WO2017170643A1 - 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 - Google Patents
熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 Download PDFInfo
- Publication number
- WO2017170643A1 WO2017170643A1 PCT/JP2017/012819 JP2017012819W WO2017170643A1 WO 2017170643 A1 WO2017170643 A1 WO 2017170643A1 JP 2017012819 W JP2017012819 W JP 2017012819W WO 2017170643 A1 WO2017170643 A1 WO 2017170643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- thermosetting resin
- resin composition
- resin
- printed wiring
- Prior art date
Links
- 0 *C(*)(*)N1COC(C=CCC2)=C2C1 Chemical compound *C(*)(*)N1COC(C=CCC2)=C2C1 0.000 description 2
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
- C08K5/357—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04105—Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73267—Layer and HDI connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15313—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
- H01L2924/3511—Warping
Definitions
- the present invention relates to a thermosetting resin composition, a resin film with a carrier, a prepreg, a metal-clad laminate, a resin substrate, a printed wiring board, and a semiconductor device.
- Patent Document 1 a sealing resin composition described in Patent Document 1 can be mentioned.
- This document describes that heat resistance can be improved by using a bismaleimide compound and a Pd-type benzoxazine as a sealing resin composition (paragraph 0040 of Patent Document 1, Examples). ).
- thermosetting resin composition used for forming the insulating layer in the printed wiring board, and focused on the variety of reactions according to the functional group of the benzoxazine compound. As a result of examination based on such points of view, it was found that the curing characteristics of the thermosetting resin composition can be improved by using a benzoxazine compound containing a group having an unsaturated double bond as a functional group. did.
- thermosetting resin composition used for forming an insulating layer in a printed wiring board A benzoxazine compound represented by the following general formula (B-1) or (B-2), which contains a group having an unsaturated double bond; A thermosetting resin containing at least one of a maleimide compound, an epoxy resin and a cyanate resin; A thermosetting resin composition comprising an inorganic filler is provided.
- a carrier substrate There is provided a resin film with a carrier comprising a resin film formed on the carrier base material and formed from the thermosetting resin composition.
- thermosetting resin composition obtained by impregnating a fiber base material with the thermosetting resin composition.
- a metal-clad laminate comprising a cured product of the prepreg and a metal layer disposed on at least one surface of the cured product.
- a resin substrate provided with an insulating layer composed of a cured product of the thermosetting resin composition is provided.
- a printed wiring board comprising the metal-clad laminate or the resin substrate and a circuit layer formed on the surface of the metal-clad laminate or the resin substrate is provided.
- the printed wiring board There is provided a semiconductor device comprising a semiconductor element mounted on a circuit layer of the printed wiring board or built in the printed wiring board.
- thermosetting resin composition capable of obtaining an insulating layer excellent in low warpage, a resin film with a carrier, a prepreg, a metal-clad laminate, a resin substrate, a printed wiring board, and a semiconductor device using the same. Provided.
- FIG. 1 is a cross-sectional view showing an example of the configuration of the resin film with a carrier in the present embodiment.
- 2A and 2B are cross-sectional views showing an example of the configuration of the printed wiring board in the present embodiment.
- 3A and 3B are cross-sectional views showing an example of the configuration of the semiconductor device in the present embodiment.
- 4A to 4C are process cross-sectional views illustrating an example of the manufacturing process of the printed wiring board in the present embodiment.
- FIG. 5 is a cross-sectional view showing an example of the configuration of the printed wiring board in the present embodiment.
- FIG. 6 is a cross-sectional view showing an example of the configuration of the printed wiring board in the present embodiment.
- thermosetting resin composition of the present embodiment includes a benzoxazine compound represented by the following general formula (B-1) or (B-2) containing a group having an unsaturated double bond, a maleimide compound, A thermosetting resin containing at least one of an epoxy resin and a cyanate resin and an inorganic filler are included.
- R 1 and R 2 each independently represents a hydrogen atom, Represents a lower alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, or a monovalent to tetravalent organic group, wherein at least one of R 1 and R 2 represents an alkenyl group having 3 to 14 carbon atoms. (However, when p is an integer of 2 or more and 4 or less, R 2 may be the same or different.) Z represents a monovalent to tetravalent organic group.)
- each b independently represents an integer of 1 or more and 4 or less
- q represents an integer of 1 or more and 4 or less
- R 3 independently represents a hydrogen atom or lower alkyl.
- X 1 represents a monovalent to tetravalent organic group, at least one of R 3 and X 1
- One is a group having an alkenyl group having 3 to 14 carbon atoms.
- the present inventor further examined the thermosetting resin composition used for forming the insulating layer in the printed wiring board, and focused on the variety of reactions depending on the functional group of the benzoxazine compound. As a result of examination based on such points of view, it was found that the curing characteristics of the thermosetting resin composition can be improved by using a benzoxazine compound containing a group having an unsaturated double bond as a functional group. did.
- the group having an unsaturated double bond is, for example, an alkenyl group having 3 to 14 carbon atoms, and an allyl group is preferable.
- thermosetting resin such as a maleimide compound
- crosslinking reaction with a thermosetting resin
- thermosetting resin composition since the curing characteristic of the thermosetting resin composition can be enhanced, the linear expansion coefficient of the obtained cured product can be lowered. Moreover, such a thermosetting resin composition has curing characteristics excellent in low-temperature curing.
- the curing temperature during the manufacturing process can be set low, so that the warpage of the printed wiring board can be effectively reduced. .
- the crosslinking density can be increased by various reactions in the thermosetting resin composition. Therefore, the heat resistance of the obtained cured product can be increased. That is, the structure of the cured product of the thermosetting resin composition of the present embodiment is excellent in thermal decomposition resistance.
- the linear expansion coefficient of the insulating layer can be lowered and the curing temperature can be set to a low value. Therefore, it is possible to suppress panel warpage during a panel level process for manufacturing a large area panel size package.
- the insulating layer in the printed wiring board can be used as an insulating member constituting the printed wiring board such as a core layer, a build-up layer (interlayer insulating layer), a solder resist layer, and the like.
- the printed wiring board includes a core layer, a build-up layer (interlayer insulating layer), a printed wiring board having a solder resist layer, a printed wiring board having no core layer, a coreless board used for a panel package process (PLP), MIS (Molded Interconnect Substrate) substrate and the like.
- the cured product of the resin film formed from the thermosetting resin composition of the present embodiment is used for the insulating layer.
- a cured product is, for example, a build-up layer or a solder resist layer in a printed wiring board having no core layer, an interlayer insulating layer or a solder resist layer of a coreless substrate used in PLP, an interlayer insulating layer or a solder resist layer of a MIS substrate, Etc. can also be used.
- the cured product of the resin film according to the present embodiment is an interlayer insulating layer or a solder resist that constitutes the printed wiring board in a large-area printed wiring board used to collectively create a plurality of semiconductor packages. It can also be suitably used for the layer.
- thermosetting resin composition of this embodiment the resin film formed from the said thermosetting resin composition
- the said resin film was provided on the carrier base material.
- a printed circuit board having a circuit layer formed on the surface of the metal-clad laminate or the resin substrate the thermosetting resin composition of this embodiment
- thermosetting resin composition of the present embodiment will be described.
- thermosetting resin composition of the present embodiment includes, for example, a thermosetting resin, a benzoxazine compound, and an inorganic filler.
- thermosetting resin As a thermosetting resin, at least 1 type of a maleimide compound, an epoxy resin, and cyanate resin can be included, for example. These may be used alone or in combination of two or more.
- the thermosetting resin composition of this embodiment can contain a maleimide compound.
- the maleimide group of the maleimide compound has a five-membered planar structure.
- the double bond of the maleimide group is easy to interact between molecules and has high polarity. Therefore, a strong intermolecular interaction is exhibited with a maleimide group, a benzene ring, other compounds having a planar structure, and the like, and molecular motion can be suppressed. Therefore, when the thermosetting resin composition contains a maleimide compound, the linear expansion coefficient of the obtained insulating layer can be lowered, the glass transition temperature can be improved, and the heat resistance can be further improved.
- the maleimide compound is preferably a maleimide compound having at least two maleimide groups in the molecule.
- maleimide compounds having at least two maleimide groups in the molecule include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, p-phenylene bismaleimide, 2,2-bis [4- (4-maleimide).
- a compound having three or more maleimide groups in the molecule such as polyphenyl methane maleimide, and the like.
- One of these can be used alone, or two or more can be used in combination.
- these maleimide compounds 4,4′-diphenylmethane bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, bis- (3-ethyl-) is used because of its low water absorption.
- 5-Methyl-4-maleimidophenyl) methane, polyphenylmethanemaleimide, and bisphenol A diphenyl ether bismaleimide are preferred.
- the maleimide compound preferably includes a maleimide compound represented by the following formula (1).
- n 1 is an integer of 0 to 10
- X 1 is each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following formula (1a), a formula “— A group represented by “SO 2 —”, a group represented by “—CO—”, an oxygen atom or a single bond
- each R 1 is independently a hydrocarbon group having 1 to 6 carbon atoms
- a is Each independently represents an integer of 0 or more and 4 or less
- b is independently an integer of 0 or more and 3 or less
- Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n 2 is an integer of 0 or more
- the alkylene group of 1 to 10 in X 1 is not particularly limited, but is preferably a linear or branched alkylene group.
- linear alkylene group examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decanylene group, trimethylene group, tetramethylene group. Group, pentamethylene group, hexamethylene group and the like.
- branched alkylene group examples include —C (CH 3 ) 2 — (isopropylene group), —CH (CH 3 ) —, —CH (CH 2 CH 3 ) —, —C Alkylmethylene groups such as (CH 3 ) (CH 2 CH 3 ) —, —C (CH 3 ) (CH 2 CH 2 CH 3 ) —, —C (CH 2 CH 3 ) 2 —; —CH (CH 3 ) CH 2 —, —CH (CH 3 ) CH (CH 3 ) —, —C (CH 3 ) 2 CH 2 —, —CH (CH 2 CH 3 ) CH 2 —, —C (CH 2 CH 3 ) 2 Examples thereof include an alkylethylene group such as —CH 2 —.
- the number of carbon atoms of the alkylene group in X 1 may be 1 or more and 10 or less, preferably 1 or more and 7 or less, and more preferably 1 or more and 3 or less.
- examples of the alkylene group having such a carbon number include a methylene group, an ethylene group, a propylene group, and an isopropylene group.
- R 1 is independently a hydrocarbon group having 1 to 6 carbon atoms, preferably a hydrocarbon group having 1 or 2 carbon atoms, specifically a methyl group or an ethyl group. .
- a is an integer of 0 or more and 4 or less, preferably an integer of 0 or more and 2 or less, and more preferably 0.
- b is an integer of 0 or more and 3 or less, preferably 0 or 1, and more preferably 0.
- N 1 is an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 6 or less, more preferably an integer of 0 or more and 4 or less, and particularly preferably an integer of 0 or more and 3 or less.
- the maleimide compound includes at least a compound in which n 1 is 1 or more in the above formula (1).
- the insulating layer obtained from a thermosetting resin composition exhibits more excellent heat resistance.
- Y is 30 or less hydrocarbon group having 6 or more carbon atoms having an aromatic ring
- n 2 is an integer of 0 or more.
- the hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring may be an aromatic ring alone or may have a hydrocarbon group other than the aromatic ring.
- Y may have one aromatic ring or two or more aromatic rings, and in the case of two or more, these aromatic rings may be the same or different.
- the aromatic ring may be a monocyclic structure or a polycyclic structure.
- examples of the hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring include aromatics such as benzene, biphenyl, naphthalene, anthracene, fluorene, phenanthrene, indacene, terphenyl, acenaphthylene, and phenalene. And a divalent group obtained by removing two hydrogen atoms from the nucleus of a compound having family properties.
- aromatic hydrocarbon groups may have a substituent.
- that the aromatic hydrocarbon group has a substituent means that part or all of the hydrogen atoms constituting the aromatic hydrocarbon group are substituted by the substituent. Examples of the substituent include an alkyl group.
- the alkyl group as the substituent is preferably a chain alkyl group.
- the number of carbon atoms is preferably 1 or more and 10 or less, more preferably 1 or more and 6 or less, and particularly preferably 1 or more and 4 or less. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, and a sec-butyl group.
- Such a group Y preferably has a group obtained by removing two hydrogen atoms from benzene or naphthalene.
- Examples of the group represented by the above formula (1a) include the following formulas (1a-1), (1a-2) It is preferable that it is group represented by either of these. Thereby, the insulating layer obtained from a thermosetting resin composition exhibits more excellent heat resistance.
- R 4 is each independently a hydrocarbon group having 1 to 6 carbon atoms.
- Each e is independently an integer of 0 or more and 4 or less, and is preferably 0.
- n 2 may be an integer of 0 or more, preferably an integer of 0 or more and 5 or less, and preferably an integer of 1 or more and 3 or less. More preferably, 1 or 2 is particularly preferable.
- X 1 is a linear or branched alkylene group having 1 to 3 carbon atoms, and R 1 is 1 or 2 hydrocarbon. It is preferable that a is an integer of 0 or more and 2 or less, b is 0 or 1, and n 1 is an integer of 1 or more and 4 or less.
- X 1 is a group represented by any one of the above formulas (1a-1) and (1a-2), and e is preferably 0. Thereby, the insulating layer obtained from a thermosetting resin composition exhibits more excellent low heat shrinkability and chemical resistance.
- a maleimide compound represented by the above formula (1) for example, a maleimide compound represented by the following formula (1-1) is particularly preferably used.
- the maleimide compound may include a different type of maleimide compound from the maleimide compound represented by the above formula (1).
- Such maleimide compounds include 1,6′-bismaleimide- (2,2,4-trimethyl) hexane, hexamethylenediamine bismaleimide, N, N′-1,2-ethylenebismaleimide, N, N ′.
- Aliphatic maleimide compounds such as -1,3-propylene bismaleimide and N, N′-1,4-tetramethylene bismaleimide; imide extended bismaleimide and the like.
- 1,6′-bismaleimide- (2,2,4-trimethyl) hexane and imide-extended bismaleimide are particularly preferable.
- a maleimide compound may be used independently and may use 2 or more types together.
- Examples of the imide-expanded bismaleimide include a maleimide compound represented by the following formula (a1), a maleimide compound represented by the following formula (a2), a maleimide compound represented by the following formula (a3), and the like.
- Specific examples of the maleimide compound represented by the formula (a1) include BMI-1500 (manufactured by Designer Molecules Co., Ltd., molecular weight 1500).
- maleimide compound represented by the formula (a2) examples include BMI-1700 (manufactured by Designer Molecules, molecular weight 1700), BMI-1400 (manufactured by Diginer Molecules, molecular weight 1400), and the like.
- Specific examples of the maleimide compound represented by the formula (a3) include BMI-3000 (manufactured by Designa Molecules Co., Ltd., molecular weight 3000).
- n represents an integer of 1 or more and 10 or less.
- n represents an integer of 1 or more and 10 or less.
- n represents an integer of 1 or more and 10 or less.
- the lower limit of the weight average molecular weight (Mw) of the maleimide compound is not particularly limited, but is preferably Mw 400 or more, particularly preferably Mw 800 or more. When Mw is equal to or more than the lower limit, it is possible to suppress the occurrence of tackiness in the insulating layer.
- the upper limit of Mw is not specifically limited, Mw4000 or less is preferable and Mw2500 or less is more preferable. When Mw is not more than the above upper limit value, handling properties are improved during the production of the insulating layer, and it becomes easy to form the insulating layer.
- the Mw of the maleimide compound can be measured, for example, by GPC (gel permeation chromatography, standard substance: converted to polystyrene).
- the maleimide compound a reaction product of a maleimide compound and an amine compound can be used.
- the amine compound at least one selected from an aromatic diamine compound and a monoamine compound can be used.
- aromatic diamine compound examples include o-dianisidine, o-tolidine, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, 2,2 ′.
- Examples of the monoamine compound include o-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzoic acid, m-aminobenzoic acid, p-aminobenzoic acid, o-aminobenzenesulfonic acid, m-amino.
- the reaction between the maleimide compound and the amine compound can be performed in an organic solvent.
- the reaction temperature is, for example, 70 to 200 ° C.
- the reaction time is, for example, 0.1 to 10 hours.
- the content of the maleimide compound contained in the thermosetting resin composition is not particularly limited, but the total solid content of the thermosetting resin composition (that is, the component excluding the solvent) is 100% by weight. 1.0 wt% or more and 25.0 wt% or less is preferable, and 3.0 wt% or more and 20.0 wt% or less is more preferable.
- the content of the maleimide compound is within the above range, the balance of low heat shrinkage and chemical resistance of the obtained insulating layer can be further improved.
- the thermosetting resin composition of this embodiment can contain an epoxy resin.
- the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin (4,4 ′-(1 , 3-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4 ′-(1,4-phenylenediisopridiene) bisphenol type epoxy resin), bisphenol Z type epoxy resin (4 , 4'-cyclohexyldiene bisphenol type epoxy resin); phenol novolak type epoxy resin, cresol novolak type epoxy resin, tetraphenol group ethane type novolak type epoxy resin, condensed ring aromatic carbonization Novolac type epoxy resins such as novolak type epoxy resins having an elementary structure; biphenyl type epoxy resins; aralkyl type epoxy resins such as xylylene type epoxy resins and biphenyl aralky
- epoxy resin one of these may be used alone, two or more may be used in combination, and one or two or more thereof and a prepolymer thereof may be used in combination.
- epoxy resins bisphenol type epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, aralkyl type epoxy resin, naphthalene type epoxy resin, from the viewpoint of further improving the heat resistance and insulation reliability of the obtained printed wiring board
- At least one or more of anthracene type epoxy resin and dicyclopentadiene type epoxy resin are preferable, and at least of aralkyl type epoxy resin, novolak type epoxy resin having condensed ring aromatic hydrocarbon structure and naphthalene type epoxy resin
- aralkyl type epoxy resin, novolak type epoxy resin having condensed ring aromatic hydrocarbon structure and naphthalene type epoxy resin One type or two or more types are more preferable.
- the bisphenol A type epoxy resin “Epicoat 828EL” and “YL980” manufactured by Mitsubishi Chemical Corporation can be used.
- the bisphenol F type epoxy resin “jER806H” and “YL983U” manufactured by Mitsubishi Chemical Corporation, “EPICLON 830S” manufactured by DIC Corporation, and the like can be used.
- the bifunctional naphthalene type epoxy resin “HP4032”, “HP4032D”, “HP4032SS” manufactured by DIC, and the like can be used.
- the tetrafunctional naphthalene type epoxy resin “HP4700” and “HP4710” manufactured by DIC, etc. can be used.
- naphthol type epoxy resin “ESN-475V” manufactured by Nippon Steel Chemical Co., Ltd., “NC7000L” manufactured by Nippon Kayaku Co., Ltd. and the like can be used.
- Aralkyl epoxy resins include “NC3000”, “NC3000H”, “NC3000L”, “NC3000S”, “NC3000S-H”, “NC3100” manufactured by Nippon Kayaku Co., Ltd., “ESN-170” manufactured by Nippon Steel Chemical Co., Ltd. And “ESN-480” can be used.
- biphenyl type epoxy resin “YX4000”, “YX4000H”, “YX4000HK”, “YL6121”, etc. manufactured by Mitsubishi Chemical Corporation can be used.
- anthracene type epoxy resin “YX8800” manufactured by Mitsubishi Chemical Corporation can be used.
- naphthylene ether type epoxy resin “HP6000”, “EXA-7310”, “EXA-7311”, “EXA-7311L”, “EXA7311-G3” and the like manufactured by DIC can be used.
- aralkyl type epoxy resins are particularly preferable.
- the moisture absorption solder heat resistance and flame retardancy of the cured resin film can be further improved.
- the aralkyl type epoxy resin is represented by the following general formula (1), for example.
- a and B represent aromatic rings such as a benzene ring, a biphenyl structure, and a naphthalene structure. Hydrogen in the aromatic rings of A and B may be substituted. Examples of the substituent include a methyl group, an ethyl group, a propyl group, a phenyl group, etc. n represents a repeating unit, for example, an integer of 1 to 10.
- aralkyl type epoxy resin examples include the following formulas (1a) and (1b).
- n an integer of 1 to 5
- n an integer of 1 to 5
- epoxy resin other than the above a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, heat resistance and low thermal expansibility can further be improved.
- the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a novolak type epoxy resin having a naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, tetraphen, or other condensed ring aromatic hydrocarbon structure.
- the novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is excellent in low thermal expansion because a plurality of aromatic rings can be regularly arranged.
- the glass transition temperature is also high, it is excellent in heat resistance.
- the molecular weight of the repeating structure is large, the flame retardancy is excellent as compared with the conventional novolac type epoxy resin.
- the novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is a resin obtained by epoxidizing a novolak type phenol resin synthesized from a phenol compound, an aldehyde compound, and a condensed ring aromatic hydrocarbon compound.
- the phenol compound is not particularly limited, and examples thereof include phenol; cresols such as o-cresol, m-cresol, and p-cresol; 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2, Xylenols such as 6-xylenol, 3,4-xylenol, 3,5-xylenol; trimethylphenols such as 2,3,5 trimethylphenol; ethyl such as o-ethylphenol, m-ethylphenol, p-ethylphenol Phenols; alkylphenols such as isopropylphenol, butylphenol and t-butylphenol; phenylphenols such as o-phenylphenol, m-phenylphenol and p-phenylphenol; 1,5-dihydroxynaphthalene and 1,6-dihydroxynaphtha And naphthalenediols such as
- Aldehyde compounds are not particularly limited, for example, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, Examples include benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde, dihydroxybenzaldehyde, trihydroxybenzaldehyde, 4-hydroxy-3-methoxyaldehyde paraformaldehyde and the like.
- the condensed ring aromatic hydrocarbon compound is not particularly limited, but for example, naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene; anthracene derivatives such as methoxyanthracene; phenanthrene derivatives such as methoxyphenanthrene; other tetracene derivatives; chrysene derivatives; pyrene derivatives; A triphenylene derivative; a tetraphen derivative and the like.
- naphthalene derivatives such as methoxynaphthalene and butoxynaphthalene
- anthracene derivatives such as methoxyanthracene
- phenanthrene derivatives such as methoxyphenanthrene
- other tetracene derivatives chrysene derivatives
- chrysene derivatives pyrene derivatives
- a triphenylene derivative a tetraphen derivative and the like.
- the novolak-type epoxy resin having a condensed ring aromatic hydrocarbon structure is not particularly limited.
- methoxynaphthalene-modified orthocresol novolak epoxy resin, butoxynaphthalene-modified meta (para) cresol novolak epoxy resin, and methoxynaphthalene-modified novolak epoxy resin Etc are preferable.
- Ar is a condensed ring aromatic hydrocarbon group
- Rs may be the same or different from each other, hydrogen atom; hydrocarbon group having 1 to 10 carbon atoms; halogen An element; an aryl group such as a phenyl group or a benzyl group; and a group selected from organic groups including glycidyl ether, wherein n, p, and q are integers of 1 or more, and the values of p and q are determined for each repeating unit. May be the same or different.
- Ar in the formula (V) may have a structure represented by (Ar1) to (Ar4) in the following formula (VI).
- Rs in the above formula (VI) may be the same as or different from each other; a hydrogen atom; a hydrocarbon group having 1 to 10 carbon atoms; a halogen element; an aryl group such as a phenyl group or a benzyl group; And a group selected from organic groups including glycidyl ether.
- naphthalene type epoxy resins such as naphthol type epoxy resin, naphthalene diol type epoxy resin, bifunctional to tetrafunctional naphthalene type epoxy resin, naphthylene ether type epoxy resin and the like are preferable. Thereby, the heat resistance and low thermal expansibility of the printed wiring board to be obtained can be further improved.
- the naphthalene type epoxy resin refers to a resin having a naphthalene ring skeleton and having two or more glycidyl groups.
- the naphthalene type epoxy resin is particularly excellent in low thermal expansion and low thermal shrinkage. Further, since the polycyclic structure has a high rigidity effect and the glass transition temperature is particularly high, the change in heat shrinkage before and after reflow is small.
- the naphthol type epoxy resin for example, the following general formula (VII-1), as the naphthalene diol type epoxy resin, the following formula (VII-2), as the bifunctional or tetrafunctional naphthalene type epoxy resin, the following formula (VII-3)
- Examples of (VII-4) (VII-5) and naphthylene ether type epoxy resin can be represented by the following general formula (VII-6).
- N represents an average number of 1 to 6, and R represents a glycidyl group or a hydrocarbon group having 1 to 10 carbon atoms.
- R 1 represents a hydrogen atom or a methyl group
- R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group, a naphthalene group, or a glycidyl ether group-containing naphthalene group.
- O and m are each an integer of 0 to 2, and either o or m is 1 or more.
- the lower limit of the weight average molecular weight (Mw) of the epoxy resin is not particularly limited, but is preferably 300 or more, more preferably 800 or more. It can suppress that tackiness arises in the hardened
- the upper limit of Mw is not particularly limited, but is preferably Mw 20,000 or less, and more preferably Mw 15,000 or less. When Mw is not more than the above upper limit value, the handling property is improved and it becomes easy to form a resin film.
- the Mw of the epoxy resin can be measured by GPC, for example.
- the lower limit of the content of the epoxy resin is preferably 3% by weight or more, more preferably 4% by weight or more, more preferably 5% by weight with respect to 100% by weight of the entire thermosetting resin composition (total solid content excluding the solvent).
- the above is more preferable.
- the upper limit of the content of the epoxy resin is not particularly limited with respect to the entire thermosetting resin composition (total solid content excluding the solvent), but is preferably 40% by weight or less, for example, 30% by weight or less. More preferred is 20% by weight or less.
- thermosetting resin composition refers to the whole component except the solvent contained in a thermosetting resin composition. The same applies hereinafter.
- the thermosetting resin composition of the present embodiment can contain a cyanate resin.
- the cyanate resin is a resin having a cyanate group (—O—CN) in the molecule, and a resin having two or more cyanate groups in the molecule can be used.
- a cyanate resin is not particularly limited. For example, it can be obtained by reacting a halogenated cyanide compound with phenols or naphthols, and prepolymerizing by a method such as heating as necessary.
- the commercial item prepared in this way can also be used.
- the linear expansion coefficient of the cured resin film can be reduced.
- the electrical properties (low dielectric constant, low dielectric loss tangent), mechanical strength, etc. of the cured resin film can be enhanced.
- cyanate resin examples include novolak type cyanate resin; bisphenol type cyanate resin, bisphenol E type cyanate resin, bisphenol type cyanate resin such as tetramethylbisphenol F type cyanate resin; reaction of naphthol aralkyl type phenol resin and cyanogen halide.
- Naphthol aralkyl type cyanate resin obtained by the following: dicyclopentadiene type cyanate resin; biphenylalkyl type cyanate resin.
- novolak type cyanate resins and naphthol aralkyl type cyanate resins are preferable, and novolak type cyanate resins are more preferable.
- the novolac-type cyanate resin the crosslink density of the cured product of the resin film is increased, and the heat resistance is improved.
- novolac-type cyanate resin forms a triazine ring after the curing reaction. Furthermore, it is considered that novolak-type cyanate resin has a high benzene ring ratio due to its structure and is easily carbonized. Moreover, the cured product of the resin film containing the novolak type cyanate resin has excellent rigidity. Therefore, the heat resistance of the cured resin film can be further improved.
- novolac-type cyanate resin for example, a resin represented by the following general formula (I) can be used.
- the average repeating unit n of the novolak cyanate resin represented by the general formula (I) is an arbitrary integer.
- the average repeating unit n is not particularly limited, but is preferably 1 or more, and more preferably 2 or more. When the average repeating unit n is not less than the above lower limit, the heat resistance of the novolak cyanate resin is improved, and it is possible to suppress the demerization and volatilization of the low mer during heating.
- the average repeating unit n is not particularly limited, but is preferably 10 or less, more preferably 7 or less. It can suppress that melt viscosity becomes it high that n is below the said upper limit, and can improve the moldability of a resin film.
- a naphthol aralkyl type cyanate resin represented by the following general formula (II) is also preferably used.
- the naphthol aralkyl type cyanate resin represented by the following general formula (II) includes, for example, naphthols such as ⁇ -naphthol or ⁇ -naphthol, p-xylylene glycol, ⁇ , ⁇ '-dimethoxy-p-xylene, 1,4 A resin obtained by condensing a naphthol aralkyl type phenol resin obtained by reaction with di (2-hydroxy-2-propyl) benzene or the like and cyanogen halide.
- the repeating unit n in the general formula (II) is preferably an integer of 10 or less.
- the repeating unit n is 10 or less, a more uniform resin film can be obtained.
- intramolecular polymerization hardly occurs at the time of synthesis, the liquid separation property at the time of washing with water tends to be improved, and the decrease in yield tends to be prevented.
- each R independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more and 10 or less.
- one kind of cyanate resin may be used alone, two or more kinds may be used in combination, and one kind or two or more kinds and a prepolymer thereof may be used in combination.
- the lower limit of the content of the cyanate resin is, for example, preferably 1% by weight or more, more preferably 2% by weight or more, and further more preferably 3% by weight or more with respect to 100% by weight of the total solid content of the thermosetting resin composition. preferable. It is possible to achieve low linear expansion and high elastic modulus of the cured resin film.
- the upper limit of the content of the cyanate resin is not particularly limited with respect to 100% by weight of the total solid content of the thermosetting resin composition, but is preferably 30% by weight or less, and more preferably 25% by weight or less. 20% by weight or less is more preferable. Heat resistance and moisture resistance can be improved. Further, when the content of the cyanate resin is within the above range, the storage elastic modulus E ′ of the cured product of the resin film can be further improved.
- thermosetting resin composition of this embodiment contains a benzoxazine compound.
- the benzoxazine compound contains a group having an unsaturated double bond.
- the group having an unsaturated double bond is preferably an alkenyl group having 3 to 14 carbon atoms, more preferably an allyl group.
- the benzoxazine compound used in the present embodiment is represented by the following general formula (B-1) or general formula (B-2). These may be used alone or in combination of two or more.
- R 1 and R 2 each independently represents a hydrogen atom, Represents a lower alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, or a monovalent to tetravalent organic group, wherein at least one of R 1 and R 2 represents an alkenyl group having 3 to 14 carbon atoms. (However, when p is an integer of 2 or more and 4 or less, R 2 may be the same or different.) Z represents a monovalent to tetravalent organic group.)
- each b independently represents an integer of 1 or more and 4 or less
- q represents an integer of 1 or more and 4 or less
- R 3 independently represents a hydrogen atom or lower alkyl.
- X 1 represents a monovalent to tetravalent organic group, at least one of R 3 and X 1
- q may be 2.
- b may be 1.
- the monovalent to tetravalent organic group is not particularly limited.
- the alkyl group, the alkylene group, the oxygen atom, the thiol, the sulfur atom, the sulfoxide, and the sulfone for example, the following chemical formula Any of these may be used.
- biphenyl, diphenylmethane, diphenylisopropane, diphenyl sulfide, diphenyl sulfoxide, diphenyl sulfone, and diphenyl ketone may be used as the monovalent to tetravalent organic group in the general formula (B-2). These may be used alone or in combination of two or more.
- R 1 in the above chemical formula is the same as R 1 defined in the general formula (B-1), specifically, a hydrogen atom, a lower alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or an aralkyl group. Represents.
- the benzoxazine compound represented by the general formula (B-1) may be a compound having a structure represented by the following general formula (B-3).
- Z represents a direct bond, an alkylene group having 1 to 10 carbon atoms, C ⁇ O, O, S, S ⁇ O or O ⁇ S ⁇ O.
- R 1 and / R 2 is a group having an alkenyl group having 3 to 14 carbon atoms, wherein R 1 and R 2 in the general formula (B-3) are R defined in the general formula (B-1). 1 and R 2 are the same.
- benzoxazine compound represented by the general formula (B-3) is represented by the following general formula.
- R 1 and R 2 are the same as R 1 and R 2 defined in the general formula (B-1).
- R 1 may be an alkenyl group having 3 to 14 carbon atoms, but is preferably an allyl group.
- R 2 may be a hydrogen atom.
- the benzoxazine compound represented by the general formula (B-2) may have a structure represented by the following general formula (B-4).
- c each independently represents an integer of 1 to 4
- X 2 is a direct bond, an alkylene group having 1 to 10 carbon atoms, C ⁇ O, O (oxygen atom).
- S sulfur atom
- S ⁇ O sulfinyl group
- O oxygen atom
- R is a group having an alkenyl group having 3 to 14 carbon atoms.
- c may be 1, for example.
- R may be an allyl group.
- X 2 may be an alkylene group having 1 to 10 carbon atoms.
- the lower limit of the content of the benzoxazine compound is not particularly limited.
- the lower limit is 1% by weight or more. It is preferably 2% by weight or more, more preferably 3% by weight or more. Thereby, the low heat-shrinkage property and chemical resistance of the hardened
- the upper limit of the content of the benzoxazine compound is not particularly limited.
- the total solid content of the thermosetting resin composition is 100% by weight, it is preferably 25% by weight or less, and 23% by weight or less. Is more preferable, and 20% by weight or less is more preferable. Thereby, the reaction efficiency with another compound can be improved.
- the content of the maleimide compound contained in the thermosetting resin composition of the present embodiment is preferably 35% by weight or more and 80% by weight or less with respect to 100% by weight of the total of the maleimide compound and the benzoxazine compound.
- epoxy equivalent / phenol equivalent at the time of ring opening is not particularly limited, but is preferably 0.05 or more and 20 or less, and more preferably 0.1 or more and 15 or less. 0.5 to 10 is more preferable, and 1 to 5 is most preferable.
- the molar ratio of cyanate resin: benzoxazine compound is not particularly limited, but for example, 99.9: 0.1 to 0.1: 99.9 is preferable. 90:10 to 0.5: 99.5 is more preferable, 65:35 to 1:99 is more preferable, and 50:50 to 5:95 is most preferable.
- the thermosetting resin composition of this embodiment can contain an inorganic filler.
- the inorganic filler include silicates such as talc, fired clay, unfired clay, mica and glass; oxides such as titanium oxide, alumina, boehmite, silica and fused silica; calcium carbonate, magnesium carbonate and hydro Carbonates such as talcite; hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide; sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite; zinc borate, barium metaborate, boric acid Examples thereof include borates such as aluminum, calcium borate, and sodium borate; nitrides such as aluminum nitride, boron nitride, silicon nitride, and carbon nitride; titanates such as strontium titanate and barium titanate.
- talc, alumina, glass, silica, mica, aluminum hydroxide, and magnesium hydroxide are preferable, and silica is particularly preferable.
- the inorganic filler one of these may be used alone, or two or more may be used in combination.
- the lower limit of the average particle diameter of the inorganic filler is not particularly limited, for example, 0.01 ⁇ m or more is preferable, and 0.05 ⁇ m or more is more preferable. Thereby, it can suppress that the viscosity of the varnish of the said thermosetting resin becomes high, and can improve the workability
- the upper limit of the average particle diameter of the inorganic filler is not particularly limited, but is preferably 5.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, and further preferably 1.0 ⁇ m or less. Thereby, phenomena, such as sedimentation of the inorganic filler in the varnish of the said thermosetting resin, can be suppressed, and a more uniform resin film can be obtained.
- the average particle size of the inorganic filler is determined by measuring the particle size distribution of the particles on a volume basis using, for example, a laser diffraction particle size distribution measuring apparatus (LA-500, manufactured by HORIBA), and the median diameter (D50 ) May be the average particle size.
- LA-500 laser diffraction particle size distribution measuring apparatus
- D50 median diameter
- the inorganic filler is not particularly limited, but an inorganic filler having a monodispersed average particle diameter may be used, or an inorganic filler having a polydispersed average particle diameter may be used. Furthermore, one type or two or more types of inorganic fillers having an average particle size of monodispersed and / or polydispersed may be used in combination.
- the inorganic filler preferably contains silica particles.
- the average particle diameter of the silica particles is not particularly limited, but is preferably 5.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 4.0 ⁇ m or less, and further preferably 0.2 ⁇ m or more and 2.0 ⁇ m or less. Thereby, the filling property of the inorganic filler can be further improved.
- the lower limit of the content of the inorganic filler is not particularly limited with respect to 100% by weight of the total solid content of the thermosetting resin composition, for example, preferably 50% by weight or more, more preferably 55% by weight or more, 60% by weight or more is more preferable. Thereby, the cured product of the resin film can have particularly low thermal expansion and low water absorption. Further, the warpage of the semiconductor package can be suppressed.
- the upper limit of the content of the inorganic filler is not particularly limited with respect to 100% by weight of the total solid content of the thermosetting resin composition, but is preferably 90% by weight or less, for example, 85% by weight or less. More preferred is 80% by weight or less. Thereby, the workability of the cured product of the resin film can be improved.
- the thermosetting resin composition of the present embodiment can contain a curing agent.
- the curing agent is not particularly limited.
- tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2- Ethyl-4-methylimidazole (EMI24), 2-phenyl-4-methylimidazole (2P4MZ), 2-phenylimidazole (2PZ), 2-phenyl-4-methyl-5-hydroxyimidazole (2P4MHZ), 1-benzyl- imidazole compounds such as 2-phenylimidazole (1B2PZ); catalyst type curing agents include Lewis acids such as BF 3 complex.
- aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylenediamine (MXDA), m-phenylenediamine, p-phenylenediamine, o-xylenediamine, 4,4′- Diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 1,5-diaminonaphthalene, 4,4'- (P-phenylenediisopropylidene) dianiline, 2,2- [4- (4-aminophenoxy) phenyl] propane, 4,4′-diamino-3,3′-dimethyldiphenylmethane, 4,4′-diamino-3 , 3
- a phenol resin-based curing agent such as a novolak type phenol resin or a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; a melamine resin such as a methylol group-containing melamine resin;
- a condensation type curing agent may also be used. These may be used alone or in combination of two or more.
- the phenol resin-based curing agent is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
- Aralkyl resins such as phenol aralkyl resins, naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F Etc.
- The. These may be used alone or in combination of two or more.
- a phenol resin-based curing agent having a hydroxyl group equivalent of 90 g / eq or more and 250 g / eq or less may be used.
- the weight average molecular weight of the phenol resin is not particularly limited, but is preferably 4 ⁇ 10 2 to 1.8 ⁇ 10 3 and more preferably 5 ⁇ 10 2 to 1.5 ⁇ 10 3 .
- the weight average molecular weight equal to or higher than the above lower limit value, problems such as tackiness occur in the prepreg, and by making the above upper limit value or less, the impregnation property to the fiber base material is improved at the time of prepreg production, A more uniform product can be obtained.
- the lower limit of the content of the curing agent is not particularly limited with respect to 100% by weight of the total solid content of the thermosetting resin composition, but is preferably 0.01% by weight or more, for example, 0.05% by weight or more. More preferred is 0.2% by weight or more.
- the upper limit of the content of the curing agent is not particularly limited with respect to 100% by weight of the total solid content of the thermosetting resin composition, but is preferably 15% by weight or less, and more preferably 10% by weight or less. 8% by weight or less is more preferable.
- the preservability of a prepreg can be improved more as content of a hardening
- thermosetting resin composition of this embodiment may contain a hardening accelerator, for example. Thereby, the sclerosis
- a hardening accelerator the compound which accelerates
- a hardening accelerator for example, zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, zinc octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III)
- Organic metal salts such as triethylamine, tributylamine, tertiary amines such as diazabicyclo [2,2,2] octane, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, Imidazoles such as 2-phenyl-4-ethylimidazole, 2-phenyl-4-methyl-5-hydroxyimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxyimidazole , Phenol, bisphe Lumpur A, phenol
- the onium salt compound used as a curing accelerator is not particularly limited, for example, a compound represented by the following general formula (2) can be used.
- P is a phosphorus atom
- R 3 , R 4 , R 5 and R 6 are each an organic group having a substituted or unsubstituted aromatic ring or heterocyclic ring, or a substituted or unsubstituted group.
- An aliphatic group which may be the same or different from each other
- a ⁇ is an n (n ⁇ 1) -valent proton donor anion having at least one proton that can be released outside the molecule in the molecule. Or a complex anion thereof)
- the lower limit of the content of the curing accelerator is, for example, preferably 0.01% by weight or more, more preferably 0.1% by weight or more with respect to 100% by weight of the total solid content of the thermosetting resin composition. .
- the upper limit value of the content of the curing accelerator is, for example, preferably 5% by weight or less and more preferably 1% by weight or less with respect to 100% by weight of the total solid content of the thermosetting resin composition.
- the thermosetting resin composition of this embodiment may contain a coupling agent.
- the coupling agent may be added directly when preparing the thermosetting resin composition, or may be added in advance to the inorganic filler.
- Use of a coupling agent can improve the wettability of the interface between the inorganic filler and each resin. Therefore, it is preferable to use a coupling agent, and the heat resistance of the cured resin film can be improved.
- adhesiveness with copper foil can be improved by using a coupling agent. Furthermore, since the moisture absorption resistance can be improved, the adhesion with the copper foil can be maintained even after the humidity environment.
- the coupling agent examples include silane coupling agents such as epoxy silane coupling agents, cationic silane coupling agents, and amino silane coupling agents, titanate coupling agents, and silicone oil type coupling agents.
- a coupling agent may be used individually by 1 type, and may use 2 or more types together.
- the coupling agent may contain a silane coupling agent.
- the silane coupling agent is not particularly limited, and examples thereof include epoxy silane, amino silane, alkyl silane, ureido silane, mercapto silane, and vinyl silane.
- the compound examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, and N- ⁇ (aminoethyl) ⁇ -amino.
- the content of the coupling agent can be appropriately adjusted with respect to the specific surface area of the inorganic filler.
- the lower limit of the content of such a coupling agent is, for example, preferably 0.01% by weight or more, more preferably 0.05% by weight or more with respect to 100% by weight of the total solid content of the thermosetting resin composition. preferable.
- the upper limit of the content of the coupling agent is, for example, preferably 2% by weight or less, and more preferably 1% by weight or less with respect to 100% by weight of the total solid content of the thermosetting resin composition.
- thermosetting resin composition of the present embodiment is a dye such as green, red, blue, yellow, and black, a pigment such as a black pigment, and a dye within a range that does not impair the object of the present invention.
- a dye such as green, red, blue, yellow, and black
- a pigment such as a black pigment
- a dye within a range that does not impair the object of the present invention.
- One or more colorants, low-stress agents, antifoaming agents, leveling agents, UV absorbers, foaming agents, antioxidants, flame retardants, ion scavengers, and other components thermosetting resins, curing agents, inorganic fillers
- Additives other than materials, curing accelerators, and coupling agents may be included. These may be used alone or in combination of two or more.
- pigments examples include kaolin, synthetic iron oxide red, cadmium yellow, nickel titanium yellow, strontium yellow, hydrous chromium oxide, chromium oxide, cobalt aluminate, synthetic ultramarine blue, etc., polycyclic pigments such as phthalocyanine, azo pigments Etc.
- the dye examples include isoindolinone, isoindoline, quinophthalone, xanthene, diketopyrrolopyrrole, perylene, perinone, anthraquinone, indigoid, oxazine, quinacridone, benzimidazolone, violanthrone, phthalocyanine, azomethine and the like.
- the varnish-like thermosetting resin composition can contain a solvent.
- the solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethyl acetate, cyclohexane, heptane, cyclohexane, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve, carbitol, anisole, And organic solvents such as N-methylpyrrolidone. These may be used alone or in combination of two or more.
- the solid content of the thermosetting resin composition is preferably, for example, 30% by weight to 80% by weight, and more preferably 40% by weight to 70% by weight. . Thereby, the thermosetting resin composition excellent in workability
- the varnish-like thermosetting resin composition comprises the above-described components, for example, an ultrasonic dispersion method, a high-pressure collision dispersion method, a high-speed rotation dispersion method, a bead mill method, a high-speed shear dispersion method, and a rotation and revolution dispersion method. It can prepare by melt
- the resin film of the present embodiment can be obtained by forming a film of the thermosetting resin composition having a varnish shape.
- the resin film of this embodiment can be obtained by removing the solvent from the coating film obtained by coating a varnish-like thermosetting resin composition.
- the solvent content can be 5% by weight or less based on the entire resin film.
- a step of removing the solvent may be performed under conditions of 100 ° C. to 150 ° C. and 1 minute to 5 minutes. Thereby, it is possible to sufficiently remove the solvent while suppressing the curing of the resin film containing the thermosetting resin.
- FIG. 1 is a cross-sectional view showing an example of the configuration of the resin film with carrier 100 in the present embodiment.
- the resin film with a carrier 100 of the present embodiment includes a carrier base material 12 and a resin film 10 formed on the carrier base material 12 and formed from the thermosetting resin composition. Can be provided. Thereby, the handleability of the resin film 10 can be improved.
- the resin film with carrier 100 may be a roll shape that can be wound or a single wafer shape such as a rectangular shape.
- a polymer film or a metal foil can be used as the carrier substrate 12.
- the polymer film is not particularly limited.
- polyolefin such as polyethylene and polypropylene
- polyester such as polyethylene terephthalate and polybutylene terephthalate
- release paper such as polycarbonate and silicone sheet
- heat resistance such as fluorine resin and polyimide resin.
- a thermoplastic resin sheet having The metal foil is not particularly limited.
- a sheet made of polyethylene terephthalate is most preferable because it is inexpensive and easy to adjust the peel strength.
- a sheet made of such a material as the carrier substrate 12 it becomes easy to peel the resin film 10 from the carrier substrate 12 with an appropriate strength.
- the lower limit of the thickness of the resin film 10 is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more. Thereby, the mechanical strength of the resin film 10 can be increased.
- the upper limit value of the thickness of the resin film 10 is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 100 ⁇ m or less. Thereby, the semiconductor device can be thinned.
- the thickness of the carrier substrate 12 is not particularly limited, but is preferably 10 to 100 ⁇ m, and more preferably 10 to 70 ⁇ m. Thereby, the handleability at the time of manufacturing the resin film 100 with a carrier becomes more favorable.
- the resin film with carrier 100 of the present embodiment may be a single layer or a multilayer, and may include one or more types of resin films 10. When the resin sheet is multi-layered, the resin sheets may be composed of the same kind or different kinds.
- the resin film with carrier 100 may have a protective film on the outermost layer side on the resin film 10.
- the method for forming the resin film with carrier 100 is not particularly limited.
- a coating film is formed by applying a varnish-like thermosetting resin composition on the carrier substrate 12 using various coater apparatuses, and then the coating film is appropriately dried.
- a method for removing the solvent can be used.
- the resin substrate of this embodiment can include an insulating layer composed of a cured product of the thermosetting resin composition.
- a resin substrate can be configured not to contain glass fibers and can be used for a printed wiring board.
- the prepreg of the present embodiment is formed by impregnating a fiber base material with the thermosetting resin composition.
- the prepreg can be used as a sheet-like material obtained by impregnating a thermosetting resin composition into a fiber substrate and then semi-curing the thermosetting resin composition.
- the sheet-like material having such a structure is excellent in various properties such as dielectric properties, mechanical and electrical connection reliability under high temperature and high humidity, and is suitable for manufacturing an insulating layer of a printed wiring board.
- the method for impregnating the fiber base material with the thermosetting resin composition is not particularly limited.
- a method in which a thermosetting resin composition is dissolved in a solvent to prepare a resin varnish, a fiber base material is immersed in the resin varnish, and a method in which the resin varnish is applied to the fiber base material with various coaters examples thereof include a method of spraying the resin varnish onto the fiber substrate by spraying, a method of laminating both surfaces of the fiber substrate with the resin film formed from the thermosetting resin composition, and the like.
- the prepreg can be used, for example, to form an insulating layer in a build-up layer or an insulating layer in a core layer in a printed wiring board.
- the prepreg is used to form an insulating layer in the core layer of the printed wiring board, for example, two or more prepregs are stacked, and the obtained laminate is heat-cured to form an insulating layer for the core layer. You can also.
- the metal-clad laminate has a metal layer disposed on at least one surface of the cured product of the prepreg.
- the metal-clad laminated board manufacturing method using a prepreg is as follows, for example. Two or more prepregs or a laminate of two or more prepregs stacked on top and bottom surfaces or one side of the laminate, metal foils are stacked and bonded under high vacuum conditions using a laminator or becquerel device, or as they are Stack metal foil on both sides or one side. Further, when two or more prepregs are laminated, the metal foil is overlaid on the outermost upper and lower surfaces or one surface of the laminated prepregs.
- a metal-clad laminate can be obtained by heat-pressing a laminate in which a prepreg and a metal foil are stacked. Here, it is preferable to continue the pressurization until the end of cooling at the time of heat-pressure molding.
- the metal constituting the metal foil for example, copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, gold, gold alloy, zinc, zinc alloy, nickel, nickel alloy, tin
- the metal constituting the metal foil 105 is preferably copper or a copper alloy because of its excellent conductivity, easy circuit formation by etching, and low cost. That is, the metal foil 105 is preferably a copper foil. Further, as the metal foil, a metal foil with a carrier or the like can also be used.
- the thickness of the metal foil is preferably from 0.5 ⁇ m to 20 ⁇ m, and more preferably from 1.5 ⁇ m to 18 ⁇ m.
- the fiber base material used for this embodiment is demonstrated.
- Glass fiber base materials such as a glass woven fabric and a glass nonwoven fabric
- Polyamide-type resin fibers such as a polyamide resin fiber, an aromatic polyamide resin fiber, and a wholly aromatic polyamide resin fiber
- Polyester resin Polyester resin fibers such as fibers, aromatic polyester resin fibers and wholly aromatic polyester resin fibers
- synthetic fiber base materials composed of woven or non-woven fabrics mainly composed of either polyimide resin fibers or fluororesin fibers
- a glass fiber base material is preferable. Thereby, a resin substrate with low water absorption, high strength, and low thermal expansion can be obtained.
- the thickness of a fiber base material is not specifically limited, 5 micrometers or more and 150 micrometers or less are preferable, 10 micrometers or more and 100 micrometers or less are more preferable, and 12 micrometers or more and 90 micrometers or less are more preferable.
- the handling property at the time of producing the prepreg can be further improved.
- the thickness of the fiber base material is not more than the above upper limit, the impregnation property of the thermosetting resin composition in the fiber base material can be improved, and the occurrence of strand voids and a decrease in insulation reliability can be suppressed. Further, it is possible to facilitate formation of a through hole by a laser such as carbon dioxide, UV, or excimer.
- strength of a fiber base material or a prepreg can be improved as the thickness of a fiber base material is more than the said lower limit.
- the handling property is improved, so that the prepreg can be easily manufactured and the warpage of the resin substrate can be suppressed.
- the glass fiber base material As said glass fiber base material, the glass formed with 1 type, or 2 or more types of glass chosen from E glass, S glass, D glass, T glass, NE glass, UT glass, L glass, HP glass, and quartz glass, for example A fiber base material is preferably used.
- the resin film of the present embodiment is a resin film formed from the thermosetting resin composition.
- the upper limit value of the average linear expansion coefficient in the plane direction (XY direction) calculated in the range of 30 ° C. to 240 ° C. of the cured resin film according to the present embodiment is, for example, preferably 40 ppm / ° C. or less, and 30 ppm / ° C. The following is more preferable, and 20 ppm / ° C. or less is further preferable.
- the curvature of the printed wiring board during a manufacturing process can be reduced. Further, the warpage of the obtained semiconductor package can be reduced. Further, since the stress accumulated in the obtained semiconductor package can be reduced, the connection reliability is excellent.
- the lower limit value of the average linear expansion coefficient is not particularly limited, but may be, for example, 1 ppm / ° C. or higher.
- the upper limit value of the average linear expansion coefficient ( ⁇ 1) in the plane direction (XY direction) of the cured product of the resin film of the present embodiment calculated in the range of 30 ° C. to 150 ° C. is preferably, for example, 30 ppm / ° C. or less. 25 ppm / ° C. or less is more preferable, and 15 ppm / ° C. or less is more preferable.
- the curvature of the printed wiring board during a manufacturing process can be reduced. Further, the warpage of the obtained semiconductor package can be reduced.
- the lower limit value of the average linear expansion coefficient ( ⁇ 1) is not particularly limited, but may be, for example, 1 ppm / ° C. or more.
- the upper limit value of the average linear expansion coefficient ( ⁇ 2) in the plane direction (XY direction) calculated in the range of 150 ° C. to 240 ° C. of the cured product of the resin film of the present embodiment is preferably 40 ppm / ° C. or less, for example. 35 ppm / ° C. or less is more preferable, and 30 ppm / ° C. or less is more preferable.
- the curvature of the printed wiring board and the curvature of a semiconductor package at the time of high temperature thermal history can be reduced.
- the lower limit value of the average linear expansion coefficient ( ⁇ 2) is not particularly limited, but may be, for example, 1 ppm / ° C. or more.
- the cured product of the resin film of the present embodiment it is possible to suppress warpage at room temperature (for example, 25 ° C.) and to suppress warpage even during a high temperature thermal history.
- room temperature for example, 25 ° C.
- warpage even during a high temperature thermal history.
- the average linear expansion coefficient calculated in the range of 30 ° C. to 150 ° C. of the cured product of the thermosetting resin composition is ⁇ 1
- the cured product of the thermosetting resin composition is in the range of 150 ° C. to 240 ° C.
- the average coefficient of linear expansion calculated in step ⁇ is ⁇ 2.
- the lower limit of the average linear expansion coefficient ratio ( ⁇ 2 / ⁇ 1) is, for example, preferably 0.7 or more, more preferably 0.8 or more, and further preferably 0.9 or more.
- the balance of the linear expansion coefficient at the time of room temperature and a heat history can be raised,
- the upper limit of the said average linear expansion coefficient ratio ((alpha) 2 / (alpha) 1) is not specifically limited, For example, 3.0 or less Is preferable, 2.8 or less is more preferable, and 2.5 or less is more preferable.
- the curvature of a semiconductor package at the time of a heat history and connection reliability can fully be improved.
- the thermal characteristics of the semiconductor package can be improved.
- the lower limit value of the glass transition temperature of the cured resin film is not particularly limited, but is preferably 140 ° C. or higher, more preferably 200 ° C. or higher, 230 degreeC or more is especially preferable.
- curing material of the resin film excellent in heat resistance is obtained.
- the upper limit value of the glass transition temperature of the cured resin film is not particularly limited, but may be, for example, 400 ° C. or lower.
- the glass transition temperature can be measured using a dynamic viscoelasticity analyzer (DMA).
- the glass transition temperature corresponds to the peak value of the loss tangent tan ⁇ existing in a region of 150 ° C. or higher in a curve obtained by dynamic viscoelasticity measurement under conditions of a temperature rising rate of 5 ° C./min and a frequency of 1 Hz. Temperature.
- the glass transition temperature is 180 ° C.
- the frequency is 1 Hz
- the heating rate is 5 ° C./min. It can be calculated from the measurement result obtained by performing the dynamic viscoelasticity test under the conditions.
- a dynamic viscoelasticity measuring apparatus For example, a DMA apparatus (TA instrument company make, Q800) can be used.
- the average linear expansion coefficient and the glass transition temperature of the thermosetting resin composition are desired by appropriately selecting the type and blending ratio of the components constituting the thermosetting resin composition, respectively.
- use of a benzoxazine compound having an allyl group as a functional group, use of a maleimide compound as a thermosetting resin, and the like are cited as factors for bringing the average linear expansion coefficient and glass transition temperature into a desired numerical range.
- the lower limit value of the peel strength of the cured resin film (cured product of the thermosetting resin composition) with respect to the copper foil is not particularly limited.
- 0.5 kN / m or more is preferable.
- 0.6 kN / m or more is more preferable, and 0.7 kN / m or more is more preferable.
- the upper limit of the peel strength is not particularly limited, but may be, for example, 3 kN / m or less.
- a method for measuring the peel strength with respect to the copper foil for example, a metal-clad laminate is prepared, and the peel between the cured prepreg and the metal foil is measured according to JIS C-6481: 1996. You may use the method of measuring intensity
- the printed wiring board of this embodiment includes an insulating layer composed of a cured product of the above resin film (cured product of a thermosetting resin composition).
- the cured product of the resin film is, for example, a core layer, a buildup layer, a solder resist layer of a normal printed wiring board, a buildup layer, a solder resist layer, or a PLP in a printed wiring board having no core layer. It can be used for an interlayer insulating layer and a solder resist layer of a coreless substrate used, an interlayer insulating layer and a solder resist layer of a MIS substrate, and the like.
- Such an insulating layer is preferably used for an interlayer insulating layer and a solder resist layer constituting the printed wiring board in a large-area printed wiring board used to collectively create a plurality of semiconductor packages. it can.
- the printed wiring board 300 of this embodiment includes an insulating layer made of a cured product of the resin film 10 described above.
- the printed wiring board 300 may have a structure including an insulating layer 301 (core layer) and an insulating layer 401 (solder resist layer).
- the printed wiring board 300 has a structure including an insulating layer 301 (core layer), an insulating layer 305 (build-up layer), and an insulating layer 401 (solder resist layer). It may be.
- Each of these core layer, build-up layer, and solder resist layer can be composed of, for example, a cured product of the resin film of the present embodiment.
- This core layer may be composed of a cured body obtained by curing a prepreg formed by impregnating a fiber base material with the thermosetting resin composition of the present embodiment.
- the cured product formed from the resin film of the present embodiment may not include a fiber substrate such as a glass cloth or a paper substrate. Thereby, it can be set as the structure especially suitable in order to form a buildup layer (interlayer insulation layer) and a soldering resist layer.
- the printed wiring board 300 may be a single-sided printed wiring board, a double-sided printed wiring board, or a multilayer printed wiring board.
- a double-sided printed wiring board is a printed wiring board in which a metal layer 303 is laminated on both sides of an insulating layer 301.
- the multilayer printed wiring board is a printed wiring board in which two or more build-up layers (for example, the insulating layer 305) are stacked on the insulating layer 301 as a core layer by a plated through hole method, a build-up method, or the like. .
- the via hole 307 may be a hole for electrically connecting layers, and may be either a through hole or a non-through hole.
- the via hole 307 may be formed by embedding a metal.
- the buried metal may have a structure covered with an electroless metal plating film 308.
- the metal layer 303 may be, for example, a circuit pattern or an electrode pad.
- the metal layer 303 may have, for example, a metal laminated structure of the metal foil 105 and the electrolytic metal plating layer 309.
- the metal layer 303 is, for example, on the surface of an insulating layer (for example, the insulating layer 301 or the insulating layer 305) formed from the metal foil 105 that has been subjected to chemical treatment or plasma treatment or a cured product of the resin film of the present embodiment. It is formed by the SAP (semi-additive process) method.
- the electroless metal plating film 308 is applied on the metal foil 105 or the insulating layers 301 and 305, the non-circuit forming portion is protected by a plating resist, and the electrolytic metal plating layer 309 is applied by electrolytic plating.
- the metal layer 303 is formed by patterning the electrolytic metal plating film 309 by removal and flash etching.
- the printed wiring board 300 of the present embodiment can be a resin board that does not contain glass fiber.
- the insulating layer 301 that is the core layer may be configured not to contain glass fibers. Even in a semiconductor package using such a resin substrate, the linear expansion coefficient of the cured product of the resin film can be reduced, so that package warpage can be sufficiently suppressed.
- FIGS. 3A and 3B are cross-sectional views illustrating an example of the configuration of the semiconductor device 400.
- the semiconductor device 400 of this embodiment can include a printed wiring board 300 and a semiconductor element mounted on the circuit layer of the printed wiring board 300 or built in the printed wiring board 300.
- the semiconductor device 400 shown in FIG. 3A has a structure in which the semiconductor element 407 is mounted on the circuit layer (metal layer 303) of the printed wiring board 300 shown in FIG.
- the semiconductor device 400 shown in FIG. 3B has a structure in which the semiconductor element 407 is mounted on the circuit layer (metal layer 303) of the printed wiring board 300 shown in FIG.
- the semiconductor element 407 is covered with a sealing material layer 413.
- Such a semiconductor package may have a flip chip structure in which the semiconductor element 407 is electrically connected to the printed wiring board 300 via the solder bump 410 and the metal layer 303.
- the structure of the semiconductor package is not limited to the flip chip connection structure, and may have various structures.
- a fan-out structure may be used.
- the insulating layer formed from the cured resin film of the present embodiment can suppress substrate warpage and substrate cracks in the manufacturing process of the semiconductor package having a fan-out structure.
- the printed wiring board 500 of the present modification is a printed wiring board that does not have a core layer.
- the printed wiring board 500 of the present embodiment can be a coreless resin substrate that is not provided with a core layer having a fiber base material, and is constituted by, for example, a buildup layer or a solder resist layer. These build-up layers and solder resist layers are preferably composed of an insulating layer formed from a cured product of the resin film of the present embodiment.
- the printed wiring board 500 shown in FIG. 4C includes two build-up layers (insulating layers 540 and 550) and a solder resist layer (insulating layer 560). Note that the build-up layer of the printed wiring board 500 may be a single layer or may have two or more layers.
- the insulating layer formed from the cured resin film of this embodiment is excellent in toughness, warpage of the printed wiring board 500 and cracks during transportation can be suppressed.
- the metal layers 542, 552, and 562 shown in FIG. 4C may be circuit patterns, electrode pads, or may be formed by the SAP method as described above. . These metal layers 542, 552, and 562 may be a single layer or a plurality of metal layers.
- the printed wiring board 500 may have a large area on which a plurality of semiconductor elements can be mounted on a plane. As a result, a plurality of semiconductor packages can be obtained by collectively sealing a plurality of semiconductor elements mounted on the printed wiring board 500 and then separating them into individual pieces.
- the printed wiring board 500 can be a panel board having a substantially circular shape or a rectangular shape.
- the method for manufacturing the printed wiring board 500 is not particularly limited.
- the printed wiring board 500 can be obtained by forming the buildup layer and the solder resist layer on the support substrate 510 and then peeling the support substrate 510.
- a carrier foil 520 and a metal foil 530 are arranged on a large-area support substrate 510 (for example, a plate member made of SUS).
- an adhesive resin (not shown) can be provided between the support substrate 510 and the carrier foil 520.
- a metal layer 542 is formed on the metal foil 530.
- the metal layer 542 is patterned by a normal method such as an SAP method.
- the carrier substrate is peeled from the resin film with a carrier film. Then, the resin film is cured. These are repeated three times to form two build-up layers and one solder resist layer. Thereafter, the support substrate 510 is peeled off as shown in FIG. Then, the metal foil 530 is removed by etching or the like. Thus, the printed wiring board 500 shown in FIG. 4C is obtained.
- FIG. 5 is a cross-sectional view showing an example of the configuration of the printed wiring board 600.
- a printed wiring board 600 shown in FIG. 5 may be composed of a coreless resin substrate 610 used in a PLP (panel level package) process.
- PLP panel level package
- a panel size package having a larger area than a wafer can be obtained by using a wiring board process.
- the productivity of the semiconductor package can be improved more efficiently than the wafer level process.
- the insulating layer 612 (interlayer insulating layer) and the insulating layers 630 and 632 (solder resist layer) of the coreless resin substrate 610 are configured by insulating layers formed from the cured resin film of the present embodiment. May be. Since the cured product of the resin film of this embodiment is excellent in toughness, it effectively suppresses warpage of the printed wiring board 600 and cracks of the coreless resin board 610 especially during transportation and mounting during the PLP process. be able to.
- the printed wiring board 600 of the present embodiment has a large area in which a plurality of semiconductor elements (not shown) can be mounted in the plane. Then, after sealing a plurality of semiconductor elements mounted in the in-plane direction of the printed wiring board 600 together, a plurality of semiconductor packages can be obtained by separating them into individual pieces. In this embodiment, since the linear expansion coefficient of the cured product of the resin film can be lowered, package warpage can be suppressed in the semiconductor package obtained by the PLP process.
- the printed wiring board 600 can include a coreless resin substrate 610 and a solder resist layer (insulating layers 630 and 632) formed on the surface thereof.
- the coreless resin substrate 610 may have a built-in semiconductor element 620.
- the semiconductor element 620 can be electrically connected through the via wiring 616.
- the coreless resin substrate 610 can have at least an insulating layer 612 (interlayer insulating layer) and a via wiring 616. Via the via wiring 616, the lower metal layer 640 (electrode pad) and the upper metal layer 618 (post) can be electrically connected. Further, the via wiring 616 can be connected to the metal layer 640 via the metal layer 614 (post), for example.
- the coreless resin substrate 610 In the coreless resin substrate 610, a via wiring 616 and a metal layer 614 are embedded.
- the metal layer 614 that is a post may have a surface that is flush with the surface of the coreless resin substrate 610.
- the coreless resin substrate 610 is configured by a single interlayer insulating layer, but is not limited to this configuration, and has a structure in which a plurality of interlayer insulating layers are stacked. May be.
- at least a via wiring 616 may be formed as an interlayer connection wiring.
- the via wiring 616, the metal layer 614, or the metal layer 618 may be made of a metal such as copper, for example.
- the upper and lower surfaces of the coreless resin substrate 610 may be covered with a solder resist layer (insulating layers 630 and 632).
- the insulating layer 630 can cover the metal layer 650 formed on the surface of the insulating layer 612.
- the metal layer 650 includes a first metal layer 652 (plating layer) and a second metal layer 654 (electroless plating layer), and may be a metal layer formed by the SAP method, for example.
- the metal layer 650 may be, for example, a circuit pattern or an electrode pad.
- the manufacturing method of the printed wiring board 600 of this embodiment is not specifically limited, For example, the following methods can be used.
- the insulating layer 612 is formed over the supporting substrate.
- a via is formed in the insulating layer 612, and a metal film is embedded in the via by a plating method to form a via wiring 616.
- a rewiring (metal layer 650) is formed on the surface of the insulating layer 612 by the SAP method.
- a plurality of interlayer insulating layers having such interlayer connection wirings may be stacked.
- solder resist layers solder resist layers (insulating layers 630 and 632) are formed.
- the printed wiring board 600 can be obtained.
- FIG. 6 is a cross-sectional view showing an example of the configuration of the printed wiring board 700.
- a printed wiring board 700 shown in FIG. 6 can be formed of a substrate with a post (MIS substrate).
- the post-attached substrate can be constituted by a coreless resin substrate 710 having a structure in which a via wiring 716 and a metal layer 718 (post) are embedded in an insulating layer 712 (interlayer insulating layer).
- the post-attached substrate may be a substrate after being singulated or a substrate having a large area before being singulated (for example, a support like a wafer).
- the productivity of the semiconductor package can be efficiently improved to the same level as or higher than that of the wafer level process.
- the insulating layer 712 (interlayer insulating layer) and the insulating layers 730 and 732 (solder resist layer) of the coreless resin substrate 710 are configured by insulating layers formed from the cured resin film of the present embodiment. May be. Since the cured product of the resin film of this embodiment is excellent in toughness, it is possible to effectively suppress warpage of the printed wiring board 700 and particularly cracks of the coreless resin substrate 710 during transportation and mounting.
- the printed wiring board 700 of the present embodiment has a large area in which a plurality of semiconductor elements (not shown) can be mounted in the plane. Then, after sealing a plurality of semiconductor elements mounted in the in-plane direction of the printed wiring board 700 together, a plurality of semiconductor packages can be obtained by separating them into individual pieces. Since the linear expansion coefficient of the cured product of the resin film of this embodiment can be lowered, package warpage can be suppressed in the obtained semiconductor package.
- the printed wiring board 700 can include a coreless resin substrate 710 and a solder resist layer (insulating layers 730 and 732) formed on the surface thereof.
- the coreless resin substrate 710 may have a built-in semiconductor element 720.
- the semiconductor element 720 can be electrically connected through the via wiring 716.
- the coreless resin substrate 710 can include at least an insulating layer 712 (interlayer insulating layer), a via wiring 716, and a metal layer 718 (post).
- the metal layer 714 (post) on the lower surface and the metal layer 718 (post) on the upper surface can be electrically connected via the via wiring 716.
- the metal layer 714 embedded in the insulating layer 712 can be connected to a metal layer 740 (electrode pad) formed on the surface of the insulating layer 712. Further, the surface of the insulating layer 712 may have a polished surface. One surface of the metal layer 718 may be flush with the polished surface of the insulating layer 712.
- the coreless resin substrate 710 is configured by a single interlayer insulating layer, but is not limited to this configuration, and has a structure in which a plurality of interlayer insulating layers are stacked. May be.
- a via wiring 716 and a metal layer 718 (post) may be formed as an interlayer connection wiring.
- the via wiring 716, the metal layer 714, or the metal layer 718 may be made of a metal such as copper, for example.
- the upper and lower surfaces of the coreless resin substrate 710 may be covered with a solder resist layer (insulating layers 730 and 732).
- the manufacturing method of the printed wiring board 700 of this embodiment is not specifically limited, For example, the following methods can be used.
- a copper post eg, a metal layer 7178 is formed over the insulating layer over the support substrate.
- a copper post is further embedded with an insulating layer.
- the surface of the copper post is exposed by a method such as grinding or chemical etching (that is, cueing of the copper post is performed).
- rewiring is formed by the SAP method.
- the coreless resin substrate 710 having an interlayer insulating layer can be formed.
- interlayer insulating layers having interlayer connection wirings may be stacked by repeating the step of forming the interlayer insulating layer a plurality of times. Thereafter, solder resist layers (insulating layers 730 and 732) are formed. Thus, the printed wiring board 700 can be obtained.
- thermosetting resin composition (Preparation of thermosetting resin composition) About the Example and the comparative example, the varnish-like thermosetting resin composition was adjusted. First, each component was dissolved or dispersed at a solid content ratio shown in Table 1, adjusted with methyl ethyl ketone so as to have a nonvolatile content of 70% by weight, and stirred using a high-speed stirring device to prepare a resin varnish. In addition, the numerical value which shows the mixture ratio of each component in Table 1 has shown the mixture ratio (weight%) of each component with respect to the whole solid content of a thermosetting resin composition. The detail of the raw material of each component in Table 1 is as follows.
- Thermosetting resin 1 bisphenol A type epoxy resin (DIC Corporation, EPICLON, 840S)
- Thermosetting resin 3 Aralkyl epoxy resin (NC3000, manufactured by Nippon Kayaku Co., Ltd.)
- Thermosetting resin 4 p-xylene-modified naphthol aralkyl-type cyanate resin represented by the following general formula (II) (naphthol aralkyl-type phenol resin (“SN-485 derivative” manufactured by Tohto Kasei Co., Ltd.) and cyan chloride)
- Benzoxazine compound 1 A benzoxazine compound represented by the following formula obtained by the following production method.
- Bisphenol A 1140 g and toluene 920 g were added to a flask equipped with a thermometer, a stirrer, a condenser, and a dropping device, and heated to 50 ° C. with stirring to dissolve bisphenol A. Thereafter, 652 g of formaldehyde was added to the flask. While further stirring these mixed liquids, 570 g of allylamine was dropped into the flask over 1 hour so that the temperature became 78 to 80 ° C. after 1 hour.
- the benzoxazine compound 1 containing an allyl group was obtained by removing condensed water and reducing the pressure under the conditions of 100 ° C. and a pressure of 360 mmHg (about 48 kPa).
- Benzoxazine compound 2 A bis-F benzoxazine compound represented by the following formula obtained by the following production method.
- 139 g (0.5 mol) of 4,4′-diamino-3,3′-diallyldiphenylmethane, 94 g (1.0 mol) of phenol and n- 150 mL of butanol was added and heated to 60 ° C. with stirring to dissolve the solid components uniformly. Thereafter, 128 g (2.0 mol) of a 50% formalin solution was dropped into the flask over 10 minutes. These mixed liquids were reacted for 3 hours under reflux at 95 ° C. with further stirring, and then allyl groups were removed by removing condensed water and reducing pressure at 110 ° C. and a pressure of 360 mmHg (about 48 kPa). The contained benzoxazine compound 2 was obtained.
- Benzoxazine compound 3 a bis-A type benzoxazine compound represented by the following formula obtained by the following production method.
- Diallyl bisphenol A 1540 g and toluene 920 g were added to a flask equipped with a thermometer, a stirrer, a condenser and a dropping device, and heated to 50 ° C. with stirring to dissolve diallyl bisphenol A. Thereafter, 652 g of formaldehyde was added to the flask. While stirring these mixed liquids, 930 g of aniline was added dropwise to the flask over 1 hour so that the temperature became 78 to 80 ° C. after 1 hour.
- benzoxazine compound 3 containing an allyl group was obtained by removing condensed water and reducing pressure under the conditions of 100 ° C. and a pressure of 360 mmHg (about 48 kPa).
- Benzoxazine compound 4 A benzoxazine compound represented by the following formula obtained by the following production method.
- Bisphenol F 1000 g and toluene 920 g were added to a flask equipped with a thermometer, a stirrer, a condenser, and a dropping device, and heated to 50 ° C. with stirring to dissolve bisphenol F. Thereafter, 652 g of formaldehyde was added to the flask. While stirring these mixed liquids, 1330 g of 2-allylaniline was added dropwise over 1 hour, and the temperature was adjusted to 78 to 80 ° C. after 1 hour. After reacting under reflux for 7 hours, the condensed water was removed and the pressure was reduced under the conditions of 100 ° C. and a pressure of 360 mmHg (about 48 kPa) to obtain an benzoxazine compound 4 containing an allyl group.
- Benzoxazine compound 5 A benzoxazine compound represented by the following formula (Pd-type benzoxazine manufactured by Shikoku Kasei Co., Ltd.).
- Benzoxazine compound 6 A benzoxazine compound represented by the following formula obtained by the following production method.
- Bisphenol A 1140 g and toluene 920 g were added to a flask equipped with a thermometer, a stirrer, a condenser, and a dropping device, and heated to 50 ° C. with stirring to dissolve bisphenol A. Thereafter, 652 g of formaldehyde was added to the flask. While stirring these mixed liquids, 711 g of 2-methylallylamine was added dropwise over 1 hour so that the temperature became 78 to 80 ° C. after 1 hour. After reacting for 7 hours under reflux, removal of condensed water and reduced pressure were performed under conditions of 100 ° C. and a pressure of 360 mmHg (about 48 kPa) to obtain a benzoxazine compound 6 containing an allyl group having 4 carbon atoms. .
- Benzoxazine compound 7 A benzoxazine compound represented by the following formula obtained by the following production method.
- Bisphenol A 1140 g and toluene 920 g were added to a flask equipped with a thermometer, a stirrer, a condenser, and a dropping device, and heated to 50 ° C. with stirring to dissolve bisphenol A. Thereafter, 652 g of formaldehyde was added to the flask. While stirring these mixed liquids, 2675 g of oleylamine was added dropwise over 1 hour so that the temperature became 78 to 80 ° C. after 1 hour.
- benzoxazine compound 7 containing an allyl group having 18 carbon atoms was obtained by removing condensed water and reducing the pressure under the conditions of 100 ° C. and a pressure of 360 mmHg (about 48 kPa). .
- Inorganic filler Inorganic filler 1: Silica particles (manufactured by Admatech, SC2050, average particle size 0.5 ⁇ m) (Curing accelerator) Curing accelerator 1: Phosphorus catalyst of an onium salt compound corresponding to the above formula (2) (C05-MB, manufactured by Sumitomo Bakelite Co., Ltd.) Curing accelerator 2: 2-phenylimidazole (manufactured by Shikoku Kasei Co., Ltd., 2PZ-PW) (Coupling agent) Coupling agent 1: Silane coupling agent (N-phenyl ⁇ -aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
- the obtained resin varnish was impregnated with a glass woven fabric (cross type # 2118, T-glass, basis weight 114 g / m 2 ) with a coating apparatus, and dried with a hot air drying apparatus at 140 ° C. for 10 minutes.
- a prepreg having a thickness of 107 ⁇ m was obtained.
- the ultrathin copper foil layer on the surface of the metal-clad laminate obtained in the examples and comparative examples was subjected to a roughening treatment of about 1 ⁇ m, and then a through hole of ⁇ 80 ⁇ m for interlayer connection was formed with a carbon dioxide laser. Next, it is immersed in a 60 ° C. swelling liquid (Atotech Japan, Swelling Dip Securigant P) for 5 minutes, and further immersed in an 80 ° C. aqueous potassium permanganate solution (Atotech Japan, Concentrate Compact CP) for 2 minutes. Then, it neutralized and the desmear process in a through hole was performed.
- a 60 ° C. swelling liquid Atotech Japan, Swelling Dip Securigant P
- 80 ° C. aqueous potassium permanganate solution Atotech Japan, Concentrate Compact CP
- electroless copper plating was performed at a thickness of 0.5 ⁇ m
- a resist layer for electrolytic copper plating was formed at a thickness of 18 ⁇ m
- pattern copper plating was performed
- post-curing was performed by heating at a temperature of 150 ° C. for 30 minutes.
- thermomechanical analyzer TMA manufactured by TA Instruments, Q400
- the value of the 2nd cycle was employ
- the glass transition temperature was measured using dynamic viscoelasticity measurement (DMA device, manufactured by TA Instruments, Q800) under the following conditions.
- DMA device manufactured by TA Instruments, Q800
- the resin sheet was heat treated at 180 ° C. for 2 hours to obtain a cured product.
- a test piece of 8 mm ⁇ 40 mm was cut out from the obtained cured product, and dynamic viscoelasticity measurement was performed on the test piece at a heating rate of 5 ° C./min and a frequency of 1 Hz.
- the glass transition temperature was a temperature at which the loss tangent tan ⁇ showed the maximum value.
- the carrier substrate was peeled from the resin film with carrier, and then cured at 180 ° C. for 2 hours.
- the above process was repeated three times to form a three-layer buildup layer, and the warpage of the panel when SUS peeled was evaluated by measuring the warpage of the plate edge.
- a double-sided copper-clad laminate (manufactured by Sumitomo Bakelite Co., Ltd., L ⁇ Z-4785GH-J) prepared by laminating copper foils having a thickness of 12 ⁇ m was prepared. Subsequently, the copper foil of the said copper clad laminated board was etched, and the conductor circuit pattern was formed, and the circuit board by which the said conductor circuit pattern was formed in the one surface and the other surface was obtained. Next, the resin film with a carrier film obtained in Examples and Comparative Examples was decompressed for 30 seconds using a two-stage vacuum / pressure laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.), and one stage at 10 hPa or less.
- MVLP-500 two-stage vacuum / pressure laminator
- the insulation resistance in continuous humidity was evaluated under the conditions of a temperature of 130 ° C., a humidity of 85%, and an applied voltage of 3.3 V.
- a resistance value of 10 6 ⁇ or less was regarded as a failure.
- the evaluation criteria are as follows. A: No failure for 500 hours or more (good) B: There is a failure in 200 hours or more and less than 500 hours (substantially no problem) C: There is a failure in 100 hours or more and less than 200 hours (substantially unusable) D: Failure in less than 100 hours (cannot be used)
- a build-up material (BLA-3700GS, manufactured by Sumitomo Bakelite Co., Ltd.) was laminated and cured on the obtained printed wiring board (printed wiring board after forming a circuit pattern), and circuit processing was performed by a semi-additive method.
- a 10 mm ⁇ 10 mm ⁇ 100 ⁇ m thick semiconductor element with solder bumps was mounted thereon, sealed with an underfill (manufactured by Sumitomo Bakelite Co., Ltd., CRP-4160G), and cured at 150 ° C. for 2 hours.
- a semiconductor device was manufactured by dicing to 15 mm ⁇ 15 mm. The warpage of the obtained semiconductor device at 260 ° C.
- Warpage amount is less than 30 ⁇ m
- thermosetting resin composition of the present invention includes the benzoxazine compound represented by the general formula (B-1) or (B-2) described above and at least one of a maleimide compound, an epoxy resin, and a cyanate resin. And an inorganic filler.
- a thermosetting resin composition can lower the linear expansion coefficient of the obtained cured product. Therefore, an insulating layer excellent in low warpage can be obtained by using such a thermosetting resin composition.
- a resin film with a carrier, a prepreg, a metal-clad laminate, a resin substrate, a printed wiring board, and a semiconductor device using such an insulating layer can be obtained. Therefore, the present invention has industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
本発明の熱硬化性樹脂組成物は、プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、不飽和二重結合を有する基を含有する所定のベンゾオキサジン化合物と、マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、無機充填材と、を含む。また、ベンゾオキサジン化合物は、不飽和二重結合を有する基として、炭素数3~14のアルケニル基を含む。また、かかる不飽和二重結合を有する基は、アリル基であることが好ましい。
Description
本発明は、熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置に関する。
これまでの封止用樹脂組成物においては、耐熱性の観点から様々な開発が行われてきた。この種の技術として、たとえば特許文献1に記載の封止用樹脂組成物が挙げられる。同文献には、封止用樹脂組成物として、ビスマレイミド化合物とPd型ベンゾオキサジンとを用いることにより、耐熱性を向上させることができることが記載されている(特許文献1の段落0040、実施例)。
しかしながら、近年の半導体パッケージの製造プロセスにおいて大面積化がますます進んできている。こうした開発環境を踏まえ、本発明者が検討したところ、上記文献に記載の封止用樹脂組成物の硬化物においては、製造プロセス中におけるプリント配線基板の反りの点で改善の余地を有していることが判明した。
本発明者は、プリント配線基板における絶縁層の形成に用いる熱硬化性樹脂組成物に関してさらに検討し、ベンゾオキサジン化合物の官能基に応じた反応の多様性に着眼した。このような着眼点に基づいて検討した結果、官能基として、不飽和二重結合を有する基を含有するベンゾオキサジン化合物を用いることにより、熱硬化性樹脂組成物の硬化特性を高められることが判明した。
このような知見に基づいて、鋭意検討したところ、不飽和二重結合を有する基を含有するベンゾオキサジン化合物とマレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂とを併用することにより、得られる硬化物の線膨張係数を低くすることができることが判明した。そして、得られる硬化物の線膨張係数が低くなることにより、製造プロセス中におけるプリント配線基板の反りを抑制できることを見出し、本発明を完成するに至った。
本発明によれば、
プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
不飽和二重結合を有する基を含有する、後述する一般式(B-1)または(B-2)で表されるベンゾオキサジン化合物と、
マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、
無機充填材と、を含む熱硬化性樹脂組成物が提供される。
プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
不飽和二重結合を有する基を含有する、後述する一般式(B-1)または(B-2)で表されるベンゾオキサジン化合物と、
マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、
無機充填材と、を含む熱硬化性樹脂組成物が提供される。
また本発明によれば、
キャリア基材と、
前記キャリア基材上に設けられている、上記熱硬化性樹脂組成物から形成される樹脂膜と、を備えるキャリア付樹脂膜が提供される。
キャリア基材と、
前記キャリア基材上に設けられている、上記熱硬化性樹脂組成物から形成される樹脂膜と、を備えるキャリア付樹脂膜が提供される。
また本発明によれば、
上記熱硬化性樹脂組成物を繊維基材に含浸してなるプリプレグが提供される。
上記熱硬化性樹脂組成物を繊維基材に含浸してなるプリプレグが提供される。
また本発明によれば、
上記プリプレグの硬化物と、当該硬化物の少なくとも一面に配置された金属層とを備える金属張積層板が提供される。
上記プリプレグの硬化物と、当該硬化物の少なくとも一面に配置された金属層とを備える金属張積層板が提供される。
また本発明によれば、
上記熱硬化性樹脂組成物の硬化物で構成された絶縁層を備える樹脂基板が提供される。
上記熱硬化性樹脂組成物の硬化物で構成された絶縁層を備える樹脂基板が提供される。
また本発明によれば、
上記金属張積層板または上記樹脂基板と、上記金属張積層板または上記樹脂基板の表面に形成された回路層とを備えるプリント配線基板が提供される。
上記金属張積層板または上記樹脂基板と、上記金属張積層板または上記樹脂基板の表面に形成された回路層とを備えるプリント配線基板が提供される。
また本発明によれば、
上記プリント配線基板と、
前記プリント配線基板の回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備える半導体装置が提供される。
上記プリント配線基板と、
前記プリント配線基板の回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備える半導体装置が提供される。
本発明によれば、低反り性に優れた絶縁層が得られる熱硬化性樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置が提供される。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
本実施形態の熱硬化性樹脂組成物は、不飽和二重結合を有する基を含有する、下記一般式(B-1)または(B-2)で表されるベンゾオキサジン化合物と、マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、無機充填材と、を含む。
このような熱硬化性樹脂組成物は、プリント配線基板における絶縁層を形成するために用いられる。
本発明者は、プリント配線基板における絶縁層の形成に用いる熱硬化性樹脂組成物に関してさらに検討し、ベンゾオキサジン化合物の官能基に応じた反応の多様性に着眼した。
このような着眼点に基づいて検討した結果、官能基として、不飽和二重結合を有する基を含有するベンゾオキサジン化合物を用いることにより、熱硬化性樹脂組成物の硬化特性を高められることが判明した。本実施形態において、不飽和二重結合を有する基としては、例えば、炭素数3~14のアルケニル基であり、アリル基が好ましい。
このような着眼点に基づいて検討した結果、官能基として、不飽和二重結合を有する基を含有するベンゾオキサジン化合物を用いることにより、熱硬化性樹脂組成物の硬化特性を高められることが判明した。本実施形態において、不飽和二重結合を有する基としては、例えば、炭素数3~14のアルケニル基であり、アリル基が好ましい。
このような知見に基づいて、鋭意検討したところ、不飽和二重結合を有する基を含有する、上記一般式(B-1)または(B-2)で表されるベンゾオキサジン化合物とマレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂とを併用することにより、得られる硬化物の線膨張係数を低くすることができる。このため、製造プロセス中におけるプリント配線基板の反りを抑制できることを見出し、本発明を完成するに至った。
詳細なメカニズムは定かでないが、不飽和二重結合を有する基を含有するベンゾオキサジン化合物の開環重合、マレイミド化合物などの熱硬化性樹脂への触媒作用や熱硬化性樹脂との架橋反応、等の多様な反応機構により、熱硬化性樹脂組成物の硬化特性を高めることができると考えられる。
また、本実施形態によれば、熱硬化性樹脂組成物の硬化特性を高められるため、得られる硬化物の線膨張係数を低くすることができる。また、このような熱硬化性樹脂組成物は、低温硬化に優れた硬化特性を有している。本実施形態の熱硬化性樹脂組成物から形成される樹脂膜の硬化物を用いることにより、製造プロセス中における硬化温度を低く設定できるため、プリント配線基板の反りを効果的に低減することができる。
また、本実施形態によれば、熱硬化性樹脂組成物中の多様な反応により、架橋密度を高めることができる。そのため、得られる硬化物の耐熱性を高めることができる。つまり、本実施形態の熱硬化性樹脂組成物の硬化物の構造は、耐熱分解性に優れる。
このように、本実施形態の樹脂膜の硬化物をプリント配線基板の絶縁層に利用することにより、絶縁層の線膨張係数を低くするとともに、硬化温度を低い値に設定できる。そのため、大面積のパネルサイズパッケージを製造するパネルレベルプロセス中において、パネルの反りを抑制することができる。
本実施形態において、プリント配線基板における絶縁層は、コア層、ビルドアップ層(層間絶縁層)、ソルダーレジスト層等のプリント配線基板を構成する絶縁性部材に用いることができる。上記プリント配線基板としては、コア層、ビルドアップ層(層間絶縁層)、ソルダーレジスト層を有するプリント配線基板、コア層を有しないプリント配線基板、パネルパッケージプロセス(PLP)に用いられるコアレス基板、MIS(Molded Interconnect Substrate)基板等が挙げられる。
本実施形態の熱硬化性樹脂組成物から形成される樹脂膜の硬化物は、上記絶縁層に用いられる。係る硬化物は、例えば、コア層を有しないプリント配線基板におけるビルドアップ層やソルダーレジスト層、PLPに用いられるコアレス基板の層間絶縁層やソルダーレジスト層、MIS基板の層間絶縁層やソルダーレジスト層、等に用いることもできる。このように、本実施形態の樹脂膜の硬化物は、複数の半導体パッケージを一括して作成するために利用させる大面積のプリント配線基板において、当該プリント配線基板を構成する層間絶縁層やソルダーレジスト層にも好適に用いることができる。
また、本実施形態の熱硬化性樹脂組成物の利用形態としては、特に限定されないが、例えば、上記熱硬化性樹脂組成物から形成される樹脂膜、上記樹脂膜をキャリア基材上に設けたキャリア付樹脂膜、上記熱硬化性樹脂組成物を繊維基材に含浸してなるプリプレグ、上記プリプレグの硬化物の少なくとも一面に金属層が配置された金属張積層板、上記熱硬化性樹脂組成物の硬化物で構成された絶縁層を備える樹脂基板、上記金属張積層板または上記樹脂基板の表面に回路層が形成されたプリント配線基板等が挙げられる。
次に、本実施形態の熱硬化性樹脂組成物の各成分について説明する。
本実施形態の熱硬化性樹脂組成物は、例えば、熱硬化性樹脂と、ベンゾオキサジン化合物と、無機充填材と、を含む。
(熱硬化性樹脂)
熱硬化性樹脂としては、例えば、マレイミド化合物、エポキシ樹脂、およびシアネート樹脂のうちの少なくとも一種を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
熱硬化性樹脂としては、例えば、マレイミド化合物、エポキシ樹脂、およびシアネート樹脂のうちの少なくとも一種を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
(マレイミド化合物)
本実施形態の熱硬化性樹脂組成物は、マレイミド化合物を含むことができる。
本実施形態において、マレイミド化合物のマレイミド基は、5員環の平面構造を有している。また、マレイミド基の二重結合は、分子間で相互作用しやすく極性が高い。そのため、マレイミド基、ベンゼン環、その他の平面構造を有する化合物等と強い分子間相互作用を示し、分子運動を抑制することができる。そのため、熱硬化性樹脂組成物は、マレイミド化合物を含むことにより、得られる絶縁層の線膨張係数を下げ、ガラス転移温度を向上させることができ、さらに、耐熱性を向上させることができる。
本実施形態の熱硬化性樹脂組成物は、マレイミド化合物を含むことができる。
本実施形態において、マレイミド化合物のマレイミド基は、5員環の平面構造を有している。また、マレイミド基の二重結合は、分子間で相互作用しやすく極性が高い。そのため、マレイミド基、ベンゼン環、その他の平面構造を有する化合物等と強い分子間相互作用を示し、分子運動を抑制することができる。そのため、熱硬化性樹脂組成物は、マレイミド化合物を含むことにより、得られる絶縁層の線膨張係数を下げ、ガラス転移温度を向上させることができ、さらに、耐熱性を向上させることができる。
上記マレイミド化合物としては、分子内に少なくとも2つのマレイミド基を有するマレイミド化合物が好ましい。
分子内に少なくとも2つのマレイミド基を有するマレイミド化合物としては、例えば、4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、4-メチル-1,3-フェニレンビスマレイミド、N,N'-エチレンジマレイミド、N,N'-ヘキサメチレンジマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド等の分子内に2つのマレイミド基を有する化合物、ポリフェニルメタンマレイミド等の分子内に3つ以上のマレイミド基を有する化合物等が挙げられる。
これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。これらのマレイミド化合物の中でも、低吸水率である点等から、4,4'-ジフェニルメタンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビスフェノールAジフェニルエーテルビスマレイミドが好ましい。
分子内に少なくとも2つのマレイミド基を有するマレイミド化合物としては、例えば、4,4'-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、4-メチル-1,3-フェニレンビスマレイミド、N,N'-エチレンジマレイミド、N,N'-ヘキサメチレンジマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド等の分子内に2つのマレイミド基を有する化合物、ポリフェニルメタンマレイミド等の分子内に3つ以上のマレイミド基を有する化合物等が挙げられる。
これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。これらのマレイミド化合物の中でも、低吸水率である点等から、4,4'-ジフェニルメタンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビスフェノールAジフェニルエーテルビスマレイミドが好ましい。
また、マレイミド化合物としては、下記式(1)により示されるマレイミド化合物を含むことが好ましい。
X1における1以上10以下のアルキレン基としては、特に限定されないが、直鎖状または分岐鎖状のアルキレン基が好ましい。
この直鎖状のアルキレン基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デカニレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
また、分岐鎖状のアルキレン基としては、具体的には、-C(CH3)2-(イソプロピレン基)、-CH(CH3)-、-CH(CH2CH3)-、-C(CH3)(CH2CH3)-、-C(CH3)(CH2CH2CH3)-、-C(CH2CH3)2-のようなアルキルメチレン基;-CH(CH3)CH2-、-CH(CH3)CH(CH3)-、-C(CH3)2CH2-、-CH(CH2CH3)CH2-、-C(CH2CH3)2-CH2-のようなアルキルエチレン基等が挙げられる。
なお、X1におけるアルキレン基の炭素数は、1以上10以下であればよいが、1以上7以下であることが好ましく、1以上3以下であることがより好ましい。具体的には、このような炭素数を有するアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基が挙げられる。
また、R1は、それぞれ独立して、炭素数1以上6以下の炭化水素基であるが、炭素数1または2の炭化水素基、具体的には、メチル基またはエチル基であるのが好ましい。
さらに、aは0以上4以下の整数であり、0以上2以下の整数であることが好ましく、0であることがより好ましい。また、bは0以上3以下の整数であり、0または1であることが好ましく、0であることがより好ましい。
また、n1は0以上10以下の整数であり、0以上6以下の整数であることが好ましく、0以上4以下の整数であるのがより好ましく、0以上3以下の整数であるのが特に好ましい。また、マレイミド化合物は上記式(1)においてn1が1以上の化合物を少なくとも含むことがより好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層はより優れた耐熱性を発揮する。
さらに、上記式(1a)において、Yは芳香族環を有する炭素数6以上30以下の炭化水素基であり、n2は0以上の整数である。
さらに、上記式(1a)において、Yは芳香族環を有する炭素数6以上30以下の炭化水素基であり、n2は0以上の整数である。
この芳香族環を有する炭素数6以上30以下の炭化水素基は、芳香族環のみでもよいし、芳香族環以外の炭化水素基を有していてもよい。Yが有する芳香族環は、1つでもよいし、2つ以上でもよく、2つ以上の場合、これら芳香族環は、同一でも異なっていてもよい。また、上記芳香族環は、単環構造および多環構造のいずれでもよい。
具体的には、芳香族環を有する炭素数6以上30以下の炭化水素基としては、例えば、ベンゼン、ビフェニル、ナフタレン、アントラセン、フルオレン、フェナントレイン、インダセン、ターフェニル、アセナフチレン、フェナレン等の芳香族性を有する化合物の核から水素原子を2つ除いた2価の基が挙げられる。
また、これら芳香族炭化水素基は、置換基を有していてもよい。ここで芳香族炭化水素基が置換基を有するとは、芳香族炭化水素基を構成する水素原子の一部または全部が置換基により置換されたことをいう。置換基としては、例えば、アルキル基が挙げられる。
この置換基としてのアルキル基としては、鎖状のアルキル基であることが好ましい。また、その炭素数は1以上10以下であることが好ましく、1以上6以下であることがより好ましく、1以上4以下であることが特に好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、sec-ブチル基等が挙げられる。
このような基Yは、ベンゼンまたはナフタレンから水素原子を2つ除いた基を有することが好ましく、上記式(1a)で表される基としては、下記式(1a-1)、(1a-2)のいずれかで表される基であることが好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層はより優れた耐熱性を発揮する。
さらに、上記式(1a)で表される基において、n2は、0以上の整数であればよいが、0以上5以下の整数であることが好ましく、1以上3以下の整数であることがより好ましく、1または2であることが特に好ましい。
以上のことから、上記式(1)により示されるマレイミド化合物は、X1が、炭素数1以上3以下の直鎖状もしくは分岐鎖状のアルキレン基であり、R1が1または2の炭化水素基であり、aが0以上2以下の整数であり、bが0または1であり、n1が1以上4以下の整数であることが好ましい。または、X1は上記式(1a-1)、(1a-2)のいずれかで表される基であり、eが0であることが好ましい。これにより、熱硬化性樹脂組成物から得られる絶縁層は、より優れた低熱収縮性および耐薬品性を発揮する。
上記式(1)により示されるマレイミド化合物の好ましい具体例としては、例えば、下記式(1-1)により示されるマレイミド化合物が特に好ましく使用される。
また、マレイミド化合物は、上記(1)式により示されるマレイミド化合物とは異なる種類のマレイミド化合物を含んでもよい。
このようなマレイミド化合物としては、1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ヘキサメチレンジアミンビスマレイミド、N,N'-1,2-エチレンビスマレイミド、N,N'-1,3-プロピレンビスマレイミド、N,N'-1,4-テトラメチレンビスマレイミド等の脂肪族マレイミド化合物;イミド拡張型ビスマレイミド等を挙げることができる。これらの中でも1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、イミド拡張型ビスマレイミドが特に好ましい。マレイミド化合物は、単独で使用しても良く、二種類以上を併用してもよい。
イミド拡張型ビスマレイミドとしては、例えば、以下の式(a1)により示されるマレイミド化合物、以下の式(a2)により示されるマレイミド化合物、以下の式(a3)により示されるマレイミド化合物等が挙げられる。式(a1)により示されるマレイミド化合物の具体例のとしてはBMI-1500(デジグナーモレキュールズ社製、分子量1500)等が挙げられる。式(a2)により示されるマレイミド化合物の具体例のとしてはBMI-1700(デジグナーモレキュールズ社製、分子量1700)、BMI-1400(デジグナーモレキュールズ社製、分子量1400)等が挙げられる。式(a3)により示されるマレイミド化合物の具体例のとしてはBMI-3000(デジグナーモレキュールズ社製、分子量3000)等が挙げられる。
このようなマレイミド化合物としては、1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ヘキサメチレンジアミンビスマレイミド、N,N'-1,2-エチレンビスマレイミド、N,N'-1,3-プロピレンビスマレイミド、N,N'-1,4-テトラメチレンビスマレイミド等の脂肪族マレイミド化合物;イミド拡張型ビスマレイミド等を挙げることができる。これらの中でも1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、イミド拡張型ビスマレイミドが特に好ましい。マレイミド化合物は、単独で使用しても良く、二種類以上を併用してもよい。
イミド拡張型ビスマレイミドとしては、例えば、以下の式(a1)により示されるマレイミド化合物、以下の式(a2)により示されるマレイミド化合物、以下の式(a3)により示されるマレイミド化合物等が挙げられる。式(a1)により示されるマレイミド化合物の具体例のとしてはBMI-1500(デジグナーモレキュールズ社製、分子量1500)等が挙げられる。式(a2)により示されるマレイミド化合物の具体例のとしてはBMI-1700(デジグナーモレキュールズ社製、分子量1700)、BMI-1400(デジグナーモレキュールズ社製、分子量1400)等が挙げられる。式(a3)により示されるマレイミド化合物の具体例のとしてはBMI-3000(デジグナーモレキュールズ社製、分子量3000)等が挙げられる。
上記マレイミド化合物の重量平均分子量(Mw)の下限値は、特に限定されないが、Mw400以上が好ましく、特にMw800以上が好ましい。Mwが上記下限値以上であると、絶縁層にタック性が生じるのを抑制することができる。Mwの上限値は、特に限定されないが、Mw4000以下が好ましく、Mw2500以下がより好ましい。Mwが上記上限値以下であると、絶縁層作製時、ハンドリング性が向上し、絶縁層を形成するのが容易となる。マレイミド化合物のMwは、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
また、マレイミド化合物としては、マレイミド化合物とアミン化合物との反応物を用いることもできる。アミン化合物としては、芳香族ジアミン化合物およびモノアミン化合物から選択される少なくとも1種を用いることができる。
芳香族ジアミン化合物としては、例えば、o-ジアニシジン、o-トリジン、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、4,4'-ビス(4-アミノフェノキシ)ビフェニル、2,2'-ジメチル-4,4'-ジアミノビフェニル、m-フェニレンジアミン、p-フェニレンジアミン、o-キシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、1,5-ジアミノナフタレン、4,4'-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノ-3,3'-ジメチル-ジフェニルメタン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン等があげられる。
モノアミン化合物としては、例えば、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アミノ安息香酸、m-アミノ安息香酸、p-アミノ安息香酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3,5-ジヒドロキシアニリン、3,5-ジカルボキシアニリン、o-アニリン、m-アニリン、p-アニリン、o-メチルアニリン、m-メチルアニリン、p-メチルアニリン、o-エチルアニリン、m-エチルアニリン、p-エチルアニリン、o-ビニルアニリン、m-ビニルアニリン、p-ビニルアニリン、o-アリルアニリン、m-アリルアニリン、p-アリルアニリン等が挙げられる。
マレイミド化合物とアミン化合物との反応は、有機溶媒中で反応させることができる。反応温度は、例えば70~200℃であり、反応時間は、例えば0.1~10時間である。
本実施形態において、熱硬化性樹脂組成物中に含まれるマレイミド化合物の含有量は、特に限定されないが、熱硬化性樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100重量%としたとき、1.0重量%以上25.0重量%以下が好ましく、3.0重量%以上20.0重量%以下がより好ましい。マレイミド化合物の含有量が上記範囲内であると、得られる絶縁層の低熱収縮性および耐薬品性のバランスをより一層向上させることができる。
(エポキシ樹脂)
本実施形態の熱硬化性樹脂組成物は、エポキシ樹脂を含むことができる。
本実施形態において、上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4'-(1,3-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'-(1,4-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4'-シクロヘキシジエンビスフェノール型エポキシ樹脂)等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能ナフタレン型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂等のナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂等が挙げられる。
本実施形態の熱硬化性樹脂組成物は、エポキシ樹脂を含むことができる。
本実施形態において、上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4'-(1,3-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4'-(1,4-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4'-シクロヘキシジエンビスフェノール型エポキシ樹脂)等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能ナフタレン型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂等のナフタレン型エポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂等が挙げられる。
エポキシ樹脂として、これらの中の1種類を単独で用いてもよいし、2種類以上を併用してもよく、1種類または2種類以上とそれらのプレポリマーとを併用してもよい。
エポキシ樹脂の中でも、得られるプリント配線基板の耐熱性および絶縁信頼性をより一層向上できる観点から、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂のうちの少なくとも一種または二種以上が好ましく、アラルキル型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂およびナフタレン型エポキシ樹脂のうちの少なくとも一種または二種以上がより好ましい。
ビスフェノールA型エポキシ樹脂としては、三菱化学社製の「エピコート828EL」および「YL980」等を用いることができる。ビスフェノールF型エポキシ樹脂としては、三菱化学社製の「jER806H」および「YL983U」、DIC社製の「EPICLON 830S」等を用いることができる。2官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4032」、「HP4032D」および「HP4032SS」等を用いることができる。4官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4700」および「HP4710」等を用いることができる。ナフトール型エポキシ樹脂としては、新日鐵化学社製の「ESN-475V」、日本化薬社製の「NC7000L」等を用いることができる。アラルキル型エポキシ樹脂としては、日本化薬社製の「NC3000」、「NC3000H」、「NC3000L」、「NC3000S」、「NC3000S-H」、「NC3100」、新日鐵化学社製の「ESN-170」、および「ESN-480」等を用いることができる。ビフェニル型エポキシ樹脂としては、三菱化学社製の「YX4000」、「YX4000H」、「YX4000HK」および「YL6121」等を用いることができる。アントラセン型エポキシ樹脂としては、三菱化学社製の「YX8800」等を用いることができる。ナフチレンエーテル型エポキシ樹脂としては、DIC社製の「HP6000」、「EXA-7310」、「EXA-7311」、「EXA-7311L」および「EXA7311-G3」等を用いることができる。
これらエポキシ樹脂の中でも特にアラルキル型エポキシ樹脂が好ましい。アラルキル型エポキシ樹脂を用いることにより、樹脂膜の硬化物の吸湿半田耐熱性および難燃性をさらに向上させることができる。
アラルキル型エポキシ樹脂は、例えば、下記一般式(1)で表される。
アラルキル型エポキシ樹脂の具体例としては、以下の式(1a)および式(1b)が挙げられる。
上記以外のエポキシ樹脂としては縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、テトラフェン、またはその他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシ樹脂に比べ難燃性に優れる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物、アルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化した樹脂である。
フェノール類化合物は、特に限定されないが、例えば、フェノール;o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール類;2,3,5トリメチルフェノール等のトリメチルフェノール類;o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類;イソプロピルフェノール、ブチルフェノール、t-ブチルフェノール等のアルキルフェノール類;o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール等のフェニルフェノール類;1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のナフタレンジオール類;レゾルシン、カテコール、ハイドロキノン、ピロガロール、フルオログルシン等の多価フェノール類;アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノン等のアルキル多価フェノール類が挙げられる。これらのうち、コスト面および分解反応に与える効果から、フェノールが好ましい。
アルデヒド類化合物は、特に限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、4-ヒドロキシ-3-メトキシアルデヒドパラホルムアルデヒド等が挙げられる。
縮合環芳香族炭化水素化合物は、特に限定されないが、例えば、メトキシナフタレン、ブトキシナフタレン等のナフタレン誘導体;メトキシアントラセン等のアントラセン誘導体;メトキシフェナントレン等のフェナントレン誘導体;その他テトラセン誘導体;クリセン誘導体;ピレン誘導体;トリフェニレン誘導体;テトラフェン誘導体等が挙げられる。
縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、特に限定されないが、例えば、メトキシナフタレン変性オルトクレゾールノボラックエポキシ樹脂、ブトキシナフタレン変性メタ(パラ)クレゾールノボラックエポキシ樹脂、およびメトキシナフタレン変性ノボラックエポキシ樹脂等が挙げられる。これらの中でも、下記一般式(V)で表される縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。
(上記一般式(V)中、Arは縮合環芳香族炭化水素基であり、Rは互いに同一であっても異なっていてもよく、水素原子;炭素数1以上10以下の炭化水素基;ハロゲン元素;フェニル基、ベンジル基等のアリール基;およびグリシジルエーテルを含む有機基から選ばれる基で、n、p、およびqは1以上の整数であり、またp、qの値は、繰り返し単位毎に同一でも、異なっていてもよい。)
また、式(V)中のArは、下記式(VI)中の(Ar1)~(Ar4)で表される構造であってもよい。
また、式(V)中のArは、下記式(VI)中の(Ar1)~(Ar4)で表される構造であってもよい。
(上記式(VI)中のRは、互いに同一であっても異なっていてもよく、水素原子;炭素数1以上10以下の炭化水素基;ハロゲン元素;フェニル基、ベンジル基等のアリール基;およびグリシジルエーテルを含む有機基から選ばれる基である。)
さらに上記以外のエポキシ樹脂としてはナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂等のナフタレン型エポキシ樹脂が好ましい。これにより、得られるプリント配線基板の耐熱性、低熱膨張性をさらに向上させることができる。ここで、ナフタレン型エポキシ樹脂とは、ナフタレン環骨格を有し、かつ、グリシジル基を2つ以上有する樹脂を呼ぶ。
また、ベンゼン環に比べナフタレン環のπ-πスタッキング効果が高いため、特に、ナフタレン型エポキシ樹脂は低熱膨張性、低熱収縮性に優れる。さらに、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。ナフトール型エポキシ樹脂としては、例えば下記一般式(VII-1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII-2)、2官能ないし4官能ナフタレン型エポキシ樹脂としては下記式(VII-3)(VII-4)(VII-5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII-6)で示すことができる。
また、ベンゼン環に比べナフタレン環のπ-πスタッキング効果が高いため、特に、ナフタレン型エポキシ樹脂は低熱膨張性、低熱収縮性に優れる。さらに、多環構造のため剛直効果が高く、ガラス転移温度が特に高いため、リフロー前後の熱収縮変化が小さい。ナフトール型エポキシ樹脂としては、例えば下記一般式(VII-1)、ナフタレンジオール型エポキシ樹脂としては下記式(VII-2)、2官能ないし4官能ナフタレン型エポキシ樹脂としては下記式(VII-3)(VII-4)(VII-5)、ナフチレンエーテル型エポキシ樹脂としては、例えば、下記一般式(VII-6)で示すことができる。
エポキシ樹脂の重量平均分子量(Mw)の下限値は、特に限定されないが、Mw300以上が好ましく、Mw800以上がより好ましい。Mwが上記下限値以上であると、樹脂膜の硬化物にタック性が生じるのを抑制することができる。Mwの上限値は、特に限定されないが、Mw20,000以下が好ましく、Mw15,000以下がより好ましい。Mwが上記上限値以下であると、ハンドリング性が向上し、樹脂膜を形成するのが容易となる。エポキシ樹脂のMwは、例えばGPCで測定することができる。
エポキシ樹脂の含有量の下限値は、熱硬化性樹脂組成物全体(溶媒を除く全固形分)100重量%に対して、3重量%以上が好ましく、4重量%以上がより好ましく、5重量%以上がさらに好ましい。エポキシ樹脂の含有量が上記下限値以上であると、ハンドリング性が向上し、樹脂膜を形成するのが容易となる。一方、エポキシ樹脂の含有量の上限値は、熱硬化性樹脂組成物全体(溶媒を除く全固形分)に対して、特に限定されないが、例えば、40重量%以下が好ましく、30重量%以下がより好ましく、20重量%以下がさらに好ましい。エポキシ樹脂の含有量が上記上限値以下であると、得られるプリント配線基板の強度や難燃性が向上したり、プリント配線基板の線膨張係数が低下し、反りの低減効果が向上したりする場合がある。
なお、熱硬化性樹脂組成物の全固形分とは、熱硬化性樹脂組成物中に含まれる溶剤を除く成分全体を指す。以下、本明細書において同様である。
なお、熱硬化性樹脂組成物の全固形分とは、熱硬化性樹脂組成物中に含まれる溶剤を除く成分全体を指す。以下、本明細書において同様である。
(シアネート樹脂)
本実施形態の熱硬化性樹脂組成物は、シアネート樹脂を含むことができる。
本実施形態において、上記シアネート樹脂は、分子内にシアネート基(-O-CN)を有する樹脂であり、シアネート基を分子内に2個以上を有する樹脂を用いることができる。このようなシアネート樹脂としては、特に限定されないが、例えば、ハロゲン化シアン化合物とフェノール類やナフトール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。また、このようにして調製された市販品を用いることもできる。
シアネート樹脂を用いることにより、樹脂膜の硬化物の線膨張係数を小さくすることができる。さらに、樹脂膜の硬化物の電気特性(低誘電率、低誘電正接)、機械強度等を高めることができる。
本実施形態の熱硬化性樹脂組成物は、シアネート樹脂を含むことができる。
本実施形態において、上記シアネート樹脂は、分子内にシアネート基(-O-CN)を有する樹脂であり、シアネート基を分子内に2個以上を有する樹脂を用いることができる。このようなシアネート樹脂としては、特に限定されないが、例えば、ハロゲン化シアン化合物とフェノール類やナフトール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。また、このようにして調製された市販品を用いることもできる。
シアネート樹脂を用いることにより、樹脂膜の硬化物の線膨張係数を小さくすることができる。さらに、樹脂膜の硬化物の電気特性(低誘電率、低誘電正接)、機械強度等を高めることができる。
シアネート樹脂は、例えば、ノボラック型シアネート樹脂;ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂;ナフトールアラルキル型フェノール樹脂と、ハロゲン化シアンとの反応で得られるナフトールアラルキル型シアネート樹脂;ジシクロペンタジエン型シアネート樹脂;ビフェニルアルキル型シアネート樹脂等を挙げることができる。これらの中でもノボラック型シアネート樹脂、ナフトールアラルキル型シアネート樹脂が好ましく、ノボラック型シアネート樹脂がより好ましい。ノボラック型シアネート樹脂を用いることにより、樹脂膜の硬化物の架橋密度が増加し、耐熱性が向上する。
この理由としては、ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成することが挙げられる。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。また、ノボラック型シアネート樹脂を含む樹脂膜の硬化物は優れた剛性を有する。よって、樹脂膜の硬化物の耐熱性をより一層向上できる。
ノボラック型シアネート樹脂としては、例えば、下記一般式(I)で示される樹脂を使用することができる。
一般式(I)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは任意の整数である。平均繰り返し単位nは、特に限定されないが、1以上が好ましく、2以上がより好ましい。平均繰り返し単位nが上記下限値以上であると、ノボラック型シアネート樹脂の耐熱性が向上し、加熱時に低量体が脱離、揮発することを抑制できる。また、平均繰り返し単位nは、特に限定されないが、10以下が好ましく、7以下がより好ましい。nが上記上限値以下であると、溶融粘度が高くなるのを抑制でき、樹脂膜の成形性を向上させることができる。
また、シアネート樹脂としては、下記一般式(II)で表わされるナフトールアラルキル型シアネート樹脂も好適に用いられる。下記一般式(II)で表わされるナフトールアラルキル型シアネート樹脂は、例えば、α-ナフトールあるいはβ-ナフトール等のナフトール類とp-キシリレングリコール、α,α'-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等との反応により得られるナフトールアラルキル型フェノール樹脂とハロゲン化シアンとを縮合させて得られる樹脂である。一般式(II)の繰り返し単位nは10以下の整数であることが好ましい。繰り返し単位nが10以下であると、より均一な樹脂膜を得ることができる。また、合成時に分子内重合が起こりにくく、水洗時の分液性が向上し、収量の低下を防止できる傾向がある。
また、シアネート樹脂は1種類を単独で用いてもよいし、2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。
シアネート樹脂の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、たとえば、1重量%以上が好ましく、2重量%以上がより好ましく、3重量%以上がさらに好ましい。樹脂膜の硬化物の低線膨張化、高弾性率化を図ることができる。一方、シアネート樹脂の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、30重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらに好ましい。耐熱性や耐湿性を向上させることができる。また、シアネート樹脂の含有量が上記範囲内であると、樹脂膜の硬化物の貯蔵弾性率E'をより一層向上させることができる。
(ベンゾオキサジン化合物)
本実施形態の熱硬化性樹脂組成物は、ベンゾオキサジン化合物を含む。
前述したように、本実施形態において、ベンゾオキサジン化合物は、不飽和二重結合を有する基を含有する。不飽和二重結合を有する基としては、炭素数3~14のアルケニル基が好ましく、アリル基がより好ましい。
本実施形態の熱硬化性樹脂組成物は、ベンゾオキサジン化合物を含む。
前述したように、本実施形態において、ベンゾオキサジン化合物は、不飽和二重結合を有する基を含有する。不飽和二重結合を有する基としては、炭素数3~14のアルケニル基が好ましく、アリル基がより好ましい。
本実施形態で用いられるベンゾオキサジン化合物は、下記一般式(B-1)または一般式(B-2)で表される。これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記一般式(B-1)中において、p=1の場合には、Zがアルキル基またはチオールを表し、p=2の場合には、Zが直接結合、アルキレン基、酸素原子、硫黄原子、スルフィニル基またはスルホニル基を表し、p=3または4の場合には、Zがアルキレン基を表してもよい。また、上記一般式(B-1)中、pは2であってもよい。また、aは1であってもよい。
また、上記一般式(B-2)中、qは2であってもよい。また、bは1であってもよい。
本実施形態において、上記1~4価の有機基は、特に限定されないが、直接結合、アルキル基、アルキレン基、酸素原子、チオール、硫黄原子、スルホキシド、およびスルホンの他に、例えば、以下の化学式のいずれかを用いてもよい。なお、上記一般式(B-2)中における1~4価の有機基は、ビフェニル、ジフェニルメタン、ジフェニルイソプロパン、ジフェニルスルフィド、ジフェニルスルホキシド、ジフェニルスルホン、およびジフェニルケトンを用いてもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記化学式のR1は、上記一般式(B-1)において定義したR1と同じであり、具体的には、水素原子、低級アルキル基、アルケニル基、シクロアルキル基、アリール基、またはアラルキル基を表す。
また、本実施形態において、上記一般式(B-1)で表されるベンゾオキサジン化合物は、下記一般式(B-3)で表される構造を有する化合物であってもよい。
また、上記一般式(B-3)で表されるベンゾオキサジン化合物の一例としては、下記の一般式で表される。下記一般式中、R1、R2は、上記一般式(B-1)において定義したR1、R2と同じである。
上記一般式中、R1は、炭素数3~14のアルケニル基でもよいが、アリル基であることが好ましい。このとき、R2は水素原子でもよい。
また、本実施形態において、上記一般式(B-2)で表されるベンゾオキサジン化合物は、下記一般式(B-4)で表される構造を有してもよい。
また、上記一般式(B-4)において、cは、例えば、1であってもよい。また、Rは、アリル基であってもよい。また、X2は、炭素数1~10のアルキレン基であってもよい。
上記一般式(B-4)で表されるベンゾオキサジン化合物の一例としては、下記の一般式で表される。
上記ベンゾオキサジン化合物の含有量の下限値は、特に限定されないが、例えば、熱硬化性樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100重量%としたとき、1重量%以上が好ましく、2重量%以上がより好ましく、3重量%以上がさらに好ましい。これにより、得られる硬化物や樹脂基板の低熱収縮性および耐薬品性をより一層向上させることができる。また、上記ベンゾオキサジン化合物の含有量の上限値は、特に限定されないが、例えば、熱硬化性樹脂組成物の全固形分を100重量%としたとき、25重量%以下が好ましく、23重量%以下がより好ましく、20重量%以下がさらに好ましい。これにより、他の化合物との反応効率を高めることができる。
本実施形態の熱硬化性樹脂組成物中に含まれるマレイミド化合物の含有量は、マレイミド化合物およびベンゾオキサジン化合物の合計100重量%に対して35重量%以上80重量%以下であることが好ましい。これにより、得られる硬化物や樹脂基板の耐熱性、低熱収縮性および耐薬品性をより一層向上させることができる。
また、本実施形態の熱硬化性樹脂組成物中において、エポキシ当量/開環時のフェノール当量は、特に限定されないが、例えば、0.05以上20以下が好ましく、0.1以上15以下がより好ましく、0.5以上10以下がさらに好ましく、1以上5以下が最も好ましい。
また、本実施形態の熱硬化性樹脂組成物中において、シアネート樹脂:ベンゾオキサジン化合物のモル比は、特に限定されないが、例えば、99.9:0.1~0.1:99.9が好ましく、90:10~0.5:99.5がより好ましく、65:35~1:99がさらに好ましく、50:50~5:95が最も好ましい。
また、本実施形態の熱硬化性樹脂組成物中において、エポキシ当量/開環時のフェノール当量は、特に限定されないが、例えば、0.05以上20以下が好ましく、0.1以上15以下がより好ましく、0.5以上10以下がさらに好ましく、1以上5以下が最も好ましい。
また、本実施形態の熱硬化性樹脂組成物中において、シアネート樹脂:ベンゾオキサジン化合物のモル比は、特に限定されないが、例えば、99.9:0.1~0.1:99.9が好ましく、90:10~0.5:99.5がより好ましく、65:35~1:99がさらに好ましく、50:50~5:95が最も好ましい。
(無機充填材)
本実施形態の熱硬化性樹脂組成物は、無機充填材を含むことができる。
上記無機充填材としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカ等の酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物;チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。
これらの中でも、タルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウムが好ましく、シリカが特に好ましい。無機充填材としては、これらの中の1種類を単独で用いてもよく、2種類以上を併用してもよい。
本実施形態の熱硬化性樹脂組成物は、無機充填材を含むことができる。
上記無機充填材としては、例えば、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカ等の酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物;チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。
これらの中でも、タルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウムが好ましく、シリカが特に好ましい。無機充填材としては、これらの中の1種類を単独で用いてもよく、2種類以上を併用してもよい。
上記無機充填材の平均粒子径の下限値は、特に限定されないが、例えば、0.01μm以上が好ましく、0.05μm以上がより好ましい。これにより、上記熱硬化性樹脂のワニスの粘度が高くなるのを抑制でき、絶縁層作製時の作業性を向上させることができる。また、無機充填材の平均粒子径の上限値は、特に限定されないが、例えば、5.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下がさらに好ましい。これにより、上記熱硬化性樹脂のワニス中における無機充填材の沈降等の現象を抑制でき、より均一な樹脂膜を得ることができる。また、プリント配線基板の回路寸法L/Sが20μm/20μmを下回る際には、配線間の絶縁性に影響を与えるのを抑制することができる。
本実施形態において、無機充填材の平均粒子径は、例えば、レーザー回折式粒度分布測定装置(HORIBA社製、LA-500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒子径とすることができる。
本実施形態において、無機充填材の平均粒子径は、例えば、レーザー回折式粒度分布測定装置(HORIBA社製、LA-500)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒子径とすることができる。
また、無機充填材は、特に限定されないが、平均粒子径が単分散の無機充填材を用いてもよいし、平均粒子径が多分散の無機充填材を用いてもよい。さらに平均粒子径が単分散および/または多分散の無機充填材を1種類または2種類以上で併用してもよい。
上記無機充填材はシリカ粒子を含むことが好ましい。上記シリカ粒子の平均粒子径は、特に限定されないが、例えば、5.0μm以下が好ましく、0.1μm以上4.0μm以下がより好ましく、0.2μm以上2.0μm以下がさらに好ましい。これにより、無機充填材の充填性をさらに向上させることができる。
無機充填材の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、50重量%以上が好ましく、55重量%以上がより好ましく、60重量%以上がさらに好ましい。これにより、樹脂膜の硬化物を特に低熱膨張、低吸水とすることができる。また、半導体パッケージの反りを抑制することができる。一方で、無機充填材の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、90重量%以下が好ましく、85重量%以下がより好ましく、80重量%以下がさらに好ましい。これにより、樹脂膜の硬化物の加工性を向上させることができる。
(硬化剤)
本実施形態の熱硬化性樹脂組成物は、硬化剤を含むことができる。
上記硬化剤としては、特に限定されないが、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)、2-フェニル-4-メチルイミダゾール(2P4MZ)、2-フェニルイミダゾール(2PZ)、2-フェニル-4-メチル-5-ヒドロキシイミダゾール(2P4MHZ)、1-ベンジル-2-フェニルイミダゾール(1B2PZ)などのイミダゾール化合物;BF3錯体などのルイス酸などの触媒型の硬化剤が挙げられる。
また、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、m-フェニレンジアミン、p-フェニレンジアミン、o-キシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、1,5-ジアミノナフタレン、4,4'-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノ-3,3'-ジメチルジフェニルメタン、4,4'-ジアミノ-3,3'-ジエチル-5,5'-ジメチルジフェニルメタン、3,3'-ジエチル-4,4'-ジアミノジフェニルメタンなどの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などの重付加型の硬化剤;2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、2,6-ジ-tert-ブチル-4-メチルフェノール、2,5-ジ-tert-ブチルハイドロキノン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)トリオンなどのフェノール系化合物も用いることができる。
さらに、第2硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などの縮合型の硬化剤も用いてもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
本実施形態の熱硬化性樹脂組成物は、硬化剤を含むことができる。
上記硬化剤としては、特に限定されないが、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)、2-フェニル-4-メチルイミダゾール(2P4MZ)、2-フェニルイミダゾール(2PZ)、2-フェニル-4-メチル-5-ヒドロキシイミダゾール(2P4MHZ)、1-ベンジル-2-フェニルイミダゾール(1B2PZ)などのイミダゾール化合物;BF3錯体などのルイス酸などの触媒型の硬化剤が挙げられる。
また、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、m-フェニレンジアミン、p-フェニレンジアミン、o-キシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、1,5-ジアミノナフタレン、4,4'-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-[4-(4-アミノフェノキシ)フェニル]プロパン、4,4'-ジアミノ-3,3'-ジメチルジフェニルメタン、4,4'-ジアミノ-3,3'-ジエチル-5,5'-ジメチルジフェニルメタン、3,3'-ジエチル-4,4'-ジアミノジフェニルメタンなどの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などの重付加型の硬化剤;2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4'-チオビス(3-メチル-6-tert-ブチルフェノール)、2,6-ジ-tert-ブチル-4-メチルフェノール、2,5-ジ-tert-ブチルハイドロキノン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)トリオンなどのフェノール系化合物も用いることができる。
さらに、第2硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などの縮合型の硬化剤も用いてもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定されないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂などのノボラック型フェノール樹脂;トリフェノールメタン型フェノール樹脂などの多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂などの変性フェノール樹脂;フェニレン骨格および/またはビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル樹脂などのアラルキル型樹脂;ビスフェノールA、ビスフェノールFなどのビスフェノール化合物等が挙げられる。これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、硬化性の点から水酸基当量は90g/eq以上、250g/eq以下のフェノール樹脂系硬化剤を使用してもよい。
フェノール樹脂の重量平均分子量は、特に限定されないが、重量平均分子量4×102~1.8×103が好ましく、5×102~1.5×103がより好ましい。重量平均分子量を上記下限値以上とすることでプリプレグにタック性が生じるなどの問題がおこりにくくなり、上記上限値以下とすることで、プリプレグ作製時、繊維基材への含浸性が向上し、より均一な製品が得ることができる。
フェノール樹脂の重量平均分子量は、特に限定されないが、重量平均分子量4×102~1.8×103が好ましく、5×102~1.5×103がより好ましい。重量平均分子量を上記下限値以上とすることでプリプレグにタック性が生じるなどの問題がおこりにくくなり、上記上限値以下とすることで、プリプレグ作製時、繊維基材への含浸性が向上し、より均一な製品が得ることができる。
硬化剤の含有量の下限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.2重量%以上がさらに好ましい。硬化剤の含有量を上記下限値以上とすることにより、硬化を促進する効果を十分に発揮することができる。一方、硬化剤の含有量の上限値は、熱硬化性樹脂組成物の全固形分100重量%に対して、特に限定されないが、例えば、15重量%以下が好ましく、10重量%以下がより好ましく、8重量%以下がさらに好ましい。硬化剤の含有量が上記上限値以下であるとプリプレグの保存性をより向上させることができる。
(硬化促進剤)
本実施形態の熱硬化性樹脂組成物は、例えば、硬化促進剤を含んでもよい。これにより、熱硬化性樹脂組成物の硬化性を向上させることができる。硬化促進剤としては、熱硬化性樹脂の硬化反応を促進させる化合物を用いることができ、その種類は特に限定されない。本実施形態においては、硬化促進剤として、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、およびオニウム塩化合物から選択される一種または二種以上を含むことができる。これらの中でも、硬化性をより効果的に向上させる観点からは、オニウム塩化合物を含むことがより好ましい。
本実施形態の熱硬化性樹脂組成物は、例えば、硬化促進剤を含んでもよい。これにより、熱硬化性樹脂組成物の硬化性を向上させることができる。硬化促進剤としては、熱硬化性樹脂の硬化反応を促進させる化合物を用いることができ、その種類は特に限定されない。本実施形態においては、硬化促進剤として、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、およびオニウム塩化合物から選択される一種または二種以上を含むことができる。これらの中でも、硬化性をより効果的に向上させる観点からは、オニウム塩化合物を含むことがより好ましい。
硬化促進剤として用いられるオニウム塩化合物は、特に限定されないが、例えば、下記一般式(2)で表される化合物を用いることができる。
硬化促進剤の含有量の下限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、たとえば、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。硬化促進剤の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物の硬化性をより効果的に向上させることができる。一方、硬化促進剤の含有量の上限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、5重量%以下が好ましく、1重量%以下がより好ましい。硬化促進剤の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物の保存性を向上させることができる。
(カップリング剤)
本実施形態の熱硬化性樹脂組成物は、カップリング剤を含んでもよい。カップリング剤は熱硬化性樹脂組成物の調製時に直接添加してもよいし、無機充填材にあらかじめ添加しておいてもよい。カップリング剤の使用により無機充填材と各樹脂との界面の濡れ性を向上させることができる。したがって、カップリング剤を使用することは好ましく、樹脂膜の硬化物の耐熱性を改良することができる。また、カップリング剤を用いることにより、銅箔との密着性を向上させることができる。さらに、吸湿耐性を向上できるので、湿度環境下後においても、銅箔との密着性を維持することができる。
本実施形態の熱硬化性樹脂組成物は、カップリング剤を含んでもよい。カップリング剤は熱硬化性樹脂組成物の調製時に直接添加してもよいし、無機充填材にあらかじめ添加しておいてもよい。カップリング剤の使用により無機充填材と各樹脂との界面の濡れ性を向上させることができる。したがって、カップリング剤を使用することは好ましく、樹脂膜の硬化物の耐熱性を改良することができる。また、カップリング剤を用いることにより、銅箔との密着性を向上させることができる。さらに、吸湿耐性を向上できるので、湿度環境下後においても、銅箔との密着性を維持することができる。
カップリング剤としては、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤等のシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤等が挙げられる。カップリング剤は一種類を単独で用いてもよいし、二種類以上を併用してもよい。本実施形態において、カップリング剤はシランカップリング剤を含有してもよい。
これにより、無機充填材と各樹脂との界面の濡れ性を高くすることができ、樹脂膜の硬化物の耐熱性をより向上させることができる。
これにより、無機充填材と各樹脂との界面の濡れ性を高くすることができ、樹脂膜の硬化物の耐熱性をより向上させることができる。
シランカップリング剤としては、特に限定されないが、例えば、エポキシシラン、アミノシラン、アルキルシラン、ウレイドシラン、メルカプトシラン、ビニルシラン等が挙げられる。
具体的な化合物としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-フェニルγ-アミノプロピルトリエトキシシラン、N-フェニルγ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-6-(アミノヘキシル)3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、ビニルトリエトキシシラン等が挙げられ、これらのうちの一種または二種以上を組み合せて用いることができる。これらのうちエポキシシラン、メルカプトシラン、アミノシランが好ましく、アミノシランとしては、1級アミノシラン又はアニリノシランがより好ましい。
カップリング剤の含有量は、無機充填材の比表面積に対して適切に調整することができる。このようなカップリング剤の含有量の下限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、0.01重量%以上が好ましく、0.05重量%以上がより好ましい。カップリング剤の含有量が上記下限値以上であると、無機充填材を十分に被覆することができ、樹脂膜の硬化物の耐熱性を向上させることができる。一方、カップリング剤の含有量の上限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、2重量%以下が好ましく、1重量%以下がより好ましい。カップリング剤の含有量が上記上限値以下であると、反応に影響を与えるのを抑制でき、樹脂膜の硬化物の曲げ強度等の低下を抑制することができる。
(添加剤)
なお、本実施形態の熱硬化性樹脂組成物は、本発明の目的を損なわない範囲で、緑、赤、青、黄、および黒等の染料、黒色顔料な等の顔料、色素のうちの少なくとも一種以上を含む着色剤、低応力剤、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分(熱硬化性樹脂、硬化剤、無機充填材、硬化促進剤、カップリング剤)以外の添加剤を含んでもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
なお、本実施形態の熱硬化性樹脂組成物は、本発明の目的を損なわない範囲で、緑、赤、青、黄、および黒等の染料、黒色顔料な等の顔料、色素のうちの少なくとも一種以上を含む着色剤、低応力剤、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分(熱硬化性樹脂、硬化剤、無機充填材、硬化促進剤、カップリング剤)以外の添加剤を含んでもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。
顔料としては、カオリン、合成酸化鉄赤、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミ酸コバルト、合成ウルトラマリン青等の無機顔料、フタロシアニン等の多環顔料、アゾ顔料等が挙げられる。
染料としては、イソインドリノン、イソインドリン、キノフタロン、キサンテン、ジケトピロロピロール、ペリレン、ペリノン、アントラキノン、インジゴイド、オキサジン、キナクリドン、ベンツイミダゾロン、ビオランスロン、フタロシアニン、アゾメチン等が挙げられる。
本実施形態において、ワニス状の熱硬化性樹脂組成物は、溶剤を含むことができる。
上記溶剤としては、たとえばアセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、シクロヘキサン、ヘプタン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール、およびN-メチルピロリドン等の有機溶剤が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
上記溶剤としては、たとえばアセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、シクロヘキサン、ヘプタン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール、およびN-メチルピロリドン等の有機溶剤が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
熱硬化性樹脂組成物がワニス状である場合において、熱硬化性樹脂組成物の固形分含有量は、たとえば30重量%以上80重量%以下が好ましく、40重量%以上70重量%以下がより好ましい。これにより、作業性や成膜性に非常に優れた熱硬化性樹脂組成物が得られる。
ワニス状の熱硬化性樹脂組成物は、上述の各成分を、たとえば、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、および自転公転式分散方式などの各種混合機を用いて溶剤中に溶解、混合、撹拌することにより調製することができる。
次いで、本実施形態の樹脂膜について説明する。
本実施形態の樹脂膜は、ワニス状である上記熱硬化性樹脂組成物をフィルム化することにより得ることができる。例えば、本実施形態の樹脂膜は、ワニス状の熱硬化性樹脂組成物を塗布して得られた塗布膜に対して、溶剤を除去することにより得ることができる。このような樹脂膜においては、溶剤含有率が樹脂膜全体に対して5重量%以下とすることができる。本実施形態において、たとえば100℃~150℃、1分~5分の条件で溶剤を除去する工程を実施してもよい。これにより、熱硬化性樹脂を含む樹脂膜の硬化が進行することを抑制しつつ、十分に溶剤を除去することが可能となる。
(キャリア付き樹脂膜)
次いで、本実施形態のキャリア付樹脂膜について説明する。
図1は、本実施形態におけるキャリア付樹脂膜100の構成の一例を示す断面図である。
本実施形態のキャリア付樹脂膜100は、図1に示すように、キャリア基材12と、キャリア基材12上に設けられた、上記熱硬化性樹脂組成物から形成される樹脂膜10と、を備えることができる。これにより、樹脂膜10のハンドリング性を向上させることができる。
次いで、本実施形態のキャリア付樹脂膜について説明する。
図1は、本実施形態におけるキャリア付樹脂膜100の構成の一例を示す断面図である。
本実施形態のキャリア付樹脂膜100は、図1に示すように、キャリア基材12と、キャリア基材12上に設けられた、上記熱硬化性樹脂組成物から形成される樹脂膜10と、を備えることができる。これにより、樹脂膜10のハンドリング性を向上させることができる。
キャリア付樹脂膜100は、巻き取り可能なロール形状でも、矩形形状などの枚葉形状であってもよい。
本実施形態において、キャリア基材12としては、例えば、高分子フィルムや金属箔などを用いることができる。当該高分子フィルムとしては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリカーボネート、シリコーンシート等の離型紙、フッ素系樹脂、ポリイミド樹脂などの耐熱性を有した熱可塑性樹脂シート等が挙げられる。当該金属箔としては、特に限定されないが、例えば、銅または銅系合金、アルミまたはアルミ系合金、鉄または鉄系合金、銀または銀系合金、金または金系合金、亜鉛または亜鉛系合金、ニッケルまたはニッケル系合金、錫または錫系合金などが挙げられる。これらの中でも、ポリエチレンテレフタレートで構成されるシートが安価および剥離強度の調節が簡便なため最も好ましい。かかる材料で構成されるシートをキャリア基材12として用いることにより、樹脂膜10をキャリア基材12から、適度な強度で剥離することが容易となる。
樹脂膜10の厚みの下限値は、特に限定されないが、例えば、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。これにより、樹脂膜10の機械強度を高めることができる。一方、樹脂膜10の厚みの上限値は、特に限定されないが、例えば、500μm以下が好ましく、300μm以下がより好ましく、100μm以下がさらに好ましい。これにより、半導体装置の薄層化を図ることができる。
キャリア基材12の厚みは、特に限定されないが、例えば、10~100μmが好ましく、10~70μmがより好ましい。これにより、キャリア付樹脂膜100を製造する際の取り扱い性がより良好となる。
本実施形態のキャリア付樹脂膜100は、単層でも多層でもよく、1種または2種以上の樹脂膜10を含むことができる。当該樹脂シートが多層の場合には、各樹脂シートが同種で構成されてもよく、異種で構成されてもよい。また、キャリア付樹脂膜100は、樹脂膜10上の最外層側に、保護膜を有していてもよい。
本実施形態において、キャリア付樹脂膜100を形成する方法としては、特に限定されない。かかる方法としては、例えば、ワニス状の熱硬化性樹脂組成物をキャリア基材12上に、各種コーター装置を用いて塗布することにより塗布膜を形成し、その後、当該塗布膜を適切に乾燥させることにより溶剤を除去する方法を用いることができる。
(樹脂基板)
本実施形態の樹脂基板は、熱硬化性樹脂組成物の硬化物で構成された絶縁層を備えることができる。このような樹脂基板は、ガラス繊維を含まない構成とすることができ、プリント配線基板に利用することができる。
本実施形態の樹脂基板は、熱硬化性樹脂組成物の硬化物で構成された絶縁層を備えることができる。このような樹脂基板は、ガラス繊維を含まない構成とすることができ、プリント配線基板に利用することができる。
(プリプレグ)
本実施形態のプリプレグは、上記熱硬化性樹脂組成物を繊維基材に含浸して形成される。例えば、プリプレグは、熱硬化性樹脂組成物を繊維基材に含浸させ、その後、熱硬化性樹脂組成物を半硬化させて得られるシート状の材料として利用できる。このような構造のシート状材料は、誘電特性、高温多湿下での機械的、電気的接続信頼性等の各種特性に優れ、プリント配線基板の絶縁層の製造に適している。
本実施形態のプリプレグは、上記熱硬化性樹脂組成物を繊維基材に含浸して形成される。例えば、プリプレグは、熱硬化性樹脂組成物を繊維基材に含浸させ、その後、熱硬化性樹脂組成物を半硬化させて得られるシート状の材料として利用できる。このような構造のシート状材料は、誘電特性、高温多湿下での機械的、電気的接続信頼性等の各種特性に優れ、プリント配線基板の絶縁層の製造に適している。
熱硬化性樹脂組成物を繊維基材に含浸させる方法としては、特に限定されない。かかる方法としては、例えば、熱硬化性樹脂組成物を溶剤に溶かして樹脂ワニスを調製し、繊維基材を上記樹脂ワニスに浸漬する方法、各種コーターにより上記樹脂ワニスを繊維基材に塗布する方法、スプレーにより上記樹脂ワニスを繊維基材に吹き付ける方法、熱硬化性樹脂組成物から形成される上記樹脂膜で繊維基材の両面をラミネートする方法等が挙げられる。
本実施形態において、プリプレグは、例えば、プリント配線基板におけるビルドアップ層中の絶縁層やコア層中の絶縁層を形成するために用いることができる。プリプレグをプリント配線基板におけるコア層中の絶縁層を形成するために用いる場合は、例えば、2枚以上のプリプレグを重ね、得られた積層体を加熱硬化することによりコア層用の絶縁層とすることもできる。
(金属張積層板)
本実施形態において、金属張積層板は、上記プリプレグの硬化物の少なくとも一面に金属層が配置される。
また、プリプレグを用いた金属張積層板製造方法は、例えば以下の通りである。
プリプレグまたはプリプレグを2枚以上重ね合わせた積層体の外側の上下両面または片面に金属箔を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する、あるいはそのままプリプレグの外側の上下両面または片面に金属箔を重ねる。また、プリプレグを2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔を重ねる。次いで、プリプレグと金属箔とを重ねた積層体を加熱加圧成形することで金属張積層板を得ることができる。ここで、加熱加圧成形時に、冷却終了時まで加圧を継続することが好ましい。
本実施形態において、金属張積層板は、上記プリプレグの硬化物の少なくとも一面に金属層が配置される。
また、プリプレグを用いた金属張積層板製造方法は、例えば以下の通りである。
プリプレグまたはプリプレグを2枚以上重ね合わせた積層体の外側の上下両面または片面に金属箔を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合する、あるいはそのままプリプレグの外側の上下両面または片面に金属箔を重ねる。また、プリプレグを2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔を重ねる。次いで、プリプレグと金属箔とを重ねた積層体を加熱加圧成形することで金属張積層板を得ることができる。ここで、加熱加圧成形時に、冷却終了時まで加圧を継続することが好ましい。
上記金属箔を構成する金属としては、例えば、銅、銅系合金、アルミ、アルミ系合金、銀、銀系合金、金、金系合金、亜鉛、亜鉛系合金、ニッケル、ニッケル系合金、錫、錫系合金、鉄、鉄系合金、コバール(商標名)、42アロイ、インバー、スーパーインバー等のFe-Ni系の合金、W、Mo等が挙げられる。これらの中でも、金属箔105を構成する金属としては、導電性に優れ、エッチングによる回路形成が容易であり、また安価であることから銅または銅合金が好ましい。すなわち、金属箔105としては、銅箔が好ましい。
また、金属箔としては、キャリア付金属箔等も使用することができる。
金属箔の厚みは、0.5μm以上20μm以下が好ましく、1.5μm以上18μm以下がより好ましい。
また、金属箔としては、キャリア付金属箔等も使用することができる。
金属箔の厚みは、0.5μm以上20μm以下が好ましく、1.5μm以上18μm以下がより好ましい。
次いで、本実施形態に用いられる繊維基材について説明する。
上記繊維基材としては、とくに限定されないが、ガラス織布、ガラス不織布等のガラス繊維基材;ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維;ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維;ポリイミド樹脂繊維、フッ素樹脂繊維のいずれかを主成分とする織布または不織布で構成される合成繊維基材;クラフト紙、コットンリンター紙、あるいはリンターとクラフトパルプの混抄紙等を主成分とする紙基材;等が挙げられる。これらのうち、いずれかを使用することができる。これらの中でもガラス繊維基材が好ましい。これにより、低吸水性で、高強度、低熱膨張性の樹脂基板を得ることができる。
上記繊維基材としては、とくに限定されないが、ガラス織布、ガラス不織布等のガラス繊維基材;ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維;ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維;ポリイミド樹脂繊維、フッ素樹脂繊維のいずれかを主成分とする織布または不織布で構成される合成繊維基材;クラフト紙、コットンリンター紙、あるいはリンターとクラフトパルプの混抄紙等を主成分とする紙基材;等が挙げられる。これらのうち、いずれかを使用することができる。これらの中でもガラス繊維基材が好ましい。これにより、低吸水性で、高強度、低熱膨張性の樹脂基板を得ることができる。
繊維基材の厚みは、とくに限定されないが、5μm以上150μm以下が好ましく、10μm以上100μm以下がより好ましく、12μm以上90μm以下がさらに好ましい。このような厚みを有する繊維基材を用いることにより、プリプレグ製造時のハンドリング性がさらに向上できる。
繊維基材の厚みが上記上限値以下であると、繊維基材中の熱硬化性樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマ等のレーザーによるスルーホールの形成を容易にすることができる。また、繊維基材の厚みが上記下限値以上であると、繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上することにより、プリプレグの作製が容易となったり、樹脂基板の反りを抑制することができる。
繊維基材の厚みが上記上限値以下であると、繊維基材中の熱硬化性樹脂組成物の含浸性が向上し、ストランドボイドや絶縁信頼性の低下の発生を抑制することができる。また炭酸ガス、UV、エキシマ等のレーザーによるスルーホールの形成を容易にすることができる。また、繊維基材の厚みが上記下限値以上であると、繊維基材やプリプレグの強度を向上させることができる。その結果、ハンドリング性が向上することにより、プリプレグの作製が容易となったり、樹脂基板の反りを抑制することができる。
上記ガラス繊維基材として、例えば、Eガラス、Sガラス、Dガラス、Tガラス、NEガラス、UTガラス、Lガラス、HPガラスおよび石英ガラスから選ばれる一種または二種以上のガラスにより形成されたガラス繊維基材が好適に用いられる。
本実施形態によれば、このような樹脂膜やそれを用いたプリプレグを採用することにより、平面方向における線膨張係数が低減されたプリント配線基板における絶縁層を構成することが可能になる。
本実施形態の樹脂膜の特性について説明する。
本実施形態の樹脂膜は、前述の通り、上記熱硬化性樹脂組成物から形成される樹脂膜である。
本実施形態に係る樹脂膜の硬化物の、30℃から240℃の範囲において算出した平面方向(XY方向)の平均線膨張係数の上限値は、例えば、40ppm/℃以下が好ましく、30ppm/℃以下がより好ましく、20ppm/℃以下がさらに好ましい。これにより、製造プロセス中におけるプリント配線基板の反りを低減することができる。また、得られた半導体パッケージの反りを低減させることができる。また、得られた半導体パッケージに蓄積される応力を低減させることができるため接続信頼性に優れる。一方、上記平均線膨張係数の下限値は、特に限定されないが、例えば、1ppm/℃以上としてもよい。
本実施形態に係る樹脂膜の硬化物の、30℃から240℃の範囲において算出した平面方向(XY方向)の平均線膨張係数の上限値は、例えば、40ppm/℃以下が好ましく、30ppm/℃以下がより好ましく、20ppm/℃以下がさらに好ましい。これにより、製造プロセス中におけるプリント配線基板の反りを低減することができる。また、得られた半導体パッケージの反りを低減させることができる。また、得られた半導体パッケージに蓄積される応力を低減させることができるため接続信頼性に優れる。一方、上記平均線膨張係数の下限値は、特に限定されないが、例えば、1ppm/℃以上としてもよい。
また、本実施形態の樹脂膜の硬化物の、30℃から150℃の範囲において算出した平面方向(XY方向)の平均線膨張係数(α1)の上限値は、例えば、30ppm/℃以下が好ましく、25ppm/℃以下がより好ましく、15ppm/℃以下がさらに好ましい。これにより、製造プロセス中におけるプリント配線基板の反りを低減することができる。また、得られた半導体パッケージの反りを低減させることができる。一方、上記平均線膨張係数(α1)の下限値は、特に限定されないが、例えば、1ppm/℃以上としてもよい。
また、本実施形態の樹脂膜の硬化物の、150℃から240℃の範囲において算出した平面方向(XY方向)の平均線膨張係数(α2)の上限値は、例えば、40ppm/℃以下が好ましく、35ppm/℃以下がより好ましく、30ppm/℃以下がさらに好ましい。これにより、高温の熱履歴時におけるプリント配線基板の反りや半導体パッケージの反りを低減することができる。また、得られた半導体パッケージをリフローなどで加熱し上下のPKGまたは配線板を半田ボール等の導体ポストで接続させる実装時の反りを低減させることができる。一方、上記平均線膨張係数(α2)の下限値は、特に限定されないが、例えば、1ppm/℃以上としてもよい。
このように、本実施形態の樹脂膜の硬化物を用いることにより、室温(例えば、25℃)における反りを抑制できるとともに、高温の熱履歴時においても反りを抑制することができる。これにより、例えば、製造プロセス中において、大面積を有するプリント配線基板の反りを抑制できるとともに、熱履歴時における半導体パッケージの反りや接続信頼性を十分に高めることができる。
また、熱硬化性樹脂組成物の硬化物の、30℃から150℃の範囲において算出した平均線膨張係数をα1とし、当該熱硬化性樹脂組成物の硬化物の、150℃から240℃の範囲において算出した平均線膨張係数をα2とする。
このとき、平均線膨張係数比(α2/α1)の下限値は、例えば、0.7以上が好ましく、0.8以上がより好ましく、0.9以上がさらに好ましい。これにより、室温時と熱履歴時の線膨張係数のバランスを高めることができる、一方、上記平均線膨張係数比(α2/α1)の上限値は、特に限定されないが、例えば、3.0以下が好ましく、2.8以下がより好ましく、2.5以下がさらに好ましい。これにより、熱履歴時における半導体パッケージの反りや接続信頼性を十分に高めることができる。また、半導体パッケージのサーマル特性を向上させることができる。
このとき、平均線膨張係数比(α2/α1)の下限値は、例えば、0.7以上が好ましく、0.8以上がより好ましく、0.9以上がさらに好ましい。これにより、室温時と熱履歴時の線膨張係数のバランスを高めることができる、一方、上記平均線膨張係数比(α2/α1)の上限値は、特に限定されないが、例えば、3.0以下が好ましく、2.8以下がより好ましく、2.5以下がさらに好ましい。これにより、熱履歴時における半導体パッケージの反りや接続信頼性を十分に高めることができる。また、半導体パッケージのサーマル特性を向上させることができる。
本実施形態において、樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)のガラス転移温度の下限値は、特に限定されないが、例えば、140℃以上が好ましく、200℃以上がより好ましく、230℃以上が特に好ましい。これにより、耐熱性に優れた樹脂膜の硬化物が得られる。また、樹脂膜の硬化物のガラス転移温度の上限値は、特に限定されないが、例えば、400℃以下としてもよい。
上記ガラス転移温度は、動的粘弾性分析装置(DMA)を用いて測定することができる。また、上記ガラス転移温度は、昇温速度5℃/min、周波数1Hzの条件での動的粘弾性測定により得られる曲線おいて、150℃以上の領域に存在する損失正接tanδのピーク値に対応する温度である。
上記ガラス転移温度は、動的粘弾性分析装置(DMA)を用いて測定することができる。また、上記ガラス転移温度は、昇温速度5℃/min、周波数1Hzの条件での動的粘弾性測定により得られる曲線おいて、150℃以上の領域に存在する損失正接tanδのピーク値に対応する温度である。
本実施形態において、ガラス転移温度は、180℃、2時間で熱処理して得られる樹脂膜の硬化物に対して、たとえば動的粘弾性測定装置を用いて周波数1Hz、昇温速度5℃/分の条件で動的粘弾性試験を行うことにより得られる測定結果から算出することができる。動的粘弾性測定装置としては、とくに限定されないが、たとえばDMA装置(TAインスツルメント社製、Q800)を用いることができる。
本実施形態においては、たとえば熱硬化性樹脂組成物を構成する成分の種類や配合割合をそれぞれ適切に選択すること等により、熱硬化性樹脂組成物の上記平均線膨張係数やガラス転移温度を所望の範囲内とすることができる。たとえば、官能基としてアリル基を有するベンゾオキサジン化合物を用いること、熱硬化性樹脂としてマレイミド化合物を用いること等が、上記平均線膨張係数やガラス転移温度を所望の数値範囲とするための要素として挙げられる
また、本実施形態において、樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)の、銅箔に対するピール強度の下限値は、特に限定されないが、例えば、0.5kN/m以上が好ましく、0.6kN/m以上がより好ましく、0.7kN/m以上がさらに好ましい。これにより、樹脂膜の硬化物の銅密着性を向上させ、得られる絶縁層のSAP特性を高めることができる。また、上記ピール強度の上限値は、特に限定されないが、例えば、3kN/m以下としてもよい。
本実施形態において、銅箔に対するピール強度の測定方法としては、例えば、金属張積層板を準備し、JIS C-6481:1996に準拠して測定されプリプレグの硬化物と金属箔との間のピール強度を、HAST条件(温度130℃、湿度85%)で100時間処理後に測定する手法を用いてもよい。
(プリント配線基板)
本実施形態のプリント配線基板は、上記の樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)で構成された絶縁層を備える。
本実施形態において、樹脂膜の硬化物は、例えば、通常のプリント配線基板のコア層やビルドアップ層やソルダーレジスト層、コア層を有しないプリント配線基板におけるビルドアップ層やソルダーレジスト層、PLPに用いられるコアレス基板の層間絶縁層やソルダーレジスト層、MIS基板の層間絶縁層やソルダーレジスト層等に用いることができる。このような絶縁層は、複数の半導体パッケージを一括して作成するために利用させる大面積のプリント配線基板において、当該プリント配線基板を構成する層間絶縁層やソルダーレジスト層にも好適に用いることができる。
本実施形態のプリント配線基板は、上記の樹脂膜の硬化物(熱硬化性樹脂組成物の硬化物)で構成された絶縁層を備える。
本実施形態において、樹脂膜の硬化物は、例えば、通常のプリント配線基板のコア層やビルドアップ層やソルダーレジスト層、コア層を有しないプリント配線基板におけるビルドアップ層やソルダーレジスト層、PLPに用いられるコアレス基板の層間絶縁層やソルダーレジスト層、MIS基板の層間絶縁層やソルダーレジスト層等に用いることができる。このような絶縁層は、複数の半導体パッケージを一括して作成するために利用させる大面積のプリント配線基板において、当該プリント配線基板を構成する層間絶縁層やソルダーレジスト層にも好適に用いることができる。
次に、本実施形態のプリント配線基板300の一例を、図2(a)および(b)を用いて説明する。
本実施形態のプリント配線基板300は、上述の樹脂膜10の硬化物で構成された絶縁層を備える。上記プリント配線基板300は、図2(a)に示すように、絶縁層301(コア層)と絶縁層401(ソルダーレジスト層)とを備える構造を有していてもよい。また、上記プリント配線基板300は、図2(b)に示すように、絶縁層301(コア層)、絶縁層305(ビルドアップ層)および絶縁層401(ソルダーレジスト層)を備える構造を有していてもよい。これらのコア層、ビルドアップ層、ソルダーレジスト層のそれぞれは、例えば、本実施形態の樹脂膜の硬化物で構成することができる。このコア層は、本実施形態の熱硬化性樹脂組成物を繊維基材に含浸させてなるプリプレグを硬化させた硬化体で構成されていてもよい。
本実施形態のプリント配線基板300は、上述の樹脂膜10の硬化物で構成された絶縁層を備える。上記プリント配線基板300は、図2(a)に示すように、絶縁層301(コア層)と絶縁層401(ソルダーレジスト層)とを備える構造を有していてもよい。また、上記プリント配線基板300は、図2(b)に示すように、絶縁層301(コア層)、絶縁層305(ビルドアップ層)および絶縁層401(ソルダーレジスト層)を備える構造を有していてもよい。これらのコア層、ビルドアップ層、ソルダーレジスト層のそれぞれは、例えば、本実施形態の樹脂膜の硬化物で構成することができる。このコア層は、本実施形態の熱硬化性樹脂組成物を繊維基材に含浸させてなるプリプレグを硬化させた硬化体で構成されていてもよい。
本実施形態の樹脂膜から形成される硬化物は、ガラスクロスや紙基材等の繊維基材を含まなくてもよい。これにより、ビルドアップ層(層間絶縁層)やソルダーレジスト層を形成するために特に適した構成とすることができる。
また、本実施形態に係るプリント配線基板300は、片面プリント配線基板であってもよいし、両面プリント配線基板または多層プリント配線基板であってもよい。両面プリント配線基板とは、絶縁層301の両面に金属層303を積層したプリント配線基板である。また、多層プリント配線基板とは、メッキスルーホール法やビルドアップ法等により、コア層である絶縁層301に、ビルドアップ層(例えば、絶縁層305)を2層以上積層したプリント配線基板である。
なお、本実施形態において、ビアホール307は、層間を電気的に接続するための孔であればよく、貫通孔および非貫通孔いずれでもよい。ビアホール307は金属を埋設して形成されてもよい。この埋設した金属は、無電解金属めっき膜308で覆われた構造を有していてもよい。
また、本実施形態において、上記金属層303は、例えば、回路パターンであってもよいし、電極パットであってもよい。この金属層303は、例えば、金属箔105および電解金属めっき層309の金属積層構造を有していてもよい。
金属層303は、例えば、薬液処理またはプラズマ処理された金属箔105または、本実施形態の樹脂膜の硬化物から形成される絶縁層(例えば、絶縁層301や絶縁層305)の面上に、SAP(セミアディティブプロセス)法により形成される。例えば、金属箔105または絶縁層301,305上に無電解金属めっき膜308を施した後、めっきレジストにより非回路形成部を保護し、電解めっきにより電解金属めっき層309付けを行い、めっきレジストの除去とフラッシュエッチングによる電解金属めっき膜309をパターニングすることにより、金属層303を形成する。
金属層303は、例えば、薬液処理またはプラズマ処理された金属箔105または、本実施形態の樹脂膜の硬化物から形成される絶縁層(例えば、絶縁層301や絶縁層305)の面上に、SAP(セミアディティブプロセス)法により形成される。例えば、金属箔105または絶縁層301,305上に無電解金属めっき膜308を施した後、めっきレジストにより非回路形成部を保護し、電解めっきにより電解金属めっき層309付けを行い、めっきレジストの除去とフラッシュエッチングによる電解金属めっき膜309をパターニングすることにより、金属層303を形成する。
また、本実施形態のプリント配線基板300は、ガラス繊維を含まない樹脂基板とすることができる。例えば、コア層である絶縁層301は、ガラス繊維を含有しない構成であってもよい。このような樹脂基板を用いた半導体パッケージにおいても、樹脂膜の硬化物の線膨張係数を低くすることができるので、パッケージ反りを十分に抑制することができる。
(半導体パッケージ)
次に、本実施形態の半導体装置400について説明する。図3(a)および(b)は、半導体装置400の構成の一例を示す断面図である。
本実施形態の半導体装置400は、プリント配線基板300と、プリント配線基板300の回路層上に搭載された、またはプリント配線基板300に内蔵された半導体素子と、を備えることができる。
次に、本実施形態の半導体装置400について説明する。図3(a)および(b)は、半導体装置400の構成の一例を示す断面図である。
本実施形態の半導体装置400は、プリント配線基板300と、プリント配線基板300の回路層上に搭載された、またはプリント配線基板300に内蔵された半導体素子と、を備えることができる。
例えば、図3(a)に示される半導体装置400は、図3(a)に示されるプリント配線基板300の回路層(金属層303)の上に、半導体素子407が搭載された構造を有する。一方、図3(b)に示される半導体装置400は、図3(b)に示されるプリント配線基板300の回路層(金属層303)の上に、半導体素子407が搭載された構造を有する。半導体素子407は、封止材層413に覆われている。このような半導体パッケージは、半田バンプ410および金属層303を介して、半導体素子407が、プリント配線基板300と電気的に接続するフリップチップ構造であってもよい。
本実施形態において、半導体パッケージの構造としては、上記フリップチップ接続構造に限定されずに、各種の構造を有してもよいが、例えば、ファンアウト構造を用いることができる。本実施形態の樹脂膜の硬化物から形成される絶縁層は、ファンアウト構造を有する半導体パッケージの製造プロセスにおいて、基板反りや基板クラックを抑制することができる。
次に、本実施形態のプリント配線基板の変形例を説明する。図4(a)~(c)は、プリント配線基板500の製造プロセス一例の工程断面図である。本変形例のプリント配線基板500は、図4(c)に示すように、コア層を有しないプリント配線基板である。
本実施形態のプリント配線基板500は、繊維基材を有するコア層を備えない、例えば、ビルドアップ層やソルダーレジスト層で構成されているコアレス樹脂基板とすることができる。これらのビルドアップ層やソルダーレジスト層は、本実施形態の樹脂膜の硬化物から形成される絶縁層で構成されていることが好ましい。例えば、図4(c)に示すプリント配線基板500は、2層のビルドアップ層(絶縁層540,550)とソルダーレジスト層(絶縁層560)とを備える。なお、プリント配線基板500のビルドアップ層は、単層でもよく、2以上の複数層を有していてもよい。
本実施形態のプリント配線基板500は、繊維基材を有するコア層を備えない、例えば、ビルドアップ層やソルダーレジスト層で構成されているコアレス樹脂基板とすることができる。これらのビルドアップ層やソルダーレジスト層は、本実施形態の樹脂膜の硬化物から形成される絶縁層で構成されていることが好ましい。例えば、図4(c)に示すプリント配線基板500は、2層のビルドアップ層(絶縁層540,550)とソルダーレジスト層(絶縁層560)とを備える。なお、プリント配線基板500のビルドアップ層は、単層でもよく、2以上の複数層を有していてもよい。
本実施形態の樹脂膜の硬化物から形成される絶縁層は強靱性に優れるので、プリント配線基板500の反りや搬送時におけるクラックを抑制することができる。
図4(c)に示される金属層542,552,562は、回路パターンであってもよいし、電極パットであってもよく、または、前述のように、SAP法で形成されていてもよい。これらの金属層542,552,562は、単層でも複数の金属層であってもよい。
プリント配線基板500は、平面上に複数の半導体素子を搭載することができる大面積を有していてもよい。これにより、プリント配線基板500に搭載された複数の半導体素子を一括封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。なお、プリント配線基板500は、略円形形状や矩形形状等のパネル基板とすることができる。
上記プリント配線基板500の製造方法は、特に限定されないが、例えば、支持基板510上に、ビルドアップ層、ソルダーレジスト層を形成した後、この支持基板510を剥離することにより得ることができる。具体的には、図4(a)に示すように、大面積の支持基板510(例えば、SUSで構成される板部材)上に、キャリア箔520、金属箔530(例えば、銅箔)を配置する。このとき、支持基板510とキャリア箔520との間に不図示の接着樹脂を設けることができる。続いて、金属箔530上に金属層542を形成する。この金属層542を、たとえば、SAP方法等の通常の手法によりパターニングする。続いて、加熱加圧成形法等により、上記キャリア膜付樹脂膜を積層した後、キャリア膜付樹脂膜からキャリア基材を剥離する。そして、樹脂膜を硬化する。これらを3回繰り返して、2層のビルドアップ層と1層のソルダーレジスト層を形成する。
その後、図4(b)に示すように支持基板510を剥離する。そして、金属箔530をエッチング等により除去する。
以上により、図4(c)に示すプリント配線基板500が得られる。
その後、図4(b)に示すように支持基板510を剥離する。そして、金属箔530をエッチング等により除去する。
以上により、図4(c)に示すプリント配線基板500が得られる。
次に、本実施形態のプリント配線基板の変形例を説明する。図5は、プリント配線基板600の構成の一例を示す断面図である。
図5に示すプリント配線基板600は、PLP(パネルレベルパッケージ)プロセスに用いられるコアレス樹脂基板610で構成されていてもよい。PLPプロセスは、例えば、配線板プロセスを利用して、ウエハ以上の大面積を有するパネルサイズパッケージを得ることができる。PLPプロセスを使用することにより、ウエハレベルプロセスよりも半導体パッケージの生産性を効率的に向上させることができる。
図5に示すプリント配線基板600は、PLP(パネルレベルパッケージ)プロセスに用いられるコアレス樹脂基板610で構成されていてもよい。PLPプロセスは、例えば、配線板プロセスを利用して、ウエハ以上の大面積を有するパネルサイズパッケージを得ることができる。PLPプロセスを使用することにより、ウエハレベルプロセスよりも半導体パッケージの生産性を効率的に向上させることができる。
本実施形態において、コアレス樹脂基板610の絶縁層612(層間絶縁層)や絶縁層630,632(ソルダーレジスト層)は、本実施形態の樹脂膜の硬化物から形成される絶縁層で構成されていてもよい。本実施形態の樹脂膜の硬化物は強靱性に優れているため、PLPプロセス中において、プリント配線基板600の反りや、とくに搬送時や実装時におけるコアレス樹脂基板610のクラックを効果的に抑制することができる。
また、本実施形態のプリント配線基板600は、その平面内において複数の半導体素子(不図示)を搭載することができるような大面積を有している。そして、プリント配線基板600の面内方向に搭載された複数の半導体素子を一括して封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。本実施形態では、樹脂膜の硬化物の線膨張係数を低くすることができるので、PLPプロセスで得られた半導体パッケージにおいてパッケージ反りを抑制することができる。
プリント配線基板600は、コアレス樹脂基板610と、その表面に形成されたソルダーレジスト層(絶縁層630,632)とを備えることができる。コアレス樹脂基板610は、内蔵された半導体素子620を有してもよい。半導体素子620は、ビア配線616を介して電気的に接続することができる。また、コアレス樹脂基板610は、絶縁層612(層間絶縁層)およびビア配線616を少なくとも有することができる。ビア配線616を介して、下面の金属層640(電極パッド)と上面の金属層618(ポスト)とを電気的に接続することができる。また、ビア配線616は、例えば、金属層614(ポスト)を介して金属層640に接続することができる。コアレス樹脂基板610において、ビア配線616および金属層614が埋設されている。ポストである金属層614は、表面がコアレス樹脂基板610の表面と同一平面を構成してもよい。本実施形態のプリント配線基板600において、コアレス樹脂基板610は、単層の層間絶縁層で構成されているが、この構成に限定されずに、複数の層間絶縁層が積層した構造を有していてもよい。このような層間絶縁層中には少なくとも層間接続配線としてビア配線616が形成されていてもよい。また、本実施形態において、ビア配線616、金属層614、または金属層618は、例えば、銅などの金属で構成されていてもよい。
また、コアレス樹脂基板610の上面と下面は、ソルダーレジスト層(絶縁層630,632)で覆われていてもよい。例えば、絶縁層630は、絶縁層612の表面上に形成された金属層650を覆うことができる。金属層650は、第1金属層652(めっき層)と第2金属層654(無電解めっき層)とで構成されており、例えば、SAP法で形成された金属層であってもよい。金属層650は、例えば、回路パターンまたは電極パッドでもよい。
また、本実施形態のプリント配線基板600の製造方法は、特に限定されないが、例えば、次のような方法を用いることができる。例えば、支持基板上に絶縁層612を形成する。続いて、絶縁層612にビアを形成し、ビア内をめっき方法により金属膜を埋設しビア配線616を形成する。続いて、絶縁層612の表面上に、SAP方法により再配線(金属層650)を形成する。その後、このような層間接続配線を有する複数の層間絶縁層を積層してもよい。その後、ソルダーレジスト層(絶縁層630,632)を形成する。
以上により、プリント配線基板600を得ることができる。
以上により、プリント配線基板600を得ることができる。
次に、本実施形態のプリント配線基板の変形例を説明する。図6は、プリント配線基板700の構成の一例を示す断面図である。
図6に示すプリント配線基板700は、ポスト付き基板(MIS基板)で構成することができる。例えば、ポスト付き基板は、絶縁層712(層間絶縁層)内に、ビア配線716と金属層718(ポスト)が埋設された構造を有するコアレス樹脂基板710で構成することができる。ポスト付き基板は、個片化された後の基板であっても、個片化前の大面積を有する基板(例えば、ウエハの様な支持体)であってもよい。
本実施形態のプリント配線基板700を用いることにより、ウエハレベルプロセスと同程度以上に、半導体パッケージの生産性を効率的に向上させることができる。
図6に示すプリント配線基板700は、ポスト付き基板(MIS基板)で構成することができる。例えば、ポスト付き基板は、絶縁層712(層間絶縁層)内に、ビア配線716と金属層718(ポスト)が埋設された構造を有するコアレス樹脂基板710で構成することができる。ポスト付き基板は、個片化された後の基板であっても、個片化前の大面積を有する基板(例えば、ウエハの様な支持体)であってもよい。
本実施形態のプリント配線基板700を用いることにより、ウエハレベルプロセスと同程度以上に、半導体パッケージの生産性を効率的に向上させることができる。
本実施形態において、コアレス樹脂基板710の絶縁層712(層間絶縁層)や絶縁層730,732(ソルダーレジスト層)は、本実施形態の樹脂膜の硬化物から形成される絶縁層で構成されていてもよい。本実施形態の樹脂膜の硬化物は強靱性に優れているため、プリント配線基板700の反りや、とくに搬送時や実装時におけるコアレス樹脂基板710のクラックを効果的に抑制することができる。
また、本実施形態のプリント配線基板700は、その平面内において複数の半導体素子(不図示)を搭載することができるような大面積を有している。そして、プリント配線基板700の面内方向に搭載された複数の半導体素子を一括して封止した後、これらを個片化することにより、複数の半導体パッケージを得ることができる。本実施形態の樹脂膜の硬化物の線膨張係数を低くすることができるので、得られた半導体パッケージにおいてパッケージ反りを抑制することができる。
プリント配線基板700は、コアレス樹脂基板710と、その表面に形成されたソルダーレジスト層(絶縁層730,732)を備えることができる。コアレス樹脂基板710は、内蔵された半導体素子720を有してもよい。半導体素子720は、ビア配線716を介して電気的に接続することができる。また、コアレス樹脂基板710は、絶縁層712(層間絶縁層)およびビア配線716および金属層718(ポスト)を少なくとも有することができる。ビア配線716を介して、下面の金属層714(ポスト)と上面の金属層718(ポスト)とを電気的に接続することができる。また、絶縁層712内に埋設された金属層714は、絶縁層712の表面に形成された金属層740(電極パッド)に接続することができる。また、絶縁層712の表面は、研磨面を有していてもよい。金属層718の一面は、絶縁層712の研磨面と同一平面を構成してもよい。
本実施形態のプリント配線基板700において、コアレス樹脂基板710は、単層の層間絶縁層で構成されているが、この構成に限定されずに、複数の層間絶縁層が積層した構造を有していてもよい。このような層間絶縁層中には、層間接続配線としてビア配線716および金属層718(ポスト)が形成されていてもよい。また、本実施形態において、ビア配線716、金属層714、または金属層718は、例えば、銅などの金属で構成されていてもよい。また、コアレス樹脂基板710の上面と下面は、ソルダーレジスト層(絶縁層730,732)で覆われていてもよい。
また、本実施形態のプリント配線基板700の製造方法は、特に限定されないが、例えば、次のような方法を用いることができる。例えば、支持基板上に、絶縁層上に銅ポスト(例えば、金属層718)を形成する。銅ポストをさらに絶縁層で埋め込む。続いて、グラインドやケミカルエッチングなどの方法により、当該銅ポストの表面を露出する(つまり、銅ポストの頭出しを行う)。続いて、SAP方法により再配線を形成する。このような工程により層間絶縁層を有するコアレス樹脂基板710を形成できる。この後、層間絶縁層を形成する工程を複数回繰り返すことにより、層間接続配線を有する層間絶縁層を複数層、積層してもよい。その後、ソルダーレジスト層(絶縁層730,732)を形成する。
以上により、プリント配線基板700を得ることができる。
以上により、プリント配線基板700を得ることができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されない。
(熱硬化性樹脂組成物の調製)
実施例および比較例について、ワニス状の熱硬化性樹脂組成物を調整した。
まず、表1に示す固形分割合で各成分を溶解または分散させ、メチルエチルケトンで不揮発分70重量%となるように調整し、高速撹拌装置を用いて撹拌して樹脂ワニスを調製した。
なお、表1における各成分の配合割合を示す数値は、熱硬化性樹脂組成物の固形分全体に対する各成分の配合割合(重量%)を示している。
表1における各成分の原料の詳細は下記のとおりである。
実施例および比較例について、ワニス状の熱硬化性樹脂組成物を調整した。
まず、表1に示す固形分割合で各成分を溶解または分散させ、メチルエチルケトンで不揮発分70重量%となるように調整し、高速撹拌装置を用いて撹拌して樹脂ワニスを調製した。
なお、表1における各成分の配合割合を示す数値は、熱硬化性樹脂組成物の固形分全体に対する各成分の配合割合(重量%)を示している。
表1における各成分の原料の詳細は下記のとおりである。
実施例および比較例では、以下の原料を用いた。
(熱硬化性樹脂)
熱硬化性樹脂1:ビスフェノールA型エポキシ樹脂(DIC社製、EPICLON、840S)
熱硬化性樹脂2:下記式(1)において、n1が0以上3以下、X1が「-CH2-」で表される基、aが0、bが0であるマレイミド化合物(BMI-2300、大和化成工業社製、Mw=750)
(熱硬化性樹脂)
熱硬化性樹脂1:ビスフェノールA型エポキシ樹脂(DIC社製、EPICLON、840S)
熱硬化性樹脂2:下記式(1)において、n1が0以上3以下、X1が「-CH2-」で表される基、aが0、bが0であるマレイミド化合物(BMI-2300、大和化成工業社製、Mw=750)
熱硬化性樹脂4:下記一般式(II)で表わされるp-キシレン変性ナフトールアラルキル型シアネート樹脂(ナフトールアラルキル型フェノール樹脂(東都化成社製「SN-485誘導体」)と塩化シアンの反応物)
(ベンゾオキサジン化合物)
ベンゾオキサジン化合物1:下記の製法で得られた下記式で表されるベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、アリルアミン570gを1時間かけてフラスコに滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物1を得た。
ベンゾオキサジン化合物1:下記の製法で得られた下記式で表されるベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、アリルアミン570gを1時間かけてフラスコに滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物1を得た。
ベンゾオキサジン化合物2:下記の製法で得られた下記式で表される、ビスF型ベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、4,4'-ジアミノ-3,3'-ジアリルジフェニルメタン139g(0.5モル)、フェノール94g(1.0モル)およびn-ブタノール150mLを加え、撹拌しながら60℃まで加熱して、固形成分を均一に溶解した。その後、フラスコに50%ホルマリン溶液128g(2.0モル)を10分間かけて滴下した。これらの混合液を、さらに撹拌しながら95℃で還流下3時間反応させた後、110℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物2を得た。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、4,4'-ジアミノ-3,3'-ジアリルジフェニルメタン139g(0.5モル)、フェノール94g(1.0モル)およびn-ブタノール150mLを加え、撹拌しながら60℃まで加熱して、固形成分を均一に溶解した。その後、フラスコに50%ホルマリン溶液128g(2.0モル)を10分間かけて滴下した。これらの混合液を、さらに撹拌しながら95℃で還流下3時間反応させた後、110℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物2を得た。
ベンゾオキサジン化合物3:下記の製法で得られた下記式で表される、ビスA型のベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ジアリルビスフェノールA1540gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してジアリルビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、アニリン930gを1時間かけてフラスコに滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物3を得た。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ジアリルビスフェノールA1540gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してジアリルビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、アニリン930gを1時間かけてフラスコに滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物3を得た。
ベンゾオキサジン化合物4:下記の製法で得られた下記式で表される、ベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールF1000gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールFを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、2-アリルアニリン1330gを1時間かけて滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物4を得た。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールF1000gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールFを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、2-アリルアニリン1330gを1時間かけて滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、アリル基を含有するベンゾオキサジン化合物4を得た。
ベンゾオキサジン化合物6:下記の製法で得られた下記式で表される、ベンゾオキサジン化合物。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、2-メチルアリルアミン711gを1時間かけて滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、炭素数4のアリル基を含有するベンゾオキサジン化合物6を得た。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、2-メチルアリルアミン711gを1時間かけて滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、炭素数4のアリル基を含有するベンゾオキサジン化合物6を得た。
温度計、撹拌機、冷却管および滴下装置を備えたフラスコに、ビスフェノールA1140gとトルエン920gとを加え、撹拌しながら、50℃まで加熱してビスフェノールAを溶解した。その後、フラスコにホルムアルデヒド652gを添加した。これらの混合液を、さらに撹拌しながら、オレイルアミン2675gを1時間かけて滴下し、1時間後に78~80℃になるようにした。還流下7時間反応させた後、100℃、圧力360mmHg(約48kPa)の条件で、縮合水の除去、および減圧を行うことにより、炭素数18のアリル基を含有するベンゾオキサジン化合物7を得た。
(無機充填材)
無機充填材1:シリカ粒子(アドマテック社製、SC2050、平均粒径0.5μm)
(硬化促進剤)
硬化促進剤1:上記した式(2)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)
硬化促進剤2:2-フェニルイミダゾール(四国化成社製、2PZ-PW)
(カップリング剤)
カップリング剤1:シランカップリング剤(N-フェニルγ-アミノプロピルトリメトキシシラン、信越化学(株)製、KBM-573)
無機充填材1:シリカ粒子(アドマテック社製、SC2050、平均粒径0.5μm)
(硬化促進剤)
硬化促進剤1:上記した式(2)に該当するオニウム塩化合物のリン系触媒(住友ベークライト社製、C05-MB)
硬化促進剤2:2-フェニルイミダゾール(四国化成社製、2PZ-PW)
(カップリング剤)
カップリング剤1:シランカップリング剤(N-フェニルγ-アミノプロピルトリメトキシシラン、信越化学(株)製、KBM-573)
(キャリア付き樹脂膜)
実施例および比較例において、得られた樹脂ワニスをキャリア基材であるPETフィルム上に塗布した後、140℃、2分間の条件で溶剤を除去して、厚さ25μmの樹脂膜を形成した。これにより、キャリア付樹脂膜を得た。
(樹脂基板)
実施例および比較例において、得られたキャリア付き樹脂膜に対して、180℃、2時間の条件で硬化を行うことにより、熱硬化性樹脂組成物から形成される樹脂膜の硬化物を絶縁層として備える、樹脂基板を得た。
実施例および比較例において、得られた樹脂ワニスをキャリア基材であるPETフィルム上に塗布した後、140℃、2分間の条件で溶剤を除去して、厚さ25μmの樹脂膜を形成した。これにより、キャリア付樹脂膜を得た。
(樹脂基板)
実施例および比較例において、得られたキャリア付き樹脂膜に対して、180℃、2時間の条件で硬化を行うことにより、熱硬化性樹脂組成物から形成される樹脂膜の硬化物を絶縁層として備える、樹脂基板を得た。
実施例および比較例において、樹脂基板について、次のような評価を行った。評価結果を表2に示す。
(プリプレグ)
実施例および比較例において、得られた樹脂ワニスを、ガラス織布(クロスタイプ♯2118、Tガラス、坪量114g/m2)に塗布装置で含浸させ、140℃の熱風乾燥装置で10分間乾燥して、厚さ107μmのプリプレグを得た。
実施例および比較例において、得られた樹脂ワニスを、ガラス織布(クロスタイプ♯2118、Tガラス、坪量114g/m2)に塗布装置で含浸させ、140℃の熱風乾燥装置で10分間乾燥して、厚さ107μmのプリプレグを得た。
(金属張積層板)
実施例および比較例において得られたプリプレグの両面に極薄銅箔(三井金属鉱業社製、マイクロシンEx、2.0μm)を重ね合わせ、圧力4MPa、温度180℃で2時間加熱加圧成形することにより、金属張積層板を得た。得られた金属張積層板(金属箔付き樹脂基板)のコア層(樹脂基板で形成される部分)の厚みは、0.107mmであった。
実施例および比較例において得られたプリプレグの両面に極薄銅箔(三井金属鉱業社製、マイクロシンEx、2.0μm)を重ね合わせ、圧力4MPa、温度180℃で2時間加熱加圧成形することにより、金属張積層板を得た。得られた金属張積層板(金属箔付き樹脂基板)のコア層(樹脂基板で形成される部分)の厚みは、0.107mmであった。
(プリント配線基板)
実施例および比較例において得られた金属張積層板の表面の極薄銅箔層に約1μmの粗化処理を施した後、炭酸ガスレーザーで、層間接続用のφ80μmのスルーホールを形成した。次いで、60℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)に2分間浸漬後、中和してスルーホール内のデスミア処理を行った。次に、無電解銅メッキを厚さ0.5μmで行い、電解銅メッキ用レジスト層を厚さ18μm形成し、パターン銅メッキし、温度150℃時間30分加熱してポストキュアした。次いでメッキレジストを剥離し全面をフラッシュエッチングして、L/S=15/15μmのパターンを形成した。
実施例および比較例において得られた金属張積層板の表面の極薄銅箔層に約1μmの粗化処理を施した後、炭酸ガスレーザーで、層間接続用のφ80μmのスルーホールを形成した。次いで、60℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)に2分間浸漬後、中和してスルーホール内のデスミア処理を行った。次に、無電解銅メッキを厚さ0.5μmで行い、電解銅メッキ用レジスト層を厚さ18μm形成し、パターン銅メッキし、温度150℃時間30分加熱してポストキュアした。次いでメッキレジストを剥離し全面をフラッシュエッチングして、L/S=15/15μmのパターンを形成した。
実施例および比較例において、積層板、プリント配線基板について、次のような評価を行った。評価結果を表3に示す。
以下に、表2および表3に示す各評価項目の具体的な内容について説明する。
(平均線膨張係数(30℃-240℃))
樹脂基板に用いられる硬化物:
実施例および比較例で得られたキャリア付樹脂膜からキャリア基材であるPETフィルムを剥離した樹脂膜を4枚積層して、厚さ100μmの樹脂シートを作製した。次いで、当該樹脂シートを、180℃で2時間熱処理し、硬化物を得た。
金属張積層板に用いられる硬化物:
実施例および比較例で得られた金属張積層板からエッチング液(第二塩化鉄溶液、35℃)で銅箔を除去し、プリプレグの硬化物を得た。
線膨張係数の測定:
上記樹脂基板または上記金属張積層板に用いられる硬化物から測定長6mm×6mmのテストピースを切り出し、そのテストピースに対し、熱機械分析装置TMA(TAインスツルメント社製、Q400)を用いて、温度範囲30~300℃、昇温速度10℃/min、荷重10g、圧縮モードの条件で熱機械分析(TMA)を2サイクル測定した。30℃から240℃の範囲における平面方向(XY方向)の線膨張係数の平均値、30℃から150℃の範囲における平面方向(XY方向)の線膨張係数の平均値α1(CETα1)および150℃から240℃の範囲における平面方向(XY方向)の線膨張係数の平均値α2(CETα2)を算出した。なお、線膨脹係数は、2サイクル目の値を採用した。
(平均線膨張係数(30℃-240℃))
樹脂基板に用いられる硬化物:
実施例および比較例で得られたキャリア付樹脂膜からキャリア基材であるPETフィルムを剥離した樹脂膜を4枚積層して、厚さ100μmの樹脂シートを作製した。次いで、当該樹脂シートを、180℃で2時間熱処理し、硬化物を得た。
金属張積層板に用いられる硬化物:
実施例および比較例で得られた金属張積層板からエッチング液(第二塩化鉄溶液、35℃)で銅箔を除去し、プリプレグの硬化物を得た。
線膨張係数の測定:
上記樹脂基板または上記金属張積層板に用いられる硬化物から測定長6mm×6mmのテストピースを切り出し、そのテストピースに対し、熱機械分析装置TMA(TAインスツルメント社製、Q400)を用いて、温度範囲30~300℃、昇温速度10℃/min、荷重10g、圧縮モードの条件で熱機械分析(TMA)を2サイクル測定した。30℃から240℃の範囲における平面方向(XY方向)の線膨張係数の平均値、30℃から150℃の範囲における平面方向(XY方向)の線膨張係数の平均値α1(CETα1)および150℃から240℃の範囲における平面方向(XY方向)の線膨張係数の平均値α2(CETα2)を算出した。なお、線膨脹係数は、2サイクル目の値を採用した。
(ピール強度)
実施例および比較例で得られた金属張積層板を用い、JIS C-6481:1996に準拠して測定される、プリプレグの硬化物と金属箔との間のピール強度を、HAST条件(温度130℃、湿度85%)で100時間処理後に測定した。
実施例および比較例で得られた金属張積層板を用い、JIS C-6481:1996に準拠して測定される、プリプレグの硬化物と金属箔との間のピール強度を、HAST条件(温度130℃、湿度85%)で100時間処理後に測定した。
(ガラス転移温度)
ガラス転移温度の測定は、動的粘弾性測定(DMA装置、TAインスツルメント社製、Q800))を用いて以下に示す条件で行った。
実施例および比較例で得られたキャリア付樹脂膜からキャリア基材であるPETフィルムを剥離した樹脂膜を4枚積層して、厚さ100μmの樹脂シートを作製した。次いで、当該樹脂シートを、180℃で2時間熱処理し、硬化物を得た。
得られた硬化物から8mm×40mmのテストピースを切り出し、そのテストピースに対し、昇温速度5℃/min、周波数1Hzで動的粘弾性測定をおこなった。
ここで、ガラス転移温度は、損失正接tanδが最大値を示す温度とした。
ガラス転移温度の測定は、動的粘弾性測定(DMA装置、TAインスツルメント社製、Q800))を用いて以下に示す条件で行った。
実施例および比較例で得られたキャリア付樹脂膜からキャリア基材であるPETフィルムを剥離した樹脂膜を4枚積層して、厚さ100μmの樹脂シートを作製した。次いで、当該樹脂シートを、180℃で2時間熱処理し、硬化物を得た。
得られた硬化物から8mm×40mmのテストピースを切り出し、そのテストピースに対し、昇温速度5℃/min、周波数1Hzで動的粘弾性測定をおこなった。
ここで、ガラス転移温度は、損失正接tanδが最大値を示す温度とした。
(パネル反り)
縦250mm×横250mm角SUSの支持基板上に、12μm銅箔を配置し、実施例および比較例で得られたキャリア膜付樹脂膜を、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP-500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度120℃、圧力0.8MPa、30秒の条件で処理した後、2ステージ条件としてSUS鏡板で温度120℃、圧力1.0MPa、60秒の条件にて真空加熱加圧成形した。次いで、キャリア付樹脂膜からキャリア基材を剥離した後、180℃、2時間の条件で硬化した。上記工程を3回繰返し、三層ビルドアップ層を形成し、SUS剥離した時のパネルの反りを、板端の反りを測定することにより評価した。
A:15mm未満
B:15mm以上50mm未満(実質上問題なし)
C:50mm以上
縦250mm×横250mm角SUSの支持基板上に、12μm銅箔を配置し、実施例および比較例で得られたキャリア膜付樹脂膜を、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP-500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度120℃、圧力0.8MPa、30秒の条件で処理した後、2ステージ条件としてSUS鏡板で温度120℃、圧力1.0MPa、60秒の条件にて真空加熱加圧成形した。次いで、キャリア付樹脂膜からキャリア基材を剥離した後、180℃、2時間の条件で硬化した。上記工程を3回繰返し、三層ビルドアップ層を形成し、SUS剥離した時のパネルの反りを、板端の反りを測定することにより評価した。
A:15mm未満
B:15mm以上50mm未満(実質上問題なし)
C:50mm以上
(ハンドリング性)
実施例および比較例で得られた三層ビルドアップ層について、SUS剥離後、さらに12μm銅箔をエッチングした。その後、パネルのクラックの有無を評価した。
A:クラックなし
B:クラックあり
実施例および比較例で得られた三層ビルドアップ層について、SUS剥離後、さらに12μm銅箔をエッチングした。その後、パネルのクラックの有無を評価した。
A:クラックなし
B:クラックあり
(層間絶縁信頼性)
12μm厚の銅箔を積層してなる両面銅張積層板(住友ベークライト(株)製、LαZ-4785GH-J)を準備した。次いで、上記銅張積層板の銅箔をエッチング処理して導体回路パターンを形成することにより、一面および他面に上記導体回路パターンが形成された回路基板を得た。次いで実施例および比較例で得られたキャリア膜付樹脂膜を、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP-500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度120℃、圧力0.8MPa、30秒の条件で処理した後、2ステージ条件としてSUS鏡板で温度120℃、圧力1.0MPa、60秒の条件にて真空加熱加圧成形した。次いで、キャリア付樹脂膜からキャリア基材を剥離した後、12μm厚の銅箔を同様の条件で積層した後、180℃、2時間の条件で硬化した。得られた多層配線板の外層パターンを形成し、層間厚み20μmの絶縁信頼性評価サンプルを作製した。この試験サンプルを用いて、温度130℃、湿度85%、印加電圧3.3Vの条件で連続湿中絶縁抵抗を評価した。なお、抵抗値106Ω以下を故障とした。評価基準は以下の通りである。
A:500時間以上故障なし(良好)
B:200時間以上500時間未満で故障あり(実質上問題なし)
C:100時間以上200時間未満で故障あり(実質上使用不可)
D:100時間未満で故障あり(使用不可)
12μm厚の銅箔を積層してなる両面銅張積層板(住友ベークライト(株)製、LαZ-4785GH-J)を準備した。次いで、上記銅張積層板の銅箔をエッチング処理して導体回路パターンを形成することにより、一面および他面に上記導体回路パターンが形成された回路基板を得た。次いで実施例および比較例で得られたキャリア膜付樹脂膜を、2ステージ真空加圧式ラミネーター装置(名機製作所社製、MVLP-500)を用いて、30秒間減圧して10hPa以下で、1ステージ条件として温度120℃、圧力0.8MPa、30秒の条件で処理した後、2ステージ条件としてSUS鏡板で温度120℃、圧力1.0MPa、60秒の条件にて真空加熱加圧成形した。次いで、キャリア付樹脂膜からキャリア基材を剥離した後、12μm厚の銅箔を同様の条件で積層した後、180℃、2時間の条件で硬化した。得られた多層配線板の外層パターンを形成し、層間厚み20μmの絶縁信頼性評価サンプルを作製した。この試験サンプルを用いて、温度130℃、湿度85%、印加電圧3.3Vの条件で連続湿中絶縁抵抗を評価した。なお、抵抗値106Ω以下を故障とした。評価基準は以下の通りである。
A:500時間以上故障なし(良好)
B:200時間以上500時間未満で故障あり(実質上問題なし)
C:100時間以上200時間未満で故障あり(実質上使用不可)
D:100時間未満で故障あり(使用不可)
(吸湿半田耐熱性試験)
上記層間絶縁信頼性の評価で作製した絶縁信頼性評価サンプルと同様のサンプルを用いて、PCT24h後、260℃半田浸漬30秒を繰返して膨れの有無を確認した。また、上記両面銅張積層板に代えて、得られた金属張積層板を使用した点を除いて、上記層間絶縁信頼性の評価で作製した絶縁信頼性評価サンプルと同様のサンプルについても評価を行った。
A:11回以上でも膨れ無し(良好)
B:5~10回で膨れ(実質上問題なし)
C:2~5回で膨れ(実質上使用不可)
D:1回で膨れ(使用不可)
上記層間絶縁信頼性の評価で作製した絶縁信頼性評価サンプルと同様のサンプルを用いて、PCT24h後、260℃半田浸漬30秒を繰返して膨れの有無を確認した。また、上記両面銅張積層板に代えて、得られた金属張積層板を使用した点を除いて、上記層間絶縁信頼性の評価で作製した絶縁信頼性評価サンプルと同様のサンプルについても評価を行った。
A:11回以上でも膨れ無し(良好)
B:5~10回で膨れ(実質上問題なし)
C:2~5回で膨れ(実質上使用不可)
D:1回で膨れ(使用不可)
(スルーホール絶縁信頼性評価)
上記したプリント配線板の製造において、層間接続のΦ80μmのスルーホールを壁間80μmで20対形成した。次に、回路パターン上に、ビルドアップ材(住友ベークライト社製、BLA-3700GS)を積層、硬化した試験サンプルを作製した。この試験サンプルを用いて、温度130℃、湿度85%、印加電圧5.5Vの条件で連続湿中絶縁抵抗を評価した。なお、抵抗値106Ω以下を故障とした。評価基準は以下の通りである。
A:500時間以上故障なし(良好)
B:200時間以上500時間未満で故障あり(実質上問題なし)
C:100時間以上200時間未満で故障あり(実質上使用不可)
D:100時間未満で故障あり(使用不可)
上記したプリント配線板の製造において、層間接続のΦ80μmのスルーホールを壁間80μmで20対形成した。次に、回路パターン上に、ビルドアップ材(住友ベークライト社製、BLA-3700GS)を積層、硬化した試験サンプルを作製した。この試験サンプルを用いて、温度130℃、湿度85%、印加電圧5.5Vの条件で連続湿中絶縁抵抗を評価した。なお、抵抗値106Ω以下を故障とした。評価基準は以下の通りである。
A:500時間以上故障なし(良好)
B:200時間以上500時間未満で故障あり(実質上問題なし)
C:100時間以上200時間未満で故障あり(実質上使用不可)
D:100時間未満で故障あり(使用不可)
(半導体パッケージの反り評価)
得られたプリント配線基板(回路パターンを形成した後のプリント配線基板)にビルドアップ材(住友ベークライト社製、BLA-3700GS)を積層硬化し、セミアディティブ法で回路加工した。その上に、10mm×10mm×100μm厚みの半田バンプ付半導体素子を実装し、アンダーフィル(住友ベークライト社製、CRP-4160G)で封止し、150℃で2時間硬化させた。最後に、15mm×15mmにダイシングし半導体装置を作製した。
得られた半導体装置の260℃での反りを温度可変レーザー三次元測定機(日立テクノロジーアンドサービス社製、形式LS220-MT100MT50)を用いて評価した。上記測定機のサンプルチャンバーに半導体素子面を下にして設置し、高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。評価基準は以下の通りである。
A:反り量が30μm未満
B:反り量が30μm以上50μm未満
C:反り量が50μm以上
得られたプリント配線基板(回路パターンを形成した後のプリント配線基板)にビルドアップ材(住友ベークライト社製、BLA-3700GS)を積層硬化し、セミアディティブ法で回路加工した。その上に、10mm×10mm×100μm厚みの半田バンプ付半導体素子を実装し、アンダーフィル(住友ベークライト社製、CRP-4160G)で封止し、150℃で2時間硬化させた。最後に、15mm×15mmにダイシングし半導体装置を作製した。
得られた半導体装置の260℃での反りを温度可変レーザー三次元測定機(日立テクノロジーアンドサービス社製、形式LS220-MT100MT50)を用いて評価した。上記測定機のサンプルチャンバーに半導体素子面を下にして設置し、高さ方向の変位を測定し、変位差の最も大きい値を反り量とした。評価基準は以下の通りである。
A:反り量が30μm未満
B:反り量が30μm以上50μm未満
C:反り量が50μm以上
以上、実施例に基づいて本発明をさらに具体的に説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
本発明の熱硬化性樹脂組成物は、前述した一般式(B-1)または(B-2)で表されるベンゾオキサジン化合物と、マレイミド化合部、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種と、無機充填剤とを含有する。このような熱硬化性樹脂組成物は、得られる硬化物の線膨張係数を低くすることができる。そのため、かかる熱硬化性樹脂組成物を用いることにより、低反り性に優れた絶縁層を得ることができる。また、かかる絶縁層を用いたキャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置を得ることができる。したがって、本発明は、産業上の利用可能性を有する。
Claims (15)
- プリント配線基板における絶縁層を形成するために用いられる熱硬化性樹脂組成物であって、
下記一般式(B-1)または(B-2)で表されるベンゾオキサジン化合物と、
マレイミド化合物、エポキシ樹脂およびシアネート樹脂のうちの少なくとも一種を含有する熱硬化性樹脂と、
無機充填材と、を含むことを特徴とする熱硬化性樹脂組成物。
- 前記一般式(B-1)で表されるベンゾオキサジン化合物は、下記一般式(B-3)で表される構造を有しており、
前記一般式(B-2)で表されるベンゾオキサジン化合物は、下記一般式(B-4)で表される構造を有する請求項1に記載の熱硬化性樹脂組成物。
- 前記不飽和二重結合を有する基が、アリル基である請求項1または2に記載の熱硬化性樹脂組成物。
- 前記無機充填材の含有量が、当該熱硬化性樹脂組成物全体に対して50重量%以上90重量%以下である請求項1ないし3のいずれか1項に記載の熱硬化性樹脂組成物。
- 当該熱硬化性樹脂組成物の硬化物に対して熱機械分析を行ったときに、前記硬化物の30℃から240℃の範囲において算出した平均線膨張係数が、1ppm/℃以上40ppm/℃以下である請求項1ないし4のいずれか1項に記載の熱硬化性樹脂組成物。
- 当該熱硬化性樹脂組成物の硬化物に対して熱機械分析を行ったときに、前記硬化物の30℃から150℃の範囲において算出した平均線膨張係数をα1とし、前記硬化物の、150℃から240℃の範囲において算出した平均線膨張係数をα2としたとき、
平均線膨張係数比(α2/α1)が、0.7以上3.0以下である請求項1ないし5のいずれか1項に記載の熱硬化性樹脂組成物。 - 当該熱硬化性樹脂組成物の硬化物の、銅箔に対するピール強度が、0.5kN/m以上である請求項1ないし6のいずれか1項に記載の熱硬化性樹脂組成物。
- 当該熱硬化性樹脂組成物の硬化物のガラス転移温度が、140℃以上である請求項1ないし7のいずれか1項に記載の熱硬化性樹脂組成物。
- 前記無機充填材がシリカを含む請求項1ないし8のいずれか1項に記載の熱硬化性樹脂組成物。
- キャリア基材と、
前記キャリア基材上に設けられている、請求項1ないし9のいずれか1項に記載の熱硬化性樹脂組成物から形成される樹脂膜と、を備えることを特徴とするキャリア付樹脂膜。 - 請求項1ないし9のいずれか1項に記載の熱硬化性樹脂組成物を繊維基材に含浸して形成されることを特徴とするプリプレグ。
- 請求項11に記載のプリプレグの硬化物と、当該硬化物の少なくとも一面に配置された金属層と、を備えることを特徴とする金属張積層板。
- 請求項1ないし9のいずれか1項に記載の熱硬化性樹脂組成物の硬化物で構成された絶縁層を備えることを特徴とする樹脂基板。
- 請求項12に記載の金属張積層板または請求項13に記載の樹脂基板と、前記金属張積層板または前記樹脂基板の表面に形成された回路層と、を備えることを特徴とするプリント配線基板。
- 請求項14に記載のプリント配線基板と、
前記プリント配線基板の回路層上に搭載された、または前記プリント配線基板に内蔵された半導体素子と、を備えることを特徴とする半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018508125A JPWO2017170643A1 (ja) | 2016-03-31 | 2017-03-29 | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-072761 | 2016-03-31 | ||
JP2016072761 | 2016-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017170643A1 true WO2017170643A1 (ja) | 2017-10-05 |
Family
ID=59964940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/012819 WO2017170643A1 (ja) | 2016-03-31 | 2017-03-29 | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2017170643A1 (ja) |
TW (1) | TW201808622A (ja) |
WO (1) | WO2017170643A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019099755A (ja) * | 2017-12-07 | 2019-06-24 | 信越化学工業株式会社 | 熱硬化性樹脂組成物 |
JP2019178198A (ja) * | 2018-03-30 | 2019-10-17 | 住友ベークライト株式会社 | 熱硬化性樹脂組成物、コアレス基板、プリント配線基板、および半導体装置 |
JP2020038924A (ja) * | 2018-09-05 | 2020-03-12 | 日立化成株式会社 | 材料の選定方法及びパネルの製造方法 |
CN111187486A (zh) * | 2018-11-14 | 2020-05-22 | 味之素株式会社 | 树脂组合物、树脂片材、印刷布线板及半导体装置 |
CN111315799A (zh) * | 2017-11-10 | 2020-06-19 | 普林科技有限公司 | 树脂组合物 |
JP2020158705A (ja) * | 2019-03-27 | 2020-10-01 | 味の素株式会社 | 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置 |
JP2021084968A (ja) * | 2019-11-28 | 2021-06-03 | 住友ベークライト株式会社 | 基材付き樹脂膜、プリント配線基板および電子装置 |
CN115612246A (zh) * | 2022-12-15 | 2023-01-17 | 成都科宜高分子科技有限公司 | 一种用于形成pcb塞孔树脂的组合物以及制备方法、应用、填充工艺 |
WO2023042669A1 (ja) * | 2021-09-15 | 2023-03-23 | 味の素株式会社 | 樹脂シート、プリント配線板、半導体チップパッケージ及び半導体装置 |
WO2023145471A1 (ja) * | 2022-01-28 | 2023-08-03 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及びプリント配線板 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019189466A1 (ja) * | 2018-03-28 | 2019-10-03 | 積水化学工業株式会社 | 樹脂材料及び多層プリント配線板 |
CN114672168B (zh) * | 2020-12-24 | 2023-06-06 | 广东生益科技股份有限公司 | 一种无卤阻燃型树脂组合物及其应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003147165A (ja) * | 2001-08-29 | 2003-05-21 | Osaka City | 熱硬化性樹脂組成物 |
JP2011231196A (ja) * | 2010-04-27 | 2011-11-17 | Denki Kagaku Kogyo Kk | 樹脂複合組成物及びその用途 |
JP2013508517A (ja) * | 2009-10-27 | 2013-03-07 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | ベンゾオキサジン含有組成物 |
JP2013087236A (ja) * | 2011-10-20 | 2013-05-13 | Panasonic Corp | 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板 |
WO2013108890A1 (ja) * | 2012-01-20 | 2013-07-25 | 旭化成イーマテリアルズ株式会社 | 樹脂組成物、積層体、多層プリント配線板及び多層フレキシブル配線板並びにその製造方法 |
JP2013185056A (ja) * | 2012-03-07 | 2013-09-19 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物、その製造方法及びエレクトロニクス実装材料 |
JP2015000952A (ja) * | 2013-06-17 | 2015-01-05 | 三菱化学株式会社 | エポキシ樹脂組成物およびその硬化物 |
JP2016509120A (ja) * | 2013-03-04 | 2016-03-24 | ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー | ポリスルホン系強靭剤を含有するベンゾオキサジン硬化性組成物 |
-
2017
- 2017-03-29 WO PCT/JP2017/012819 patent/WO2017170643A1/ja active Application Filing
- 2017-03-29 JP JP2018508125A patent/JPWO2017170643A1/ja active Pending
- 2017-03-31 TW TW106110954A patent/TW201808622A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003147165A (ja) * | 2001-08-29 | 2003-05-21 | Osaka City | 熱硬化性樹脂組成物 |
JP2013508517A (ja) * | 2009-10-27 | 2013-03-07 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | ベンゾオキサジン含有組成物 |
JP2011231196A (ja) * | 2010-04-27 | 2011-11-17 | Denki Kagaku Kogyo Kk | 樹脂複合組成物及びその用途 |
JP2013087236A (ja) * | 2011-10-20 | 2013-05-13 | Panasonic Corp | 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板 |
WO2013108890A1 (ja) * | 2012-01-20 | 2013-07-25 | 旭化成イーマテリアルズ株式会社 | 樹脂組成物、積層体、多層プリント配線板及び多層フレキシブル配線板並びにその製造方法 |
JP2013185056A (ja) * | 2012-03-07 | 2013-09-19 | Nippon Shokubai Co Ltd | 硬化性樹脂組成物、その製造方法及びエレクトロニクス実装材料 |
JP2016509120A (ja) * | 2013-03-04 | 2016-03-24 | ハンツマン・アドバンスド・マテリアルズ・アメリカズ・エルエルシー | ポリスルホン系強靭剤を含有するベンゾオキサジン硬化性組成物 |
JP2015000952A (ja) * | 2013-06-17 | 2015-01-05 | 三菱化学株式会社 | エポキシ樹脂組成物およびその硬化物 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111315799A (zh) * | 2017-11-10 | 2020-06-19 | 普林科技有限公司 | 树脂组合物 |
CN111315799B (zh) * | 2017-11-10 | 2022-12-27 | 普林科技有限公司 | 树脂组合物及其应用、树脂组合物的制造方法 |
JP2019099755A (ja) * | 2017-12-07 | 2019-06-24 | 信越化学工業株式会社 | 熱硬化性樹脂組成物 |
JP2019178198A (ja) * | 2018-03-30 | 2019-10-17 | 住友ベークライト株式会社 | 熱硬化性樹脂組成物、コアレス基板、プリント配線基板、および半導体装置 |
JP7238301B2 (ja) | 2018-09-05 | 2023-03-14 | 株式会社レゾナック | 材料の選定方法及びパネルの製造方法 |
JP2020038924A (ja) * | 2018-09-05 | 2020-03-12 | 日立化成株式会社 | 材料の選定方法及びパネルの製造方法 |
CN111187486A (zh) * | 2018-11-14 | 2020-05-22 | 味之素株式会社 | 树脂组合物、树脂片材、印刷布线板及半导体装置 |
CN111187486B (zh) * | 2018-11-14 | 2024-03-01 | 味之素株式会社 | 树脂组合物、树脂片材、印刷布线板及半导体装置 |
JP2020158705A (ja) * | 2019-03-27 | 2020-10-01 | 味の素株式会社 | 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置 |
CN111748206A (zh) * | 2019-03-27 | 2020-10-09 | 味之素株式会社 | 树脂组合物、树脂组合物的固化物、树脂片材、印刷布线板及半导体装置 |
JP7088105B2 (ja) | 2019-03-27 | 2022-06-21 | 味の素株式会社 | 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置 |
JP2022121453A (ja) * | 2019-03-27 | 2022-08-19 | 味の素株式会社 | 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置 |
JP2021084968A (ja) * | 2019-11-28 | 2021-06-03 | 住友ベークライト株式会社 | 基材付き樹脂膜、プリント配線基板および電子装置 |
JP7562944B2 (ja) | 2019-11-28 | 2024-10-08 | 住友ベークライト株式会社 | 基材付き樹脂膜、プリント配線基板および電子装置 |
WO2023042669A1 (ja) * | 2021-09-15 | 2023-03-23 | 味の素株式会社 | 樹脂シート、プリント配線板、半導体チップパッケージ及び半導体装置 |
WO2023145471A1 (ja) * | 2022-01-28 | 2023-08-03 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及びプリント配線板 |
CN115612246A (zh) * | 2022-12-15 | 2023-01-17 | 成都科宜高分子科技有限公司 | 一种用于形成pcb塞孔树脂的组合物以及制备方法、应用、填充工艺 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017170643A1 (ja) | 2019-02-07 |
TW201808622A (zh) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017170643A1 (ja) | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、樹脂基板、プリント配線基板および半導体装置 | |
JP7028165B2 (ja) | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置 | |
TWI466241B (zh) | 半導體裝置及半導體裝置之製造方法 | |
JP6206035B2 (ja) | 金属張積層板、プリント配線基板、および半導体装置 | |
JP6592962B2 (ja) | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板、および半導体装置 | |
JP2012231140A (ja) | 積層板、回路基板、および半導体パッケージ | |
JP6724296B2 (ja) | プリプレグ、樹脂基板、金属張積層板、プリント配線基板、および半導体装置 | |
JP6229439B2 (ja) | 金属張積層板、プリント配線基板、および半導体装置 | |
JP2012228879A (ja) | 積層板、回路基板、半導体パッケージおよび積層板の製造方法 | |
JP6221620B2 (ja) | 金属張積層板、プリント配線基板、および半導体装置 | |
JP6281184B2 (ja) | 金属張積層板、プリント配線基板、半導体パッケージ、および半導体装置 | |
JP7040174B2 (ja) | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置 | |
JP2016069401A (ja) | プリプレグ、樹脂基板、金属張積層板、プリント配線基板、および半導体装置 | |
JP6349686B2 (ja) | 金属張積層板、プリント配線基板、および半導体装置 | |
JP6808985B2 (ja) | 樹脂膜、キャリア付樹脂膜、プリント配線基板および半導体装置 | |
JP2015159177A (ja) | 樹脂基板、金属張積層板、プリント配線基板、および半導体装置 | |
JP6720652B2 (ja) | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置 | |
JP7102816B2 (ja) | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、金属張積層板、プリント配線基板および半導体装置 | |
JP6819067B2 (ja) | 熱硬化性樹脂組成物、キャリア付樹脂膜、プリント配線基板および半導体装置 | |
JP7342358B2 (ja) | 樹脂組成物、それを用いたキャリア付樹脂膜、プリプレグ、積層板、プリント配線基板および半導体装置 | |
JP2014084441A (ja) | 樹脂基板、金属張積層板、プリント配線基板、および半導体装置 | |
JP2013053303A (ja) | プリプレグ、積層板、プリント配線基板、半導体パッケージおよび半導体装置 | |
JP6972522B2 (ja) | プリプレグ、金属張積層板、プリント配線基板および半導体パッケージ | |
JP2020077811A (ja) | 犠牲基板およびコアレス基板の製造方法 | |
WO2013172008A1 (ja) | 半導体装置および半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018508125 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17775180 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17775180 Country of ref document: EP Kind code of ref document: A1 |