[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017183719A1 - 高張力鋼および海洋構造物 - Google Patents

高張力鋼および海洋構造物 Download PDF

Info

Publication number
WO2017183719A1
WO2017183719A1 PCT/JP2017/016089 JP2017016089W WO2017183719A1 WO 2017183719 A1 WO2017183719 A1 WO 2017183719A1 JP 2017016089 W JP2017016089 W JP 2017016089W WO 2017183719 A1 WO2017183719 A1 WO 2017183719A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
amount
mns
composite
Prior art date
Application number
PCT/JP2017/016089
Other languages
English (en)
French (fr)
Inventor
和輝 笠野
孝浩 加茂
玄樹 猪狩
修一 中村
憲孝 細谷
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201780024445.5A priority Critical patent/CN109072382B/zh
Priority to KR1020187033429A priority patent/KR20180132910A/ko
Priority to EP17786056.6A priority patent/EP3447161B1/en
Publication of WO2017183719A1 publication Critical patent/WO2017183719A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to high-tensile steel and offshore structures.
  • the present invention particularly relates to a high-strength steel excellent in toughness of a weld heat-affected zone (hereinafter referred to as “HAZ”) and an offshore structure using the high-strength steel.
  • HZ weld heat-affected zone
  • the present invention relates to a high-strength steel for welding used as a welded structure in a building, a civil engineering structure, a construction machine, a ship, a pipe, a tank, an offshore structure, etc., particularly an offshore structure.
  • the present invention relates to a high-strength steel for welding and an offshore structure used.
  • the present invention relates to a thick high-strength steel having a yield strength of 420 MPa or more and a plate thickness of 50 mm or more and an offshore structure using the same.
  • Medium strength steel with yield strength of 300-360MPa is used for ordinary marine structures.
  • an extremely thick high-tensile steel material having a high yield strength of 460 to 700 MPa and a plate thickness exceeding 100 mm may be used.
  • the toughness of the base metal and the welded part is also evaluated by specifying the CTOD value at the minimum operating temperature. That is, even if stable characteristics can be obtained by the Charpy test (evaluation test for a micro test piece cut and sampled to a size of 10 mm ⁇ 10 mm), it is evaluated by a test piece having the actual plate thickness of the structure. In many cases, the CTOD characteristics are insufficient. Furthermore, today, more severe CTOD characteristics are required.
  • the desire to improve the low-temperature toughness of HAZ is not limited to steel materials used for offshore structures installed in ice sea areas, but line pipes for cold regions used in milder environments than this, Or it is strong also with respect to the steel materials used for large sized welded structures, such as a ship and an LNG tank.
  • Patent Documents 1 to 3 disclose Cu precipitation type steel having excellent weld toughness.
  • Patent Document 4 discloses a steel material in which the pinned particles TiN are finely dispersed by adjusting the ratio (Al / N) to improve the low temperature toughness of the welded portion, particularly the HAZ toughness.
  • Patent Document 1 merely evaluates the Charpy characteristics of a welded joint obtained with a plate thickness of 30 mm and a welding heat input of 40 kJ / cm. For this reason, it is hard to think that the Cu precipitation type steel disclosed by patent document 1 is a material which enables large heat-input welding.
  • Patent Document 2 discloses a Cu precipitation type high strength steel containing 0.5 to 4.0 mass% of Cu and having a tensile strength of 686 MPa or more. However, its low temperature toughness is ⁇ 30 ° C. even at the transition temperature of the Charpy test. For this reason, it is difficult to think that the Cu precipitation type high-strength steel disclosed in Patent Document 2 can secure the low-temperature CTOD characteristics in the extra-thick steel plate.
  • Patent Document 3 discloses a Cu precipitation type steel excellent in Charpy toughness of a welded portion. However, Patent Document 3 merely evaluates the Charpy characteristics of a welded joint obtained with a welding heat input of 5 kJ / mm. For this reason, it is difficult to think that the Cu precipitation type steel disclosed in Patent Document 3 can sufficiently secure the safety of the structure during high heat input welding.
  • the present invention relates to a high-tensile steel that can stably obtain low-temperature toughness of a welded portion, in particular, low-temperature toughness of HAZ, under high heat input welding conditions with a heat input of 300 KJ / cm or more, and an ocean using this high-strength steel.
  • the object is to provide a structure.
  • the present inventors obtained the following knowledge as a result of intensive studies to solve the above problems.
  • ⁇ I> Disperse as many fine Cu particles as possible in order to increase the yield strength.
  • Cu particles are easily generated on crystal defects (mainly dislocations) in steel, and when the dislocation density is high, precipitation of Cu particles is promoted. Further, the Cu particles on the dislocation inhibit the movement of the dislocation and increase the yield strength.
  • the dislocation density in the steel can be controlled by rolling conditions and water cooling conditions. Further, a decrease in rolling temperature, an increase in total rolling reduction, an increase in water cooling start temperature, an increase in cooling rate, and a decrease in water cooling stop temperature all increase the dislocation density.
  • Mn is absorbed into atomic vacancies existing inside the Ti-based oxide.
  • a Mn-deficient layer in which the Mn concentration decreases is formed around the inclusions, and the growth start temperature of ferrite in this portion increases.
  • the present inventors have found that the amount of the MnS complex of inclusions serving as nuclei of intragranular ferrite affects the growth of intragranular ferrite. That is, when the composite MnS is large, a larger Mn concentration gradient is formed around the inclusions, so that the driving force for diffusing Mn increases. As a result, a Mn-deficient layer is easily formed. On the other hand, when the composite MnS is small, a gradient of Mn concentration is hardly formed around the inclusions. As a result, it becomes difficult to form a Mn-deficient layer.
  • inclusions in steel must satisfy the following requirements in order to obtain the effect of refining crystal grains.
  • the steel contains a composite inclusion in which MnS is present around the Ti oxide, and the area ratio of MnS in the cross section of the composite inclusion is 10% or more and less than 90%.
  • the proportion of MnS in the length is 10% or more.
  • the number density of this composite inclusion having a particle size of 0.5 to 5.0 ⁇ m is 10 to 100 / mm 2 .
  • the present invention is based on these findings and is listed below.
  • Chemical composition is mass%, C: 0.01 to 0.10%, Si: 0.01 to 0.50%, Mn: 0.80 to 2.50%, P: 0.020%
  • the weld crack sensitivity index Pcm shown by the following formula (1) is 0.25 or less,
  • the average value of equivalent circle diameters of Cu particles having a major axis of 1 nm or more dispersed in the steel is 4 to 25 nm, and the plane rate conversion distribution amount is 3 to 20%.
  • the steel contains a composite inclusion in which MnS is present around the Ti oxide, the area ratio of the MnS in the cross section of the composite inclusion is 10% or more and less than 90%, and the perimeter of the composite inclusion is A high-strength steel in which the proportion of MnS occupying is 10% or more and the number density of the composite inclusions having a particle size of 0.5 to 5.0 ⁇ m is 10 to 100 pieces / mm 2 .
  • Pcm C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B ... ( 1)
  • each element symbol in the formula (1) represents the content (% by mass) of each element.
  • Nb 0.003-0.030%
  • Mo 0.10-0.80%
  • Cr 0.03-0.80%
  • B 0.0002-0.0020%
  • V one high-strength steel according to item 1, containing at least one selected from 0.001 to 0.050%.
  • a high-tension steel that can stably obtain low-temperature toughness of a welded portion, in particular, HAZ toughness, and the high tension An offshore structure using steel can be provided.
  • (A1) C 0.01 to 0.10% C increases the strength of the base material.
  • C refines the metal structure when Nb, V, or the like is added. Therefore, the C content is 0.01% or more, preferably 0.02% or more, and more preferably 0.03% or more.
  • the C content is 0.10% or less, preferably 0.08% or less, and more preferably 0.05% or less.
  • (A2) Si 0.01 to 0.50% Si is effective for preliminary deoxidation of molten steel. Therefore, the Si content is 0.01% or more.
  • the Si content is 0.50% or less, preferably 0.20% or less, and more preferably 0.15% or less.
  • (A3) Mn 0.80 to 2.50% Mn is necessary for securing the strength and suppresses the growth of coarse ferrite at the grain boundaries in the HAZ. Therefore, the Mn content is 0.80% or more, preferably 1.40% or more.
  • the Mn content is 2.50% or less, preferably 2.10% or less.
  • (A4) P 0.020% or less P is an impurity and segregates at the grain boundary, causing grain boundary cracking in the HAZ.
  • the P content is 0.020% or less, preferably 0.015% or less, More preferably, it is 0.010% or less.
  • the S content is 0.010% or less, and preferably 0.005% or less from the viewpoint of securing the low temperature toughness of the HAZ.
  • (A6) Cu 0.80 to 1.50% Cu increases the strength and toughness of the steel material and has a small adverse effect on the HAZ toughness. In particular, the strength due to precipitation of ⁇ -Cu during the aging treatment is increased. Therefore, the Cu content is 0.80% or more, preferably 0.90% or more.
  • the Cu content is 1.50% or less, preferably 1.10% or less.
  • Ni 0.20 to 1.50% Ni increases the strength and toughness of the steel material, and further increases the HAZ toughness. Therefore, the Ni content is 0.20% or more, preferably 0.40% or more.
  • the Ni content is 1.50% or less, preferably 1.20% or less.
  • Al 0.003% or less Al is an impurity, and the production of Ti-based oxides is suppressed by increasing the Al content. Therefore, the Al content is 0.003% or less.
  • Ti 0.005 to 0.030% Ti is necessary for the generation of inclusions that form nitrides and suppress the coarsening of crystal grains and also become intragranular transformation nuclei. Therefore, the Ti content is 0.005% or more, preferably 0.007% or more.
  • the Ti content is 0.030% or less, preferably 0.015% or less.
  • N 0.003 to 0.008% N refines the structure by forming nitrides. Therefore, the N content is 0.003% or more, preferably 0.0035% or more.
  • the N content is 0.008% or less, preferably 0.0065% or less.
  • (A11) O 0.0005 to 0.0050% O produces
  • the O content is 0.0050% or less, preferably 0.0035% or less.
  • Nb 0 to 0.030%
  • Mo 0 to 0.80%
  • Cr 0 to 0.80%
  • B 0 to 0.0020%
  • V 0 to 0.050% Since Nb, Mo, Cr, B, and V all have the effect of improving the strength of steel, they may contain one or more of these elements.
  • Nb may be contained in order to improve the strength and toughness of the base material by refining and precipitation of carbides.
  • the Nb content is 0.030% or less, preferably 0.015% or less.
  • the Nb content is preferably 0.003% or more.
  • Mo may be contained in order to ensure hardenability and improve HAZ toughness. However, if Mo is excessively contained, the HAZ toughness is remarkably lowered due to the hardening of the HAZ. Therefore, the Mo content is 0.80% or less, preferably 0.50% or less.
  • the Mo content is preferably 0.10% or more.
  • Cr may be contained in order to increase the strength by improving the hardenability of the steel material. However, if Cr is contained excessively, hardening of the weld metal and HAZ is promoted, and the weld cold cracking sensitivity is increased. Therefore, the Cr content is 0.80% or less, preferably 0.60% or less.
  • the Cr content is preferably 0.03% or more, more preferably 0.05% or more.
  • B may be contained in order to increase the strength by improving the hardenability of the steel material.
  • the B content is 0.0020% or less, preferably 0.0015% or less.
  • the B content is preferably 0.0002% or more, more preferably 0.0003% or more.
  • V may be contained in order to generate carbonitrides to suppress coarsening of crystal grains and to refine the transformation structure.
  • the V content is 0.050% or less, preferably 0.040% or less.
  • the V content is preferably 0.001% or more, more preferably 0.005% or more.
  • the Ca content is 0.005% or less, and the Mg content and the REM content are each 0.01% or less.
  • the Ca content is preferably 0.0005% or more, more preferably 0.00055% or more, and the Mg content is preferably 0.0001% or more.
  • the REM content is preferably 0.0001% or more.
  • Ca, Mg and REM may be contained singly or in combination of two or more.
  • the high-tensile steel according to the present invention contains the above-described elements, and the balance is Fe and impurities.
  • “Impurity” is a component that is mixed due to various factors in raw materials such as ore and scrap and manufacturing process when steel is industrially manufactured, and is allowed to be contained within a range that does not adversely affect the present invention. Means what will be done.
  • the weld cracking sensitivity index Pcm 0.25 or less
  • the weld cracking sensitivity index Pcm obtained by the above formula (1) is 0.25 or less.
  • the weld crack sensitivity index Pcm is 0.25 or less, and is preferably 0.22 or less, more preferably 0.20 or less in order to omit preheating during welding.
  • the high-strength steel according to the present invention has an average equivalent circle diameter of 4 to 25 nm in Cu particles dispersed in the steel and having a major axis of 1 nm or more, and Cu particles having a major axis of 1 nm or more.
  • the flatness conversion distribution amount is 3 to 20%.
  • the precipitation form of the Cu particles is approximately spherical, it is not easy to measure the three-dimensional shape. Therefore, a transmission electron microscope (TEM) observation is performed and the shape by which the three-dimensional shape was planarly projected is measured.
  • TEM transmission electron microscope
  • the equivalent circle diameter is the diameter of a circle having the same area as the projected area of the particles, and is specifically obtained by the following equation (2).
  • d ⁇ (4a / pai) (2)
  • the meaning of each symbol in the formula (2) is as follows. a: Projection area (nm 2 )
  • d equivalent circle diameter (nm) pai: 3.14
  • (B2) Plane rate conversion distribution in Cu particles having a major axis of 1 nm or more: 3 to 20%
  • the flat rate conversion distribution amount is obtained by processing a steel material into a thin film shape, performing TEM observation at a magnification of 100,000 times on a portion having a thickness of about 0.2 ⁇ m, and obtaining Cu particles distributed three-dimensionally in the thin film test piece. It is obtained by calculating the area ratio in the case of planar projection.
  • the average diameter and the distribution amount of Cu particles are defined as described above.
  • the following can be considered as factors controlling the Cu particle diameter and the distribution amount.
  • the Cu content is within an appropriate range, the Cu particle diameter is determined mainly by the structure before aging treatment, the temperature and time of aging treatment. If the Cu content is less than the appropriate range, Cu particles are not sufficiently precipitated, and the Cu particle diameter tends to be small. On the other hand, when the Cu content is larger than the appropriate range, a large amount of Cu particles are precipitated, and thus the Cu particle diameter tends to be large.
  • the influence of the organization before aging treatment is large.
  • the structure before the aging treatment is preferably a fine structure mainly composed of ferrite and bainite. Dislocations or crystal grain boundaries become Cu particle precipitation sites. For this reason, setting it as the structure
  • the chemical composition of steel is appropriately controlled and the rolling conditions are appropriately controlled. Furthermore, the subsequent water-cooling conditions are selected so as to have a fine structure mainly composed of ferrite and bainite.
  • the high-strength steel according to the present invention includes composite inclusions in the steel.
  • MnS exists around the Ti oxide.
  • (C1) Area ratio of MnS in cross section of composite inclusion: 10% or more and less than 90%
  • the composite inclusion appearing on an arbitrary cut surface is analyzed.
  • the amount of MnS in the composite inclusion is defined by measuring the area ratio of MnS in the cross-sectional area of the composite inclusion.
  • the composite inclusion is mainly MnS, and the ratio of the Ti-based oxide decreases.
  • the Mn absorptivity decreases and a sufficient Mn-deficient layer cannot be formed, making it difficult to generate intragranular ferrite.
  • (C2) Ratio of MnS in the circumference of the composite inclusion 10% or more MnS in the composite inclusion is formed around the Ti-based oxide. If the ratio of MnS to the circumference of the composite inclusion is less than 10%, the initial Mn-deficient region formed at the interface between MnS and the matrix is small. For this reason, even if it welds, since the formation amount of an intragranular ferrite is not enough, favorable low-temperature HAZ toughness cannot be obtained. Therefore, the ratio of MnS to the circumference of the composite inclusion matrix is 10% or more.
  • the ratio of MnS the larger the initial Mn-deficient layer, and the easier formation of intragranular ferrite. For this reason, although the upper limit of the ratio of MnS is not defined, it is usually 80% or less.
  • (C3) Particle size of composite inclusion 0.5 to 5.0 ⁇ m If the particle size of the composite inclusion is less than 0.5 ⁇ m, the amount of Mn that can be absorbed from the periphery of the composite inclusion is small, and as a result, it becomes difficult to form a Mn-deficient layer necessary for the formation of intragranular ferrite.
  • the particle size of the composite inclusion is larger than 5.0 ⁇ m, the composite inclusion becomes a starting point of destruction.
  • the particle size is the equivalent circle diameter of the composite inclusion.
  • the number density of the composite inclusion is 100 pieces / mm 2 or less.
  • (D1) Steelmaking In the production of high-strength steel according to the present invention, in order to control the inclusions in the steel, Ar gas is blown into the molten steel from the top before the RH vacuum degassing treatment of secondary refining, and the surface of the molten steel is The slag reacts with the molten steel. Accordingly, it is preferable to adjust the total Fe amount in the slag and control the oxygen potential Oxp in the molten steel in a range of 10 to 30 ppm.
  • the flow rate of Ar gas is preferably adjusted to 100 to 200 L / min, and the Ar gas blowing time is preferably adjusted to 5 to 15 min.
  • each element is added during RH vacuum degassing to adjust the components, and a steel piece (slab) having a thickness of, for example, 300 mm is cast by continuous casting.
  • the heating temperature of the steel slab is less than 900 ° C., this solution action is not sufficient, and sufficient precipitation hardening may not be expected in the tempering process. For this reason, the heating temperature of the steel slab is preferably 900 ° C. or higher.
  • the heating temperature of the steel slab exceeds 1120 ° C., it becomes difficult to keep the austenite grains before hot rolling fine and sized. As a result, the austenite grains are not made uniform and fine in the subsequent hot rolling. For this reason, the heating temperature of a steel piece becomes like this.
  • it is 1120 degrees C or less, More preferably, it is 1050 degrees C or less, More preferably, it is 1000 degrees C or less.
  • the total rolling reduction at 900 ° C. or less is preferably 50% or more.
  • (D3) Cooling After the hot rolling, preferably, a quenching process is performed in which water cooling is started from a temperature of Ar 1 point or higher and water cooling is stopped at a temperature of 600 ° C. or lower. By quenching, the structure is refined and the precipitation of Cu particles in the stage before the aging treatment is suppressed as much as possible. In the case of water cooling or air cooling from a temperature less than one Ar point, work strain is lost, which may cause a decrease in strength and toughness. In addition, Ar 1 point is calculated
  • the finishing temperature of hot rolling is preferably 700 ° C. or higher, the cooling start temperature is preferably 680 to 750 ° C., and the cooling rate to the cooling stop temperature is preferably 1 to 50 ° C./sec. Furthermore, if the cooling stop temperature exceeds 600 ° C., the precipitation strengthening action in the tempering process may be insufficient.
  • the aging treatment is a treatment for sufficiently precipitation hardening of Cu precipitates, and the heating rate and the cooling rate are controlled in order to make the dispersion of Cu particles uniform.
  • the heating rate is preferably 5 to 50 ° C./min, the average heating rate up to aging temperature ⁇ 100 ° C., the holding time is preferably 1 hour or more, and the cooling rate is preferably an average cooling rate up to 500 ° C. 5 to 60 ° C./min or more.
  • the heating temperature in this specification is the furnace atmosphere temperature
  • the post-heating holding time is the holding temperature at the furnace atmosphere temperature
  • the water cooling start and stop temperatures are the surface temperature of the steel material.
  • rate at the time of reheating are computed from the temperature calculation in 1 / 2t part when the thickness of steel materials is set to t.
  • (E) Offshore Structure In order to construct a large offshore structure from the high-strength steel according to the present invention, a steel material such as a plate material, a pipe material or a profile is assembled by welding, but generally used as a steel plate.
  • excellent weldability usually means that arc welding with a welding heat input of 300 kJ / cm or more is possible, but the welding method is submerged arc welding, covered arc welding, or the like. Also good.
  • the offshore structure includes not only a platform or jack-up rig laid on the sea floor, but also a semi-sub rig (semi-submersible oil drilling rig).
  • the present invention is applicable to offshore structures that require weldability and low temperature toughness, and is not particularly limited.
  • that an offshore structure is large means that the thickness of the steel materials used for an offshore structure is 50 mm or more.
  • Table 1 A 300 mm thick steel slab having a chemical composition of 1 to 40 was produced by a continuous casting method.
  • Table 2 shows the steelmaking conditions for each steel slab.
  • the temperature of the molten steel was not excessively increased, and the difference with respect to the solidification temperature determined from the chemical composition of the molten steel was controlled within 50 ° C. .
  • electromagnetic stirring just before solidification and reduction during solidification were performed.
  • Each steel slab obtained by the continuous casting method was processed under the conditions shown in Table 2 to obtain each steel material.
  • a 300 mm thick slab is heated at each heating temperature and each heating time, hot rolled, and then cooled at an average cooling rate of 5 ° C./sec from the water cooling start temperature to the water cooling stop temperature. did. Table 2 shows these conditions as “initial heating and rolling conditions”.
  • ⁇ Calculation of equivalent circle diameter of Cu particles The equivalent circle diameter of the Cu particles is measured with a transmission electron microscope (TEM) at a magnification of 100,000 at a thickness of 1/4 t of each steel material, and the projected area of each precipitate having a major axis of 1 nm or more is measured. Sought by.
  • TEM transmission electron microscope
  • One field of view in TEM observation was a rectangle of 900 nm ⁇ 700 nm, and TEM observation was performed in a total of 10 fields.
  • the average value of the equivalent circle diameters of Cu particles in each field of view was calculated, and further, the average value of the equivalent circle diameters of Cu particles in all 10 fields of view was obtained.
  • the results are shown in Table 3.
  • the flatness equivalent distribution amount of the Cu particles is obtained by processing each steel material into a thin film shape, performing TEM observation at a magnification of 100,000 times on a portion having a thickness of about 0.2 ⁇ m, and three-dimensionally distributing in the thin film test piece. It calculated
  • One field of view in TEM observation was a rectangle of 900 nm ⁇ 700 nm, and TEM observation was performed in a total of 10 fields.
  • the average value of the flat rate conversion distribution amount of Cu particles in each visual field was calculated, and the average value of the flat rate conversion distribution amount of Cu particles in all 10 visual fields was calculated using the average value.
  • Table 3 The results are shown in Table 3.
  • the MnS area ratio was calculated by measuring the cross-sectional area of the entire composite inclusion and the cross-sectional area of the MnS portion in the entire composite inclusion from the image.
  • the MnS area ratio and the ratio of MnS to the circumference of the composite inclusion were obtained by analyzing 20 pieces of each sample material by EPMA and calculating the average value. The results are shown in Table 3.
  • the number density of composite inclusions is determined by an automatic inclusion analyzer combined with SEM-EDX, and the composite inclusions having a particle size in the range of 0.5 to 5.0 ⁇ m are determined from the shape measurement data of the detected composite inclusions. It was calculated by calculating the number of objects. The results are shown in Table 3.
  • ⁇ Tensile test> A tensile test piece having a diameter of 12.5 mm in parallel is collected from the central portion of the plate thickness in the direction perpendicular to the rolling direction of each steel material, and a tensile test is performed to determine the yield strength (YS) of the base material. Tensile strength (TS) was measured. The results are shown in Table 3.
  • Yield strength (YS) was determined to be 420 to 630 MPa. Further, the tensile strength (TS) was determined to be acceptable at 500 to 700 MPa.
  • CTOD test> The CTOD test of the base material was performed at ⁇ 40 ° C. in accordance with the BS 7448 standard, and a three-point bending test piece of full thickness was taken from the direction perpendicular to the rolling direction of each steel material. The results are shown in Table 3. The CTOD value was determined to be 0.40 mm or more.
  • Test No. in Table 3 Nos. 1 to 29 are examples of the present invention that satisfy all the conditions of the present invention.
  • 30 to 40 are comparative examples which do not satisfy the conditions of the present invention.
  • Test No. No. 30 satisfies the chemical composition defined by the present invention, but the dispersion state of Cu particles does not satisfy the range defined by the present invention, so the strength of the base material is low. Therefore, in order to achieve both high heat input welding characteristics and base material strength, it is necessary to satisfy the dispersed state of Cu particles defined in the present invention.
  • Test No. Nos. 31 and 32 satisfy the chemical composition specified by the present invention, but the composite inclusions do not satisfy the range specified by the present invention, so the joint CTOD characteristics were inferior.
  • the present invention it is possible to provide a high-tensile steel that can stably obtain low-temperature toughness, particularly HAZ toughness of a welded part under a high heat input welding condition with a heat input of 300 KJ / cm or more. Therefore, the high-tensile steel according to the present invention can be suitably used for offshore structures and the like that require stricter CTOD characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

化学組成が、C:0.01~0.10%、Si:0.01~0.50%、Mn:0.80~2.50%、P:0.020%以下、S:0.001~0.010%、Cu:0.80~1.50%、Ni:0.20~1.50%、Al:0.003%以下、Ti:0.005~0.030%、N:0.003~0.008%、O:0.0005~0.0050%、任意添加元素としてNb、Mo、Cr、B、V、Ca、Mg及びREM、並びに、残部:Fe及び不純物であり、Pcmが0.25以下、鋼中に分散した長径1nm以上のCu粒子の円相当径の平均値が4~25nm、かつ平面率換算分布量が3~20%であり、鋼中にTi酸化物の周囲にMnSが存在する複合介在物を含み、前記複合介在物の断面におけるMnSの面積率が10%以上90%未満、複合介在物の周長に占めるMnSの割合が10%以上、粒径0.5~5.0μmの複合介在物の個数密度が10~100個/mm2である、高張力鋼である。この高張力鋼は、大入熱溶接条件において溶接部低温靱性、特にHAZ低温靱性を安定して得られる。

Description

高張力鋼および海洋構造物
 本発明は、高張力鋼および海洋構造物に関する。本発明は、特に、溶接熱影響部(Heat Affected Zone:以下、「HAZ」という。)の靱性に優れた高張力鋼と、この高張力鋼を用いた海洋構造物に関する。本発明は、より具体的には、建築物、土木構造物、建設機械、船舶、パイプ、タンク、海洋構造物等において溶接構造物として使用される溶接用高張力鋼、特に、海洋構造物に用いられる溶接用高張力鋼および海洋構造物に関し、例えば、降伏強度420MPa以上、板厚50mm以上の厚肉高張力鋼およびそれを用いた海洋構造物に関する。
 近年、エネルギー需要が益々増加の傾向にあり、海底石油資源の探索が活発化している。例えば、プラットフォームやジャッキアップリグといった、海底石油資源の探索に使用される海洋構造物は、大型化している。これに伴い、鋼板等の使用鋼材が厚肉化し、より安全性を確保することが重要な課題になっている。
 降伏強度が300~360MPa級の中強度鋼材が通常の海洋構造物に用いられる。大型の構造物では、降伏強度が460~700MPa級の高強度であり、かつ板厚が100mmを超える極厚高張力鋼材が用いられることがある。
 近年、海底石油資源の探索地域が寒冷地域および大水深地域へ移っている。これらの地域で稼動する海洋構造物は、極めて厳しい気象条件および海洋条件に晒される。このため、これらの海洋構造物に用いられる鋼材には、例えば-40℃以下という非常に厳しい低温域での靱性が要求されるとともに、溶接性も当然要求される。
 さらに、ユーザの検査基準が安全性の観点から厳しくなっている。母材および溶接部の靭性を、従来のシャルピー衝撃値の規定に加えて、最低使用温度でのCTOD値も規定して、評価するようになってきている。すなわち、シャルピー試験(10mm×10mmの大きさに切断および採取された微小試験片についての評価試験)により安定した特性を得られても、構造物の実際の板厚を有する試験片により評価されるCTOD特性が不足することが多く発生している。また、今日ではさらに厳しいCTOD特性が求められている。
 このように、HAZの低温靱性を向上させる要望が、氷海域に設置される海洋構造物に使用される鋼材に限らず、これよりもマイルドな環境下で使用される寒冷地向けのラインパイプ、または、船舶およびLNGタンク等の大型の溶接構造物に使用される鋼材に対しても、強い。
 一方で、-40℃以下という低温域で高い靱性を得るためには、溶接効率が低い低入熱量の溶接条件で溶接せざるを得ない。海洋構造物の建造コストに占める溶接施工コストの割合は高い。溶接施工コストを低下させる最も直接的な方法は、大入熱溶接が可能な高能率溶接法を採用することにより溶接層数を減らすことである。したがって、低温靱性の要求が厳しい寒冷地向けの構造物では、HAZ靱性を考慮しながら、溶接施工コストが可及的に低い溶接を行うことが重要である。
 従来、鋼材の低C化が鋼材のHAZ靱性を向上させるために有効であることが知られている。低C化による鋼材の強度の低下を補うため、種々の合金の添加による高強度化、および、析出時効硬化を利用した高強度化が図られている。例えば、Cuの析出時効硬化を利用した鋼がASTM規格(ASTM A710)に開示されている。この考え方に基づく幾つかの発明が開示されている。
 例えば、特許文献1~3には、溶接部の靱性に優れたCu析出型鋼が開示される。特許文献4には、比(Al/N)の調整によりピン留め粒子TiNを微細に分散させることにより溶接部の低温靱性、特に、HAZ靱性を改善した鋼材が開示されている。
特公平7-81164号公報 特開平5-186820号公報 特開平5-179344号公報 国際公開第2005/052205号パンフレット
 特許文献1は、板厚30mm、溶接入熱量40kJ/cmで得られた溶接継手のシャルピー特性を評価するに過ぎない。このため、特許文献1により開示されたCu析出型鋼が大入熱溶接を可能とする材料であるとは考え難い。
 特許文献2には、Cuを0.5~4.0質量%含有する、引張り強さ686MPa以上のCu析出型高張力鋼が開示される。しかし、その低温靱性はシャルピー試験の遷移温度でさえ-30℃である。このため、特許文献2により開示されたCu析出型高張力鋼が極厚鋼板での低温CTOD特性を確保できるとは考え難い。
 特許文献3には、溶接部のシャルピー靱性に優れたCu析出型鋼が開示される。しかし、特許文献3は、溶接入熱量5kJ/mmで得た溶接継手のシャルピー特性を評価するに過ぎない。このため、特許文献3により開示されたCu析出型鋼が大入熱溶接時の構造物の安全性を充分確保できるとは考え難い。
 さらに、特許文献4により開示された鋼材では、大入熱溶接条件ではTiNのピン留め効果が消失し易い。このため、大入熱溶接条件での低温靱性の確保が困難になる可能性が高い。
 本発明は、入熱量300KJ/cm以上の大入熱溶接条件において、溶接部の低温靱性、特に、HAZの低温靱性を安定して得られる高張力綱、および、この高張力鋼を用いた海洋構造物を提供することを目的とする。
 本発明者らは、上記の課題を解決するために鋭意検討した結果、下記の知見を得た。
 まず、Cu粒子の析出を検討した結果、下記〈i〉~〈vi〉の知見が得られた。
 〈i〉降伏強度を上昇させるために、微細Cu粒子をできるだけ多く分散させる。
 〈ii〉靱性、特に、低温でのCTOD特性を確保するために、Cu粒子をある程度粗大化させ、かつ、分散量を抑制する。
 〈iii〉Cu粒子の分散状態を均一化するために、時効処理の前段階でのCu粒子の生成をできるだけ抑制し、かつ、時効処理の条件の制御によりCu粒子の分散状態を制御する。
 〈iv〉Cu粒子の分布状態を、TEM写真より求められる円相当径の平均値および平面換算面積率により整理することにより、強度および靱性のバランスを制御できる。
 〈v〉Cu粒子は、鋼中の結晶欠陥(主に転位)の上に生成し易く、転位密度が高いとCu粒子の析出が促進される。また、転位上のCu粒子は転位の移動を阻害し、降伏強度を上昇させる。
 〈vi〉鋼中の転位密度は、圧延条件および水冷条件により制御できる。また、圧延温度の低下、総圧下量の増加、水冷開始温度の上昇、冷却速度の増加、および、水冷停止温度の低下は、いずれも、転位密度を増加させる。
 次に、介在物を検討した。
 HAZの低温靱性を確保するためには、結晶粒を微細化させることにより破壊単位を減少させることが有効である。従来より、結晶粒を微細化させる手法として、
 (I)旧オーステナイト粒界の成長をTiN等により抑制するピン留め効果を活用する手法、および、
 (II)旧オーステナイト粒内に存在する介在物を起点として微細な粒内フェライトを成長させ、結晶粒を微細化する手法
が知られる。本発明者らは、(II)の手法に着目した。
 特に、板厚が50mm以上の厚鋼板では、その表面および内部での冷却速度を異ならせることにより、板厚方向での介在物の組成および個数を制御することが困難である。このため、粒内フェライトの生成核となる介在物の制御が、溶接時に旧オーステナイト粒内に粒内フェライトを効果的に成長させるために、必要になる。本発明者らは、粒内フェライト成長のメカニズムを検討した結果、以下の事項を知見した。
 [1]溶接冷却時に、Mnがマトリックスから介在物の内部へ拡散する駆動力が、介在物の周囲にMnSが複合析出する際に形成されるMn濃度の勾配により、生じる。
 [2]Mnが、Ti系酸化物内部に存在する原子空孔へ、吸収される。
 [3]Mn濃度が少なくなるMn欠乏層が介在物の周囲に形成され、この部分のフェライトの成長開始温度が上昇する。
 [4]冷却時に、フェライトが介在物から優先的に成長する。
 これらを前提として、本発明者らは、粒内フェライトの核となる介在物のMnS複合量が粒内フェライトの成長に影響を及ぼすことを知見した。すなわち、複合したMnSが多いと、より大きなMn濃度の勾配が介在物の周囲に形成されるため、Mnを拡散させる駆動力が増加する。その結果、Mn欠乏層が形成され易くなる。一方、複合したMnSが少ないと、Mn濃度の勾配が介在物の周囲に形成され難くなる。その結果、Mn欠乏層が形成され難くなる。
 つまり、介在物に複合するMnS量および個数密度を制御することにより、効果的に粒内フェライトを析出させることができる。
 さらに、本発明者らは、結晶粒の微細化効果を得るためには、鋼中の介在物が以下の要件を満たす必要があることを知見した。
 (a)鋼中に、Ti酸化物の周囲にMnSが存在する複合介在物を含み、この複合介在物の断面におけるMnSの面積率が10%以上90%未満であり、この複合介在物の周長に占めるMnSの割合が10%以上である。
 (b)粒径0.5~5.0μmのこの複合介在物の個数密度が10~100個/mmである。
 本発明は、これらの知見に基づくものであり、以下に列記の通りである。
 (1)化学組成が、質量%で、C:0.01~0.10%、Si:0.01~0.50%、Mn:0.80~2.50%、P:0.020%以下、S:0.001~0.010%、Cu:0.80~1.50%、Ni:0.20~1.50%、Al:0.003%以下、Ti:0.005~0.030%、N:0.003~0.008%、O:0.0005~0.0050%、Nb:0~0.030%、Mo:0~0.80%、Cr:0~0.80%、B:0~0.0020%、V:0~0.050%、Ca:0~0.005%、Mg:0~0.01%、REM:0~0.01%、ならびに、残部:Feおよび不純物であり、
 下記式(1)で示す溶接割れ感受性指数Pcmが0.25以下であり、
 鋼中に分散した長径が1nm以上のCu粒子における円相当径の平均値が4~25nmであり、かつ、平面率換算分布量が3~20%であり、
 鋼中に、Ti酸化物の周囲にMnSが存在する複合介在物を含み、前記複合介在物の断面における前記MnSの面積率が10%以上90%未満であり、前記複合介在物の周長に占める前記MnSの割合が10%以上であり、粒径0.5~5.0μmの前記複合介在物の個数密度が10~100個/mmである、高張力鋼。
 Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・(1)
 ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を表す。
 (2)質量%で、Nb:0.003~0.030%、Mo:0.10~0.80%、Cr:0.03~0.80%、B:0.0002~0.0020%、およびV:0.001~0.050%から選択される1種以上を含有する、1項に記載の高張力鋼。
 (3)質量%で、Ca:0.0005~0.005%、Mg:0.0001~0.01%、および、REM:0.0001~0.01%から選択される1種以上を含有する、1または2項に記載の高張力鋼。
 (4)1~3項のいずれかに記載の高張力鋼を用いた、海洋構造物。
 本発明によれば、入熱量300KJ/cm以上の大入熱溶接条件で溶接を行っても、溶接部の低温靱性、特に、HAZ靱性を安定して得られる高張力綱、および、この高張力鋼を用いた海洋構造物を提供できる。
 以下、本発明を詳しく説明する。
 (A)化学組成
 各元素の作用効果と、含有量の限定理由を説明する。以下の説明において、化学組成に関する「%」は、特に断りがない限り「質量%」を意味する。
 (A1)C:0.01~0.10%
 Cは、母材の強度を高める。また、Cは、Nb,V等の添加時に金属組織を微細化する。したがって、C含有量は、0.01%以上であり、好ましくは0.02%以上であり、より好ましくは0.03%以上である。
 一方、Cを過剰に含有すると、島状マルテンサイト(M-A:martensite-austenite constituent)と呼ばれる硬化組織が溶接部に生成し、HAZ靱性が悪化するとともに、母材の靱性および溶接性も悪化する。したがって、C含有量は、0.10%以下であり、好ましくは0.08%以下であり、より好ましくは0.05%以下である。
 (A2)Si:0.01~0.50%
 Siは、溶鋼の予備脱酸に有効である。したがって、Si含有量は、0.01%以上である。
 一方、Siを過剰に含有すると、Siがセメンタイト中に固溶しないため、未変態オーステナイト粒がフェライト粒およびセメンタイトに分解することを阻害し、島状マルテンサイトの生成を助長する。したがって、Si含有量は、0.50%以下であり、好ましくは0.20%以下であり、より好ましくは0.15%以下である。
 (A3)Mn:0.80~2.50%
 Mnは、強度の確保に必要であるとともに、HAZにおいて、粒界における粗大なフェライトの成長を抑制する。したがって、Mn含有量は、0.80%以上であり、好ましくは1.40%以上である。
 一方、Mnを過剰に含有すると、焼入れ性が過剰に増加することにより、溶接性およびHAZ靱性が劣化する。さらに、Mnは中心偏析を助長する。したがって、中心偏析の抑制の観点から、Mn含有量は、2.50%以下であり、好ましくは2.10%以下である。
 (A4)P:0.020%以下
 Pは、不純物であり、粒界に偏析するため、HAZにおける粒界割れの原因になる。母材靱性、ならびに、溶接金属およびHAZの靱性を向上し、かつ、スラブの中心偏析を低減するため、P含有量は、0.020%以下であり、好ましくは0.015%以下であり、より好ましくは0.010%以下である。
 (A5)S:0.001~0.010%
 Sは、MnSを複合析出させる。したがって、S含有量は、0.001%以上であり、好ましくは0.002%以上である。
 一方、Sを過剰に含有すると、溶接割れの起点となる粗大な単体MnSが析出するため、HAZ靱性が低下する。したがって、S含有量は、0.010%以下であり、HAZの低温靱性を確保する観点から好ましくは0.005%以下である。
 (A6)Cu:0.80~1.50%
 Cuは、鋼材の強度および靱性を高め、HAZ靱性に対する悪影響も小さい。特に、時効処理時のε-Cuの析出による強度を上昇させる。したがって、Cu含有量は、0.80%以上であり、好ましくは0.90%以上である。
 一方、Cuを過剰に含有すると、溶接高温割れ感受性が高まり、予熱等の溶接施工が複雑になる。したがって、Cu含有量は、1.50%以下であり、好ましくは1.10%以下である。
 (A7)Ni:0.20~1.50%
 Niは、鋼材の強度および靱性を高め、さらに、HAZ靱性を高める。したがって、Ni含有量は、0.20%以上であり、好ましくは0.40%以上である。
 一方、Ni含有量が1.50%を超えると、合金コストの上昇に見合うだけの効果を得られない。したがって、Ni含有量は、1.50%以下であり、好ましくは1.20%以下である。
 (A8)Al:0.003%以下
 Alは不純物であり、Al含有量が増加することにより、Ti系酸化物の生成が抑制される。したがって、Al含有量は、0.003%以下である。
 (A9)Ti:0.005~0.030%
 Tiは、窒化物を生成して結晶粒の粗大化を抑制するとともに、粒内変態核となる介在物の生成に必要である。したがって、Ti含有量は、0.005%以上であり、好ましくは0.007%以上である。
 一方、Tiを過剰に含有すると、母材および溶接部の靱性が悪化する。したがって、Ti含有量は、0.030%以下であり、好ましくは0.015%以下である。
 (A10)N:0.003~0.008%
 Nは、窒化物を形成することにより組織を細粒化する。したがって、N含有量は、0.003%以上であり、好ましくは0.0035%以上である。
 一方、Nを過剰に含有すると、窒化物の凝集によって靱性が劣化する。したがって、N含有量は、0.008%以下であり、好ましくは0.0065%以下である。
 (A11)O:0.0005~0.0050%
 Oは、フェライト生成核となる酸化物を生成する。したがって、O含有量は、0.0005%以上であり、好ましくは0.0008%以上である。
 一方、Oを過剰に含有すると、清浄度の劣化が著しくなり、母材、溶接金属およびHAZの靱性を確保できない。したがって、O含有量は、0.0050%以下であり、好ましくは0.0035%以下である。
 (A12)Nb:0~0.030%、Mo:0~0.80%、Cr:0~0.80%、B:0~0.0020%、V:0~0.050%
 Nb、Mo、Cr、BおよびVは、いずれも鋼の強度を向上させる作用を有するので、これらの元素の1種または2種以上を含有してもよい。
 Nbは、細粒化および炭化物の析出により、母材の強度および靱性を向上させるため、含有してもよい。しかし、Nbを過剰に含有すると、母材の性能を向上させる効果が飽和するとともに、HAZ靱性が著しく低下する。したがって、Nb含有量は、0.030%以下であり、好ましくは0.015%以下である。
 これらの効果を確実に得るためには、Nb含有量は0.003%以上であることが好ましい。
 Moは、焼入れ性を確保し、かつ、HAZ靱性を向上させるため、含有してもよい。しかし、Moを過剰に含有すると、HAZが硬化することによりHAZ靱性が著しく低下する。したがって、Mo含有量は、0.80%以下であり、好ましくは0.50%以下である。
 これらの効果を確実に得るためには、Mo含有量は0.10%以上であることが好ましい。
 Crは、鋼材の焼入れ性を向上させることにより強度を高めるため、含有してもよい。しかし、Crを過剰に含有すると、溶接金属およびHAZの硬化を促進し、溶接低温割れ感受性を増大させる。したがって、Cr含有量は、0.80%以下であり、好ましくは0.60%以下である。
 上記効果を確実に得るためには、Cr含有量は、好ましくは0.03%以上であり、より好ましくは0.05%以上である。
 Bは、鋼材の焼入れ性を向上させることにより、強度を高めるため、含有してもよい。しかし、Bを過剰に含有すると、強度を高める効果が飽和するとともに、母材およびHAZの靱性が著しく劣化する。そのため、B含有量は、0.0020%以下であり、好ましくは0.0015%以下である。
 上記効果を確実に得るためには、B含有量は、好ましくは0.0002%以上であり、より好ましくは0.0003%以上である。
 Vは、炭窒化物を生成して結晶粒の粗大化を抑制するとともに、変態組織を微細化するため、含有してもよい。しかし、Vを過剰に含有すると、母材および溶接部の靱性が悪化する。したがって、V含有量は、0.050%以下であり、好ましくは0.040%以下である。
 上記効果を確実に得るためには、V含有量は、好ましくは0.001%以上であり、より好ましくは0.005%以上である。
 (A13)Ca:0~0.005%、Mg:0~0.01%、REM:0~0.01%
 Ca、MgおよびREMは、いずれも、粒内フェライトの析出核となる酸化物または硫化物を生成するとともに、硫化物の形態を制御し、低温靱性を向上する。しかし、Ca、MgおよびREMを過剰に含有すると鋼の清浄度が劣化する。したがって、Ca含有量は、0.005%以下であり、Mg含有量およびREM含有量は、それぞれ、0.01%以下である。
 これらの効果を確実に得るためには、Ca含有量は、好ましくは0.0005%以上であり、より好ましくは0.00055%以上であり、Mg含有量は好ましくは0.0001%以上であり、REM含有量は好ましくは0.0001%以上である。
 Ca、MgおよびREMは、1種を単独で、または2種以上を複合して、含有してもよい。
 本発明に係る高張力鋼は、上述の元素を含有し、残部はFeおよび不純物である。「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲での含有を許容されるものを意味する。
 (A14)溶接割れ感受性指数Pcm:0.25以下
 本発明に係る高張力鋼は、上記式(1)で求められる溶接割れ感受性指数Pcmが0.25以下である。溶接割れ感受性指数Pcmが0.25以下であると、通常の溶接施工条件で溶接割れを生じない。したがって、溶接割れ感受性指数Pcmは、0.25以下であり、溶接時の予熱を省略するために好ましくは0.22以下であり、より好ましくは0.20以下である。
 (B)Cu析出物
 本発明に係る高張力鋼は、鋼中に分散した長径が1nm以上のCu粒子における円相当径の平均値が4~25nmであり、かつ、長径が1nm以上のCu粒子の平面率換算分布量が3~20%である。
 (B1)長径が1nm以上のCu粒子における円相当径の平均値:4~25nm
 長径が1nmよりも小さい粒子は強度を高める効果が小さいため、本発明は長径1nm以上のCu粒子を対象とする。Cu粒子の長径の上限は特に定めない。長径が100nmを超えるCu粒子は、円相当径の平均値が4~25nmの範囲では、出現しない。
 Cu粒子の析出形態はおよそ球状であるが、立体形状を計測するのは容易ではない。そのため、透過型電子顕微鏡(TEM)観察を行い、立体形状が平面投影された形状を計測する。
 ここで、円相当径とは、粒子の投影面積と同じ面積を有する円の直径であり、具体的には下記(2)式によって求められる。
 d=√(4a/pai) ・・・(2)
 なお、(2)式中の各記号の意味は以下の通りである。
 a:投影面積(nm
 d:円相当径(nm)
 pai:3.14
 (B2)長径が1nm以上のCu粒子における平面率換算分布量:3~20%
 平面率換算分布量は、鋼材を薄膜状に加工し、約0.2μmの厚みを有する部分について倍率100,000倍でTEM観察を行い、薄膜状試験片中に立体的に分布したCu粒子を平面投影した場合の面積率を算出することにより、求められる。
 ここで、円相当径および平面率換算分布量を上述のように規定した理由を説明する。
 海洋構造物に用いられる鋼には、嵐の波浪による外力に耐えるために、最大板厚100mm近くの極厚高張力鋼が用いられることが多い。今後、より厳しい状況で使用されることが想定されるため、さらに高いCTOD値を満たすことが要求される。
 Cuが析出することにより強度が高くなり過ぎると、CTOD値が低くなる。一方、Cuの析出が不足すると、CTOD値が高くても強度が不足する。従来のCu添加鋼は、海洋構造物に用いられることが殆どなく、高いCTOD値を要求されることがなかった。このため、Cu粒子の平均径および分布量を厳密に制御する必要がなかった。
 本発明では、Cu粒子の析出による強度アップとCTOD値の低下とのバランスするために、Cu粒子の平均径および分布量を上述のように規定する。なお、円相当径を4~25nmに規定し、かつ、平面率換算分布量を3~20%に規定する理由は、強度と靱性のバランスをとるためである。
 Cu粒子径および分布量を制御する因子として、以下のものが考えられる。
 [i]Cu含有量が多いほど、Cu粒子の分布量は多くなる。Cu粒子径は、Cu含有量が適正範囲内であれば、主に時効処理前の組織、時効処理の温度および時間によって、決定される。Cu含有量が適正範囲よりも少ないと、Cu粒子の析出が不充分になるため、Cu粒子径は小さくなる傾向にある。一方、Cu含有量が適正範囲よりも大きいと、Cu粒子が多く析出するため、Cu粒子径は大きくなる傾向にある。
 [ii]時効処理前の組織の影響は大きい。時効処理前の組織は、フェライトおよびベイナイト主体の微細な組織であることが好ましい。転位または結晶粒界等がCu粒子の析出サイトになる。このため、このような析出サイトを多く含む組織とすることが、Cu粒子径を細かくする。その結果、Cu粒子の分布量を大きくする。
 このためには、鋼の化学組成を適切に制御するとともに、圧延条件を適切に制御する。さらに、その後の水冷条件を、フェライトおよびベイナイト主体の微細組織となるように、選定する。
 [iii]時効処理の温度および時間は、重要な因子である。Cuの拡散速度および粒子の成長速度を、時効処理条件により厳密に調整することにより、目的とする粒子分散状態とする。
 (C)複合介在物
 本発明に係る高張力鋼は、鋼中に複合介在物を含む。複合介在物は、Ti酸化物の周囲にMnSが存在する。
 (C1)複合介在物の断面におけるMnSの面積率:10%以上90%未満
 本発明では、任意の切断面に現出した複合介在物を分析する。複合介在物の断面積におけるMnSの面積率を測定することにより、複合介在物中のMnS量を規定する。
 複合介在物の断面におけるMnSの面積率が10%未満であると、複合介在物中のMnS量が少なく、充分なMn欠乏層を形成できない。その結果、粒内フェライトの生成が困難になる。
 一方、複合介在物の断面におけるMnSの割合が90%以上であると、複合介在物がMnS主体となり、Ti系酸化物の占める割合が低下する。その結果、Mn吸収能が低下し、充分なMn欠乏層を形成できないため、粒内フェライトの生成が困難になる。
 (C2)複合介在物の周長に占めるMnSの割合:10%以上
 複合介在物中のMnSはTi系酸化物の周囲に形成される。複合介在物の周長に占めるMnSの割合が10%未満であれば、MnSとマトリクスとの界面に形成される初期Mn欠乏領域が小さい。このため、溶接しても粒内フェライトの形成量が十分でないので、良好な低温HAZ靭性を得られない。したがって、複合介在物のマトリクスとの周長に占めるMnSの割合は10%以上である。
 MnSの割合が大きいほど初期Mn欠乏層は大きくなり、粒内フェライトが生成し易くなる。このため、MnSの割合の上限は定めないが、通常80%以下となる。
 (C3)複合介在物の粒径:0.5~5.0μm
 複合介在物の粒径が0.5μm未満であると、複合介在物の周囲から吸収できるMn量が少なく、その結果、粒内フェライトの生成に必要なMn欠乏層の形成が困難になる。
 一方、複合介在物の粒径が5.0μmより大きいと、複合介在物が破壊の起点になる。ここで、粒径とは、複合介在物の円相当直径である。
 (C4)複合介在物の個数密度:10~100個/mm
 安定した粒内フェライトを生成するためには、各複合介在物が旧オーステナイト内に少なくとも1つ程度含まれる必要がある。したがって、複合介在物の個数密度は10個/mm以上である。
 一方、複合介在物が過剰に多いと破壊起点になり易い。そのため、複合介在物の個数密度は100個/mm以下である。
 (D)製造方法
 次に、本発明に係る高張力鋼の製造方法を説明する。上述の化学組成を有する鋼であっても、Cuの析出硬化を充分に発揮させるとともに、鋼中の介在物を制御し、さらに、厚さ50mm以上の厚肉材の板厚方向における各位置の強度および靱性を均一に高め、かつ、降伏強度を向上させるためには、製造方法が適切でなければならない。
 (D1)製鋼
 本発明に係る高張力鋼の製造では、鋼中の介在物を制御するため、二次精錬のRH真空脱ガス処理前にArガスを上部より溶鋼内に吹き込み、溶鋼の表面のスラグと溶鋼とを反応させる。これにより、スラグ内のトータルFe量を調整し、溶鋼内の酸素ポテンシャルOxpを10~30ppmの範囲に制御することが好ましい。
 Arガスの流量は100~200L/minに調節し、Arガスの吹き込み時間は5~15minに調節することが好ましい。
 その後、RH真空脱ガス処理時に各元素を添加して成分調整を行い、連続鋳造により厚さが例えば300mmの鋼片(スラブ)を鋳造する。
 次に、鋼片の加熱、熱間圧延、冷却および時効処理を説明する。
 (D2)熱間圧延
 上述の鋼片を、900~1120℃に加熱して熱間圧延を行う。本発明では、高靱性を得るため、厚肉材の板厚中心部において、上部ベイナイト組織が生成しても充分な程度にオーステナイト粒を細粒化する。このため、加熱段階で鋼片のオーステナイト粒を細粒化する。
 鋼片の加熱温度が900℃未満であると、この固溶化作用が充分でなく、焼戻し処理において充分な析出硬化を期待できない場合がある。このため、鋼片の加熱温度は、好ましくは900℃以上である。
 一方、鋼片の加熱温度が1120℃を超えると、熱間圧延前のオーステナイト粒を細粒かつ整粒に保つことが難しくなる。その結果、その後の熱間圧延においてもオーステナイト粒が均一化および細粒化されない。このため、鋼片の加熱温度は、好ましくは1120℃以下であり、より好ましくは1050℃以下であり、さらに好ましくは1000℃以下である。
 熱間圧延では、900℃以下における総圧下率は、好ましくは50%以上である。
 (D3)冷却
 熱間圧延後に、好ましくは、Ar点以上の温度から水冷を開始し、600℃以下の温度で水冷を停止する焼入れ処理を行う。焼入れ処理により、組織の微細化を図り、かつ、時効処理前の段階におけるCu粒子の析出をできる限り抑制する。Ar点未満の温度からの水冷または空冷では、加工歪みの消失が起こり、強度および靱性の低下の原因になる場合がある。なお、Ar点は、微小試験片の体積変化を測定する方法により求められる。
 熱間圧延の仕上げ温度は好ましくは700℃以上であり、冷却開始温度は好ましくは680~750℃であり、冷却停止温度までの冷却速度は好ましくは1~50℃/secである。さらに、冷却停止温度が600℃を超えると、焼戻し処理における析出強化作用が不充分になる場合がある。
 (D4)時効処理
 熱間圧延後、水冷された鋼は、その後、必要により加熱を行って、540℃以上Ac点以下の温度で時効処理を行い、次いで冷却する。
 ここで、時効温度まで加熱を行う場合、時効温度-100℃までの平均加熱速度、および、500℃までの平均冷却速度を制御する。時効処理は、Cuの析出物を充分に析出硬化させるための処理であり、Cu粒子の分散を均一化するために、加熱速度および冷却速度を制御する。
 したがって、加熱速度は時効温度-100℃までの平均加熱速度が好ましくは5~50℃/minであり、保持時間は好ましくは1hour以上であり、冷却速度は500℃までの平均冷却速度が好ましくは5~60℃/min以上である。
 なお、本明細書における加熱温度は、炉内雰囲気温度であり、加熱後保持時間は炉内雰囲気温度での保持温度であり、圧延終了温度、ならびに、水冷開始および停止温度は鋼材の表層温度とする。また、再加熱時の加熱および冷却平均速度は、鋼材の厚さをtとするときの1/2t部での温度計算より算出する。
 (E)海洋構造物
 本発明に係る高張力鋼から大型の海洋構造物を構成するには、板材、管材または形材等の鋼材を溶接により組み立てるが、一般には鋼板として使用される。
 本明細書において「溶接性に優れる」とは、通常は、溶接入熱量300kJ/cm以上のアーク溶接が可能であることを意味するが、溶接法はサブマージアーク溶接や被覆アーク溶接等であってもよい。
 海洋構造物としては、海底に敷設されるプラットフォーム、または、ジャッキアップリグだけでなく、セミサブリグ(半潜水式石油掘削リグ)等も包含される。本発明は、溶接性と低温靱性を要求される海洋構造物に適用可能であり、特に制限はない。なお、海洋構造物が大型であるとは、海洋構造物に使用される鋼材の厚さが50mm以上であることを意味する。
 実施例を参照しながら本発明をより具体的に説明する。
 <母材の製造>
 表1に示す試験No.1~40の化学組成を有する300mm厚の鋼片を連続鋳造法により製造した。各鋼片の製鋼条件を表2に示す。連続鋳造過程においては、板厚中心位置の介在物を制御するために、溶鋼の温度を過度に高くせず、溶鋼の化学組成から決まる凝固温度に対する差が50℃以内になるように、管理した。さらに、凝固直前の電磁攪拌および凝固時の圧下を行った。
 連続鋳造法により得られた各鋼片を表2に示す条件で加工し、各鋼材を得た。
 300mm厚のスラブは、各加熱温度、各加熱時間で加熱し、熱間圧延を行った後、水冷開始温度から水冷停止温度まで平均冷却速度5℃/secで冷却し、板厚77mmの鋼板とした。表2に、これらの条件を「初期加熱および圧延条件」として示す。
 その後、各時効温度まで再加熱し、各保持時間で保持した。ここで、加熱速度は、時効温度-100℃までの平均加熱速度が10℃/minとなるように制御し、冷却速度は、500℃までの平均冷却速度が10℃/min分となるよう制御した。表2に、これらの条件を「時効処理条件」として示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <Cu粒子の円相当径の算出>
 Cu粒子の円相当径は、各鋼材の板厚1/4t部において、倍率100,000倍で透過型電子顕微鏡(TEM)観察を行い、長径が1nm以上の各析出物の投影面積を測定することにより、求めた。
 TEM観察における1視野は900nm×700nmの長方形とし、合計10視野においてTEM観察を行った。各視野におけるCu粒子の円相当径の平均値を算出し、さらに、この平均値を用いて、全10視野におけるCu粒子の円相当径の平均値を求めた。結果を表3に示す。
 <平面率換算分布量の算出>
 Cu粒子の平面率換算分布量は、各鋼材を薄膜状に加工し、約0.2μmの厚みを有する部分について倍率100,000倍でTEM観察を行い、薄膜状試験片中に立体的に分布したCu粒子を平面投影した場合の面積率を算出することにより、求めた。
 TEM観察における1視野は900nm×700nmの長方形とし、合計10視野においてTEM観察を行った。各視野におけるCu粒子の平面率換算分布量の平均値を算出し、さらに、平均値を用いて全10視野におけるCu粒子の平面率換算分布量の平均値を求めた。結果を表3に示す。
 <複合介在物の断面におけるMnS面積率,複合介在物の周長に占めるMnSの割合の算出>
 複合介在物分析用の試験片は、供試材の板厚1/4t部より採取したものを用いた。複合介在物は、電子プローブマイクロアナライザー(EPMA)を用い、複合介在物を面分析したマッピング画像から、MnS面積率および複合介在物の周長に占めるMnSの割合を測定した。
 具体的には、MnS面積率は、複合介在物全体の断面積と複合介在物全体に占めるMnS部分の断面積とを画像から測定することにより、算出した。測定のばらつきを少なくするため、MnS面積率および複合介在物の周長に占めるMnSの割合は、各供試材につき20個ずつEPMAによる分析を行い、平均値を算出することにより求めた。結果を表3に示す。
 <複合介在物の個数密度の算出>
 複合介在物の個数密度は、SEM-EDXを組み合わせた自動介在物分析装置により行い、検出された複合介在物の形状測定データから、粒径が0.5~5.0μmの範囲である複合介在物の個数を算出することにより、算出した。結果を表3に示す。
 <引張試験>
 各鋼材の圧延方向に垂直な方向の板厚中央部から、ASTM規格に準拠し、平行部12.5mm直径の引張試験片を採取し、引張試験を行い、母材の降伏強度(YS)および引張強度(TS)を測定した。結果を表3に示す。
 降伏強度(YS)は、420~630MPaを合格と判定した。また、引張強度(TS)は、500~700MPaを合格と判定した。
 <CTOD試験>
 母材のCTOD試験は、BS7448規格に準拠し、各鋼材の圧延方向に垂直な方向から全厚の3点曲げ試験片を採取し、-40℃で行った。結果を表3に示す。CTOD値は、0.40mm以上を合格と判定した。
 小入熱溶接における溶接継手のCTOD試験では、BS7448規格に準拠し、各鋼材をK開先加工した鋼板突き合わせ部に、10.0kJ/cmのFCAW溶接(Flux Cored Arc Welding)を行うことにより溶接継手を得た。続いて、この溶接継手に、CTOD試験片の疲労ノッチがV型開先のストレート部側の溶接線となるように加工を行うことにより試験片を得て、-40℃でCTOD試験を行った。結果を表3に示す。なお、CTOD値は0.40mm以上を合格と判定した。
 大入熱溶接における溶接継手のCTOD試験では、各鋼材の端部を20°V型開先に加工して突き合わせ、入熱量が350kJ/cmのエレクトロガスアーク溶接(EGW)を行うことにより、溶接継手を製造した。続いて、この溶接継手を用いて、ASTM E1290に準じて、-10℃でCTOD試験を行った。結果を表3に示す。なお、CTOD値は、0.30mm以上を合格と判定した。また、CTOD試験片は、疲労ノッチが溶接線となるよう加工した。
Figure JPOXMLDOC01-appb-T000003
 表3における試験No.1~29は、本発明の条件を全て満足する本発明例であり、試験No.30~40は、本発明の条件を満足しない比較例である。
 試験No.1~29は、本発明の条件を全て満足するため、母材の強度および靱性、ならびに溶接継手の靱性が全て良好であった。
 試験No.30は、本発明が規定する化学組成を満足するが、Cu粒子の分散状態が本発明で規定する範囲を満足しないため、母材の強度が低い値となった。したがって、大入熱溶接特性および母材強度を両立するには、本発明で規定するCu粒子の分散状態を満足する必要がある。
 試験No.31,32は、本発明が規定する化学組成を満足するが、複合介在物が本発明で規定する範囲を満足しないため、継手CTOD特性が劣った。
 さらに、試験No.33~40は、本発明で規定する化学組成を満足しないため、母材の強度、母材のCTOD特性、継手のCTOD特性(-40℃および-10℃)のいずれかを満足できなかった。
 本発明によれば、入熱量300KJ/cm以上の大入熱溶接条件において、溶接部の低温靱性、特に、HAZ靱性を安定して得られる高張力綱を提供できる。したがって、本発明に係る高張力鋼は、より厳しいCTOD特性が求められる海洋構造物等に好適に用いることができる。

Claims (4)

  1.  化学組成が、質量%で、
     C:0.01~0.10%、
     Si:0.01~0.50%、
     Mn:0.80~2.50%、
     P:0.020%以下、
     S:0.001~0.010%、
     Cu:0.80~1.50%、
     Ni:0.20~1.50%、
     Al:0.003%以下、
     Ti:0.005~0.030%、
     N:0.003~0.008%、
     O:0.0005~0.0050%、
     Nb:0~0.030%、
     Mo:0~0.80%、
     Cr:0~0.80%、
     B:0~0.0020%、
     V:0~0.050%、
     Ca:0~0.005%、
     Mg:0~0.01%、
     REM:0~0.01%、ならびに、
     残部:Feおよび不純物であり、
     下記式(1)で示す溶接割れ感受性指数Pcmが0.25以下であり、
     鋼中に分散した長径が1nm以上のCu粒子における円相当径の平均値が4~25nmであり、かつ、平面率換算分布量が3~20%であり、
     鋼中に、Ti酸化物の周囲にMnSが存在する複合介在物を含み、
     前記複合介在物の断面における前記MnSの面積率が10%以上90%未満であり、
     前記複合介在物の周長に占める前記MnSの割合が10%以上であり、
     粒径0.5~5.0μmの前記複合介在物の個数密度が10~100個/mmである、高張力鋼。
     Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B・・・(1)
     ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を表す。
  2.  質量%で、
     Nb:0.003~0.030%、
     Mo:0.10~0.80%、
     Cr:0.03~0.80%、
     B:0.0002~0.0020%、および
     V:0.001~0.050%
    から選択される1種以上を含有する、請求項1に記載の高張力鋼。
  3.  質量%で、
     Ca:0.0005~0.005%、
     Mg:0.0001~0.01%、および、
     REM:0.0001~0.01%
    から選択される1種以上を含有する、請求項1または2に記載の高張力鋼。
  4.  請求項1~3のいずれかに記載の高張力鋼を用いた、海洋構造物。
PCT/JP2017/016089 2016-04-21 2017-04-21 高張力鋼および海洋構造物 WO2017183719A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780024445.5A CN109072382B (zh) 2016-04-21 2017-04-21 高张力钢和海洋构造物
KR1020187033429A KR20180132910A (ko) 2016-04-21 2017-04-21 고장력강 및 해양 구조물
EP17786056.6A EP3447161B1 (en) 2016-04-21 2017-04-21 High tensile steel and marine structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085151A JP6766425B2 (ja) 2016-04-21 2016-04-21 高張力鋼および海洋構造物
JP2016-085151 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183719A1 true WO2017183719A1 (ja) 2017-10-26

Family

ID=60116192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016089 WO2017183719A1 (ja) 2016-04-21 2017-04-21 高張力鋼および海洋構造物

Country Status (5)

Country Link
EP (1) EP3447161B1 (ja)
JP (1) JP6766425B2 (ja)
KR (1) KR20180132910A (ja)
CN (1) CN109072382B (ja)
WO (1) WO2017183719A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066042A (ja) * 2016-10-19 2018-04-26 新日鐵住金株式会社 熱加工制御型590MPa級H形鋼
JP2018083963A (ja) * 2016-11-22 2018-05-31 新日鐵住金株式会社 鋼矢板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085593A (zh) * 2017-12-19 2018-05-29 钢铁研究总院 适用于低温环境油气输送用弯管和管件用钢及制造方法
WO2021095184A1 (ja) * 2019-11-13 2021-05-20 日本製鉄株式会社 鋼材
KR102195473B1 (ko) * 2019-11-27 2020-12-29 고려용접봉 주식회사 개량 9Cr-1Mo강용 용접 와이어
CN112458355A (zh) * 2020-09-24 2021-03-09 南京钢铁股份有限公司 一种ew460特厚海工钢板及其制造方法
CN112501494A (zh) * 2020-09-24 2021-03-16 南京钢铁股份有限公司 一种ew420特厚海工钢板及其制造方法
WO2023008670A1 (ko) * 2021-07-30 2023-02-02 현대제철 주식회사 열간 프레스용 강판 및 이를 이용하여 제조된 알루미늄계 도금 블랭크
CN114150229B (zh) * 2021-12-08 2022-07-26 东北大学 一种焊接性能优良的海洋结构用钢及其生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207242A (ja) * 2000-01-27 2001-07-31 Nippon Steel Corp 円周方向溶接部の低温靱性に優れた厚肉耐サワー鋼管およびパイプライン
WO2005052205A1 (ja) * 2003-11-27 2005-06-09 Sumitomo Metal Industries, Ltd. 溶接部靭性に優れた高張力鋼および海洋構造物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579842B2 (ja) * 1991-03-08 1997-02-12 新日本製鐵株式会社 圧延ままで靱性に優れ、かつ溶接部靱性に優れた粒内フェライト系形鋼の製造方法
JP3465494B2 (ja) * 1996-03-18 2003-11-10 Jfeスチール株式会社 材質ばらつきが少なくかつ溶接性に優れる高強度高靱性厚鋼材の製造方法
US20060065335A1 (en) * 2002-03-29 2006-03-30 Yasushi Mizutani High tensile steel excellent in high temperature strength and method for production thereof
JP4972451B2 (ja) * 2007-04-20 2012-07-11 株式会社神戸製鋼所 溶接熱影響部および母材の低温靭性に優れた低降伏比高張力鋼板並びにその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207242A (ja) * 2000-01-27 2001-07-31 Nippon Steel Corp 円周方向溶接部の低温靱性に優れた厚肉耐サワー鋼管およびパイプライン
WO2005052205A1 (ja) * 2003-11-27 2005-06-09 Sumitomo Metal Industries, Ltd. 溶接部靭性に優れた高張力鋼および海洋構造物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447161A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066042A (ja) * 2016-10-19 2018-04-26 新日鐵住金株式会社 熱加工制御型590MPa級H形鋼
JP2018083963A (ja) * 2016-11-22 2018-05-31 新日鐵住金株式会社 鋼矢板

Also Published As

Publication number Publication date
EP3447161A1 (en) 2019-02-27
JP6766425B2 (ja) 2020-10-14
KR20180132910A (ko) 2018-12-12
EP3447161B1 (en) 2022-02-23
EP3447161A4 (en) 2019-10-30
CN109072382B (zh) 2021-03-09
JP2017193760A (ja) 2017-10-26
CN109072382A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2017183719A1 (ja) 高張力鋼および海洋構造物
RU2427663C2 (ru) Высокопрочная толстостенная сварная стальная труба для трубопровода с превосходной низкотемпературной вязкостью и способ ее изготовления
JP5924058B2 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JP6165088B2 (ja) 耐水素誘起割れ性と溶接熱影響部の靭性に優れた鋼板およびラインパイプ用鋼管
JP5846311B2 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
WO2015088040A1 (ja) 鋼板およびその製造方法
WO2013089156A1 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP6108116B2 (ja) 脆性亀裂伝播停止特性に優れる船舶用、海洋構造物用および水圧鉄管用厚鋼板およびその製造方法
JP4432905B2 (ja) 溶接部靱性に優れた高張力鋼および海洋構造物
WO2018185851A1 (ja) 縦シーム溶接鋼管
WO2013099179A1 (ja) 脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP6024928B2 (ja) 脆性亀裂伝播停止特性に優れる船舶用、海洋構造物用および水圧鉄管用厚鋼板およびその製造方法
JP5900312B2 (ja) 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP2006063351A (ja) 耐水素誘起割れ性に優れた高強度鋼板および製造方法、並びにラインパイプ用鋼管
JP6665659B2 (ja) 厚鋼板およびその製造方法
JP4585483B2 (ja) 溶接部靭性と変形能に優れた高強度鋼管および高強度鋼板の製造方法
JP2011202214A (ja) 多層溶接部の低温靭性に優れた厚肉高張力鋼板およびその製造方法
JP6645373B2 (ja) 厚鋼板とその製造方法
JP2013095927A (ja) 靭性に優れた高張力鋼板およびその製造方法
WO2015075771A1 (ja) 鋼板
WO2017183720A1 (ja) 厚鋼板
JP4772486B2 (ja) 低温用高強度鋼管
JP2003306749A (ja) 変形能に優れた高強度鋼管及び鋼管用鋼板の製造法
JP2017082267A (ja) 厚鋼板
JP3745722B2 (ja) 変形能及び溶接部靭性に優れた高強度鋼管及び高強度鋼板の製造法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187033429

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017786056

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017786056

Country of ref document: EP

Effective date: 20181121