WO2017039344A1 - Method for producing microalgae of which autophagy is inhibited and amounts of starch and lipids are increased - Google Patents
Method for producing microalgae of which autophagy is inhibited and amounts of starch and lipids are increased Download PDFInfo
- Publication number
- WO2017039344A1 WO2017039344A1 PCT/KR2016/009774 KR2016009774W WO2017039344A1 WO 2017039344 A1 WO2017039344 A1 WO 2017039344A1 KR 2016009774 W KR2016009774 W KR 2016009774W WO 2017039344 A1 WO2017039344 A1 WO 2017039344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microalgae
- autophagy
- nitrogen
- mutant
- increased
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a method for producing microalgae in which autophagy is suppressed and lipid and starch content is increased, and more specifically, the present invention includes the step of inhibiting autophagy while culturing the microalgae in autophagy induction conditions.
- Method for producing microalgae with increased lipid and starch content, microalgae prepared by the above method with increased lipid and starch content in cells, biomass containing the microalgae, and biodiesel production using the biomass It relates to a method and a biodiesel produced by the method.
- Biodiesel is produced by conversion into methyl ester or ethyl ester form by the transesterification process of fatty acid contained in biomass, and has a flash point of 150 °C, which is less than diesel. It does not stick well and is classified as a non-flammable liquid because it is more stable than gasoline (45 ° C.), which is highly volatile at low temperatures, and is more stable because it catches fire at high temperatures.
- biodiesel is known to have low emissions of carcinogens and mutations when burned and non-toxic energy with other emissions significantly lower.
- Such biodiesel is known to be biologically produced using microalgae.
- Microalgae have 25 times higher efficiency of solar energy than plants, so they are used for feed or fertilizer.
- Spirulina sp. Chlorella sp.
- Dunaliella sp. Nostoc sp. Is also used as a health food.
- the microalgae have excellent solar energy utilization efficiency, the microalgae having excellent lipid content can be used as biomass for the production of biodiesel.
- Such microalgae with excellent lipid content are known as Botryococcus sp. And Schiochytrium sp.
- the microalgae do not have high lipid content in normal living conditions, but nutrient supply is stopped.
- the microalgae may be used as a biomass for the production of biodiesel by using such characteristics, but in order to increase the lipid content of the microalgae, the first step of culturing and growing the microalgae, and the expanded microalgae In order to stop the supply of nutrients and incubate for a certain period of time to increase intracellular lipid content, the second step requires excessive time, and thus has not yet been used for industrial production of biodiesel. Research into the development of microalgae with excellent lipid content for the production of biodiesel has been actively conducted.
- U.S. Patent Publication No. 2012-0329099 discloses a method for producing microalgae overexpressing isoamylase to produce starch and lipids in high yield
- Korean Patent Publication No. 2014-0010898 discloses Disclosed is a method of culturing microalgae under conditions deficient in sulfur while regulating, to accumulate starch from the microalgae.
- the microalgae in which isoamylase is overexpressed since the produced starch and lipids not only accumulate in the cell but are also discharged to the outside, the content of starch and lipids accumulated in the cell is not high, and sulfur is controlled while controlling the concentration of carbon dioxide.
- the microalgae are cultured under the deficient condition, there is a risk that the microalgae are killed.
- the present inventors have diligently researched to develop microalgae having a high lipid content, and when the microalgae were cultivated under a condition in which autophagy was induced, the inhibition of autophagy was not only increased, but also the lipid content in the cells was increased. Since the content is also increased, it has been confirmed that the microalgae with increased lipid and starch content can be used as biomass for the production of biodiesel, thus completing the present invention.
- One object of the present invention is to provide a method for producing microalgae with increased lipid and starch content in cells.
- Another object of the present invention is to provide microalgae with increased lipid and starch content in the cells produced by the above method.
- Still another object of the present invention is to provide a biomass including microalgae with increased lipid and starch content in cells.
- Still another object of the present invention is to provide a method for preparing biodiesel using the biomass.
- Another object of the present invention is to provide a biodiesel produced by the above method.
- microalgae with increased lipid and starch content in cells By using the method of the present invention, it is possible to prepare microalgae with increased lipid and starch content in cells, and the prepared microalgae with increased lipid and starch content in cells can be used as biomass for the production of biodiesel. As such, it may be widely used for economic production of biodiesel.
- FIG. 1 Chlamydomonas genus microalgae autophagy from reinfardtii CC124) and autophagy inhibitor treatment, micrograph showing the results of comparing the production of fat globules
- WT represents the microalgae of the control group induced autophagy
- WT + R The microalgae treated with rapamycin after induction of predation are shown
- WT + B represents microalgae treated with bafilomycin after induction of autophagy
- WT + W represents microalgae treated with watmanin after induction of autophagy.
- Figure 1b shows rapamycin (R) or watts in wild type Chlamydomonas microalgae (WT) cultured in conditions that do not induce autophagy ((+) 48N) or conditions that induce autophagy ((-) 48N). It is a graph showing the result of comparing the content (top) of fat globules according to the treatment of manin (W) and the level (bottom) of the green fluorescence generated therefrom.
- Figure 2 shows the results of comparing the production ability of fat globules when the wild type strain of Chlamydomonas microalgae and the mutant strains in which the expression of the VPS34 gene was suppressed were cultured in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N).
- N nitrogen supply medium
- -N nitrogen deficiency medium
- Figure 3a shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions at, the graph showing the results of counting the number of cells.
- WT wild-type microalgae
- Mock transformed microalgae
- T411 mutant microalgae
- Figure 3b is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then compared the size of the cells A graph showing the results.
- WT wild type microalgae
- T411 mutant microalgae
- Figure 3c is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), then the aspect ratio of the cells (cell aspect It is a graph which shows the result of comparing ratio.
- Figure 3d is a photograph showing the color of the culture after incubating the wild type microalgae (WT) or mutant microalgae (T411) under the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) to be.
- WT wild type microalgae
- T411 mutant microalgae
- Figure 3e is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then per unit dry weight of cells It is a graph which shows the result of comparing the ratio of triglyceride (TAG).
- Figure 3f is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then the content of intracellular starch It is a graph showing the result of the comparison.
- Figure 3g is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), the content of total protein in cells It is a graph showing the result of comparing.
- Figure 3h shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions, the graph shows the result of comparing the activity of PI3P per unit weight of protein.
- 4A is an electron micrograph showing the results of analyzing the intracellular structure of the wild-type microalgae (WT) in nitrogen-deficient medium ((-) N) under the same conditions, and then performing TEM analysis, where A is self-extinguishing Represents an autophagosome analogous structure, L represents fat globules, S represents starch, and V represents vacuoles.
- Figure 4b is a microscopic microalgae (T411) cultured in nitrogen deficient medium ((-) N) under the same conditions, and then carried out TEM analysis to analyze the intracellular structure is an electron micrograph showing.
- Figure 5a is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen supply medium.
- Figure 5b is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in a nitrogen feed medium containing rapamycin.
- Figure 5c is a diagram showing the results of analysis of transcripts with increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen deficient medium.
- Figure 5d is a diagram showing the results of analysis of transcripts with increased expression more than two-fold in wild-type microalgae cultured in nitrogen deficient medium, nitrogen feed medium and rapamycin-containing nitrogen feed medium.
- Figure 5e is a diagram showing the results of analysis of transcripts with increased expression more than two-fold in mutant microalgae cultured in nitrogen deficient medium, nitrogen supply medium and rapamycin-containing nitrogen supply medium.
- Figure 6a is a heat map analysis of the expression level of the genes involved in the autophagy regulation process according to the autophagy induction in the wild-type strain and VPS34 gene expression inhibitory strain.
- Figure 6b is a heat map analysis of the expression level of the gene involved in the synthesis of triglycerides (TAG) according to autophagy induction in wild-type strains and VPS34 gene expression inhibitory strain.
- TAG triglycerides
- Autophagy is the process of recycling part of intracellular organelles when cell survival is threatened under certain conditions, where cellular and intracellular organs degenerate into a double-membrane-bound structure called an autophagosome.
- the degenerated autodigestion vesicles are fused with lysosomes to form autolysosomes, and the degenerated material by the autolysosomes is hydrolyzed and reused.
- the autophagy process plays an important role in regulating cellular functions such as hunger survival, protection from infectious bacteria and regulation of neurodecay, which is an evolutionarily conserved process that appears in all eukaryotic cells from yeast to mammals. . Since the autolysosomes generated during the autophagy process contain lipids of various components, it was expected that the intracellular lipid content could be increased when the materials contained in the autolysosomes were not reused.
- the microalgae of the genus Chlamydomonas ( Chlamydomonas) reinfardtii CC124) was cultured in a nitrogen-deficient medium to induce autophagy, and treatment of autophagy inhibitors to the microalgae induced by autophagy promoted the formation of vacuoles, and the production of fat globules in the vacuoles was also remarkable. It was confirmed to increase. Since the autophagy inhibitors are known to exhibit their effects by inhibiting PI3K-related signaling in cells, a mutant microalgae in which the PI3K-related signaling is suppressed is produced, and the produced mutant microalgae are depleted in nitrogen supply medium or nitrogen deficient.
- the microalgae cultivated by the above method may be used as biomass for the production of biodiesel.
- it can be used for economic production of biodiesel.
- the present invention provides a method for producing microalgae with increased lipid and starch content, comprising the step of inhibiting autophagy while culturing the microalgae in autophagy induction conditions. .
- microalgae of the present invention also referred to as “phytoplankton” refers to a unicellular prokaryote that survives in an aquatic environment, reproduces with spores, and photosynthesizes with photosynthetic pigments.
- the microalgae may be any kind of microalgae capable of accumulating lipids in cells, especially as long as the microalgae can accumulate lipids in cells when they are cultured under autophagy induction conditions.
- the microalgae include, but are not limited to, Chlorella sp. Microalgae, Scenedesmus sp. Microalgae, Parachlorella sp. Microalgae , which can accumulate lipids in cells.
- Microalgae Ettlia sp.
- Microalgae Chlamydomonas sp.
- the microalgae of Chlamydomonas can accumulate lipids in the cells when cultured under autophagy-inducing conditions and inhibits autophagy.
- Chlamydomonas Lane Party Chlamydomonas reinfardtii
- Chlamydomonas rain party CC124 Chlamydomonas reinfardtii CC124
- autophagy of the present invention, also referred to as “autophagy”, refers to a cellular function of disassembling and recycling the material or organelles that are not needed in the cell by enclosing the double membrane into the lysosome.
- the autophagy degenerates the cytoplasm and intracellular organs into a double-membrane-bound structure called an autophagosome, and the degenerated autodigestion fuses with a lysosome to form an autolysosome, The material degraded by the autolysosomes is hydrolyzed and reused.
- autophagy induction condition means a condition that induces the generation of autophagy processes from microalgae. Autophagy processes occur in conditions where cell survival is difficult, such as a lack of carbon sources, a lack of nitrogen sources, a lack of trace elements, a rapid change in external environmental pH, and a change in external environmental salt concentration.
- the autophagy induction conditions may be interpreted as a culture condition that induces the autophagy from microalgae, but does not induce the death of the microalgae, specifically induce the autophagy process Among the possible conditions, it may be a deficiency condition of a nitrogen source that does not induce the death of the microalgae.
- autophagy suppression of the present invention means inhibiting or delaying the progress of the autophagy process of the microalgae even under the conditions for inducing autophagy.
- the method of inhibiting autophagy may be a method of inhibiting the intracellular signaling system involved in the microalgae autophagy process, for example, PI3K involved in the microalgae autophagy process. It may be a method of inhibiting a related signaling system, and as another example, the microalgae may be treated with an autophagy inhibitor that inhibits PI3K related signaling involved in the microalgae autophagy process, or It may be a method using a mutant microalgae in which the expression of the PI3K catalytic subunit type 3 protein involved in PI3K-related signaling involved is suppressed.
- Ryunae party may be a method using a mutant strain of microalgae
- the siRNA a process for the PI3K catalytic subunit claim VPS34 gene encoding a type III protein which is involved in the PI3K related signaling involved in the phagocytic process.
- mutant microalgae treated with siRNA for the VPS34 gene having the following nucleotide sequence was used.
- culture refers to a series of actions for growing microorganisms under appropriately artificially controlled environmental conditions.
- the culturing may be interpreted to mean a method of culturing microalgae, the culturing method may be performed using a method well known in the art. Specifically, the culturing may be performed continuously in a batch process or in a fed batch or repeated fed batch process.
- Carbon sources that can be used are mainly CO 2 and carbonate, and mixed sugars of glucose and xylose may be used as the carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch, cellulose, and soybean oil Oils such as sunflower oil, castor oil, coconut oil and the like, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid.
- Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination.
- the medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts.
- Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
- potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
- sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used.
- essential growth substances such as amino acids and vitamins can be used.
- microalgae as a culture medium for the NaNO 3, K 2 HPO 4, MgSO 4 .7H 2 O, CaCl 2 .2H 2 O, citric acid, Na 2 EDTA, ammonium ferric citrate, green (Ammonium ferric citrate green) , Na 2 CO 3, and trace metals solution (H 3 BO 3, MnCl 2 .4H 2 O, ZnSO 4 .7H 2 O, Na 2 MoO 4 .2H 2 O, CuSO 4 .5H 2 O, Co (NO 3) BG11 medium containing 2 .6H 2 O) can be used.
- H 3 BO 3 MnCl 2 .4H 2 O, ZnSO 4 .7H 2 O, Na 2 MoO 4 .2H 2 O, CuSO 4 .5H 2 O, Co (NO 3) BG11 medium containing 2 .6H 2 O
- antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation.
- Gas eg, air
- the temperature of the culture can usually be maintained at 20 ° C to 35 ° C, preferably 25 ° C to 30 ° C.
- the nature of the microalgae to perform photosynthesis is preferable to provide light during the cultivation, the amount of light provided and the time provided can be appropriately adjusted by those skilled in the art as needed, luminous conditions of about 50 to 100 ⁇ mole / m2 / s Can provide light.
- Chlamydomonas reinfardtii CC124 was cultured in a nitrogen deficient medium to induce autophagy, while treating watmanin (wortammanin) known as an autophagy inhibitor, Production of mutant microalgae with increased production and production of fat globules (FIG. 1), and inhibition of PI3K-related signaling, an intracellular signaling system affected by the autophagy inhibitors, and nitrogen production of the mutant microalgae
- watmanin wortammanin
- FIG. 1 watmanin
- FIG. 1 Production of mutant microalgae with increased production and production of fat globules
- PI3K-related signaling an intracellular signaling system affected by the autophagy inhibitors
- Fig. 2 the strain strain fine Characterization of algae has shown that not only produces high levels of triglycerides (TAG) (FIG. 3E), but also high starch content. With the increased (Fig. 3f) it was confirmed.
- the present invention is prepared using the above method, to provide a microalgae with increased lipid and starch content in the cells compared to the strains that do not inhibit autophagy.
- the lipid and starch content in the cells is increased as compared to the wild-type strain which is not inhibited by autophagy.
- the lipid content is increased in the cell is not particularly limited, but may be a phospholipid as an example, in another example, phosphatidic acid (PA), phosphatidyl-ethanolamine (PE), PS (phosphatidylserine) belonging to phospholipids And, as another example, it may be MG (monoacylglycerol), a decomposition product of triglyceride (TAG), EA (eicosadienoic acid), which is a stress-induced unsaturated fatty acid.
- PA phosphatidic acid
- PE phosphatidyl-ethanolamine
- PS phosphatidylserine
- MG monoacylglycerol
- TAG triglyceride
- EA eicosadienoic acid
- the phospholipids are microalgae prepared by the method of the present invention. Can be used as the main marker to distinguish it from microalgae prepared by conventional methods.
- the present invention provides a biomass comprising microalgae with increased lipid and starch content in cells and a method for producing biodiesel using the biomass and the method Provides biodiesel.
- biomass refers to a variety of algae and plant resources produced by photosynthesis, such as trees, grasses, branches of crops, leaves, roots, fruits and the like.
- the biomass may be interpreted as microalgae, cultures containing the microalgae, culture fractions, and the like, which are cultured in a medium under stress conditions and have increased lipid and starch contents in cells. It can be used as a raw material of biodiesel.
- the method for producing a biodiesel of the present invention (a) obtaining a lipid component from the biomass; And (b) adding methanol to the obtained lipids and reacting under an alkali catalyst to obtain FAME (fatty acid methyl), which is biodiesel.
- FAME fatty acid methyl
- in order to increase the yield of FAME may further comprise the step of removing the reaction by-product glycerol.
- the microalgae contained in the biomass may be dried and obtained by physically crushing the microalgae, or lipid components may be extracted from the microalgae by adding an organic solvent to the biomass.
- a non-polar solvent may be used as the solvent, and preferably hexane, dimethyl sulfoxide (DMSO), dimethyl carnonate (DMC), or the like may be used.
- PA phosphatidic acid
- PE phosphatidyl-ethanolamine
- PS phosphatidylserine
- MG monoacylglycerol
- EA eicosadienoic acid
- bio-diesel of the present invention broadly refers to the whole of pollution-free fuel made from vegetable oils, and narrowly to fatty acid methyl esters prepared using vegetable oils such as soybean oil as raw materials. ).
- the biodiesel may be prepared by various methods, and may be generally prepared by treating methanol with an alkaline catalyst in triglycerides.
- Example 1 microalgae District ball Affecting generation Self-feeding Effect of Inhibitors
- Chlamydomonas of the genus Chlamydomonas reinfardtii CC124 was inoculated in TAP medium and cultured, and the medium was replaced with nitrogen-deficient medium to induce autophagy.
- lipid droplet, LD was stained with green fluorescence, treated with chlorophyll ⁇ , and the vacuole was stained with red fluorescence, and then observed by confocal microscopy (FIG. 1A). At this time, the microalgae cultured without the autophagy inhibitor was used as a control.
- FIG. 1a Chlamydomonas genus microalgae reinfardtii CC124) induces autophagy and treated with autophagy inhibitors, a micrograph showing the results of comparing the production of fat globules, WT represents the microalgae of the control group induced autophagy, WT + W The microalgae treated with watmanine after induction of predation is shown, and the DIC shows a result obtained by the differential interference contrast (DIC) method. As shown in Figure 1a, compared to the microalgae of the control group induced autophagy, when treated with autophagy inhibitors, it was confirmed that not only the formation of vacuoles but also the production of fat cells in the vacuoles was significantly increased.
- DIC differential interference contrast
- rapamycin an inhibitor of autophagosome production
- rapamycin is induced in the microalgae of Chlamydomonas under conditions that do not induce autophagy by culturing in normal medium or inducing autophagy by culturing in a nitrogen-deficient medium.
- wartmannin wartmannin
- the same method was carried out to compare the content of fat globules and the level of green fluorescence resulting therefrom (Fig. 1b).
- Figure 1b shows rapamycin (R) or watts in wild type Chlamydomonas microalgae (WT) cultured in conditions that do not induce autophagy ((+) 48N) or conditions that induce autophagy ((-) 48N). It is a graph showing the result of comparing the content (top) of fat globules according to the treatment of manin (W) and the level (bottom) of the green fluorescence generated therefrom. As shown in FIG. 1B, watmanin induced intracellular fat accumulation even when autophagy was not induced, but rapamycin did not induce intracellular fat accumulation.
- mutant microalgae in which expression of the PI3K catalytic subunit type 3 protein involved in PI3K-related signaling was suppressed were prepared and analyzed.
- Example 2-1 VPS34 Production of Mutant Microalgae with Inhibited Gene Expression
- Chlamydomonas of the genus Chlamydomonas mutant microalgae incorporating an expression vector comprising a polynucleotide encoding siRNA for the VPS34 gene in order to inhibit expression of the VPS34 gene encoding PI3K catalytic subunit type 3 protein involved in PI3K related signaling in reinfardtii CC124) T411 strain was prepared.
- the wild-type microalgae (W) and the mutant microalgae (T411) were incubated in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N), respectively, and then fluorescently stained by the method of Example 1, and the results were obtained. Confirmed by confocal microscopy (FIG. 2).
- Figure 2 shows the results of comparing the production ability of fat globules when the wild type strain of Chlamydomonas microalgae and the mutant strains in which the expression of the VPS34 gene was suppressed were cultured in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N).
- N nitrogen supply medium
- -N nitrogen deficiency medium
- Example 2-2 VPS34 Cellular Characterization of Mutant Microalgae with Inhibited Gene Expression
- Example 2-1 In order to analyze the characteristics of the mutant microalgae prepared in Example 2-1, a transformed microalgae (Mock) into which an empty expression vector containing no polynucleotide encoding siRNA for the wild type microalgae or VPS34 gene was introduced. And various cell characteristics (cell number, cell size, cell aspect ratio, color of culture, ratio of TAG per unit dry weight of cell, starch content, total protein content and activity of PI3P per unit protein) were compared (Fig. 3a to Fig. 3). 3h).
- Figure 3a shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions at, the graph showing the results of counting the number of cells.
- WT wild-type microalgae
- Mock transformed microalgae
- T411 mutant microalgae
- Figure 3b is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then compared the size of the cells A graph showing the results. As shown in Figure 3b, the mutant microalgae was confirmed to increase the size of the cell compared to wild-type microalgae.
- Figure 3c is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), then the aspect ratio of the cells (cell aspect It is a graph which shows the result of comparing ratio. As shown in Figure 3c, the mutant strain microalgae showed a lower aspect ratio of the cell than the wild-type microalgae, it was confirmed that the morphology is closer to the round shape.
- Figure 3d is a photograph showing the color of the culture after incubating the wild type microalgae (WT) or mutant microalgae (T411) under the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) to be.
- WT wild type microalgae
- T411 nitrogen supply medium
- nitrogen deficiency medium ((-) N) to be.
- the wild type microalgae and mutant microalgae culture when the culture in the nitrogen supply medium showed the same level of green, indicating that photosynthesis is performed smoothly, but when cultured in nitrogen-deficient medium, The green color of wild-type microalgae and mutant microalgae was reduced, and the green micro-algae of mutant microalgae showed more yellow color than wild-type microalgae. It was not known.
- Figure 3e is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then per unit dry weight of cells It is a graph which shows the result of comparing the ratio of triglyceride (TAG). As shown in Figure 3e, mutant microalgae produced higher levels of TAG than wild-type microalgae, it was confirmed that this feature is more marked when cultured in nitrogen deficient medium.
- Figure 3f is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then the content of intracellular starch It is a graph showing the result of the comparison. As shown in Figure 3f, mutant microalgae showed higher levels of intracellular starch compared to wild-type microalgae, it was confirmed that this feature is more marked when cultured in nitrogen deficient medium.
- Figure 3g is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), the content of total protein in cells It is a graph showing the result of comparing. As shown in Figure 3g, the mutant microalgae showed a higher total protein content than the wild-type microalgae when cultured in a nitrogen supply medium, but the mutant microalgae and wild-type microalgae when cultured in a nitrogen-deficient medium. It was confirmed that the total protein content in the algae showed an equivalent level.
- WT wild-type microalgae
- T411 nitrogen deficiency medium
- Figure 3h shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions, the graph shows the result of comparing the activity of PI3P per unit weight of protein. As shown in FIG. 3h, the PI3P activity was higher when cultured in nitrogen deficient medium than when cultured in nitrogen supply medium, and the activity of PI3P was higher in wild type microalgae than in mutant microalgae. It was confirmed.
- Wild-type microalgae (WT) or mutant microalgae (T411) were cultured under the same conditions in nitrogen-deficient medium ((-) N). Intracellular structure was analyzed by transmission electron microscopy (TEM), and then compared (FIGS. 4A and 4B).
- FIG. 4A is an electron micrograph showing the results of analyzing the intracellular structure of the wild-type microalgae (WT) in nitrogen-deficient medium ((-) N) under the same conditions, and then performing TEM analysis, where A is self-extinguishing Represents an autophagosome analogous structure, L represents fat globules, S represents starch, and V represents vacuoles.
- Figure 4b is a microscopic microalgae (T411) cultured in nitrogen deficient medium ((-) N) under the same conditions, and then carried out TEM analysis to analyze the intracellular structure is an electron micrograph showing the results. As shown in Figures 4a and 4b, autodigestion-like structures were observed only in wild-type microalgae, not in mutant microalgae, and it was confirmed that fat globules and starch exist in vacuoles.
- Mutant microalgae or wild-type microalgae prepared in Example 2-1 Culture in nitrogen feed or nitrogen deficient medium; And a combination of three conditions of treatment of rapamycin, an autophagosome production inhibitor, with each other to obtain respective cultures. Transcripts with increased expression levels were analyzed (FIGS. 5A-5E).
- Figure 5a is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen supply medium. As shown in Figure 5a, 2,136 transcripts were increased more than 2 times in mutant microalgae cultured in nitrogen supply medium, 2,544 transcripts increased more than 2 times in wild-type microalgae cultured in nitrogen supply medium, It was confirmed that 13,061 transcripts did not increase expression more than two-fold.
- Figure 5b is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in a nitrogen feed medium containing rapamycin.
- the mutant microalgae cultured in a nitrogen feed medium containing rapamycin increased expression more than 1,331 transcripts, 1,171 in wild-type microalgae cultured in a nitrogen feed medium containing rapamycin It was confirmed that the expression of transcripts increased more than two times, and that of 15,239 transcripts did not increase expression more than two times.
- Figure 5c is a diagram showing the results of analysis of transcripts with increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen deficient medium. As shown in Figure 5c, 3,274 transcripts were more than two-fold increased in mutant microalgae cultured in nitrogen-deficient medium, 3,104 transcripts were increased more than two-fold in wild-type microalgae cultured in nitrogen-deficient medium, 11,363 transcripts confirmed no increase in expression more than two-fold.
- Figure 5d is a diagram showing the results of analysis of transcripts with increased expression more than two-fold in wild-type microalgae cultured in nitrogen-deficient medium, nitrogen supply medium and rapamycin-containing nitrogen medium
- Figure 5e is a nitrogen deficient medium This diagram shows the results of analysis of transcripts with increased expression more than two-fold in mutant microalgae cultured in nitrogen feed medium containing nitrogen, nitrogen feed medium and rapamycin.
- mutant microalgae when cultured under the same conditions, compared to wild-type microalgae, mutant microalgae slightly increased the number of transcripts increased more than two times by the supply of nitrogen, when nitrogen is not supplied Although the number of transcripts with increased expression more than two times was significantly reduced, it was confirmed that even when nitrogen was supplied, the number of transcripts with increased expression more than two times was significantly reduced when rapamycin was treated.
- Wild-type microalgae (WT) or mutant microalgae (T411) were cultured under the same conditions in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N), and then the genes involved in autophagy regulation (AMPK, ATG1). , ATG12, ATG3, ATG4, ATG5, ATG7, ATG8, Cre02.g076900.v5.5, Cre10.g443550.v5.5 and Cre16.g669800.v5.5), PI3K subunits (VPS15, VPS30 and VPS34) and neutral Changes in expression levels of genes involved in fat (TAG) synthesis (DGAT1, DGK, DGTT1, DGTT3, DGTT4 and DGTT5) were confirmed by heat map analysis (FIGS. 6A and 6B).
- Figure 6a is a heat map analysis of the expression level of the genes involved in the autophagy regulation process according to the autophagy induction in the wild-type strain and VPS34 gene expression inhibitory strain.
- the gene involved in the autophagy regulation process was cultured in nitrogen deficient medium (-N)
- T411 mutant microalgae
- WT wild-type microalgae
- ATG1 and ATG3 genes acting at the beginning of autophagy regulation were reduced to very low levels.
- the expression levels of the PI3K subunits also showed low levels.
- Figure 6b is a heat map analysis of the expression level of the gene involved in the synthesis of triglycerides (TAG) according to autophagy induction in wild-type strains and VPS34 gene expression inhibitory strain.
- TAG triglycerides
- the strains that inhibit the expression of PI3K, when autophagy is induced increase the synthesis amount of triglycerides and inhibit the formation of autodigestive vesicles involved in the degradation of triglycerides. By suppressing, it was found that the lipid content was increased compared to the wild type strain.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to: a method for producing microalgae of which the amounts of starch and lipids are increased, comprising a step of inhibiting autophagy while culturing the microalgae under an autophagy inducing condition; microalgae produced by the method such that the amounts of intracellular starch and lipids are increased; biomass including the microalgae; a method for producing biodiesel by using the biomass; and biodiesel produced by the method. When using the method of the present invention, microalgae, of which the amounts of intracellular starch and lipids are increased, can be produced and the produced microalgae, of which the amounts of intracellular starch and lipids are increased, can be used as biomass for producing biodiesel, and thus the microalgae can be useful in the economical production of biodiesel.
Description
본 발명은 자가포식이 억제되고 지질 및 전분함량이 증대된 미세조류를 제조하는 방법에 관한 것으로, 보다 구체적으로 본 발명은 미세조류를 자가포식 유도조건에서 배양하면서 자가포식을 억제하는 단계를 포함하는 지질 및 전분함량이 증대된 미세조류의 제조방법, 상기 방법으로 제조되어 균체내 지질 및 전분함량이 증대된 미세조류, 상기 미세조류를 포함하는 바이오매스, 상기 바이오매스를 이용하여 바이오디젤을 제조하는 방법 및 상기 방법으로 제조된 바이오디젤에 관한 것이다.The present invention relates to a method for producing microalgae in which autophagy is suppressed and lipid and starch content is increased, and more specifically, the present invention includes the step of inhibiting autophagy while culturing the microalgae in autophagy induction conditions. Method for producing microalgae with increased lipid and starch content, microalgae prepared by the above method with increased lipid and starch content in cells, biomass containing the microalgae, and biodiesel production using the biomass It relates to a method and a biodiesel produced by the method.
최근 전세계적으로 화석에너지의 고갈과 지구온난화에 직면하여, 미국을 포함하는 선진국을 중심으로 환경 친화적인 바이오, 수소, 태양 등의 신재생에너지 활용 및 확산을 위한 정책 입안과 함께 이들 신재생에너지의 공급과 사용을 촉진하고 있다. 국내에서도 신재생에너지 개발에 많은 노력을 하고 있지만, 현재 연구단계에 머물고 있는 실정이다. 바이오 에너지는 재생가능하며, 이산화탄소를 고정함으로서 지구온난화 가속현상을 감소시킬 수 있는 장점이 있는데, 현재로서는 바이오에탄올, 바이오부탄올, 바이오디젤 등에 대한 연구가 활발하게 진행되고 있다.In the face of depletion of fossil energy and global warming all over the world in recent years, the development of new and renewable energy such as eco-friendly bio, hydrogen, solar, etc. Promoting supply and use. Although many efforts are being made to develop new and renewable energy in Korea, it is still in the research stage. Bioenergy is renewable and has the advantage of reducing global warming acceleration by fixing carbon dioxide. Currently, research on bioethanol, biobutanol, biodiesel, etc. has been actively conducted.
상기 바이오 에너지 중에서도, 가장 활발하게 연구가 진행되고 있는 것은 바이오디젤이다. 바이오디젤은 바이오매스에 포함된 지방산(fatty acid)의 트랜스에스테르화(transesterification) 과정에 의해 메틸 에스터 또는 에틸 에스터 형태로 전환되어 생성되는데, 150℃의 인화점을 가지고 있어 경유(64℃)에 비해 불이 잘 붙지 않고, 낮은 온도에서 휘발성이 높은 휘발유(45℃)보다 안정적이기 때문에 비가연성 액체로 분류되며, 고온에서 불이 붙기 때문에 안정성이 더 높다고 할 수 있다. 또한, 경유와 달리 바이오디젤은 연소될때 발암물질 및 돌연변이를 일으키는 유해 가스 방출량이 적으며 기타 배출물이 현저하게 낮은 비독성 에너지로 알려져 있다. Among the bioenergy, biodiesel is being actively researched. Biodiesel is produced by conversion into methyl ester or ethyl ester form by the transesterification process of fatty acid contained in biomass, and has a flash point of 150 ℃, which is less than diesel. It does not stick well and is classified as a non-flammable liquid because it is more stable than gasoline (45 ° C.), which is highly volatile at low temperatures, and is more stable because it catches fire at high temperatures. In addition, unlike diesel, biodiesel is known to have low emissions of carcinogens and mutations when burned and non-toxic energy with other emissions significantly lower.
이러한 바이오디젤은 미세조류를 이용하여 생물학적으로 생산할 수 있다고 알려져 있다. 미세조류는 식물에 비하여 태양에너지의 이용효율이 25배 높기 때문에, 사료 또는 비료의 용도로 사용되고 있으며, 특히 녹조류에 속하는 스피룰리나(Spirulina sp.), 클로렐라(Chlorella sp.), 두날리엘라(Dunaliella sp.), 노스톡(Nostoc sp.) 등은 건강식품으로도 이용되고 있다. 이러한 미세조류는 태양에너지의 이용효율이 우수하기 때문에, 지질의 함량이 우수한 미세조류는 바이오디젤의 생산을 위한 바이오매스로 사용할 수 있다. 이처럼 지질의 함량이 우수한 미세조류로는 보트리오코코스(Botryococcus sp.)와 키오키트리움(Schiochytrium sp.)이 알려져 있는데, 상기 미세조류는 정상적인 생활환경에서는 지질의 함량이 높지 않지만, 영양공급이 중단된 상태에서 일정시간이 경과하면, 세포내에 지질을 축적하는 특성을 나타낸다. 이러한 특성을 이용하여 상기 미세조류를 바이오디젤의 생산을 위한 바이오매스로 사용할 수 있으나, 상기 미세조류의 지질함량을 증가시키기 위해서는 상기 미세조류를 배양하여 증식하는 제1공정과, 상기 증식된 미세조류에 영양공급을 중단하고 일정시간 동안 배양하여 세포내 지질함량을 증대시키는 제2공정이 수행되어야 하는데, 상기 제2공정에는 과다한 시간이 요구되기 때문에 아직까지는 바이오디젤의 산업적 생산에 사용되지 못하고 있으므로, 바이오디젤의 생산을 위한 지질함량이 우수한 미세조류를 개발하려는 연구가 활발히 진행되고 있다. Such biodiesel is known to be biologically produced using microalgae. Microalgae have 25 times higher efficiency of solar energy than plants, so they are used for feed or fertilizer. Especially, Spirulina sp., Chlorella sp. And Dunaliella sp. Nostoc sp. Is also used as a health food. Since the microalgae have excellent solar energy utilization efficiency, the microalgae having excellent lipid content can be used as biomass for the production of biodiesel. Such microalgae with excellent lipid content are known as Botryococcus sp. And Schiochytrium sp. The microalgae do not have high lipid content in normal living conditions, but nutrient supply is stopped. When a certain time elapses in this state, lipids accumulate in the cell. The microalgae may be used as a biomass for the production of biodiesel by using such characteristics, but in order to increase the lipid content of the microalgae, the first step of culturing and growing the microalgae, and the expanded microalgae In order to stop the supply of nutrients and incubate for a certain period of time to increase intracellular lipid content, the second step requires excessive time, and thus has not yet been used for industrial production of biodiesel. Research into the development of microalgae with excellent lipid content for the production of biodiesel has been actively conducted.
예를 들어, 미국특허공개 제2012-0329099호에는 아이소아밀라제를 과발현시켜서 전분과 지질을 높은 수율로 생산하는 미세조류의 제조방법이 개시되어 있고, 한국특허공개 제2014-0010898호에는 이산화탄소의 농도를 조절하면서 황을 결핍시키는 조건에서 미세조류를 배양하여, 상기 미세조류로부터 전분을 축적시키는 방법이 개시되어 있다. 그러나, 아이소아밀라제가 과발현되는 미세조류에서는 상기 생산된 전분과 지질이 세포내 축적될 뿐만 아니라 외부로 배출되기 때문에, 세포내 축적되는 전분과 지질의 함량이 높지 않고, 이산화탄소의 농도를 조절하면서 황을 결핍시키는 조건에서 미세조류를 배양할 경우에는 미세조류가 사멸될 위험성이 있다는 단점이 있었다.For example, U.S. Patent Publication No. 2012-0329099 discloses a method for producing microalgae overexpressing isoamylase to produce starch and lipids in high yield, and Korean Patent Publication No. 2014-0010898 discloses Disclosed is a method of culturing microalgae under conditions deficient in sulfur while regulating, to accumulate starch from the microalgae. However, in the microalgae in which isoamylase is overexpressed, since the produced starch and lipids not only accumulate in the cell but are also discharged to the outside, the content of starch and lipids accumulated in the cell is not high, and sulfur is controlled while controlling the concentration of carbon dioxide. When the microalgae are cultured under the deficient condition, there is a risk that the microalgae are killed.
본 발명자들은 지질함량이 우수한 미세조류를 개발하고자 예의 연구노력한 결과 미세조류를 자가포식이 유도되는 조건에서 배양하면서, 상기 자가포식의 유발을 억제할 경우, 그의 균체내 지질함량이 증대될 뿐만 아니라 전분함량도 함께 증가되므로, 이처럼 지질 및 전분함량이 증대된 미세조류를 바이오 디젤의 생산을 위한 바이오매스로 사용할 수 있음을 확인하고, 본 발명을 완성하였다.The present inventors have diligently researched to develop microalgae having a high lipid content, and when the microalgae were cultivated under a condition in which autophagy was induced, the inhibition of autophagy was not only increased, but also the lipid content in the cells was increased. Since the content is also increased, it has been confirmed that the microalgae with increased lipid and starch content can be used as biomass for the production of biodiesel, thus completing the present invention.
본 발명의 하나의 목적은 균체내 지질 및 전분함량이 증대된 미세조류의 제조방법을 제공하는 것이다.One object of the present invention is to provide a method for producing microalgae with increased lipid and starch content in cells.
본 발명의 다른 목적은 상기 방법으로 제조된 균체내 지질 및 전분함량이 증대된 미세조류를 제공하는 것이다.Another object of the present invention is to provide microalgae with increased lipid and starch content in the cells produced by the above method.
본 발명의 또 다른 목적은 균체내 지질 및 전분함량이 증대된 미세조류를 포함하는 바이오매스를 제공하는 것이다.Still another object of the present invention is to provide a biomass including microalgae with increased lipid and starch content in cells.
본 발명의 또 다른 목적은 상기 바이오매스를 이용하여 바이오디젤을 제조하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for preparing biodiesel using the biomass.
본 발명의 또 다른 목적은 상기 방법으로 제조된 바이오디젤을 제공하는 것이다.Another object of the present invention is to provide a biodiesel produced by the above method.
본 발명의 방법을 이용하면, 균체내 지질 및 전분함량이 증대된 미세조류를 제조할 수 있고, 상기 제조된 균체내 지질 및 전분함량이 증대된 미세조류는 바이오 디젤의 생산을 위한 바이오매스로서 사용할 수 있으므로, 바이오 디젤의 경제적인 생산에 널리 활용될 수 있을 것이다.By using the method of the present invention, it is possible to prepare microalgae with increased lipid and starch content in cells, and the prepared microalgae with increased lipid and starch content in cells can be used as biomass for the production of biodiesel. As such, it may be widely used for economic production of biodiesel.
도 1a는 클라미도모나스 속 미세조류(Chlamydomonas
reinfardtii CC124)로부터 자가포식을 유도하고, 자가포식 저해제를 처리한 경우, 지방구의 생성능을 비교한 결과를 나타내는 현미경 사진으로서, WT은 자가포식이 유도된 대조군의 미세조류를 나타내고, WT+R은 자가포식 유도후 라파마이신을 처리한 미세조류를 나타내며, WT+B는 자가포식 유도후 바필로마이신을 처리한 미세조류를 나타내고, WT+W는 자가포식 유도후 와트마닌을 처리한 미세조류를 나타낸다.Figure 1a Chlamydomonas genus microalgae autophagy from reinfardtii CC124) and autophagy inhibitor treatment, micrograph showing the results of comparing the production of fat globules, WT represents the microalgae of the control group induced autophagy, WT + R The microalgae treated with rapamycin after induction of predation are shown, WT + B represents microalgae treated with bafilomycin after induction of autophagy, and WT + W represents microalgae treated with watmanin after induction of autophagy.
도 1b는 자가포식이 유도되지 않은 조건((+)48N) 또는 자가포식이 유도된 조건((-)48N)에서 배양된 야생형 클라미도모나스 속 미세조류(WT)에 라파마이신(R) 또는 와트마닌(W)의 처리에 따른 지방구의 함량(상단)과 이로부터 나타나는 녹색형광의 수준(하단)을 비교한 결과를 나타내는 그래프이다.Figure 1b shows rapamycin (R) or watts in wild type Chlamydomonas microalgae (WT) cultured in conditions that do not induce autophagy ((+) 48N) or conditions that induce autophagy ((-) 48N). It is a graph showing the result of comparing the content (top) of fat globules according to the treatment of manin (W) and the level (bottom) of the green fluorescence generated therefrom.
도 2는 클라미도모나스 속 미세조류의 야생형 균주와 VPS34 유전자의 발현이 억제된 변이주를 질소 공급배지(+N) 또는 질소 결핍배지(-N)에서 배양한 경우, 지방구의 생성능을 비교한 결과를 나타내는 현미경 사진으로서, WT은 자가포식이 유도된 야생형 미세조류를 나타내고, T411은 VPS34 유전자의 발현이 억제된 변이주 미세조류를 나타낸다.Figure 2 shows the results of comparing the production ability of fat globules when the wild type strain of Chlamydomonas microalgae and the mutant strains in which the expression of the VPS34 gene was suppressed were cultured in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N). As a micrograph showing, WT indicates wild-type microalgae in which autophagy was induced, and T411 indicates mutant microalgae in which expression of the VPS34 gene was suppressed.
도 3a는 야생형 미세조류(WT), 빈 발현벡터가 도입된 형질전환 미세조류(Mock) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포수를 계수한 결과를 나타내는 그래프이다.Figure 3a shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions at, the graph showing the results of counting the number of cells.
도 3b는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포의 크기를 비교한 결과를 나타내는 그래프이다.Figure 3b is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then compared the size of the cells A graph showing the results.
도 3c는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포의 종횡비(cell aspect ratio)를 비교한 결과를 나타내는 그래프이다.Figure 3c is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), then the aspect ratio of the cells (cell aspect It is a graph which shows the result of comparing ratio.
도 3d는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 배양물의 색을 나타내는 사진이다.Figure 3d is a photograph showing the color of the culture after incubating the wild type microalgae (WT) or mutant microalgae (T411) under the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) to be.
도 3e는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포의 단위건조중량당 트리글리세라이드(TAG)의 비율을 비교한 결과를 나타내는 그래프이다.Figure 3e is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then per unit dry weight of cells It is a graph which shows the result of comparing the ratio of triglyceride (TAG).
도 3f는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포내 전분의 함량을 비교한 결과를 나타내는 그래프이다.Figure 3f is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then the content of intracellular starch It is a graph showing the result of the comparison.
도 3g는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포내 총 단백질의 함량을 비교한 결과를 나타내는 그래프이다.Figure 3g is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), the content of total protein in cells It is a graph showing the result of comparing.
도 3h는 야생형 미세조류(WT), 빈 발현벡터가 도입된 형질전환 미세조류(Mock) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 단백질 단위 중량당 PI3P의 활성을 비교한 결과를 나타내는 그래프이다.Figure 3h shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions, the graph shows the result of comparing the activity of PI3P per unit weight of protein.
도 4a는 야생형 미세조류(WT)를 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, TEM 분석을 수행하여 세포내 구조를 분석한 결과는 나타내는 전자현미경 사진으로서, A는 자가소화포(autophagosome) 유사구조체를 나타내고, L은 지방구를 나타내며, S는 전분을 나타내고, V는 액포를 나타낸다. 4A is an electron micrograph showing the results of analyzing the intracellular structure of the wild-type microalgae (WT) in nitrogen-deficient medium ((-) N) under the same conditions, and then performing TEM analysis, where A is self-extinguishing Represents an autophagosome analogous structure, L represents fat globules, S represents starch, and V represents vacuoles.
도 4b는 변이주 미세조류(T411)를 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, TEM 분석을 수행하여 세포내 구조를 분석한 결과는 나타내는 전자현미경 사진이다. Figure 4b is a microscopic microalgae (T411) cultured in nitrogen deficient medium ((-) N) under the same conditions, and then carried out TEM analysis to analyze the intracellular structure is an electron micrograph showing.
도 5a는 질소 공급배지에서 배양된 변이주 미세조류 또는 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다.Figure 5a is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen supply medium.
도 5b는 라파마이신을 포함하는 질소 공급배지에서 배양된 변이주 미세조류 또는 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다.Figure 5b is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in a nitrogen feed medium containing rapamycin.
도 5c는 질소 결핍배지에서 배양된 변이주 미세조류 또는 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다.Figure 5c is a diagram showing the results of analysis of transcripts with increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen deficient medium.
도 5d는 질소 결핍배지, 질소 공급배지 및 라파마이신이 포함된 질소 공급배지에서 배양된 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다.Figure 5d is a diagram showing the results of analysis of transcripts with increased expression more than two-fold in wild-type microalgae cultured in nitrogen deficient medium, nitrogen feed medium and rapamycin-containing nitrogen feed medium.
도 5e는 질소 결핍배지, 질소 공급배지 및 라파마이신이 포함된 질소 공급배지에서 배양된 변이주 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다.Figure 5e is a diagram showing the results of analysis of transcripts with increased expression more than two-fold in mutant microalgae cultured in nitrogen deficient medium, nitrogen supply medium and rapamycin-containing nitrogen supply medium.
도 6a는 야생형 균주와 VPS34 유전자 발현억제 균주를 대상으로, 자가포식 유도에 따른 자가포식 조절과정에 관여하는 유전자의 발현수준 변화를 나타내는 히트맵 분석결과이다.Figure 6a is a heat map analysis of the expression level of the genes involved in the autophagy regulation process according to the autophagy induction in the wild-type strain and VPS34 gene expression inhibitory strain.
도 6b는 야생형 균주와 VPS34 유전자 발현억제 균주를 대상으로, 자가포식 유도에 따른 중성지방(TAG) 합성에 관여하는 유전자의 발현수준 변화를 나타내는 히트맵 분석결과이다.Figure 6b is a heat map analysis of the expression level of the gene involved in the synthesis of triglycerides (TAG) according to autophagy induction in wild-type strains and VPS34 gene expression inhibitory strain.
본 발명자들은 바이오 디젤의 생산을 위한 지질함량이 우수한 미세조류를 개발하고자 다양한 연구를 수행하던 중, 자가포식 과정에 주목하게 되었다. 자가포식(autophagy)이란, 특정 조건에서 세포의 생존이 위협받을 경우, 세포내 소기관의 일부를 재활용하는 과정으로서, 세포질 및 세포 내 기관들이 자가소화포(autophagosome)라는 이중-막-결합 구조로 퇴화하고, 상기 퇴화된 자가소화포는 리소좀(lysosome)과 융합하여 오토리소좀(autolysosome)을 형성하며, 상기 오토리소좀에 의해 퇴화된 물질이 가수분해되어 재사용된다. 상기 자가포식 과정은 기아상태생존, 감염성 세균으로부터의 보호 및 신경붕괴조절과 같은 세포 기능을 조절하는데 중요한 역할을 하는데, 이는 진화적으로 보존된 과정으로, 이스트에서 포유류에 이르기까지 모든 진핵세포에서 나타난다. 상기 자가포식 과정 중에서 생성되는 오토리소좀에는 다양한 성분의 지질이 포함되어 있으므로, 상기 오토리소좀에 포함된 물질을 재사용하지 않은 상태로 유지할 경우, 세포내 지질함량을 증대시킬 수 있을 것으로 예상하였다. 이를 확인하고자, 미세조류의 일종인 클라미도모나스 속 미세조류(Chlamydomonas
reinfardtii CC124)를 질소가 결핍된 배지에서 배양하여 자가포식을 유도하고, 상기 자가포식이 유도된 미세조류에 자가포식 저해제를 처리한 결과, 액포의 형성이 촉진되고, 상기 액포내 지방구의 생성 역시 현저히 증가됨을 확인하였다. 상기 자가포식 저해제는 세포내에서 PI3K 관련 신호전달을 억제함으로써 그의 효과를 나타낸다고 알려져 있으므로, 상기 PI3K 관련 신호전달이 억제된 변이주 미세조류를 제작하고, 상기 제작된 변이주 미세조류를 질소 공급배지 또는 질소 결핍배지에서 배양한 결과, 질소 공급배지에서 배양된 경우에는 지질의 생성이 억제되었으나, 질소 결핍배지에서 배양된 경우에는 지질의 생성이 증가됨을 확인하였다. 상기 변이된 미세조류의 특성을 분석한 결과, 세포증식이 억제되어 상대적으로 적은 수의 세포를 생성하지만, 세포의 크기는 증가되고, 세포의 형태는 원형에 가까우며, 광합성이 원활하게 수행되지 않고, 트리글리세라이드(TAG)를 높은 수준으로 생성하며, 세포내 전분함량이 증가되고, PI3P의 활성이 감소됨을 확인하였다. 또한, 구조적으로 자가소화포 유사구조체가 존재하지 않고, 지방구와 전분은 액포내에 존재함을 확인하였다.The present inventors have been paying attention to the autophagy process while performing various studies to develop microalgae having a high lipid content for the production of biodiesel. Autophagy is the process of recycling part of intracellular organelles when cell survival is threatened under certain conditions, where cellular and intracellular organs degenerate into a double-membrane-bound structure called an autophagosome. The degenerated autodigestion vesicles are fused with lysosomes to form autolysosomes, and the degenerated material by the autolysosomes is hydrolyzed and reused. The autophagy process plays an important role in regulating cellular functions such as hunger survival, protection from infectious bacteria and regulation of neurodecay, which is an evolutionarily conserved process that appears in all eukaryotic cells from yeast to mammals. . Since the autolysosomes generated during the autophagy process contain lipids of various components, it was expected that the intracellular lipid content could be increased when the materials contained in the autolysosomes were not reused. To confirm this, the microalgae of the genus Chlamydomonas ( Chlamydomonas) reinfardtii CC124) was cultured in a nitrogen-deficient medium to induce autophagy, and treatment of autophagy inhibitors to the microalgae induced by autophagy promoted the formation of vacuoles, and the production of fat globules in the vacuoles was also remarkable. It was confirmed to increase. Since the autophagy inhibitors are known to exhibit their effects by inhibiting PI3K-related signaling in cells, a mutant microalgae in which the PI3K-related signaling is suppressed is produced, and the produced mutant microalgae are depleted in nitrogen supply medium or nitrogen deficient. As a result of culturing in the medium, it was confirmed that the production of lipid was suppressed when cultured in nitrogen supply medium, but the production of lipid was increased when cultured in nitrogen deficient medium. As a result of analyzing the characteristics of the mutated microalgae, cell proliferation is suppressed to produce a relatively small number of cells, but the size of the cells is increased, the shape of the cells is close to a circle, and photosynthesis is not performed smoothly. It was confirmed that the triglyceride (TAG) is produced at high levels, the intracellular starch content is increased, and the activity of PI3P is decreased. In addition, it was confirmed that autophagy-like structures did not exist structurally, and fat globules and starch exist in vacuoles.
이처럼, 미세조류를 자가포식 유도조건에서 배양하면서 자가포식을 억제할 경우, 균체내 지질과 전분의 함량이 증가하므로, 상기 방법으로 배양된 미세조류는 바이오 디젤의 생산을 위한 바이오매스로서 사용될 수 있을 뿐만 아니라, 바이오디젤의 경제적인 생산에도 활용될 수 있을 것이다. As such, when the microalgae are cultivated under autophagy induction conditions, the content of lipids and starch in the cells is increased, and thus the microalgae cultivated by the above method may be used as biomass for the production of biodiesel. In addition, it can be used for economic production of biodiesel.
상술한 목적을 달성하기 위한 일 실시양태로서, 본 발명은 미세조류를 자가포식 유도조건에서 배양하면서 자가포식을 억제하는 단계를 포함하는, 지질 및 전분함량이 증대된 미세조류의 제조방법을 제공한다.As one embodiment for achieving the above object, the present invention provides a method for producing microalgae with increased lipid and starch content, comprising the step of inhibiting autophagy while culturing the microalgae in autophagy induction conditions. .
본 발명의 용어 "미세조류(microalgae)"란, "식물성 플랑크톤"이라고도 하고, 수생환경에서 생존하면서, 포자로 번식하며, 광합성 색소를 가지고 광합성을 하는 단세포성 원핵생물을 의미한다. The term "microalgae" of the present invention, also referred to as "phytoplankton", refers to a unicellular prokaryote that survives in an aquatic environment, reproduces with spores, and photosynthesizes with photosynthetic pigments.
본 발명에 있어서, 상기 미세조류는 균체내에 지질을 축적할 수 있는 모든 종류의 미세조류가 될 수 있는데, 특히 자가포식 유도조건에서 배양하면서 자가포식을 억제할 경우 균체내에 지질을 축적할 수 있는 한 특별히 이에 제한되지 않으나, 일 예로서 균체내에 지질을 축적할 수 있는 클로렐라 속(Chlorella sp.) 미세조류, 세네데스무스 속(Scenedesmus sp.) 미세조류, 파라클로렐라 속(Parachlorella sp.) 미세조류, 나노클로롭시스 속(Nannochloropsis sp.) 미세조류, 보트리오코커스 속(Botryococcus sp.) 미세조류, 에틀리아 속(Ettlia sp.) 미세조류, 클라미도모나스 속(Chlamydomonas sp.) 미세조류 등이 될 수 있고, 다른 예로서 자가포식 유도조건에서 배양하면서 자가포식을 억제할 경우 균체내에 지질을 축적할 수 있는 클라미도모나스 속 미세조류가 될 수 있으며, 또 다른 예로서 클라미도모나스 레인파티(Chlamydomonas
reinfardtii) 균주가 될 수 있고, 또 다른 예로서 클라미도모나스 레인파티 CC124(Chlamydomonas
reinfardtii CC124) 균주가 될 수 있다.In the present invention, the microalgae may be any kind of microalgae capable of accumulating lipids in cells, especially as long as the microalgae can accumulate lipids in cells when they are cultured under autophagy induction conditions. Examples of the microalgae include, but are not limited to, Chlorella sp. Microalgae, Scenedesmus sp. Microalgae, Parachlorella sp. Microalgae , which can accumulate lipids in cells. Microalgae of the genus Nanonochloropsis sp., Botryococcus sp. Microalgae, Ettlia sp. Microalgae, Chlamydomonas sp. As another example, the microalgae of Chlamydomonas can accumulate lipids in the cells when cultured under autophagy-inducing conditions and inhibits autophagy. As Chlamydomonas Lane Party (Chlamydomonas reinfardtii ) strain, and as another example, Chlamydomonas rain party CC124 ( Chlamydomonas reinfardtii CC124) strain.
본 발명의 용어 "자가포식(autophagy)"이란, "자가소화"라고도 하고, 세포내부에 필요 없는 물질이나 세포소기관을 이중막으로 둘러싸서 라이소좀으로 보내서 분해하고 재활용하는 세포기능을 의미한다. 상기 자가포식은 세포질 및 세포 내 기관들이 자가소화포(autophagosome)라는 이중-막-결합 구조로 퇴화하고, 상기 퇴화된 자가소화포는 리소좀(lysosome)과 융합하여 오토리소좀(autolysosome)을 형성하며, 상기 오토리소좀에 의해 퇴화된 물질이 가수분해되어 재사용되는 과정에 의해 수행된다.The term "autophagy" of the present invention, also referred to as "autophagy", refers to a cellular function of disassembling and recycling the material or organelles that are not needed in the cell by enclosing the double membrane into the lysosome. The autophagy degenerates the cytoplasm and intracellular organs into a double-membrane-bound structure called an autophagosome, and the degenerated autodigestion fuses with a lysosome to form an autolysosome, The material degraded by the autolysosomes is hydrolyzed and reused.
본 발명의 용어 "자가포식 유도조건"이란, 미세조류로부터 자가포식 과정의 발생을 유도하는 조건을 의미한다. 자가포식 과정은 탄소원의 결핍, 질소원의 결핍, 미량원소의 결핍, 외부환경 pH의 급격한 변화, 외부환경 염농도의 변화 등과 같이 세포의 생존이 어려운 조건에서 발생된다.The term "autophagy induction condition" of the present invention means a condition that induces the generation of autophagy processes from microalgae. Autophagy processes occur in conditions where cell survival is difficult, such as a lack of carbon sources, a lack of nitrogen sources, a lack of trace elements, a rapid change in external environmental pH, and a change in external environmental salt concentration.
본 발명에 있어서, 상기 자가포식 유도조건은 미세조류로부터 자가포식의 발생을 유도하면서도, 상기 미세조류의 사멸이 유도되지는 않는 배양조건인 것으로 해석될 수 있는데, 구체적으로는 상기 자가포식 과정을 유도할 수 있는 조건 중에서 상기 미세조류의 사멸을 유도하지는 않는 질소원의 결핍 조건이 될 수 있다.In the present invention, the autophagy induction conditions may be interpreted as a culture condition that induces the autophagy from microalgae, but does not induce the death of the microalgae, specifically induce the autophagy process Among the possible conditions, it may be a deficiency condition of a nitrogen source that does not induce the death of the microalgae.
본 발명의 용어 "자가포식 억제"란, 상기 자가포식 유도조건하에서도 미세조류의 자가포식 과정의 진행을 억제 또는 지체시키는 것을 의미한다.The term "autophagy suppression" of the present invention means inhibiting or delaying the progress of the autophagy process of the microalgae even under the conditions for inducing autophagy.
본 발명에 있어서, 상기 자가포식을 억제하는 방법으로는 미세조류내 자가포식 과정에 관여하는 세포내 신호전달 체계를 저해하는 방법이 될 수 있는데, 일 예로서 미세조류내 자가포식 과정에 관여하는 PI3K 관련 신호전달 체계를 저해하는 방법이 될 수 있고, 다른 예로서 미세조류내 자가포식 과정에 관여하는 PI3K 관련 신호전달을 저해하는 자가포식 저해제를 상기 미세조류에 처리하거나 또는 미세조류내 자가포식 과정에 관여하는 PI3K 관련 신호전달에 관여하는 PI3K 촉매 서브유닛 제3형(PI3K catalytic subunit type 3) 단백질의 발현이 억제된 변이주 미세조류를 사용하는 방법이 될 수 있으며, 또 다른 예로서, 미세조류내 자가포식 과정에 관여하는 PI3K 관련 신호전달을 저해하는 자가포식 저해제인 와트마닌(wortmannin)을 미세조류에 처리하거나 또는 미세조류내 자가포식 과정에 관여하는 PI3K 관련 신호전달에 관여하는 PI3K 촉매 서브유닛 제3형 단백질을 코딩하는 VPS34 유전자에 대한 siRNA가 처리된 변이주 미세조류를 사용하는 방법이 될 수 있다. 예를 들어, 본 발명에서는 하기 염기서열을 갖는 VPS34 유전자에 대한 siRNA가 처리된 변이주 미세조류를 사용하였다.In the present invention, the method of inhibiting autophagy may be a method of inhibiting the intracellular signaling system involved in the microalgae autophagy process, for example, PI3K involved in the microalgae autophagy process. It may be a method of inhibiting a related signaling system, and as another example, the microalgae may be treated with an autophagy inhibitor that inhibits PI3K related signaling involved in the microalgae autophagy process, or It may be a method using a mutant microalgae in which the expression of the PI3K catalytic subunit type 3 protein involved in PI3K-related signaling involved is suppressed. Treat microalgae with or treat wortmannin, an autophagy inhibitor that inhibits PI3K-related signaling involved in the predation process Ryunae party may be a method using a mutant strain of microalgae The siRNA a process for the PI3K catalytic subunit claim VPS34 gene encoding a type III protein which is involved in the PI3K related signaling involved in the phagocytic process. For example, in the present invention, mutant microalgae treated with siRNA for the VPS34 gene having the following nucleotide sequence was used.
amiFor: 5'-ctagtCTGCGACATAAACTTGTATGAtctcgctgatcggcaccatgggggtggtggtg atcagcgctaTCATTCAAGTTTATGTCGCAGg-3'(서열번호 1)amiFor: 5'-ctagtCTGCGACATAAACTTGTATGAtctcgctgatcggcaccatgggggtggtggtg atcagcgctaTCATTCAAGTTTATGTCGCAGg-3 '(SEQ ID NO: 1)
amiRev: 5'-ctagcCTGCGACATAAACTTGAATGAtagcgctgatcaccaccacccccatggtgccg atcagcgagaTCATACAAGTTTATGTCGCAGa-3'(서열번호 2)amiRev: 5'-ctagcCTGCGACATAAACTTGAATGAtagcgctgatcaccaccacccccatggtgccg atcagcgagaTCATACAAGTTTATGTCGCAGa-3 '(SEQ ID NO: 2)
본 발명의 용어 "배양"이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 일련의 행위를 의미한다. As used herein, the term "culture" refers to a series of actions for growing microorganisms under appropriately artificially controlled environmental conditions.
본 발명에 있어서, 상기 배양은 미세조류를 배양하는 방법을 의미하는 것으로 해석될 수 있는데, 상기 배양방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 수행할 수 있다.In the present invention, the culturing may be interpreted to mean a method of culturing microalgae, the culturing method may be performed using a method well known in the art. Specifically, the culturing may be performed continuously in a batch process or in a fed batch or repeated fed batch process.
상기 미세조류를 배양하기 위하여는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 생존요건을 충족시켜야 한다. 사용될 수 있는 탄소원으로는 주로 CO2와 카보네이트이며, 글루코즈 및 자일로즈의 혼합당을 탄소원으로 사용할 수 있고, 이외에 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다. 예를 들어, 미세조류 배양용 배지로는 NaNO3, K2HPO4, MgSO4.7H2O, CaCl2.2H2O, 구연산, EDTA Na2, 암모늄 페릭 시트레이트 그린(Ammonium ferric citrate green), Na2CO3 및 트레이스 금속용액(H3BO3, MnCl2.4H2O, ZnSO4.7H2O, Na2MoO4.2H2O, CuSO4.5H2O, Co(NO3)2.6H2O)을 포함하는 BG11 배지를 사용할 수 있다.In order to culture the microalgae, it is necessary to meet the survival requirements of specific strains in an appropriate manner while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like. Carbon sources that can be used are mainly CO 2 and carbonate, and mixed sugars of glucose and xylose may be used as the carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch, cellulose, and soybean oil Oils such as sunflower oil, castor oil, coconut oil and the like, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid. These materials can be used individually or as a mixture. Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination. The medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts. Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. In addition, as the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins can be used. For example, microalgae as a culture medium for the NaNO 3, K 2 HPO 4, MgSO 4 .7H 2 O, CaCl 2 .2H 2 O, citric acid, Na 2 EDTA, ammonium ferric citrate, green (Ammonium ferric citrate green) , Na 2 CO 3, and trace metals solution (H 3 BO 3, MnCl 2 .4H 2 O, ZnSO 4 .7H 2 O, Na 2 MoO 4 .2H 2 O, CuSO 4 .5H 2 O, Co (NO 3) BG11 medium containing 2 .6H 2 O) can be used.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 기체(예, 공기)를 주입할 수 있다. 배양물의 온도는 보통 20℃ 내지 35℃, 바람직하게는 25℃ 내지 30℃로 유지할 수 있다. In addition, antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation. Gas (eg, air) can be injected to maintain aerobic conditions. The temperature of the culture can usually be maintained at 20 ° C to 35 ° C, preferably 25 ° C to 30 ° C.
아울러, 광합성을 수행하는 상기 미세조류의 특성상 배양시 빛을 제공함이 바람직한데, 제공되는 빛의 양과 제공시간은 당업자가 필요에 따라 적절하게 조절할 수 있으나, 약 50 내지 100μmole/㎡/s의 광도조건으로 빛을 제공할 수 있다.In addition, the nature of the microalgae to perform photosynthesis is preferable to provide light during the cultivation, the amount of light provided and the time provided can be appropriately adjusted by those skilled in the art as needed, luminous conditions of about 50 to 100μmole / ㎡ / s Can provide light.
본 발명의 일 실시예에 의하면, 클라미도모나스 속 미세조류(Chlamydomonas
reinfardtii CC124)를 질소 결핍배지에서 배양하여 자가포식을 유도하면서, 자가포식 저해제로 알려진 와트마닌(wortammanin)을 처리한 결과, 액포의 생성 및 지방구의 생성이 증가되고(도 1), 상기 자가포식 저해제에 의해 영향을 받는 세포내 신호전달 체계인 PI3K 관련 신호전달이 억제된 변이주 미세조류를 제작하고, 상기 제작된 변이주 미세조류를 질소 공급배지 또는 질소 결핍배지에서 배양한 결과, 질소 공급배지에서 배양된 경우에는 지질의 생성이 억제되었으나, 질소 결핍배지에서 배양된 경우에는 지질의 생성이 증가됨을 확인하였으며(도 2), 상기 변이주 미세조류의 특성을 분석한 결과, 트리글리세라이드(TAG)를 높은 수준으로 생성(도 3e)할 뿐만 아니라, 전분 함량 역시 높은 수준으로 증가됨(도 3f)을 확인하였다.According to one embodiment of the present invention, Chlamydomonas reinfardtii CC124 was cultured in a nitrogen deficient medium to induce autophagy, while treating watmanin (wortammanin) known as an autophagy inhibitor, Production of mutant microalgae with increased production and production of fat globules (FIG. 1), and inhibition of PI3K-related signaling, an intracellular signaling system affected by the autophagy inhibitors, and nitrogen production of the mutant microalgae As a result of culturing in a feed medium or nitrogen deficient medium, the production of lipid was suppressed when cultured in a nitrogen supply medium, but the production of lipid was increased when cultured in nitrogen deficient medium (Fig. 2), the strain strain fine Characterization of algae has shown that not only produces high levels of triglycerides (TAG) (FIG. 3E), but also high starch content. With the increased (Fig. 3f) it was confirmed.
상술한 목적을 달성하기 위한 다른 실시양태로서, 본 발명은 상기 방법을 이용하여 제조되어, 자가포식이 억제되지 않은 균주에 비하여, 균체내 지질 및 전분함량이 증대된 미세조류를 제공한다.As another embodiment for achieving the above object, the present invention is prepared using the above method, to provide a microalgae with increased lipid and starch content in the cells compared to the strains that do not inhibit autophagy.
상기 방법으로 제조된 미세조류는 동일한 자가포식 유도조건에서 배양할 경우, 자가포식이 억제되지 않은 야생형 균주에 비하여, 균체내 지질 및 전분함량이 증대되는 특징을 갖는다. 이때, 균체내에서 함량이 증대되는 지질은 특별히 이에 제한되지 않으나, 일 예로서 인지질이 될 수 있고, 다른 예로서, 인지질에 속하는 PA(phosphatidic acid), PE(phosphatidyl-ethanolamine), PS(phosphatidylserine) 등이 될 수 있으며, 또 다른 예로서, 트리글리세라이드(TAG)의 분해산물인 MG(monoacylglycerol), 스트레스 유도성 불포화지방산인 EA(eicosadienoic acid) 등이 될 수 있다. 특히, PA, PE, PS 등의 인지질은 자가포식이 억제되지 않은 야생형 미세조류에 비하여 현저히 높은 수준으로 변이주 미세조류에 포함되어 있으므로(도 6), 상기 인지질은 본 발명의 방법으로 제조된 미세조류를 종래의 방법으로 제조된 미세조류와 구별할 수 있는 주요 마커로서 사용될 수 있다.When the microalgae prepared by the above method are cultured under the same autophagy induction conditions, the lipid and starch content in the cells is increased as compared to the wild-type strain which is not inhibited by autophagy. At this time, the lipid content is increased in the cell is not particularly limited, but may be a phospholipid as an example, in another example, phosphatidic acid (PA), phosphatidyl-ethanolamine (PE), PS (phosphatidylserine) belonging to phospholipids And, as another example, it may be MG (monoacylglycerol), a decomposition product of triglyceride (TAG), EA (eicosadienoic acid), which is a stress-induced unsaturated fatty acid. In particular, since phospholipids such as PA, PE, and PS are contained in mutant microalgae at a significantly higher level than wild-type microalgae without autophagy (FIG. 6), the phospholipids are microalgae prepared by the method of the present invention. Can be used as the main marker to distinguish it from microalgae prepared by conventional methods.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 균체내 지질 및 전분함량이 증대된 미세조류를 포함하는 바이오매스 및 상기 바이오매스를 이용하여 바이오디젤을 제조하는 방법 및 상기 방법으로 제조된 바이오디젤을 제공한다.As another embodiment for achieving the above object, the present invention provides a biomass comprising microalgae with increased lipid and starch content in cells and a method for producing biodiesel using the biomass and the method Provides biodiesel.
본 발명의 용어 "바이오매스(biomass)"란, 광합성에 의하여 생성되는 다양한 조류(藻類) 및 식물 자원, 즉 나무, 풀, 농작물의 가지, 잎, 뿌리, 열매 등을 의미한다.As used herein, the term "biomass" refers to a variety of algae and plant resources produced by photosynthesis, such as trees, grasses, branches of crops, leaves, roots, fruits and the like.
본 발명에 있어서, 상기 바이오매스는 스트레스 조건의 배지에서 배양되어 균체내 지질 및 전분함량이 증대된 미세조류, 상기 미세조류를 포함하는 배양물, 배양분획물 등으로 해석될 수 있고, 상기 바이오매스는 바이오디젤의 제조원료로서 사용될 수 있다.In the present invention, the biomass may be interpreted as microalgae, cultures containing the microalgae, culture fractions, and the like, which are cultured in a medium under stress conditions and have increased lipid and starch contents in cells. It can be used as a raw material of biodiesel.
한편, 본 발명의 바이오디젤의 제조방법은 (a) 상기 바이오매스로부터 지질성분을 수득하는 단계; 및 (b) 상기 수득한 지질에 메탄올을 가하고 알칼리 촉매하에서 반응시켜서 바이오디젤인 FAME(fatty acid methyl)을 수득하는 단계를 포함한다. 이때, FAME의 수율을 증가시키기 위하여 반응부산물인 글리세롤을 제거하는 단계를 추가로 포함할 수 있다.On the other hand, the method for producing a biodiesel of the present invention (a) obtaining a lipid component from the biomass; And (b) adding methanol to the obtained lipids and reacting under an alkali catalyst to obtain FAME (fatty acid methyl), which is biodiesel. At this time, in order to increase the yield of FAME may further comprise the step of removing the reaction by-product glycerol.
본 발명의 바이오디젤의 제조방법에 있어서, 상기 바이오매스로부터 지질성분을 수득하기 위하여는 공지된 다양한 방법을 사용할 수 있다. 예를 들어, 상기 바이오매스에 포함된 미세조류를 건조시키고, 이를 물리적으로 파쇄하여 수득할 수도 있고, 상기 바이오매스에 유기용매를 가하여 미세조류로부터 지질성분을 추출할 수도 있다. 이때, 상기 용매로는 비극성 용매를 사용할 수 있고, 바람직하게는 헥산, DMSO(dimethyl sulfoxide), DMC(dimethyl carnonate) 등을 사용할 수 있다.In the production method of the biodiesel of the present invention, in order to obtain a lipid component from the biomass, various known methods can be used. For example, the microalgae contained in the biomass may be dried and obtained by physically crushing the microalgae, or lipid components may be extracted from the microalgae by adding an organic solvent to the biomass. In this case, a non-polar solvent may be used as the solvent, and preferably hexane, dimethyl sulfoxide (DMSO), dimethyl carnonate (DMC), or the like may be used.
또한, 상기 바이오매스로부터 수득한 지질성분은 본 발명에서 제공하는 균체내 지질함량이 증대된 미세조류로부터 유래된 것이므로, PA(phosphatidic acid), PE(phosphatidyl-ethanolamine), PS(phosphatidylserine), MG(monoacylglycerol), EA(eicosadienoic acid) 등을 단독으로 또는 조합하여 포함할 수 있다.In addition, since the lipid component obtained from the biomass is derived from the microalgae with increased lipid content in the cells provided by the present invention, PA (phosphatidic acid), PE (phosphatidyl-ethanolamine), PS (phosphatidylserine), MG ( monoacylglycerol), EA (eicosadienoic acid) and the like may be included alone or in combination.
본 발명의 용어 "바이오디젤(bio-diesel)"이란, 넓게는 식물성 기름을 원료로 해서 만든 무공해 연료를 통틀어 의미하고, 좁게는 콩기름 등의 식물성 기름을 원료로 사용하여 제조된 지방산메틸에스테르(FAME)를 의미한다. 상기 바이오디젤은 다양한 방법으로 제조될 수 있는데, 대체로 중성지방에 알칼리 촉매와 함께 메탄올을 처리하여 제조될 수 있다.The term "bio-diesel" of the present invention broadly refers to the whole of pollution-free fuel made from vegetable oils, and narrowly to fatty acid methyl esters prepared using vegetable oils such as soybean oil as raw materials. ). The biodiesel may be prepared by various methods, and may be generally prepared by treating methanol with an alkaline catalyst in triglycerides.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예Example
1: 미세조류의 1: microalgae
지방구District ball
생성에 미치는 Affecting generation
자가포식Self-feeding
억제제의 효과 Effect of Inhibitors
클라미도모나스 속 미세조류(Chlamydomonas
reinfardtii CC124)를 TAP 배지에 접종하여 배양하고, 자가포식 현상을 유발시키기 위하여 상기 배지를 질소결핍 배지로 교체하였으며, 자가포식 저해제로 알려진 와트마닌(wortmannin)을 처리한 다음, BODIPY를 처리하여 지방구(lipid droplet, LD)를 녹색형광으로 염색하고, 클로로필α를 처리하여 액포(vacuole)를 적색형광으로 염색한 다음, 공초점 현미경으로 관찰하였다(도 1a). 이때, 대조군으로는 자가포식 저해제를 처리하지 않고 배양한 미세조류를 사용하였다. Chlamydomonas of the genus Chlamydomonas reinfardtii CC124) was inoculated in TAP medium and cultured, and the medium was replaced with nitrogen-deficient medium to induce autophagy. (lipid droplet, LD) was stained with green fluorescence, treated with chlorophyll α, and the vacuole was stained with red fluorescence, and then observed by confocal microscopy (FIG. 1A). At this time, the microalgae cultured without the autophagy inhibitor was used as a control.
도 1a는 클라미도모나스 속 미세조류(Chlamydomonas
reinfardtii CC124)로부터 자가포식을 유도하고, 자가포식 저해제를 처리한 경우, 지방구의 생성능을 비교한 결과를 나타내는 현미경 사진으로서, WT은 자가포식이 유도된 대조군의 미세조류를 나타내고, WT+W는 자가포식 유도후 와트마닌을 처리한 미세조류를 나타내며, DIC는 DIC(differential interference contrast) 방법으로 촬영한 결과를 나타낸다. 도 1a에서 보듯이, 자가포식이 유도된 대조군의 미세조류에 비하여, 자가포식 저해제를 처리한 경우에는 액포의 형성이 촉진될 뿐만 아니라 액포내 지방구의 생성 역시 현저히 증가됨을 확인하였다.Figure 1a Chlamydomonas genus microalgae reinfardtii CC124) induces autophagy and treated with autophagy inhibitors, a micrograph showing the results of comparing the production of fat globules, WT represents the microalgae of the control group induced autophagy, WT + W The microalgae treated with watmanine after induction of predation is shown, and the DIC shows a result obtained by the differential interference contrast (DIC) method. As shown in Figure 1a, compared to the microalgae of the control group induced autophagy, when treated with autophagy inhibitors, it was confirmed that not only the formation of vacuoles but also the production of fat cells in the vacuoles was significantly increased.
또한, 정상배지에서 배양하여 자가포식을 유도하지 않은 조건 또는 질소결핍 배지에서 배양하여 자가포식을 유도한 조건에서 상기 클라미도모나스 속 미세조류에 자가소화포(autophagosome) 생성억제제인 라파마이신(rapamycin) 또는 자가포식 저해제로 알려진 와트마닌(wortmannin)을 처리한 후, 동일한 방법을 수행하여, 지방구의 함량과 이로부터 나타나는 녹색형광의 수준을 비교하였다(도 1b). In addition, rapamycin, an inhibitor of autophagosome production, is induced in the microalgae of Chlamydomonas under conditions that do not induce autophagy by culturing in normal medium or inducing autophagy by culturing in a nitrogen-deficient medium. Or after treatment with wartmannin (wortmannin) known as autophagy inhibitors, the same method was carried out to compare the content of fat globules and the level of green fluorescence resulting therefrom (Fig. 1b).
도 1b는 자가포식이 유도되지 않은 조건((+)48N) 또는 자가포식이 유도된 조건((-)48N)에서 배양된 야생형 클라미도모나스 속 미세조류(WT)에 라파마이신(R) 또는 와트마닌(W)의 처리에 따른 지방구의 함량(상단)과 이로부터 나타나는 녹색형광의 수준(하단)을 비교한 결과를 나타내는 그래프이다. 도 1b에서 보듯이, 자가포식이 유도되지 않은 경우에도 와트마닌은 세포내 지방축적을 유도하였으나, 라파마이신은 세포내 지방축적을 유도하지 않음을 확인하였다.Figure 1b shows rapamycin (R) or watts in wild type Chlamydomonas microalgae (WT) cultured in conditions that do not induce autophagy ((+) 48N) or conditions that induce autophagy ((-) 48N). It is a graph showing the result of comparing the content (top) of fat globules according to the treatment of manin (W) and the level (bottom) of the green fluorescence generated therefrom. As shown in FIG. 1B, watmanin induced intracellular fat accumulation even when autophagy was not induced, but rapamycin did not induce intracellular fat accumulation.
실시예Example
2: 2:
VPS34VPS34
유전자 발현이 억제된 변이주 미세조류의 특성 분석 Characterization of Mutant Microalgae with Inhibited Gene Expression
자가포식 과정에 있어서, PI3K 관련 신호전달이 관여한다고 알려져 있으므로, 상기 PI3K 관련 신호전달에 관여하는 PI3K catalytic subunit type 3 단백질의 발현이 억제된 변이주 미세조류를 제작하고, 이의 특성을 분석하였다.Since it is known that PI3K-related signaling is involved in autophagy, mutant microalgae in which expression of the PI3K catalytic subunit type 3 protein involved in PI3K-related signaling was suppressed were prepared and analyzed.
실시예Example
2-1: 2-1:
VPS34VPS34
유전자 발현이 억제된 변이주 미세조류의 제작 Production of Mutant Microalgae with Inhibited Gene Expression
클라미도모나스 속 미세조류(Chlamydomonas
reinfardtii CC124)에서 PI3K 관련 신호전달에 관여하는 PI3K catalytic subunit type 3 단백질을 코딩하는 VPS34 유전자의 발현을 억제하기 위하여 VPS34 유전자에 대한 siRNA를 코딩하는 폴리뉴클레오티드를 포함하는 발현벡터가 도입된, 변이주 미세조류인 T411 균주를 제작하였다. 상기 야생형 미세조류(W)와 변이주 미세조류(T411)를 각각 질소 공급배지(+N) 또는 질소 결핍배지(-N)에서 배양한 다음, 상기 실시예 1의 방법으로 형광염색하고, 그 결과를 공초점 현미경으로 확인하였다(도 2). Chlamydomonas of the genus Chlamydomonas mutant microalgae incorporating an expression vector comprising a polynucleotide encoding siRNA for the VPS34 gene in order to inhibit expression of the VPS34 gene encoding PI3K catalytic subunit type 3 protein involved in PI3K related signaling in reinfardtii CC124) T411 strain was prepared. The wild-type microalgae (W) and the mutant microalgae (T411) were incubated in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N), respectively, and then fluorescently stained by the method of Example 1, and the results were obtained. Confirmed by confocal microscopy (FIG. 2).
도 2는 클라미도모나스 속 미세조류의 야생형 균주와 VPS34 유전자의 발현이 억제된 변이주를 질소 공급배지(+N) 또는 질소 결핍배지(-N)에서 배양한 경우, 지방구의 생성능을 비교한 결과를 나타내는 현미경 사진으로서, WT은 자가포식이 유도된 야생형 미세조류를 나타내고, T411은 VPS34 유전자의 발현이 억제된 변이주 미세조류를 나타낸다. 도 2에서 보듯이, 질소 공급배지에서 배양된 경우에는 야생형 미세조류와 변이주 미세조류 모두 지질의 생성이 억제되었으나, 질소 결핍배지에서 배양된 경우에는 야생형 미세조류와 변이주 미세조류 모두 지질의 생성이 증가되었으며, 야생형 미세조류에 비하여 변이주 미세조류에서 지질의 생성량이 현저히 증가됨을 확인하였다.Figure 2 shows the results of comparing the production ability of fat globules when the wild type strain of Chlamydomonas microalgae and the mutant strains in which the expression of the VPS34 gene was suppressed were cultured in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N). As a micrograph showing, WT indicates wild-type microalgae in which autophagy was induced, and T411 indicates mutant microalgae in which expression of the VPS34 gene was suppressed. As shown in Figure 2, when cultured in a nitrogen supply medium, the production of lipids in both wild-type microalgae and mutant microalgae was inhibited, but when cultured in nitrogen-deficient medium, the production of lipids is increased in both wild-type microalgae and mutant microalgae It was confirmed that the amount of lipid production was significantly increased in mutant microalgae compared to wild-type microalgae.
실시예Example
2-2: 2-2:
VPS34VPS34
유전자 발현이 억제된 변이주 미세조류의 세포 특성 분석 Cellular Characterization of Mutant Microalgae with Inhibited Gene Expression
상기 실시예 2-1에서 제작된 변이주 미세조류의 특성을 분석하기 위하여, 야생형 미세조류 또는 VPS34 유전자에 대한 siRNA를 코딩하는 폴리뉴클레오티드를 포함하지 않는 빈 발현벡터가 도입된 형질전환 미세조류(Mock)과 다양한 세포특성(세포수, 세포크기, 세포 종횡비, 배양물의 색, 세포의 단위건조중량당 TAG의 비율, 전분함량, 총 단백질 함량 및 단위단백질당 PI3P의 활성)을 비교하였다(도 3a 내지 도 3h).In order to analyze the characteristics of the mutant microalgae prepared in Example 2-1, a transformed microalgae (Mock) into which an empty expression vector containing no polynucleotide encoding siRNA for the wild type microalgae or VPS34 gene was introduced. And various cell characteristics (cell number, cell size, cell aspect ratio, color of culture, ratio of TAG per unit dry weight of cell, starch content, total protein content and activity of PI3P per unit protein) were compared (Fig. 3a to Fig. 3). 3h).
도 3a는 야생형 미세조류(WT), 빈 발현벡터가 도입된 형질전환 미세조류(Mock) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포수를 계수한 결과를 나타내는 그래프이다. 도 3a에서 보듯이, 변이주 미세조류는 세포증식이 억제되어, 상대적으로 적은 수의 세포를 생성함을 확인하였다.Figure 3a shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions at, the graph showing the results of counting the number of cells. As shown in Figure 3a, the mutant strain microalgae was inhibited cell proliferation, it was confirmed to produce a relatively small number of cells.
도 3b는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포의 크기를 비교한 결과를 나타내는 그래프이다. 도 3b에서 보듯이, 변이주 미세조류는 야생형 미세조류에 비하여 세포의 크기가 증가됨을 확인하였다.Figure 3b is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then compared the size of the cells A graph showing the results. As shown in Figure 3b, the mutant microalgae was confirmed to increase the size of the cell compared to wild-type microalgae.
도 3c는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포의 종횡비(cell aspect ratio)를 비교한 결과를 나타내는 그래프이다. 도 3c에서 보듯이, 변이주 미세조류는 야생형 미세조류에 비하여 세포의 종횡비가 낮은 값을 나타내어, 상대적으로 원형에 더욱 가까운 형태를 나타냄을 확인하였다.Figure 3c is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), then the aspect ratio of the cells (cell aspect It is a graph which shows the result of comparing ratio. As shown in Figure 3c, the mutant strain microalgae showed a lower aspect ratio of the cell than the wild-type microalgae, it was confirmed that the morphology is closer to the round shape.
도 3d는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 배양물의 색을 나타내는 사진이다. 도 3d에서 보듯이, 질소 공급배지에서 배양할 경우에는 야생형 미세조류와 변이주 미세조류 배양물의 색이 동등한 수준의 녹색을 나타내어, 광합성이 원활하게 수행됨을 나타내었으나, 질소 결핍배지에서 배양할 경우에는, 야생형 미세조류와 변이주 미세조류의 배양물에서 나타나는 녹색이 감소되었고, 변이주 미세조류의 경우에는 야생형 미세조류 보다도 녹색이 더욱 감소되어 노란색을 나타내었으므로, 질소 결핍배지에서는 미세조류의 광합성이 원활하게 수행되지 않음을 알 수 있었다.Figure 3d is a photograph showing the color of the culture after incubating the wild type microalgae (WT) or mutant microalgae (T411) under the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) to be. As shown in Figure 3d, the wild type microalgae and mutant microalgae culture when the culture in the nitrogen supply medium showed the same level of green, indicating that photosynthesis is performed smoothly, but when cultured in nitrogen-deficient medium, The green color of wild-type microalgae and mutant microalgae was reduced, and the green micro-algae of mutant microalgae showed more yellow color than wild-type microalgae. It was not known.
도 3e는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포의 단위건조중량당 트리글리세라이드(TAG)의 비율을 비교한 결과를 나타내는 그래프이다. 도 3e에서 보듯이, 변이주 미세조류는 야생형 미세조류에 비하여 TAG를 보다 높은 수준으로 생성하고, 이러한 특징은 질소 결핍배지에서 배양할 경우 더욱 현저히 나타남을 확인하였다.Figure 3e is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then per unit dry weight of cells It is a graph which shows the result of comparing the ratio of triglyceride (TAG). As shown in Figure 3e, mutant microalgae produced higher levels of TAG than wild-type microalgae, it was confirmed that this feature is more marked when cultured in nitrogen deficient medium.
도 3f는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포내 전분의 함량을 비교한 결과를 나타내는 그래프이다. 도 3f에서 보듯이, 변이주 미세조류는 야생형 미세조류에 비하여 세포내 전분함량이 보다 높은 수준을 나타내고, 이러한 특징은 질소 결핍배지에서 배양할 경우 더욱 현저히 나타남을 확인하였다.Figure 3f is a wild type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficient medium ((-) N), and then the content of intracellular starch It is a graph showing the result of the comparison. As shown in Figure 3f, mutant microalgae showed higher levels of intracellular starch compared to wild-type microalgae, it was confirmed that this feature is more marked when cultured in nitrogen deficient medium.
도 3g는 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 세포내 총 단백질의 함량을 비교한 결과를 나타내는 그래프이다. 도 3g에서 보듯이, 질소 공급배지에서 배양한 경우에는 변이주 미세조류가 야생형 미세조류에 비하여 상대적으로 총 단백질 함량이 높은 수준을 나타내었으나, 질소 결핍배지에서 배양한 경우에는, 변이주 미세조류와 야생형 미세조류내 총 단백질의 함량이 동등한 수준을 나타냄을 확인하였다.Figure 3g is a wild-type microalgae (WT) or mutant microalgae (T411) incubated in the same conditions in nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N), the content of total protein in cells It is a graph showing the result of comparing. As shown in Figure 3g, the mutant microalgae showed a higher total protein content than the wild-type microalgae when cultured in a nitrogen supply medium, but the mutant microalgae and wild-type microalgae when cultured in a nitrogen-deficient medium. It was confirmed that the total protein content in the algae showed an equivalent level.
도 3h는 야생형 미세조류(WT), 빈 발현벡터가 도입된 형질전환 미세조류(Mock) 또는 변이주 미세조류(T411)를 질소 공급배지((+)N) 또는 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 단백질 단위 중량당 PI3P의 활성을 비교한 결과를 나타내는 그래프이다. 도 3h에서 보듯이, 전체적으로 질소 공급배지에서 배양한 경우보다는 질소 결핍배지에서 배양한 경우에, PI3P의 활성이 높은 수준을 나타내었고, 변이주 미세조류 보다는 야생형 미세조류에서 PI3P의 활성이 높은 수준을 나타냄을 확인하였다.Figure 3h shows a wild-type microalgae (WT), transformed microalgae (Mock) or mutant microalgae (T411) introduced with an empty expression vector nitrogen supply medium ((+) N) or nitrogen deficiency medium ((-) N) After culturing under the same conditions, the graph shows the result of comparing the activity of PI3P per unit weight of protein. As shown in FIG. 3h, the PI3P activity was higher when cultured in nitrogen deficient medium than when cultured in nitrogen supply medium, and the activity of PI3P was higher in wild type microalgae than in mutant microalgae. It was confirmed.
실시예Example
2-3: 2-3:
VPS34VPS34
유전자 발현이 억제된 변이주 미세조류의 구조적 특성 분석 Structural Characterization of Mutant Microalgae with Inhibited Gene Expression
상기 실시예 2-1에서 제작된 변이주 미세조류의 구조적 특성을 분석하기 위하여, 야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, 투과전자현미경(TEM)으로 세포내 구조를 분석한 후, 비교하였다(도 4a 및 4b). To analyze the structural characteristics of the mutant microalgae prepared in Example 2-1, wild-type microalgae (WT) or mutant microalgae (T411) were cultured under the same conditions in nitrogen-deficient medium ((-) N). Intracellular structure was analyzed by transmission electron microscopy (TEM), and then compared (FIGS. 4A and 4B).
도 4a는 야생형 미세조류(WT)를 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, TEM 분석을 수행하여 세포내 구조를 분석한 결과는 나타내는 전자현미경 사진으로서, A는 자가소화포(autophagosome) 유사구조체를 나타내고, L은 지방구를 나타내며, S는 전분을 나타내고, V는 액포를 나타낸다. 또한, 도 4b는 변이주 미세조류(T411)를 질소 결핍배지((-)N)에서 동일조건으로 배양한 다음, TEM 분석을 수행하여 세포내 구조를 분석한 결과는 나타내는 전자현미경 사진이다. 도 4a 및 4b에서 보듯이, 자가소화포 유사구조체는 야생형 미세조류에서만 관찰되었고, 변이주 미세조류에서는 관찰되지 않았으며, 지방구와 전분은 액포내에 존재함을 확인하였다.4A is an electron micrograph showing the results of analyzing the intracellular structure of the wild-type microalgae (WT) in nitrogen-deficient medium ((-) N) under the same conditions, and then performing TEM analysis, where A is self-extinguishing Represents an autophagosome analogous structure, L represents fat globules, S represents starch, and V represents vacuoles. In addition, Figure 4b is a microscopic microalgae (T411) cultured in nitrogen deficient medium ((-) N) under the same conditions, and then carried out TEM analysis to analyze the intracellular structure is an electron micrograph showing the results. As shown in Figures 4a and 4b, autodigestion-like structures were observed only in wild-type microalgae, not in mutant microalgae, and it was confirmed that fat globules and starch exist in vacuoles.
실시예Example
2-4: 2-4:
전사체Transcript
분석 analysis
상기 실시예 2-1에서 제작된 변이주 미세조류 또는 야생형 미세조류; 질소 공급배지 또는 질소 결핍배지에서의 배양; 및 자가소화포(autophagosome) 생성억제제인 라파마이신(rapamycin)의 처리여부의 3가지 조건을 상호 조합하여 각각의 배양물을 수득하고, 상기 수득한 각 배양물을 대상으로 일반 배양시보다도 2배 이상 발현수준이 증가된 전사체(transcript)를 분석하였다(도 5a 내지 5e).Mutant microalgae or wild-type microalgae prepared in Example 2-1; Culture in nitrogen feed or nitrogen deficient medium; And a combination of three conditions of treatment of rapamycin, an autophagosome production inhibitor, with each other to obtain respective cultures. Transcripts with increased expression levels were analyzed (FIGS. 5A-5E).
도 5a는 질소 공급배지에서 배양된 변이주 미세조류 또는 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다. 도 5a에서 보듯이, 질소 공급배지에서 배양된 변이주 미세조류에서는 2,136개의 전사체가 2배 이상 발현이 증가되었고, 질소 공급배지에서 배양된 야생형 미세조류에서는 2,544개의 전사체가 2배 이상 발현이 증가되었으며, 13,061개의 전사체는 2배 이상 발현이 증가되지 않음을 확인하였다.Figure 5a is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen supply medium. As shown in Figure 5a, 2,136 transcripts were increased more than 2 times in mutant microalgae cultured in nitrogen supply medium, 2,544 transcripts increased more than 2 times in wild-type microalgae cultured in nitrogen supply medium, It was confirmed that 13,061 transcripts did not increase expression more than two-fold.
도 5b는 라파마이신을 포함하는 질소 공급배지에서 배양된 변이주 미세조류 또는 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다. 도 5b에서 보듯이, 라파마이신을 포함하는 질소 공급배지에서 배양된 변이주 미세조류에서는 1,331개의 전사체가 2배 이상 발현이 증가되었고, 라파마이신을 포함하는 질소 공급배지에서 배양된 야생형 미세조류에서는 1,171개의 전사체가 2배 이상 발현이 증가되었으며, 15,239개의 전사체는 2배 이상 발현이 증가되지 않음을 확인하였다.Figure 5b is a diagram showing the results of analyzing the transcripts increased expression more than two times in mutant microalgae or wild-type microalgae cultured in a nitrogen feed medium containing rapamycin. As shown in Figure 5b, the mutant microalgae cultured in a nitrogen feed medium containing rapamycin increased expression more than 1,331 transcripts, 1,171 in wild-type microalgae cultured in a nitrogen feed medium containing rapamycin It was confirmed that the expression of transcripts increased more than two times, and that of 15,239 transcripts did not increase expression more than two times.
도 5c는 질소 결핍배지에서 배양된 변이주 미세조류 또는 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다. 도 5c에서 보듯이, 질소 결핍배지에서 배양된 변이주 미세조류에서 3,274개의 전사체가 2배 이상 발현이 증가되었고, 질소 결핍배지에서 배양된 야생형 미세조류에서 3,104개의 전사체가 2배 이상 발현이 증가되었으며, 11,363개의 전사체는 2배 이상 발현이 증가되지 않음을 확인하였다.Figure 5c is a diagram showing the results of analysis of transcripts with increased expression more than two times in mutant microalgae or wild-type microalgae cultured in nitrogen deficient medium. As shown in Figure 5c, 3,274 transcripts were more than two-fold increased in mutant microalgae cultured in nitrogen-deficient medium, 3,104 transcripts were increased more than two-fold in wild-type microalgae cultured in nitrogen-deficient medium, 11,363 transcripts confirmed no increase in expression more than two-fold.
도 5d는 질소 결핍배지, 질소 공급배지 및 라파마이신이 포함된 질소 공급배지에서 배양된 야생형 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이고, 도 5e는 질소 결핍배지, 질소 공급배지 및 라파마이신이 포함된 질소 공급배지에서 배양된 변이주 미세조류에서 2배 이상 발현이 증가된 전사체를 분석한 결과를 나타내는 다이어그램이다. 도 5d 및 5e에서 보듯이, 동일한 조건에서 배양한 경우, 야생형 미세조류에 비하여 변이주 미세조류는 질소의 공급에 의하여 2배 이상 발현이 증가된 전사체의 수가 다소 증가하고, 질소가 공급되지 않은 경우에는 2배 이상 발현이 증가된 전사체의 수가 대폭 감소하였으나, 질소가 공급되더라도 라파마이신이 처리된 경우에는 2배 이상 발현이 증가된 전사체의 수가 현저히 감소됨을 확인하였다.Figure 5d is a diagram showing the results of analysis of transcripts with increased expression more than two-fold in wild-type microalgae cultured in nitrogen-deficient medium, nitrogen supply medium and rapamycin-containing nitrogen medium, Figure 5e is a nitrogen deficient medium This diagram shows the results of analysis of transcripts with increased expression more than two-fold in mutant microalgae cultured in nitrogen feed medium containing nitrogen, nitrogen feed medium and rapamycin. As shown in Figure 5d and 5e, when cultured under the same conditions, compared to wild-type microalgae, mutant microalgae slightly increased the number of transcripts increased more than two times by the supply of nitrogen, when nitrogen is not supplied Although the number of transcripts with increased expression more than two times was significantly reduced, it was confirmed that even when nitrogen was supplied, the number of transcripts with increased expression more than two times was significantly reduced when rapamycin was treated.
실시예Example
3: 3:
히트맵Heatmap
(Heat map) 분석(Heat map) analysis
야생형 미세조류(WT) 또는 변이주 미세조류(T411)를 질소 공급배지(+N) 또는 질소 결핍배지(-N)에서 서로 동일한 조건으로 배양한 다음, 자가포식 조절과정에 관여하는 유전자(AMPK, ATG1, ATG12, ATG3, ATG4, ATG5, ATG7, ATG8, Cre02.g076900.v5.5, Cre10.g443550.v5.5 및 Cre16.g669800.v5.5), PI3K 서브유닛(VPS15, VPS30 및 VPS34) 및 중성지방(TAG) 합성에 관여하는 유전자(DGAT1, DGK, DGTT1, DGTT3, DGTT4 및 DGTT5)의 발현수준 변화를 히트맵 분석을 통해 확인하였다(도 6a 및 6b).Wild-type microalgae (WT) or mutant microalgae (T411) were cultured under the same conditions in nitrogen supply medium (+ N) or nitrogen deficiency medium (-N), and then the genes involved in autophagy regulation (AMPK, ATG1). , ATG12, ATG3, ATG4, ATG5, ATG7, ATG8, Cre02.g076900.v5.5, Cre10.g443550.v5.5 and Cre16.g669800.v5.5), PI3K subunits (VPS15, VPS30 and VPS34) and neutral Changes in expression levels of genes involved in fat (TAG) synthesis (DGAT1, DGK, DGTT1, DGTT3, DGTT4 and DGTT5) were confirmed by heat map analysis (FIGS. 6A and 6B).
도 6a는 야생형 균주와 VPS34 유전자 발현억제 균주를 대상으로, 자가포식 유도에 따른 자가포식 조절과정에 관여하는 유전자의 발현수준 변화를 나타내는 히트맵 분석결과이다. 도 6a에서 보듯이, 자가포식 조절과정에 관여하는 유전자는 질소 결핍배지(-N)에서 배양할 경우, 야생형 미세조류(WT) 보다는 변이주 미세조류(T411)가 전체적으로 발현수준이 감소됨을 확인하였다. 특히, 자가포식 조절과정의 시작 단계에 작용하는 ATG1 및 ATG3 유전자는 매우 낮은 수준으로 발현수준이 감소됨을 확인하였다. 뿐만 아니라, PI3K 서브유닛(VPS15, VPS30 및 VPS34)의 발현수준 역시 낮은 수준을 나타내었다.Figure 6a is a heat map analysis of the expression level of the genes involved in the autophagy regulation process according to the autophagy induction in the wild-type strain and VPS34 gene expression inhibitory strain. As shown in Figure 6a, when the gene involved in the autophagy regulation process was cultured in nitrogen deficient medium (-N), it was confirmed that the expression level of the mutant microalgae (T411) as a whole rather than the wild-type microalgae (WT). In particular, it was confirmed that the expression levels of ATG1 and ATG3 genes acting at the beginning of autophagy regulation were reduced to very low levels. In addition, the expression levels of the PI3K subunits (VPS15, VPS30 and VPS34) also showed low levels.
상기 결과로부터, 변이주 미세조류(T411)를 질소 결핍배지(-N)에서 배양할 경우, 자가 포식과정 및 이에 관여하는 자가소화포(autophagosome)의 형성이 야생형 균주에 비하여 억제될 것으로 분석되었다.From the above results, it was analyzed that when the mutant microalgae (T411) were cultured in a nitrogen deficient medium (-N), autophagy and autophagosome formation involved therein were inhibited as compared to wild-type strains.
도 6b는 야생형 균주와 VPS34 유전자 발현억제 균주를 대상으로, 자가포식 유도에 따른 중성지방(TAG) 합성에 관여하는 유전자의 발현수준 변화를 나타내는 히트맵 분석결과이다. 도 6b에서 보듯이, 중성지방(TAG) 합성에 관여하는 유전자는 질소 결핍배지(-N)에서 배양할 경우, 야생형 미세조류(WT) 보다는 변이주 미세조류(T411)가 전체적으로 발현수준이 증가됨을 확인하였다. Figure 6b is a heat map analysis of the expression level of the gene involved in the synthesis of triglycerides (TAG) according to autophagy induction in wild-type strains and VPS34 gene expression inhibitory strain. As shown in Figure 6b, the gene involved in the synthesis of triglycerides (TAG) is confirmed that when the strain is cultured in nitrogen deficient medium (-N), the expression level of mutant microalgae (T411) as a whole rather than wild-type microalgae (WT) is increased as a whole It was.
상기 결과를 종합하면, PI3K의 발현을 억제하는 균주는 자가포식이 유도된 경우에, 중성지방의 합성량이 증가함과 동시에 중성지방의 분해에 관여하는 자가소화포의 형성이 억제되어 자가포식과정이 억제됨으로써, 야생형 균주에 비하여 지질의 함량이 증가함을 알 수 있었다.Taken together, the strains that inhibit the expression of PI3K, when autophagy is induced, increase the synthesis amount of triglycerides and inhibit the formation of autodigestive vesicles involved in the degradation of triglycerides. By suppressing, it was found that the lipid content was increased compared to the wild type strain.
Claims (12)
- 미세조류를 자가포식 유도조건에서 배양하면서 자가포식을 억제하는 단계를 포함하는, 지질 및 전분함량이 증대된 미세조류의 제조방법.A method for producing microalgae with increased lipid and starch content, comprising the step of inhibiting autophagy while culturing the microalgae under autophagy induction conditions.
- 제1항에 있어서,The method of claim 1,상기 미세조류는 클로렐라 속 미세조류, 스티제오클로니움 속 미세조류 또는 클라미도모나스 속 미세조류인 것인 방법.The microalgae is a microalgae of the genus Chlorella, microalgae of the genus Styreclonium or microalgae of the genus Chlamydomonas.
- 제1항에 있어서,The method of claim 1,상기 자가포식 유도조건은 질소원의 결핍인 것인 방법.Wherein said autophagy induction condition is a lack of a nitrogen source.
- 제1항에 있어서,The method of claim 1,상기 자가포식의 억제는 자가포식 저해제를 처리하여 수행하거나 또는 미세조류내 자가포식 과정에 관여하는 PI3K 관련 신호전달이 억제된 변이주 미세조류를 사용하여 수행하는 것인 방법.Inhibition of autophagy is carried out by treating a autophagy inhibitor or by using a mutant microalgae in which PI3K related signaling is involved in the microalgae autophagy process.
- 제4항에 있어서,The method of claim 4, wherein상기 자가포식 저해제는 와트마닌(wortammanin)인 것인 방법.Wherein said autophagy inhibitor is wormmanin.
- 제4항에 있어서,The method of claim 4, wherein상기 변이주 미세조류는 PI3K 관련 신호전달에 관여하는 PI3K 촉매 서브유닛 제3형(PI3K catalytic subunit type 3) 단백질의 발현이 억제된 미세조류인 것인 방법.The mutant microalgae is a microalgae in which the expression of the PI3K catalytic subunit type 3 protein involved in PI3K related signaling is suppressed.
- 제6항에 있어서,The method of claim 6,상기 PI3K 촉매 서브유닛 제3형(PI3K catalytic subunit type 3) 단백질의 발현억제는 미세조류에 VPS34 유전자에 대한 siRNA를 처리하여 수행되는 것인 방법.Expression inhibition of the PI3K catalytic subunit type 3 (PI3K catalytic subunit type 3) protein is a method that is carried out by treating the microalgae siRNA for the VPS34 gene.
- 제7항에 있어서,The method of claim 7, wherein상기 siRNA는 서열번호 1 및 2의 염기서열로 구성되는 것인 방법.The siRNA is composed of the nucleotide sequence of SEQ ID NO: 1 and 2.
- 제1항 내지 제8항 중 어느 한 항의 방법으로 제조되어, 자가포식이 억제되지 않은 야생형 미세조류에 비하여, 균체내 지질 및 전분함량이 증대된 미세조류.A microalgae prepared by the method of any one of claims 1 to 8, wherein the microalgae have an increased content of lipids and starch in the cells compared to wild-type microalgae in which autophagy is not inhibited.
- 제9항의 균체내 지질 및 전분함량이 증대된 미세조류를 포함하는 바이오매스.A biomass comprising microalgae with increased lipid and starch content of the cells of claim 9.
- 제10항의 바이오매스를 이용하여 바이오디젤을 제조하는 방법.A method for preparing biodiesel using the biomass of claim 10.
- 제11항의 방법으로 제조된 바이오디젤.Biodiesel prepared by the method of claim 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0123492 | 2015-09-01 | ||
KR1020150123492A KR101776862B1 (en) | 2015-09-01 | 2015-09-01 | Process for preparing microalgae inhibiting autophagy and comprising increased lipid and starch contents |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017039344A1 true WO2017039344A1 (en) | 2017-03-09 |
Family
ID=58187930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009774 WO2017039344A1 (en) | 2015-09-01 | 2016-09-01 | Method for producing microalgae of which autophagy is inhibited and amounts of starch and lipids are increased |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101776862B1 (en) |
WO (1) | WO2017039344A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8802923B2 (en) * | 2008-04-10 | 2014-08-12 | A.B. Seeds Ltd. | Compositions and methods for enhancing oil content in plants |
WO2015111075A2 (en) * | 2014-01-10 | 2015-07-30 | Reliance Industries Limited | Method of increasing biomass and lipid content in a micro-organism and a genetically modified micro-organism exhibiting enhanced autophagy |
-
2015
- 2015-09-01 KR KR1020150123492A patent/KR101776862B1/en active IP Right Grant
-
2016
- 2016-09-01 WO PCT/KR2016/009774 patent/WO2017039344A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8802923B2 (en) * | 2008-04-10 | 2014-08-12 | A.B. Seeds Ltd. | Compositions and methods for enhancing oil content in plants |
WO2015111075A2 (en) * | 2014-01-10 | 2015-07-30 | Reliance Industries Limited | Method of increasing biomass and lipid content in a micro-organism and a genetically modified micro-organism exhibiting enhanced autophagy |
Non-Patent Citations (4)
Title |
---|
BASSHAM, DIANE C. ET AL.: "Autophagy in Plants and Algae", FRONTIERS IN PLANT SCIENCE, vol. 5, no. 679, 1 December 2014 (2014-12-01), pages 1 - 2, XP055373568 * |
JIANG, QIAO ET AL.: "Analysis of Autophagy Genes in Microalgae: Chlorella as a Potential Model to Study Mechanism of Autophagy", PLOS ONE, vol. 7, no. 7, 27 July 2012 (2012-07-27), pages e41826, XP055373563 * |
WANG, ZI TENG ET AL.: "Algal Lipid Bodies: Stress Induction, Purification, and Biochemical Characterization in Wild-type and Starchless Chlamydomonas Reinhardtii", EUKARYOTIC CELL, vol. 8, no. 12, 2009, pages 1856 - 1868, XP002567795 * |
ZHAO, LI ET AL.: "Autophagy-like Processes Are Involved in Lipid Droplet Degradation in Auxenochlorella Protothecoides during the Heterotrophy-autotrophy Transition", FRONTIERS IN PLANT SCIENCE, vol. 5, 14 August 2014 (2014-08-14), pages 1 - 12, XP055373565 * |
Also Published As
Publication number | Publication date |
---|---|
KR20170027058A (en) | 2017-03-09 |
KR101776862B1 (en) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
de Morais et al. | Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide | |
Babitha et al. | Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures | |
Kitcha et al. | Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy | |
WO2011139040A2 (en) | Novel thraustochytrid-based microalgae, and method for preparing bio-oil by using same | |
EP2664674B1 (en) | Method for the production of bioproducts | |
KR101351281B1 (en) | Microalgae Chlamydomonas strain high-producing lipid isolated from arctic ocean and uses thereof | |
Mondal et al. | Biochemical responses to bicarbonate supplementation on biomass and lipid productivity of Chlorella sp. BTA9031 isolated from coalmine area | |
KR101575208B1 (en) | Microalgae Chlorella strain high-producing starch and lipid isolated from arctic ocean and uses thereof | |
KR101777217B1 (en) | Microalgae Schizochytrium sp. SH103 strain producing bio-oil containing high concentration of DHA and uses thereof | |
Veza et al. | Microalgae and macroalgae for third-generation bioethanol production | |
da Silva Ferreira et al. | The effect of physicochemical conditions and nutrient sources on maximizing the growth and lipid productivity of green microalgae | |
Teo et al. | Effect of different light wavelength on the growth of marine microalgae | |
KR102020144B1 (en) | Auxenochlorella protothecoides MM0011 and use thereof | |
Puangbut et al. | Integrated cultivation technique for microbial lipid production by photosynthetic microalgae and locally oleaginous yeast | |
CN106480155B (en) | Method suitable for promoting haematococcus pluvialis to produce astaxanthin under high-temperature condition | |
WO2017039344A1 (en) | Method for producing microalgae of which autophagy is inhibited and amounts of starch and lipids are increased | |
KR101849271B1 (en) | Novel Chlorella vulgaris KNUA027 strain and processes for preparing fatty acid or hydrocarbon using the same | |
Akbarnejad et al. | Effect of light and nitrogen concentration on the growth and lipid content of marine diatom, Chaetoceros calcitrans | |
US9441252B2 (en) | Process for producing lipids suitable for biofuels | |
KR101743232B1 (en) | Microalgae comprising increased lipid contents using salt stress and process for preparing the same | |
WO2015088127A1 (en) | Method for preparing microalgae with increased lipid content | |
KR101406039B1 (en) | Novel Microalgae Nostoc sp. KNUA003 and method for producing alkane, fatty alcohol, and fatty acid from the same | |
WO2024228564A1 (en) | White microalgae strain with restricted pigment biosynthesis, method for producing useful substances from same, and composition comprising same | |
KR101625074B1 (en) | Microalgae comprising increased lipid contents using oxidative stress and process for preparing the same | |
Yasmine et al. | Cultivation of marine microalga Nannochloropsis gaditana under various temperatures and nitrogen treatments: effect on growth, lipid and pigment content |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16842310 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16842310 Country of ref document: EP Kind code of ref document: A1 |