WO2017183719A1 - 高張力鋼および海洋構造物 - Google Patents
高張力鋼および海洋構造物 Download PDFInfo
- Publication number
- WO2017183719A1 WO2017183719A1 PCT/JP2017/016089 JP2017016089W WO2017183719A1 WO 2017183719 A1 WO2017183719 A1 WO 2017183719A1 JP 2017016089 W JP2017016089 W JP 2017016089W WO 2017183719 A1 WO2017183719 A1 WO 2017183719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel
- amount
- mns
- composite
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the present invention relates to high-tensile steel and offshore structures.
- the present invention particularly relates to a high-strength steel excellent in toughness of a weld heat-affected zone (hereinafter referred to as “HAZ”) and an offshore structure using the high-strength steel.
- HZ weld heat-affected zone
- the present invention relates to a high-strength steel for welding used as a welded structure in a building, a civil engineering structure, a construction machine, a ship, a pipe, a tank, an offshore structure, etc., particularly an offshore structure.
- the present invention relates to a high-strength steel for welding and an offshore structure used.
- the present invention relates to a thick high-strength steel having a yield strength of 420 MPa or more and a plate thickness of 50 mm or more and an offshore structure using the same.
- Medium strength steel with yield strength of 300-360MPa is used for ordinary marine structures.
- an extremely thick high-tensile steel material having a high yield strength of 460 to 700 MPa and a plate thickness exceeding 100 mm may be used.
- the toughness of the base metal and the welded part is also evaluated by specifying the CTOD value at the minimum operating temperature. That is, even if stable characteristics can be obtained by the Charpy test (evaluation test for a micro test piece cut and sampled to a size of 10 mm ⁇ 10 mm), it is evaluated by a test piece having the actual plate thickness of the structure. In many cases, the CTOD characteristics are insufficient. Furthermore, today, more severe CTOD characteristics are required.
- the desire to improve the low-temperature toughness of HAZ is not limited to steel materials used for offshore structures installed in ice sea areas, but line pipes for cold regions used in milder environments than this, Or it is strong also with respect to the steel materials used for large sized welded structures, such as a ship and an LNG tank.
- Patent Documents 1 to 3 disclose Cu precipitation type steel having excellent weld toughness.
- Patent Document 4 discloses a steel material in which the pinned particles TiN are finely dispersed by adjusting the ratio (Al / N) to improve the low temperature toughness of the welded portion, particularly the HAZ toughness.
- Patent Document 1 merely evaluates the Charpy characteristics of a welded joint obtained with a plate thickness of 30 mm and a welding heat input of 40 kJ / cm. For this reason, it is hard to think that the Cu precipitation type steel disclosed by patent document 1 is a material which enables large heat-input welding.
- Patent Document 2 discloses a Cu precipitation type high strength steel containing 0.5 to 4.0 mass% of Cu and having a tensile strength of 686 MPa or more. However, its low temperature toughness is ⁇ 30 ° C. even at the transition temperature of the Charpy test. For this reason, it is difficult to think that the Cu precipitation type high-strength steel disclosed in Patent Document 2 can secure the low-temperature CTOD characteristics in the extra-thick steel plate.
- Patent Document 3 discloses a Cu precipitation type steel excellent in Charpy toughness of a welded portion. However, Patent Document 3 merely evaluates the Charpy characteristics of a welded joint obtained with a welding heat input of 5 kJ / mm. For this reason, it is difficult to think that the Cu precipitation type steel disclosed in Patent Document 3 can sufficiently secure the safety of the structure during high heat input welding.
- the present invention relates to a high-tensile steel that can stably obtain low-temperature toughness of a welded portion, in particular, low-temperature toughness of HAZ, under high heat input welding conditions with a heat input of 300 KJ / cm or more, and an ocean using this high-strength steel.
- the object is to provide a structure.
- the present inventors obtained the following knowledge as a result of intensive studies to solve the above problems.
- ⁇ I> Disperse as many fine Cu particles as possible in order to increase the yield strength.
- Cu particles are easily generated on crystal defects (mainly dislocations) in steel, and when the dislocation density is high, precipitation of Cu particles is promoted. Further, the Cu particles on the dislocation inhibit the movement of the dislocation and increase the yield strength.
- the dislocation density in the steel can be controlled by rolling conditions and water cooling conditions. Further, a decrease in rolling temperature, an increase in total rolling reduction, an increase in water cooling start temperature, an increase in cooling rate, and a decrease in water cooling stop temperature all increase the dislocation density.
- Mn is absorbed into atomic vacancies existing inside the Ti-based oxide.
- a Mn-deficient layer in which the Mn concentration decreases is formed around the inclusions, and the growth start temperature of ferrite in this portion increases.
- the present inventors have found that the amount of the MnS complex of inclusions serving as nuclei of intragranular ferrite affects the growth of intragranular ferrite. That is, when the composite MnS is large, a larger Mn concentration gradient is formed around the inclusions, so that the driving force for diffusing Mn increases. As a result, a Mn-deficient layer is easily formed. On the other hand, when the composite MnS is small, a gradient of Mn concentration is hardly formed around the inclusions. As a result, it becomes difficult to form a Mn-deficient layer.
- inclusions in steel must satisfy the following requirements in order to obtain the effect of refining crystal grains.
- the steel contains a composite inclusion in which MnS is present around the Ti oxide, and the area ratio of MnS in the cross section of the composite inclusion is 10% or more and less than 90%.
- the proportion of MnS in the length is 10% or more.
- the number density of this composite inclusion having a particle size of 0.5 to 5.0 ⁇ m is 10 to 100 / mm 2 .
- the present invention is based on these findings and is listed below.
- Chemical composition is mass%, C: 0.01 to 0.10%, Si: 0.01 to 0.50%, Mn: 0.80 to 2.50%, P: 0.020%
- the weld crack sensitivity index Pcm shown by the following formula (1) is 0.25 or less,
- the average value of equivalent circle diameters of Cu particles having a major axis of 1 nm or more dispersed in the steel is 4 to 25 nm, and the plane rate conversion distribution amount is 3 to 20%.
- the steel contains a composite inclusion in which MnS is present around the Ti oxide, the area ratio of the MnS in the cross section of the composite inclusion is 10% or more and less than 90%, and the perimeter of the composite inclusion is A high-strength steel in which the proportion of MnS occupying is 10% or more and the number density of the composite inclusions having a particle size of 0.5 to 5.0 ⁇ m is 10 to 100 pieces / mm 2 .
- Pcm C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B ... ( 1)
- each element symbol in the formula (1) represents the content (% by mass) of each element.
- Nb 0.003-0.030%
- Mo 0.10-0.80%
- Cr 0.03-0.80%
- B 0.0002-0.0020%
- V one high-strength steel according to item 1, containing at least one selected from 0.001 to 0.050%.
- a high-tension steel that can stably obtain low-temperature toughness of a welded portion, in particular, HAZ toughness, and the high tension An offshore structure using steel can be provided.
- (A1) C 0.01 to 0.10% C increases the strength of the base material.
- C refines the metal structure when Nb, V, or the like is added. Therefore, the C content is 0.01% or more, preferably 0.02% or more, and more preferably 0.03% or more.
- the C content is 0.10% or less, preferably 0.08% or less, and more preferably 0.05% or less.
- (A2) Si 0.01 to 0.50% Si is effective for preliminary deoxidation of molten steel. Therefore, the Si content is 0.01% or more.
- the Si content is 0.50% or less, preferably 0.20% or less, and more preferably 0.15% or less.
- (A3) Mn 0.80 to 2.50% Mn is necessary for securing the strength and suppresses the growth of coarse ferrite at the grain boundaries in the HAZ. Therefore, the Mn content is 0.80% or more, preferably 1.40% or more.
- the Mn content is 2.50% or less, preferably 2.10% or less.
- (A4) P 0.020% or less P is an impurity and segregates at the grain boundary, causing grain boundary cracking in the HAZ.
- the P content is 0.020% or less, preferably 0.015% or less, More preferably, it is 0.010% or less.
- the S content is 0.010% or less, and preferably 0.005% or less from the viewpoint of securing the low temperature toughness of the HAZ.
- (A6) Cu 0.80 to 1.50% Cu increases the strength and toughness of the steel material and has a small adverse effect on the HAZ toughness. In particular, the strength due to precipitation of ⁇ -Cu during the aging treatment is increased. Therefore, the Cu content is 0.80% or more, preferably 0.90% or more.
- the Cu content is 1.50% or less, preferably 1.10% or less.
- Ni 0.20 to 1.50% Ni increases the strength and toughness of the steel material, and further increases the HAZ toughness. Therefore, the Ni content is 0.20% or more, preferably 0.40% or more.
- the Ni content is 1.50% or less, preferably 1.20% or less.
- Al 0.003% or less Al is an impurity, and the production of Ti-based oxides is suppressed by increasing the Al content. Therefore, the Al content is 0.003% or less.
- Ti 0.005 to 0.030% Ti is necessary for the generation of inclusions that form nitrides and suppress the coarsening of crystal grains and also become intragranular transformation nuclei. Therefore, the Ti content is 0.005% or more, preferably 0.007% or more.
- the Ti content is 0.030% or less, preferably 0.015% or less.
- N 0.003 to 0.008% N refines the structure by forming nitrides. Therefore, the N content is 0.003% or more, preferably 0.0035% or more.
- the N content is 0.008% or less, preferably 0.0065% or less.
- (A11) O 0.0005 to 0.0050% O produces
- the O content is 0.0050% or less, preferably 0.0035% or less.
- Nb 0 to 0.030%
- Mo 0 to 0.80%
- Cr 0 to 0.80%
- B 0 to 0.0020%
- V 0 to 0.050% Since Nb, Mo, Cr, B, and V all have the effect of improving the strength of steel, they may contain one or more of these elements.
- Nb may be contained in order to improve the strength and toughness of the base material by refining and precipitation of carbides.
- the Nb content is 0.030% or less, preferably 0.015% or less.
- the Nb content is preferably 0.003% or more.
- Mo may be contained in order to ensure hardenability and improve HAZ toughness. However, if Mo is excessively contained, the HAZ toughness is remarkably lowered due to the hardening of the HAZ. Therefore, the Mo content is 0.80% or less, preferably 0.50% or less.
- the Mo content is preferably 0.10% or more.
- Cr may be contained in order to increase the strength by improving the hardenability of the steel material. However, if Cr is contained excessively, hardening of the weld metal and HAZ is promoted, and the weld cold cracking sensitivity is increased. Therefore, the Cr content is 0.80% or less, preferably 0.60% or less.
- the Cr content is preferably 0.03% or more, more preferably 0.05% or more.
- B may be contained in order to increase the strength by improving the hardenability of the steel material.
- the B content is 0.0020% or less, preferably 0.0015% or less.
- the B content is preferably 0.0002% or more, more preferably 0.0003% or more.
- V may be contained in order to generate carbonitrides to suppress coarsening of crystal grains and to refine the transformation structure.
- the V content is 0.050% or less, preferably 0.040% or less.
- the V content is preferably 0.001% or more, more preferably 0.005% or more.
- the Ca content is 0.005% or less, and the Mg content and the REM content are each 0.01% or less.
- the Ca content is preferably 0.0005% or more, more preferably 0.00055% or more, and the Mg content is preferably 0.0001% or more.
- the REM content is preferably 0.0001% or more.
- Ca, Mg and REM may be contained singly or in combination of two or more.
- the high-tensile steel according to the present invention contains the above-described elements, and the balance is Fe and impurities.
- “Impurity” is a component that is mixed due to various factors in raw materials such as ore and scrap and manufacturing process when steel is industrially manufactured, and is allowed to be contained within a range that does not adversely affect the present invention. Means what will be done.
- the weld cracking sensitivity index Pcm 0.25 or less
- the weld cracking sensitivity index Pcm obtained by the above formula (1) is 0.25 or less.
- the weld crack sensitivity index Pcm is 0.25 or less, and is preferably 0.22 or less, more preferably 0.20 or less in order to omit preheating during welding.
- the high-strength steel according to the present invention has an average equivalent circle diameter of 4 to 25 nm in Cu particles dispersed in the steel and having a major axis of 1 nm or more, and Cu particles having a major axis of 1 nm or more.
- the flatness conversion distribution amount is 3 to 20%.
- the precipitation form of the Cu particles is approximately spherical, it is not easy to measure the three-dimensional shape. Therefore, a transmission electron microscope (TEM) observation is performed and the shape by which the three-dimensional shape was planarly projected is measured.
- TEM transmission electron microscope
- the equivalent circle diameter is the diameter of a circle having the same area as the projected area of the particles, and is specifically obtained by the following equation (2).
- d ⁇ (4a / pai) (2)
- the meaning of each symbol in the formula (2) is as follows. a: Projection area (nm 2 )
- d equivalent circle diameter (nm) pai: 3.14
- (B2) Plane rate conversion distribution in Cu particles having a major axis of 1 nm or more: 3 to 20%
- the flat rate conversion distribution amount is obtained by processing a steel material into a thin film shape, performing TEM observation at a magnification of 100,000 times on a portion having a thickness of about 0.2 ⁇ m, and obtaining Cu particles distributed three-dimensionally in the thin film test piece. It is obtained by calculating the area ratio in the case of planar projection.
- the average diameter and the distribution amount of Cu particles are defined as described above.
- the following can be considered as factors controlling the Cu particle diameter and the distribution amount.
- the Cu content is within an appropriate range, the Cu particle diameter is determined mainly by the structure before aging treatment, the temperature and time of aging treatment. If the Cu content is less than the appropriate range, Cu particles are not sufficiently precipitated, and the Cu particle diameter tends to be small. On the other hand, when the Cu content is larger than the appropriate range, a large amount of Cu particles are precipitated, and thus the Cu particle diameter tends to be large.
- the influence of the organization before aging treatment is large.
- the structure before the aging treatment is preferably a fine structure mainly composed of ferrite and bainite. Dislocations or crystal grain boundaries become Cu particle precipitation sites. For this reason, setting it as the structure
- the chemical composition of steel is appropriately controlled and the rolling conditions are appropriately controlled. Furthermore, the subsequent water-cooling conditions are selected so as to have a fine structure mainly composed of ferrite and bainite.
- the high-strength steel according to the present invention includes composite inclusions in the steel.
- MnS exists around the Ti oxide.
- (C1) Area ratio of MnS in cross section of composite inclusion: 10% or more and less than 90%
- the composite inclusion appearing on an arbitrary cut surface is analyzed.
- the amount of MnS in the composite inclusion is defined by measuring the area ratio of MnS in the cross-sectional area of the composite inclusion.
- the composite inclusion is mainly MnS, and the ratio of the Ti-based oxide decreases.
- the Mn absorptivity decreases and a sufficient Mn-deficient layer cannot be formed, making it difficult to generate intragranular ferrite.
- (C2) Ratio of MnS in the circumference of the composite inclusion 10% or more MnS in the composite inclusion is formed around the Ti-based oxide. If the ratio of MnS to the circumference of the composite inclusion is less than 10%, the initial Mn-deficient region formed at the interface between MnS and the matrix is small. For this reason, even if it welds, since the formation amount of an intragranular ferrite is not enough, favorable low-temperature HAZ toughness cannot be obtained. Therefore, the ratio of MnS to the circumference of the composite inclusion matrix is 10% or more.
- the ratio of MnS the larger the initial Mn-deficient layer, and the easier formation of intragranular ferrite. For this reason, although the upper limit of the ratio of MnS is not defined, it is usually 80% or less.
- (C3) Particle size of composite inclusion 0.5 to 5.0 ⁇ m If the particle size of the composite inclusion is less than 0.5 ⁇ m, the amount of Mn that can be absorbed from the periphery of the composite inclusion is small, and as a result, it becomes difficult to form a Mn-deficient layer necessary for the formation of intragranular ferrite.
- the particle size of the composite inclusion is larger than 5.0 ⁇ m, the composite inclusion becomes a starting point of destruction.
- the particle size is the equivalent circle diameter of the composite inclusion.
- the number density of the composite inclusion is 100 pieces / mm 2 or less.
- (D1) Steelmaking In the production of high-strength steel according to the present invention, in order to control the inclusions in the steel, Ar gas is blown into the molten steel from the top before the RH vacuum degassing treatment of secondary refining, and the surface of the molten steel is The slag reacts with the molten steel. Accordingly, it is preferable to adjust the total Fe amount in the slag and control the oxygen potential Oxp in the molten steel in a range of 10 to 30 ppm.
- the flow rate of Ar gas is preferably adjusted to 100 to 200 L / min, and the Ar gas blowing time is preferably adjusted to 5 to 15 min.
- each element is added during RH vacuum degassing to adjust the components, and a steel piece (slab) having a thickness of, for example, 300 mm is cast by continuous casting.
- the heating temperature of the steel slab is less than 900 ° C., this solution action is not sufficient, and sufficient precipitation hardening may not be expected in the tempering process. For this reason, the heating temperature of the steel slab is preferably 900 ° C. or higher.
- the heating temperature of the steel slab exceeds 1120 ° C., it becomes difficult to keep the austenite grains before hot rolling fine and sized. As a result, the austenite grains are not made uniform and fine in the subsequent hot rolling. For this reason, the heating temperature of a steel piece becomes like this.
- it is 1120 degrees C or less, More preferably, it is 1050 degrees C or less, More preferably, it is 1000 degrees C or less.
- the total rolling reduction at 900 ° C. or less is preferably 50% or more.
- (D3) Cooling After the hot rolling, preferably, a quenching process is performed in which water cooling is started from a temperature of Ar 1 point or higher and water cooling is stopped at a temperature of 600 ° C. or lower. By quenching, the structure is refined and the precipitation of Cu particles in the stage before the aging treatment is suppressed as much as possible. In the case of water cooling or air cooling from a temperature less than one Ar point, work strain is lost, which may cause a decrease in strength and toughness. In addition, Ar 1 point is calculated
- the finishing temperature of hot rolling is preferably 700 ° C. or higher, the cooling start temperature is preferably 680 to 750 ° C., and the cooling rate to the cooling stop temperature is preferably 1 to 50 ° C./sec. Furthermore, if the cooling stop temperature exceeds 600 ° C., the precipitation strengthening action in the tempering process may be insufficient.
- the aging treatment is a treatment for sufficiently precipitation hardening of Cu precipitates, and the heating rate and the cooling rate are controlled in order to make the dispersion of Cu particles uniform.
- the heating rate is preferably 5 to 50 ° C./min, the average heating rate up to aging temperature ⁇ 100 ° C., the holding time is preferably 1 hour or more, and the cooling rate is preferably an average cooling rate up to 500 ° C. 5 to 60 ° C./min or more.
- the heating temperature in this specification is the furnace atmosphere temperature
- the post-heating holding time is the holding temperature at the furnace atmosphere temperature
- the water cooling start and stop temperatures are the surface temperature of the steel material.
- rate at the time of reheating are computed from the temperature calculation in 1 / 2t part when the thickness of steel materials is set to t.
- (E) Offshore Structure In order to construct a large offshore structure from the high-strength steel according to the present invention, a steel material such as a plate material, a pipe material or a profile is assembled by welding, but generally used as a steel plate.
- excellent weldability usually means that arc welding with a welding heat input of 300 kJ / cm or more is possible, but the welding method is submerged arc welding, covered arc welding, or the like. Also good.
- the offshore structure includes not only a platform or jack-up rig laid on the sea floor, but also a semi-sub rig (semi-submersible oil drilling rig).
- the present invention is applicable to offshore structures that require weldability and low temperature toughness, and is not particularly limited.
- that an offshore structure is large means that the thickness of the steel materials used for an offshore structure is 50 mm or more.
- Table 1 A 300 mm thick steel slab having a chemical composition of 1 to 40 was produced by a continuous casting method.
- Table 2 shows the steelmaking conditions for each steel slab.
- the temperature of the molten steel was not excessively increased, and the difference with respect to the solidification temperature determined from the chemical composition of the molten steel was controlled within 50 ° C. .
- electromagnetic stirring just before solidification and reduction during solidification were performed.
- Each steel slab obtained by the continuous casting method was processed under the conditions shown in Table 2 to obtain each steel material.
- a 300 mm thick slab is heated at each heating temperature and each heating time, hot rolled, and then cooled at an average cooling rate of 5 ° C./sec from the water cooling start temperature to the water cooling stop temperature. did. Table 2 shows these conditions as “initial heating and rolling conditions”.
- ⁇ Calculation of equivalent circle diameter of Cu particles The equivalent circle diameter of the Cu particles is measured with a transmission electron microscope (TEM) at a magnification of 100,000 at a thickness of 1/4 t of each steel material, and the projected area of each precipitate having a major axis of 1 nm or more is measured. Sought by.
- TEM transmission electron microscope
- One field of view in TEM observation was a rectangle of 900 nm ⁇ 700 nm, and TEM observation was performed in a total of 10 fields.
- the average value of the equivalent circle diameters of Cu particles in each field of view was calculated, and further, the average value of the equivalent circle diameters of Cu particles in all 10 fields of view was obtained.
- the results are shown in Table 3.
- the flatness equivalent distribution amount of the Cu particles is obtained by processing each steel material into a thin film shape, performing TEM observation at a magnification of 100,000 times on a portion having a thickness of about 0.2 ⁇ m, and three-dimensionally distributing in the thin film test piece. It calculated
- One field of view in TEM observation was a rectangle of 900 nm ⁇ 700 nm, and TEM observation was performed in a total of 10 fields.
- the average value of the flat rate conversion distribution amount of Cu particles in each visual field was calculated, and the average value of the flat rate conversion distribution amount of Cu particles in all 10 visual fields was calculated using the average value.
- Table 3 The results are shown in Table 3.
- the MnS area ratio was calculated by measuring the cross-sectional area of the entire composite inclusion and the cross-sectional area of the MnS portion in the entire composite inclusion from the image.
- the MnS area ratio and the ratio of MnS to the circumference of the composite inclusion were obtained by analyzing 20 pieces of each sample material by EPMA and calculating the average value. The results are shown in Table 3.
- the number density of composite inclusions is determined by an automatic inclusion analyzer combined with SEM-EDX, and the composite inclusions having a particle size in the range of 0.5 to 5.0 ⁇ m are determined from the shape measurement data of the detected composite inclusions. It was calculated by calculating the number of objects. The results are shown in Table 3.
- ⁇ Tensile test> A tensile test piece having a diameter of 12.5 mm in parallel is collected from the central portion of the plate thickness in the direction perpendicular to the rolling direction of each steel material, and a tensile test is performed to determine the yield strength (YS) of the base material. Tensile strength (TS) was measured. The results are shown in Table 3.
- Yield strength (YS) was determined to be 420 to 630 MPa. Further, the tensile strength (TS) was determined to be acceptable at 500 to 700 MPa.
- CTOD test> The CTOD test of the base material was performed at ⁇ 40 ° C. in accordance with the BS 7448 standard, and a three-point bending test piece of full thickness was taken from the direction perpendicular to the rolling direction of each steel material. The results are shown in Table 3. The CTOD value was determined to be 0.40 mm or more.
- Test No. in Table 3 Nos. 1 to 29 are examples of the present invention that satisfy all the conditions of the present invention.
- 30 to 40 are comparative examples which do not satisfy the conditions of the present invention.
- Test No. No. 30 satisfies the chemical composition defined by the present invention, but the dispersion state of Cu particles does not satisfy the range defined by the present invention, so the strength of the base material is low. Therefore, in order to achieve both high heat input welding characteristics and base material strength, it is necessary to satisfy the dispersed state of Cu particles defined in the present invention.
- Test No. Nos. 31 and 32 satisfy the chemical composition specified by the present invention, but the composite inclusions do not satisfy the range specified by the present invention, so the joint CTOD characteristics were inferior.
- the present invention it is possible to provide a high-tensile steel that can stably obtain low-temperature toughness, particularly HAZ toughness of a welded part under a high heat input welding condition with a heat input of 300 KJ / cm or more. Therefore, the high-tensile steel according to the present invention can be suitably used for offshore structures and the like that require stricter CTOD characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
(I)旧オーステナイト粒界の成長をTiN等により抑制するピン留め効果を活用する手法、および、
(II)旧オーステナイト粒内に存在する介在物を起点として微細な粒内フェライトを成長させ、結晶粒を微細化する手法
が知られる。本発明者らは、(II)の手法に着目した。
下記式(1)で示す溶接割れ感受性指数Pcmが0.25以下であり、
鋼中に分散した長径が1nm以上のCu粒子における円相当径の平均値が4~25nmであり、かつ、平面率換算分布量が3~20%であり、
鋼中に、Ti酸化物の周囲にMnSが存在する複合介在物を含み、前記複合介在物の断面における前記MnSの面積率が10%以上90%未満であり、前記複合介在物の周長に占める前記MnSの割合が10%以上であり、粒径0.5~5.0μmの前記複合介在物の個数密度が10~100個/mm2である、高張力鋼。
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・(1)
ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を表す。
各元素の作用効果と、含有量の限定理由を説明する。以下の説明において、化学組成に関する「%」は、特に断りがない限り「質量%」を意味する。
Cは、母材の強度を高める。また、Cは、Nb,V等の添加時に金属組織を微細化する。したがって、C含有量は、0.01%以上であり、好ましくは0.02%以上であり、より好ましくは0.03%以上である。
Siは、溶鋼の予備脱酸に有効である。したがって、Si含有量は、0.01%以上である。
Mnは、強度の確保に必要であるとともに、HAZにおいて、粒界における粗大なフェライトの成長を抑制する。したがって、Mn含有量は、0.80%以上であり、好ましくは1.40%以上である。
Pは、不純物であり、粒界に偏析するため、HAZにおける粒界割れの原因になる。母材靱性、ならびに、溶接金属およびHAZの靱性を向上し、かつ、スラブの中心偏析を低減するため、P含有量は、0.020%以下であり、好ましくは0.015%以下であり、より好ましくは0.010%以下である。
Sは、MnSを複合析出させる。したがって、S含有量は、0.001%以上であり、好ましくは0.002%以上である。
Cuは、鋼材の強度および靱性を高め、HAZ靱性に対する悪影響も小さい。特に、時効処理時のε-Cuの析出による強度を上昇させる。したがって、Cu含有量は、0.80%以上であり、好ましくは0.90%以上である。
Niは、鋼材の強度および靱性を高め、さらに、HAZ靱性を高める。したがって、Ni含有量は、0.20%以上であり、好ましくは0.40%以上である。
Alは不純物であり、Al含有量が増加することにより、Ti系酸化物の生成が抑制される。したがって、Al含有量は、0.003%以下である。
Tiは、窒化物を生成して結晶粒の粗大化を抑制するとともに、粒内変態核となる介在物の生成に必要である。したがって、Ti含有量は、0.005%以上であり、好ましくは0.007%以上である。
Nは、窒化物を形成することにより組織を細粒化する。したがって、N含有量は、0.003%以上であり、好ましくは0.0035%以上である。
Oは、フェライト生成核となる酸化物を生成する。したがって、O含有量は、0.0005%以上であり、好ましくは0.0008%以上である。
Nb、Mo、Cr、BおよびVは、いずれも鋼の強度を向上させる作用を有するので、これらの元素の1種または2種以上を含有してもよい。
Ca、MgおよびREMは、いずれも、粒内フェライトの析出核となる酸化物または硫化物を生成するとともに、硫化物の形態を制御し、低温靱性を向上する。しかし、Ca、MgおよびREMを過剰に含有すると鋼の清浄度が劣化する。したがって、Ca含有量は、0.005%以下であり、Mg含有量およびREM含有量は、それぞれ、0.01%以下である。
本発明に係る高張力鋼は、上記式(1)で求められる溶接割れ感受性指数Pcmが0.25以下である。溶接割れ感受性指数Pcmが0.25以下であると、通常の溶接施工条件で溶接割れを生じない。したがって、溶接割れ感受性指数Pcmは、0.25以下であり、溶接時の予熱を省略するために好ましくは0.22以下であり、より好ましくは0.20以下である。
本発明に係る高張力鋼は、鋼中に分散した長径が1nm以上のCu粒子における円相当径の平均値が4~25nmであり、かつ、長径が1nm以上のCu粒子の平面率換算分布量が3~20%である。
長径が1nmよりも小さい粒子は強度を高める効果が小さいため、本発明は長径1nm以上のCu粒子を対象とする。Cu粒子の長径の上限は特に定めない。長径が100nmを超えるCu粒子は、円相当径の平均値が4~25nmの範囲では、出現しない。
d=√(4a/pai) ・・・(2)
なお、(2)式中の各記号の意味は以下の通りである。
a:投影面積(nm2)
d:円相当径(nm)
pai:3.14
平面率換算分布量は、鋼材を薄膜状に加工し、約0.2μmの厚みを有する部分について倍率100,000倍でTEM観察を行い、薄膜状試験片中に立体的に分布したCu粒子を平面投影した場合の面積率を算出することにより、求められる。
本発明に係る高張力鋼は、鋼中に複合介在物を含む。複合介在物は、Ti酸化物の周囲にMnSが存在する。
本発明では、任意の切断面に現出した複合介在物を分析する。複合介在物の断面積におけるMnSの面積率を測定することにより、複合介在物中のMnS量を規定する。
複合介在物中のMnSはTi系酸化物の周囲に形成される。複合介在物の周長に占めるMnSの割合が10%未満であれば、MnSとマトリクスとの界面に形成される初期Mn欠乏領域が小さい。このため、溶接しても粒内フェライトの形成量が十分でないので、良好な低温HAZ靭性を得られない。したがって、複合介在物のマトリクスとの周長に占めるMnSの割合は10%以上である。
複合介在物の粒径が0.5μm未満であると、複合介在物の周囲から吸収できるMn量が少なく、その結果、粒内フェライトの生成に必要なMn欠乏層の形成が困難になる。
安定した粒内フェライトを生成するためには、各複合介在物が旧オーステナイト内に少なくとも1つ程度含まれる必要がある。したがって、複合介在物の個数密度は10個/mm2以上である。
次に、本発明に係る高張力鋼の製造方法を説明する。上述の化学組成を有する鋼であっても、Cuの析出硬化を充分に発揮させるとともに、鋼中の介在物を制御し、さらに、厚さ50mm以上の厚肉材の板厚方向における各位置の強度および靱性を均一に高め、かつ、降伏強度を向上させるためには、製造方法が適切でなければならない。
本発明に係る高張力鋼の製造では、鋼中の介在物を制御するため、二次精錬のRH真空脱ガス処理前にArガスを上部より溶鋼内に吹き込み、溶鋼の表面のスラグと溶鋼とを反応させる。これにより、スラグ内のトータルFe量を調整し、溶鋼内の酸素ポテンシャルOxpを10~30ppmの範囲に制御することが好ましい。
上述の鋼片を、900~1120℃に加熱して熱間圧延を行う。本発明では、高靱性を得るため、厚肉材の板厚中心部において、上部ベイナイト組織が生成しても充分な程度にオーステナイト粒を細粒化する。このため、加熱段階で鋼片のオーステナイト粒を細粒化する。
熱間圧延後に、好ましくは、Ar1点以上の温度から水冷を開始し、600℃以下の温度で水冷を停止する焼入れ処理を行う。焼入れ処理により、組織の微細化を図り、かつ、時効処理前の段階におけるCu粒子の析出をできる限り抑制する。Ar1点未満の温度からの水冷または空冷では、加工歪みの消失が起こり、強度および靱性の低下の原因になる場合がある。なお、Ar1点は、微小試験片の体積変化を測定する方法により求められる。
熱間圧延後、水冷された鋼は、その後、必要により加熱を行って、540℃以上Ac1点以下の温度で時効処理を行い、次いで冷却する。
本発明に係る高張力鋼から大型の海洋構造物を構成するには、板材、管材または形材等の鋼材を溶接により組み立てるが、一般には鋼板として使用される。
表1に示す試験No.1~40の化学組成を有する300mm厚の鋼片を連続鋳造法により製造した。各鋼片の製鋼条件を表2に示す。連続鋳造過程においては、板厚中心位置の介在物を制御するために、溶鋼の温度を過度に高くせず、溶鋼の化学組成から決まる凝固温度に対する差が50℃以内になるように、管理した。さらに、凝固直前の電磁攪拌および凝固時の圧下を行った。
Cu粒子の円相当径は、各鋼材の板厚1/4t部において、倍率100,000倍で透過型電子顕微鏡(TEM)観察を行い、長径が1nm以上の各析出物の投影面積を測定することにより、求めた。
Cu粒子の平面率換算分布量は、各鋼材を薄膜状に加工し、約0.2μmの厚みを有する部分について倍率100,000倍でTEM観察を行い、薄膜状試験片中に立体的に分布したCu粒子を平面投影した場合の面積率を算出することにより、求めた。
複合介在物分析用の試験片は、供試材の板厚1/4t部より採取したものを用いた。複合介在物は、電子プローブマイクロアナライザー(EPMA)を用い、複合介在物を面分析したマッピング画像から、MnS面積率および複合介在物の周長に占めるMnSの割合を測定した。
複合介在物の個数密度は、SEM-EDXを組み合わせた自動介在物分析装置により行い、検出された複合介在物の形状測定データから、粒径が0.5~5.0μmの範囲である複合介在物の個数を算出することにより、算出した。結果を表3に示す。
各鋼材の圧延方向に垂直な方向の板厚中央部から、ASTM規格に準拠し、平行部12.5mm直径の引張試験片を採取し、引張試験を行い、母材の降伏強度(YS)および引張強度(TS)を測定した。結果を表3に示す。
母材のCTOD試験は、BS7448規格に準拠し、各鋼材の圧延方向に垂直な方向から全厚の3点曲げ試験片を採取し、-40℃で行った。結果を表3に示す。CTOD値は、0.40mm以上を合格と判定した。
Claims (4)
- 化学組成が、質量%で、
C:0.01~0.10%、
Si:0.01~0.50%、
Mn:0.80~2.50%、
P:0.020%以下、
S:0.001~0.010%、
Cu:0.80~1.50%、
Ni:0.20~1.50%、
Al:0.003%以下、
Ti:0.005~0.030%、
N:0.003~0.008%、
O:0.0005~0.0050%、
Nb:0~0.030%、
Mo:0~0.80%、
Cr:0~0.80%、
B:0~0.0020%、
V:0~0.050%、
Ca:0~0.005%、
Mg:0~0.01%、
REM:0~0.01%、ならびに、
残部:Feおよび不純物であり、
下記式(1)で示す溶接割れ感受性指数Pcmが0.25以下であり、
鋼中に分散した長径が1nm以上のCu粒子における円相当径の平均値が4~25nmであり、かつ、平面率換算分布量が3~20%であり、
鋼中に、Ti酸化物の周囲にMnSが存在する複合介在物を含み、
前記複合介在物の断面における前記MnSの面積率が10%以上90%未満であり、
前記複合介在物の周長に占める前記MnSの割合が10%以上であり、
粒径0.5~5.0μmの前記複合介在物の個数密度が10~100個/mm2である、高張力鋼。
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・(1)
ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を表す。 - 質量%で、
Nb:0.003~0.030%、
Mo:0.10~0.80%、
Cr:0.03~0.80%、
B:0.0002~0.0020%、および
V:0.001~0.050%
から選択される1種以上を含有する、請求項1に記載の高張力鋼。 - 質量%で、
Ca:0.0005~0.005%、
Mg:0.0001~0.01%、および、
REM:0.0001~0.01%
から選択される1種以上を含有する、請求項1または2に記載の高張力鋼。 - 請求項1~3のいずれかに記載の高張力鋼を用いた、海洋構造物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780024445.5A CN109072382B (zh) | 2016-04-21 | 2017-04-21 | 高张力钢和海洋构造物 |
KR1020187033429A KR20180132910A (ko) | 2016-04-21 | 2017-04-21 | 고장력강 및 해양 구조물 |
EP17786056.6A EP3447161B1 (en) | 2016-04-21 | 2017-04-21 | High tensile steel and marine structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016085151A JP6766425B2 (ja) | 2016-04-21 | 2016-04-21 | 高張力鋼および海洋構造物 |
JP2016-085151 | 2016-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183719A1 true WO2017183719A1 (ja) | 2017-10-26 |
Family
ID=60116192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016089 WO2017183719A1 (ja) | 2016-04-21 | 2017-04-21 | 高張力鋼および海洋構造物 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3447161B1 (ja) |
JP (1) | JP6766425B2 (ja) |
KR (1) | KR20180132910A (ja) |
CN (1) | CN109072382B (ja) |
WO (1) | WO2017183719A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018066042A (ja) * | 2016-10-19 | 2018-04-26 | 新日鐵住金株式会社 | 熱加工制御型590MPa級H形鋼 |
JP2018083963A (ja) * | 2016-11-22 | 2018-05-31 | 新日鐵住金株式会社 | 鋼矢板 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108085593A (zh) * | 2017-12-19 | 2018-05-29 | 钢铁研究总院 | 适用于低温环境油气输送用弯管和管件用钢及制造方法 |
WO2021095184A1 (ja) * | 2019-11-13 | 2021-05-20 | 日本製鉄株式会社 | 鋼材 |
KR102195473B1 (ko) * | 2019-11-27 | 2020-12-29 | 고려용접봉 주식회사 | 개량 9Cr-1Mo강용 용접 와이어 |
CN112458355A (zh) * | 2020-09-24 | 2021-03-09 | 南京钢铁股份有限公司 | 一种ew460特厚海工钢板及其制造方法 |
CN112501494A (zh) * | 2020-09-24 | 2021-03-16 | 南京钢铁股份有限公司 | 一种ew420特厚海工钢板及其制造方法 |
WO2023008670A1 (ko) * | 2021-07-30 | 2023-02-02 | 현대제철 주식회사 | 열간 프레스용 강판 및 이를 이용하여 제조된 알루미늄계 도금 블랭크 |
CN114150229B (zh) * | 2021-12-08 | 2022-07-26 | 东北大学 | 一种焊接性能优良的海洋结构用钢及其生产方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001207242A (ja) * | 2000-01-27 | 2001-07-31 | Nippon Steel Corp | 円周方向溶接部の低温靱性に優れた厚肉耐サワー鋼管およびパイプライン |
WO2005052205A1 (ja) * | 2003-11-27 | 2005-06-09 | Sumitomo Metal Industries, Ltd. | 溶接部靭性に優れた高張力鋼および海洋構造物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2579842B2 (ja) * | 1991-03-08 | 1997-02-12 | 新日本製鐵株式会社 | 圧延ままで靱性に優れ、かつ溶接部靱性に優れた粒内フェライト系形鋼の製造方法 |
JP3465494B2 (ja) * | 1996-03-18 | 2003-11-10 | Jfeスチール株式会社 | 材質ばらつきが少なくかつ溶接性に優れる高強度高靱性厚鋼材の製造方法 |
US20060065335A1 (en) * | 2002-03-29 | 2006-03-30 | Yasushi Mizutani | High tensile steel excellent in high temperature strength and method for production thereof |
JP4972451B2 (ja) * | 2007-04-20 | 2012-07-11 | 株式会社神戸製鋼所 | 溶接熱影響部および母材の低温靭性に優れた低降伏比高張力鋼板並びにその製造方法 |
-
2016
- 2016-04-21 JP JP2016085151A patent/JP6766425B2/ja active Active
-
2017
- 2017-04-21 EP EP17786056.6A patent/EP3447161B1/en active Active
- 2017-04-21 WO PCT/JP2017/016089 patent/WO2017183719A1/ja active Application Filing
- 2017-04-21 KR KR1020187033429A patent/KR20180132910A/ko not_active Application Discontinuation
- 2017-04-21 CN CN201780024445.5A patent/CN109072382B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001207242A (ja) * | 2000-01-27 | 2001-07-31 | Nippon Steel Corp | 円周方向溶接部の低温靱性に優れた厚肉耐サワー鋼管およびパイプライン |
WO2005052205A1 (ja) * | 2003-11-27 | 2005-06-09 | Sumitomo Metal Industries, Ltd. | 溶接部靭性に優れた高張力鋼および海洋構造物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3447161A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018066042A (ja) * | 2016-10-19 | 2018-04-26 | 新日鐵住金株式会社 | 熱加工制御型590MPa級H形鋼 |
JP2018083963A (ja) * | 2016-11-22 | 2018-05-31 | 新日鐵住金株式会社 | 鋼矢板 |
Also Published As
Publication number | Publication date |
---|---|
EP3447161A1 (en) | 2019-02-27 |
JP6766425B2 (ja) | 2020-10-14 |
KR20180132910A (ko) | 2018-12-12 |
EP3447161B1 (en) | 2022-02-23 |
EP3447161A4 (en) | 2019-10-30 |
CN109072382B (zh) | 2021-03-09 |
JP2017193760A (ja) | 2017-10-26 |
CN109072382A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017183719A1 (ja) | 高張力鋼および海洋構造物 | |
RU2427663C2 (ru) | Высокопрочная толстостенная сварная стальная труба для трубопровода с превосходной низкотемпературной вязкостью и способ ее изготовления | |
JP5924058B2 (ja) | 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法 | |
JP6165088B2 (ja) | 耐水素誘起割れ性と溶接熱影響部の靭性に優れた鋼板およびラインパイプ用鋼管 | |
JP5846311B2 (ja) | 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法 | |
WO2015088040A1 (ja) | 鋼板およびその製造方法 | |
WO2013089156A1 (ja) | 低温靭性に優れた高強度h形鋼及びその製造方法 | |
JP6108116B2 (ja) | 脆性亀裂伝播停止特性に優れる船舶用、海洋構造物用および水圧鉄管用厚鋼板およびその製造方法 | |
JP4432905B2 (ja) | 溶接部靱性に優れた高張力鋼および海洋構造物 | |
WO2018185851A1 (ja) | 縦シーム溶接鋼管 | |
WO2013099179A1 (ja) | 脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 | |
JP6024928B2 (ja) | 脆性亀裂伝播停止特性に優れる船舶用、海洋構造物用および水圧鉄管用厚鋼板およびその製造方法 | |
JP5900312B2 (ja) | 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 | |
JP2006063351A (ja) | 耐水素誘起割れ性に優れた高強度鋼板および製造方法、並びにラインパイプ用鋼管 | |
JP6665659B2 (ja) | 厚鋼板およびその製造方法 | |
JP4585483B2 (ja) | 溶接部靭性と変形能に優れた高強度鋼管および高強度鋼板の製造方法 | |
JP2011202214A (ja) | 多層溶接部の低温靭性に優れた厚肉高張力鋼板およびその製造方法 | |
JP6645373B2 (ja) | 厚鋼板とその製造方法 | |
JP2013095927A (ja) | 靭性に優れた高張力鋼板およびその製造方法 | |
WO2015075771A1 (ja) | 鋼板 | |
WO2017183720A1 (ja) | 厚鋼板 | |
JP4772486B2 (ja) | 低温用高強度鋼管 | |
JP2003306749A (ja) | 変形能に優れた高強度鋼管及び鋼管用鋼板の製造法 | |
JP2017082267A (ja) | 厚鋼板 | |
JP3745722B2 (ja) | 変形能及び溶接部靭性に優れた高強度鋼管及び高強度鋼板の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187033429 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017786056 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17786056 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017786056 Country of ref document: EP Effective date: 20181121 |