としては、粒子状、繊維状(糸状、織り布(クロス)状、フェルト状)などのいずれの形状でもよく、用途によって適宜選択できるが、体積あたりの吸着性能の高い粒子状が好ましい。粒子状の活性炭を浄水器用に使用する場合には、例えば、体積基準の累計粒度分布における10%粒子径(D10)が15~35μm程度であり、かつ、体積基準の累計粒度分布における50%粒子径(D50)が30~150μm程度である粉末状活性炭を使用することができる。このような範囲の形状であれば、上記吸着除去性能に加え、成形性に優れ、かつ成形体にした時の強度にも優れると考えられる。
 本実施形態において、上記D10、D50およびD90の数値はレーザー回折・散乱法により測定した値であり、例えば、日機装株式会社製の湿式粒度分布測定装置(マイクロトラックMT3300EX II)などにより行われる。
 本実施形態の活性炭は、炭素質材料(例えば、ヤシがらやフェノール樹脂)を炭化及び/又は賦活することによっても得られる。炭化を必要とする場合は、通常、酸素又は空気を遮断して、例えば、400~800℃、好ましくは500~800℃、さらに好ましくは550~750℃程度で行うことができる。賦活法としては、ガス賦活法、薬品賦活法等の賦活法があるが、浄水用として使用する場合、不純物の残留の少ないガス賦活法が好ましい。本発明の活性炭はシャープな特定の細孔を形成させるため、結晶性を高めつつ細孔を形成する必要がある。賦活温度が高すぎると結晶性が高まりすぎるためシャープな細孔を形成しにくくなったり、賦活ガスと急速に反応するためシャープな細孔を形成することが難しくなる。一方、賦活温度が低すぎると、結晶性が低いため賦活ガスとの反応性が高まりシャープな細孔を形成することが難しくなる。よって賦活温度が850~950℃程度で賦活ガスと数時間かけて特定の比表面積(800~1000m/g)または特定の細孔容積(ベンゼン吸着量:23~28質量%)となるまで賦活し、その後、賦活ガスと850℃~1000℃で急速かつ短時間(例えば5分~30分)反応させることにより、クロロホルム吸着に適した細孔を有しながら1,1,1-トリクロロエタンのようなやや分子サイズの大きい物質も吸着することのできる細孔を形成することが出来ると考えられる。
 炭素質材料としては、特に限定されないが、例えば植物系炭素質材料(例えば、木材、鉋屑、木炭、ヤシ殻やクルミ殻などの果実殻、果実種子、パルプ製造副生成物、リグニン、廃糖蜜などの植物由来の材料)、鉱物系炭素質材料(例えば、泥炭、亜炭、褐炭、瀝青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの鉱物由来の材料)、合成樹脂系炭素質材料(例えば、フェノール樹脂、ポリ塩化ビニリデン、アクリル樹脂などの合成樹脂由来の材料)、天然繊維系炭素質材料(例えば、セルロースなどの天然繊維、レーヨンなどの再生繊維などの天然繊維由来の材料)などが挙げられる。これらの炭素質材料は、単独でまたは2種類以上組み合わせて使用できる。これらの炭素質材料のうち、JIS S 3201(2010)で規定される揮発性有機化合物の吸着性能に関与するミクロ孔が発達しやすい点から、ヤシ殻を原料とする活性炭が好ましい。
 賦活後の活性炭は、アルカリ金属、アルカリ土類金属および遷移金属などの不純物を含むヤシ殻などの植物系炭素質材料や鉱物系炭素質材料を用いた場合、灰分や薬剤を除去するために洗浄する。洗浄には鉱酸や水が用いられ、鉱酸としては洗浄効率の高い塩酸が好ましい。
 活性炭の吸着容量が小さすぎると十分な吸着能力を保持しているとは言えず、吸着容量が大きすぎると過賦活状態で細孔径が増大しており、有害物質の吸着保持力が低下する傾向にある。したがって、本実施形態の活性炭において、吸着容量は、用途にもよるが、ベンゼン吸着量(20℃のときのベンゼン飽和濃度の1/10の濃度で通気した時の飽和吸着量)が28~33質量%程度となるようにすることが好ましい。この活性炭のベンゼン吸着量は、用途に応じて調整することによって、様々な用途に本実施形態の活性炭を使用することができる。
 本実施形態の吸着フィルターは、前記活性炭と、高分子バインダーを含有する。
 高分子バインダーとしては、形状が繊維状の場合、フィブリル化させることによって、繊維状活性炭および粒子状活性炭を絡めて賦形できるものであれば、特に限定されず、合成品、天然品を問わず幅広く使用可能である。このようなバインダーとしては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、アラミド繊維、パルプなどが挙げられる。繊維状バインダーの繊維長は4mm以下であることが好ましい。
 これらの繊維状のバインダーは2種以上を組み合わせて使用してもよい。特に好ましくは、ポリアクリロニトリル繊維またはパルプをバインダーとして使用することである。それにより、成形体密度および成形体強度をさらに上げ、性能低下を抑制することができる。
 また、形状が粉末状の高分子バインダーとしては、粒子状活性炭を賦形できるものであれば、特に限定されず、ポリエチレン粉末、ポリプロピレン粉末、エチレン・アクリル酸共重合樹脂粉末などが挙げられる。
 これらの粉末状のバインダーは2種以上を組み合わせて使用してもよい。特に好ましくは、ポリエチレン粉末をバインダーとして使用することである。それにより、成形体密度および成形体強度をさらに上げ、性能低下を抑制することができると考えられる。
 本実施形態において、繊維状の高分子バインダーの通水性は、CSF値で10~150mL程度である。本実施形態において、CSF値はJIS P8121「パルプの濾水度試験方法」カナダ標準ろ水度法に準じて測定した値である。また、CSF値は、例えばバインダーをフィブリル化させることによって調整できる。
 繊維状の高分子バインダーのCSF値が10mL未満となると、通水性が得られず、成形体の強度が低くなり、圧力損失も高くなるおそれがある。一方で、前記CSF値が150mLを超える場合は、粉末状の活性炭を十分に保持することができず、成型体の強度が低くなる上、吸着性能に劣る可能性がある。
 また実施形態の吸着フィルターには、本発明の効果が阻害されない限りこれ以外の機能性成分が含まれていてもよい。例えば、溶解性鉛を吸着除去できるゼオライト系粉末(鉛吸着材)やイオン交換樹脂またはキレート樹脂、あるいは抗菌性を付与するために銀イオン及び/又は銀化合物を含んだ各種吸着材などを任意の量加えてもよいが、通常0.1~30質量部配合する。
 本実施形態の繊維状の高分子バインダーを使用した吸着フィルターにおける各成分の混合割合は、揮発性有機化合物の吸着効果、成型性などの点から、好ましくは、前記活性炭と機能性成分の混合物100質量部に対し、前記高分子バインダーを4~10質量部程度とする。高分子バインダーの量が4質量部未満となると、十分な強度が得られずに成形体を成形できないおそれがある。また、高分子バインダーの量が10質量部を超えると、吸着性能が低下するおそれがある。より好ましくは、活性炭と機能性成分の混合物100質量部に対し、高分子バインダーを4.5~6質量部配合することである。
 本実施形態の繊維状の高分子バインダーを使用した吸着フィルターの製造は、任意の方法で行われ、特に限定されない。効率よく製造できる点で、スラリー吸引方法が好ましい。より具体的には、例えば、特開平10-5580号公報に記載されているように、多数の吸引用小孔を設けた二重管状の成形型を準備し、中心部からスラリーを吸引することによって円筒型の吸着フィルター(成形体)を作製することができる。
 また、本実施形態において、粉末状の高分子バインダーは、JIS K 7210-1999で規定されるメルトマスフローレイト(MFR g/10分)が通常30以下であり、好ましくは20以下、より好ましくは10以下、更に好ましくは2以下である。メルトマスフローレイトが30を超えると、活性炭の表面を被覆し、吸着性能を低下させる恐れがある。
 また、本実施形態の粉末状の高分子バインダーを使用した吸着フィルターには、本発明の効果が阻害されない限りこの粉末状バインダー以外の機能性成分が含まれていてもよい。例えば、溶解性鉛を吸着除去できるゼオライト系粉末(鉛吸着材)やイオン交換樹脂またはキレート樹脂、あるいは抗菌性を付与するために銀イオン及び/又は銀化合物を含んだ各種吸着材などを任意の量加えてもよいが、通常0.1~30質量部配合する。
 本実施形態の粉末状の高分子バインダーを使用した吸着フィルターにおける各成分の混合割合は、揮発性有機化合物の吸着効果、成型性などの点から、好ましくは、前記活性炭と機能性成分の混合物100質量部に対し、前記高分子バインダーを10~50質量部程度とする。高分子バインダーの量が10質量部未満となると、十分な強度が得られずに成形体を成形できないおそれがある。また、高分子バインダーの量が50質量部を超えると、吸着性能が低下するおそれがある。より好ましくは、活性炭と機能性成分の混合物100質量部に対し、高分子バインダーを15~35質量部配合することである。
 本実施形態の粉末状の高分子バインダーを使用した吸着フィルターの製造は、任意の方法で行われ、特に限定されない。より具体的には、例えば、特開2005-119902号公報に記載されているように、前記高分子バインダーと及び粒子状活性炭をヘンシェルミキサーに投入して均一に攪拌、混合し、アルミ製金型に均一に充填し、加圧下で加熱融着することによって円筒型の吸着フィルター(成形体)を作製することができる。
 本実施形態の吸着フィルターにおいて、通水条件等は語句に限定されないが、圧力損失が極度に大きくならないように300~6500/hrの空間速度(SV)で実施され、原水及び透過水中のトリハロメタン類などの揮発性有機化合物濃度から計算される各除去率と、通水開始から流した水量(L)とカートリッジの容積(cc)の比(累積透過水量L/cc)との関係をプロットすることにより、吸着フィルターの性能を確認することができる。
 本実施形態において、通水方法はJIS S 3201(2010)に定められた家庭用浄水器試験方法に準拠して行い、80%を下回った点を除去能とした。本実施形態の吸着フィルターを浄水材として使用すると、吸着速度が大きいので、SVが1000/hrを超える流速においてもその性能を十分に発揮することができ、容器を大幅に小型化することができる。本実施形態において、クロロホルムろ過能力は、空間速度2000~5000/hrにおいて、吸着フィルター1ccあたり25リットル以上であることが好ましい。

 このように本実施形態の吸着フィルターは、高SV条件において高い性能を発揮するため、非常に有用である。

 原水及び透過水中の揮発性有機化合物などの濃度は、公知の分析方法によって測定することができ、例えば、クロロホルムや1,1,1-トリクロロエタンの濃度は、試料を容器に採取し、密閉して気相部分をサンプリングし、ガスクロマトグラフで分析するなどの方法によって測定することができる。

 本実施形態の吸着フィルターは、例えば、浄水フィルターなどとして用いられる。浄水フィルターとして使用する場合、例えば、本実施形態の吸着フィルターを上記の製造方法によって製造したのち、整形、乾燥後、所望の大きさおよび形状に切断して得ることができる。フィルターの形を整えるために整形台上で圧縮してもよいが、圧縮しすぎると、活性炭成型体の表面が圧密化することがあるので、最小限に止めるのがよい。さらに必要に応じて、先端部分にキャップを装着したり、表面に不織布を装着させてもよい。

 また、本実施形態の吸着フィルターは、ハウジングに充填して浄水用カートリッジとして使用し得る。カートリッジは浄水器に装填され、通水に供されるが、通水方式としては、原水を全量濾過する全濾過方式や循環濾過方式が採用される。本実施形態において浄水器に装填されるカートリッジは、例えば浄水フィルターをハウジングに充填して使用すればよいが、さらに公知の不織布フィルター、各種吸着材、ミネラル添加材、セラミック濾過材、中空糸膜などと組合せて使用することもできる。

 さらに、浄水用カートリッジに直接活性炭を充填し、使用することも出来る。

 なお、本発明に包含される浄水器は、上述の活性炭または上述の吸着フィルターを用いた浄水器である。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一局面に係る活性炭は、有機化合物除去用活性炭であって、窒素吸着法により算出されたBET式比表面積と、HK法から算出された細孔容積とを用いて、下記式により得られる平均細孔径が1.615~1.625nmであることを特徴とする。
D=4000×V/S
(式中、D:平均細孔径(nm),V:細孔容積(mL/g),S:比表面積(m/g)を表す)
 このような構成を有することにより、揮発性有機化合物に対し、優れた吸着除去能力を有する活性炭を提供することができる。なかでも、クロロホルムと1,1,1-トリクロロエタンの両方に対して優れた吸着除去能力を発揮することができる。
 また、前記活性炭において、比表面積が1000~1350m/gであることが好ましい。それにより、上述した効果がより確実に得られる。
 さらに、前記活性炭がヤシガラを原料とする活性炭であることが好ましい。それにより、クロロホルムと1,1,1-トリクロロエタンの両方が十分に吸着することができると考えられる。
 本発明の他の局面に係る吸着フィルターは、前記活性炭及び高分子バインダーを含むことを特徴とする。このような構成により、揮発性有機化合物に対し、優れた吸着除去能力を有する吸着フィルターを提供することができる。
 さらに、前記吸着フィルターにおいて、空間速度(SV)が2000~5000/hrの場合に、クロロホルムろ過能力が、吸着フィルター1ccあたり25L以上であることが好ましい。
 また、本発明のさらなる局面に係る浄水器は、前記活性炭、又は、前記吸着フィルターを用いることを特徴とする。このような構成により、揮発性有機化合物に対し、優れた吸着除去能力を有する、有用な浄水器を提供することができる。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。なお、実施例における各物性値は、以下に示す方法により測定した。
 <評価方法>
 [活性炭の粒子径] 湿式粒度分布測定装置(日機装(株)製「マイクロトラックMT3300EX II」)を用いて、レーザー回折・散乱法により体積基準の累計粒度分布における0%粒子径(D0)、体積基準の累計粒度分布における10%粒子径(D10)、体積基準の累計粒度分布における50%粒子径(D50)及び体積基準の累計粒度分布における90%粒子径(D90)を測定した。
 具体的な粒度分布の測定方法を次に示す。
(分散液調整方法)
 ポリオキシエチレン(10)オクチルフェニルエーテル(WAKO製)をイオン交換水で50倍に希釈し、測定用の分散液とした。
(サンプル液調製方法)
 透過率(TR)が0.880~0.900になる分量をビーカーに秤り取り、分散液を1.0ml添加し、スパチュラで攪拌後、超純水を約5ml程度加え混合しサンプル液とした。
 得られたサンプル液は全量、装置に流し入れ、以下の条件で分析を行った。
(分析条件)
測定回数;3回の平均値
測定時間;30秒
分布表示;体積
粒径区分;標準
計算モード; MT3000II 
溶媒名;WATER
測定上限;2000μm、測定下限;0.021μm
残分比;0.00
通過分比;0.00
残分比設定;無効
粒子透過性;吸収
粒子屈折率;N/A
粒子形状;N/A
溶媒屈折率;1.333
DV値;0.0882
透過率(TR);0.880~0.900
拡張フィルター;無効
流速;70%
超音波出力;40W
超音波時間;180秒
 [活性炭の比表面積]
 日本ベル社製BELSORP-MAXを使用し、活性炭の77Kにおける窒素吸着等温線を測定した。得られた吸着等温線からBETの式により多点法による解析を行い、得られた曲線の相対圧p/p0=0.001~0.1の領域での直線から比表面積を算出した。(より具体的には、得られた曲線から相関係数が1に最も近く、且つC値が負にならない直線を用いて比表面積を算出した)。
 [活性炭の細孔容積(HK法)]
 前記窒素吸着等温線をHK法により解析した。解析条件は吸着質分子量を28.010、吸着質密度を0.808gcm-3、ファイルデータ補間方法を直線、パラメータ設定をN2-C(77K).HKSとした。
 [活性炭の平均細孔径]
 上記で得られた比表面積および細孔容積を用いて、以下の式により算出した。
D=4000×V/S
(式中、D:平均細孔径(nm),V:細孔容積(mL/g),S:比表面積(m/g)を表す)
 [クロロホルム吸着性能]
 (静的吸着量)
 活性炭を30μm程度に粉砕し、115℃で1時間乾燥後試験に供した。原液として、約100μg/Lに調製したクロロホルム溶液100mlを100ml用バイアル瓶にいれ、更にサンプルを適量添加し、ポリテトラフルオロエチレンシート、バイアル用ゴム栓、アルミキャップを載せアルミキャップ締め機で固定した。25℃に調整した振とう機で約160回/分で2時間振とうした後、メタノール10μlをマイクロシリンジで注入し、更に25℃恒温槽で1時間静置した。1時間静置後ヘッドスペース部分をバイアル用ゴム栓を通してガスタイトシリンジを用いてその一定量を採り、ガスクロマトグラフィー(ECD)で分析し、検液中のクロロホルム濃度Aを求めた。同様に活性炭を添加しないブランクのクロロホルム濃度Bを求め、添加した活性炭量Wから、下記式により残留クロロホルム濃度における吸着量Mを計算した。この時、残留濃度が、10μg/L前後となるように活性炭添加量を変え、横軸残留濃度、縦軸吸着量とした両対数グラフにプロットし、残留濃度が10μg/L時の濃度を読み取った。
M=(B-A)×0.1÷W
本評価では静的吸着量が1.0mg/g以上のものを合格とした。
 (動的吸着量)
 JIS標準篩目開き0.3~0.15mmの篩で篩分け、平均粒子径が0.23mmになるように粒度調整しサンプルとした。100mlのメスシリンダーの重量を測定後、約100mlのサンプルを入れ重量を測定してサンプル重量を計量後、3分間ゴム板の上で軽くタッピングした時の容積から充填密度を算出した。算出された充填密度から60ml分のサンプル重量を量り取り、内径33mmφ、高さ77mmのカラムにサンプルを軽く振動させながら充填した。
 この時、サンプルが漏れ出さないようにカラムの底部と上部に不織布を設置した。カラム上部からJIS S3201に準拠した手順でクロロホルム調製水を通水し、原水に対してろ過水の除去率が80%となる積算通水量Lを測定し、次式により、動的吸着量を求めた。
動的吸着量=L/60
 本評価では動的吸着量が22.0L/mL以上のものを合格とした。
 [1,1,1-トリクロロエタン吸着性能]
 (静的吸着量)
 1,1,1-トリクロロエタン濃度約300μg/Lに調製した以外、クロロホルム吸着性能における静的吸着量と同様な方法で残留濃度が10μg/L時の濃度を読み取った。本評価では静的吸着量が2.4mg/g以上のものを合格とした。
 (動的吸着量)
 クロロホルム吸着性能における動的吸着量と同様な方法で、サンプルをカラムに充填し、JIS S3201に準拠した手順で1,1,1-トリクロロエタン調製水を通水し、除去率が80%となる積算通水量から、動的吸着量を求めた。本評価では動的吸着量が20.0L/mL以上のものを合格とした。
 [フィルター成形体密度(g/ml)]
 成型体密度(g/ml)は、得られた円筒状フィルターを120℃で2時間乾燥した後、測定した重量(g)及び体積(ml)に基づいて求めた。
 [初期通水抵抗]
 吸着フィルターに、3リットル/分の通水量で通水開始10分後の通水抵抗を測定した。初期通水抵抗については、0.10MPa以下を合格点とした。
 [クロロホルムろ過能力]
 JIS S3201に準拠し、任意の流量で通水し、原水に対してろ過水の除去率が80%になるまでの積算通水量を測定し、積算通水量をフィルター体積で除した値をクロロホルムろ過能力とした。本評価では24.2L/cc以上のものを合格とした。
 [1,1,1-トリクロロエタンろ過能力]
 クロロホルムろ過能力と同様にJIS S3201に準拠し、任意の流量で通水し、原水に対してろ過水の除去率が80%になるまでの積算通水量を測定し、積算通水量をフィルター体積で除した値を1,1,1-トリクロロエタンろ過能力とした。本評価では30.0L/cc以上のものを合格とした。
 [原料]
 (活性炭)
・粉末状活性炭サンプルA:ヤシ殻原料
・粉末状活性炭サンプルB:ヤシ殻原料
・粉末状活性炭サンプルC:ヤシ殻原料
・粉末状活性炭サンプルD:ヤシ殻原料
・粉末状活性炭サンプルE:ヤシ殻原料
・粉末状活性炭サンプルF:ヤシ殻原料
・粉末状活性炭サンプルG:ヤシ殻原料
・粉末状活性炭サンプルH:ヤシ殻原料
・粉末状活性炭サンプルI:ヤシ殻原料
 なお、各活性炭粒子の物性および吸着性能は下記表1に示す通りである。また、各活性炭の調製方法は以下の通りである:
 (活性炭サンプルA)
 フィリピン産のヤシ殻を炭化したヤシ殻炭を0.425~1.00mmに粒度調整し、そのヤシ殻炭1kgを500℃まで加熱し窒素ガスを5L/min流しながらバッチ式ロータリーキルン(RK)へ投入した。投入後に920℃まで加熱した後、窒素ガスに加えて、水蒸気を5L/min流し8時間賦活を行い、得られた活性炭のベンゼン吸着性能は25%となった。得られた活性炭を流動炉(FB)にLPG燃焼ガス50L/minでベンゼン吸着性能が30%になるまで10分間900℃賦活を行った後、塩酸を用いた洗浄を行い120℃で5時間乾燥した。
 (活性炭サンプルB)
 活性炭サンプルAと同様のヤシ殻炭を用いて、RK賦活温度を900℃に変えて、水蒸気を5L/min流し12時間賦活を行い、得られた活性炭のベンゼン吸着性能は25%となった。その後は活性炭サンプルAと同様にベンゼン吸着性能が30%になるまで10分間900℃賦活行い、塩酸を用いて洗浄し120℃で5時間乾燥した。
 (活性炭サンプルC)
 RK賦活までは、活性炭サンプルAと同様の操作を行い、ベンゼン吸着性能が25%になった活性炭をFB賦活温度を930℃で7分間賦活しベンゼン吸着性能30%の活性炭を得た。洗浄及び乾燥は活性炭サンプルAと同様の操作を行った。
 (活性炭サンプルD)
 フィリピン産のヤシ殻を炭化したヤシ殻炭を0.425~1.00mmの粒度調整し、賦活温度920℃におけるFB賦活をLPG燃焼ガス50L/minを用いてベンゼン吸着性能が30%になるまで1時間行った。得られた活性炭は塩酸を用いて洗浄を行った後に120℃で5時間乾燥を行った。
 (活性炭サンプルE)
 フィリピン産のヤシ殻を炭化したヤシ殻炭を0.425~1.00mmの粒度調整し、賦活温度920℃におけるFB賦活をLPG燃焼ガス50L/minを用いてベンゼン吸着性能が33%になるまで1.1時間行った。得られた活性炭は塩酸を用いて洗浄を行った後に120℃で5時間乾燥を行った。
 (活性炭サンプルF)
 フィリピン産のヤシ殻を炭化したヤシ殻炭を0.425~1.00mmの粒度調整し、賦活温度920℃におけるFB賦活をLPG燃焼ガス50L/minを用いてベンゼン吸着性能が45%になるまで1.75時間行った。得られた活性炭は塩酸を用いて洗浄を行った後に120℃で5時間乾燥を行った。
 (活性炭サンプルG)
 フィリピン産のヤシ殻を炭化したヤシ殻炭を0.425~1.00mmの粒度調整し、賦活温度920℃におけるFB賦活をLPG燃焼ガス50L/minを用いてベンゼン吸着性能が54%になるまで3時間行った。得られた活性炭は塩酸を用いて洗浄を行った後に120℃で5時間乾燥を行った。
 (活性炭サンプルH)
 フィリピン産のヤシ殻を炭化したヤシ殻炭を0.425~1.00mmに粒度調整し、賦活温度920℃におけるFB賦活をLPG燃焼ガス50L/minを用いてベンゼン吸着性能が25%になるまで0.75時間行い、得られた活性炭をRKを用いて、920℃で窒素5L/min、水蒸気を5L/min流しながら、ベンゼン吸着性能が30%になるまで2時間賦活を行った。得られた活性炭は塩酸を用いて洗浄を行った後に120℃で5時間乾燥を行った。
 (活性炭サンプルI)
 フィリピン産のヤシ殻を炭化したヤシ殻炭を0.425~1.00mmに粒度調整し、賦活温度920℃におけるRK賦活を窒素5L/min、水蒸気を5L/min流しながら、ベンゼン吸着性能が30%になるまで10時間行った。得られた活性炭は塩酸を用いて洗浄を行った後に120℃で5時間乾燥を行った。
 (バインダー原料)
・アクリル繊維状バインダー:CSF値90ml
 (鉛吸着材)
・チタノシリケート系鉛吸着材
 <試験例1:活性炭の評価>
 それぞれ、下記表1に示す活性炭サンプルA~G(実施例1~3および比較例1~6)について、上述の評価方法を用いて、各物性および吸着性能を測定した。結果を表1に示す。また、吸着性能の結果については図1および図2のグラフにも示した。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 表1および図1~2から明らかなように、実施例に係る活性炭はいずれも、クロロホルムおよび1,1,1-トリクロロエタンの両方に対し、優れた吸着性能を示すことがわかった。これに対し、平均細孔径が本発明の範囲に入らない比較例の活性炭では、クロロホルムおよび1,1,1-トリクロロエタンの少なくともいずれかの吸着量において劣る結果となった。
 <試験例2:吸着フィルターの評価>
 それぞれ下記表2に示す活性炭サンプル94質量部に対し、バインダー4質量部、鉛吸着材6質量部を投入し、合計1.04kgとして、水道水を追加し、スラリー量を20リットルとした。
 そして、直径3mmの多数の小孔を有する、外径27.5mm、内径10mm、高さ101mmの金型を用いて350mmHgで吸引し、外径28mm、内径10mm、高さ100mmの中空型円筒状成型体(吸着フィルター)を得た。
 この成型体を直径32mm、長さ100mm、内在量80ccの透明なプラスチック製ハウジングに装填し、外側から内側に通水し、家庭用浄水器試験方法に準拠して、クロロホルム、1,1,1-トリクロロエタンをそれぞれ総濃度0.060±0.020mg/L及び0.300±0.060mg/Lとなるように加え、下記表2に示し流量およびSVで通水した。
 各実施例4~7(活性炭A使用)および比較例7~13(活性炭DまたはE使用)の吸着フィルターについて、上述した評価試験を行った結果を表2に示す。また、ろ過能力については図3および4のグラフにも示した。
Figure JPOXMLDOC01-appb-T000002
 <考察>
 表2および図3~4から明らかなように、実施例に係る吸着フィルターはいずれも、抵抗が低く、クロロホルムおよび1,1,1-トリクロロエタンの両方ろ過能力に非常に優れていることがわかった。特に、高SV条件においても、優れたろ過能力を発揮することも確認された。
 これに対し、平均細孔径が本発明の範囲より大きいあるいは小さい活性炭を用いた比較例では、いずれもろ過能力に劣る結果となった。
 この出願は、2016年5月17日に出願された日本国特許出願特願2016-098421を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、活性炭、吸着フィルターおよび浄水器に関する技術分野において、広範な産業上の利用可能性を有する。

Claims (7)

  1.  有機化合物除去用活性炭であって、
     窒素吸着法により算出されたBET式比表面積と、HK法から算出された細孔容積とを用いて、下記式により得られる平均細孔径が1.615~1.625nmである活性炭。
    D=4000×V/S
    (式中、D:平均細孔径(nm),V:細孔容積(mL/g),S:比表面積(m/g)を表す)
  2.  比表面積が1000~1350m/gである、請求項1記載の活性炭。
  3.  ヤシガラを原料とする活性炭である、請求項1又は2に記載の活性炭。
  4.  請求項1~3のいずれかに記載の活性炭及び高分子バインダーを含む、吸着フィルター。
  5.  空間速度(SV)が2000~5000/hrの場合に、クロロホルムろ過能力が、吸着フィルター1ccあたり25L以上である、請求項4に記載の吸着フィルター。
  6.  請求項1~3のいずれかに記載の活性炭を用いる浄水器。
  7.  請求項4または5に記載の吸着フィルターを用いる浄水器。
PCT/JP2017/016530 2016-05-17 2017-04-26 活性炭、並びにそれを用いた吸着フィルターおよび浄水器 WO2017199717A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018518191A JP6902536B2 (ja) 2016-05-17 2017-04-26 活性炭、並びにそれを用いた吸着フィルターおよび浄水器
US16/301,666 US10843168B2 (en) 2016-05-17 2017-04-26 Activated carbon, and adsorption filter and water purifier both including same
KR1020187036209A KR102311122B1 (ko) 2016-05-17 2017-04-26 활성탄, 그리고 그것을 사용한 흡착 필터 및 정수기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-098421 2016-05-17
JP2016098421 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199717A1 true WO2017199717A1 (ja) 2017-11-23

Family

ID=60325012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016530 WO2017199717A1 (ja) 2016-05-17 2017-04-26 活性炭、並びにそれを用いた吸着フィルターおよび浄水器

Country Status (4)

Country Link
US (1) US10843168B2 (ja)
JP (1) JP6902536B2 (ja)
KR (1) KR102311122B1 (ja)
WO (1) WO2017199717A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218370A1 (ja) * 2019-04-26 2020-10-29 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
JP2021142525A (ja) * 2016-11-30 2021-09-24 東レ株式会社 浄水器用フィルタカートリッジ
WO2022004594A1 (ja) * 2020-06-30 2022-01-06 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
JP7060772B1 (ja) * 2020-10-23 2022-04-26 株式会社クラレ 炭素質材料及びその製造方法、並びに、含フッ素有機化合物除去材、浄水用フィルター及び浄水器
US20220266217A1 (en) * 2019-08-20 2022-08-25 Futamura Kagaku Kabushiki Kaisha Activated carbon for adsorbing per- and polyfluoroalkyl compounds in water sample
WO2023008437A1 (ja) * 2021-07-30 2023-02-02 株式会社クラレ 浄水フィルターおよび浄水器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039395B2 (ja) * 2018-06-08 2022-03-22 株式会社Lixil 造粒用繊維状バインダ
KR20210078585A (ko) 2019-12-18 2021-06-29 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 알파올레핀의 정제방법 및 이를 위한 알파올레핀 정제용 조성물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699065A (ja) * 1991-12-10 1994-04-12 Kuraray Co Ltd 浄水器用充填材
JPH1111921A (ja) * 1997-06-26 1999-01-19 Kyocera Corp 固形状活性炭
JP2003194992A (ja) * 2001-12-21 2003-07-09 Toyobo Co Ltd ガス捕集材
JP2010237216A (ja) * 2009-01-09 2010-10-21 Wakaida Eng:Kk 放射性気体の吸着用焼却型フィルター装置
JP2013212458A (ja) * 2012-04-02 2013-10-17 Toyobo Co Ltd 排水処理システム
JP2013220413A (ja) * 2012-04-19 2013-10-28 Futamura Chemical Co Ltd 浄水器用活性炭及びこれを用いた活性炭カートリッジ
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JP2016030697A (ja) * 2014-07-25 2016-03-07 関西熱化学株式会社 吸着性能に優れた活性炭、およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990041A (en) * 1996-04-05 1999-11-23 Research Foundation Of State University Of New York At Buffalo Mesoporous activated carbon filaments
JP3528685B2 (ja) 1999-06-11 2004-05-17 松下電器産業株式会社 活性炭およびそれを備えた浄水器
JP2004182568A (ja) * 2002-12-05 2004-07-02 Frontier Carbon Corp 多孔質材料
JP2006118986A (ja) * 2004-10-21 2006-05-11 Toyobo Co Ltd 放射性物質除去フィルターユニット
JP5529558B2 (ja) * 2010-01-26 2014-06-25 大阪瓦斯株式会社 可燃性ガス濃縮装置
JP6165937B2 (ja) * 2011-08-29 2017-07-19 地方独立行政法人東京都立産業技術研究センター 多孔質シリカ内包粒子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699065A (ja) * 1991-12-10 1994-04-12 Kuraray Co Ltd 浄水器用充填材
JPH1111921A (ja) * 1997-06-26 1999-01-19 Kyocera Corp 固形状活性炭
JP2003194992A (ja) * 2001-12-21 2003-07-09 Toyobo Co Ltd ガス捕集材
JP2010237216A (ja) * 2009-01-09 2010-10-21 Wakaida Eng:Kk 放射性気体の吸着用焼却型フィルター装置
JP2013212458A (ja) * 2012-04-02 2013-10-17 Toyobo Co Ltd 排水処理システム
JP2013220413A (ja) * 2012-04-19 2013-10-28 Futamura Chemical Co Ltd 浄水器用活性炭及びこれを用いた活性炭カートリッジ
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JP2016030697A (ja) * 2014-07-25 2016-03-07 関西熱化学株式会社 吸着性能に優れた活性炭、およびその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021142525A (ja) * 2016-11-30 2021-09-24 東レ株式会社 浄水器用フィルタカートリッジ
JP7140239B2 (ja) 2016-11-30 2022-09-21 東レ株式会社 浄水器用フィルタカートリッジ
JP6829796B1 (ja) * 2019-04-26 2021-02-10 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
WO2020218370A1 (ja) * 2019-04-26 2020-10-29 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
TWI755715B (zh) * 2019-04-26 2022-02-21 日商可樂麗股份有限公司 碳質材料及其製造方法、以及淨水用過濾器及淨水器
US20220266217A1 (en) * 2019-08-20 2022-08-25 Futamura Kagaku Kabushiki Kaisha Activated carbon for adsorbing per- and polyfluoroalkyl compounds in water sample
WO2022004594A1 (ja) * 2020-06-30 2022-01-06 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
JP7058379B1 (ja) * 2020-06-30 2022-04-21 株式会社クラレ 炭素質材料及びその製造方法、並びに浄水用フィルター及び浄水器
TWI789802B (zh) * 2020-06-30 2023-01-11 日商可樂麗股份有限公司 碳質材料及其製造方法、以及淨水用過濾器及淨水器
US11795066B2 (en) 2020-06-30 2023-10-24 Kuraray Co., Ltd. Carbonaceous material and method for producing same, water purification filter, and water purifier
WO2022085550A1 (ja) * 2020-10-23 2022-04-28 株式会社クラレ 炭素質材料及びその製造方法、並びに、含フッ素有機化合物除去材、浄水用フィルター及び浄水器
JP7060772B1 (ja) * 2020-10-23 2022-04-26 株式会社クラレ 炭素質材料及びその製造方法、並びに、含フッ素有機化合物除去材、浄水用フィルター及び浄水器
WO2023008437A1 (ja) * 2021-07-30 2023-02-02 株式会社クラレ 浄水フィルターおよび浄水器

Also Published As

Publication number Publication date
JP6902536B2 (ja) 2021-07-14
KR102311122B1 (ko) 2021-10-08
JPWO2017199717A1 (ja) 2019-03-14
KR20190005997A (ko) 2019-01-16
US20190291073A1 (en) 2019-09-26
US10843168B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2017199717A1 (ja) 活性炭、並びにそれを用いた吸着フィルターおよび浄水器
JP6283435B2 (ja) 活性炭成型体およびそれを用いた浄水器
KR102039506B1 (ko) 정수기용 활성탄 및 이것을 사용한 활성탄 카트리지
JP7303118B2 (ja) 吸着フィルター
JP6596015B2 (ja) 吸着フィルター
JP6902588B2 (ja) 吸着フィルター
JP4064309B2 (ja) 浄水器
JP7356458B2 (ja) 浄水用フィルター及びそれを用いた浄水器
US11795066B2 (en) Carbonaceous material and method for producing same, water purification filter, and water purifier
WO2023008437A1 (ja) 浄水フィルターおよび浄水器
JP2010269225A (ja) 陰イオン吸着剤成型体およびそれを用いた浄水器
JP2018039712A (ja) 浄水器用活性炭及びそれを用いた浄水器用カートリッジ
JP2024080893A (ja) 活性炭及び活性炭フィルター体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036209

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17799147

Country of ref document: EP

Kind code of ref document: A1