[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017154591A1 - アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤 - Google Patents

アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤 Download PDF

Info

Publication number
WO2017154591A1
WO2017154591A1 PCT/JP2017/006771 JP2017006771W WO2017154591A1 WO 2017154591 A1 WO2017154591 A1 WO 2017154591A1 JP 2017006771 W JP2017006771 W JP 2017006771W WO 2017154591 A1 WO2017154591 A1 WO 2017154591A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
alkyd resin
acrylic
acid
Prior art date
Application number
PCT/JP2017/006771
Other languages
English (en)
French (fr)
Inventor
晃生 海野
宇野 誠一
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59790420&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017154591(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017538448A priority Critical patent/JP6252714B1/ja
Priority to US16/081,556 priority patent/US10781316B2/en
Priority to CN201780016308.7A priority patent/CN108779220B/zh
Priority to EP17762931.8A priority patent/EP3428206B1/en
Publication of WO2017154591A1 publication Critical patent/WO2017154591A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints

Definitions

  • the present invention relates to a coating agent for an undercoat of an inorganic material thin film that has excellent adhesion to various base materials and does not change in appearance or peel off even under high temperature conditions, and an acrylic-modified alkyd resin that is a raw material thereof.
  • a thin film of inorganic material such as aluminum, tin, silicon dioxide, etc. is formed on the part substrate by vacuum deposition or sputtering.
  • the technology to be used is widely used.
  • the base material examples include BMC (bulk molding compound), PPS (polyphenylene sulfide), ALD (aluminum die cast), PBT (polybutylene terephthalate) / PET (polyethylene terephthalate) alloy resin, PC (polycarbonate), ABS (acrylonitrile- Various materials such as plastic substrates such as butadiene-styrene copolymer resins) and PC (polycarbonate) reinforced with fillers such as glass fibers, and metal substrates have been used. The use of plastic substrates is increasing.
  • the coating agent for the undercoat layer for example, a coating composition containing a copolymer of styrene, acrylic acid ester, and acrylamide, a polyacrylate compound, and an amine compound is known (Patent Document 1). reference).
  • the inorganic material thin film having the coating composition described in Patent Document 1 as an undercoat layer has excellent surface smoothness and gloss, but cracking or peeling occurs under high temperature conditions, especially when applied as a thick film. Development of a coating agent for an undercoat of an inorganic material thin film that is easy and has high heat resistance regardless of the film thickness has been demanded.
  • the problem to be solved by the present invention is to provide a coating agent for an undercoat of an inorganic material thin film that is excellent in adhesion to various base materials and does not change its appearance or peel even under high temperature conditions, and an acrylic-modified alkyd resin that is a raw material thereof. It is to provide.
  • acrylic modified alkyd resins which are copolymers of alkyd resins and polymerizable monomers, are suitable for any of various plastic substrates having different physical properties.
  • the present inventors have found that the adhesiveness is high and the heat resistance is very excellent, and the present invention has been completed.
  • the present invention is a copolymer comprising an alkyd resin (A) having an unsaturated bond in the molecular structure and a polymerizable monomer (B) having an unsaturated bond in the molecular structure as essential components.
  • An acrylic-modified alkyd resin is provided.
  • the present invention further provides a curable composition containing the acrylic-modified alkyd resin and the (meth) acrylate compound (X) as essential components.
  • the present invention further provides a cured product of the curable composition.
  • the present invention further provides a coating agent for undercoating an inorganic material thin film using the curable composition.
  • the present invention further provides a molded article having an undercoat layer made of the inorganic material thin film undercoat coating agent.
  • an inorganic material thin film undercoat coating agent that is excellent in adhesion to various substrates and does not change in appearance or peel even under high temperature conditions, and an acrylic-modified alkyd resin that is a raw material thereof.
  • the acrylic-modified alkyd resin of the present invention is a co-polymer containing an alkyd resin (A) having an unsaturated bond in the molecular structure and a polymerizable monomer (B) having an unsaturated bond in the molecular structure as essential constituent components. It is a combination.
  • the alkyd resin (A) having an unsaturated bond in the molecular structure may be a polyester resin having an unsaturated bond site in the molecular structure, and the specific structure is not particularly limited.
  • the unsaturated bond in the alkyd resin (A) is a structural site for copolymerization with a polymerizable monomer (B) having an unsaturated bond in the molecular structure described later.
  • the polyester resin obtained by using a polybasic acid (a1), a polyhydric alcohol (a2), fats and oils, or a fatty acid (a3) as an essential component is mentioned, for example.
  • polybasic acid (a1) examples include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedioic acid.
  • Aliphatic saturated dibasic acids such as pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, icosanedioic acid; maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid, glutacone Aliphatic unsaturated dibasic acids such as acids or their anhydrides; Alicyclic saturated dibasic acids such as hexahydrophthalic acid and 1,4-cyclohexanedicarboxylic acid; Alicyclic unsaturated dibasic acids such as tetrahydrophthalic acid ; Aromatic dibasic acids such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid or the like; 1,2,5-hexanetri Aliphatic saturated tribasic acids such as rubonic acid and 1,2,4
  • Aromatic tribasic acids or anhydrides thereof may be used alone or in combination of two or more. Among them, since the copolymerization with the polymerizable monomer (B) sufficiently proceeds and becomes an acrylic-modified alkyd resin that is more excellent in adhesion to various substrates, those having an unsaturated bond in the molecular structure are preferable. Fumaric acid or (anhydrous) maleic acid is particularly preferred.
  • polyhydric alcohol (a2) examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-propanediol, and 2,2-dimethyl-3-isopropyl-1.
  • trifunctional polyols such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, pentaerythritol, etc., because these are acrylic-modified alkyd resins with high adhesion to various base materials and excellent heat resistance. It is preferable to use the modified polyether polyol or lactone-modified polyol.
  • the fat or oil (a3) is, for example, linseed oil, tung oil, rice oil, safflower oil, soybean oil, tall oil, rapeseed oil, palm oil, castor oil, dehydrated castor oil, coconut oil or the like; Fatty acids; these regenerated fats and oils; higher fatty acids having 12 to 30 carbon atoms such as oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid and the like. These may be used alone or in combination of two or more.
  • oils and fats having an iodine value of 100 or more specifically, drill oil, linseed oil, dehydrated castor oil, soybean oil, safflower oil It is preferable to use at least one kind of tall oil.
  • the alkyd resin (A) may be a urethane-modified alkyd resin obtained by further reacting the polyisocyanate compound (a4) in addition to the components (a1) to (a3).
  • the polyisocyanate compound (a4) include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, m -Aliphatic diisocyanates such as tetramethylxylylene diisocyanate;
  • Cycloaliphatic diisocyanates such as cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate;
  • Aromatic diisocyanates such as 1,4-phenylene diisocyanate and tolylene diisocyanate;
  • Isocyanurate-modified polyisocyanates of the various diisocyanates of the various diisocyanates, adduct-modified polyisocyanates obtained by reacting the various diisocyanates and polyols, biuret-modified polyisocyanates of the various diisocyanates, allophanate-modified polyisocyanates of the various diisocyanates, etc. Can be mentioned. These may be used alone or in combination of two or more.
  • the alkyd resin (A) may be a phenol-modified alkyd resin obtained by further reacting the phenol resin (a5) in addition to the components (a1) to (a3).
  • the phenol resin used here include a resol type phenol resin and a novolac type phenol resin.
  • the polyisocyanate compound (a4) or the phenol resin (a5) When the polyisocyanate compound (a4) or the phenol resin (a5) is used, it becomes an acrylic-modified alkyd resin that is more excellent in adhesion to various base materials, so that the total mass of the reaction raw material of the alkyd resin (A) is increased.
  • the proportion of the total mass of the polybasic acid (a1), polyhydric alcohol (a2), and fat or fatty acid (a3) occupied is preferably 70% by mass or more, and more preferably 90% by mass or more.
  • the production method of the alkyd resin (A) is not particularly limited.
  • a method of reacting all raw materials such as isocyanate compound (a4) and phenolic resin (a5) at once, or a multi-stage reaction in which a part of the raw materials are reacted first to produce a precursor, and then the remaining raw materials are added to react. Examples thereof include a method of producing by reaction, a method of adding a part of raw materials and reacting them.
  • the alkyd resin is made from polybasic acid (a1), polyhydric alcohol (a2), fat or fatty acid (a3), and monobasic acid as necessary, all of them are collectively about 120 to 300 ° C.
  • a method of reacting at a temperature is preferred.
  • a basic acid (a1), a polyhydric alcohol (a2), an oil or fat or a fatty acid (a3) and, if necessary, a monobasic acid were reacted at a temperature of about 120 to 300 ° C.
  • the polyisocyanate compound (a4) is preferably added and reacted at a temperature of about 50 to 100 ° C.
  • the polybasic acid (a1), the polyhydric alcohol (a2), the fat or fatty acid (a3), the phenol resin (a5), and the monobasic acid as necessary are all 120 in a lump.
  • a method of reacting at a temperature of about ⁇ 300 ° C is preferred.
  • the progress of the reaction can be monitored by measuring the amount of water distilled in the dehydration reaction, the acid value or the hydroxyl value, and the remaining isocyanate group.
  • the alkyd resin (A) may be reacted in an organic solvent as necessary. Moreover, an organic solvent may be added after completion
  • the organic solvent include ketone solvents such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone, cyclic ether solvents such as tetrahydrofuran (THF) and dioxolane, ester solvents such as methyl acetate, ethyl acetate, and butyl acetate, toluene, xylene And aromatic solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether. These may be used alone or in combination of two or more.
  • the oil length of the alkyd resin (A) is preferably in the range of 10 to 80, since it is an acrylic-modified alkyd resin having high adhesion to various base materials and excellent heat resistance. A range is more preferable.
  • the oil length of an alkyd resin (A) shows the mass ratio of fats and oils or fatty acid (a3) with respect to the solid total mass of the resin raw material of an alkyd resin (A) in percentage.
  • the weight average molecular weight (Mw) of the alkyd resin (A) is in the range of 3,000 to 50,000 because it becomes an acrylic-modified alkyd resin having high adhesion to various base materials and excellent heat resistance.
  • the molecular weight distribution (Mw / Mn) is preferably in the range of 2-20.
  • the hydroxyl value is preferably in the range of 50 to 250 mgKOH / g, and the acid value is preferably in the range of 2 to 20 mgKOH / g.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) are values measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device HLC-8320GPC manufactured by Tosoh Corporation Column: Tosoh Corporation TSKgel 4000HXL, TSKgel 3000HXL, TSKgel 2000HXL, TSKgel 1000HXL Detector: RI (differential refractometer)
  • Data processing Tosoh Corporation GPC workstation EcoSEC-WS Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 ⁇ l)
  • the polymerizable monomer (B) having an unsaturated bond in the molecular structure is, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, Aliphatic (meth) acrylate monomers such as hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and nonyl (meth) acrylate;
  • Cycloaliphatic (meth) acrylate monomers such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl mono (meth) acrylate;
  • Heterocyclic (meth) acrylate monomers such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate;
  • Aromatic (meth) acrylate monomers such as phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxy (meth) acrylate, and phenoxyethyl acrylate;
  • Hydroxyl-containing (meth) acrylate monomers such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl acrylate;
  • Carboxy group-containing (meth) acrylate monomers such as (meth) acrylic acid, (acryloyloxy) acetic acid, 2-carboxyethyl acrylate, 3-carboxypropyl acrylate;
  • Silyl group-containing (meth) acrylate monomers such as 3-methacryloxypropyltrimethoxysilane
  • Aminoalkyl (meth) acrylate monomers such as N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate;
  • (Per) fluoroalkyl / perfluorovinyl ether in which the carbon number of the (per) fluoroalkyl group such as trifluoromethyl trifluorovinyl ether, pentafluoroethyl trifluorovinyl ether, heptafluoropropyl trifluorovinyl ether, etc. is in the range of 1-18;
  • Unsaturated dicarboxylic acid esters such as dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dimethyl itaconate, dibutyl itaconate, methyl ethyl fumarate, methyl butyl fumarate, methyl ethyl itaconate;
  • Aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, chlorostyrene;
  • Diene compounds such as butadiene, isoprene, piperylene, dimethylbutadiene;
  • Vinyl halides such as vinyl chloride and vinyl bromide or vinylidene halides
  • Unsaturated ketones such as methyl vinyl ketone and butyl vinyl ketone;
  • Vinyl esters such as vinyl acetate and vinyl butyrate
  • Vinyl ethers such as methyl vinyl ether and butyl vinyl ether
  • Vinyl cyanides such as acrylonitrile, methacrylonitrile, vinylidene cyanide
  • N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide;
  • fluorine-containing ⁇ -olefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, pentafluoropropylene, and hexafluoropropylene. These may be used alone or in combination of two or more.
  • the hydroxyl group-containing (meth) acrylate monomer as an essential component in terms of becoming an acrylic-modified alkyd resin having good adhesion to various substrates.
  • the ratio of the hydroxyl group-containing (meth) acrylate monomer in the polymerizable monomer (B) having an unsaturated bond in the molecular structure is preferably in the range of 5 to 50% by mass. A range is more preferable.
  • the aromatic vinyl monomer as an essential component in that it becomes an acrylic-modified alkyd resin having excellent heat resistance.
  • the ratio of the aromatic vinyl monomer in the polymerizable monomer (B) having an unsaturated bond in the molecular structure is preferably in the range of 5 to 50% by mass, and in the range of 10 to 40% by mass. It is more preferable.
  • An alkyd resin (A) having an unsaturated bond in the molecular structure and a polymerizable monomer (B) having an unsaturated bond in the molecular structure are copolymerized as essential components, and the acrylic modified alkyd resin of the present invention is used.
  • the production method is not particularly limited, and for example, it can be produced by a general production method for acrylic resins.
  • an alkyd resin (A) having an unsaturated bond in the molecular structure and a polymerizable monomer (B) having an unsaturated bond in the molecular structure are used in a known and conventional acrylic polymerization.
  • a method of reacting in an organic solvent as necessary in the presence of a catalyst can be mentioned.
  • the reaction vessel is charged with the alkyd resin (A) having an unsaturated bond in the molecular structure, and if necessary, an organic solvent is added and heated to about 70 to 150 ° C. in a nitrogen flow environment. .
  • a mixture of a polymerizable monomer (B) having an unsaturated bond in the molecular structure and an acrylic polymerization catalyst is continuously or intermittently added to cause a polymerization reaction to obtain a target acrylic-modified alkyd resin.
  • the reaction ratio between the alkyd resin (A) having an unsaturated bond in the molecular structure and the polymerizable monomer (B) having an unsaturated bond in the molecular structure has high adhesion to various substrates, and is heat resistant.
  • the mass ratio [(A) / (B)] of the both is preferably in the range of 5/95 to 95/5, and is preferably 50/50 to 90/10. A range is more preferable.
  • the weight average molecular weight (Mw) of the acrylic-modified alkyd resin of the present invention is within the range of 5,000 to 500,000 because it becomes an acrylic-modified alkyd resin having high adhesion to various substrates and excellent heat resistance.
  • the molecular weight distribution (Mw / Mn) is preferably in the range of 2-20.
  • the hydroxyl value is preferably in the range of 30 to 200 mgKOH / g, and the acid value is preferably in the range of 2 to 20 mgKOH / g.
  • the oil length of the acrylic-modified alkyd resin of the present invention is preferably in the range of 10 to 80 because it becomes an acrylic-modified alkyd resin having high adhesion to various base materials and excellent heat resistance. More preferably, it is in the range of ⁇ 60.
  • the curable composition of the present invention contains the acrylic modified alkyd resin and the (meth) acrylate compound (X).
  • the (meth) acrylate compound (X) include various (meth) acrylate monomers (X1), urethane (meth) acrylate (X2), and epoxy (meth) acrylate (X3).
  • the (meth) acrylate monomer (X1) is, for example, an aliphatic mono (meth) acrylate compound such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate; cyclohexyl (meta ) Cycloaliphatic mono (meth) acrylate compounds such as acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; Aromatic mono (meth) acrylate compounds such as (meth) acrylate and phenoxy (meth) acrylate; hydroxyl-containing mono (such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate) A)
  • Aliphatic di (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate
  • Alicyclic di (meth) acrylate compounds such as norbornane di (meth) acrylate, norbornane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate; biphenol Aromatic di (meth) acrylate compounds such as di (meth) acrylate and bisphenol di (meth) acrylate; polyoxyethylene chain, polyoxypro in the molecular structure of the various di (meth) acrylate compounds Polyoxyalkylene-modified di (meth) acrylate compounds into which polyoxyalkylene chains
  • Aliphatic tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and glycerin tri (meth) acrylate; pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) Hydroxyl-containing tri (meth) acrylate compounds such as acrylates; polyoxyalkylene chains such as polyoxyethylene chains, polyoxypropylene chains, polyoxytetramethylene chains, etc. were introduced into the molecular structures of the various tri (meth) acrylate compounds.
  • a polyoxyalkylene-modified tri (meth) acrylate compound a lactone-modified tri (meth) acrylate compound in which a (poly) lactone structure is introduced into the molecular structure of the various tri (meth) acrylate compounds;
  • Tetra- or higher functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; dipentaerythritol tetra (meth) acrylate, di A tetra- or higher functional hydroxyl group-containing poly (meth) acrylate compound such as pentaerythritol penta (meth) acrylate; a polyoxyethylene chain, a polyoxypropylene chain, a polyoxytetramethylene in the molecular structure of the various poly (meth) acrylate compounds Tetra- or higher functional polyoxyalkylene-modified poly (meth) acrylate compound into which a polyoxyalkylene chain such as a chain is introduced; (poly) lactone structure in the molecular structure of the various poly (me
  • Examples of the urethane (meth) acrylate compound (X2) include those obtained by reacting various polyisocyanate compounds, hydroxyl group-containing (meth) acrylate compounds, and various polyol compounds as necessary.
  • Examples of the polyisocyanate compound include diisocyanate compounds such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and 4,4′-diphenylmethane diisocyanate, or nurate modified products, adduct modified products, and biuret modified products. .
  • hydroxyl group-containing (meth) acrylate compound examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane diacrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and These polyoxyalkylene modified products, polylactone modified products and the like can be mentioned.
  • the polyol compound include ethylene glycol, propylene glycol, butanediol, hexanediol, polyoxyethylene glycol, polyoxypropylene glycol, glycerin, trimethylolpropane, and pentaerythritol.
  • Examples of the epoxy (meth) acrylate compound (X3) include bisphenol type epoxy resins and (meth) acrylic acid esters of epoxy group-containing compounds such as trimethylolpropane triglycidyl ether.
  • These (meth) acrylate compounds (X) may be used alone or in combination of two or more.
  • the (meth) acrylate monomer (X1) is preferable in terms of high curability and excellent heat resistance and surface smoothness when used as a coating agent for an inorganic material thin film undercoat, and a trifunctional or higher functional (meth) acrylate compound. Is more preferable.
  • the said urethane (meth) acrylate compound (X2) is preferable at the point which has high adhesiveness to various base materials, and is excellent in the heat resistance and surface smoothness when it is set as the coating material for inorganic material thin film undercoat.
  • a compound having an unsaturated bond other than the (meth) acryloyl group such as diallyl fumarate and triallyl isocyanurate may be used in combination with the (meth) acrylate compound (X).
  • the ratio of the acryl-modified alkyd resin and the (meth) acrylate compound (X) can be arbitrarily adjusted according to the desired performance. Since a cured coating film having excellent properties can be obtained, the mass ratio [acryl-modified alkyd resin / (meth) acrylate compound (X)] is preferably in the range of 5/95 to 80/20.
  • the acrylic-modified alkyd resin and the (meth) acrylate compound in a total of 100 parts by mass of the resin solid content of the curable composition (X) is preferably contained in a total of 65 parts by mass or more, more preferably 70 parts by mass or more, and particularly preferably 80 parts by mass or more.
  • the curable composition of the present invention preferably contains a photopolymerization initiator in order to favorably advance the curing reaction with active energy rays.
  • the photopolymerization initiator is not particularly limited as long as it generates radicals by the action of light, and specifically includes 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 2 -Hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylenephenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2- Hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholinopropane-1, benzoin, be
  • photopolymerization initiators examples include Irgacure-184, 149, 261, 369, 500, 651, 754, 784, 819, 907, 1116, 1664, 1700, 1800, 1850, 2959, 4043, Darocur-1173, Lucylin TPO (BASF), Kayacure-DETX, MBP, DMBI, EPA, OA (Nippon Kayaku) , BYCURE-10, 55 (manufactured by Stofa Chemical), Trigonal P1 (manufactured by Akzo), Sandray 1000 (manufactured by Sands), Deep (manufactured by Apgeon), Quantacure-PDO, ITX, EPD (Word) Blenkinsop). These may be used alone or in combination of two or more.
  • the photopolymerization initiator is 0.05 to 100 parts by mass with respect to 100 parts by mass of the curable composition of the present invention in that the sensitivity of light is kept good and crystal precipitation and deterioration of physical properties of the coating film do not occur.
  • the range is preferably 20 parts by mass, and more preferably 0.1 to 10 parts by mass.
  • an amino resin may be included as necessary to further improve the heat resistance of the resulting coating film.
  • the amino resin examples include a methylolated amino resin synthesized from at least one of melamine, urea, and benzoguanamine and formaldehyde; such a methylolated amino resin, wherein a part or all of the methylol group is obtained.
  • Alkyl etherified with a lower monohydric alcohol such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, and the like.
  • amino resins include, for example, Cymel 303 (manufactured by Nippon Cytec Industries, Inc., methylated melamine resin), Cymel 350 (manufactured by Nippon Cytec Industries, Inc., methylated melamine resin), Uban 520 (Mitsui).
  • the amino resin when used, it is preferable to contain 3 to 20 parts by mass with respect to a total of 100 parts by mass of the acrylic-modified alkyd resin and the (meth) acrylate compound (X) in the curable composition.
  • an acid compound such as a phosphate ester may be added as a curing accelerator.
  • the addition amount of the curing accelerator is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the amino resin.
  • the active curable composition of the present invention may contain a solvent in order to dilute and facilitate coating.
  • the solvent is not particularly limited, but a low surface tension solvent is preferable in order to improve wettability.
  • examples of such a solvent include alcohol solvents, ketone solvents, and the like.
  • ethyl acetate, butyl acetate, toluene, xylene and the like can be used in combination in view of the evaporation rate and cost.
  • the curable composition of the present invention may contain a surface conditioner.
  • the surface conditioner is not particularly limited, and examples thereof include a fluorine-based additive and a cellulose-based additive.
  • the fluorine-based additive has a function of preventing repelling when applied to various substrates by reducing surface tension and increasing wettability.
  • Specific examples of the fluorine-based additive include “Megafac F-177” (manufactured by DIC Corporation).
  • the cellulosic additive has an effect of imparting a film-forming property at the time of coating.
  • the cellulose additive is preferably a high molecular weight product having a number average molecular weight of 15000 or more in order to reduce fluidity. Examples of such a cellulose additive include cellulose-acetate-butyrate resin.
  • the amount of the fluorine-based additive when the amount of the fluorine-based additive is increased, the adhesion of the inorganic material thin film or the top coat is decreased, and when the amount of the cellulose-based additive is increased, the solid content of the composition of the present invention is contained. It is preferable to use a fluorine-based additive and a cellulose-based additive in combination because the amount decreases and the coating film is difficult to adhere.
  • the amount of the surface conditioner added is in the range of 0.01 to 3.0 parts by mass of the total amount of the fluorine-based additive and the cellulose-based additive with respect to 100 parts by mass of the total nonvolatile content of the curable composition. Is preferred.
  • the fluorine-based additive is used alone, it is preferably in the range of 0.01 to 1.0 part by mass, and when the cellulose-based additive is used alone, it is 0.5 to 5.0 parts by mass. It is preferable that it is the range of these.
  • the curable composition of the present invention further contains various additives such as a photosensitizer, an ultraviolet absorber, an antioxidant, a silicon-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent. May be. These addition amounts can be used as long as the effect of the additive is sufficiently exhibited and the curing is not inhibited.
  • the curable composition of the present invention can be suitably used as a coating agent for an inorganic material thin film undercoat. Specifically, it is used as an undercoat layer when an inorganic material thin film layer is formed on a substrate.
  • various conditions when using the curable composition of the present invention as a coating agent for an inorganic material thin film undercoat will be described in detail.
  • the substrate is not particularly limited, and various materials can be used. Specifically, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, PET / PBT alloy resin, unsaturated polyester resin, polyethylene resin, polypropylene resin, polyphenylene sulfide (PPS) resin, polycarbonate resin, acrylonitrile-butadiene -Various resin materials such as styrene copolymer resin (ABS), resin materials reinforced with glass fibers and fillers such as bulk molding compound (BMC), aluminum die cast (ALD) and the like.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PET / PBT alloy resin unsaturated polyester resin
  • polyethylene resin polyethylene resin
  • polypropylene resin polypropylene resin
  • PPS polyphenylene sulfide
  • PCC acrylonitrile-butadiene
  • ABS styrene copolymer resin
  • BMC bulk
  • the curable composition of the present invention is applied onto a substrate by a method such as spray coating, dip coating, spin coating, flow coating, or roller coating.
  • the coating amount is preferably in the range of 5 to 100 ⁇ m after curing, and more preferably in the range of 10 to 70 ⁇ m.
  • the whole coating film may not be a uniform thickness but may be a coating film having a partially different thickness. Generally, when the film thickness of the coating film is not constant, or when the film thickness is a relatively thick film of 30 ⁇ m or more, cracks and cracks under high temperature conditions, peeling from the substrate, etc. are likely to occur.
  • the curable composition of the present invention contains the acrylic-modified alkyd resin of the present invention, so that the film thickness of the coating film is not uniform or the film thickness is 30 ⁇ m or more.
  • it has characteristics that it exhibits sufficiently high heat resistance and is difficult to cause cracks and cracks in the coating film and peeling from the coating film.
  • preheating is performed for 1 to 25 minutes under the temperature condition of 50 to 150 ° C. for the purpose of volatilizing the organic solvent in the curable composition.
  • the curable composition is cured by irradiating active energy rays to form the undercoat layer.
  • active energy rays include ultraviolet rays and electron beams.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, or a metal halide lamp as a light source can be used, and the amount of light, the arrangement of the light source, etc. are adjusted as necessary.
  • it is preferable to irradiate to ultraviolet integrated light quantity is 50 ⁇ 5000mJ / cm 2, and more preferably integrated light quantity irradiated to a 300 ⁇ 2000mJ / cm 2.
  • the base material on which the undercoat layer of the present invention is installed is provided thereon with a thin film of an inorganic material formed by a method such as vacuum vapor deposition or sputtering, and further on it as desired.
  • a top coat layer or the like is installed.
  • the inorganic material include silicon, aluminum, iron, nickel, chromium, copper, silver, zinc, tin, indium, magnesium, zirconium, titanium, oxides thereof, and alloys thereof.
  • the film thickness of the inorganic material thin film is preferably in the range of 30 nm to 3 ⁇ m.
  • the top coat layer is formed by, for example, a clear coating film using an acrylic lacquer paint, an acrylic melamine curable paint, an aluminum chelate acrylic paint, an active energy ray curable paint, or a plasma polymerization method.
  • a SiOx layer etc. are mentioned.
  • the film thickness is preferably in the range of 3 to 40 ⁇ m.
  • the film thickness is preferably in the range of 30 to 300 nm.
  • Examples of the molded body thus obtained include an automobile reflector.
  • the curable composition of the present invention as an undercoat layer of an inorganic material thin film, a molded article having excellent metallic gloss of the inorganic material thin film, adhesion to a substrate, and heat resistance can be obtained.
  • the curable composition of this invention has the characteristics which are excellent also in storage stability.
  • Measuring device HLC-8320GPC manufactured by Tosoh Corporation Column: Tosoh Corporation TSKgel 4000HXL, TSKgel 3000HXL, TSKgel 2000HXL, TSKgel 1000HXL Detector: RI (differential refractometer)
  • Data processing Tosoh Corporation GPC workstation EcoSEC-WS Measurement conditions: Column temperature 40 ° C Solvent tetrahydrofuran flow rate 0.35 ml / min standard; monodisperse polystyrene sample; 0.2 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (100 ⁇ l)
  • Production Example 1 Production of Alkyd Resin (A-1) In a flask having a stirring bar, a temperature sensor, and a rectifying tube, 760 parts by mass of dehydrated castor oil, 150 parts by mass of pentaerythritol, 140 parts by mass of trimethylolpropane, 345 phthalic anhydride Then, 10 parts by mass of maleic anhydride and 10 parts by mass of maleic anhydride were charged, and dry nitrogen was flowed into the flask and heated to 210 to 230 ° C. with stirring to carry out a dehydration condensation reaction.
  • the reaction was stopped when the acid value reached 8.0 mgKOH / g, and after cooling to 150 ° C., butyl acetate was added dropwise to dilute to a solid content of 70% by mass to obtain an alkyd resin (A-1) solution.
  • the obtained alkyd resin (A-1) has an oil length of 60, a weight average molecular weight (Mw) of 10,500, a molecular weight distribution (Mw / Mn) of 4.5, a hydroxyl value of 141 mgKOH / g, and an acid value of 8 0.0 mg KOH / g.
  • the obtained alkyd resin (A-2) has an oil length of 50, a weight average molecular weight (Mw) of 9,500, a molecular weight distribution (Mw / Mn) of 5.6, a hydroxyl value of 180 mgKOH / g, and an acid value of 5 0.6 mg KOH / g.
  • Example 1 Production of Acrylic Modified Alkyd Resin (1)
  • a flask having a stirring bar, a temperature sensor, a condenser, and a dropping funnel was charged with 326 parts by mass of butyl acetate and 714 parts by mass (solid content) of an alkyd resin (A-1). Dry nitrogen was flowed into the flask and heated to 80-90 ° C. with stirring.
  • a dropping funnel was charged with 180 parts by weight of methyl methacrylate, 50 parts by weight of 2-hydroxyethyl methacrylate, 70 parts by weight of styrene, and 10 parts by weight of t-butylperoxy-2-ethylhexanoate. It was dripped.
  • the acrylic polymerization reaction was continued at 80 to 90 ° C. for 4 hours, and diluted with butyl acetate to a solid content of 60% by mass to obtain an acrylic-modified alkyd resin (1) solution.
  • the resulting acrylic-modified alkyd resin (1) has an oil length of 42, a weight average molecular weight (Mw) of 25,000, a molecular weight distribution (Mw / Mn) of 8.5, a hydroxyl value of 120 mgKOH / g, and an acid value of 7 0.6 mg KOH / g.
  • Example 2 Production of Acrylic Modified Alkyd Resin (2)
  • a flask having a stirring bar, a temperature sensor, a condenser and a dropping funnel was charged with 326 parts by mass of butyl acetate and 714 parts by mass (solid content) of alkyd resin (A-2). Dry nitrogen was flowed into the flask and heated to 80-90 ° C. with stirring.
  • a dropping funnel was charged with 180 parts by weight of methyl methacrylate, 50 parts by weight of 2-hydroxyethyl methacrylate, 70 parts by weight of styrene, and 10 parts by weight of t-butylperoxy-2-ethylhexanoate. It was dripped.
  • the acrylic polymerization reaction was continued at 80 to 90 ° C. for 4 hours, and diluted with butyl acetate to a solid content of 60% by mass to obtain an acrylic-modified alkyd resin (2) solution.
  • the obtained acrylic-modified alkyd resin (2) has an oil length of 35, a weight average molecular weight (Mw) of 18,000, a molecular weight distribution (Mw / Mn) of 7.4, a hydroxyl value of 145 mgKOH / g, and an acid value of It was 6.0 mgKOH / g.
  • Photopolymerization initiator (1) “Irgacure 651” manufactured by BASF ⁇ Photopolymerization initiator (2): “Irgacure 184” manufactured by BASF ⁇ Surface modifier: “MegaFuck F-477” manufactured by DIC Corporation
  • a curable composition was spray-coated on a plastic substrate with a spray gun and dried at 80 ° C. for 10 minutes.
  • An undercoat layer having a specified film thickness was formed on a plastic substrate by irradiating ultraviolet rays with an irradiation amount of 1000 mJ / cm 2 with a high-pressure mercury lamp of 80 W / cm.
  • a 100 nm aluminum vapor deposition layer was formed on the surface of the undercoat layer using a vacuum vapor deposition apparatus, and test pieces 1 to 4 were obtained.
  • the types of plastic base material of each test piece and the film thickness of the undercoat layer are as follows.
  • Test piece 1 BMC (bulk molding compound) substrate, film thickness 15-20 ⁇ m
  • Test piece 2 BMC (bulk molding compound) substrate, film thickness 45-50 ⁇ m
  • Test piece 3 ABS (acrylonitrile-butadiene-styrene copolymer resin) base material, film thickness 15-20 ⁇ m
  • Test piece 4 PC (polycarbonate) substrate, film thickness 15-20 ⁇ m

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Graft Or Block Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

各種基材への付着性に優れ、高温条件下においても外観変化や剥がれのない無機材料薄膜下塗り用コーティング剤及びその原料であるアクリル変性アルキド樹脂を提供すること。分子構造中に不飽和結合を有するアルキド樹脂(A)と、分子構造中に不飽和結合を有する重合性モノマー(B)とを必須の構成成分とする共重合体であることを特徴とするアクリル変性アルキド樹脂、硬化性組成物、無機材料薄膜下塗り用コーティング剤及び前記無機材料薄膜下塗り用コーティング剤からなる下塗り層を有する成形体。

Description

アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤
 本発明は、各種基材への付着性に優れ、高温条件下においても外観変化や剥がれのない無機材料薄膜下塗り用コーティング剤及びその原料であるアクリル変性アルキド樹脂に関する。
 自動車部品や家電製品、化粧品容器等の金属調の光沢を有する部品の製造には、部品基材上にアルミニウムやスズ、二酸化ケイ素等の無機材料の薄膜を真空蒸着やスパッタリング等の方法にて形成させる技術が広く用いられている。前記基材としては、BMC(バルクモールディングコンパウンド)、PPS(ポリフェニレンサルファイド)、ALD(アルミダイキャスト)、PBT(ポリブチレンテレフタレート)/PET(ポリエチレンテレフタレート)アロイ樹脂、PC(ポリカーボネート)、ABS(アクリロニトリル-ブタジエン-スチレン共重合樹脂)、ガラス繊維などのフィラーで強化したPC(ポリカーボネート)等のプラスチック基材や金属基材等、様々な素材が用いられているが、近年は、特に軽量化の観点からプラスチック基材の利用が増えてきている。
 プラスチック基材上に無機材料薄膜を形成する場合、プラスチック基材上に直接無機材料薄膜を形成する方法では無機材料薄膜表面の平滑性が十分ではなく、所望の金属調光沢が発現しにくい。そこでこれを改善するために、プラスチック基材上にまず下塗り層を形成し、その上に無機材料薄膜を形成する方法により、薄膜表面の平滑性を高め、高い金属調光沢を実現する方法が知られている。
 前記下塗り層用のコーティング剤としては、例えば、スチレン、アクリル酸エステル、及びアクリルアミドとの共重合体と、ポリアクリレート化合物と、アミン化合物とを含有する塗料組成物が知られている(特許文献1参照)。特許文献1に記載された塗料組成物を下塗り層とする無機材料薄膜は表面の平滑性や光沢に優れる特徴を有するが、特に厚膜で塗った場合に高温条件下での割れや剥がれが生じ易く、膜厚に寄らず高い耐熱性を有する無機材料薄膜下塗り用コーティング剤の開発が求められていた。
特開2011-21152号公報
 従って、本発明が解決しようとする課題は、各種基材への付着性に優れ、高温条件下においても外観変化や剥がれのない無機材料薄膜下塗り用コーティング剤及びその原料であるアクリル変性アルキド樹脂を提供することにある。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、アルキド樹脂と、重合性モノマーとの共重合体であるアクリル変性アルキド樹脂は、物性の異なる様々なプラスチック基材の何れに対しても付着性が高く、また、耐熱性にも非常に優れることを見出し、本発明を完成するに至った。
 即ち、本発明は分子構造中に不飽和結合を有するアルキド樹脂(A)と、分子構造中に不飽和結合を有する重合性モノマー(B)とを必須の構成成分とする共重合体であることを特徴とするアクリル変性アルキド樹脂を提供するものである。
 本発明は更に、前記アクリル変性アルキド樹脂と、(メタ)アクリレート化合物(X)とを必須の成分として含有する硬化性組成物を提供するものである。
 本発明は更に、前記硬化性組成物の硬化物を提供するものである。
 本発明は更に、前記硬化性組成物を用いてなる無機材料薄膜下塗り用コーティング剤を提供するものである。
 本発明は更に、前記無機材料薄膜下塗り用コーティング剤からなる下塗り層を有する成形体を提供するものである。
 本発明によれば、各種基材への付着性に優れ、高温条件下においても外観変化や剥がれのない無機材料薄膜下塗り用コーティング剤及びその原料であるアクリル変性アルキド樹脂を提供することができる。
 本発明のアクリル変性アルキド樹脂は、分子構造中に不飽和結合を有するアルキド樹脂(A)と、分子構造中に不飽和結合を有する重合性モノマー(B)とを必須の構成成分とする共重合体であることを特徴とする。
 前記分子構造中に不飽和結合を有するアルキド樹脂(A)は、分子構造中に不飽和結合部位を有するポリエステル樹脂であればよく、具体構造は特に限定されない。前記アルキド樹脂(A)中の不飽和結合は、後述する分子構造中に不飽和結合を有する重合性モノマー(B)と共重合させるための構造部位である。前記アルキド樹脂(A)の一例としては、例えば、多塩基酸(a1)、多価アルコール(a2)、及び油脂又は脂肪酸(a3)を必須の成分として得られるポリエステル樹脂が挙げられる。
 前記多塩基酸(a1)は、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカンニ酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、イコサン二酸等の脂肪族飽和二塩基酸;マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸等の脂肪族不飽和二塩基酸又はその無水物;ヘキサヒドロフタル酸、1,4-シクロヘキサンジカルボン酸等の脂環族飽和二塩基酸;テトラヒドロフタル酸等の脂環族不飽和二塩基酸;フタル酸、無水フタル酸、イソフタル酸、テレフタル酸等の芳香族二塩基酸又はその無水物;1,2,5-ヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸等の脂肪族飽和三塩基酸;トリメリット酸、無水トリメリット酸、1,2,5-ベンゼントリカルボン酸、2,5,7-ナフタレントリカルボン酸等の芳香族三塩基酸又はその無水物などが挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。中でも、重合性モノマー(B)との共重合が十分に進行し、各種基材への付着性に一層優れるアクリル変性アルキド樹脂となることから、分子構造中に不飽和結合を有するものが好ましく、フマル酸又は(無水)マレイン酸が特に好ましい。
 また、得られるアルキド樹脂(A)の分子量の調整等のため、前記多塩基酸(a1)と併せて、メタン酸、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、p-tert-ブチル安息香酸、等の一塩基酸を用いても良い。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 前記多価アルコール(a2)は、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2,2-トリメチル-1,3-プロパンジオール、2,2-ジメチル-3-イソプロピル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、3-メチル1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-ビス(ヒドロキシメチル)シクロヘサン、2,2,4-トリメチル-1,3-ペンタンジオール等のジオール;トリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ペンタエリスリトール等の3官能以上のポリオール;前記ジオール又は3官能以上のポリオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルポリオール;前記ジオール又は3官能以上のポリオールと、ε-カプロラクトン等の種々のラクトン化合物との重縮合反応によって得られるラクトン変性ポリオールなどが挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。中でも、各種基材への付着性が高く、耐熱性にも優れるアクリル変性アルキド樹脂となることから、トリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ペンタエリスリトール等の3官能以上のポリオール、これらの変性ポリエーテルポリオール、ラクトン変性ポリオールを用いることが好ましい。
 前記油脂又は脂肪酸(a3)は、例えば、亜麻仁油、桐油、米油、サフラワー油、大豆油、トール油、菜種油、パーム油、ひまし油、脱水ひまし油、やし油脂等の油脂;これら油脂由来の脂肪酸;これらの再生油脂;オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸等、炭素原子数12~30の高級脂肪酸等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、得られるアルキド樹脂(A)の分子構造中に不飽和結合を導入できることから、ヨウ素価が100以上の油脂、具体的には、キリ油、亜麻仁油、脱水ひまし油、大豆油、サフラワー油、トール油の何れか一種類以上を用いることが好ましい。
 前記アルキド樹脂(A)は、前記(a1)~(a3)成分に加え、更にポリイソシアネート化合物(a4)を反応させたウレタン変性アルキド樹脂であっても良い。前記ポリイソシアネート化合物(a4)は、例えば、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート等の脂肪族ジイソシアネート;
 シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4′-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等の脂環式ジイソシアネート;
 1,5-ナフチレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、4,4′-ジフェニルジメチルメタンジイソシアネート、4,4′-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート等の芳香族ジイソシアネート;
 前記各種のジイソシアネートのイソシアヌレート変性ポリイソシアネート、前記各種のジイソシアネートとポリオールとを反応させて得られるアダクト変性ポリイソシアネート、前記各種のジイソシアネートのビウレット変性ポリイソシアネート、前記各種のジイソシアネートのアロファネート変性ポリイソシアネート等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。
 前記アルキド樹脂(A)は、前記(a1)~(a3)成分に加え、更にフェノール樹脂(a5)を反応させたフェノール変性アルキド樹脂であっても良い。ここで用いるフェノール樹脂は、レゾール型フェノール樹脂やノボラック型フェノール樹脂が挙げられる。
 前記ポリイソシアネート化合物(a4)や前記フェノール樹脂(a5)を用いる場合、各種基材への付着性に一層優れるアクリル変性アルキド樹脂となることから、前記アルキド樹脂(A)の反応原料の総質量に占める前記多塩基酸(a1)、多価アルコール(a2)、及び油脂又は脂肪酸(a3)の合計質量の割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 前記アルキド樹脂(A)の製造方法は特に限定されるものではなく、例えば、多塩基酸(a1)、多価アルコール(a2)、油脂又は脂肪酸(a3)及び必要に応じて一塩基酸やポリイソシアネート化合物(a4)、フェノール樹脂(a5)等、すべての原料を一括で反応させる方法や、原料の一部を先に反応させて前駆体を製造した後、残りの原料を加えて反応させる多段反応で製造する方法、原料の一部を分割添加して反応させる方法等が挙げられる。アルキド樹脂が多塩基酸(a1)、多価アルコール(a2)、油脂又は脂肪酸(a3)及び必要に応じて一塩基酸を原料とする場合には、これらを全て一括で120~300℃程度の温度で反応させる方法が好ましい。ウレタン変性アルキド樹脂を製造する場合には、塩基酸(a1)、多価アルコール(a2)、油脂又は脂肪酸(a3)及び必要に応じて一塩基酸を120~300℃程度の温度で反応させた後、ポリイソシアネート化合物(a4)を加えて50~100℃程度の温度で反応させることが好ましい。フェノール変性アルキド樹脂を製造する場合には、多塩基酸(a1)、多価アルコール(a2)、油脂又は脂肪酸(a3)、フェノール樹脂(a5)及び必要に応じて一塩基酸を全て一括で120~300℃程度の温度で反応させる方法が好ましい。反応の進行度合いは、脱水反応で留出する水の量や、酸価あるいは水酸基価、イソシアネート基残量を測定することでモニターすることができる。また、必要に応じてエステル化触媒やウレタン化触媒等を適宜用いても良い。
 前記アルキド樹脂(A)は、必要に応じて有機溶剤中で反応させても良い。また、反応終了後に有機溶剤を添加し、粘度や不揮発分量等を調整しても良い。該有機溶剤は、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン溶剤、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル溶剤、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤、トルエン、キシレン等の芳香族溶剤、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤が挙げられる。これらは単独で使用しても二種類以上を併用しても良い。
 前記アルキド樹脂(A)の油長は、各種基材への付着性が高く、耐熱性にも優れるアクリル変性アルキド樹脂となることから、10~80の範囲であることが好ましく、30~70の範囲であることがより好ましい。なお、アルキド樹脂(A)の油長とは、アルキド樹脂(A)の樹脂原料の固形分総質量に対する油脂又は脂肪酸(a3)の質量比を百分率で示したものである。
 前記アルキド樹脂(A)の重量平均分子量(Mw)は、各種基材への付着性が高く、耐熱性にも優れるアクリル変性アルキド樹脂となることから、3,000~50,000の範囲であることが好ましく、分子量分布(Mw/Mn)は2~20の範囲であることが好ましい。また、その水酸基価は50~250mgKOH/gの範囲であることが好ましく、酸価は2~20mgKOH/gの範囲であることが好ましい。
 なお、本発明において重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、下記条件のゲルパーミュレーションクロマトグラフィー(GPC)により測定される値である。
 測定装置 ;東ソー株式会社製 HLC-8320GPC
 カラム  ;東ソー株式会社製 TSKgel 4000HXL、TSKgel 3000HXL、TSKgel 2000HXL、TSKgel 1000HXL
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 GPCワークステーション EcoSEC-WS
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 前記分子構造中に不飽和結合を有する重合性モノマー(B)は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート等の脂肪族(メタ)アクリレートモノマー;
 シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型(メタ)アクリレートモノマー;
 グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型(メタ)アクリレートモノマー;
 フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチルアクリレート等の芳香族(メタ)アクリレートモノマー;
 ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチルアクリレート等の水酸基含有(メタ)アクリレートモノマー;
(メタ)アクリル酸、(アクリロイルオキシ)酢酸、アクリル酸2-カルボキシエチル、アクリル酸3-カルボキシプロピル等のカルボキシ基含有(メタ)アクリレートモノマー;
 3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレートモノマー;
 N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート等のアミノアルキル(メタ)アクリレートモノマー;
 2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,2H,2H-ヘプタデカフルオロデシル(メタ)アクリレート、パーフルオロエチルオキシエチル(メタ)アクリレート等の(パー)フルオロアルキル(メタ)アクリレートモノマー;
 トリフルオロメチルトリフルオロビニルエーテル、ペンタフルオロエチルトリフルオロビニルエーテル、ヘプタフルオロプロピルトリフルオロビニルエーテル等の(パー)フルオロアルキル基の炭素数が1~18の範囲である(パー)フルオロアルキル・パーフルオロビニルエーテル;
 フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジブチル、フマル酸メチルエチル、フマル酸メチルブチル、イタコン酸メチルエチル等の不飽和ジカルボン酸エステル;
 スチレン、α-メチルスチレン、クロロスチレン等の芳香族ビニルモノマー;
 ブタジエン、イソプレン、ピペリレン、ジメチルブタジエン等のジエン系化合物;
 塩化ビニル、臭化ビニル等のハロゲン化ビニル又はハロゲン化ビニリデン;
 メチルビニルケトン、ブチルビニルケトン等の不飽和ケトン;
 酢酸ビニル、酪酸ビニル等のビニルエステル;
 メチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル;
 アクリロニトリル、メタクリロニトリル、シアン化ビニリデン等のシアン化ビニル;
 アクリルアミド又はそのアルキド置換アミド;
 N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-置換マレイミド;
 フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、ブロモトリフルオロエチレン、ペンタフルオロプロピレン、ヘキサフルオロプロピレンの等のフッ素含有α-オレフィン等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 これらの中でも、各種基材への付着性が良好なアクリル変性アルキド樹脂となる点では、前記水酸基含有(メタ)アクリレートモノマーを必須の成分として用いることが好ましい。この時、分子構造中に不飽和結合を有する重合性モノマー(B)中の前記水酸基含有(メタ)アクリレートモノマーの割合は5~50質量%の範囲であることが好ましく、5~30質量%の範囲であることがより好ましい。
 また、耐熱性に優れるアクリル変性アルキド樹脂となる点では、前記芳香族ビニルモノマーを必須の成分として用いることが好ましい。この時、分子構造中に不飽和結合を有する重合性モノマー(B)中の前記芳香族ビニルモノマーの割合は5~50質量%の範囲であることが好ましく、10~40質量%の範囲であることがより好ましい。
 前記分子構造中に不飽和結合を有するアルキド樹脂(A)と、前記分子構造中に不飽和結合を有する重合性モノマー(B)とを必須の成分として共重合させ、本発明アクリル変性アルキド樹脂を製造する方法は特に限定されず、例えば、アクリル樹脂の一般的な製造方法等により製造することができる。製造方法の一例としては、例えば、前記分子構造中に不飽和結合を有するアルキド樹脂(A)と、前記分子構造中に不飽和結合を有する重合性モノマー(B)とを、公知慣用のアクリル重合触媒の存在下、必要に応じて有機溶媒中にて反応させる方法が挙げられる。
 具体的には、まず、反応容器に前記分子構造中に不飽和結合を有するアルキド樹脂(A)を仕込み、必要に応じて有機溶媒を加え、窒素フロー環境下で70~150℃程度に加熱する。そこに、前記分子構造中に不飽和結合を有する重合性モノマー(B)とアクリル重合触媒との混合物を連続又は断続的に加えて重合反応させ、目的のアクリル変性アルキド樹脂を得る。
 前記分子構造中に不飽和結合を有するアルキド樹脂(A)と、前記分子構造中に不飽和結合を有する重合性モノマー(B)との反応割合は、各種基材への付着性が高く、耐熱性にも優れるアクリル変性アルキド樹脂となることから、両者の質量比[(A)/(B)]が5/95~95/5の範囲であることが好ましく、50/50~90/10の範囲であることがより好ましい。
 本発明のアクリル変性アルキド樹脂の重量平均分子量(Mw)は、各種基材への付着性が高く、耐熱性にも優れるアクリル変性アルキド樹脂となることから、5,000~500,000の範囲であることが好ましく、分子量分布(Mw/Mn)は2~20の範囲であることが好ましい。また、その水酸基価は30~200mgKOH/gの範囲であることが好ましく、酸価は2~20mgKOH/gの範囲であることが好ましい。
 また、本発明のアクリル変性アルキド樹脂の油長は、各種基材への付着性が高く、耐熱性にも優れるアクリル変性アルキド樹脂となることから、10~80の範囲であることが好ましく、30~60の範囲であることがより好ましい。
 本発明の硬化性組成物は、前記アクリル変性アルキド樹脂と、(メタ)アクリレート化合物(X)とを含有する。(メタ)アクリレート化合物(X)は、例えば、各種の(メタ)アクリレートモノマー(X1)や、ウレタン(メタ)アクリレート(X2)、エポキシ(メタ)アクリレート(X3)等が挙げられる。
 前記(メタ)アクリレートモノマー(X1)は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、等の水酸基含有モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入したポリオキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;
 エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;
 トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート等の水酸基含有トリ(メタ)アクリレート化合物;前記各種のトリ(メタ)アクリレート化合物の分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入したポリオキシアルキレン変性トリ(メタ)アクリレート化合物;前記各種のトリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;
 ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の4官能以上の水酸基含有ポリ(メタ)アクリレート化合物;前記各種のポリ(メタ)アクリレート化合物の分子構造中にポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した4官能以上のポリオキシアルキレン変性ポリ(メタ)アクリレート化合物;前記各種のポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物等が挙げられる。
 前記ウレタン(メタ)アクリレート化合物(X2)は、例えば、各種のポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、及び必要に応じて各種のポリオール化合物を反応させて得られるものが挙げられる。前記ポリイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート等のジイソシアネート化合物或いはそのヌレート変性体、アダクト変性体、ビウレット変性体が挙げられる。前記水酸基含有(メタ)アクリレート化合物は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びこれらのポリオキシアルキレン変性体、ポリラクトン変性体等が挙げられる。前記ポリオール化合物は、例えば、エチレングリコール、プロプレングリコール、ブタンジオール、ヘキサンジオール、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
 前記エポキシ(メタ)アクリレート化合物(X3)は、ビスフェノール型エポキシ樹脂や、トリメチロールプロパントリグリシジルエーテル等のエポキシ基含有化合物の(メタ)アクリル酸エステルが挙げられる。
 これら(メタ)アクリレート化合物(X)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、硬化性が高く、無機材料薄膜下塗り用コーティング剤とした時の耐熱性や表面平滑性に優れる点では、前記(メタ)アクリレートモノマー(X1)が好ましく、3官能以上の(メタ)アクリレート化合物がより好ましい。また、各種基材への付着性が高く、無機材料薄膜下塗り用コーティング剤とした時の耐熱性や表面平滑性に優れる点では、前記ウレタン(メタ)アクリレート化合物(X2)が好ましい。
 本発明では更に、前記(メタ)アクリレート化合物(X)と併せて、ジアリルフマレート、トリアリルイソシアヌレート等、(メタ)アクリロイル基以外の不飽和結合を有する化合物を併用しても良い。
 本発明の硬化性組成物において、前記アクリル変性アルキド樹脂と(メタ)アクリレート化合物(X)との比率は、所望の性能に応じて任意に調整できるが、各種プラスチック基材への密着性や耐熱性に優れる硬化塗膜が得られることから、両者の質量比[アクリル変性アルキド樹脂/(メタ)アクリレート化合物(X)]が5/95~80/20の範囲であることが好ましい。
 また、各種プラスチック基材への密着性や耐熱性に優れる硬化塗膜が得られることから、硬化性組成物の樹脂固形分の合計100質量部中、前記アクリル変性アルキド樹脂と(メタ)アクリレート化合物(X)とを合計で65質量部以上含有することが好ましく、70質量部以上含有することがより好ましく、80質量部以上含有することが特に好ましい。
 本発明の硬化性組成物は、活性エネルギー線での硬化反応を良好に進行させるため、光重合開始剤を含有させることが好ましい。前記光重合開始剤としては、光の作用によりラジカルを発生するものであれば特に限定されず、具体的には、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピレンフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、チオキサンソン、2-クロルチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、カンファーキノン、ジベンゾスベロン、2-エチルアンスラキノン、4’,4”-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、α-アシロキシムエステル、アシルホスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10-フェナンスレンキノン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、ジメチルアミノ安息香酸、ジメチルアミノ安息香酸アルキルエステル等が挙げられ、中でもベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾイルイソプロピルエーテル、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジメチルアミノ安息香酸、ジメチルアミノ安息香酸アルキルエステルが好ましく、特にはジメチルアミノ安息香酸、ジメチルアミノ安息香酸アルキルエステルが好ましく用いられる。
 前記光重合開始剤の市販品としては、例えば、イルガキュア-184、同149、同261、同369、同500、同651、同754、同784、同819、同907、同1116、同1664、同1700、同1800、同1850、同2959、同4043、ダロキュア-1173、ルシリンTPO(BASF社製)、カヤキュア-DETX、同MBP、同DMBI、同EPA、同OA(日本化薬株式会社製)、バイキュア-10、同55(ストウファ・ケミカル社製)、トリゴナルP1(アクゾ社製)、サンドレイ1000(サンドズ社製)、ディープ(アプジョン社製)、クオンタキュア-PDO、同ITX、同EPD(ワードブレンキンソップ社製)等が挙げられる。これらはそれぞれ単独で使用しても良いし、2種類以上を併用しても良い。
 前記光重合開始剤は、光の感度を良好に保ち、かつ、結晶の析出や塗膜物性の劣化等を生じない点で、本発明の硬化性組成物100質量部に対し、0.05~20質量部の範囲であることが好ましく、0.1~10質量部の範囲であることがより好ましい。
 本発明においては、上記の各成分に加えて、必要に応じて、アミノ樹脂を含有させて、得られる塗膜の耐熱性を更に向上させることができる。
 上記アミノ樹脂としては、例えば、メラミン、尿素及びベンゾグアナミンのうち少なくとも1種とホルムアルデヒド類とから合成されるメチロール化アミノ樹脂;このようなメチロール化アミノ樹脂であって、メチロール基の一部又は全部を、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等の低級一価アルコールによって、アルキルエーテル化したもの等を挙げることができる。
 このようなアミノ樹脂の具体例としては、例えば、サイメル303(日本サイテックインダストリーズ株式会社製、メチル化メラミン樹指)、サイメル350(日本サイテックインダストリーズ株式会社製、メチル化メラミン樹脂)、ユーバン520(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン20-SE-60(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン2021(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン220(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン22R(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン2028(三井化学株式会社社製、n-ブテル化変性メラミン樹脂)、ユーバン165(三井化学株式会社社製、イソブチル化変性メラミン樹脂)、ユーバン114(三井化学株式会社社製、イソブチル化変性メラミン樹脂)、ユーバン62(三井化学株式会社社製、イソブチル化変性メラミン樹脂)、ユーバン60R(三井化学株式会社社製、イソブチル化変性メラミン樹脂)等を挙げることができる。
 前記アミノ樹脂を用いる場合、硬化性組成物中のアクリル変性アルキド樹脂及び(メタ)アクリレート化合物(X)の合計100質量部に対して、3~20質量部含有させることが好ましい。
 また、前記アミノ樹脂を用いる場合には、リン酸エステル等の酸化合物を硬化促進剤として添加しても良い。硬化促進剤の添加量は、アミノ樹脂100質量部に対し0.1~10質量部の範囲であることが好ましい。
 本発明の活硬化性組成物は、希釈して塗装しやすくするために溶剤を含有しても良い。前記溶剤としては特に限定されないが、濡れ性を高めるためには低表面張力溶剤が好ましく、このようなものとしては、例えば、アルコール系溶剤、ケトン系溶剤等を挙げることができ、更に、これらに加えて、蒸発速度やコスト等に鑑み、酢酸エチル、酢酸ブチル、トルエン、キシレン等を併用することもできる。
 本発明の硬化性組成物は、表面調整剤を含有しても良い。前記表面調整剤としては特に限定されず、例えば、フッ素系添加剤、セルロース系添加剤等を挙げることができる。前記フッ素系添加剤は、表面張力を低下させて濡れ性を高めることにより、各種基材に塗布するときのハジキを防止する作用を有する。前記フッ素系添加剤の具体例としては、例えば、「メガファックF-177」(DIC株式会社製)等を挙げることができる。
 前記セルロース系添加剤は、塗布時の造膜性を付与する作用を有する。前記セルロース系添加剤としては、流動性を低下させるために数平均分子量15000以上の高分子量品が好ましく、このようなものとしては、例えば、セルロースーアセテート-ブチレート樹脂等を挙げることができる。
 本発明においては、フッ素系添加剤の量が多くなると、無機材料薄膜やトップコートの密着性の低下等をきたし、上記セルロース系添加剤の量が多くなると、本発明の組成物の固形分含有量が低下し、塗膜が付着しにくくなるので、フッ素系添加剤及びセルロース系添加剤を併用することが好ましい。
 前記表面調整剤の添加量は、硬化性組成物の不揮発分の合計100質量部に対して、フッ素系添加剤及びセルロース系添加剤の合計量が、0.01~3.0質量部の範囲が好ましい。フッ素系添加剤を単独で用いる場合には、0.01~1.0質量部の範囲であることが好ましく、セルロース系添加剤を単独で用いる場合には、0.5~5.0質量部の範囲であることが好ましい。
 本発明の硬化性組成物は、更に光増感剤紫外線吸収剤、酸化防止剤、シリコン系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤等の各種添加剤を含有しても良い。これらの添加量は、添加剤の効果を十分発揮し、また硬化を阻害しない範囲で用いることが出来る。
 本発明の硬化性組成物は、無機材料薄膜下塗り用コーティング剤として好適に用いることができる。具体的には、基体に無機材料薄膜層を形成する際の下塗り層として用いる。以下、本発明の硬化性組成物を無機材料薄膜下塗り用コーティング剤として用いる際の各種条件等について詳述する。
 本発明の硬化性組成物は様々な素材に対し高い密着性を有することから、前記基材は特に限定されず、各種の材料を用いることができる。具体的には、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、PET/PBTアロイ樹脂、不飽和ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS)等の各種樹脂材料、バルクモールディングコンパウンド(BMC)等ガラス繊維や充填剤等で強化された樹脂材料、アルミダイキャスト(ALD)等が挙げられる。
 前記下塗り層を形成するに際し、本発明の硬化性組成物は、スプレーコート、ディップコート、スピンコート、フローコート、ローラーコート等の方法により基材上に塗布される。その際の塗布量は、硬化後の膜厚が5~100μmの範囲となることが好ましく、10~70μmの範囲となることがより好ましい。また、塗膜全体が均一の厚さではなく、部分的に膜厚の異なる塗膜となっていても良い。一般に、塗膜の膜厚が一定ではない場合や、膜厚が30μm以上の比較的厚膜の場合には、高温条件下での割れやクラック、基材からの剥離が等生じ易い。これに対し本発明の硬化性組成物は、前記本発明のアクリル変性アルキド樹脂を含有することにより、塗膜の膜厚が均一ではない場合や、膜厚が30μm以上の厚膜の場合であっても、十分に高い耐熱性を発現し、塗膜の割れやクラック、塗膜からの剥離が生じ難い特徴を有する。
 上記方法で基材上に硬化性組成物を塗布した後、硬化性組成物中の有機溶剤を揮発させる目的で、50~150℃の範囲である温度条件下、1~25分間プレヒートする。
 上記プレヒート工程終了後、活性エネルギー線を照射して硬化性組成物を硬化させ、前記下塗り層を形成する。本発明で使用する活性エネルギー線は、例えば、紫外線や電子線が挙げられる。紫外線により硬化させる場合、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用でき、必要に応じて光量、光源の配置などを調整する。本発明においては、紫外線を積算光量が50~5000mJ/cmとなるように照射するのが好ましく、積算光量が300~2000mJ/cmとなるように照射するのがより好ましい。
 以上のようにして本発明の下塗り層が設置された基材は、その上に、真空蒸着やスパッタリング等の方法にて形成された無機材料の薄膜が設置され、所望に応じて更にその上にトップコート層等が設置される。前記無機材料は、例えば、ケイ素、アルミニウム、鉄、ニッケル、クロム、銅、銀、亜鉛、スズ、インジウム、マグネシウム、ジルコニウム、チタン、これらの酸化物、およびこれらの合金などが挙げられる。無機材料薄膜の膜厚は30nm~3μmの範囲であることが好ましい。前記トップコート層は、例えば、アクリル系ラッカー塗料、アクリルメラミン硬化系塗料、アルミキレート型アクリル系塗料、活性エネルギー線硬化型塗料等を用いてなるクリア塗膜や、プラズマ重合法にて形成されるSiOx層等が挙げられる。トップコート層がクリア塗膜である場合、その膜厚は3~40μmの範囲であることが好ましい。また、トップコート層がSiOx層である場合、その膜厚は30~300nmの範囲であることが好ましい。
 このようにして得られる成形体としては、自動車反射鏡等が挙げられる。本発明の硬化性組成物を無機材料薄膜の下塗り層として用いることで、無機材料薄膜の金属調光沢、基材への密着性、及び耐熱性に優れる成形体が得られる。また、本発明の硬化性組成物は貯蔵安定性にも優れる特徴を有する。
 以下に本発明を具体的な合成例、実施例を挙げてより詳細に説明する。以下、「部」「%」は、特に記載のない限り、質量基準である。
[重量平均分子量(Mw)、分子量分布(Mw/Mn)の測定方法]
 重量平均分子量(Mw)、分子量分布(Mw/Mn)は下記条件のゲルパーミュレーションクロマトグラフィー(GPC)により測定した。
測定装置 ;東ソー株式会社製 HLC-8320GPC
カラム  ;東ソー株式会社製 TSKgel 4000HXL、TSKgel 3000HXL、TSKgel 2000HXL、TSKgel 1000HXL
検出器  ;RI(示差屈折計)
データ処理;東ソー株式会社製 GPCワークステーション EcoSEC-WS
測定条件 ;カラム温度 40℃
      溶媒    テトラヒドロフラン
      流速    0.35ml/分
標準   ;単分散ポリスチレン
試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 製造例1 アルキド樹脂(A-1)の製造
攪拌棒、温度センサー、精留管を有するフラスコに、脱水ヒマシ油760質量部、ペンタエリスリトール150質量部、トリメチロールプロパン140質量部、無水フタル酸345質量部、無水マレイン酸10質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら210~230℃に加熱し、脱水縮合反応を行った。酸価が8.0mgKOH/gとなったところで反応を停止し、150℃まで冷却後、酢酸ブチルを滴下して固形分70質量%に希釈して、アルキド樹脂(A-1)溶液を得た。得られたアルキド樹脂(A-1)の油長は60、重量平均分子量(Mw)は10,500、分子量分布(Mw/Mn)は4.5、水酸基価は141mgKOH/g、酸価は8.0mgKOH/gであった。
 製造例2 アルキド樹脂(A-2)の製造
 攪拌棒、温度センサー、精留管を有するフラスコに、亜麻仁油580質量部、ペンタエリスリトール120質量部、グリセリン180質量部、無水フタル酸480質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら210~230℃に加熱し、脱水縮合反応を行った。酸価が5.0mgKOH/gとなったところで反応を停止し、150℃まで冷却後、酢酸ブチルを滴下して固形分70質量%に希釈して、アルキド樹脂(A-2)溶液を得た。得られたアルキド樹脂(A-2)の油長は50、重量平均分子量(Mw)は9,500、分子量分布(Mw/Mn)は5.6、水酸基価は180mgKOH/g、酸価は5.6mgKOH/gであった。
 実施例1 アクリル変性アルキド樹脂(1)の製造
攪拌棒、温度センサー、コンデンサ、滴下ロートを有するフラスコに、酢酸ブチル326質量部、アルキド樹脂(A-1)714質量部(固形分)を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら80~90℃に加熱した。滴下ロートにメタクリル酸メチル180質量部、2-ヒドロキシエチルメタクリレート50質量部、スチレン70質量部、及びt-ブチルパーオキシ-2-エチルヘキサノエート10質量部を仕込み、フラスコ中に4時間かけて滴下した。更に80~90℃で4時間アクリル重合反応を継続し、酢酸ブチルで固形分60質量%に希釈して、アクリル変性アルキド樹脂(1)溶液を得た。得られたアクリル変性アルキド樹脂(1)の油長は42、重量平均分子量(Mw)は25,000、分子量分布(Mw/Mn)は8.5、水酸基価は120mgKOH/g、酸価は7.6mgKOH/gであった。
 実施例2 アクリル変性アルキド樹脂(2)の製造
 攪拌棒、温度センサー、コンデンサ、滴下ロートを有するフラスコに、酢酸ブチル326質量部、アルキド樹脂(A-2)714質量部(固形分)を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら80~90℃に加熱した。滴下ロートにメタクリル酸メチル180質量部、2-ヒドロキシエチルメタクリレート50質量部、スチレン70質量部、及びt-ブチルパーオキシ-2-エチルヘキサノエート10質量部を仕込み、フラスコ中に4時間かけて滴下した。更に80~90℃で4時間アクリル重合反応を継続し、酢酸ブチルで固形分60質量%に希釈して、アクリル変性アルキド樹脂(2)溶液を得た。得られたアクリル変性アルキド樹脂(2)のの油長は35、重量平均分子量(Mw)は18,000、分子量分布(Mw/Mn)は7.4、水酸基価は145mgKOH/g、酸価は6.0mgKOH/gであった。
 比較製造例1 アクリル樹脂(1’)の製造
 攪拌棒、温度センサー、コンデンサを有するフラスコに、酢酸ブチルを410質量部仕込み、80~90℃に加熱した。滴下ロートに、スチレン160質量部、メチルメタアクリレート20質量部、n-ブチルアクリレート100質量部、4-ヒドロキシブチルアクリレート40質量部、N-(n-ブトキシメチル)アクリルアミド80質量部、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート10質量部を仕込み、4時間かけて滴下した。更に80~90℃で4時間アクリル重合反応を継続し、必要に応じて酢酸ブチルを加えることにより固形分50%のアクリル樹脂(1’)溶液を得た。
実施例3~7及び比較例1
 表1に示す割合で各成分を配合して硬化性組成物を調製し、これについて下記の要領で各種評価を行った。結果を表1に示す。
 本願実施例で用いた各化合物の詳細は以下の通りである。
◆(メタ)アクリレート化合物(X-1):DIC株式会社製「ユニディック V-4000BA」
◆(メタ)アクリレート化合物(X-2):DIC株式会社製「ユニディック V-4001EA」
◆(メタ)アクリレート化合物(X-3):DIC株式会社製「ユニディック V-4025」
◆(メタ)アクリレート化合物(X-4):ジペンタエリスリトールペンタアクリレートとヘキサアクリレートとの混合物(東亞合成株式会社製「アロニックスM-402」)
◆(メタ)アクリレート化合物(X-5):ペンタエリスリトールトリアクリレートとテトラアクリレートとの混合物(東亞合成株式会社製、「アロニックスM-305」)
◆(メタ)アクリレート化合物(X-6):トリメチロールプロパントリアクリレート(TMPTA)(東亞合成株式会社製「アロニックスM-309」)
◆(メタ)アクリレート化合物(X-7):トリプロピレングリコールジアクリレート(東亞合成株式会社製「アロニックスM-220」)
◆(メタ)アクリレート化合物(X-8):トリシクロデカンジメタノールジアクリレート(新中村化学株式会社製「NKエステルA-DCP」)
◆アミノ樹脂:日本サイテックインダストリーズ株式会社製「サイメル303」
◆光重合開始剤(1):BASF社製「イルガキュア651」
◆光重合開始剤(2):BASF社製「イルガキュア184」
◆表面改質剤:DIC株式会社製「メガファックF-477」
◆試験片の製造
 プラスチック基材上に硬化性組成物をスプレーガンでスプレー塗装し、80℃で10分間乾燥させた。80W/cmの高圧水銀灯で照射量1000mJ/cmの紫外線を照射し、プラスチック基材上に指定の膜厚で下塗り層を形成した。次に、下塗り層の表面に真空蒸着装置を用いて100nmのアルミニウム蒸着層を形成し、試験片1~4を得た。
各試験片のプラスチック基材の種類、及び下塗り層の膜厚は以下の通り。
試験片1:BMC(バルクモールディングコンパウンド)基材、膜厚15~20μm
試験片2:BMC(バルクモールディングコンパウンド)基材、膜厚45~50μm
試験片3:ABS(アクリロニトリル-ブタジエン-スチレン共重合樹脂)基材、膜厚15~20μm
試験片4:PC(ポリカーボネート)基材、膜厚15~20μm
◆外観の初期評価
 試験片の表面平滑性を目視評価した。評価は以下の基準で行った。
「◎」:平滑であり、虹や白化、クラック、ブツ等が無い。
「×」:虹や白化、クラック、ブツ等が確認される。
◆付着性の初期評価
 碁盤目剥離試験により、付着性を評価した。試験片に2mm間隔で10×10の碁盤目状にカッターナイフで切れ目を入れ、2mmの碁盤目を100個作り、その上にセロハンテープを貼りつけて、急速に剥がす操作を行い、剥離せずに残存した碁盤目の数を数えた。評価は以下の基準で行った。
「4」:碁盤目の残存数が100個。
「3」:碁盤目の残存数が80~99個。
「2」:碁盤目の残存数が50~79個。
「1」:碁盤目の残存数が49個以下。
◆耐熱試験後の評価
 試験片を下記温度設定の熱風乾燥機に96時間放置した後の外観及び付着性を初期評価同様にして評価した。
BMC(バルクモールディングコンパウンド)基材(試験片1、2)・・・200℃
ABS(アクリロニトリル-ブタジエン-スチレン共重合樹脂)基材(試験片3)・・・80℃
PC(ポリカーボネート)基材(試験片4)・・・120℃
◆貯蔵安定性の評価
 硬化性組成物を40℃で3ヶ月間保存し、貯蔵安定性を目視評価した。評価は以下の基準で行った。
「◎」:外観及び粘度変化なし。
「×」:粘度変化がある、又はゲル化物が生成している。
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1. 分子構造中に不飽和結合を有するアルキド樹脂(A)と、分子構造中に不飽和結合を有する重合性モノマー(B)とを必須の構成成分とする共重合体であることを特徴とするアクリル変性アルキド樹脂。
  2. 前記分子構造中に不飽和結合を有するアルキド樹脂(A)と、前記子構造中に不飽和結合を有する重合性モノマー(B)との質量比[(A)/(B)]が5/95~95/5の範囲である請求項1記載のアクリル変性アルキド樹脂。
  3. 前記分子構造中に不飽和結合を有する重合性モノマー(B)が、水酸基含有(メタ)アクリレートモノマーを必須の成分とする請求項1記載のアクリル変性アルキド樹脂。
  4. 前記分子構造中に不飽和結合を有する重合性モノマー(B)が、芳香族ビニルモノマーを必須の成分とする請求項1記載のアクリル変性アルキド樹脂。
  5. 請求項1~4の何れか一つに記載のアクリル変性アルキド樹脂と、(メタ)アクリレート化合物(X)とを必須の成分として含有する硬化性組成物。
  6.  請求項5記載の硬化性組成物の硬化物。
  7.  請求項5記載の硬化性組成物を用いてなる無機材料薄膜下塗り用コーティング剤。
  8.  請求項6記載の無機材料薄膜下塗り用コーティング剤からなる下塗り層を有する成形体。
PCT/JP2017/006771 2016-03-10 2017-02-23 アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤 WO2017154591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017538448A JP6252714B1 (ja) 2016-03-10 2017-02-23 アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤
US16/081,556 US10781316B2 (en) 2016-03-10 2017-02-23 Acrylic-modified alkyd resin and coating material for priming for thin inorganic film
CN201780016308.7A CN108779220B (zh) 2016-03-10 2017-02-23 丙烯酸类改性醇酸树脂及无机材料薄膜底涂用涂布剂
EP17762931.8A EP3428206B1 (en) 2016-03-10 2017-02-23 Curable composition comprising an acrylic-modified alkyd resin and coating material for priming for thin inorganic film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046963 2016-03-10
JP2016046963 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154591A1 true WO2017154591A1 (ja) 2017-09-14

Family

ID=59790420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006771 WO2017154591A1 (ja) 2016-03-10 2017-02-23 アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤

Country Status (6)

Country Link
US (1) US10781316B2 (ja)
EP (1) EP3428206B1 (ja)
JP (1) JP6252714B1 (ja)
CN (1) CN108779220B (ja)
TW (1) TWI781092B (ja)
WO (1) WO2017154591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190048082A (ko) * 2017-10-30 2019-05-09 주식회사 케이씨씨 아크릴 변성 알키드 수지 및 이를 포함하는 도료 조성물

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008094A (zh) * 2019-06-19 2022-02-01 Dic株式会社 聚碳酸酯改性丙烯酸类树脂、涂料以及用该涂料涂装后的塑料成形品
CN114341217A (zh) * 2019-10-07 2022-04-12 Dic株式会社 水性树脂组合物、水性涂料和涂装有该水性涂料的塑料成形品
CN111116879B (zh) * 2019-12-09 2021-03-09 广东盈骅新材料科技有限公司 不饱和聚酯树脂及其制备方法和应用
WO2021192896A1 (ja) * 2020-03-27 2021-09-30 東洋紡株式会社 離型フィルム及びその製造方法
CN114203017B (zh) * 2021-12-13 2024-04-05 山东泰宝包装制品有限公司 一种隐藏式镂空镀铝图案全息防伪膜及其制作方法
CN114702873A (zh) * 2022-03-07 2022-07-05 无锡市玉邦树脂涂料有限公司 一种常温自干型单组分水性丙烯酸涂料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462294A (en) * 1977-10-28 1979-05-19 Dainippon Ink & Chem Inc Preparation of modified copolymer
JPS6123652A (ja) * 1984-07-11 1986-02-01 Dainippon Ink & Chem Inc 塗料用樹脂の製造法
JPS6220566A (ja) * 1985-07-19 1987-01-29 Mitsubishi Petrochem Co Ltd 被覆用樹脂組成物
JP2003026710A (ja) * 2001-07-13 2003-01-29 Nippon Synthetic Chem Ind Co Ltd:The 紫外線硬化型樹脂組成物、塗膜形成方法及びその用途
JP2003049095A (ja) * 2001-08-06 2003-02-21 Fujikura Kasei Co Ltd Frp用金属蒸着用紫外線硬化型下塗り液状組成物、塗装方法および自動車反射鏡
JP2011021152A (ja) * 2009-07-17 2011-02-03 Fujikura Kasei Co Ltd 活性エネルギー線硬化型塗料組成物、および耐熱性光輝部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116903A (en) * 1977-03-02 1978-09-26 P.R.A. Laboratories Incorporated Alkyd-supported emulsion interpolymers and methods for preparation
CA1208835A (en) * 1982-10-04 1986-07-29 Teruaki Kuwajima Aqueous coating composition
JPS61287918A (ja) * 1985-06-17 1986-12-18 Mitsubishi Yuka Fine Chem Co Ltd 硬化性樹脂組成物
DE10358488A1 (de) * 2003-12-13 2005-07-14 Basf Coatings Ag Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung zur Herstellung transparenter, korrosionshemmender Beschichtungen
US9512330B2 (en) * 2013-07-02 2016-12-06 Dic Corporation Actinic-radiation-curable resin composition, primer containing the same, and shaped article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462294A (en) * 1977-10-28 1979-05-19 Dainippon Ink & Chem Inc Preparation of modified copolymer
JPS6123652A (ja) * 1984-07-11 1986-02-01 Dainippon Ink & Chem Inc 塗料用樹脂の製造法
JPS6220566A (ja) * 1985-07-19 1987-01-29 Mitsubishi Petrochem Co Ltd 被覆用樹脂組成物
JP2003026710A (ja) * 2001-07-13 2003-01-29 Nippon Synthetic Chem Ind Co Ltd:The 紫外線硬化型樹脂組成物、塗膜形成方法及びその用途
JP2003049095A (ja) * 2001-08-06 2003-02-21 Fujikura Kasei Co Ltd Frp用金属蒸着用紫外線硬化型下塗り液状組成物、塗装方法および自動車反射鏡
JP2011021152A (ja) * 2009-07-17 2011-02-03 Fujikura Kasei Co Ltd 活性エネルギー線硬化型塗料組成物、および耐熱性光輝部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428206A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190048082A (ko) * 2017-10-30 2019-05-09 주식회사 케이씨씨 아크릴 변성 알키드 수지 및 이를 포함하는 도료 조성물
KR102479765B1 (ko) * 2017-10-30 2022-12-22 주식회사 케이씨씨 아크릴 변성 알키드 수지 및 이를 포함하는 도료 조성물

Also Published As

Publication number Publication date
EP3428206A4 (en) 2019-10-23
US10781316B2 (en) 2020-09-22
US20190055411A1 (en) 2019-02-21
TW201800425A (zh) 2018-01-01
EP3428206A1 (en) 2019-01-16
CN108779220B (zh) 2021-03-30
EP3428206B1 (en) 2021-06-23
JPWO2017154591A1 (ja) 2018-03-22
TWI781092B (zh) 2022-10-21
CN108779220A (zh) 2018-11-09
JP6252714B1 (ja) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6252714B1 (ja) アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤
JP6624310B2 (ja) (メタ)アクリロイル基含有アクリル変性アルキド樹脂及び無機材料薄膜用アンダーコート剤
EP3486262B1 (en) Active-energy-ray-curable resin composition and metal-thin-film undercoat agent
JP4863464B2 (ja) 虹彩色を発現する積層物の製造方法
WO2015001949A1 (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP6075614B2 (ja) 被覆材組成物、及び積層物の製造方法
JP2009149735A (ja) 被覆材組成物及びその硬化物が被覆された成型品
JP6624309B2 (ja) 活性エネルギー線硬化型水性樹脂組成物及び無機材料薄膜用アンダーコート剤
JP6617912B2 (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP2023116624A (ja) 活性エネルギー線硬化型被覆材組成物及び積層体
JP5005924B2 (ja) 錫膜のアンダーコート層成形用組成物、錫膜のアンダーコート層及び錫膜被覆樹脂成型品
JP6589435B2 (ja) 金属化処理用アンダーコート層形成用被覆材組成物及び樹脂成型物
JP2017039792A (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP2008179693A (ja) 活性エネルギー線硬化型被覆材組成物及びこの組成物により被覆された成型物
JP5930261B2 (ja) 金属表面用被覆材組成物及び積層成型品
JP5394266B2 (ja) 金属蒸着用アンダーコート層形成用被覆材組成物及び樹脂成型物
JP5433195B2 (ja) 被覆材組成物および成型品
JP2011246515A (ja) 活性エネルギー線硬化型被覆材組成物及び成形物
JP2011168753A (ja) 活性エネルギー線硬化性塗料及び成型品
JP2012072320A (ja) 硬化型塗料用組成物及びそれを用いたプラスチック成型体の製造方法
JP2022144736A (ja) 硬化性組成物、硬化物、積層体
WO2019102626A1 (ja) (メタ)アクリル変性ポリエステル樹脂、硬化性樹脂組成物、塗料及び塗装鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017762931

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017762931

Country of ref document: EP

Effective date: 20181010

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762931

Country of ref document: EP

Kind code of ref document: A1