[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017165623A1 - Calculateur de puissance pour un appareil ophtalmique avec méridiens correctifs ayant une tolérance ou bande opérationnelle étendue - Google Patents

Calculateur de puissance pour un appareil ophtalmique avec méridiens correctifs ayant une tolérance ou bande opérationnelle étendue Download PDF

Info

Publication number
WO2017165623A1
WO2017165623A1 PCT/US2017/023772 US2017023772W WO2017165623A1 WO 2017165623 A1 WO2017165623 A1 WO 2017165623A1 US 2017023772 W US2017023772 W US 2017023772W WO 2017165623 A1 WO2017165623 A1 WO 2017165623A1
Authority
WO
WIPO (PCT)
Prior art keywords
ophthalmic apparatus
power
implantable
meridian
cylinder
Prior art date
Application number
PCT/US2017/023772
Other languages
English (en)
Inventor
Huawei Zhao
Original Assignee
Abbott Medical Optics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Medical Optics Inc. filed Critical Abbott Medical Optics Inc.
Priority to AU2017238487A priority Critical patent/AU2017238487B2/en
Priority to EP17715020.8A priority patent/EP3432768B1/fr
Priority to CA3018545A priority patent/CA3018545A1/fr
Publication of WO2017165623A1 publication Critical patent/WO2017165623A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • A61F2/1645Toric lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1654Diffractive lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/548Trigonometric functions; Co-ordinate transformations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/036Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters for testing astigmatism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/02Mislocation tolerant lenses or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/10Optical elements and systems for visual disorders other than refractive errors, low vision
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation

Definitions

  • This application is directed to providing correction for astigmatism, including provision to extend operable tolerance band of an ophthalmic apparatus to improve patient outcomes.
  • Existing toric lenses are designed to correct astigmatic effects caused by the corneal astigmatism by providing maximum cylindrical power that exactly matches the cylinder axis.
  • Anchors are used to maintain the toric lenses at a desired orientations once implanted in the eye.
  • existing toric lenses themselves are not designed to account for misalignments of the lens that may occur during the surgical implantation the lens in the eye or to account for unintended post-surgery movements of the lens in the eye.
  • the angularly-varying phase member includes a combination of angularly and zonally diffractive (or refractive) phase structure.
  • This structure in some embodiments, has a height profile (in relation to the face of the lens) that gradually varies along the angular position (i.e., at nearby meridian of the first meridian up) to provide off- axis operation up to a pre-defined angular position (e.g., about +5° or more from the first meridian).
  • OPD optical path difference
  • each step heights ti(r) and t 2 (r) corresponds to a respective maximum and a minimum height (i.e., the peak and trough) of the angularly-varying phase member.
  • the angularly and zonally diffractive phase structure varies along each meridian between the first meridian (which has the step height ti(r)) and meridian that are, in some embodiments, about 45 degrees and about -45 degrees to the first meridian.
  • the angularly-varying phase member establishes the band of operational meridian across a range selected from the group consisting of about +4 degrees, about +5 degrees, about +6 degrees, about +7 degrees, about +8 degrees, about +9 degrees, about +10 degrees, about +11 degrees, about +12 degrees, about +13, degrees, about +14 degrees, and about +15 degrees.
  • the multi-zonal lens body forms a second angularly- varying phase member at a second meridian that is orthogonal to the first meridian.
  • the second angularly- varying phase member in some embodiments, varies along each meridian nearby to the center of the second meridian i) between the second meridian and meridians that are, in some embodiments, about 45 degrees and about -45 degrees to the second meridian.
  • the first and second angularly-varying phase members form a butterfly pattern.
  • the first angularly-varying phase member and the second angularly-varying phase member form a double angularly varying efficiency bifocal optics.
  • the multi-zonal lens body includes at least three optical zones that forms an angularly varying efficiency trifocal optics. In some embodiments, the multi-zonal lens body includes at least four optical zones that forms an angularly varying efficiency quadric optics.
  • the angularly-varying phase member at the first meridian comprises a monofocal lens.
  • the second angularly-varying phase member at the second meridian comprises a second monofocal lens.
  • each of the meridians located at about 45 degrees and about -45 degrees to the first meridian comprises a bifocal lens.
  • each of the angularly-varying phase structure of the multi-zonal lens body at the meridians located at about 45 degrees and about -45 degrees comprises a first optical zone, a second optical zone, and a third optical zone, wherein the first optical zone has a first point of focus and each of the second optical zone and the third optical zone has a respective point of focus nearby to the first point of focus, and wherein the first optical zone has a first light transmission efficiency (e.g., about 50%) and each of the second optical zone and the third optical zone has a respective light transmission efficiency (e.g., about 25% each) that is less than the first light transmission efficiency.
  • first light transmission efficiency e.g. 50%
  • each of the second optical zone and the third optical zone has a respective light transmission efficiency (e.g., about 25% each) that is less than the first light transmission efficiency.
  • the ophthalmic apparatus includes a plurality of alignment markings, including a first set of alignment markings and a second set of alignment markings.
  • the first set of alignment markings corresponds to the center of the first meridian
  • the second set of alignment markings corresponds to the band of operational meridian.
  • a rotationally-tolerant ophthalmic apparatus e.g., toric interocular lens
  • the ophthalmic apparatus includes a multi-zonal lens body having a plurality of optical zones, where the multi-zonal lens body forms the angularly- varying phase member.
  • the angularly-varying phase member has a center at an astigmatism correction meridian that directs light to a first point of focus (e.g., on the retina).
  • a rotationally-tolerant ophthalmic apparatus for correcting astigmatism includes an astigmatism correcting meridian that corresponds to a peak cylinder power associated with a correction of an astigmatism.
  • the rotationally-tolerant ophthalmic apparatus includes a plurality of exterior alignment markings, including a first set of alignment markings and a second set of alignment markings.
  • the first set of alignment markings corresponds to the astigmatism correcting meridian
  • the second set of alignment markings corresponds to an operation band of the rotationally-tolerant ophthalmic apparatus.
  • the embodiment disclosed herein further includes a system that performs a power calculator to determine the spherical equivalent (SE) and cylinder power for an extended tolerant toric lens and ophthalmic apparatuses having the extended band of operational meridian.
  • this power calculator is selectable to account for the extended depth of focus, the extended depth of focus, the extended tolerance of astigmatism associated with the improved toric lens and ophthalmic apparatuses.
  • the power calculator is configured to predict the SE and IOL for the extended tolerant IOL, including an IOL configured to provide an extended range of vision or ERV IOL including ERV toric IOL, an IOL configured to provide an extended depth of focus or EDOF IOL including toric EDOF IOL, and an IOL configured to provide an extended tolerance of astigmatism (effect) or ETA IOL.
  • a method for determining optical configuration (e.g. IOL spherical equivalent and cylinder power) of a rotationally-extended tolerant ophthalmic apparatus for the selection thereof.
  • the method includes receiving, by a processor, measurement data associated with an eye of a patient; determining, by the processor, using a conventional power calculator, a spherical equivalent and cylinder power using the measurement data for an ophthalmic apparatus selected from the group consisting of an implantable rotationally-extended tolerant ophthalmic apparatus, an implantable extended range of vision (ERV) ophthalmic apparatus, and an implantable extended depth of focus (EDOF) ophthalmic apparatus;
  • ERP implantable extended range of vision
  • EEOF implantable extended depth of focus
  • MRSE manifest refraction spherical equivalent
  • the incremental RC is about 0.1 RC, about 0.2 RC, about 0.3 RC, about 0.4 RC, about 0.5 RC, about 0.6 RC, about 0.7 RC, about 0.8 RC, about 0.9 RC.
  • the implantable ophthalmic apparatus comprises the implantable rotationally-extended tolerant ophthalmic apparatus.
  • the implantable ophthalmic apparatus comprises the implantable extended range of vision (ERV) ophthalmic apparatus.
  • implantable ophthalmic apparatus comprises the implantable extended depth of focus (EDOF) ophthalmic apparatus.
  • the pre-determined rotational misalignment is a maximum expected rotational misalignment value determined for the given implantable ophthalmic apparatus.
  • the maximum expected rotational misalignment value is a maximum misaligned angle from an intended meridian, selected from the group consisting of +2°, +3°, +4°, +5°, +6°, +7°, +8°, +9°, and +10°.
  • the method further includes modifying the spherical equivalent by a value corresponding to the residual refractive error, wherein the residual refractive error is expressed in spherical equivalent.
  • the acceptable range of visual acuity comprises an uncorrected visual acuity (UCVA) state.
  • UCVA uncorrected visual acuity
  • the method further includes determining, by the processor, a potential manifest refraction spherical equivalent parameter and manifest residual cylinder tolerance level.
  • a non-transitory computer readable medium the computer readable medium having instructions stored thereon, wherein the instructions, when executed by a processor, cause the processor to: receive measurement data associated with an eye of a patient; determine using a conventional power calculator, a spherical equivalent and cylinder power using the measurement data for an ophthalmic apparatus selected from the group consisting of an implantable rotationally-extended tolerant ophthalmic apparatus, an implantable extended range of vision (ERV) ophthalmic apparatus, and an implantable extended depth of focus (EDOF) ophthalmic apparatus; determine a refractive or residual cylinder (RC) power associated with a random residual astigmatism power for the ophthalmic apparatus, wherein the random residual astigmatism power is associated with a pre-determined rotational misalignment for the apparatus once implante
  • RC refractive or residual cylinder
  • the implantable ophthalmic apparatus comprises the implantable rotationally-extended tolerant ophthalmic apparatus.
  • the implantable ophthalmic apparatus comprises the implantable extended range of vision (ERV) ophthalmic apparatus.
  • ERP implantable extended range of vision
  • the implantable ophthalmic apparatus comprises the implantable extended depth of focus (EDOF) ophthalmic apparatus.
  • the pre-determined rotational misalignment is a maximum expected rotational misalignment value determined for the given implantable ophthalmic apparatus.
  • the maximum expected rotational misalignment value is a maximum misaligned angle from an intended meridian, selected from the group consisting of +2°, +3°, +4°, +5°, +6°, +7°, +8°, +9°, and +10°.
  • the instructions when executed by the processor, cause the processor to: modify the spherical equivalent by a value corresponding to the residual refractive error, wherein the residual refractive error is expressed in spherical equivalent.
  • the acceptable range of visual acuity comprises an uncorrected visual acuity (UCVA) state.
  • UCVA uncorrected visual acuity
  • the instructions when executed by the processor, cause the processor to: determine a potential manifest refraction spherical equivalent parameter and manifest residual cylinder tolerance level.
  • the incremental RC is about 0.1 RC, about 0.2 RC, about 0.3 RC, about 0.4 RC, about 0.5 RC, about 0.6 RC, about 0.7 RC, about 0.8 RC, about 0.9 RC.
  • Figs. 1A and IB are diagrams of an exemplary ophthalmic apparatus (e.g., an interocular toric lens) that includes angularly-varying phase members (reflective, diffractive, or both) that provide an extended rotational tolerance of the apparatus in accordance with an illustrative embodiment.
  • exemplary ophthalmic apparatus e.g., an interocular toric lens
  • phase members reflective, diffractive, or both
  • FIGs. 2A, 2B, and 2C illustrate a plurality of exemplary height profiles of the anterior or posterior face of the ophthalmic apparatus of Figs. 1A and IB in accordance with an illustrative embodiment.
  • FIG. 3 is a schematic drawing of a top view of a human eye, in which the natural lens of the eye has been removed and replaced with an ophthalmic apparatus that includes angularly-varying phase members in accordance with an illustrative embodiment.
  • Figs. 4A and 4B are plots illustrating performance of a conventional toric lens designed to apply maximum cylinder power at a corrective meridian when subjected to rotational misalignment.
  • Figs. 5 and 6 show plots of off-axis performances of an exemplary ophthalmic apparatus (diffractive and refractive) that includes angularly-varying phase members in accordance with an illustrative embodiment.
  • Figs. 7A and 7B are diagrams of an exemplary ophthalmic apparatus that includes angularly-varying phase members in accordance with another illustrative embodiment.
  • Figs. 8 and 9 are diagrams illustrating height profiles of exemplary ophthalmic apparatuses of Figs. 1 and 7 in accordance with the illustrative embodiments.
  • Fig. 10 is a diagram of an exemplary multi-focal lens ophthalmic apparatus that includes angularly- varying phase members in accordance with an illustrative embodiment.
  • Fig. 11 is a diagram illustrating the multi-focal lens ophthalmic apparatus of Fig. 10 configured as a bifocal lens in accordance with an illustrative embodiment.
  • Fig. 12 is a diagram illustrating the multi-focal lens ophthalmic apparatus of Fig. 10 configured as a tri-focal lens in accordance with an illustrative embodiment.
  • Fig. 13 is a diagram of an exemplary ophthalmic apparatus that includes angularly-varying phase members in accordance with another illustrative embodiment.
  • Fig. 14 is a table of the ophthalmic apparatus of Fig. 13 configured as a trifocal lens in accordance with an illustrative embodiment.
  • FIGs. 15A and 15B are diagrams of an exemplary ophthalmic apparatus that includes angularly-varying phase members and an asymmetric height profile in accordance with an illustrative embodiment.
  • Figs. 16A, 16B and 16C illustrate a plurality of exemplary height profiles of the ophthalmic apparatus of Fig. 15 in accordance with an illustrative embodiment.
  • FIGs. 17A and 17B are diagrams of an exemplary ophthalmic apparatus that includes angularly-varying phase members and a symmetric height profile in accordance with another illustrative embodiment.
  • Figs. 18 A, 18B and 18C illustrate a plurality of exemplary height profiles of the anterior or posterior face of the ophthalmic apparatus of Fig. 17 in accordance with an illustrative embodiment.
  • Figs. 19A and 19B are diagrams illustrating a top and bottom view of an ophthalmic apparatus of Fig. 13 with extended tolerance band markers in accordance with an illustrative embodiment.
  • Fig. 20 is a flow chart of a method to determine the spherical equivalent (SE) and cylinder power for toric lenses and ophthalmic apparatuses having the extended band of operational meridian, an extended depth of focus, or extended range of vision, in accordance with an illustrative embodiment.
  • SE spherical equivalent
  • Fig. 21 illustrates an example toric calculator that can be configured to receive a selection of an IOL model in accordance with an illustrative embodiment.
  • Fig. 22 illustrates an exemplary computer that can be used determining optical configuration (e.g. IOL spherical equivalent and cylinder power) of a rotationally-extended tolerant ophthalmic apparatus for the selection thereof.
  • optical configuration e.g. IOL spherical equivalent and cylinder power
  • Embodiments of the present invention are generally directed to toric lenses or surface shapes, and/or related methods and systems for fabrication and use thereof.
  • Toric lenses according to embodiments of the present disclosure find particular use in or on the eyes of human or animal subjects.
  • Embodiments of the present disclosure are illustrated below with particular reference to intraocular lenses; however, other types of lenses fall within the scope of the present disclosure.
  • Embodiments of the present disclosure provide improved ophthalmic lens (including, for example, contact lenses, and interocular lenses, corneal lenses and the like) and include monofocal diffractive lenses, bifocal diffractive lenses, and multifocal diffractive lenses.
  • optical power means the ability of a lens or optics, or portion thereof, to converge or diverge light to provide a focus (real or virtual), and is commonly specified in units of reciprocal meters (m _1 ) or Diopters (D).
  • optical power means the optical power of the intraocular lens when disposed within a media having a refractive index of 1.336 (generally considered to be the refractive index of the aqueous and vitreous humors of the human eye), unless otherwise specified.
  • the optical power of a lens or optic is from a reference plane associated with the lens or optic (e.g., a principal plane of an optic).
  • a cylinder power refers to the power required to correct for astigmatism resulting from
  • the terms “about” or “approximately”, when used in reference to a linear dimension mean within plus or minus one percent (1%) of the value of the referenced linear dimension.
  • Figs. 1A and IB are diagrams of an exemplary ophthalmic apparatus 100 (e.g., an interocular toric lens) that includes angularly-varying phase members (reflective, diffractive, or both) configured to provided extended rotational tolerance in accordance with an illustrative embodiment.
  • the angularly-varying phase members has a center structure that applies cylinder power at a corrective meridian (e.g., the high power meridian).
  • Off-center structures of the angularly- varying phase members extends from the center structure in a gradually varying manner to apply cylinder power to a band of meridians surrounding the corrective meridian enabling the ophthalmic apparatus to operate off-axis (or off-meridian) to the corrective meridian (e.g., the astigmatism meridian).
  • These meridians may be referred to as a dynamic meridian.
  • the angularly- varying phase members includes an optimized combination of angularly and zonally diffractive (or refractive) phase structure located at each meridian to vary the extended depth of focus to a plurality of nearby focus points. Light directed to such nearby focus points are thus directed to the desired focus point when the ophthalmic apparatus is subjected to a rotational offset from a primary intended axis of alignment, thereby extending the rotational tolerance of the apparatus to an extended tolerance band.
  • this extended tolerance astigmatism band delivers cylinder power to correct for the astigmatism for a range of meridians (e.g., up to +5° or more), thereby eliminating any need for additional corrective measures (e.g., supplemental corrective devices or another surgical interference) when the implanted ophthalmic apparatus is not perfectly aligned to the desired astigmatism meridian in the eye.
  • additional corrective measures e.g., supplemental corrective devices or another surgical interference
  • an exemplified toric intraocular lens includes dynamic meridian or angularly varying efficiency quadric optics.
  • an exemplified toric IOL includes dynamic meridian or angularly varying efficiency trifocal optics.
  • an exemplified toric IOL includes double dynamic meridian or angularly varying efficiency bifocal optics.
  • the bifocal or trifocal feature may be disposed on one optical surface or on both optical surfaces of a single optical lens or on any surfaces of a multiple optical elements working together as a system.
  • the angularly-varying phase members is formed in a multiple-zone structure (shown as zones 120a, 120b, 120c), each having a spatially-varying "butterfly" shaped structure centered around the optical axis 106.
  • the first corrective meridian 110 focuses light that passes therethrough to a first foci (i.e., point of focus) and is intended to align with the astigmatic axis of the eye.
  • the angularly-varying phase members focus light that passes therethrough to a plurality of foci near the first foci.
  • both the heights of the lens and the spatial sizes, at each zone varies among the different axes to form the angularly-varying phase member.
  • the height profile of the lens varies at each axis as the first height profile gradually transitions (e.g., as shown by the curved profile 122) into the second height profile.
  • the first and second height profiles 116 and 118 are illustrated relative to one another in a simplified format. It should be appreciated that the height profiles are superimposed on a lens having a curvature, as for example, illustrated in Fig. 3.
  • height profiles herein are illustrated in a simplified form (e.g., as a straight line).
  • the height profiles for each zone may have other shapes - such as convex, concave, or combinations thereof.
  • the second corrective meridian 112 focuses light to a second set of foci.
  • the height profiles at axes nearby to the first high power meridian have a similar height profile, as the first high power meridian.
  • the height profile varies in a continuous gradual manner (e.g., having a sine and cosine relationship) along the radial direction. This can be observed in Figs. 2B and 2C.
  • This variation of the height profile along the radial axis provides a lens region that focuses light at the desired foci and other foci nearby.
  • radial offset i.e., misalignment
  • FIG. 3 is a schematic drawing of a top view of a human eye 302, in which the natural lens of the eye has been removed and replaced with an intraocular lens 100 (shown in simplified form in the upper portion of Fig. 3 and in greater detail in the lower portion of Fig. 3).
  • an intraocular lens 100 shown in simplified form in the upper portion of Fig. 3 and in greater detail in the lower portion of Fig. 3.
  • the natural lens occupies essentially the entire interior of the capsular bag 310.
  • the capsular bag 310 houses the intraocular lens 100, in addition to a fluid that occupies the remaining volume and equalizes the pressure in the eye.
  • the intraocular lens comprises an optic 101 and may include one or more haptics 326 that are attached to the optic 101 and may serve to center the optic 101 in the eye and/or couple the optic 101 to the capsular bag 310 and/or zonular fibers 320 of the eye.
  • the optic 101 has an anterior surface 334 and a posterior surface 336, each having a particular shape that contributes to the refractive properties of the lens. Either or both of these lens surfaces may optionally have an element made integral with or attached to the surfaces.
  • the refractive and/or diffractive elements on the anterior and/or posterior surfaces in some embodiments, have anamorphic or toric features that can generate astigmatism to offset the astigmatism from a particular cornea in an eye.
  • the optics 101 in some embodiments, comprises the interocular lens 100.
  • the interocular lens 101 includes angularly- varying phase members (reflective, diffractive, or both) that focus at a plurality of focus points that are offset radially to one another so as to provide an extended tolerance to misalignments of the lens 100 when implanted into the eye 302. That is, when the center axis of a corrective meridian is exactly matched to the desired astigmatic axis, only a first portion of the cylinder axis is focused at the desired point of focus (338) (e.g., at the retina) while second portions of the cylinder axis focuses at other points (340) nearby that are radially offset to the desired point of focus (338).
  • the desired point of focus 338
  • second portions of the cylinder axis focuses at other points (340) nearby that are radially offset to the desired point of focus (338).
  • the second portion of the cylinder axis focuses the light to the desired point of focus.
  • Artificial lenses e.g., contact lenses or artificial intraocular lenses
  • can correct for certain visual impairments such as an inability of the natural lens to focus at near
  • Fig. 4 includes plots that illustrated the above- discussed degraded performance of conventional toric lens when subjected to rotational misalignment.
  • This conventional toric lens is configured to provide 6.00 Diopters cylinder powers at the IOL plane, 4.11 Diopters cylinder power at the corneal plane, and a corneal astigmatism correction range (i.e., preoperative corneal astigmatism to predicted effects) between 4.00 and 4.75 Diopters.
  • the undesired added meridian power varies between a maximum of + 0.75 Diopters at around the 45-degree meridian angle (shown as 408) and at about the 135-degree meridian angle (shown as 410).
  • this undesired added meridian power is outside the tolerance of a healthy human eye, which can tolerant undesired effects up to about 0.4 Diopters (e.g., at the cornea plane) for normal visual acuity (i.e., "20/20 vision"). Because the undesired effects exceeds the
  • FIG. 5 shows plots illustrating modular transfer functions (MTFs) in white light for two toric IOLs (shown as 502a and 502b) each configured with angularly-varying phase members when subjected to off-axis rotations.
  • Fig. 5 illustrates the performance for a refractive toric IOL
  • Fig. 6 illustrates performance for a diffractive toric IOL.
  • an ophthalmic apparatus that includes angularly varying phase members has a lower maximum cylinder range (as compared to lens without such structure). Rather, the angularly varying phase members applies the cylinder power to a band surrounding the corrective meridian, thereby providing a continuous band that makes the lens may tolerant due to misalignment. As shown, in this embodiment, the sensitivity of the ophthalmic apparatus with the angularly varying phase member is less by 20% as compared to a lens without the angularly varying phase member.
  • the asymmetric height profile may be configured to direct light to a plurality foci.
  • the apparatus 100 with the asymmetric height profile 702 may be used for as a trifocal lens.
  • the apparatus with the asymmetric height profile 702 is used for a quad-focal lens.
  • the apparatus 100 with the asymmetric height profile 702 is used for a double bi-focal lens.
  • the apparatus 100 with the asymmetric height profile 702 is used for a mono-focal lens.
  • the apparatus 100 with the asymmetric height profile 702 is used for a combined bi-focal and tri-focal lens.
  • the lens is diffractive.
  • Figs. 11 and 12 are diagrams illustrating added cylindrical power, from the angularly varying phase members, in the radial and angular position in accordance with the illustrative embodiments.
  • Fig. 14 illustrates a table for a trifocal IOL configured with the angularly varying phase member.
  • the light transmission efficiency at a first corrective foci 1402 is about 100% while other foci along the same meridian is about 0%.
  • the ophthalmic apparatus includes a plurality of zones 1502 (shown as 1502a, 1504b, and 1504c).
  • Extended Depth of Focus Intraocular lenses
  • extended focus or extended depth of focus
  • the reference optic may have biconvex or biconcave surfaces, which may have equal radii of curvature, and an optical power or focal length that may be equal to an optical power or focal length of the test optic.
  • the depth of focus for the test optic and the reference optic are determined under the same aperture conditions and under equivalent illumination conditions. Examples of extended depth of focus lenses are described in U.S. Publication No.
  • the EDOF element may produce a depth of focus for each meridian.
  • the depth of focus may indicate a good focus for each meridian at a broader range of foci.
  • good focus may be a focus that proves useful for vision, and that may be measured using a point spread function, defocus curves, a modulation transfer function (MTF), or by analysis of the Zernike polynomial understood to those skilled in the pertinent arts.
  • MTF modulation transfer function
  • SE targeted is the planned post-operative refractive or residual sphere equivalent of, for example, a planned cataract surgery for an eye to receive an implant. It is typically determined by a doctor with tools like a toric calculator, personalized IOL power calculator, or pre- and/or in- surgery instrument.
  • White light a spectrum of light with different wavelengths commonly visible to the human eye such as the photopic or mesopic or even scotopic light.
  • the wavelength range typically ranges from 380nm to 750nm.
  • the range can be from 400nm to 700 nm.
  • the other filtered white light can be different.
  • the transmission of each wavelength can be different, from 0% to 100% if normalized.
  • an IOL calculator is disclosed to determine the spherical equivalent (SE) and cylinder power for toric lenses and ophthalmic apparatuses having the extended band of operational meridian, such as the rotational extended tolerant toric intraocular lens (hereinafter "ETA toric IOL”), described herein.
  • SE spherical equivalent
  • ETA toric IOL rotational extended tolerant toric intraocular lens
  • the IOL calculator may also be used for an extended rotational tolerant toric intraocular lens (hereinafter "ETA toric IOL”), an extended depth of field intraocular lens (hereinafter “EDOF IOL”), an extended depth of field toric intraocular lens (hereinafter “EDOF toric IOL”), an extended range of vision intraocular lens (hereinafter “ERV IOL”), and an extended range of vision toric intraocular lens (ERV toric IOL).
  • ETA toric IOL an extended rotational tolerant toric intraocular lens
  • EEOF IOL extended depth of field intraocular lens
  • EOV IOL extended depth of field toric intraocular lens
  • ERP IOL extended range of vision intraocular lens
  • ERP toric IOL extended range of vision toric intraocular lens
  • the exemplified IOL calculator determines a spherical equivalent and cylinder power to correctively apply to the toric lenses and ophthalmic apparatuses that beneficially minimize the residual refractive error associated therewith.
  • the error may be minimized for both the spherical equivalent and the cylinder power.
  • Fig. 20 is a flow chart of a method to determine the spherical equivalent (SE) and cylinder power for toric lenses and ophthalmic apparatuses having the extended band of operational meridian, an extended depth of focus, or extended range of vision.
  • SE spherical equivalent
  • cylinder power for toric lenses and ophthalmic apparatuses having the extended band of operational meridian, an extended depth of focus, or extended range of vision.
  • Step 1 In a workspace that presents visual representation of a calculator, the method, in some embodiments, includes presenting a list of IOL model (e.g., ETA IOL, ERV IOL, and EDOF IOL). As shown in Fig. 20, a selection of an IOL is received along with either measurements parameters collected at a keratometry measurement device or a graphical user interface configured to receive keratometry and/or biometry information (2002), for example, from a user such as a physician or clinician.
  • IOL model e.g., ETA IOL, ERV IOL, and EDOF IOL
  • Fig. 21 illustrates an example toric calculator that can be configured to receive a selection of an IOL model.
  • Table 1 illustrates a listing of example IOL models that may be displayed for selection in the IOL calculator.
  • Step 3 Predict random residual astigmatism power for the residual cylinder (2012).
  • the possible range of the refractive or residual cylinder (RC) can be calculated.
  • the residual meridian power can be calculated using an expected maximum value for . In the above example, if a given lens is designed to be tolerant up to 10 degrees of misalignment, can be specified as 10 degrees.
  • a 5-degree misalignment of the toric lens from the intended corrective meridian can cause a residual (refractive) of 0.75 Diopters RC and about 0.4 Diopters SE for distance vision.
  • the residual cylinder is outside the range of tolerance of a healthy human eye (e.g., the astigmatism tolerance of a typical human eye is about 0.4D at the cornea plane to produce a 20/20 vision)
  • a supplemental corrective lens such as a spectacle or contact lens
  • use of a supplemental corrective lens may still be needed to achieve normal visual acuity (i.e., 20/20 vision).
  • Step 5 Re-run the calculation and add the residual refraction through focus and meridian three-dimensional flow (e.g., 2014, 2004, and 2008). In some embodiments, this has the effect of providing an enhanced modulation transfer function through focus and additional through meridian at each focus plane. That is, after the update to the targeted SE, the corresponding other residuals (refractions) can be again simulated and calculated at each meridian at a position focused, at the positions in the front (myopia) of the focused position, which can be combined to generate the through focus and meridian refractions.
  • the corresponding MTFs are the through focus and meridian MTFs.
  • the through focus positions can be represented by the visual object in the interested distance, manifest refractions, or image focus positions relative to the retina.
  • the through focus performance can be represented by the MTF values at a given spatial frequency or a contrast or VA (simulated). This is the method of referred to as "3D flow.”
  • Step 6 Heighted the designed feature or benefit in the above range. That is, adjust the height profile of the lens (e.g., the lens height profile for a given angular phase member), for example, for a given zone.
  • Step 7 Output the spherical equivalent and power cylinder if all the powers at each meridians are in an acceptable ranges for the defined set of distance (2010).
  • the manifest refraction spherical equivalent (MRSE) parameter and/or manifest residual cylinder (MRC) are calculated by using, for example, a conventional clinic VA letter chart test with trial glasses.
  • Step 8 If all the powers at meridians are not in the desired range (e.g., as determined in Step 7) (2008), add residual cylinder power and repeat Steps 5-8.
  • the use of minimum added power allows the toric lenses and ophthalmic apparatuses to operate both in range of the IOL benefit - thereby potentially minimizing the residual refractive error, including SE and cylinder power - and maximizing the spectacle or contact lenses (CL) independence.
  • the benefits of the ETA IOL and ETA toric IOL as described in Figs. 5 and 6 can be maximally realized with intended post-operation vision achieving the uncorrected visual acuity of 20/20 vision.
  • the above disclosed new solutions can also be used for power calculations for multifocal toric, extended range toric, or other categorized IOLs for extended tolerance of astigmatism caused by factors including the cylindrical axis mi-alignment
  • the above mentioned solution can also be applied to power calculation for spectacle, contact lens, corneal inlay, anterior chamber IOL, or any other visual device or system.
  • Fig. 22 illustrates an exemplary computer that can be used for determining optical configuration (e.g. IOL spherical equivalent and cylinder power) of a rotationally- extended tolerant ophthalmic apparatus for the selection thereof.
  • the computer of Fig. 22 may comprise all or a portion of the IOL calculator, as described herein.
  • "computer” may include a plurality of computers.
  • the computers may include one or more hardware components such as, for example, a processor 2221, a random access memory (RAM) module 2222, a read-only memory (ROM) module 2223, a storage 2224, a database 2225, one or more input/output (I/O) devices 2226, and an interface 2227.
  • controller 2220 may include one or more software components such as, for example, a computer-readable medium including computer executable instructions for performing a method associated with the exemplary embodiments. It is contemplated that one or more of the hardware components listed above may be implemented using software.
  • storage 2224 may include a software partition associated with one or more other hardware components. It is understood that the components listed above are exemplary only and not intended to be limiting.
  • Processor 2221 may include one or more processors, each configured to execute instructions and process data to perform one or more functions associated with a computer for indexing images.
  • Processor 2221 may be communicatively coupled to RAM 2222, ROM 2223, storage 2224, database 2225, I/O devices 2226, and interface 2227.
  • Processor 2221 may be configured to execute sequences of computer program instructions to perform various processes.
  • the computer program instructions may be loaded into RAM 2222 for execution by processor 2221.
  • processor refers to a physical hardware device that executes encoded instructions for performing functions on inputs and creating outputs.
  • RAM 2222 and ROM 2223 may each include one or more devices for storing information associated with operation of processor 2221.
  • ROM 2223 may include a memory device configured to access and store information associated with controller 2220, including information associated with IOL lenses and their parameters.
  • RAM 2222 may include a memory device for storing data associated with one or more operations of processor 2221.
  • ROM 2223 may load instructions into RAM 2222 for execution by processor 2221.
  • Storage 2224 may include any type of mass storage device configured to store information that processor 2221 may need to perform processes consistent with the disclosed embodiments.
  • storage 2224 may include one or more magnetic and/or optical disk devices, such as hard drives, CD-ROMs, DVD-ROMs, or any other type of mass media device.
  • Database 2225 may include one or more software and/or hardware components that cooperate to store, organize, sort, filter, and/or arrange data used by controller 2220 and/or processor 2221.
  • database 2225 may store hardware and/or software configuration data associated with input-output hardware devices and controllers, as described herein. It is contemplated that database 2225 may store additional and/or different information than that listed above.
  • I/O devices 2226 may include one or more components configured to communicate information with a user associated with controller 2220.
  • I/O devices may include a console with an integrated keyboard and mouse to allow a user to maintain a database of images, update associations, and access digital content.
  • I/O devices 2226 may also include a display including a graphical user interface (GUI) for outputting information on a monitor.
  • GUI graphical user interface
  • I O devices 2226 may also include peripheral devices such as, for example, a printer for printing information associated with controller 2220, a user-accessible disk drive (e.g., a USB port, a floppy, CD-ROM, or DVD-ROM drive, etc.) to allow a user to input data stored on a portable media device, a microphone, a speaker system, or any other suitable type of interface device.
  • peripheral devices such as, for example, a printer for printing information associated with controller 2220, a user-accessible disk drive (e.g., a USB port, a floppy, CD-ROM, or DVD-ROM drive, etc.) to allow a user to input data stored on a portable media device, a microphone, a speaker system, or any other suitable type of interface device.
  • Interface 2227 may include one or more components configured to transmit and receive data via a communication network, such as the Internet, a local area network, a workstation peer-to-peer network, a direct link network, a wireless network, or any other suitable communication platform.
  • interface 2227 may include one or more modulators, demodulators, multiplexers, demultiplexers, network communication devices, wireless devices, antennas, modems, and any other type of device configured to enable data communication via a communication network.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Prostheses (AREA)
  • Eyeglasses (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)

Abstract

La présente invention concerne un calculateur de LIO pour déterminer l'équivalent sphérique (ES) et la puissance du cylindre pour des lentilles toriques et des appareils ophtalmiques ayant la bande étendue de méridien opérationnel, tels que la lentille intraoculaire torique à tolérance rotative étendue. Le calculateur de LIO peut en outre être utilisé pour une lentille intraoculaire torique à tolérance rotative étendue, une lentille intraoculaire à profondeur de champ étendue, une lentille intraoculaire torique à plage de vision étendue, et une plage étendue de lentille intraoculaire à vision étendue.
PCT/US2017/023772 2016-03-23 2017-03-23 Calculateur de puissance pour un appareil ophtalmique avec méridiens correctifs ayant une tolérance ou bande opérationnelle étendue WO2017165623A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017238487A AU2017238487B2 (en) 2016-03-23 2017-03-23 Power calculator for an ophthalmic apparatus with corrective meridians having extended tolerance or operation band
EP17715020.8A EP3432768B1 (fr) 2016-03-23 2017-03-23 Calculateur de puissance pour un appareil ophtalmique avec méridiens correctifs ayant une tolérance ou bande opérationnelle étendue
CA3018545A CA3018545A1 (fr) 2016-03-23 2017-03-23 Calculateur de puissance pour un appareil ophtalmique avec meridiens correctifs ayant une tolerance ou bande operationnelle etendue

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662312321P 2016-03-23 2016-03-23
US201662312338P 2016-03-23 2016-03-23
US62/312,338 2016-03-23
US62/312,321 2016-03-23
US201662363428P 2016-07-18 2016-07-18
US62/363,428 2016-07-18

Publications (1)

Publication Number Publication Date
WO2017165623A1 true WO2017165623A1 (fr) 2017-09-28

Family

ID=58461514

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2017/023897 WO2017165700A1 (fr) 2016-03-23 2017-03-23 Appareil ophtalmique à méridiens correctifs présentant une bande de tolérance étendue
PCT/US2017/023772 WO2017165623A1 (fr) 2016-03-23 2017-03-23 Calculateur de puissance pour un appareil ophtalmique avec méridiens correctifs ayant une tolérance ou bande opérationnelle étendue

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2017/023897 WO2017165700A1 (fr) 2016-03-23 2017-03-23 Appareil ophtalmique à méridiens correctifs présentant une bande de tolérance étendue

Country Status (5)

Country Link
US (3) US10646329B2 (fr)
EP (3) EP3432768B1 (fr)
AU (2) AU2017237095B2 (fr)
CA (2) CA3018570A1 (fr)
WO (2) WO2017165700A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3639085B1 (fr) * 2017-07-24 2023-04-19 Alcon Inc. Lentille ophtalmique pourvue de structures de déphasage sinusoïdal morphé
CN109725441A (zh) * 2017-10-28 2019-05-07 郑克立 一种全息眼镜片
JP6504332B1 (ja) * 2018-08-09 2019-04-24 株式会社ニコン 眼科用レンズ及び眼科用レンズの製造方法
CN109214945B (zh) * 2018-10-11 2022-07-05 中石化石油工程技术服务有限公司 一种单井地层界面埋深的计算方法及系统
CN111291458B (zh) * 2018-11-20 2023-05-26 核工业西南物理研究院 一种ecrh系统天线聚焦镜面轮廓三维坐标确定方法
JP7534301B2 (ja) * 2019-01-22 2024-08-14 アルコン インコーポレイティド 正視域予測を使用した眼内レンズ選択のためのシステム及び方法
US11980542B2 (en) * 2020-03-23 2024-05-14 Gholam Peyman Optical implant and methods of implantation
US11596513B2 (en) 2020-03-23 2023-03-07 Gholam Peyman Optical implant and methods of implantation
CN111513917B (zh) * 2020-05-22 2022-03-22 杭州明视康眼科医院有限公司 一种散光型icl术后残留散光的转位调整方法并预估转位调整后的屈光度的方法
WO2021245506A1 (fr) 2020-06-01 2021-12-09 Icares Medicus, Inc. Lentille multifocale diffractive asphérique double face, fabrication et utilisations de cette dernière
US11126012B1 (en) * 2020-10-01 2021-09-21 Michael Walach Broadview natural addition lens
CN118785870A (zh) * 2022-01-14 2024-10-15 Ast产品公司 非球状相位环结构透镜设计、制造及其用途
DE102023106207A1 (de) 2023-03-13 2024-09-19 Carl Zeiss Meditec Ag Ophthalmische Linse mit erweiterter Schärfentiefe und Verfahren zur Erzeugung eines Linsendesigns

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110166652A1 (en) 2007-08-27 2011-07-07 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US20150062529A1 (en) * 2013-08-29 2015-03-05 Abbott Medical Optics Inc. Systems and methods for providing astigmatism correction

Family Cites Families (294)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2077092A (en) 1936-01-13 1937-04-13 Broder Simon Ophthalmic lens
GB1054972A (fr) 1963-02-22
US3305294A (en) 1964-12-03 1967-02-21 Optical Res & Dev Corp Two-element variable-power spherical lens
US3735685A (en) 1971-05-07 1973-05-29 Polaroid Corp Reflective imaging apparatus
US4056311A (en) 1973-08-16 1977-11-01 American Optical Corporation Progressive power ophthalmic lens having a plurality of viewing zones with non-discontinuous variations therebetween
US4010496A (en) 1975-10-01 1977-03-08 Neefe Charles W Bifocal lens which positions within the anterior chamber
US4162122A (en) 1977-09-14 1979-07-24 Cohen Allen L Zonal bifocal contact lens
US4210391A (en) 1977-09-14 1980-07-01 Cohen Allen L Multifocal zone plate
US4338005A (en) 1978-12-18 1982-07-06 Cohen Allen L Multifocal phase place
US4340283A (en) 1978-12-18 1982-07-20 Cohen Allen L Phase shift multifocal zone plate
US4319564A (en) 1980-01-03 1982-03-16 Karickhoff John R Instrument for measurement of the diameter of the anterior chamber of the eye
USRE32525F1 (en) 1980-04-01 1989-05-09 Universal intraocular lens and a method of measuring an eye chamber size
US4377873A (en) 1980-10-30 1983-03-29 Reichert Jr Henry L Intraocular lens
US4480340A (en) 1981-02-18 1984-11-06 Shepard Dennis D Intraocular lens with resilient support means
DE8107675U1 (de) 1981-03-03 1981-07-30 Porsche Design Produkte Vertriebsgesellschaft mbH, 5020 Salzburg "geodreieck"
US4370760A (en) 1981-03-25 1983-02-01 Kelman Charles D Anterior chamber intraocular lens
DE3265356D1 (en) 1981-04-29 1985-09-19 Pilkington Perkin Elmer Ltd Artificial eye lenses
DE3119002A1 (de) 1981-05-13 1982-12-02 INPROHOLD Establishment, 9490 Vaduz Hinterkammer-implantationslinse
US4403353A (en) 1981-06-25 1983-09-13 Tennant Jerald L Anterior chamber implant lens
US4402579A (en) 1981-07-29 1983-09-06 Lynell Medical Technology Inc. Contact-lens construction
US4446581A (en) 1981-09-02 1984-05-08 Blake L W Intraocular lens with free-ended sizing prong
US4409691A (en) 1981-11-02 1983-10-18 Levy Chauncey F Focussable intraocular lens
US4404694A (en) 1982-03-18 1983-09-20 Kelman Charles D Intraocular lens
US4504982A (en) 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
GB2129157B (en) 1982-10-27 1986-02-05 Pilkington Perkin Elmer Ltd Bifocal contact lenses having defractive power
US4593981A (en) 1983-05-06 1986-06-10 Master Contact Lens Labs Inc. Bifocal contact lens
US4500382A (en) 1983-06-10 1985-02-19 Transilwrap Company, Inc. Method of manufacture of resin film precision biomedical article
DE3431224A1 (de) 1983-08-04 1986-03-06 Steven B Siepser Kuenstliche intraokulare linse
US4556998A (en) 1983-08-04 1985-12-10 Siepser Steven B Artificial intraocular lenses and method for their surgical implantation
US4551864A (en) 1983-08-18 1985-11-12 Iolab Corporation Anterior chamber lens
US4636049A (en) 1983-09-20 1987-01-13 University Optical Products Co. Concentric bifocal contact lens
US4560383A (en) 1983-10-27 1985-12-24 Leiske Larry G Anterior chamber intraocular lens
US4687484A (en) 1983-12-12 1987-08-18 Kaplan Linda J Anterior chamber intraocular lens
GB8404817D0 (en) 1984-02-23 1984-03-28 Pilkington Perkin Elmer Ltd Ophthalmic lenses
US4605409A (en) 1984-05-21 1986-08-12 Kelman Charles D Intraocular lens with miniature optic having expandable and contractible glare-reducing means
US4629460A (en) 1984-06-25 1986-12-16 Dyer Robert L Intraocular lens
US4787904A (en) 1984-07-06 1988-11-29 Severin Sanford L Hydrophillic intraocular lens
US4629462A (en) 1984-07-13 1986-12-16 Feaster Fred T Intraocular lens with coiled haptics
SU1311063A1 (ru) 1984-09-27 1988-01-30 Московский научно-исследовательский институт микрохирургии глаза Искусственный хрусталик глаза
DE3439551A1 (de) 1984-10-29 1986-04-30 Inprohold Establishment, Vaduz Einstueckige implantationslinse
FI79619C (fi) 1984-12-31 1990-01-10 Antti Vannas Intraokulaer lins.
US4781717A (en) 1985-07-24 1988-11-01 Grendahl Dennis T Intraocular lens
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US4676791A (en) 1985-08-01 1987-06-30 Surgidev Corporation Intraocular lens and method for making same
US4687485A (en) 1985-08-23 1987-08-18 Barnes-Hind, Inc. Intraocular lens with leg means having compressible regions and/or color
US4681102A (en) 1985-09-11 1987-07-21 Bartell Michael T Apparatus and method for insertion of an intra-ocular lens
US4834751A (en) 1985-12-04 1989-05-30 Allergan, Inc. Staking ring for soft IOL
CA1283252C (fr) 1985-12-09 1991-04-23 Albert C. Ting Partie haptique d'un implant oculaire
US4725277A (en) 1986-05-14 1988-02-16 Precision-Cosmet Co., Inc. Intraocular lens with tapered haptics
US5121979A (en) 1986-05-14 1992-06-16 Cohen Allen L Diffractive multifocal optical device
US5144483A (en) 1986-05-14 1992-09-01 Cohen Allen L Diffractive multifocal optical device
US4676792A (en) 1986-08-26 1987-06-30 Donald Praeger Method and artificial intraocular lens device for the phakic treatment of myopia
US5270744A (en) 1987-06-01 1993-12-14 Valdemar Portney Multifocal ophthalmic lens
US4898461A (en) 1987-06-01 1990-02-06 Valdemar Portney Multifocal ophthalmic lens
US5225858A (en) 1987-06-01 1993-07-06 Valdemar Portney Multifocal ophthalmic lens
US4828558A (en) 1987-07-28 1989-05-09 Kelman Charles D Laminate optic with interior Fresnel lens
US4778462A (en) 1987-08-24 1988-10-18 Grendahl Dennis T Multiple element zone of focus artificial lens
US4798609A (en) 1987-08-24 1989-01-17 Grendahl Dennis T Radially segmented zone of focus artificial lens
US4795462A (en) 1987-08-24 1989-01-03 Grendahl Dennis T Cylindrically segmented zone of focus artificial lens
US4798608A (en) 1987-08-24 1989-01-17 Grendahl Dennis T Laminated zone of focus artificial lens
US4834748A (en) 1987-09-29 1989-05-30 Allergan, Inc. Method and apparatus for removing corneal tissue
US5047052A (en) 1987-11-06 1991-09-10 Seymour Dubroff Anterior chamber intraocular lens with four point fixation
US4863539A (en) 1987-11-06 1989-09-05 Optical Radiation Corporation Haptic attachment for intraocular lenses
US5056908A (en) 1987-11-12 1991-10-15 Cohen Allen L Optic zone phase channels
US4881804A (en) 1987-11-12 1989-11-21 Cohen Allen L Multifocal phase plate with a pure refractive portion
US5054905A (en) 1987-11-12 1991-10-08 Cohen Allen L Progressive intensity phase bifocal
FR2631228B1 (fr) 1988-05-11 1990-08-10 Domilens Laboratoires Implant intra-oculaire de chambre anterieure
US4932970A (en) 1988-05-17 1990-06-12 Allergan, Inc. Ophthalmic lens
FR2631713B1 (fr) 1988-05-19 1990-08-31 Essilor Int Lentille diffractive a profil mixte
ES2081811T3 (es) 1988-07-20 1996-03-16 Allen L Dr Cohen Elemento optico difractivo multifocal.
US4995714A (en) 1988-08-26 1991-02-26 Cohen Allen L Multifocal optical device with novel phase zone plate and method for making
FR2642855B1 (fr) 1989-02-06 1991-05-17 Essilor Int Lentille optique pour la correction de l'astigmatisme
US5121980A (en) 1989-04-19 1992-06-16 Cohen Allen L Small aperture multifocal
US4997442A (en) 1989-05-04 1991-03-05 Alcon Laboratories, Inc. Bicomposite intraocular lenses
US5078742A (en) 1989-08-28 1992-01-07 Elie Dahan Posterior chamber lens implant
US5019097A (en) 1989-11-22 1991-05-28 Allergan, Inc. Corneal onlay lenses and methods for attaching same
WO1991009336A1 (fr) 1989-12-07 1991-06-27 Leonard Seidner Lentilles de contact corneennes
US5089023A (en) 1990-03-22 1992-02-18 Massachusetts Institute Of Technology Diffractive/refractive lens implant
US5096285A (en) 1990-05-14 1992-03-17 Iolab Corporation Multifocal multizone diffractive ophthalmic lenses
US5225997A (en) 1990-06-05 1993-07-06 Sygnus Controls Inc. Automatic monitoring and remote reporting device
US5147397A (en) 1990-07-03 1992-09-15 Allergan, Inc. Intraocular lens and method for making same
US5117306A (en) 1990-07-17 1992-05-26 Cohen Allen L Diffraction bifocal with adjusted chromaticity
US5120120A (en) 1990-07-27 1992-06-09 Cohen Allen L Multifocal optical device with spurious order suppression and method for manufacture of same
US5229797A (en) 1990-08-08 1993-07-20 Minnesota Mining And Manufacturing Company Multifocal diffractive ophthalmic lenses
US5173723A (en) * 1990-10-02 1992-12-22 Volk Donald A Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
US5066301A (en) 1990-10-09 1991-11-19 Wiley Robert G Variable focus lens
US5258025A (en) 1990-11-21 1993-11-02 Fedorov Svjatoslav N Corrective intraocular lens
US5217491A (en) 1990-12-27 1993-06-08 American Cyanamid Company Composite intraocular lens
US5133749A (en) 1991-05-13 1992-07-28 Nordan Lee T Centrating haptics
US5106180A (en) 1991-05-30 1992-04-21 Robert Marie Multifocal ophthalmic lens
US5147395A (en) 1991-07-16 1992-09-15 Allergan Inc. Small incision endocapsulator IOL
CA2115343A1 (fr) 1991-08-09 1993-02-18 Steve Newman Lentille torique avec dispositif de correction de l'alignement axial
US5479220A (en) 1991-10-09 1995-12-26 Seiko Epson Corporation Eyeglass lens
US5203790A (en) 1991-11-12 1993-04-20 Henry H. McDonald Foldable plastic optical lens with reduced thickness light blocking segments, and anchoring means
US5184405A (en) 1991-12-18 1993-02-09 Jonathan Cress Method and device for fitting toric contact lenses
US5201763A (en) 1992-02-28 1993-04-13 Allergan, Inc. Thin intraocular lens
US5476513A (en) 1992-02-28 1995-12-19 Allergan, Inc. Intraocular lens
US5197981A (en) 1992-04-23 1993-03-30 Alcon Surgical, Inc. Intraocular lens having haptic of specific curvature and proportion
US5760871A (en) 1993-01-06 1998-06-02 Holo-Or Ltd. Diffractive multi-focal lens
US5748282A (en) 1993-01-27 1998-05-05 Pilkington Barnes Hind, Inc. Multifocal contact lens
US5408281A (en) 1993-04-26 1995-04-18 Ciba-Geigy Multifocal contact lens
US5571177A (en) 1993-06-14 1996-11-05 Allergan IOL structured for post-operative re-positioning and method for post-operative IOL re-positioning
US5502518A (en) 1993-09-09 1996-03-26 Scient Optics Inc Asymmetric aspheric contact lens
US5433745A (en) 1993-10-13 1995-07-18 Allergan, Inc. Corneal implants and methods for producing same
JP3745394B2 (ja) 1994-07-04 2006-02-15 武敏 鈴木 眼内レンズ
US5699142A (en) 1994-09-01 1997-12-16 Alcon Laboratories, Inc. Diffractive multifocal ophthalmic lens
US5620720A (en) 1994-11-29 1997-04-15 Allergan Cast molding of intraocular lenses
JPH08196507A (ja) 1995-01-23 1996-08-06 Nikon Corp 眼科装置
ATE394080T1 (de) 1995-02-15 2008-05-15 Medevec Licensing Bv Anpassbare intraokulare linse mit t-förmigen haltebügeln
US7048997B2 (en) 1995-03-03 2006-05-23 Vision-Ease Lens Production of optical elements
IL118065A0 (en) 1995-05-04 1996-08-04 Johnson & Johnson Vision Prod Aspheric toric lens designs
US5652638A (en) 1995-05-04 1997-07-29 Johnson & Johnson Vision Products, Inc. Concentric annular ring lens designs for astigmatism
US5801807A (en) 1995-08-08 1998-09-01 Nikon Corporation Ophthalmic illumination device having adjustable transmittance member and microscope for operation using the same
US5968094A (en) 1995-09-18 1999-10-19 Emmetropia, Inc. Compound intraocular lens
WO1997012564A1 (fr) 1995-10-06 1997-04-10 Cumming J Stuart Lentilles intraoculaires a haptiques fixes
US5716403A (en) 1995-12-06 1998-02-10 Alcon Laboratories, Inc. Single piece foldable intraocular lens
FR2745711B1 (fr) 1996-03-05 1998-05-07 Ioltechnologie Production Implant souple formant lentille intraoculaire de chambre posterieure
ES2200157T3 (es) 1996-03-21 2004-03-01 Sola International Holdings, Ltd. Lentes de vision simple mejoradas.
FR2748200B1 (fr) 1996-05-03 1998-09-25 W K Et Associes Implant intraoculaire monobloc souple
US5864378A (en) 1996-05-21 1999-01-26 Allergan Enhanced monofocal IOL or contact lens
US6015435A (en) 1996-10-24 2000-01-18 International Vision, Inc. Self-centering phakic intraocular lens
WO1998022589A2 (fr) 1996-11-20 1998-05-28 Yale University La survivine, proteine inhibant l'apoptose cellulaire, et sa modulation
DE19724108C1 (de) 1997-06-09 1998-11-19 Morcher Gmbh Kapseläquatorring
US5928282A (en) 1997-06-13 1999-07-27 Bausch & Lomb Surgical, Inc. Intraocular lens
JPH1114804A (ja) 1997-06-27 1999-01-22 Fuji Photo Optical Co Ltd プラスチックレンズ
WO1999005499A1 (fr) 1997-07-24 1999-02-04 Innotech, Inc. Cartographe de la qualite d'image pour verres progressifs
CA2304764A1 (fr) 1997-09-02 1999-03-11 Gil Thieberger Verre ophtalmique synthetise a partir de ses specifications
US6129759A (en) 1997-12-10 2000-10-10 Staar Surgical Company, Inc. Frosted haptic intraocular lens
FR2772489B1 (fr) 1997-12-16 2000-03-10 Essilor Int Lentilles ophtalmiques multifocales a aberration spherique variable suivant l'addition et l'ametropie
JP4023902B2 (ja) 1998-04-10 2007-12-19 株式会社メニコン トーリック・マルチフォーカルレンズ
US6491721B2 (en) 1998-04-15 2002-12-10 Alcon Manufacturing, Ltd. Toric intraocular lens material
SE510945C2 (sv) 1998-05-13 1999-07-12 Tormek Ab Vinkelmätare vid slipning av eggverktyg
WO1999062594A1 (fr) 1998-06-03 1999-12-09 Neurocontrol Corporation Systeme de stimulation intramusculaire percutane
JP2002522803A (ja) 1998-08-06 2002-07-23 ジョン ビー ダブリュー レット 多焦点非球面レンズ
US6203499B1 (en) 1998-10-05 2001-03-20 Atl Ultrasound Inc. Multiple angle needle guide
US6286956B1 (en) 1998-10-19 2001-09-11 Mencion Co., Ltd. Multifocal ocular lens including intermediate vision correction region between near and distant vision correction regions
US6197057B1 (en) 1998-10-27 2001-03-06 Gholam A. Peyman Lens conversion system for teledioptic or difractive configurations
US6126283A (en) 1998-10-29 2000-10-03 Eastman Kodak Company Format flexible ink jet printing
JP2002532751A (ja) 1998-12-16 2002-10-02 ウェズリー ジェッセン コーポレイション 非球面多焦点コンタクトレンズ
US6210005B1 (en) 1999-02-04 2001-04-03 Valdemar Portney Multifocal ophthalmic lens with reduced halo size
US6488708B2 (en) 1999-04-09 2002-12-03 Faezeh Sarfarazi Open chamber, elliptical, accommodative intraocular lens system
US20060238702A1 (en) 1999-04-30 2006-10-26 Advanced Medical Optics, Inc. Ophthalmic lens combinations
US7775660B2 (en) 1999-07-02 2010-08-17 E-Vision Llc Electro-active ophthalmic lens having an optical power blending region
US6536899B1 (en) 1999-07-14 2003-03-25 Bifocon Optics Gmbh Multifocal lens exhibiting diffractive and refractive powers
US6235055B1 (en) 1999-08-09 2001-05-22 Milton W. Chu Intraocular lens having colored haptics for anterior/posterior orientation, and method for implanting it
US6305802B1 (en) 1999-08-11 2001-10-23 Johnson & Johnson Vision Products, Inc. System and method of integrating corneal topographic data and ocular wavefront data with primary ametropia measurements to create a soft contact lens design
US6261321B1 (en) 1999-09-01 2001-07-17 Robert E. Kellan Phakic or aphakic intraocular lens assembly
FR2801192B1 (fr) 1999-11-19 2002-08-09 Corneal Ind Anneau pour sac capsulaire et ensemble constitue par un tel anneau et son injecteur
US20010051825A1 (en) 1999-12-27 2001-12-13 Peterson Norman D. Temporary lenses and method for providing correct lens power
DE10002672C2 (de) 2000-01-24 2002-01-03 Bioshape Ag Vorrichtung und Verfahren zur Bestimmung des Radius oder des Durchmesssers des Kammerwinkels eines Auges
US7455407B2 (en) 2000-02-11 2008-11-25 Amo Wavefront Sciences, Llc System and method of measuring and mapping three dimensional structures
US6364483B1 (en) 2000-02-22 2002-04-02 Holo Or Ltd. Simultaneous multifocal contact lens and method of utilizing same for treating visual disorders
US6338559B1 (en) 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
US6537317B1 (en) 2000-05-03 2003-03-25 Advanced Medical Optics, Inc. Binocular lens systems
US6547822B1 (en) 2000-05-03 2003-04-15 Advanced Medical Optics, Inc. Opthalmic lens systems
US6554859B1 (en) 2000-05-03 2003-04-29 Advanced Medical Optics, Inc. Accommodating, reduced ADD power multifocal intraocular lenses
HUP0301923A2 (hu) 2000-05-23 2003-09-29 Pharmacia Groningen Bv A szem aberrációit csökkentż, beültethetż szemlencse és eljárás annak tervezésére
US6609793B2 (en) 2000-05-23 2003-08-26 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US6598606B2 (en) 2000-05-24 2003-07-29 Pharmacia Groningen Bv Methods of implanting an intraocular lens
US20050251254A1 (en) 2000-06-02 2005-11-10 Brady Daniel G Method of implanting accommodating intraocular lenses
US6419697B1 (en) 2000-07-07 2002-07-16 Charles David Kelman Clip-on optic assembly
US20060116765A1 (en) 2000-08-04 2006-06-01 Blake Larry W Refractive corrective lens (RCL)
US6474814B1 (en) 2000-09-08 2002-11-05 Florida Optical Engineering, Inc Multifocal ophthalmic lens with induced aperture
SE0004829D0 (sv) 2000-12-22 2000-12-22 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US6709102B2 (en) 2001-01-16 2004-03-23 Arthur G. Duppstadt Multifocal contact lens and method of making the same
US8062361B2 (en) 2001-01-25 2011-11-22 Visiogen, Inc. Accommodating intraocular lens system with aberration-enhanced performance
US6846326B2 (en) 2001-01-25 2005-01-25 Visiogen, Inc. Connection geometry for intraocular lens system
EP1357860A2 (fr) 2001-02-01 2003-11-05 Tekia, Inc. Lentille intraoculaire (lio) phakique en deux parties en forme de "l" ou de "s"
US20040167622A1 (en) 2001-03-26 2004-08-26 Sunalp Murad A. Temporary refractive intraocular lens and methods of use
SE0101293D0 (sv) 2001-04-11 2001-04-11 Pharmacia Groningen Bv Technical field of the invention
IL143503A0 (en) 2001-05-31 2002-04-21 Visionix Ltd Aberration correction spectacle lens
US6533416B1 (en) 2001-07-20 2003-03-18 Ocular Sciences, Inc. Contact or intraocular lens and method for its preparation
US6808265B2 (en) 2001-10-19 2004-10-26 Bausch And Lomb, Inc. Presbyopic vision improvement
US6557992B1 (en) 2001-10-26 2003-05-06 Hewlett-Packard Development Company, L.P. Method and apparatus for decorating an imaging device
ITRM20010669A1 (it) 2001-11-09 2003-05-09 Optikon 2000 Spa Cassetta infusione aspirazione (i/a) con sistema di aspirazione sia mediante pompa peristaltica o comunque volumetrica che mediante pompa pr
US6802605B2 (en) 2001-12-11 2004-10-12 Bausch And Lomb, Inc. Contact lens and method for fitting and design
US20030171808A1 (en) 2002-03-05 2003-09-11 Phillips Andrew F. Accommodating intraocular lens
US7130835B2 (en) 2002-03-28 2006-10-31 Bausch & Lomb Incorporated System and method for predictive ophthalmic correction
GB0213638D0 (en) 2002-06-13 2002-07-24 Syngenta Ltd Composition
US6843563B2 (en) 2002-07-31 2005-01-18 Bausch And Lomb, Inc. Smoothly blended optical surfaces
US6923540B2 (en) 2002-07-31 2005-08-02 Novartis Ag Toric multifocal contact lenses
JP5096662B2 (ja) 2002-10-04 2012-12-12 カール ツアイス ヴィジョン ゲーエムベーハー レンズを製造する方法およびこの方法により製造されたレンズ
US20040068317A1 (en) 2002-10-07 2004-04-08 Knight Patricia M. Anterior chamber intraocular lens with size and position indicators
JP4361254B2 (ja) 2002-10-08 2009-11-11 株式会社ニコン・エシロール 眼鏡レンズの設計方法、眼鏡レンズの製造方法及び計算機プログラム
US6851803B2 (en) 2002-10-24 2005-02-08 C. Benjamin Wooley Ophthalmic lenses with reduced chromatic blur
US20040082993A1 (en) 2002-10-25 2004-04-29 Randall Woods Capsular intraocular lens implant having a refractive liquid therein
US7370962B2 (en) 2002-10-31 2008-05-13 Johnson & Johnson Vision Care, Inc. Pupil regulated multifocal contact lenses
US7381221B2 (en) 2002-11-08 2008-06-03 Advanced Medical Optics, Inc. Multi-zonal monofocal intraocular lens for correcting optical aberrations
US7896916B2 (en) 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
SE0203564D0 (sv) 2002-11-29 2002-11-29 Pharmacia Groningen Bv Multifocal opthalmic lens
US7320517B2 (en) 2002-12-06 2008-01-22 Visx, Incorporated Compound modulation transfer function for laser surgery and other optical applications
EP1567907A4 (fr) 2002-12-06 2009-09-02 Amo Mfg Usa Llc Correction de la presbytie en utilisant les donnees du patient
US7036931B2 (en) 2003-01-29 2006-05-02 Novartis Ag Ophthalmic lenses
US6986578B2 (en) 2003-01-30 2006-01-17 Johnson & Johnson Vision Care, Inc. Multifocal ophthalmic lenses
US6802606B2 (en) 2003-02-04 2004-10-12 Johnson & Johnson Vision Care, Inc. Multifocal contact lens pairs
GB0303193D0 (en) 2003-02-12 2003-03-19 Guillon Michael Methods & lens
US7303582B2 (en) 2003-03-21 2007-12-04 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
WO2004090611A2 (fr) 2003-03-31 2004-10-21 Bausch & Lomb Incorporated Lentilles intraoculaires et procede pour diminuer les aberrations dans un systeme oculaire
US7905917B2 (en) 2003-03-31 2011-03-15 Bausch & Lomb Incorporated Aspheric lenses and lens family
US7357509B2 (en) 2003-04-28 2008-04-15 University Of Rochester Metrics to predict subjective impact of eye's wave aberration
US6923539B2 (en) 2003-05-12 2005-08-02 Alcon, Inc. Aspheric lenses
US6951391B2 (en) 2003-06-16 2005-10-04 Apollo Optical Systems Llc Bifocal multiorder diffractive lenses for vision correction
US7287852B2 (en) 2003-06-30 2007-10-30 Fiala Werner J Intra-ocular lens or contact lens exhibiting large depth of focus
US20050041203A1 (en) 2003-08-20 2005-02-24 Lindacher Joseph Michael Ophthalmic lens with optimal power profile
DE10344781A1 (de) 2003-09-23 2005-04-14 Carl Zeiss Meditec Ag Verfahren zur Bestimmung einer Intraokularlinse
US6899425B2 (en) 2003-10-28 2005-05-31 Johnson & Johnson Vision Care, Inc. Multifocal ophthalmic lenses
US7070276B2 (en) 2003-12-04 2006-07-04 Rensselaer Polytechnic Institute Apparatus and method for accommodative stimulation of an eye and simultaneous ipsilateral accommodative imaging
EP1694252B1 (fr) 2003-12-09 2017-08-09 Abbott Medical Optics Inc. Lentille intraoculaire pliable et procede de fabrication de celle-ci
US7615073B2 (en) 2003-12-09 2009-11-10 Advanced Medical Optics, Inc. Foldable intraocular lens and method of making
US7857451B2 (en) 2003-12-12 2010-12-28 Indiana University Research And Technology Corporation System and method for optimizing clinical optic prescriptions
US7044597B2 (en) 2003-12-16 2006-05-16 Bausch & Lomb Incorporated Multifocal contact lens and method of manufacture thereof
US7476248B2 (en) * 2004-04-06 2009-01-13 Alcon, Inc. Method of calculating the required lens power for an opthalmic implant
US7365917B2 (en) 2004-08-16 2008-04-29 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7061693B2 (en) 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
US7156516B2 (en) 2004-08-20 2007-01-02 Apollo Optical Systems Llc Diffractive lenses for vision correction
WO2006025726A1 (fr) 2004-09-02 2006-03-09 Vu Medisch Centrum Lentille intracameculaire artificielle
DE102004046577A1 (de) 2004-09-23 2006-04-06 Geuder Ag Vorrichtung zum Vermessen der Vorderkammer eines Auges
US20060066808A1 (en) 2004-09-27 2006-03-30 Blum Ronald D Ophthalmic lenses incorporating a diffractive element
US7188949B2 (en) 2004-10-25 2007-03-13 Advanced Medical Optics, Inc. Ophthalmic lens with multiple phase plates
EP3480650A1 (fr) 2004-10-25 2019-05-08 Johnson & Johnson Surgical Vision, Inc. Lentille ophtalmique pourvue de plaques à phases multiples
EP1831750B1 (fr) 2004-11-22 2015-08-19 Novartis AG Serie de lentilles de contact aspheriques
US20060116764A1 (en) 2004-12-01 2006-06-01 Simpson Michael J Apodized aspheric diffractive lenses
US20060116763A1 (en) 2004-12-01 2006-06-01 Simpson Michael J Contrast-enhancing aspheric intraocular lens
US20070171362A1 (en) 2004-12-01 2007-07-26 Simpson Michael J Truncated diffractive intraocular lenses
US20060227286A1 (en) 2005-04-05 2006-10-12 Xin Hong Optimal IOL shape factors for human eyes
US7073906B1 (en) 2005-05-12 2006-07-11 Valdemar Portney Aspherical diffractive ophthalmic lens
DE102005022683A1 (de) 2005-05-17 2006-11-23 Holschbach, Andreas, Dr. Kontaktlinsen zur Kompensation charakteristischer Abbildungsfehler zur Verbesserung der Abbildungsqualität optischer Systeme
DE102005026371B4 (de) 2005-06-07 2024-02-08 Oculus Optikgeräte GmbH Verfahren zum Betrieb eines ophthalmologischen Analysesystems
US7441901B2 (en) 2005-06-14 2008-10-28 Advanced Vision Engineering, Inc. Multitask vision architecture for refractive vision corrections
ES2574650T3 (es) 2005-08-19 2016-06-21 Wavelight Gmbh Programa de corrección de la presbicia
US20070129803A1 (en) 2005-12-06 2007-06-07 C&C Vision International Limited Accommodative Intraocular Lens
US7481532B2 (en) 2006-02-09 2009-01-27 Alcon, Inc. Pseudo-accommodative IOL having multiple diffractive patterns
US7441894B2 (en) 2006-02-09 2008-10-28 Alcon Manufacturing, Ltd. Pseudo-accommodative IOL having diffractive zones with varying areas
WO2007117694A2 (fr) 2006-04-07 2007-10-18 Advanced Medical Optics, Inc. Systeme et procede de mesure geometrique d'une caracteristique geometrique d'un objet
US20070258143A1 (en) 2006-05-08 2007-11-08 Valdemar Portney Aspheric multifocal diffractive ophthalmic lens
US7879089B2 (en) * 2006-05-17 2011-02-01 Alcon, Inc. Correction of higher order aberrations in intraocular lenses
US7572007B2 (en) 2006-08-02 2009-08-11 Alcon, Inc. Apodized diffractive IOL with frustrated diffractive region
US20080084534A1 (en) 2006-10-10 2008-04-10 Joseph Michael Lindacher Lens having an optically controlled peripheral portion and a method for designing and manufacturing the lens
US7713299B2 (en) 2006-12-29 2010-05-11 Abbott Medical Optics Inc. Haptic for accommodating intraocular lens
CA2674018C (fr) 2006-12-29 2015-05-26 Advanced Medical Optics, Inc. Lentille intraoculaire accommodante multifocale
US20080161914A1 (en) 2006-12-29 2008-07-03 Advanced Medical Optics, Inc. Pre-stressed haptic for accommodating intraocular lens
US20080273169A1 (en) 2007-03-29 2008-11-06 Blum Ronald D Multifocal Lens Having a Progressive Optical Power Region and a Discontinuity
US7993398B2 (en) 2007-04-24 2011-08-09 Abbott Medical Optics Inc. Angle indicator for capsular bag size measurement
US7637612B2 (en) 2007-05-21 2009-12-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
KR101547372B1 (ko) 2007-08-07 2015-08-25 노파르티스 아게 개선된 후방 표면 설계를 갖는 원환체 콘택트 렌즈
US20090062911A1 (en) 2007-08-27 2009-03-05 Amo Groningen Bv Multizonal lens with extended depth of focus
US8740978B2 (en) 2007-08-27 2014-06-03 Amo Regional Holdings Intraocular lens having extended depth of focus
US20090088840A1 (en) 2007-10-02 2009-04-02 Simpson Michael J Zonal diffractive multifocal intraocular lenses
MX2010004492A (es) 2007-10-29 2010-08-30 Junzhong Liang Metodos y dispositivos para tratamientos refractivos de presbiopia.
WO2009076670A1 (fr) 2007-12-13 2009-06-18 Advanced Medical Optics, Inc. Lentille ophtalmique multifocale personnalisée
US20090164008A1 (en) 2007-12-21 2009-06-25 Xin Hong Lens surface with combined diffractive, toric, and aspheric components
WO2009101202A1 (fr) 2008-02-15 2009-08-20 Amo Regional Holdings Système, verre ophtalmique et procédé pour étendre la profondeur de foyer
US8439498B2 (en) 2008-02-21 2013-05-14 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US7780290B2 (en) * 2008-02-21 2010-08-24 Abbott Medical Optics Inc. Toric intraocular lens with spatially-variant astigmatism
US7871162B2 (en) 2008-04-24 2011-01-18 Amo Groningen B.V. Diffractive multifocal lens having radially varying light distribution
US20090275929A1 (en) 2008-04-30 2009-11-05 Amo Development, Llc System and method for controlling measurement in an eye during ophthalmic procedure
US8167940B2 (en) 2008-05-06 2012-05-01 Novartis Ag Aspheric toric intraocular lens
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
US7990531B2 (en) 2008-06-05 2011-08-02 Coopervision International Holding Company, Lp Multi-imaging automated inspection methods and systems for wet ophthalmic lenses
RU2501054C2 (ru) 2008-07-15 2013-12-10 Алькон, Инк. Аккомодационная интраокулярная линза (иол) с торическим оптическим элементом и увеличенной глубиной фокуса
CN102099729B (zh) 2008-07-15 2014-06-18 爱尔康公司 使用瞳孔动力学增加假性调节的扩展焦深(edof)透镜
US20100082017A1 (en) 2008-09-26 2010-04-01 Advanced Medical Optics, Inc. Laser modification of intraocular lens
US8216307B2 (en) 2008-12-19 2012-07-10 Novartis Ag Radially segmented apodized diffractive multifocal design for ocular implant
SG164298A1 (en) 2009-02-24 2010-09-29 Visionxtreme Pte Ltd Object inspection system
US20100315589A1 (en) * 2009-06-16 2010-12-16 Valdemar Portney Toric ophthalmic lens
US8256896B2 (en) 2010-02-25 2012-09-04 Abbott Medical Optic Inc. Toric optic for ophthalmic use
JP5911812B2 (ja) 2010-03-03 2016-04-27 ブライアン・ホールデン・ビジョン・インスティチュートBrien Holden Vision Institute 角膜再造形コンタクトレンズおよび角膜再造形を用いて屈折異常を処置する方法
US8740382B1 (en) 2010-09-30 2014-06-03 Cognex Corporation System and method for automatically tracking a contact lens in a wearer's eye
US20120140166A1 (en) 2010-12-07 2012-06-07 Abbott Medical Optics Inc. Pupil dependent diffractive lens for near, intermediate, and far vision
US8668333B2 (en) * 2010-12-08 2014-03-11 Valdemar Portney Contra-aspheric toric ophthalmic lens
US8623081B2 (en) 2010-12-15 2014-01-07 Amo Groningen B.V. Apparatus, system, and method for intraocular lens power calculation using a regression formula incorporating corneal spherical aberration
CA2821968C (fr) 2010-12-17 2019-05-28 Abbott Medical Optics Inc. Lentille ophtalmique, systemes et procedes ayant au moins une structure diffractive asymetrique en rotation
EP2656139B1 (fr) * 2010-12-23 2020-01-22 Brien Holden Vision Institute Limited Lentille ophtalmologique torique ayant une profondeur de focalisation étendue
US20120249955A1 (en) 2011-03-24 2012-10-04 Sarver Edwin J Retro-illumination and eye front surface feature registration for corneal topography and ocular wavefront system
EP2506063A1 (fr) 2011-03-31 2012-10-03 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Lentille ophtalmique progressive
WO2012154597A1 (fr) 2011-05-06 2012-11-15 Croma-Pharma Gmbh Cristallin artificiel torique à tolérance
DE102011101899A1 (de) 2011-05-18 2012-11-22 Carl Zeiss Ag Linse mit einem erweiterten Fokusbereich
DE102011103224A1 (de) 2011-05-31 2012-12-06 Carl Zeiss Meditec Ag "Verfahren und Anordnung zur Auswahl einer IOL und/oder der Operationsparameter im Rahmen der IOL-Implantation am Auge"
US9028063B2 (en) 2011-08-26 2015-05-12 Johnson & Johnson Vision Care, Inc. Translating presbyopic contact lens pair
AU2013217073A1 (en) 2012-02-10 2014-09-18 Johnson And Johnson Vision Care, Inc. Method and apparatus for measuring the wavefront of an ophthalmic device
US20140135919A1 (en) 2012-11-09 2014-05-15 Staar Surgical Company Free-form progressive multifocal refractive lens for cataract and refractive surgery
EP2928358B1 (fr) 2012-12-06 2023-07-26 Johnson & Johnson Surgical Vision, Inc. Système et procédé d'évaluation de l'efficacité de lentille intraoculaire
WO2014111831A1 (fr) * 2013-01-15 2014-07-24 Dave, Jagrat Natavar Lentille de diffraction torique
US9699433B2 (en) 2013-01-24 2017-07-04 Yuchen Zhou Method and apparatus to produce re-focusable vision with detecting re-focusing event from human eye
US10028654B2 (en) 2013-03-15 2018-07-24 Amo Development, Llc System and method for eye orientation
DE102013207987A1 (de) 2013-04-30 2014-10-30 Oculus Optikgeräte GmbH Verfahren und Analysesystem zur Augenuntersuchung
DE102013216020A1 (de) 2013-08-13 2015-02-19 Carl Zeiss Meditec Ag Augenlinse mit einem torisch brechenden Oberflächenprofil und eine in radialer Richtung gestufte Oberflächenstruktur
CN105659152B (zh) 2013-10-04 2019-05-03 欧福特克有限公司 用于矫正散光的眼镜镜片
FR3013486B1 (fr) 2013-11-20 2017-07-07 Luneau Tech Operations Dispositif d'acquisition et de mesure de donnees geometriques d'au moins un motif associe a un verre et procede associe
EP3116442B1 (fr) 2014-03-10 2024-10-30 Amo Groningen B.V. Lentille torique améliorée qui améliore la vision globale là où il y a une perte locale de la fonction rétinienne
CN106714731B (zh) 2014-04-21 2019-09-27 阿莫格罗宁根私营有限公司 改进周边视觉的眼科装置、系统和方法
US9995946B2 (en) * 2014-06-13 2018-06-12 Pegavision Corporation Toric lens
US10302528B2 (en) 2015-01-28 2019-05-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Confocal laser method and device for measurement of optical properties of toric intraocular lenses
IT201600097763A1 (it) * 2016-09-29 2018-03-29 Sifi Medtech Srl Lente per astigmatismo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110166652A1 (en) 2007-08-27 2011-07-07 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US20150062529A1 (en) * 2013-08-29 2015-03-05 Abbott Medical Optics Inc. Systems and methods for providing astigmatism correction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAUMEISTER M ET AL: "Tilt and decentration of spherical and aspheric intraocular lenses: Effect on higher-order aberrations", JOURNAL CATARACT AND REFRACTIVE SURGERY, SURGERY, FAIRFAX, VA, US, vol. 35, no. 6, 1 June 2009 (2009-06-01), pages 1006 - 1012, XP026132114, ISSN: 0886-3350, [retrieved on 20090522], DOI: 10.1016/J.JCRS.2009.01.023 *
BROWN ET AL: "Revisions to tolerances in cylinder axis and in progressive addition lens power in ANSI Z80.1-2005", OPTOMETRY - JOURNAL OF THE AMERICAN OPTOMETRIC ASSOCIATION, ELSEVIER, NL, vol. 77, no. 7, 1 July 2006 (2006-07-01), pages 343 - 349, XP028082205, ISSN: 1529-1839, [retrieved on 20060701], DOI: 10.1016/J.OPTM.2006.04.108 *
CARMEN CANOVAS ET AL: "Customized eye models for determining optimized intraocular lenses power", BIOMEDICAL OPTICS EXPRESS, vol. 2, no. 6, 20 May 2011 (2011-05-20), pages 1649 - 1662, XP055388941 *
HERVEN ABELMAN ET AL: "Tolerance and Nature of Residual Refraction in Symmetric Power Space as Principal Lens Powers and Meridians Change", COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, vol. 2014, 1 January 2014 (2014-01-01), pages 1 - 8, XP055389081, ISSN: 1748-670X, DOI: 10.1155/2014/492383 *

Also Published As

Publication number Publication date
EP3432830A1 (fr) 2019-01-30
US10646329B2 (en) 2020-05-12
US20170273779A1 (en) 2017-09-28
CA3018570A1 (fr) 2017-09-28
EP3432768A1 (fr) 2019-01-30
US11291538B2 (en) 2022-04-05
US20170273781A1 (en) 2017-09-28
AU2017237095B2 (en) 2022-08-04
WO2017165700A1 (fr) 2017-09-28
AU2017238487B2 (en) 2022-03-03
US11123178B2 (en) 2021-09-21
US20200268506A1 (en) 2020-08-27
AU2017238487A1 (en) 2018-11-01
EP3932368A1 (fr) 2022-01-05
EP3432768B1 (fr) 2020-04-29
AU2017237095A1 (en) 2018-11-08
EP3432830B1 (fr) 2021-09-22
CA3018545A1 (fr) 2017-09-28

Similar Documents

Publication Publication Date Title
AU2017238487B2 (en) Power calculator for an ophthalmic apparatus with corrective meridians having extended tolerance or operation band
US9216080B2 (en) Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US11281025B2 (en) Ophthalmic apparatus with corrective meridians having extended tolerance band by modifying refractive powers in uniform meridian distribution

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3018545

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017715020

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017715020

Country of ref document: EP

Effective date: 20181023

ENP Entry into the national phase

Ref document number: 2017238487

Country of ref document: AU

Date of ref document: 20170323

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17715020

Country of ref document: EP

Kind code of ref document: A1