[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017175419A1 - 空気調和装置の室内機 - Google Patents

空気調和装置の室内機 Download PDF

Info

Publication number
WO2017175419A1
WO2017175419A1 PCT/JP2016/086615 JP2016086615W WO2017175419A1 WO 2017175419 A1 WO2017175419 A1 WO 2017175419A1 JP 2016086615 W JP2016086615 W JP 2016086615W WO 2017175419 A1 WO2017175419 A1 WO 2017175419A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
floor surface
range
floor
air
Prior art date
Application number
PCT/JP2016/086615
Other languages
English (en)
French (fr)
Inventor
聡規 中村
琢也 向山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/071,618 priority Critical patent/US10794610B2/en
Priority to CN201680083421.2A priority patent/CN108885021B/zh
Priority to EP16897971.4A priority patent/EP3441688B1/en
Priority to JP2018510225A priority patent/JP6628865B2/ja
Priority to RU2018131226A priority patent/RU2704922C1/ru
Publication of WO2017175419A1 publication Critical patent/WO2017175419A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1084Arrangement or mounting of control or safety devices for air heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/33Control of dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an indoor unit of an air conditioner, and more particularly to an indoor unit of an air conditioner that can determine the operating state of a floor heating device.
  • Patent Literature 1 Conventionally, a system in which an air conditioner and a floor heating device operate cooperatively has been proposed (for example, see Patent Document 1).
  • the technique described in Patent Literature 1 controls both the floor heating device and the indoor unit of the air conditioner based on the detection data of the infrared sensor.
  • control device controls various devices by acquiring not only air conditioning device data but also floor heating device data. That is, the conventional technology is premised on a configuration that communicates with a floor heating device, and there is a problem that versatility is impaired accordingly.
  • This invention was made in order to solve the above problems, and it aims at providing the indoor unit of the air conditioning apparatus which can implement
  • An indoor unit of an air conditioner includes a housing, an infrared sensor that is provided in the housing and detects infrared rays radiated into the air-conditioning target space, and a control device that outputs detection results of the infrared sensors;
  • the control device converts the entire thermal image data indicating the temperature distribution within the infrared detection range of the infrared sensor based on the detection result of the infrared sensor, and converts the floor of the air-conditioning target space based on the entire thermal image data.
  • a surface area is calculated, and based on the whole thermal image data, floor surface thermal image data including a plurality of element data associated with each coordinate in the floor surface range and each floor surface temperature in the floor surface range is acquired, Based on the floor surface thermal image data, the presence or absence of a floor heating device in the air-conditioning target space is determined. If it is determined that there is a floor heating device, it corresponds to the floor heating device installation range in the floor surface thermal image data Based on the data Te, it is to determine the operating state of the floor heating equipment.
  • the indoor unit of an air conditioner since it has the above configuration, comfortable air conditioning can be realized without communicating with a floor heating device.
  • FIG. 1 It is a schematic block diagram of the air conditioning apparatus provided with the indoor unit which concerns on Embodiment 1 of this invention. It is a perspective view of the indoor unit which concerns on Embodiment 1 of this invention. It is explanatory drawing of the infrared sensor of the indoor unit which concerns on Embodiment 1 of this invention. It is the figure which showed the vertical light distribution viewing angle of the infrared sensor of the indoor unit which concerns on Embodiment 1 of this invention. It is whole thermal image data including the floor surface and wall of the air conditioning target space (indoor). It is explanatory drawing of a reference line, a division line, and a division line.
  • control flowchart 1 It is a modification of the control flowchart 1 shown in FIG. It is control flowchart 2 of the indoor unit which concerns on Embodiment 1 of this invention. It is a modification of the control flowchart 1 shown in FIG. It is a control flowchart of the indoor unit which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus 10 including an indoor unit 11 according to Embodiment 1.
  • FIG. 2 is a perspective view of the indoor unit 11 according to Embodiment 1.
  • FIG. The structure of the air conditioning apparatus 10 is demonstrated with reference to FIG.1 and FIG.2.
  • the air conditioning target space refers to, for example, a room where the indoor unit 11 is installed.
  • the air conditioner 10 includes an indoor unit 11 and an outdoor unit 12.
  • the indoor unit 11 and the outdoor unit 12 are connected via a refrigerant pipe P.
  • the air conditioner 10 includes a compressor 1, a four-way valve 1 ⁇ / b> B, an outdoor heat exchanger 2, an expansion device 3, and an indoor heat exchanger 4.
  • the compressor 1, the four-way valve 1B, the outdoor heat exchanger 2, the expansion device 3, and the indoor heat exchanger 4 are connected by a refrigerant pipe P.
  • the indoor unit 11 includes an indoor heat exchanger 4 and a blower fan 5, and the outdoor unit 12 includes a compressor 1, a four-way valve 1 ⁇ / b> B, an outdoor heat exchanger 2, and an expansion device 3.
  • the expansion device 3 may be disposed outside the outdoor unit 12 and the indoor unit 11 or may be disposed in the indoor unit 11.
  • the air conditioner 10 includes a blower fan 5 attached to the indoor heat exchanger 4.
  • the air conditioner 10 also adjusts the direction of the air supplied from the indoor unit 11 to the air-conditioning target space in the left-right direction, the infrared sensor 9 provided in the indoor unit 11, the thermistor 8 provided in the indoor unit 11.
  • a vertical wind direction plate 6 that adjusts the direction of the air supplied from the indoor unit 11 to the air-conditioning target space in the vertical direction.
  • the air conditioning apparatus 10 is equipped with a control device Cn.
  • the control device Cn includes a control device Cn1 provided in the indoor unit 11 and a control device Cn2 provided in the outdoor unit 12.
  • the compressor 1 compresses and discharges the refrigerant.
  • the compressor 1 has a discharge side and a suction side connected to the four-way valve 1B.
  • the four-way valve 1B is a refrigerant flow switching device.
  • the four-way valve 1B connects the discharge side of the compressor 1 and the outdoor heat exchanger 2, and connects the suction side of the compressor 1 and the indoor heat exchanger 4;
  • the second position where the discharge side and the indoor heat exchanger 4 are connected and the suction side of the compressor 1 and the outdoor heat exchanger 2 are connected can be switched.
  • the outdoor heat exchanger 2 has one end connected to the four-way valve 1B and the other end connected to the expansion device 3.
  • the outdoor heat exchanger 2 can be composed of, for example, a fin tube heat exchanger.
  • the outdoor heat exchanger 2 functions as an evaporator, and when the air conditioner 10 performs the cooling operation, the outdoor heat exchanger 2 functions as a condenser (a radiator). ).
  • the expansion device 3 has one end connected to the outdoor heat exchanger 2 and the other end connected to the indoor heat exchanger 4.
  • the throttling device 3 can be constituted by, for example, a pressure reducing valve capable of adjusting the throttling amount, or can be constituted by a capillary tube.
  • the indoor heat exchanger 4 has one end connected to the expansion device 3 and the other end connected to the four-way valve 1B.
  • the indoor heat exchanger 4 can be composed of, for example, a fin tube heat exchanger.
  • the indoor heat exchanger 4 functions as a condenser, and when the air conditioner 10 performs the cooling operation, the indoor heat exchanger 4 functions as an evaporator. .
  • the blower fan 5 is mounted on the indoor unit 11.
  • the indoor unit 11 includes a housing 11A that forms an outer shell, and the blower fan 5 is mounted in the housing 11A.
  • the air inlet and the air outlet of the housing 11A are formed.
  • the outdoor heat exchanger 2 may be provided with a blower fan.
  • the infrared sensor 9 is provided in the housing 11A and detects infrared rays radiated into the air-conditioning target space.
  • the infrared sensor 9 is provided on the lower side of the housing 11A. Specifically, the infrared sensor 9 is provided so as to protrude from the lower surface of the housing 11A, and is disposed on one end side in the longitudinal direction of the housing 11A.
  • the infrared sensor 9 is rotated by a stepping motor (not shown) so as to scan infrared rays in the air-conditioning target space.
  • the detection result (infrared radiation temperature data) of the infrared sensor 9 is output to the control device Cn.
  • the thermistor 8 is provided in the housing 11A and detects the temperature of the air-conditioning target space.
  • the detection result (room temperature data) of the thermistor 8 is output to the control device Cn.
  • the left and right wind direction plates 7 are arranged at the outlet of the housing 11A.
  • the left and right wind direction plate 7 is configured by, for example, a plate-like member.
  • the left and right wind direction plates 7 are fixed to a shaft (not shown) and rotate left and right as the shaft moves. Thereby, the air conditioning apparatus 10 can adjust the direction of the air which blows off from the blower outlet of the housing
  • the up / down wind direction plate 6 is disposed at the outlet of the housing 11 ⁇ / b> A and is attached to the left / right wind direction plate 7.
  • the up / down wind direction plate 6 and the left / right wind direction plate 7 are formed of, for example, a plate member.
  • the left and right wind direction plates 7 are fixed to a shaft (not shown) and rotate left and right as the shaft moves. Thereby, the air conditioning apparatus 10 can adjust the direction of the air which blows off from the blower outlet of the housing
  • the control device Cn has at least the following three functions.
  • the control device Cn determines a first function for calculating a floor surface range of the air-conditioning target space, a second function for determining whether there is a floor heating device installed in the air-conditioning target space, and an operation state of the floor heating device.
  • the third function is a function for determining whether or not the floor heating device installed under the floor surface of the air-conditioning target space is operating based on the detection result of the infrared sensor 9. It corresponds. That is, in Embodiment 1, the operation state corresponds to whether or not the floor heating apparatus is operating.
  • the first function of the control device Cn is realized as follows, for example.
  • the control device Cn converts the entire thermal image data indicating the temperature distribution within the infrared detection range of the infrared sensor 9 based on the detection result of the infrared sensor 9, and the air conditioning target space based on the converted entire thermal image data. To calculate the floor area.
  • the control device Cn acquires floor surface thermal image data including a plurality of element data associated with each coordinate in the floor surface range and each floor surface temperature in the floor surface range based on the entire thermal image data. .
  • the second function of the control device Cn is realized as follows, for example.
  • the control device Cn determines the presence / absence of a floor heating device in the air conditioning target space based on the floor surface thermal image data.
  • the floor surface thermal image data includes first temperature range element data composed of element data included in a temperature range in which the floor surface temperature is determined in advance, and a temperature range in which the floor surface temperature is determined in advance. It is comprised from the 2nd temperature range element data comprised from the element data which are outside.
  • the range of the coordinates of the element data constituting the first temperature range element data is a predetermined ratio p1 with respect to an arbitrary floor surface range. This is the case.
  • the ratio p1 corresponds to the first ratio in the present invention.
  • the entire floor surface range can be adopted as the arbitrary floor surface range.
  • the control device Cn sets a flag corresponding to the floor heating device.
  • the control device Cn determines that the floor heating device is within the coordinate range of the element data constituting the first temperature range element data.
  • the third function of the control device Cn is realized as follows, for example.
  • the control device Cn determines the operation state of the floor heating device based on data corresponding to the installation range of the floor heating device in the floor surface thermal image data.
  • the third function can be realized, for example, in the same manner as the second function. That is, when it is determined that the floor heating device is operating (third function), the coordinate range of the element data constituting the first temperature range element data is previously set to an arbitrary floor surface range. This corresponds to the case where the ratio is equal to or greater than the predetermined ratio p2. Note that the ratio p1 and the ratio p2 may be the same or different.
  • the control device Cn includes a control device Cn1 provided in the indoor unit 11 and a control device Cn2 provided in the outdoor unit 12.
  • the control device Cn1 and the control device Cn2 communicate, and the control device Cn1 and the control device Cn2 cooperate to control various actuators such as the compressor 1.
  • the control device Cn1 includes an actuator control unit 15, a storage unit 18, a calculation unit 20, and a timer unit 21.
  • the control device Cn2 includes a compressor rotation speed control unit 32 and an indoor temperature adjustment unit 31.
  • the calculation unit 20 and the room temperature adjustment unit 31 are also collectively referred to as a determination unit d.
  • the actuator controller 15 controls the motors of the up / down wind direction plate 6, the left / right wind direction plate 7, and the blower fan 5 based on the determination result of the determination unit d and the like.
  • the storage unit 18 stores data including temperature data that is the detection result of the thermistor 8 and overall thermal image data that is the detection result of the infrared sensor 9.
  • the whole thermal image data is acquired by the infrared sensor 9 scanning the air conditioning target space.
  • the entire image data includes floor surface thermal image data and wall surface image data. Note that if the wall surface does not enter the scanning range of the infrared sensor 9 and all the objects that enter the scanning range are floor surfaces, the wall image data is not included in the entire image data.
  • the entire thermal image data is composed of a plurality of element data.
  • the floor surface thermal image data is composed of a plurality of element data
  • the wall surface image data is also composed of a plurality of element data.
  • the element data is data corresponding to LBS (Least Significant Bit), and is the minimum unit of thermal data acquired by the infrared sensor 9.
  • the element data includes coordinate data (x, y) and temperature data (T) corresponding to the coordinate data.
  • This element data corresponds to the coordinate data indicating the first coordinate x corresponding to the first direction and the second coordinate y corresponding to the second direction, and the first coordinate x and the second coordinate y.
  • the temperature is related to temperature data T indicating the temperature of the floor at the position. That is, the element data can be represented by (x, y, T).
  • the computing unit 20 has the above-described first function, second function, and third function.
  • the timer unit 21 has a function of measuring various times. For example, the timer 21 measures the time since the air conditioner 10 is started.
  • the room temperature adjustment unit 31 instructs the compressor rotation speed control unit 32 to control the compressor 1 based on the determination result of the calculation unit 20 and the detection result of the infrared sensor 9. For example, when the calculation unit 20 determines that the floor heating device is operating, the room temperature adjustment unit 31 rotates the compressor so as to increase, decrease, or maintain the rotation speed of the compressor 1. The number controller 32 is instructed.
  • the refrigerant discharged from the compressor 1 is supplied to the indoor heat exchanger 4 via the four-way valve 1B. That is, the indoor heat exchanger 4 functions as a condenser.
  • the refrigerant supplied to the indoor heat exchanger 4 exchanges heat with the air supplied by the blower fan 5 to be condensed and liquefied.
  • the refrigerant flowing out of the indoor heat exchanger 4 is decompressed by the expansion device 3 and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant that has flowed out of the expansion device 3 is supplied to the outdoor heat exchanger 2. That is, the outdoor heat exchanger 2 functions as an evaporator.
  • the refrigerant supplied to the outdoor heat exchanger 2 is evaporated and gasified.
  • the refrigerant that has flowed out of the outdoor heat exchanger 2 is returned to the discharge side of the compressor 1 through the four-way valve 1B.
  • the refrigerant flow is opposite to that during heating operation.
  • FIG. 3 is an explanatory diagram of the infrared sensor 9 of the indoor unit 11 according to this embodiment.
  • the infrared sensor 9 is attached to the housing 11 ⁇ / b> A at an angle downward with respect to the floor surface (for example, a depression angle of about 24.5 degrees).
  • the infrared sensor 9 has eight light receiving elements (not shown) arranged inside a metallic cylindrical member 9A.
  • the eight light receiving elements are arranged in a line in the vertical direction.
  • a lens window (not shown) for passing infrared rays through the light receiving element is provided.
  • the light distribution viewing angle 9B of each light receiving element is such that the vertical light distribution viewing angle 9B1 is 7 degrees and the horizontal light distribution viewing angle 9B2 is 8 degrees.
  • the light distribution viewing angle 9B of each light receiving element showed the thing of 7 degrees of vertical directions and 8 degrees of horizontal directions, it is not limited to 7 degrees of vertical directions and 8 degrees of horizontal directions.
  • the number of light receiving elements changes according to the light distribution viewing angle 9B of each light receiving element.
  • the product of the vertical light distribution viewing angle 9B1 of each light receiving element and the number of light receiving elements may be made constant.
  • the infrared sensor 9 can rotate a predetermined angle range in the left-right direction by the action of a stepping motor (not shown) or the like. That is, the infrared sensor 9 can scan a floor surface and a wall surface in a predetermined range. Here, every time the rotation angle of the stepping motor is 1.6 degrees, the stepping motor stops rotating for a predetermined time (0.1 to 0.2 seconds), and the infrared sensor 9 receives the light from the light receiving element. The thermal image data of the surface and the wall surface is acquired.
  • the infrared sensor 9 can acquire the entire thermal image data by repeating the operation of rotating the stepping motor by 1.6 degrees and the operation of acquiring the thermal image data from the light receiving element.
  • the operation is as follows. For example, when the stepping motor (infrared sensor 9) starts rotating from the lower limit value of the rotation angle, the rotation angle increases, and when the rotation angle reaches the upper limit value, the rotation angle of the stepping motor (infrared sensor 9) again. Decreases from the upper limit to the lower limit.
  • the infrared sensor 9 combines the thermal image data acquired for each rotation angle of the stepping motor to acquire the entire thermal image data.
  • the infrared sensor 9 scans from the lower limit value to the upper limit value of the rotation angle of the stepping motor, the infrared sensor 9 acquires 94 thermal image data.
  • the control apparatus Cn produces the whole thermal image data based on 94 thermal image data.
  • FIG. 4 is a diagram showing a vertical light distribution viewing angle of the infrared sensor 9 of the indoor unit 11 according to Embodiment 1.
  • FIG. 4 shows a vertical light distribution viewing angle in a state where the indoor unit 11 is installed at a height of 1800 mm from the floor surface of the room.
  • the light distribution viewing angle 9B1 in the vertical direction of one light receiving element is 7 degrees.
  • FIG. 4 shows a total light distribution viewing angle 9B3 that is a vertical light distribution viewing angle of all the light receiving elements.
  • An angle range that does not fall within the total light distribution viewing angle 9B3 of the infrared sensor 9 is an angle range 9B4.
  • the angle range 9B4 is an angle between the wall on which the indoor unit 11 is attached and the lower limit angle of the total light distribution viewing angle 9B3.
  • FIG. 5A is the entire thermal image data including the floor surface A and the wall W1, the wall W2, and the wall W3 of the air conditioning target space (indoor).
  • FIG. 5B is an explanatory diagram of the reference line L0, the lane marking L2, and the lane marking L1.
  • FIG. 5C is an explanatory diagram of the boundary line Lm acquired based on the temperature unevenness between the lane marking L2 and the lane marking L1.
  • Floor A is indicated by the dotted trapezoidal portion of FIG. 5A.
  • the floor surface A is formed so as to spread in the first direction Dr1 (left-right direction) and the second direction Dr2 (depth direction).
  • the floor surface A, the first direction Dr1, and the second direction Dr2 are concepts in real space.
  • the first direction Dr1 and the second direction Dr2 are parallel to the horizontal direction.
  • FIG. 5D is overall thermal image data including a user who is present in the air-conditioning target space (indoor). Further, on the entire thermal image data D1, the floor surface A is indicated by a floor surface range B as shown in FIG. On the whole thermal image data, the first direction Dr1 in the real space corresponds to the direction of the first coordinate x, and the second direction Dr2 in the real space corresponds to the direction of the second coordinate y. . Further, in the entire thermal image data, when the user is present in the air-conditioning target space, the temperature in the range where the user exists increases as shown in FIG. 5D. In FIG. 5D, the data of the fixed range of the first coordinate and the fixed range of the second coordinate indicate that the temperature is rising. In FIG. 5D, the data of the fixed range of the first coordinates and the fixed range of the second coordinates are shown as thermal image data D3.
  • the control device Cn can calculate a range corresponding to the floor surface A using the acquired whole thermal image data D1 (first function). That is, the control device Cn can calculate the floor range B based on the entire thermal image data D1.
  • a known means for example, JP 2010-91253 A
  • JP 2010-91253 A can be employed.
  • the control device Cnt exhibits when the first function is predetermined. Specifically, the control device Cnt may be exhibited in advance before starting the compressor 1, or may be exhibited when operation start data is received from an operation unit (remote control) that transmits operation details. .
  • the control device Cn can acquire the floor surface range B of the air-conditioning target space based on the temperature unevenness at the boundary portion between the floor surface A of the air-conditioning target space and the wall surface of the air-conditioning target space.
  • the control device Cn has data of a reference line L0 used to partition the floor surface A, the surface of the wall W1, the surface of the wall W2, and the surface of the wall W3.
  • the data of the reference line L0 is acquired based on, for example, data on the capacity band of the air conditioner and installation position data of the indoor unit 11 set from a remote controller or the like. As shown in FIG.
  • the reference line L0 deviates from the boundary between the floor surface A and the surface of the wall W1, the surface of the wall W2, and the surface of the wall W3.
  • the control device Cn can acquire a partition line L1 that is separated from the reference line L0 by a predetermined number of pixels and a partition line L2 that is separated from the reference line L0 by a predetermined number of pixels.
  • the predetermined number of pixels is two pixels.
  • the y coordinate is smaller in the order of the lane marking L1, the reference line L0, and the lane marking L2. That is, the reference line L0 is sandwiched between the lane marking L1 and the lane marking L2.
  • the control device Cn partitions the floor surface A, the surface of the wall W1, the surface of the wall W2, and the surface of the wall W3 based on the data between the partition lines L1 and L2 in the entire thermal image data D1.
  • the data of the boundary line Lm to be acquired is acquired.
  • the control device Cn calculates that the coordinates of the pixel are the coordinates of the boundary line Lm.
  • an absolute value of the entire thermal image data D1 may be adopted, or a differential value in the y direction may be adopted.
  • control device Cn can obtain the surface range of the wall W1 and the surface range of the wall W2.
  • the control device Cn can acquire the floor surface range B corresponding to the floor surface A based on the data of the boundary line Lm.
  • the control device Cn calculates, as the floor surface range B, a range in which the y coordinate is larger than the boundary line Lm in the entire coordinate range of the entire thermal image data D1. That is, in FIG. 5C, a range located below the boundary line Lm among the entire thermal image data D1 is the floor thermal image data D2.
  • FIG. 6 is the entire thermal image data when the floor heating apparatus is operating.
  • FIG. 6 shows a state in which the floor heating device is operating in an operation mode that warms the entire floor surface as an example. The second function will be described with reference to FIG.
  • the second function is a function for determining the presence or absence of a floor heating device in the air-conditioning target space based on the floor surface thermal image data.
  • the control device Cn determines whether or not the number of element data whose floor surface temperature is included in a predetermined temperature range is equal to or higher than a predetermined ratio p1 with respect to the number of element data in an arbitrary floor surface range. Determine. If it is more than predetermined ratio p1, control device Cn will determine with floor heating equipment. For example, the control device Cn sets an arbitrary floor surface range as the entire floor surface range B. In FIG. 6, the shaded portion indicates that the floor surface temperature is included in a predetermined temperature range. In FIG. 6, the element data of 70% or more of the element data of the floor surface range B includes the temperature specified by the temperature data in the predetermined temperature range. For example, if the ratio p1 is 60%, the control device Cn determines that there is a floor heating device.
  • FIG. 7 shows the entire thermal image data D1 when the floor heating device is operating in the operation mode in which the entire floor surface A is heated.
  • FIG. 8 shows the entire thermal image data D1 when furniture is arranged on the floor surface A of the air-conditioning target space (indoor) and the floor heating equipment is in operation.
  • FIG. 7 shows that the floor heating device is operating and the entire floor surface A (the entire floor surface range B) is warmed. However, even if the entire floor surface A is warm, if furniture such as a sofa and a table is arranged in the air-conditioning target space, a part of infrared rays emitted from the floor surface A is blocked by the furniture. As a result, when the thermal image data D4 in the fixed range of the first coordinate and the fixed range of the second coordinate is compared with the data in the peripheral range, it indicates that the temperature is lowered. In FIG. 8, data of the fixed range of the first coordinates and the fixed range of the second coordinates are shown as thermal image data D4.
  • the thermal image data indicating a high temperature is divided due to the presence of the thermal image data D4.
  • the thermal image data is divided, the determination accuracy of the operation of the floor heating device is lowered. That is, although the floor heating apparatus is actually operating, the range showing the high temperature is divided and shortened, so that it may be determined that the floor heating apparatus is not operating. In the indoor unit 11 according to Embodiment 1, such erroneous determination can be avoided.
  • the control device Cn has a function of acquiring the entire thermal image data D1 indicating the temperature distribution within the infrared detection range of the infrared sensor 9 based on the detection result of the infrared sensor 9.
  • the control device Cn generates the floor surface thermal image data D2 indicating the temperature distribution in the first direction Dr1 of the floor surface A and the second direction Dr2 that intersects the first direction Dr1 in the entire thermal image data D1. Based on this, it is determined whether or not the heating device is operating. Specifically, the control device Cn determines that the floor of the predetermined number of element data when the ratio of the element data having a temperature higher than the first temperature threshold is equal to or higher than the predetermined ratio p2. It is determined that the heating device is operating.
  • the determination unit d of the control device Cn is not the temperature distribution in the first direction Dr1 (first coordinate x direction) or the second direction Dr2 (second coordinate y direction), but the first direction
  • the operation of the floor heating appliance is determined using the temperature distributions in both Dr1 (first coordinate x direction) and second direction Dr2 (second coordinate y direction). Therefore, the determination accuracy of the operation of the floor heating apparatus can be improved.
  • the effect of improving the determination accuracy is particularly great when furniture is arranged in the air-conditioned space as shown in FIG.
  • the control device Cn determines that the floor heating equipment is operating as follows.
  • a first temperature threshold for example, 25 degrees
  • the control device Cn operates the heating appliance. It is determined that In FIG. 7, the total number of element data is 270.
  • the control device Cn determines that the floor heating equipment is operating as follows.
  • the total number of element data is 270, which is the same as in FIG.
  • the number of pieces of element data that are equal to or higher than the first temperature threshold is reduced to 163 due to the presence of furniture.
  • 163/270 about 60.3%, which exceeds the first value. Therefore, the determination unit d of the control device Cn can determine that the floor heating equipment is operating. That is, the control device Cn can determine that the floor heating apparatus is operating even if the thermal image data indicating the high temperature is divided due to the presence of the thermal image data D4.
  • FIG. 9 shows the entire thermal image data D1 when the floor heating device is operating in the operation mode in which half of the entire floor surface A is heated.
  • Some floor heating devices have not only a mode in which the entire floor surface A is heated, but also a mode in which a floor surface range half of the floor surface A and a 3/4 range of the floor surface A are heated. Even in such a case, the control device Cn can determine whether or not the floor heating apparatus is operating with high accuracy.
  • the control device Cn has a first temperature threshold value (for example, 25 degrees) among element data belonging to a second range in which the first coordinate x is continuous and the second coordinate y is continuous.
  • the determination unit d of the indoor unit 11 can determine that the floor heating device is operating even in a mode in which the floor surface range half of the floor surface A is heated.
  • the first value and the second value are described as being equal, but they may be different.
  • the control device Cn determines that the floor heating equipment is operating as follows.
  • the number of element data belonging to the first range r1 where the first coordinate x is continuous and the second range r2 where the second coordinate y is continuous is 135.
  • a first range r1 and a second range r2 are set assuming a mode in which half of the floor surface A is heated.
  • the control device Cn includes a plurality of variations of the first range r1 and the second range r2, assuming other floor heating appliance modes.
  • the control device Cn uses the first temperature threshold, but the present invention is not limited to this.
  • the control device Cn may be set with a second temperature threshold (for example, 35 degrees) that is larger than the first temperature threshold. That is, the determination unit d of the control device Cn has an element whose temperature is higher than the first temperature threshold value and lower than the second value whose temperature is higher than the first temperature threshold value in the entire element data.
  • the ratio p2 for example, 60%
  • the determination accuracy of the operation of the floor heating device can be further improved.
  • the method for determining the first temperature threshold and the second temperature threshold has been described as roughly 25 degrees and 35 degrees, but is not limited thereto, and is determined based on the detected temperature of the thermistor 8. Also good. That is, the control device Cn may set the first temperature threshold value to be larger than the detected temperature of the thermistor 8 and set the second temperature threshold value to be larger than the first temperature threshold value.
  • the control device Cn determines the operating state of the floor heating equipment.
  • the control when the control device Cn determines that the floor heating device is operating and the control when it is determined that the floor heating device is not operating will be described. If it is determined that the floor heating equipment is not operating, control based on the difference between the set temperature and the room temperature (No in step S1 in FIG. 10) or control based on the difference between the room temperature and the floor temperature. (No in step S11 of FIG. 12) is executed. For example, if the floor surface temperature is significantly lower than the room temperature, the control device Cn increases the rotational speed of the compressor 1. For example, if the floor surface temperature is significantly lower than the indoor set temperature, the control device Cn increases the rotational speed of the compressor 1.
  • control is performed in which the sensory temperature is added to the difference between the set temperature and the room temperature (Yes in step S1 in FIG. 10), or the room temperature and the floor Control based on the difference from the surface temperature is executed (Yes in step S11 in FIG. 12). Thereby, giving a feeling of cold wind to a user is controlled.
  • FIG. 10 is a control flowchart 1 of the indoor unit 11 according to the first embodiment.
  • the control device Cn determines that the floor heating apparatus is operating during the heating operation, the control device Cn subtracts the temperature correction value (correction value Co1 described later) from the set temperature and the temperature detected by the temperature sensor (thermistor 8).
  • the rotational speed of the compressor 1 is controlled based on the sensed temperature. Further, the control device Cn increases the rotational speed of the compressor 1 when the difference between the set temperature and the sensible temperature is equal to or greater than a predetermined value.
  • Step S0 The control device Cn performs the heating operation.
  • the floor range B has already been acquired and it is determined that there is a floor heating device.
  • Step S1 The control device Cn determines whether or not the floor heating equipment is operating. (1) If it is determined that the floor heating device is not operating, the process proceeds to step S4. (2) If it is determined that the floor heating device is operating, the process proceeds to step S2. In the case of shifting to step S2, control is performed to maintain (step S4) or increase (step S3) the rotational speed of the compressor 1. This is because the floor heating device is in operation, and if the room temperature is corrected by the detection result of the infrared sensor 9, there is a possibility of giving the user a feeling of cold air.
  • the infrared sensor 9 corrects the room temperature based on the temperature of the floor heated by the floor heating. Become. That is, it is determined that the perceived temperature is high and control for reducing the rotational speed of the compressor 1 may be executed.
  • control for reducing the rotational speed of the compressor 1 is executed even though the room temperature is not so high in practice, there is a possibility that the user will be given a cold wind feeling. In order to avoid such a situation, control for reducing the rotational speed of the compressor 1 is not performed, and control for maintaining or increasing the rotational speed of the compressor 1 is performed.
  • Step S2 The control device Cn determines whether or not a value obtained by subtracting the detected temperature of the thermistor 8 from the set temperature of the air-conditioning target space set by a remote controller or the like is equal to or greater than ⁇ 1. If it is ⁇ 1 or more, the process proceeds to step S5. If not ⁇ 1 or more, the process proceeds to step S6.
  • Step S3 The control device Cn increases the rotational speed of the compressor 1.
  • the increase amount may be a constant, or may be changed according to the difference between the set temperature and room temperature. That is, the larger the difference is, the larger the amount of increase in the rotational speed of the compressor 1 may be.
  • step S2 the control device Cn makes a determination based on the following equation.
  • Set temperature Tset Room temperature Ta ⁇ ⁇ 1 (Formula 1)
  • ⁇ 1 C1 (constant) + correction value Co1.
  • the correction value Co1 is a positive value and is not determined based on the floor surface temperature. Equation 1 can be rewritten as follows.
  • Set temperature Tset ⁇ room temperature Ta + correction value Co1
  • the room temperature Ta + correction value Co1 is a numerical value corresponding to the sensed temperature. The reason why the correction value Co1 is provided is to avoid erroneously detecting that the room is warm when the floor heating apparatus is in operation.
  • control device Cn erroneously detects that the room is warmed by the high temperature of the floor when the infrared sensor 9 scans the room. Then, in reality, the room is not warmed up so much and the rotational speed of the compressor 1 should not be lowered, but control may be shifted to lowering the rotational speed of the compressor 1.
  • step S1 to step S2 the control device Cn of the indoor unit 11 according to the first embodiment performs the calculation of (Equation 1) and satisfies this.
  • the rotational speed of the compressor 1 is increased (step S3), and the rotational speed of the compressor 1 is maintained even if not satisfied (step S4 in FIG. 10).
  • the increase amount of the rotation speed of the compressor 1 is preferably set to be larger as the difference between the set temperature and the sensory temperature is larger.
  • FIG. 11 is a modification of the control flowchart 1 shown in FIG.
  • step S4 is provided.
  • step S4 the controller Cn determines whether or not a predetermined time has elapsed since the compressor rotational speed was increased in step S3. The loop of step S4 is continued until a predetermined time has elapsed. If the predetermined time has elapsed, the process proceeds to step S5 and the control flow is terminated.
  • step S1, step S2, step S3, and step S5 shown in FIG. 11 are the same as step S1, step S2, step S3, and step S4 shown in FIG.
  • the control apparatus Cn may reduce the rotation speed of the compressor 1.
  • the control device Cn when shifting from step S4 to step S5, the control device Cn returns the rotational speed of the compressor 1 to the rotational speed before increasing in step S3.
  • FIG. 12 is a control flowchart 2 of the indoor unit 11 according to Embodiment 1.
  • Control device Cn maintains or increases the rotational speed of the compressor 1 when it is determined that the floor heating equipment is operating during the heating operation.
  • Step S10 The control device Cn performs the heating operation.
  • the floor surface range B has already been acquired and it is determined that there is a floor heating device.
  • Step S11 The control device Cn determines whether or not the floor heating equipment is operating.
  • Step S12 The controller Cn determines whether or not a value (predetermined temperature difference) obtained by subtracting the floor surface temperature Tfav obtained from the detection result of the infrared sensor 9 from the detection temperature of the thermistor 8 is equal to or greater than ⁇ 1. To do. If ⁇ 1 or more, the process proceeds to step S13. If not ⁇ 1 or more, the process proceeds to step S14.
  • a value predetermined temperature difference
  • Step S13 The control device Cn increases the rotational speed of the compressor 1.
  • the increase amount may be a constant, or may be changed according to the difference between the detected temperature of the thermistor 8 and the floor temperature Tfav obtained from the detection result of the infrared sensor 9. That is, the larger the difference is, the larger the amount of increase in the rotational speed of the compressor 1 may be.
  • ⁇ 1 is a value predetermined for the control device Cn. Note that ⁇ 1 may be a variable or a constant.
  • the condition of step S2 in FIG. 10 may include a condition that the specified time has elapsed after the air conditioner 10 is activated. That is, if the condition of step S2 or the condition that the specified time has elapsed since the start of the air conditioner 10 is satisfied, the process proceeds to step S3, and if both conditions are not satisfied, the step is performed. The process proceeds to S4. Further, even in the condition of step S12 in FIG. 12, there may be a condition that the specified time has elapsed after the air conditioner 10 is activated. That is, if the condition of step S12 or the condition that the specified time has elapsed since the start of the air conditioner 10 is satisfied, the process proceeds to step S13, and if both conditions are not satisfied, the step is performed.
  • step S2 and step S12 are relaxed to facilitate the control to increase the rotational speed of the compressor 1. Thereby, it can avoid more reliably that a user's comfort reduces.
  • FIG. 13 is a first modification of the control flowchart 2 shown in FIG.
  • the control flowchart 2 shown in FIG. 12 can be changed to the flowchart shown in FIG. 13. That is, if the heating operation is performed for a long time, the warm air at the foot of the air-conditioning target space rises and the entire air-conditioning target space warms. Therefore, the control flowchart 2 shown in FIG. 12 is preferably executed temporarily.
  • the control flowchart 2 according to the modification shown in FIG. 13 includes step S14.
  • step S14 the controller Cn determines whether or not a predetermined time has elapsed since the compressor rotation speed was increased in step S13.
  • step S14 The loop of step S14 is continued until a predetermined time has elapsed.
  • the process proceeds to step S15 and the control flow is terminated.
  • step S11, step S12, step S13, and step S15 shown in FIG. 13 are the same as step S11, step S12, step S13, and step S14 shown in FIG.
  • the control apparatus Cn may reduce the rotation speed of the compressor 1. FIG. For example, when shifting from step S14 to step S15, the control device Cn returns the rotational speed of the compressor 1 to the rotational speed before increasing in step S13.
  • the infrared sensor 9 is used to determine whether or not the floor heating apparatus is in operation, and the rotational speed of the compressor 1 is controlled to realize comfortable air conditioning. That is, in Embodiment 1, comfortable air conditioning can be realized without communicating with the floor heating device.
  • the indoor unit 11 of the air-conditioning apparatus 10 converts the entire thermal image data D1 indicating the temperature distribution within the infrared detection range of the infrared sensor 9 based on the detection result of the infrared sensor 9, Of the thermal image data D1, the heating device is operated based on the floor surface thermal image data D2 indicating the temperature distribution in the first direction Dr1 and the second direction Dr2 intersecting the first direction Dr1. It is determined whether or not. For this reason, it is possible to improve the determination accuracy of whether or not the floor heating apparatus is operating.
  • the rotational speed of the compressor 1 is reduced in a situation where the rotational speed of the compressor 1 should not be reduced even when the floor heating apparatus is operating. Can be avoided, and the user's comfort can be prevented from being reduced.
  • the indoor unit 11 of the air-conditioning apparatus 10 according to Embodiment 1 can improve the detection accuracy of the operation of the floor heating device, so that the air conditioning control according to the operation of the floor heating device becomes easier to execute and consumes. An increase in power can be suppressed.
  • the air conditioner 10 may be configured such that the indoor unit 11 is installed outside the air-conditioning target space, and the air outlet of the indoor unit 11 communicates with the air-conditioning target space via a duct.
  • the infrared sensor 9 may be separated from the casing 11A of the indoor unit 11 and the infrared sensor 9 may be installed in the air conditioning target space.
  • the control target is the compressor 1, but the control target may be the blower fan 5. That is, if the control device Cn determines that the floor heating equipment is operating during the heating operation, the control device Cn subtracts the temperature correction value (correction value Co1) to the set temperature and the temperature detected by the temperature sensor (thermistor 8). The rotational speed of the blower fan 5 is controlled based on the perceived temperature. Moreover, the control apparatus Cn increases the rotation speed of the ventilation fan 5, when the difference of preset temperature and body temperature is more than a predetermined value. In addition, the control apparatus Cn may reduce after that, when the rotation speed of the ventilation fan 5 is increased.
  • control device Cn increases the rotational speed of the blower fan 5 and then returns to the rotational speed before the rotational speed of the blower fan 5 is increased when a predetermined time has elapsed. Moreover, the control apparatus Cn maintains the rotation speed of the ventilation fan 5, when the difference of preset temperature and body temperature is less than a predetermined value. Even with these configurations, the same effects as those described with reference to FIGS. 10 and 11 can be obtained.
  • the control target is the compressor 1 in FIGS. 12 and 13
  • the control target may be the blower fan 5. That is, when it is determined that the floor heating device is operating during the heating operation, the control device Cn subtracts the floor surface temperature Tfav acquired from the detection result of the infrared sensor 9 from the detection temperature of the thermistor 8. The rotational speed of the blower fan 5 is controlled based on the obtained value (predetermined temperature difference). When the reduced value is equal to or greater than ⁇ 1, the control device Cn increases the rotational speed of the blower fan 5. In addition, the control apparatus Cn may reduce after that, when the rotation speed of the ventilation fan 5 is increased.
  • control device Cn increases the rotational speed of the blower fan 5 and then returns to the rotational speed before the rotational speed of the blower fan 5 is increased when a predetermined time has elapsed.
  • the control device Cn maintains the rotational speed of the blower fan 5.
  • the control target in FIGS. 10 to 13 is the compressor 1, the control target may be the vertical wind direction plate 6. That is, when it is determined that the floor heating device is operating, the control device Cn increases the angle formed between the virtual surface that is parallel to the up-and-down wind direction plate 6 and intersects the floor surface, and the floor surface. The angle of the vertical wind direction plate 6 is controlled. That is, the vertical wind direction plate 6 is directed to the floor surface. Thereby, the indoor unit 11 increases the amount of air supplied to the lower side rather than the upper side of the air-conditioning target space. With this configuration, it is possible to avoid that the control device Cn erroneously determines that the user does not feel cold due to the floor surface heated by the floor heating device.
  • Embodiment 2 FIG. In the second embodiment, description of parts common to the first embodiment is omitted, and different parts will be mainly described.
  • the third function differs between the second embodiment and the first embodiment.
  • the third function corresponds to the determination of whether or not the floor heating device is operating.
  • the floor surface is heated by the floor heating device. It corresponds to the determination of the size of.
  • the control device Cn determines whether the operating range of the floor heating appliance is such that the range of the coordinates of the element data constituting the first temperature range element data is greater than or equal to a predetermined ratio p3 with respect to the floor area B. Whether or not to determine.
  • the ratio p3 corresponds to the second ratio in the present invention.
  • FIG. 14 is a control flowchart of the indoor unit 11 according to the second embodiment.
  • Step S20 The control device Cn performs the heating operation (step S20).
  • Step S21 First function
  • the control device Cn acquires floor surface thermal image data D2 based on the entire thermal image data D1. That is, the control device Cn calculates the floor surface range B of the air conditioning target space.
  • Step S22 The control device Cn determines whether or not a flag indicating that there is a floor heating device is set. If the flag is set, the process proceeds to step S25. If the flag is not set, the process proceeds to step S23.
  • Step S23 Second function
  • the control device Cn determines whether or not the coordinate range of the data included in the predetermined temperature range in the floor surface thermal image data D2 is greater than or equal to the ratio p1 (for example, 30%) with respect to the floor surface range B. Determine.
  • the data included in the predetermined temperature range in the floor surface thermal image data D2 corresponds to the first temperature range element data.
  • the predetermined temperature range is 25 ° C. to 35 ° C. as an example. If the ratio is greater than or equal to p1, the process proceeds to step S24. If the ratio is not greater than or equal to p1, the process returns to step S21.
  • Step S24 The control device Cn sets a flag indicating that there is a floor heating device.
  • Step S25 The control device Cn determines whether or not the coordinate range of the data included in the predetermined temperature range in the floor surface thermal image data D2 is greater than or equal to the ratio p3 (for example, 20%) with respect to the floor surface range B. Determine.
  • the data included in the predetermined temperature range in the floor surface thermal image data D2 corresponds to the first temperature range element data.
  • the predetermined temperature range is 25 ° C. to 35 ° C. as an example. If the ratio is greater than or equal to p3, the process proceeds to step S27. If the ratio is not greater than or equal to p3, the process proceeds to step S26.
  • step S26 the range of the coordinates of the element data constituting the first temperature range element data is less than the ratio p3 with respect to the floor surface range B.
  • the control device Cnt maintains the rotational speed of the compressor 1.
  • step S27 the coordinate range of the element data constituting the first temperature range element data is greater than or equal to the ratio p3 with respect to the floor surface range B.
  • the control device Cnt reduces the rotational speed of the compressor 1.
  • the reduction amount can be set according to the range of the coordinate range of the element data constituting the first temperature range element data. For example, when the coordinate range of the element data constituting the first temperature range element data is 20% or more and less than 50% with respect to the floor surface range B, the reduction amount is x1, and 50% If it is above and less than 80%, the reduction amount is x2, and if it is 80% or more, the reduction amount is x3. Note that x3>x2> x1. That is, the wider the coordinate range of the element data constituting the first temperature range element data, the larger the reduction amount of the rotation speed of the compressor 1.
  • Step S28 The control device Cn determines whether or not the value (predetermined temperature difference) obtained by subtracting the floor surface temperature Tfav obtained from the detection result of the infrared sensor 9 from the detection temperature (room temperature Ta) of the thermistor 8 is V or less. Determine whether.
  • the floor surface temperature Tfav can be obtained, for example, by averaging temperature data included in a certain range of element data. If it is V or less, the process proceeds to step S29. If not V or less, the process proceeds to step S30.
  • Step S30 The control device Cnt ends the control flow shown in FIG.
  • the floor area heated by the floor heating device is acquired using the infrared sensor 9, and the rotation speed of the compressor 1 is controlled to realize comfortable air conditioning. . That is, in the second embodiment, comfortable air conditioning can be realized without communicating with the floor heating device.
  • Embodiment 2 the amount of reduction in the rotational speed of the compressor 1 is increased as the floor surface range heated by the floor heating device is wider. For this reason, while being able to suppress power consumption, a user's comfort can be improved.
  • the ratio p3 is smaller than the ratio p1. That is, since the ratio p1 is larger than the ratio p3, the criterion for determining whether or not there is a floor heating device is strict, and erroneous determination of the presence or absence of the floor heating device can be avoided. Further, since the ratio p3 is smaller than the ratio p1, in the second embodiment, the rotation speed of the compressor 1 is appropriately controlled even when the range of the floor surface heated by the floor heating device is narrowed. It is possible to achieve more detailed air conditioning.
  • the rotation speed of the compressor 1 is controlled based on the room temperature Ta and the floor surface temperature Tfav. Specifically, the control device Cnt reduces the rotational speed of the compressor 1 when the floor temperature Tfav approaches the room temperature Ta. For this reason, while being able to suppress power consumption, a user's comfort can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

制御装置は、赤外線センサーの検出結果に基づいて、赤外線センサーの赤外線の検出範囲内の温度分布を示す全体熱画像データに変換し、全体熱画像データに基づいて、空調対象空間の床面範囲を算出し、全体熱画像データに基づいて、床面範囲内の各座標と床面範囲内の各床面温度とで関連づけられる要素データを複数備えた床面熱画像データを取得し、床面熱画像データに基づいて、空調対象空間の床暖房機器の有無を判定し、床暖房機器が有ると判定された場合には、床面熱画像データのうち床暖房機器の設置範囲に対応するデータに基づいて、床暖房機器の運転状態を判定するものである。

Description

空気調和装置の室内機
 本発明は、空気調和装置の室内機に関し、特に、床暖房機器の運転状態を判定することができる空気調和装置の室内機に関するものである。
 従来、空気調和装置と床暖房機器とが協調動作するシステムが提案されている(例えば、特許文献1参照)。特許文献1に記載の技術は、赤外線センサーの検出データに基づいて、床暖房機器及び空気調和装置の室内機の両方を制御する。
特開平11-153328号公報
 従来の技術は、制御装置が、空気調和装置のデータだけでなく、床暖房機器のデータも取得することで各種機器を制御する。つまり、従来の技術は、床暖房機器と通信する構成が前提であり、その分、汎用性が損なわれるという課題がある。
 本発明は、以上のような課題を解決するためになされたもので、床暖房機器と通信しなくても、快適な空調を実現できる空気調和装置の室内機を提供することを目的としている。
 本発明に係る空気調和装置の室内機は、筐体と、筐体に設けられ、空調対象空間に放射された赤外線を検出する赤外線センサーと、赤外線センサーの検出結果が出力される制御装置と、を備え、制御装置は、赤外線センサーの検出結果に基づいて、赤外線センサーの赤外線の検出範囲内の温度分布を示す全体熱画像データに変換し、全体熱画像データに基づいて、空調対象空間の床面範囲を算出し、全体熱画像データに基づいて、床面範囲内の各座標と床面範囲内の各床面温度とで関連づけられる要素データを複数備えた床面熱画像データを取得し、床面熱画像データに基づいて、空調対象空間の床暖房機器の有無を判定し、床暖房機器が有ると判定された場合には、床面熱画像データのうち床暖房機器の設置範囲に対応するデータに基づいて、床暖房機器の運転状態を判定するものである。
 本発明に係る空気調和装置の室内機によれば、上記構成を有しているため、床暖房機器と通信しなくても、快適な空調を実現できる。
本発明の実施の形態1に係る室内機を備えた空気調和装置の概要構成図である。 本発明の実施の形態1に係る室内機の斜視図である。 本発明の実施の形態1に係る室内機の赤外線センサーの説明図である。 本発明の実施の形態1に係る室内機の赤外線センサーの縦配光視野角を示した図である。 空調対象空間(室内)の床面及び壁を含む全体熱画像データである。 基準線、区画線及び区画線の説明図である。 区画線と区画線との間における温度ムラに基づいて取得された境界線の説明図である。 空調対象空間(室内)に在室しているユーザーを含む全体熱画像データである。 床暖房機器が運転しているときの全体熱画像データである。 床暖房機器が床面の全体を暖める運転モードで運転しているときの全体熱画像データである。 空調対象空間(室内)の床面に家具が配置されている場合であって床暖房機器が運転しているときの全体熱画像データである。 床暖房機器が床面の全体の半分を暖める運転モードで運転しているときの全体熱画像データである。 本発明の実施の形態1に係る室内機の制御フローチャート1である。 図10に示す制御フローチャート1の変形例である。 本発明の実施の形態1に係る室内機の制御フローチャート2である。 図12に示す制御フローチャート1の変形例である。 本発明の実施の形態2に係る室内機の制御フローチャートである。
 以下、本発明に係る空気調和装置の室内機の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態によって本発明が限定されるものではない。なお、また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、実施の形態1に係る室内機11を備えた空気調和装置10の概要構成図である。図2は、実施の形態1に係る室内機11の斜視図である。図1及び図2を参照して空気調和装置10の構成を説明する。なお、実施の形態1において、空調対象空間とは、例えば、室内機11が設置されている室内を指す。
[全体構成説明]
 空気調和装置10は、室内機11と、室外機12とを備えている。そして、室内機11と室外機12とは冷媒配管Pを介して接続されている。
 空気調和装置10は、圧縮機1と、四方弁1Bと、室外熱交換器2と、絞り装置3と、室内熱交換器4とを備えている。そして、圧縮機1と、四方弁1Bと、室外熱交換器2と、絞り装置3と、室内熱交換器4とは、冷媒配管Pで接続されている。
 室内機11には、室内熱交換器4及び送風ファン5が搭載され、室外機12には、圧縮機1、四方弁1B、室外熱交換器2及び絞り装置3が搭載されている。なお、絞り装置3は室外機12及び室内機11の外に配置されていてもよいし、室内機11内に配置されていてもよい。
 また、空気調和装置10は、室内熱交換器4に付設された送風ファン5を備えている。
 また、空気調和装置10は、室内機11に設けられた赤外線センサー9と、室内機11に設けられたサーミスタ8と、室内機11から空調対象空間に供給される空気の方向を左右方向に調節する左右風向板7と、室内機11から空調対象空間に供給される空気の方向を上下方向に調節する上下風向板6とを備えている。
 さらに、空気調和装置10は、制御装置Cnが搭載されている。なお、制御装置Cnは、室内機11に設けられた制御装置Cn1と、室外機12に設けられた制御装置Cn2とを含む。
 圧縮機1は冷媒を圧縮して吐出するものである。圧縮機1は吐出側及び吸入側が四方弁1Bに接続されている。
 四方弁1Bは冷媒の流路切替装置である。四方弁1Bは、圧縮機1の吐出側と室外熱交換器2とを接続し、且つ、圧縮機1の吸入側と室内熱交換器4とを接続する第1のポジションと、圧縮機1の吐出側と室内熱交換器4とを接続し、且つ、圧縮機1の吸入側と室外熱交換器2とを接続する第2のポジションとを切替ることができる。
 室外熱交換器2は一端が四方弁1Bに接続され、他端が絞り装置3に接続されている。室外熱交換器2は例えばフィンチューブ熱交換器等で構成することができる。空気調和装置10が暖房運転を実行する場合には室外熱交換器2は蒸発器として機能し、空気調和装置10が冷房運転を実行する場合には、室外熱交換器2は凝縮器(放熱器)として機能する。
 絞り装置3は一端が室外熱交換器2に接続され、他端が室内熱交換器4に接続されている。絞り装置3は、例えば、絞り量を調節することができる減圧弁で構成することもできるし、キャピラリーチューブで構成することもできる。
 室内熱交換器4は一端が絞り装置3に接続され、他端が四方弁1Bに接続されている。室内熱交換器4は例えばフィンチューブ熱交換器等で構成することができる。空気調和装置10が暖房運転を実行する場合には室内熱交換器4は凝縮器として機能し、空気調和装置10が冷房運転を実行する場合には、室内熱交換器4は蒸発器として機能する。
 送風ファン5は、室内機11に搭載されている。具体的には、室内機11は、外郭を構成する筐体11Aを備えており、この筐体11A内に送風ファン5が搭載されている。なお、筐体11Aは、空気の吸込口及び吹出口が形成されている。送風ファン5が運転することで、吸込口から筐体11A内に空気が取り込まれ、吹出口から筐体11A外に空気が放出される。なお、図示省略しているが、室外熱交換器2にも送風ファンが付設されていてもよい。
 赤外線センサー9は、筐体11Aに設けられているものであり、空調対象空間に放射された赤外線を検出する。赤外線センサー9は、筐体11Aの下側に設けられている。具体的には、赤外線センサー9は、筐体11Aの下面から突出するように設けられ、筐体11Aの長手方向の一端側に配置されている。赤外線センサー9は、図示省略のステッピングモーターによって回動し、空調対象空間の赤外線を走査できるようになっている。赤外線センサー9の検出結果(赤外線の輻射温度データ)は制御装置Cnに出力される。
 サーミスタ8は、筐体11Aに設けられているものであり、空調対象空間の温度を検出する。サーミスタ8の検出結果(室内温度データ)は制御装置Cnに出力される。
 左右風向板7は、筐体11Aの吹出口に配置されている。左右風向板7は、例えば、板状部材で構成される。左右風向板7は、図示省略の軸に固定され、軸が動くことで左右に回動する。これにより、空気調和装置10は、筐体11Aの吹出口から吹き出される空気の方向を左右方向に調節することができる。
 上下風向板6は、筐体11Aの吹出口に配置され、左右風向板7に併設されている。上下風向板6は、左右風向板7は、例えば、板状部材で構成される。左右風向板7は、図示省略の軸に固定され、軸が動くことで左右に回動する。これにより、空気調和装置10は、筐体11Aの吹出口から吹き出される空気の方向を左右方向に調節することができる。
 制御装置Cnは、少なくとも次の3つの機能を有する。制御装置Cnは、空調対象空間の床面範囲を算出する第1の機能と、空調対象空間に設置された床暖房機器の有無を判定する第2の機能と、床暖房機器の運転状態を判定する第3の機能とを有している。なお、実施の形態1では、第3の機能は、赤外線センサー9の検出結果に基づいて、空調対象空間の床面下に設置された床暖房機器が運転しているか否かを判定する機能に対応している。つまり、実施の形態1では、運転状態とは、床暖房機器が運転しているか否かに対応する。
 制御装置Cnの第1の機能は、例えば、次のように実現される。制御装置Cnは、赤外線センサー9の検出結果に基づいて赤外線センサー9の赤外線の検出範囲内の温度分布を示す全体熱画像データに変換し、この変換された全体熱画像データに基づいて空調対象空間の床面範囲を算出する。なお、制御装置Cnは、全体熱画像データに基づいて、床面範囲内の各座標と床面範囲内の各床面温度とで関連づけられる要素データを複数備えた床面熱画像データを取得する。
 制御装置Cnの第2の機能は、例えば、次のように実現される。制御装置Cnは、床面熱画像データに基づいて、空調対象空間の床暖房機器の有無を判定する。具体的には、床面熱画像データは、床面温度が予め定められた温度範囲に含まれる要素データから構成される第1の温度範囲要素データと、床面温度が予め定められた温度範囲外である要素データから構成される第2の温度範囲要素データとから構成される。床暖房機器が有ると判定する場合(第2の機能)は、第1の温度範囲要素データを構成する要素データの座標の範囲が、任意の床面範囲に対して、予め定められた割合p1以上である場合に対応している。割合p1は、本発明における第1の割合に対応している。任意の床面範囲とは、例えば、床面範囲の全範囲を採用することができる。制御装置Cnは、床暖房機器が有ると判定すると、それに対応するフラグを立てる。ここで、制御装置Cnは、床暖房機器が、第1の温度範囲要素データを構成する要素データの座標の範囲に、床暖房機器が有ると判定している。
 制御装置Cnの第3の機能は、例えば、次のように実現される。制御装置Cnは、床暖房機器が有ると判定された場合には、床面熱画像データのうち床暖房機器の設置範囲に対応するデータに基づいて、床暖房機器の運転状態を判定する。実施の形態1において、第3の機能は、例えば、第2の機能と同じ要領で実現することができる。つまり、床暖房機器が運転していると判定する場合(第3の機能)は、第1の温度範囲要素データを構成する要素データの座標の範囲が、任意の床面範囲に対して、予め定められた割合p2以上である場合に対応している。なお、割合p1と割合p2とは同じでもよいし、異なっていてもよい。
 制御装置Cnは室内機11に設けられた制御装置Cn1と、室外機12に設けられた制御装置Cn2とを備えている。制御装置Cn1と制御装置Cn2とが通信し、制御装置Cn1及び制御装置Cn2が協同して圧縮機1等の各種アクチュエータを制御する。
 制御装置Cn1は、アクチュエータ制御部15と、記憶部18と、演算部20と、計時部21と、を備えている。制御装置Cn2は、圧縮機回転数制御部32と、室内温度調整部31とを備えている。なお、以下の説明では、演算部20と室内温度調整部31とをあわせて判定部dとも称する。
 アクチュエータ制御部15は、判定部dの判定結果等に基づいて、上下風向板6、左右風向板7及び送風ファン5のモーター等を制御する。
 記憶部18は、サーミスタ8の検出結果である温度データと、赤外線センサー9の検出結果である全体熱画像データを含むデータを記憶する。ここで、全体熱画像データについて説明する。
 全体熱画像データとは、赤外線センサー9が空調対象空間を走査することで取得される。
 全体画像データは、床面熱画像データと、壁面画像データとを含んでいる。なお、赤外線センサー9の走査範囲に壁面が入らず、走査範囲に入る対象が全て床面であれば、全体画像データには壁面画像データは含まれない。
 全体熱画像データは、複数の要素データで構成される。なお、床面熱画像データは、複数の要素データで構成され、壁面画像データも、複数の要素データで構成される。
 要素データは、LBS(Least significant bit)に対応するデータであり、赤外線センサー9で取得する熱データの最小単位である。要素データは、座標データ(x,y)と、この座標データに対応する温度データ(T)とを含む。この要素データは、第1の方向に対応する第1の座標x及び第2の方向に対応する第2の座標yを示す座標データと、第1の座標x及び第2の座標yに対応する位置の床面の温度を示す温度データTとで関連づけられる。すなわち、要素データは、(x,y,T)で表すことができる。
 演算部20は、上述した第1の機能、第2の機能及び第3の機能を有する。
 計時部21は、各種の時間を計時する機能を有する。例えば、計時部21は、空気調和装置10を起動してからの時間を計時する。
 室内温度調整部31は、演算部20の判定結果及び赤外線センサー9の検出結果に基づいて、圧縮機1を制御するように圧縮機回転数制御部32に指示する。例えば、演算部20が、床暖房機器が運転していると判定した場合には、室内温度調整部31は、圧縮機1の回転数を増大する、低減する、又は維持するように圧縮機回転数制御部32に指示する。
[冷媒の流れの説明]
 暖房運転時においては、圧縮機1から吐出された冷媒は、四方弁1Bを介して室内熱交換器4に供給される。つまり、室内熱交換器4は凝縮器として機能する。室内熱交換器4に供給された冷媒は送風ファン5によって供給される空気と熱交換し、凝縮液化する。室内熱交換器4から流出した冷媒は、絞り装置3で減圧されて低温低圧の気液二相冷媒となる。絞り装置3から流出した冷媒は、室外熱交換器2に供給される。つまり、室外熱交換器2は蒸発器として機能する。室外熱交換器2に供給された冷媒は蒸発ガス化する。室外熱交換器2から流出した冷媒は、四方弁1Bを介して圧縮機1の吐出側に戻される。
 冷房運転時には、冷媒の流れは暖房運転時の流れとは逆である。
[赤外線センサー9について]
 図3は、本形態に係る室内機11の赤外線センサー9の説明図である。
 赤外線センサー9は、床面に対し下向き(例えば、俯角約24.5度)の角度で筐体11Aに取り付けられている。
 赤外線センサー9は、図3に示すように、金属製の筒状部材9Aの内側に、8個の受光素子(図示省略)が配置されている。なお、8個の受光素子は、縦方向に一列に並ぶように配置されている。筒状部材9Aの端部には、受光素子に赤外線を通すためのレンズ製の窓(図示省略)が設けられている。各受光素子の配光視野角9Bは、縦方向の配光視野角9B1が7度であり、横方向の配光視野角9B2が8度である。
 なお、各受光素子の配光視野角9Bが、縦方向7度、横方向8度のものを示したが、縦方向7度、横方向8度に限定されるものではない。各受光素子の配光視野角9Bに応じて、受光素子の数は変化する。例えば、各受光素子の縦方向の配光視野角9B1と受光素子の数との積が一定になるようにすればよい。
 赤外線センサー9は、ステッピングモーター(図示省略)等の作用により、左右方向に予め定められた角度範囲を回転できるようになっている。つまり、赤外線センサー9は、予め定められた範囲の床面及び壁面等を走査できるようになっている。ここで、ステッピングモーターの回転角度が1.6度毎に、ステッピングモーターは予め定められた時間(0.1~0.2秒)の間、回転を停止し、赤外線センサー9の受光素子から床面及び壁面の熱画像データを取得する。
 ステッピングモーターを1.6度回転させる動作及び受光素子から熱画像データを取得する動作を繰り返すことで、赤外線センサー9は全体熱画像データを取得することができる。なお、ステッピングモーターに回転角度の上限値及び下限値が設定されている場合には、次のように動作する。例えば、回転角度の下限値からステッピングモーター(赤外線センサー9)が回転を開始し、回転角度が増大していき、回転角度が上限値に至ると、再び、ステッピングモーター(赤外線センサー9)の回転角度は上限値から下限値へ減少していく。
 赤外線センサー9は、ステッピングモーターの回転角度毎に取得された熱画像データを組み合わせて、全体熱画像データを取得する。なお、実施の形態1では、ステッピングモーターの回転角度が94つ存在している。つまり、赤外線センサー9が回転する角度範囲は、約150.4度である。赤外線センサー9がステッピングモーターの回転角度の下限値から上限値まで走査すると、赤外線センサー9は94つの熱画像データを取得する。そして、制御装置Cnは、94つの熱画像データに基づいて全体熱画像データを作成する。
 図4は、実施の形態1に係る室内機11の赤外線センサー9の縦配光視野角を示した図である。図4では、室内機11を室内の床面から1800mmの高さに据付けた状態における縦配光視野角を示している。1個の受光素子の縦方向の配光視野角9B1は7度である。また、図4では、全受光素子の縦方向の配光視野角である全配光視野角9B3を示している。赤外線センサー9の全配光視野角9B3に入らない角度範囲が、角度範囲9B4である。なお、角度範囲9B4は室内機11が取り付けられた壁を基準と、全配光視野角9B3の下限角度とのなす角度である。
 赤外線センサー9の俯角が0度であれば、角度範囲9B4=90度-4(水平方向を0度としたとき、配光視野角9B1が0度未満となる受光素子の数)×7度(1個の受光素子の縦方向の配光視野角)=62度になる。実施の形態1の赤外線センサー9は、俯角が24.5度であるから、角度範囲9B4=62度-24.5度=37.5度となる。
[第1の機能について]
 図5Aは、空調対象空間(室内)の床面A及び壁W1、壁W2及び壁W3を含む全体熱画像データである。図5Bは、基準線L0、区画線L2及び区画線L1の説明図である。図5Cは、区画線L2と区画線L1との間における温度ムラに基づいて取得された境界線Lmの説明図である。床面Aは図5Aの点線の台形部分で示されている。また、床面Aは第1の方向Dr1(左右方向)及び第2の方向Dr2(奥行方向)に広がるように形成されている。床面A、第1の方向Dr1及び第2の方向Dr2は実空間上の概念である。第1の方向Dr1及び第2の方向Dr2は、水平方向に平行である。
 図5Dは、空調対象空間(室内)に在室しているユーザーを含む全体熱画像データである。また、全体熱画像データD1上では、図5Dに示すように、床面Aが、床面範囲Bで示される。また、全体熱画像データ上では、実空間の第1の方向Dr1は第1の座標xの方向に対応し、実空間の第2の方向Dr2は第2の座標yの方向に対応している。
 また、全体熱画像データでは、空調対象空間にユーザーが在室していると、図5Dに示すように、ユーザーの存在する範囲の温度が上昇する。図5Dでは、第1の座標の一定範囲及び第2の座標の一定範囲のデータは、温度が上昇していることを示している。図5Dでは、この第1の座標の一定範囲及び第2の座標の一定範囲のデータを熱画像データD3として示している。
 制御装置Cnは、取得した全体熱画像データD1を用いて、床面Aに対応する範囲を算出することができる(第1の機能)。つまり、制御装置Cnは、全体熱画像データD1に基づいて、床面範囲Bを算出することができる。この算出手段については、公知となっている手段(例えば、特開2010-91253号公報)を採用することができる。
 制御装置Cntは、第1の機能を予め定められたときに発揮する。具体的には、制御装置Cntは、圧縮機1を起動する前に予め発揮してもよいし、運転内容を送信する操作部(リモコン)から運転開始データを受け付けたときに発揮してもよい。
 例えば、制御装置Cnは、空調対象空間の床面範囲Bを、空調対象空間の床面Aと前記空調対象空間の壁面との境界部分における温度ムラに基づいて取得することができる。
 制御装置Cnは、図5Bに示すように、床面Aと、壁W1の面、壁W2の面及び壁W3の面とを区画するのに用いる基準線L0のデータを有している。基準線L0のデータは、例えば、空気調和装置の能力帯に関するデータ、及び、リモコン等から設定される室内機11の据付位置データに基づいて取得される。図5Bに示すように、基準線L0は、床面Aと、壁W1の面、壁W2の面及び壁W3の面との境界からはずれている。
 制御装置Cnは、基準線L0から予め定められた画素数だけ離れた区画線L1と、基準線L0から予め定められた画素数だけ離れた区画線L2とを取得することができる。ここでは、一例として、予め定められた画素数は、2画素としている。なお、y座標は、区画線L1、基準線L0及び区画線L2の順番に小さい。つまり、基準線L0は、区画線L1と区画線L2との間に挟まれている。
 制御装置Cnは、全体熱画像データD1のうち区画線L1と区画線L2との間におけるデータに基づいて、床面Aと、壁W1の面、壁W2の面及び壁W3の面とを区画する境界線Lmのデータを取得する。制御装置Cnは、y方向における温度ムラが大きい場合には、その画素の座標が境界線Lmの座標であると算出する。なお、y方向における温度ムラの算出にあたっては、全体熱画像データD1の絶対値を採用してもよいし、y方向における微分値を採用してもよい。
 ここでは、床面Aと、壁W1の面、壁W2の面及び壁W3の面とを区画する方法を説明した。同じ要領で、制御装置Cnは、壁W1の面の範囲及び壁W2の面の範囲を取得することができる。
 制御装置Cnは、境界線Lmのデータに基づいて、床面Aに対応する床面範囲Bを取得することができる。制御装置Cnは、全体熱画像データD1の全座標範囲のうち、境界線Lmよりもy座標が大きい範囲を、床面範囲Bであると算出する。つまり、図5Cにおいては、全体熱画像データD1のうち、境界線Lmよりも下に位置する範囲が、床面熱画像データD2である。
[第2の機能について]
 図6は、床暖房機器が運転しているときの全体熱画像データである。図6では、一例として床暖房機器が床面の全体を暖める運転モードで運転している様子を示している。図6を参照して第2の機能について説明する。
 第2の機能は、床面熱画像データに基づいて、空調対象空間の床暖房機器の有無を判定する機能である。制御装置Cnは、床面温度が予め定められた温度範囲に含まれる要素データの数が、任意の床面範囲の要素データの数に対して、予め定められた割合p1以上であるか否かを判定する。予め定められた割合p1以上であれば、制御装置Cnは、床暖房機器があると判定する。例えば、制御装置Cnは、任意の床面範囲を、床面範囲Bの全体と設定する。図6において濃淡が濃く示されている部分が、床面温度が予め定められた温度範囲に含まれていることを示している。図6では、床面範囲Bの要素データのうちの70%以上の要素データは、温度データで特定される温度が、予め定められた温度範囲に含まれている。例えば、割合p1が60%であれば、制御装置Cnは床暖房機器があると判定することになる。
[第3の機能について]
 図7は、床暖房機器が床面Aの全体を暖める運転モードで運転しているときの全体熱画像データD1である。
 図8は、空調対象空間(室内)の床面Aに家具が配置されている場合であって床暖房機器が運転しているときの全体熱画像データD1である。
 図7では、床暖房機器が運転しており、床面Aの全体(床面範囲Bの全体)が暖まっていることを示している。
 しかし、床面Aの全体が暖まっていても、空調対象空間にソファ及びテーブル等の家具が配置されていると、床面Aから放射される赤外線の一部が家具によって遮られる。その結果、第1の座標の一定範囲及び第2の座標の一定範囲の熱画像データD4が、その周辺の範囲のデータと比較すると、温度が低下していることを示してしまう。なお、図8では、この第1の座標の一定範囲及び第2の座標の一定範囲のデータを熱画像データD4として示している。したがって、熱画像データD4の存在によって、高温度を示す熱画像データが分割されてしまうことになる。例えば、第1の方向(第1の座標x方向)の温度分布だけ、又は、第2の方向(第2の座標y方向)の温度分布だけに基づいて、床暖房機器の運転の判定をすると、熱画像データが分割される分、床暖房機器の運転の判定精度が低下してしまう。つまり、実際には床暖房機器が運転しているのに、高温度を示す範囲が分割されて短くなっているので、床暖房機器が運転していないと判定されかねないということである。実施の形態1に係る室内機11では、こういった誤判定を回避することができるようになっている。
 制御装置Cnは、赤外線センサー9の検出結果に基づいて、赤外線センサー9の赤外線の検出範囲内の温度分布を示す全体熱画像データD1を取得する機能を有する。また、制御装置Cnは、全体熱画像データD1のうち、床面Aの第1の方向Dr1及び第1の方向Dr1に交差する第2の方向Dr2の温度分布を示す床面熱画像データD2に基づいて、暖房機器が運転しているか否かを判定する。
 具体的には、制御装置Cnは、予め定められた数の要素データのうち、第1の温度閾値よりも温度が高い要素データの割合が、予め定められた割合p2以上である場合に、床暖房機器が運転していると判定する。このように、制御装置Cnの判定部dは、第1の方向Dr1(第1の座標x方向)又は第2の方向Dr2(第2の座標y方向)の温度分布ではなく、第1の方向Dr1(第1の座標x方向)及び第2の方向Dr2(第2の座標y方向)の両方の温度分布を用いて、床暖房機器の運転の判定をする。したがって、床暖房機器の運転の判定精度を向上させることができるようになっている。この判定精度の向上効果は、特に、図8のように空調対象空間に家具が配置されている場合に大きい。
 図7の場合には、制御装置Cnは、次のように床暖房機器が運転していると判定する。
 制御装置Cnは、全体の要素データのうち第1の温度閾値(例えば、25度)よりも温度が高い要素データの割合が、割合p2(例えば、60%)以上である場合に暖房機器が運転していると判定する。
 図7において、全体の要素データの数は270個である。ここで、第1の温度閾値以上である要素データの数は、193個である。したがって、193/270=約71%であり、この数値は第1の値を超えている。したがって、制御装置Cnの判定部dは床暖房機器が運転していると判定する。
 図8の場合には、制御装置Cnは、次のように床暖房機器が運転していると判定する。
 図8において、全体の要素データの数は270個であり、図7と同様である。ここで、第1の温度閾値以上である要素データの数は、家具が存在する分、163個と減少している。しかし、163/270=約60.3%であり、この数値は第1の値を超えている。したがって、制御装置Cnの判定部dは床暖房機器が運転していると判定することができる。つまり、制御装置Cnは、熱画像データD4の存在によって、高温度を示す熱画像データが分割されてしまっていても、床暖房機器が運転していると判定することができる。
 図9は、床暖房機器が床面Aの全体の半分を暖める運転モードで運転しているときの全体熱画像データD1である。
 床暖房機器は床面Aの全体を暖めるモードだけでなく、床面Aの半分の床面範囲、床面Aの3/4の範囲を暖めるモードを備えているものもある。こういった場合でも、制御装置Cnは、高精度に床暖房機器が運転しているか否かを判定することができる。
 制御装置Cnは、第1の座標xが連続する第1の範囲であって第2の座標yが連続する第2の範囲に属する要素データのうち、第1の温度閾値(例えば、25度)よりも温度が高い要素データの割合が、割合p2(例えば、60%)以上である場合に、暖房機器が運転していると判定する。
 室内機11の判定部dは、この構成を備えることによって、床面Aの半分の床面範囲等を暖めるモードにおいても、床暖房機器が運転していると判定することができる。なお、ここでは第1の値と第2の値とが等しいものとして説明しているが、異なっていてもよい。
 図9の場合には、制御装置Cnは、次のように床暖房機器が運転していると判定する。
 図9において、第1の座標xが連続する第1の範囲r1であって第2の座標yが連続する第2の範囲r2に属する要素データの数は、135個である。ところで、制御装置Cnには、床面Aの半分が暖められるモードを想定し、第1の範囲r1及び第2の範囲r2が設定されている。なお、制御装置Cnは、その他の床暖房機器のモードを想定し、第1の範囲r1及び第2の範囲r2のバリエーションを複数備えている。
 ここで、第1の温度閾値以上である要素データの数は、90個である。90/135=約66.6%であり、この数値は第2の値を超えている。したがって、制御装置Cnは床暖房機器が運転していると判定することができる。
 なお、図7~図9では、制御装置Cnは、第1の温度閾値を用いることについて説明したが、それに限定されるものではない。例えば、制御装置Cnは、第1の温度閾値に加えて、第1の温度閾値よりも大きい第2の温度閾値(例えば、35度)が設定されていてもよい。つまり、制御装置Cnの判定部dは、全体の要素データのうち第1の温度閾値よりも温度が高く、且つ、第1の温度閾値よりも温度が高い第2の値よりも温度が低い要素データの割合が、割合p2(例えば、60%)以上である場合に暖房機器が運転していると判定する。床暖房機器の温度は、通常、25度から35度程度であるので、このように下限値(第1の温度閾値)だけでなく、上限値(第2の温度閾値)が設定されていることで、床暖房機器の運転の判定精度をより向上させることができる。
 また、第1の温度閾値及び第2の温度閾値の決定方法としては、大まかに25度及び35度として説明したが、それに限定されるものではなく、サーミスタ8の検出温度に基づいて決定してもよい。つまり、制御装置Cnは、サーミスタ8の検出温度よりも第1の温度閾値を大きい値とし、第1の温度閾値よりも第2の温度閾値を大きい値としてもよい。
 第3の機能では、制御装置Cnが床暖房機器の運転状態を判定する。ここで、制御装置Cnが、床暖房機器が運転していると判定した場合の制御と、床暖房機器が運転していないと判定した場合の制御とについて説明する。床暖房機器が運転していないと判定した場合には、設定温度と室内温度との差分に基づいた制御(図10のステップS1でNo)又は室内温度と床面温度との差分に基づいた制御(図12のステップS11でNo)を実行する。例えば床面温度が室内温度に対して著しく低ければ、制御装置Cnは圧縮機1の回転数を増大させる。また、例えば床面温度が室内の設定温度に対して著しく低ければ、制御装置Cnは圧縮機1の回転数を増大させる。
 また、床暖房機器が運転していると判定した場合には、設定温度と室内温度との差分に体感温度を加味した制御を実行する(図10のステップS1でYes)、又は室内温度と床面温度との差分に基づいた制御を実行する(図12のステップS11でYes)。これにより、ユーザーに冷風感を与えることを抑制している。
[制御フローチャート1]
 図10は、実施の形態1に係る室内機11の制御フローチャート1である。
 制御装置Cnは、暖房運転中において床暖房機器が運転していると判定した場合には、設定温度と、温度センサー(サーミスタ8)の検出温度に温度補正値(後述する補正値Co1)を減じた体感温度とに基づいて、圧縮機1の回転数を制御する。また、制御装置Cnは、設定温度と体感温度との差が予め定められた値以上である場合には、圧縮機1の回転数を増大させる。これらの構成を下記で説明する。
(ステップS0)
 制御装置Cnは暖房運転を実行する。なお、ステップS0では、既に、床面範囲Bが取得され、床暖房機器が有ると判定された状態である。
(ステップS1)
 制御装置Cnは床暖房機器が運転しているか否かを判定する。
(1)床暖房機器が運転していないと判定した場合には、ステップS4に移行する。
(2)床暖房機器が運転していると判定した場合には、ステップS2に移行する。ステップS2に移行する場合というのは、圧縮機1の回転数を維持する(ステップS4)又は増大させる(ステップS3)制御を行う。これは、床暖房機器が運転しているため、室内温度を赤外線センサー9の検出結果で補正してしまうと、ユーザーに冷風感を与えてしまう可能性があるためである。つまり、実際には室内温度がさほど高くない状況において、床暖房機器が運転していると、赤外線センサー9が床暖房で暖められた床面の温度に基づいて室内温度を補正してしまうことになる。つまり、体感温度が高く判断されてしまい、圧縮機1の回転数を低減させる制御が実行されてしまう可能性があるということである。実際には室内温度がさほど高くないのに、圧縮機1の回転数を低減させる制御を実行すると、ユーザーに冷風感を与える可能性がある。こういった状況を回避するために、圧縮機1の回転数を低減させる制御は行わず、圧縮機1の回転数を維持する又は増大させる制御を行う。
(ステップS2)
 制御装置Cnは、リモコン等で設定される空調対象空間の設定温度から、サーミスタ8の検出温度を、減じた値が、α1以上であるか否かを判定する。
 α1以上である場合にはステップS5に移行する。
 α1以上でない場合にはステップS6に移行する。
(ステップS3)
 制御装置Cnは圧縮機1の回転数を増大させる。
 ここで、増大量は定数であってもよいし、設定温度と室温との差分に応じて変化させてもよい。つまり、この差分が大きいほど、圧縮機1の回転数の増大量を大きくしてもよい。
 制御装置Cnは、ステップS2では次の式に基づく判定をしている。
 設定温度Tset
 室温Ta≧α1・・・(式1)
 ここで、α1=C1(定数)+補正値Co1である。
 補正値Co1は、正の値とし、床面の温度に基づいて決定していない。
 上記式1は次のように書き換えることができる。
 設定温度Tset-(室温Ta+補正値Co1)≧C1(定数)
 ここで、室温Ta+補正値Co1が体感温度に対応する数値である。
 補正値Co1を設けているのは、床暖房機器が運転しているときにおいて、室内が暖まっているものと誤検出してしまうことを回避するためである。つまり、床暖房機器が運転しているときには、制御装置Cnが、赤外線センサー9が室内を走査すると床面の温度が高い分、室内が暖まっているものと誤検出してしまう可能性がある。そうすると、実際には、室内がさほど暖まっておらず、圧縮機1の回転数を下げてはならない状況であるのに、圧縮機1の回転数を下げてしまう制御に移行しかねない。
 そこで、実施の形態1に係る室内機11の制御装置Cnは、床暖房機器が運転していると判定したときには(ステップS1からステップS2)、上記(式1)の演算を行い、これを満たす場合には圧縮機1の回転数を増大させ(ステップS3)、満たさない場合でも圧縮機1の回転数を維持する(図10のステップS4)。圧縮機1の回転数の増大量は、設定温度と体感温度との差が大きいほど、大きく設定するとよい。
[制御フローチャート1の変形例]
 図11は、図10に示す制御フローチャート1の変形例である。
 長時間暖房運転を実行していると、空調対象空間の足元の暖かい空気が上昇し、空調対象空間全体が暖まってくる。したがって、図10に示す制御フローチャート1は、一時的に実行するものであるとよい。図11に示す変形例に係る制御フローチャート1では、ステップS4を備えている。ステップS4においては、制御装置Cnが、ステップS3において圧縮機回転数を増大させてから予め定められた時間が経過したか否かを判定する。予め定められた時間を経過するまで、ステップS4のループを続ける。予め定められた時間が経過した場合には、ステップS5に移行して制御フローを終了する。なお、図11に示すステップS1、ステップS2、ステップS3、及びステップS5は、図10に示すステップS1、ステップS2、ステップS3及びステップS4と同様である。
 なお、ステップS4からステップS5に移行する際には、制御装置Cnは、圧縮機1の回転数を低下させてもよい。例えば、制御装置Cnは、ステップS4からステップS5に移行する際には、圧縮機1の回転数をステップS3で増大させる前の回転数に戻す。
[制御フローチャート2]
 図12は、実施の形態1に係る室内機11の制御フローチャート2である。
 制御装置Cnは、暖房運転中において床暖房機器が運転していると判定した場合には、圧縮機1の回転数を維持する又は増大させる。
(ステップS10)
 制御装置Cnは暖房運転を実行する。なお、ステップS10では、既に、床面範囲Bが取得され、床暖房機器が有ると判定された状態である。
(ステップS11)
 制御装置Cnは床暖房機器が運転しているか否かを判定する。
(ステップS12)
 制御装置Cnは、サーミスタ8の検出温度から、赤外線センサー9の検出結果から取得する床面の温度Tfavを、減じた値(予め定められた温度差)が、β1以上であるか否かを判定する。
 β1以上である場合にはステップS13に移行する。
 β1以上でない場合にはステップS14に移行する。
(ステップS13)
 制御装置Cnは圧縮機1の回転数を増大させる。
 ここで、増大量は定数であってもよいし、サーミスタ8の検出温度と、赤外線センサー9の検出結果から取得する床面の温度Tfavとの差分に応じて変化させてもよい。つまり、この差分が大きいほど、圧縮機1の回転数の増大量を大きくしてもよい。
 なお、β1は、制御装置Cnに予め定められた値である。なお、β1は変数であっても定数であってもよい。
 図12の制御フローチャート2を実行することで、図10の制御フローチャート1を実行したときと、概ね同様の効果を得ることができる。
 なお、図10のステップS2の条件には、空気調和装置10が起動してから規定時間が経過する前という条件があってもよい。つまり、ステップS2の条件、又は、空気調和装置10が起動してから規定時間が経過する前であるという条件を満たす場合には、ステップS3に移行し、両方の条件を満たさない場合にはステップS4に移行する。
 また、図12のステップS12の条件においても、空気調和装置10が起動してから規定時間が経過する前という条件があってもよい。つまり、ステップS12の条件、又は、空気調和装置10が起動してから規定時間が経過する前であるという条件を満たす場合には、ステップS13に移行し、両方の条件を満たさない場合にはステップS14に移行する。
 空気調和装置10の起動時は、床暖房機器によって仮に床面が暖められていても、室内の温度が暖まっていない可能性が高い状況である。そこで、この構成を採用することで、ステップS2及びステップS12の条件を緩和して、圧縮機1の回転数を増大する制御へ促しやすくしている。これにより、ユーザーの快適性が低減することをより確実に回避することができる。
[制御フローチャート2の変形例]
 図13は、図12に示す制御フローチャート2の変形例1である。
 図11に示すフローチャートと同様の趣旨により、図12に示す制御フローチャート2を、図13に示すフローチャートのようにすることができる。つまり、長時間暖房運転を実行していると、空調対象空間の足元の暖かい空気が上昇し、空調対象空間全体が暖まってくる。したがって、図12に示す制御フローチャート2は、一時的に実行するものであるとよい。図13に示す変形例に係る制御フローチャート2では、ステップS14を備えている。ステップS14においては、制御装置Cnが、ステップS13において圧縮機回転数を増大させてから予め定められた時間が経過したか否かを判定する。予め定められた時間を経過するまで、ステップS14のループを続ける。予め定められた時間が経過した場合には、ステップS15に移行して制御フローを終了する。なお、図13に示すステップS11、ステップS12、ステップS13、及びステップS15は、図12に示すステップS11、ステップS12、ステップS13及びステップS14と同様である。
 なお、ステップS14からステップS15に移行する際には、制御装置Cnは、圧縮機1の回転数を低下させてもよい。例えば、制御装置Cnは、ステップS14からステップS15に移行する際には、圧縮機1の回転数をステップS13で増大させる前の回転数に戻す。
[実施の形態1の効果]
 実施の形態1では、赤外線センサー9を用いて床暖房機器が運転しているか否かを判定し、圧縮機1の回転数を制御し、快適な空調を実現している。つまり、実施の形態1では、床暖房機器と通信しなくても、快適な空調を実現できる。
 実施の形態1に係る空気調和装置10の室内機11は、赤外線センサー9の検出結果に基づいて、赤外線センサー9の赤外線の検出範囲内の温度分布を示す全体熱画像データD1に変換し、全体熱画像データD1のうち、床面の第1の方向Dr1及び第1の方向Dr1に交差する第2の方向Dr2の温度分布を示す床面熱画像データD2に基づいて、暖房機器が運転しているか否かを判定する。このため、床暖房機器が動作しているか否かの判定精度を向上させることができる。
 実施の形態1に係る空気調和装置10の室内機11は、床暖房機器が運転している場合でも、圧縮機1の回転数を低下させるべきでない状況で圧縮機1の回転数が低下してしまうことを回避することができ、ユーザーの快適性が低下することを抑制することができる。
 実施の形態1に係る空気調和装置10の室内機11は、床暖房機器の運転の検知精度を向上させることができるので、床暖房機器の運転にあわせた空調制御がより実行しやすくなり、消費電力が増大することを抑制することができる。
 実施の形態1では、室内機11が設置されている場所と、空調対象空間とが同じ空間であるものとして説明したが、それに限定されるものではない。例えば、空気調和装置10は、室内機11が空調対象空間外に設置され、室内機11の吹出口がダクトを介して空調対象空間に連通している態様であってもよい。この場合には、赤外線センサー9を室内機11の筐体11Aとは分離し、空調対象空間に赤外線センサー9を設置すればよい。
[変形例1]
 図10及び図11では制御対象が圧縮機1であったが、制御対象を送風ファン5とすることもできる。つまり、制御装置Cnは、暖房運転中において床暖房機器が運転していると判定した場合には、設定温度と、温度センサー(サーミスタ8)の検出温度に温度補正値(補正値Co1)を減じた体感温度とに基づいて、送風ファン5の回転数を制御する。また、制御装置Cnは、設定温度と体感温度との差が予め定められた値以上である場合には、送風ファン5の回転数を増大させる。なお、制御装置Cnは、送風ファン5の回転数を増大させた場合には、その後、低下させてもよい。例えば、制御装置Cnは、送風ファン5の回転数を増大させてから、予め定められた時間が経過した場合には、送風ファン5の回転数を増大させる前の回転数に戻す。
 また、制御装置Cnは、設定温度と体感温度との差が予め定められた値未満である場合には、送風ファン5の回転数を維持する。これらの構成を備えていても、図10及び図11で説明した効果と同様の効果を得ることができる。
[変形例2]
 図12及び図13では制御対象が圧縮機1であったが、制御対象を送風ファン5とすることもできる。つまり、制御装置Cnは、暖房運転中において床暖房機器が運転していると判定した場合には、サーミスタ8の検出温度から、赤外線センサー9の検出結果から取得する床面の温度Tfavを、減じた値(予め定められた温度差)に基づいて送風ファン5の回転数を制御する。この減じた値がβ1以上であるときには、制御装置Cnは、送風ファン5の回転数を増大させる。なお、制御装置Cnは、送風ファン5の回転数を増大させた場合には、その後、低下させてもよい。例えば、制御装置Cnは、送風ファン5の回転数を増大させてから、予め定められた時間が経過した場合には、送風ファン5の回転数を増大させる前の回転数に戻す。
 また、この減じた値がβ1未満であるときには、制御装置Cnは、送風ファン5の回転数を維持する。これらの構成を備えていても、図12及び図13で説明した効果と同様の効果を得ることができる。
[変形例3]
 図10~図13の制御対象は圧縮機1であったが、制御対象を上下風向板6とすることもできる。つまり、制御装置Cnは、床暖房機器が運転していると判定した場合には、上下風向板6に平行であり床面に交差する仮想面と床面とがなす角度が大きくなるように、上下風向板6の角度を制御する。つまり、上下風向板6を床面に向ける。これにより、室内機11は、空調対象空間の上部側よりも、下部側に供給する空気の量を増大させる。この構成を備えていていることで、制御装置Cnが、床暖房機器によって暖められた床面によって、ユーザーが寒さを感じていないものと誤判定してしまうことを回避することができる。
実施の形態2.
 実施の形態2では、実施の形態1と共通する部分の説明は省略し、相違する部分を中心に説明する。実施の形態2と、実施の形態1とは、第3の機能が異なっている。実施の形態1においては、第3の機能は、床暖房機器が運転しているか否かの判定に対応していたが、実施の形態2においては、床暖房機器で加温されている床面の広さの判定に対応している。
 制御装置Cnは、床暖房機器の運転状態を、第1の温度範囲要素データを構成する要素データの座標の範囲が、床面範囲Bに対して、予め定められた割合p3以上であるか否か、によって判定する。割合p3は、本発明における第2の割合に対応している。
 実施の形態2では、割合p1が30%であり、割合p2が20%である場合を一例として説明する。
 図14は、実施の形態2に係る室内機11の制御フローチャートである。
(ステップS20)
 制御装置Cnは、暖房運転を実行する(ステップS20)。
(ステップS21:第1の機能)
 制御装置Cnは、全体熱画像データD1に基づいて床面熱画像データD2を取得する。つまり、制御装置Cnは、空調対象空間の床面範囲Bを算出する。
(ステップS22)
 制御装置Cnは、床暖房機器が有りのフラグが立っているか否かを判定する。
 フラグが立っている場合には、ステップS25に進む。
 フラグが立っていない場合には、ステップS23に進む。
(ステップS23:第2の機能)
 制御装置Cnは、床面熱画像データD2のうち予め定められた温度範囲に含まれるデータの座標の範囲が、床面範囲Bに対して割合p1(例えば、30%)以上であるか否かを判定する。なお、床面熱画像データD2のうち予め定められた温度範囲に含まれるデータとは、第1の温度範囲要素データに対応する。また、予め定められた温度範囲としては、一例として、25℃から35℃までとしている。
 割合p1以上である場合には、ステップS24に進む。
 割合p1以上でない場合には、ステップS21に戻る。
(ステップS24)
 制御装置Cnは、床暖房機器が有りのフラグを立てる。
(ステップS25)
 制御装置Cnは、床面熱画像データD2のうち予め定められた温度範囲に含まれるデータの座標の範囲が、床面範囲Bに対して割合p3(例えば、20%)以上であるか否かを判定する。なお、床面熱画像データD2のうち予め定められた温度範囲に含まれるデータとは、第1の温度範囲要素データに対応する。また、予め定められた温度範囲としては、一例として、25℃から35℃までとしている。
 割合p3以上である場合には、ステップS27に進む。
 割合p3以上でない場合には、ステップS26に進む。
(ステップS26)
 ステップS26は、第1の温度範囲要素データを構成する要素データの座標の範囲が、床面範囲Bに対して、割合p3未満である。制御装置Cntは、圧縮機1の回転数を維持する。
(ステップS27)
 ステップS27は、第1の温度範囲要素データを構成する要素データの座標の範囲が、床面範囲Bに対して、割合p3以上である。制御装置Cntは、圧縮機1の回転数を低減する。低減量は、第1の温度範囲要素データを構成する要素データの座標の範囲の広さに応じて設定することができる。
 例えば、第1の温度範囲要素データを構成する要素データの座標の範囲が、床面範囲Bに対して、20%以上であって50%未満である場合には低減量をx1とし、50%以上であって80%未満である場合には低減量をx2とし、80%以上である場合には低減量をx3とする。なお、x3>x2>x1である。つまり、第1の温度範囲要素データを構成する要素データの座標の範囲が広いほど、圧縮機1の回転数の低減量を大きくするということである。
(ステップS28)
 制御装置Cnは、サーミスタ8の検出温度(室温Ta)から、赤外線センサー9の検出結果から取得する床面の温度Tfavを減じた値(予め定められた温度差)が、V以下であるか否かを判定する。なお、床面の温度Tfavは、例えば、一定範囲の要素データが含む温度データを平均することで取得することができる。
 V以下である場合には、ステップS29に移行する。
 V以下でない場合には、ステップS30に移行する。
(ステップS30)
 制御装置Cntは、図14に示す制御フローを終了する。
[実施の形態2の効果]
 実施の形態2では、赤外線センサー9を用いて床暖房機器で加温された床面範囲の広さのデータを取得し、圧縮機1の回転数を制御し、快適な空調を実現している。つまり、実施の形態2では、床暖房機器と通信しなくても、快適な空調を実現できる。
 実施の形態2では、床暖房機器で加温された床面範囲が広いほど、圧縮機1の回転数の低減量を大きくしている。このため、消費電力を抑制できるとともに、ユーザーの快適性を向上させることができる。
 実施の形態2では、割合p3は、割合p1よりも小さくなっている。つまり、割合p1は割合p3よりも大きいため、床暖房機器があるか否かの判定基準が厳しくなっており、床暖房機器の有無の誤判定を回避することができる。また、割合p3は、割合p1よりも小さくなっているので、実施の形態2では、床暖房機器によって加温されている床面の範囲が狭くなっても、圧縮機1の回転数を適宜制御することができ、よりきめ細やかな空調を実現することができる。
 実施の形態2では、室温Ta及び床面の温度Tfavに基づいて、圧縮機1の回転数を制御する。具体的には、制御装置Cntは、床面の温度Tfavが室温Taに近づけば、圧縮機1の回転数を落とす。このため、消費電力を抑制できるとともに、ユーザーの快適性を向上させることができる。
 1 圧縮機、1B 四方弁、2 室外熱交換器、3 絞り装置、4 室内熱交換器、5 送風ファン、6 上下風向板、7 左右風向板、8 サーミスタ、9 赤外線センサー、9A 筒状部材、9B 配光視野角、9B1 配光視野角、9B2 配光視野角、9B3 全配光視野角、9B4 角度範囲、10 空気調和装置、11 室内機、11A 筐体、12 室外機、15 アクチュエータ制御部、18 記憶部、20 演算部、21 計時部、31 室内温度調整部、32 圧縮機回転数制御部、A 床面、B 床面範囲、Cn 制御装置、Cn1 制御装置、Cn2 制御装置、Co1 補正値、Co2 補正値、D1 全体熱画像データ、D2 床面熱画像データ、D3 熱画像データ、D4 熱画像データ、Dr1 第1の方向、Dr2 第2の方向、P 冷媒配管、W1 壁、W2 壁、W3 壁、d 判定部、r1 第1の範囲、r2 第2の範囲、x 第1の座標、y 第2の座標。

Claims (22)

  1.  筐体と、
     前記筐体に設けられ、空調対象空間に放射された赤外線を検出する赤外線センサーと、
     前記赤外線センサーの検出結果が出力される制御装置と、
     を備え、
     前記制御装置は、
     前記赤外線センサーの検出結果に基づいて、前記赤外線センサーの赤外線の検出範囲内の温度分布を示す全体熱画像データに変換し、
     前記全体熱画像データに基づいて、前記空調対象空間の床面範囲を算出し、
     前記全体熱画像データに基づいて、前記床面範囲内の各座標と前記床面範囲内の各床面温度とで関連づけられる要素データを複数備えた床面熱画像データを取得し、
     前記床面熱画像データに基づいて、前記空調対象空間の床暖房機器の有無を判定し、
     前記床暖房機器が有ると判定された場合には、前記床面熱画像データのうち前記床暖房機器の設置範囲に対応するデータに基づいて、前記床暖房機器の運転状態を判定する
     空気調和装置の室内機。
  2.  前記床面熱画像データは、
     前記床面温度が予め定められた温度範囲に含まれる前記要素データから構成される第1の温度範囲要素データを含み、
     前記床暖房機器の有無は、
     前記第1の温度範囲要素データを構成する前記要素データの座標の範囲が、前記床面範囲に対して、予め定められた第1の割合以上であるか否か、によって判定される
     請求項1に記載の空気調和装置の室内機。
  3.  前記床暖房機器の前記運転状態は、
     前記第1の温度範囲要素データを構成する前記要素データの座標の範囲が、前記床面範囲に対して、予め定められた第2の割合以上であるか否か、によって判定される
     請求項2に記載の空気調和装置の室内機。
  4.  前記第2の割合は、前記第1の割合よりも小さい
     請求項3に記載の空気調和装置の室内機。
  5.  前記制御装置は、
     前記第1の温度範囲要素データを構成する前記要素データの座標の範囲が、前記床面範囲に対して、前記第2の割合未満である場合には、圧縮機の回転数を維持し、
     前記第1の温度範囲要素データを構成する前記要素データの座標の範囲が、前記床面範囲に対して、前記第2の割合以上である場合には、前記圧縮機の回転数を低減する
     請求項3又は4に記載の空気調和装置の室内機。
  6.  前記空調対象空間の前記床面範囲は、
     前記空調対象空間の床面と前記空調対象空間の壁面との境界部分における温度ムラに基づいて取得する
     請求項1~5のいずれか一項に記載の空気調和装置の室内機。
  7.  前記空調対象空間の温度を検出する温度センサーを備え、
     前記床暖房機器の前記運転状態は、
     前記床暖房機器が運転しているか否かに対応し、
     前記制御装置は、
     暖房運転中において前記床暖房機器が運転していると判定した場合には、
     前記空調対象空間の設定温度と、前記温度センサーの検出温度に温度補正値を減じた体感温度とに基づいて、圧縮機の回転数を制御する
     請求項1又は2に記載の空気調和装置の室内機。
  8.  前記制御装置は、
     前記設定温度と前記体感温度との差が予め定められた値以上である場合には、前記圧縮機の回転数を増大させる
     請求項7に記載の空気調和装置の室内機。
  9.  前記制御装置は、
     前記設定温度と前記体感温度との差が予め定められた値未満である場合には、前記圧縮機の回転数を維持する
     請求項7又は8に記載の空気調和装置の室内機。
  10.  前記空調対象空間の温度を検出する温度センサーを備え、
     前記床暖房機器の前記運転状態は、
     前記床暖房機器が運転しているか否かに対応し、
     前記制御装置は、
     暖房運転中において前記床暖房機器が運転していると判定した場合には、
     前記温度センサーの検出温度と前記床面温度との差分に基づいて圧縮機の回転数を制御する
     請求項1又は2に記載の空気調和装置の室内機。
  11.  前記制御装置は、
     前記温度センサーの検出温度と前記床面温度との差分が予め定められた温度差よりも大きい場合には、前記圧縮機の回転数を増大させる
     請求項10に記載の空気調和装置の室内機。
  12.  前記制御装置は、
     前記温度センサーの検出温度と前記床面温度との差分が予め定められた温度差未満である場合には、前記圧縮機の回転数を維持する
     請求項10又は11に記載の空気調和装置の室内機。
  13.  前記筐体内に設けられた送風ファンと、
     前記空調対象空間の温度を検出する温度センサーを備え、
     前記床暖房機器の前記運転状態は、
     前記床暖房機器が運転しているか否かに対応し、
     前記制御装置は、
     暖房運転中において前記床暖房機器が運転していると判定した場合には、
     前記空調対象空間の設定温度と、前記温度センサーの検出温度に温度補正値を減じた体感温度とに基づいて、前記送風ファンの回転数を制御する
     請求項1又は2に記載の空気調和装置の室内機。
  14.  前記制御装置は、
     前記設定温度と前記体感温度との差が予め定められた値以上である場合には、前記送風ファンの回転数を増大させる
     請求項13に記載の空気調和装置の室内機。
  15.  前記制御装置は、
     前記設定温度と前記体感温度との差が予め定められた値未満である場合には、前記送風ファンの回転数を維持する
     請求項13又は14に記載の空気調和装置の室内機。
  16.  前記筐体内に設けられた送風ファンと、
     前記空調対象空間の温度を検出する温度センサーとを備え、
     前記床暖房機器の前記運転状態は、
     前記床暖房機器が運転しているか否かに対応し、
     前記制御装置は、
     暖房運転中において前記床暖房機器が運転していると判定した場合には、
     前記温度センサーの検出温度と前記床面温度との差分に基づいて前記送風ファンの回転数を制御する
     請求項1又は2に記載の空気調和装置の室内機。
  17.  前記制御装置は、
     前記温度センサーの検出温度と前記床面温度との差分が予め定められた温度差よりも大きい場合には、前記送風ファンの回転数を増大させる
     請求項16に記載の空気調和装置の室内機。
  18.  前記制御装置は、
     前記温度センサーの検出温度と前記床面温度との差分が予め定められた温度差未満である場合には、前記送風ファンの回転数を維持する
     請求項16又は17に記載の空気調和装置の室内機。
  19.  前記制御装置は、
     前記圧縮機の回転数を増大させた場合には、予め定められた時間が経過したときに、前記圧縮機の回転数を低下させる
     請求項7~12のいずれか一項に記載の空気調和装置の室内機。
  20.  前記制御装置は、
     前記送風ファンの回転数を増大させた場合には、予め定められた時間が経過したときに、前記送風ファンの回転数を低下させる
     請求項13~18のいずれか一項に記載の空気調和装置の室内機。
  21.  前記筐体の吹出口に設けられた上下風向板を備え、
     前記制御装置は、
     前記床暖房機器が運転していると判定した場合には、前記上下風向板に平行であり床面に交差する仮想面と、床面とがなす角度が大きくなるように、前記上下風向板の角度を制御する
     請求項1~20のいずれか一項に記載の空気調和装置の室内機。
  22.  前記制御装置は、
     圧縮機を起動する前に予め前記空調対象空間の前記床面範囲を算出する、又は、運転内容を送信する操作部から運転開始データを受け付けたときに前記空調対象空間の前記床面範囲を算出する
     請求項1~21のいずれか一項に記載の空気調和装置の室内機。
PCT/JP2016/086615 2016-04-05 2016-12-08 空気調和装置の室内機 WO2017175419A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/071,618 US10794610B2 (en) 2016-04-05 2016-12-08 Indoor unit of air-conditioning apparatus having an infrared sensor
CN201680083421.2A CN108885021B (zh) 2016-04-05 2016-12-08 空调装置的室内机
EP16897971.4A EP3441688B1 (en) 2016-04-05 2016-12-08 Indoor unit of an air conditioner
JP2018510225A JP6628865B2 (ja) 2016-04-05 2016-12-08 空気調和装置の室内機
RU2018131226A RU2704922C1 (ru) 2016-04-05 2016-12-08 Устанавливаемый внутри помещения блок агрегата для кондиционирования воздуха

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/061125 2016-04-05
PCT/JP2016/061125 WO2017175305A1 (ja) 2016-04-05 2016-04-05 空気調和装置の室内機

Publications (1)

Publication Number Publication Date
WO2017175419A1 true WO2017175419A1 (ja) 2017-10-12

Family

ID=60000327

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/061125 WO2017175305A1 (ja) 2016-04-05 2016-04-05 空気調和装置の室内機
PCT/JP2016/086615 WO2017175419A1 (ja) 2016-04-05 2016-12-08 空気調和装置の室内機

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061125 WO2017175305A1 (ja) 2016-04-05 2016-04-05 空気調和装置の室内機

Country Status (6)

Country Link
US (1) US10794610B2 (ja)
EP (1) EP3441688B1 (ja)
JP (1) JP6628865B2 (ja)
CN (1) CN108885021B (ja)
RU (1) RU2704922C1 (ja)
WO (2) WO2017175305A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185235B2 (en) * 2017-03-27 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Information processing method, information processing device, and recording medium
WO2018185937A1 (ja) * 2017-04-07 2018-10-11 三菱電機株式会社 空気調和装置
CN108954709B (zh) * 2018-06-29 2019-12-10 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN110906491B (zh) * 2018-09-14 2022-04-15 青岛海尔空调器有限总公司 一种温冷感展示控制方法及装置
CN110906492B (zh) * 2018-09-14 2022-04-19 青岛海尔空调器有限总公司 一种温冷感地面展示控制方法及装置
CN110906493B (zh) * 2018-09-14 2022-04-15 青岛海尔空调器有限总公司 一种温冷感投影展示控制方法及装置
KR20200084164A (ko) * 2019-01-02 2020-07-10 엘지이노텍 주식회사 사육장 환경 관리 장치
US12050018B2 (en) * 2019-08-23 2024-07-30 Mitsubishi Electric Corporation Air-conditioning-apparatus system including memory storing temperature information and processing circuit forming thermal image
EP4097557A4 (en) * 2020-01-31 2023-07-26 Objectvideo Labs, LLC TEMPERATURE CONTROL BASED ON THERMAL IMAGING
CN111351186A (zh) * 2020-03-16 2020-06-30 广东美的制冷设备有限公司 空调器的运行方法、装置、空调器和计算机可读存储介质
CN112212483A (zh) * 2020-10-16 2021-01-12 珠海格力节能环保制冷技术研究中心有限公司 基于红外热成像的空调控制方法、装置及空调机组
CN115077036A (zh) * 2022-05-18 2022-09-20 重庆海尔空调器有限公司 一种空调风机转速调节方法、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153328A (ja) * 1997-11-25 1999-06-08 Sanyo Electric Co Ltd 床暖房装置の試験方法及び空気調和機
JP2000055445A (ja) * 1998-08-05 2000-02-25 Daikin Ind Ltd 空気調和機の制御方法
JP2004028450A (ja) * 2002-06-26 2004-01-29 Mitsubishi Electric Corp 空気調和装置
JP2010091253A (ja) * 2008-09-10 2010-04-22 Mitsubishi Electric Corp 空気調和機
JP2012021735A (ja) * 2010-07-16 2012-02-02 Mitsubishi Electric Corp 空気調和機

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067022B2 (ja) * 1988-02-01 1994-01-26 三菱電機株式会社 空気調和機
CN1056225C (zh) * 1992-03-07 2000-09-06 三星电子株式会社 空调系统
JPH05312381A (ja) * 1992-05-06 1993-11-22 Res Dev Corp Of Japan 空気調和システム
JPH06160507A (ja) 1992-09-24 1994-06-07 Matsushita Electric Ind Co Ltd 人存在状況判定装置
JPH0771785A (ja) * 1993-08-31 1995-03-17 Sanyo Electric Co Ltd 空気調和機
JP3225993B2 (ja) 1994-04-20 2001-11-05 株式会社日立製作所 人体検出装置及びこれを用いた空調装置
JP2000130823A (ja) * 1998-10-26 2000-05-12 Noritz Corp 室内暖房装置
WO2002029332A1 (en) * 2000-10-04 2002-04-11 Sharp Kabushiki Kaisha Air conditioner and temperature detector
JP2003322388A (ja) 2002-05-02 2003-11-14 Toshiba Kyaria Kk 空気調和機
JP2004286412A (ja) 2003-03-25 2004-10-14 Mitsubishi Electric Corp 空気調和機能付きヒートポンプ式温水床暖房装置
JP2005147614A (ja) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd 空気調和機
DE102004046689B3 (de) * 2004-09-24 2006-06-14 Danfoss A/S Raumbeheizungseinrichtung
JP2006336915A (ja) * 2005-05-31 2006-12-14 Tokyo Electric Power Co Inc:The 冷房設備および快適空間設備
JP5528531B1 (ja) * 2012-12-25 2014-06-25 三菱電機株式会社 制御システム、制御方法及びプログラム
JP6072561B2 (ja) * 2013-02-20 2017-02-01 三菱電機株式会社 空気調和システム
CN104019494B (zh) * 2013-02-28 2018-08-21 大金工业株式会社 空调机室内机
JP6046579B2 (ja) * 2013-09-09 2016-12-21 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153328A (ja) * 1997-11-25 1999-06-08 Sanyo Electric Co Ltd 床暖房装置の試験方法及び空気調和機
JP2000055445A (ja) * 1998-08-05 2000-02-25 Daikin Ind Ltd 空気調和機の制御方法
JP2004028450A (ja) * 2002-06-26 2004-01-29 Mitsubishi Electric Corp 空気調和装置
JP2010091253A (ja) * 2008-09-10 2010-04-22 Mitsubishi Electric Corp 空気調和機
JP2012021735A (ja) * 2010-07-16 2012-02-02 Mitsubishi Electric Corp 空気調和機

Also Published As

Publication number Publication date
US10794610B2 (en) 2020-10-06
CN108885021A (zh) 2018-11-23
CN108885021B (zh) 2020-06-12
US20190032950A1 (en) 2019-01-31
EP3441688B1 (en) 2020-01-29
JP6628865B2 (ja) 2020-01-15
WO2017175305A1 (ja) 2017-10-12
EP3441688A1 (en) 2019-02-13
EP3441688A4 (en) 2019-04-24
RU2704922C1 (ru) 2019-10-31
JPWO2017175419A1 (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2017175419A1 (ja) 空気調和装置の室内機
JP6242300B2 (ja) 空気調和装置の室内機及び空気調和装置
JP5585556B2 (ja) 空気調和機
JP6906311B2 (ja) 空気調和装置
JP6242309B2 (ja) 空気調和機
JP6473289B2 (ja) 空気調和機の室内機及びこれを用いた空気調和機
JP5507231B2 (ja) 空気調和機
WO2018150535A1 (ja) 室内機および空気調和装置
JP6072561B2 (ja) 空気調和システム
JPH0650595A (ja) 空気調和装置
JP2011153725A (ja) 空気調和装置の天井設置型室内ユニット
JP6221241B2 (ja) 空気調和機
JP6956594B2 (ja) 空気調和装置
JP6562094B2 (ja) 空気調和装置
JP6607267B2 (ja) 空気調和装置
JP2019138504A (ja) 空気調和装置
JP6851483B2 (ja) 空気調和機
JP6921318B2 (ja) 空気調和機の室内機
WO2018042515A1 (ja) 空気調和装置
US10837670B2 (en) Air-conditioning apparatus
JP6562139B2 (ja) 冷凍装置
JP6625222B2 (ja) 空気調和機の室内機
WO2022024261A1 (ja) 空気調和装置
WO2021181486A1 (ja) 空調システム、空調制御装置、空調方法及びプログラム
JP5797169B2 (ja) 空気調和機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016897971

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016897971

Country of ref document: EP

Effective date: 20181105

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897971

Country of ref document: EP

Kind code of ref document: A1