WO2015088127A1 - Method for preparing microalgae with increased lipid content - Google Patents
Method for preparing microalgae with increased lipid content Download PDFInfo
- Publication number
- WO2015088127A1 WO2015088127A1 PCT/KR2014/008536 KR2014008536W WO2015088127A1 WO 2015088127 A1 WO2015088127 A1 WO 2015088127A1 KR 2014008536 W KR2014008536 W KR 2014008536W WO 2015088127 A1 WO2015088127 A1 WO 2015088127A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microalgae
- lipid content
- strain
- cells
- chlorella
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6436—Fatty acid esters
- C12P7/6445—Glycerides
- C12P7/6463—Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a method for producing microalgae with an increased lipid content, and more particularly, the present invention relates to a method for producing a microalgae with increased lipid content in cells, comprising culturing the microalgae under stress conditions.
- Biodiesel is produced by conversion into methyl ester or ethyl ester form by the transesterification process of fatty acid contained in biomass, and has a flash point of 150 °C, which is less than diesel. It does not stick well and is classified as a non-flammable liquid because it is more stable than gasoline (45 ° C.), which is highly volatile at low temperatures, and is more stable because it catches fire at high temperatures.
- gasoline 45 ° C.
- biodiesel is known to have low emissions of carcinogens and mutations when burned, and other emissions are known to have significantly lower nontoxic energy.
- Such biodiesel is known to be biologically produced using microalgae.
- Microalgae have 25 times higher efficiency of solar energy than plants, so they are used for feed or fertilizer.
- Spirulina sp. Chlorella sp.
- Dunaliella sp. Nostoc sp. Is also used as a health food.
- the microalgae have excellent solar energy utilization efficiency, the microalgae having a high lipid content can be used as biomass for the production of biodiesel.
- Such microalgae with excellent lipid content are known as Botryococcus sp. And Schiochytrium sp.
- the microalgae do not have high lipid content in normal living conditions, but nutrient supply is stopped.
- the microalgae may be used as a biomass for the production of biodiesel using such characteristics, but in order to increase the lipid content of the microalgae, the first step of culturing and growing the microalgae and the expanded microalgae In order to stop the supply of nutrients and incubate for a certain period of time to increase the lipid content in the cells, a second step is required. Since the second step requires excessive time, it is not yet used for industrial production of biodiesel. Development of microalgae with excellent lipid content for the production of biodiesel is urgently needed.
- the present inventors have diligently researched to develop microalgae having a high lipid content, and thus, when microalgae are cultured under stress conditions, their lipid content is increased, and thus, the microalgae with increased lipid content are produced for biodiesel production. It was confirmed that it can be used as biomass, the present invention was completed.
- One object of the present invention is to provide a method for producing microalgae with increased lipid content in cells.
- Another object of the present invention is to provide a microalgae with increased lipid content in the cells produced by the above method.
- Still another object of the present invention is to provide a biomass including microalgae with increased lipid content in cells.
- Still another object of the present invention is to provide a method for preparing biodiesel using the biomass.
- Another object of the present invention is to provide a biodiesel produced by the above method.
- Still another object of the present invention is to provide a microalgae having an increased lipid content for producing the biodiesel.
- microalgae with increased lipid content in cells By using the method of the present invention, it is possible to produce microalgae with increased lipid content in cells while showing high productivity per hour, and the prepared microalgae with increased lipid content in cells are biomass for the production of biodiesel. As it can be used, it can be widely used for economic production of biodiesel.
- FIG. 1A is a TEM photograph showing the inside of cells of chlorella soroquinia or HS strain cultured in BG11 medium containing no salt
- FIG. 1B is a chlorella soroquinia or HS strain cultured in BG11 medium containing salt.
- TEM image showing the inside of the cell.
- Figure 2 is a graph showing the change in lipid content of the mycelia of Chlorella Sorokonia or HS strain according to the concentration of salts contained in the medium.
- Figure 3 is a graph showing the composition of lipids in cells of chlorella sorokinia or HS strain cultured under various salt stress conditions.
- FIG. 5 shows chlorella sorokiniana or HS strains cultured in a salt-free medium, 0, 6, in BG11 medium containing 0, 1, 3, 5, 7, 10 or 15% (w / v) NaCl. After culturing for 24 or 30 hours, it is a fluorescence micrograph showing the result of performing Nile red staining on the cultured Chlorella Sorokonia or HS strain.
- FIG. 6 is a graph showing the change in lipid content in cells over time after the addition of hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium not containing hydrogen peroxide as an oxidizing agent.
- FIG. 7 is a micrograph showing changes in lipid content in cells over time after oxidative stress was added by adding hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium without hydrogen peroxide as an oxidizing agent.
- FIG. 10 shows HS strains of the genus Stizelonium incubated for 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide, It is a graph showing the results of analyzing the lipid content in these cells in HS strains.
- FIG. 11 is incubated with 0, 1, 3, 5, 10, 15, or 20 mM BG11 medium containing 0, 1, 3, 5, 10, 15, or 20 mM hydrogen peroxide for 0, 6, 12, or 24 hours, and the cultured Stizeoclo Fluorescence micrograph showing the result of performing Nile red staining on the HS strain of the genus.
- the present inventors have been paying attention to a method of culturing the microalgae under stress conditions while performing various studies to develop microalgae having a high lipid content for the production of biodiesel.
- the microalgae that can survive in various stress conditions are given a stress condition, while reducing the number of cells by inhibiting the growth of the cells, increasing the volume of the cells themselves, external stress Increasing the resistance to the condition ultimately increases the viability, which is expected to increase the content of lipids in the cells as a means of causing an increase in the volume of such cells.
- the microalgae were cultured under the conditions of salt stress or oxidative stress, and the lipid content contained in the cultured cells was measured. It was confirmed that the lipid content in the cells was significantly increased than that of the microalgae cultured in the environment.
- the method of culturing the microalgae for a long time under the condition that the nutrient supply is stopped the method is low productivity per hour because it takes a long time incubation time.
- the method of culturing the microalgae under the stress conditions provided by the present invention does not require a long incubation time, and thus has an advantage of better productivity per hour than the prior art.
- the microalgae excellent in the lipid content of the microbial cells prepared by the method of culturing the microalgae under stress conditions provided by the present invention can be used not only as a biomass for the production of biodiesel, but also for the economic production of biodiesel. could be utilized.
- the present invention provides a method for producing a microalgae with increased lipid content, comprising culturing the microalgae under stress conditions.
- stress condition of the present invention means a condition that can inhibit the growth of microalgae by deteriorating the culture environment of the microalgae.
- the stress condition is not particularly limited as long as it can increase the lipid content in the cell by inhibiting the growth of microalgae, but may preferably be salt stress, oxidative stress and the like.
- salt stress refers to stress applied to microalgae because salt, which is a combined product of acid and base, is excessively present in the microalgae culture environment.
- the osmotic pressure in the microalgae decreases, so that the water inside the microalgae flows out into the cultured environment, and the growth of the microalgae decreases as the concentration of the salts in the cultured environment increases. If it is above a certain level, the microalgae will die.
- the salt is added to the culture medium of the microalgae is used as a means for increasing the lipid content in the microalgal cells
- the salt is particularly limited to this as long as it can increase the content of lipids in the microalgae cells
- sodium chloride (NaCl) magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ), calcium sulfate (CaSO 4 ), potassium sulfate (K 2 SO 4 ), calcium carbonate (CaCO 3 ), brominated Magnesium (MgBr 2 ) and the like
- the addition amount of the salts is not particularly limited, but it is preferably 1 to 30% (w / v), more preferably 5 to 20% ( w / v), most preferably 10 to 15% (w / v).
- the term "oxidative stress” refers to a stress in which a high content of an oxidizing substance is present in a cell's surroundings, thereby increasing the possibility of oxidizing components such as lipids contained in the cell membrane due to the oxidizing substance. it means.
- the oxidative stress can be reduced by releasing an antioxidant which can alleviate the oxidative stress, but in vitro conditions, the antioxidant should be added artificially.
- oxidative stress when oxidative stress is added to the culture environment of microalgae such as chlorella strains, oxidative stress in the microalgae cell membranes inhibits various metabolisms such as growth and proliferation of microalgae. As the level of is increased, the growth of the microalgae decreases, and when the level is above a certain level, the microalgae are killed.
- the oxidative stress may be formed by adding an oxidizing agent to the culture environment of the microalgae, and may be interpreted as a cause for providing a herb for increasing the content of lipids in the microalgae, the oxidizing agent.
- H 2 O 2 hydrogen peroxide
- superoxide ion (0 2- ) superoxide ion (0 2- )
- hypochlorous acid (HOCl) and the like may be used alone or in combination, and the addition amount of the oxidizing agent is not particularly limited thereto, but is preferably 5 to 100 mM, more preferably 5 to 50 mM, Most preferably, it can be added to the medium of the strain of the genus Chlorella at a concentration of 5-20 mM.
- microalgae of the present invention also referred to as “phytoplankton” refers to a unicellular prokaryote that survives in an aquatic environment, reproduces with spores, and photosynthesizes with photosynthetic pigments.
- the microalgae is not particularly limited as long as it can accumulate lipids in the cells while living in a stress environment, but preferably may be a strain of the genus Chlorella, the strain of the genus Stizelonium, and the like.
- Advantageously chlorella Thoreau Kearney Ana HS strain chlorella sorokiniana HS (KCTC 12171BP ), chlorella vulgaris OW-01 strain (chlorella vulgaris OW-01) ( KCTC 12553BP), styryl fifth claw nium in HS strain (Stigeoclonium sp. HS) ( KCTC 12676BP).
- Chlorella sorochiniana HS strain provided by the present invention means a strain deposited with the accession number KCTC 12171BP to the Korea Biotechnology Center (Korean Collection for Type Culture) as of March 21, 2012.
- Chlorella vulgaris OW-01 strain provided by the present invention means a strain deposited with the accession number KCTC 12553BP to the Korea Collection for Type Culture (Korea Biotechnology Research Institute) on February 11, 2014.
- HS strain of the genus styeoclonium provided by the present invention means a strain deposited with the accession number KCTC 12676BP to the Korea Biotechnology Center (Korean Collection for Type Culture) on September 12, 2014.
- culture refers to a series of actions for growing microorganisms under appropriately artificially controlled environmental conditions.
- the culturing may be interpreted to mean a method of culturing microalgae, the culturing method may be performed using a method well known in the art. Specifically, the culturing may be performed continuously in a batch process or in a fed batch or repeated fed batch process.
- Carbon sources that can be used are mainly CO 2 and carbonate, and mixed sugars of glucose and xylose may be used as the carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch, cellulose, and soybean oil Oils such as sunflower oil, castor oil, coconut oil and the like, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid.
- Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination.
- the medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts.
- Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
- potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
- sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used.
- essential growth substances such as amino acids and vitamins can be used.
- microalgae as a culture medium for the NaNO 3, K 2 HPO 4, MgSO 4 .7H 2 O, CaCl 2 .2H 2 O, citric acid, Na 2 EDTA, ammonium ferric citrate, green (Ammonium ferric citrate green) , Na 2 CO 3, and trace metals solution (H 3 BO 3, MnCl 2 .4H 2 O, ZnSO 4 .7H 2 O, Na 2 MoO 4 .2H 2 O, CuSO 4 .5H 2 O, Co (NO 3) BG11 medium containing 2 .6H 2 O) can be used.
- H 3 BO 3 MnCl 2 .4H 2 O, ZnSO 4 .7H 2 O, Na 2 MoO 4 .2H 2 O, CuSO 4 .5H 2 O, Co (NO 3) BG11 medium containing 2 .6H 2 O
- antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation.
- Gas eg, air
- the temperature of the culture can usually be maintained at 20 ° C to 35 ° C, preferably 25 ° C to 30 ° C.
- the nature of the microalgae to perform photosynthesis is preferable to provide light during the cultivation, the amount of light provided and the time provided can be appropriately adjusted by those skilled in the art as needed, luminous conditions of about 50 to 100 ⁇ mole / m2 / s Can provide light.
- BG11 medium containing no salt and BG11 medium containing 3% NaCl were inoculated with Chlorella sorokinia or HS strain, cultured, and then in cells using an electron microscope (TEM).
- TEM electron microscope
- the lipid content in the cells was about 10%, the lipid content in the cells of the strain cultured in BG11 medium containing 1% of the salt was about 15%, and cultured in BG11 medium containing 2% of the salt Strain
- the lipid content in the sieve is about 25%, the lipid content in the cells of the strain cultured in BG11 medium containing 3% of the salt is about 34%, and cultured in BG11 medium containing 4% of the salt Lipid content contained in the cells of the strain was found to be about 32% (Fig. 2).
- the strain was cultured in a salt-free medium, and it was confirmed that the lipid content contained in the cells was increased even when the salt shock was added to the strain by adding salts (FIG. 4, FIG. 5 and Table 2).
- microalgae cultured in a medium containing salts increased lipid content in cells.
- the chlorella vulgaris OW-01 strain a strain of the genus Chlorella
- a medium to which hydrogen peroxide, an oxidizing agent of various concentrations, is added is added, and the change of lipid content in the strain is measured with the cultivation time.
- the lipid content in the strain was increased when the oxidizing agent was 5mM or more, and the lipid content in the strain was further increased when the oxidizing agent was 10mM or more, and thus the increased lipid content was continuously maintained.
- the maximum lipid content was about 1.7 times the lipid content of the strain cultured in the medium without oxidative stress (FIGS. 6 and 7).
- chlorella soroquinia or HS strains which are strains of other chlorella species, were cultured in a medium to which hydrogen peroxide, which is an oxidizing agent of various concentrations, was measured, and the change in lipid content in the strain was measured as a result of culturing time.
- hydrogen peroxide which is an oxidizing agent of various concentrations
- the lipid content in the strain was further increased when the oxidizing agent was treated more than 15mM.
- the increased lipid content was continuously maintained, and the maximum lipid content was given to the oxidative stress. It was confirmed that about 1.6 times the lipid content of the strain cultured in the medium (Fig. 8 and 9).
- the lipid content in the microbial cells was increased even when cultured under the condition that oxidative stress of HS strain of Stizeoclonium, which is another microalgae (FIG. 10, 11 and Table 3).
- the microalgal cultured in the medium to which oxidative stress was added increased lipid content in cells.
- the present invention provides a microalgae prepared using the above method, the lipid content in the cells is increased compared to the strain cultured without stress conditions.
- the microalgae prepared by the above method is characterized in that the lipid content in the cells is increased compared to the cells cultured in a medium containing no salts.
- a medium containing no salts For example, when culturing microalgae chlorella sorokinia or HS is cultured in a salt stressed environment, it is about 3 to 4 times, preferably about 3.4 than when cultured in a salt stressed environment. Contains three times the enhanced content of lipids.
- the lipid contained in the Chlorella Sorokini or HS is palmitate (palmitate, C16: 0), palmitate (palmitoleate, C16: 1), stearate (stearate, C18: 0), oleate (oleate, C18) : 1), linoleate (C18: 2), linolenate (C18: 3) and the like.
- palmitoleate (C16: 1) is not included in chlorella sorokinia or HS cultured in a medium containing no salts.
- palmitolate can be used as the main marker to distinguish the microalgae prepared by the method of the present invention from microalgae prepared by the conventional method.
- palmitate C16: 0
- palmitoleate C16: 1
- stearate C18: 0
- oleate C18: 1
- linoleate C18: 2
- linolenate C18: 3
- palmitate is not included in chlorella sorokinia or HS cultured in a medium that does not contain salts, and is contained only in chlorella sorokinia or HS cultured in a medium containing salts.
- concentration was increased, it was confirmed that the content of the fatty acid tended to increase (FIG. 3).
- the present invention provides a biomass comprising microalgae with increased lipid content in cells and a method for producing biodiesel using the biomass and the bio-diesel produced by the method Provide diesel.
- biomass refers to a variety of algae and plant resources produced by photosynthesis, such as trees, grasses, branches of crops, leaves, roots, fruits and the like.
- the biomass may be interpreted as microalgae, cultures containing the microalgae, culture fractions, etc., in which the lipid content in cells is increased by culturing in a medium under stress conditions, and the biomass is biodiesel It can be used as a raw material for the preparation.
- the method for producing a biodiesel of the present invention (a) obtaining a lipid component from the biomass; And (b) adding methanol to the obtained lipids and reacting under an alkali catalyst to obtain FAME (fatty acid methyl), which is biodiesel.
- FAME fatty acid methyl
- in order to increase the yield of FAME may further comprise the step of removing the reaction by-product glycerol.
- the microalgae contained in the biomass may be dried and obtained by physically crushing the microalgae, or lipid components may be extracted from the microalgae by adding an organic solvent to the biomass.
- a non-polar solvent may be used as the solvent, and preferably hexane, dimethyl sulfoxide (DMSO), dimethyl carnonate (DMC), or the like may be used.
- the lipid component obtained from the biomass is derived from the microalgae with increased lipid content in the cells provided by the present invention
- palmitate palmitate, C16: 0
- palmitoleate palmitoleate, C16: 1)
- Stearate C18: 0
- oleate C18: 1
- linoleate C18: 2
- linolenate C18: 3
- bio-diesel of the present invention broadly refers to the whole of pollution-free fuel made from vegetable oils, and narrowly to fatty acid methyl esters prepared using vegetable oils such as soybean oil as raw materials. ).
- the biodiesel can be prepared by various methods, and is usually prepared by treating methanol with an alkaline catalyst in triglycerides.
- the present invention provides the use of microalgae with increased lipid content for the production of biodiesel.
- the microalgae increased in the lipid content produced by the method of the present invention contain a large amount of lipids containing various fatty acids in the microalgal cells, it is used as a raw material (biomass) in the production of biodiesel. Can be used.
- the chlorella in BG11 medium containing no salt and BG11 medium containing 3% of salt (NaCl) was not included. Sorokonia or HS strains were inoculated, incubated and the cultures collected. At this time, the BG11 medium was prepared by mixing Stock No. 1 to Stock No. 9 disclosed in Table 1 below, specifically, per 1 L of medium, 100 ml of Stock No. 1, 10 ml of Stock No. 2, and Stock No. 3 10 ml, 10 ml of Stock No. 4, 10 ml of Stock No. 5, 10 ml of Stock No. 7, 10 ml of Stock No. 8, 10 ml of Stock No. 8 and 10 ml of excess distilled water. After that, 1 ml of Stock No. 6 was finally added to prepare.
- Table 1 Composition of BG11 Medium Stock no. Medium Volume Addition per liter One NaNO 3 15 g / l 100 ml 2 K 2 HPO 4 4.0 g / 500 ml 10 ml 3 MgSO 4 .7H 2 O 3.75 g / 500 ml 10 ml 4 CaCl 2 .2H 2 O 1.80 g / 500 ml 10 ml 5 citric acid 0.30 g / 500 ml 10 ml 6 EDTA Na 2 0.05 g / 500ml 1 ml 7 Ammonium ferric citrate green 0.30 g / 500 ml 10 ml 8 Na 2 CO 3 1.0 g / 500 ml 10 ml 9 Trace metal solution 10 ml H 3 BO 3 2.86 g / l MnCl 2 4H 2 O 1.81 g / l ZnSO 4 7H 2 O 0.22 g / l Na 2 MoO 4 2H 2 O 0.39 g / l
- Example 1-1 The culture collected in Example 1-1 was applied to an electron microscope (TEM) to confirm the intracellular changes contained in the culture (FIG. 1).
- TEM electron microscope
- FIG. 1A is a TEM photograph showing the inside of cells of chlorella soroquinia or HS strain cultured in BG11 medium containing no salt
- FIG. 1B is a chlorella soroquinia or HS strain cultured in BG11 medium containing salt.
- TEM image showing the inside of the cell.
- Chlorella Sorokonia or HS strains cultured in BG11 medium containing no salts have a size of about 2 ⁇ m, and in the cells, thylakoids, chloroplasts, pyrenoids, starch (S ) And lipids (L) were found.
- S thylakoids
- S chloroplasts
- pyrenoids starch
- L lipids
- the Chlorella sorokiniana or HS strain cultured in BG11 medium containing salts has a size of about 6 ⁇ m, and thylakoids, chloroplasts, pyrenoids, and a plurality of strains are Starch (S) and a large number of lipids (L) was found to be included. From this, when chlorella Sorokonia or HS strains were cultured in a medium containing salts, it was found that the content of starch and lipids in the cells increased, thereby increasing the cell size as a whole.
- Example 1-2 From the results of Example 1-2, it was confirmed that the chlorella soroquinia or HS strain cultured under salt stress conditions increased the size of the cells as a result of increasing the content of starch and lipids in the cells. The change in lipid content was measured.
- Figure 2 is a graph showing the change in lipid content of the mycelia of Chlorella Sorokonia or HS strain according to the concentration of salts contained in the medium.
- the lipid content contained in the cells of the strain cultured in BG11 medium containing no salt is about 10%
- lipid content contained in the cells of the strain cultured in BG11 medium containing 1% salt Is about 15%
- the lipid content contained in the cells of the strain cultured in BG11 medium containing 2% of the salt is about 25%
- Lipid content is about 34%
- the cells cultured in a medium containing 3% salt showed the highest intracellular lipid content, and the lipid content in the cells was increased by about 3.4 times as compared to the cells cultured in the medium containing no salt.
- Cells cultured in a medium containing salts showed a tendency to decrease the lipid content in the cells slightly.
- Example 1-3 The composition of each cell-derived lipid obtained in Example 1-3 was confirmed by GC analysis.
- the obtained organic solvent layer was concentrated under reduced pressure and lyophilized to obtain a lipid component, and GC analysis was performed using the obtained lipid component under the following conditions: Gas chromatograph Shimadzu GC-2010, Japan), DB-WAX (30 m, 0.25 mm) was used as the GC column, helium (30 ml / min) was used as the carrier gas, and the injection volume was 1 ⁇ l.
- the split ratio was 20: 1, and the oven condition was raised to 5 ° C. per minute up to 250 ° C. for 1 minute at 170 ° C. and maintained at 250 ° C. for 12 minutes (FIG. 3). .
- Figure 3 is a graph showing the composition of lipids in cells of chlorella sorokinia or HS strain cultured under various salt stress conditions.
- the intracellular lipids of chlorella soroquinia or HS strain are palmitate (C16: 0), palmitoleate (C16: 1), stearate (Stearate, C18: 0) as major fatty acids.
- palmitate is not included in chlorella sorokinia or HS cultured in a medium that does not contain salts, and is contained only in chlorella sorokinia or HS cultured in a medium containing salts. As the concentration was increased, it was confirmed that the content of the fatty acid tended to increase.
- Example 1-5-1 Cultivation of Strains Under Salt Stress Conditions
- Cells were obtained by culturing the Chlorella Sorokiana HS strain in BG11 medium without salts, and then the cells were obtained at various concentrations (0, 1, 3, 5, 7, 10 or 15% (w / v). Each culture was collected at 6, 12, 24 or 30 hours after inoculation into BG11 medium containing NaCl and further incubation for 30 hours.
- Example 1-3 Chlorella sorokini cultured for 6, 12, 24 or 30 hours in BG11 medium containing 0, 7, 10 or 15% (w / v) of NaCl in the culture collected in Example 1-5-1 Except for using the culture of Ana HS strain, the method of Example 1-3 was carried out to analyze the content of lipids contained in the cells of Chlorella sorokinia or HS strain cultured under salt stress conditions ( 4 and Table 2).
- Chlorella Sorokonia or HS strain increased the lipid content in the cells in proportion to the concentration and the culture time of NaCl contained in the medium, but contains more than 10% (w / v) NaCl Incubation in BG11 medium for 24 hours or more did not increase the lipid content in the cells even after the incubation time.
- the highest value of lipid content in cells obtained by culturing the Chlorella Sorokonia or HS strain in a medium containing NaCl was 38.90 obtained in a cell cultured for 30 hours in BG11 medium containing 15% (w / v) NaCl. It was found to be%.
- FIG. 5 shows chlorella sorokiniana or HS strains cultured in a salt-free medium, 0, 6, in BG11 medium containing 0, 1, 3, 5, 7, 10 or 15% (w / v) NaCl. After culturing for 24 or 30 hours, it is a fluorescence micrograph showing the result of performing Nile red staining on the cultured Chlorella Sorokonia or HS strain. As shown in Figure 5, when the content of NaCl contained in the medium was increased, the lipid content in the cells was confirmed that the Nile red staining level is increased.
- Chlorella vulgaris OW-01 strain Chlorella vulgaris OW-01
- KCTC 12553BP Chlorella Thoreau Kearney Ana HS strain
- Chlorella sorokiniana HS Chlorella sorokiniana HS
- KCTC 12171BP Chlorella sorokiniana HS
- styryl fifth claw nium in HS strain Stigeoclonium sp. HS
- the oxidative stress was added to the medium of Chlorella vulgaris OW-01 strain, and then the level of change in lipid content was measured.
- Example 2-1-1 Cultivation of Strains Under Oxidative Stress Conditions
- Chlorella vulgaris was treated with OW-01 strain (Chlorella vulgaris OW-01) ( KCTC 12553BP) , the concentration of hydrogen peroxide of inoculation, thereby oxidizing agent in BG11 medium of 0, 1, 5, 10, or 20 mM was the oxidative stress Each culture was collected at 6 and 24 hours after incubation.
- Example 2-1-1 Except for using the culture collected in Example 2-1-1, by performing the method of Example 1-3, contained in the cells of Chlorella vulgaris OW-01 strain cultured under oxidative stress conditions The content of lipids was analyzed (FIG. 6).
- FIG. 6 is a graph showing the change in lipid content in cells over time after the addition of hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium not containing hydrogen peroxide as an oxidizing agent.
- the content of the lipid contained in the strain of the control group (0mM) without addition of the oxidant is about 18.22%
- the content of lipids contained in the strain of the experimental group incubated for 24 hours with the addition of 1mM oxidant There was no difference as about 18.93%.
- the content of lipid in the strain of the experimental group incubated for 24 hours with 5 mM oxidant was about 24.23%
- the content of lipid in the strain of the experimental group incubated for 24 hours with 10 mM oxidant was 31.67%
- the content of lipid contained in the strain of the experimental group incubated for 24 hours with the addition of 20mM oxidant was confirmed that about 31.25%.
- Example 2-1-1 Except for using the culture collected in Example 2-1-1, by performing the method of Example 1-5-3, cells of Chlorella vulgaris OW-01 strain cultured under oxidative stress conditions Nile red staining analysis was performed on the subject (FIG. 7).
- FIG. 7 is a micrograph showing changes in lipid content in cells over time after oxidative stress was added by adding hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium without hydrogen peroxide as an oxidizing agent.
- oxidizing agent 0.mM
- the concentration of the oxidizing agent and the incubation time was confirmed that the number of strains displayed in yellow increases It was.
- the experimental group treated with the oxidant at a concentration of 10mM or more it was confirmed that most strains are displayed in yellow.
- Example 2-2-1 Culture of Strains under Oxidative Stress Conditions
- Chlorella sorokiniana HS strain (KCTC 12171BP) was cultured in BG11 medium without salts to obtain the cells, and then the cells were obtained at various concentrations (0, 1, 3, 5, 10). , 15 or 20 mM) was inoculated in BG11 medium containing hydrogen peroxide and further incubated for 30 hours, with each culture collected at time points 0, 6, 12, 24 or 30 hours had elapsed.
- Example 2-2-2 lipid content analysis
- Example 2-2-1 cultures of Chlorella sorokiniana or HS strains cultured for 0, 6 or 24 hours in BG11 medium containing 0, 1, 5, 10 or 20 mM hydrogen peroxide Except for using, the method of Example 1-3 was carried out to analyze the content of lipids contained in the cells of Chlorella Sorokonia or HS strain cultured under oxidative stress conditions (Fig. 8).
- the maximum value of lipid content in cells obtained by culturing the Chlorella Sorokonia or HS strain in a medium containing hydrogen peroxide was 31.67% obtained in cells cultured in BG11 medium containing 10 mM hydrogen peroxide for 24 hours.
- FIG. 9 is a chlorella sorokinina HS strain incubated for 0, 6, 24 or 30 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide, the cultured chlorella sorokinina Fluorescence micrograph showing the result of performing Nile red staining on HS strain. As shown in Figure 9, when the content of hydrogen peroxide contained in the medium was increased, the lipid content in the cells was confirmed that the Nile red staining level is increased.
- Nile red staining level due to an increase in lipid content was observed in a medium containing more than 5 mM hydrogen peroxide in the case of Chlorella Sorokonia or HS strain, and furthermore Nile red staining level in a medium containing more than 10 mM hydrogen peroxide. This did not increase.
- the difference in the Nile red staining level according to the culture time was observed.
- Chlorella sorokinia or HS strain also increased the lipid content in the cells when the oxidant content was increased in the medium. could know.
- chlorella vulgaris OW-01 strain or chlorella Sorokiana HS strain which is a chlorella strain under conditions subjected to oxidative stress, was observed from the results of Examples 2-1 and 2-2, it was confirmed that the lipid content in the cells was increased. , To determine whether the same effect in other strains than the strain of the genus Chlorella.
- Example 2-3-1 Culture of Strains under Oxidative Stress Conditions
- Stigeoclonium sp. HS (KCTC 12676BP), which belongs to the fungus, was cultured in BG11 medium without salts to obtain the cells, and then the cells were obtained at various concentrations (0, 1, Each culture was collected at 0, 6, 12, 24 or 30 hours, inoculating BG11 medium containing 3, 5, 10, 15 or 20 mM hydrogen peroxide and further incubating for 30 hours. .
- Example 2-3-1 the genus Stizeoclonium cultured for 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide Except for using the culture of the HS strain, the method of Example 1-3 was carried out to analyze the content of lipids contained in the cells of the HS strain of the genus Styreclonium cultured under oxidative stress conditions ( 10 and Table 3).
- FIG. 10 shows HS strains of the genus Stizelonium incubated for 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide, It is a graph showing the results of analyzing the lipid content in these cells in HS strains.
- HS strains of the genus Stizeoclonium increased the lipid content in the cells in proportion to the concentration of hydrogen peroxide contained in the medium and incubation time, to be cultured in BG11 medium containing more than 10 mM hydrogen peroxide In this case, it was found that the lipid content in the cells did not increase any more even after the incubation time. It can be seen that the highest value of lipid content in cells obtained by culturing the HS strain of S. zeoclonium in a medium containing hydrogen peroxide was 39.51% obtained in cells cultured in BG11 medium containing 15 mM hydrogen peroxide for 24 hours. .
- Example 2-3-1 Stizeoclo incubated for 0, 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide Nile red staining was performed on the cells of HS strain of S. zeoclonium cultured under oxidative stress conditions by performing the method of Example 1-5-3, except that a culture of the strain of S. nilium was used. Analysis was performed (FIG. 11).
- FIG. 11 is incubated with 0, 1, 3, 5, 10, 15, or 20 mM BG11 medium containing 0, 1, 3, 5, 10, 15, or 20 mM hydrogen peroxide for 0, 6, 12, or 24 hours, and the cultured Stizeoclo Fluorescence micrograph showing the result of performing Nile red staining on the HS strain of the genus. As shown in Figure 11, when the content of hydrogen peroxide contained in the medium was increased, the lipid content in the cells was confirmed that the Nile red staining level is increased.
- Nile red staining level was observed due to an increase in lipid content in a medium containing more than 1 mM hydrogen peroxide, and when incubated in a medium containing more than 10 mM hydrogen peroxide for 12 hours, Nile red was no longer present. No difference in staining levels was observed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The present invention relates to a method for preparing microalgae with an increased microalgae lipid content, the method comprising a step of culturing microalgae in stress conditions; to microalgae with an increased microalgae lipid content, prepared by the method; to a biomass comprising the microalgae; to a method for producing biodiesel using the biomass; to biodiesel produced by the method; and a use of microalgae with an increased lipid content for the production of the biodiesel. The use of the method of the present invention can prepare microalgae exhibiting high productivity per hour while increasing the lipid content in cells, and the prepared microalgae with an increased microalgae lipid content can be used as a biomass for the production of biodiesel, and thus can be widely utilized in the economical production of biodiesel.
Description
본 발명은 지질함량이 증대된 미세조류의 제조방법에 관한 것으로, 보다 구체적으로 본 발명은 스트레스 조건에서 미세조류를 배양하는 단계를 포함하는 균체내 지질함량이 증대된 미세조류의 제조방법, 상기 방법으로 제조되어 균체내 지질함량이 증대된 미세조류, 상기 미세조류를 포함하는 바이오매스, 상기 바이오매스를 이용하여 바이오디젤을 제조하는 방법, 상기 방법으로 제조된 바이오디젤 및 상기 바이오디젤의 제조를 위한 지질함량이 증대된 미세조류의 용도에 관한 것이다.The present invention relates to a method for producing microalgae with an increased lipid content, and more particularly, the present invention relates to a method for producing a microalgae with increased lipid content in cells, comprising culturing the microalgae under stress conditions. Prepared by the microalgae increased the lipid content in the cell, biomass containing the microalgae, a method for producing biodiesel using the biomass, the biodiesel produced by the method and for the production of the biodiesel It relates to the use of microalgae with increased lipid content.
최근 전세계적으로 화석에너지의 고갈과 지구온난화에 직면하여, 미국을 포함하는 선진국을 중심으로 환경 친화적인 바이오, 수소, 태양 등의 신재생에너지 활용 및 확산을 위한 정책 입안과 함께 이들 신재생에너지의 공급과 사용을 촉진하고 있다. 국내에서도 신재생에너지 개발에 많은 노력을 하고 있지만, 현재 연구단계에 머물고 있는 실정이다. 바이오 에너지는 재생가능하며, 이산화탄소를 고정함으로서 지구온난화 가속현상을 감소시킬 수 있는 장점이 있는데, 현재로서는 바이오에탄올, 바이오부탄올, 바이오디젤 등에 대한 연구가 활발하게 진행되고 있다.In the face of depletion of fossil energy and global warming all over the world in recent years, the development of new and renewable energy such as eco-friendly bio, hydrogen, solar, etc. Promoting supply and use. Although many efforts are being made to develop new and renewable energy in Korea, it is still in the research stage. Bioenergy is renewable and has the advantage of reducing global warming acceleration by fixing carbon dioxide. Currently, research on bioethanol, biobutanol, biodiesel, etc. has been actively conducted.
상기 바이오 에너지 중에서도, 가장 활발하게 연구가 진행되고 있는 것은 바이오 디젤이다. 바이오디젤은 바이오매스에 포함된 지방산(fatty acid)의 트랜스에스테르화(transesterification) 과정에 의해 메틸 에스터 또는 에틸 에스터 형태로 전환되어 생성되는데, 150℃의 인화점을 가지고 있어 경유(64℃)에 비해 불이 잘 붙지 않고, 낮은 온도에서 휘발성이 높은 휘발유(45℃)보다 안정적이기 때문에 비가연성 액체로 분류되며, 고온에서 불이 붙기 때문에 안정성이 더 높다고 할 수 있다. 또한, 경유와 달리 바이오디젤은 연소될때 발암물질 및 돌연변이를 일으키는 유해 가스 방출량이 적으며 기타 배출물이 현적하게 낮은 비독성 에너지로 알려져 있다. Among the bioenergy, the most active research is biodiesel. Biodiesel is produced by conversion into methyl ester or ethyl ester form by the transesterification process of fatty acid contained in biomass, and has a flash point of 150 ℃, which is less than diesel. It does not stick well and is classified as a non-flammable liquid because it is more stable than gasoline (45 ° C.), which is highly volatile at low temperatures, and is more stable because it catches fire at high temperatures. In addition, unlike diesel, biodiesel is known to have low emissions of carcinogens and mutations when burned, and other emissions are known to have significantly lower nontoxic energy.
이러한 바이오 디젤은 미세조류를 이용하여 생물학적으로 생산할 수 있다고 알려져 있다. 미세조류는 식물에 비하여 태양에너지의 이용효율이 25배 높기 때문에, 사료 또는 비료의 용도로 사용되고 있으며, 특히 녹조류에 속하는 스피룰리나(Spirulina sp.), 클로렐라(Chlorella sp.), 두날리엘라(Dunaliella sp.), 노스톡(Nostoc sp.) 등은 건강식품으로도 이용되고 있다. 이러한 미세조류는 태양에너지의 이용효율이 우수하기 때문에, 지질의 함량이 우수한 미세조류는 바이오 디젤의 생산을 위한 바이오매스로 사용할 수 있다. 이처럼 지질의 함량이 우수한 미세조류로는 보트리오코코스(Botryococcus sp.)와 키오키트리움(Schiochytrium sp.)이 알려져 있는데, 상기 미세조류는 정상적인 생활환경에서는 지질의 함량이 높지 않지만, 영양공급이 중단된 상태에서 일정시간이 경과하면, 균체내에 지질을 축적하는 특성을 나타낸다. 이러한 특성을 이용하여 상기 미세조류를 바이오 디젤의 생산을 위한 바이오매스로 사용할 수 있으나, 상기 미세조류의 지질함량을 증가시키기 위해서는 상기 미세조류를 배양하여 증식하는 제1공정과, 상기 증식된 미세조류에 영양공급을 중단하고 일정시간 동안 배양하여 균체내 지질함량을 증대시키는 제2공정이 수행되어야 하는데, 상기 제2공정에는 과다한 시간이 요구되기 때문에 아직까지는 바이오디젤의 산업적 생산에 사용되지 못하고 있으므로, 바이오 디젤의 생산을 위한 지질함량이 우수한 미세조류의 개발이 절실히 요구되고 있는 실정이다.Such biodiesel is known to be biologically produced using microalgae. Microalgae have 25 times higher efficiency of solar energy than plants, so they are used for feed or fertilizer. Especially, Spirulina sp., Chlorella sp. And Dunaliella sp. Nostoc sp. Is also used as a health food. Since the microalgae have excellent solar energy utilization efficiency, the microalgae having a high lipid content can be used as biomass for the production of biodiesel. Such microalgae with excellent lipid content are known as Botryococcus sp. And Schiochytrium sp. The microalgae do not have high lipid content in normal living conditions, but nutrient supply is stopped. After a certain period of time, the lipids accumulate in the cells. The microalgae may be used as a biomass for the production of biodiesel using such characteristics, but in order to increase the lipid content of the microalgae, the first step of culturing and growing the microalgae and the expanded microalgae In order to stop the supply of nutrients and incubate for a certain period of time to increase the lipid content in the cells, a second step is required. Since the second step requires excessive time, it is not yet used for industrial production of biodiesel. Development of microalgae with excellent lipid content for the production of biodiesel is urgently needed.
본 발명자들은 지질함량이 우수한 미세조류를 개발하고자 예의 연구노력한 결과 미세조류를 스트레스 조건하에서 배양할 경우, 그의 균체내 지질함량이 증대되므로, 이처럼 지질함량이 증대된 미세조류를 바이오 디젤의 생산을 위한 바이오매스로 사용할 수 있음을 확인하고, 본 발명을 완성하였다.The present inventors have diligently researched to develop microalgae having a high lipid content, and thus, when microalgae are cultured under stress conditions, their lipid content is increased, and thus, the microalgae with increased lipid content are produced for biodiesel production. It was confirmed that it can be used as biomass, the present invention was completed.
본 발명의 하나의 목적은 균체내 지질함량이 증대된 미세조류의 제조방법을 제공하는 것이다.One object of the present invention is to provide a method for producing microalgae with increased lipid content in cells.
본 발명의 다른 목적은 상기 방법으로 제조된 균체내 지질함량이 증대된 미세조류를 제공하는 것이다.Another object of the present invention is to provide a microalgae with increased lipid content in the cells produced by the above method.
본 발명의 또 다른 목적은 균체내 지질함량이 증대된 미세조류를 포함하는 바이오매스를 제공하는 것이다.Still another object of the present invention is to provide a biomass including microalgae with increased lipid content in cells.
본 발명의 또 다른 목적은 상기 바이오매스를 이용하여 바이오디젤을 제조하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for preparing biodiesel using the biomass.
본 발명의 또 다른 목적은 상기 방법으로 제조된 바이오디젤을 제공하는 것이다.Another object of the present invention is to provide a biodiesel produced by the above method.
본 발명의 또 다른 목적은 상기 바이오디젤의 제조를 위한 지질함량이 증대된 미세조류의 용도를 제공한다.Still another object of the present invention is to provide a microalgae having an increased lipid content for producing the biodiesel.
본 발명의 방법을 이용하면, 시간당 높은 생산성을 나타내면서 균체내 지질함량이 증대된 미세조류를 제조할 수 있고, 상기 제조된 균체내 지질함량이 증대된 미세조류는 바이오 디젤의 생산을 위한 바이오매스로서 사용할 수 있으므로, 바이오 디젤의 경제적인 생산에 널리 활용될 수 있을 것이다.By using the method of the present invention, it is possible to produce microalgae with increased lipid content in cells while showing high productivity per hour, and the prepared microalgae with increased lipid content in cells are biomass for the production of biodiesel. As it can be used, it can be widely used for economic production of biodiesel.
도 1의 A는 염류를 포함하지 않은 BG11 배지에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내부를 나타내는 TEM 사진이고, 도 1의 B는 염류를 포함하는 BG11 배지에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내부를 나타내는 TEM 사진이다. FIG. 1A is a TEM photograph showing the inside of cells of chlorella soroquinia or HS strain cultured in BG11 medium containing no salt, and FIG. 1B is a chlorella soroquinia or HS strain cultured in BG11 medium containing salt. TEM image showing the inside of the cell.
도 2는 배지에 포함된 염류의 농도변화에 따른 클로렐라 소로키니아나 HS 균주의 균체내 지질함량의 변화를 나타내는 그래프이다. Figure 2 is a graph showing the change in lipid content of the mycelia of Chlorella Sorokonia or HS strain according to the concentration of salts contained in the medium.
도 3은 다양한 염류 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내 지질의 조성을 나타내는 그래프이다. Figure 3 is a graph showing the composition of lipids in cells of chlorella sorokinia or HS strain cultured under various salt stress conditions.
도 4는 클로렐라 소로키니아나 HS 균주를 0, 7, 10 또는 15%(w/v)의 NaCl이 포함된 BG11 배지에서 6, 12, 24 또는 30시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 이들 균체내의 지질함량을 분석한 결과를 나타내는 그래프이다.4 is incubated for 6, 12, 24 or 30 hours in BG11 medium containing 0, 7, 10 or 15% (w / v) of NaCl, Chlorella sorokinina HS strain, the cultured Chlorella sorokiniana It is a graph showing the results of analyzing the lipid content in these cells in HS strains.
도 5는 염류를 포함하지 않는 배지에서 배양된 클로렐라 소로키니아나 HS 균주를 0, 1, 3, 5, 7, 10 또는 15%(w/v)의 NaCl이 포함된 BG11 배지에서 0, 6, 24 또는 30시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 Nile red 염색을 수행한 결과를 나타내는 형광현미경 사진이다.FIG. 5 shows chlorella sorokiniana or HS strains cultured in a salt-free medium, 0, 6, in BG11 medium containing 0, 1, 3, 5, 7, 10 or 15% (w / v) NaCl. After culturing for 24 or 30 hours, it is a fluorescence micrograph showing the result of performing Nile red staining on the cultured Chlorella Sorokonia or HS strain.
도 6은 산화제인 과산화수소를 포함하지 않은 BG11배지에서 배양된 클로렐라 불가리스 OW-01에 과산화수소를 첨가하여 산화 스트레스를 가한 후, 배양시간의 경과에 따른 균체내 지질함량의 변화를 나타내는 그래프이다.FIG. 6 is a graph showing the change in lipid content in cells over time after the addition of hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium not containing hydrogen peroxide as an oxidizing agent.
도 7은 산화제인 과산화수소를 포함하지 않은 BG11배지에서 배양된 클로렐라 불가리스 OW-01에 과산화수소를 첨가하여 산화 스트레스를 가한 후, 배양시간의 경과에 따른 균체내 지질함량의 변화를 나타내는 현미경 사진이다.FIG. 7 is a micrograph showing changes in lipid content in cells over time after oxidative stress was added by adding hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium without hydrogen peroxide as an oxidizing agent.
도 8은 클로렐라 소로키니아나 HS 균주를 0, 1, 5, 10 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6 또는 24시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 이들 균체내의 지질함량을 분석한 결과를 나타내는 그래프이다.8 is incubated for 0, 6, or 24 hours in BG11 medium containing 0, 1, 5, 10 or 20 mM hydrogen peroxide for chlorella sorokinina or HS strains, It is a graph showing the result of analyzing lipid content in cells.
도 9는 클로렐라 소로키니아나 HS 균주를 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6, 24 또는 30시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 Nile red 염색을 수행한 결과를 나타내는 형광현미경 사진이다.9 is a chlorella sorokinina HS strain incubated for 0, 6, 24 or 30 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide, the cultured chlorella sorokinina Fluorescence micrograph showing the result of performing Nile red staining on HS strain.
도 10은 스티제오클로니움 속 HS 균주를 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 6, 12 또는 24시간 동안 배양하고, 상기 배양된 스티제오클로니움 속 HS 균주를 대상으로 이들 균체내의 지질함량을 분석한 결과를 나타내는 그래프이다.FIG. 10 shows HS strains of the genus Stizelonium incubated for 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide, It is a graph showing the results of analyzing the lipid content in these cells in HS strains.
도 11은 스티제오클로니움 속 HS 균주를 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6, 12 또는 24시간 동안 배양하고, 상기 배양된 스티제오클로니움 속 HS 균주를 대상으로 Nile red 염색을 수행한 결과를 나타내는 형광현미경 사진이다.FIG. 11 is incubated with 0, 1, 3, 5, 10, 15, or 20 mM BG11 medium containing 0, 1, 3, 5, 10, 15, or 20 mM hydrogen peroxide for 0, 6, 12, or 24 hours, and the cultured Stizeoclo Fluorescence micrograph showing the result of performing Nile red staining on the HS strain of the genus.
본 발명자들은 바이오 디젤의 생산을 위한 지질함량이 우수한 미세조류를 개발하고자 다양한 연구를 수행하던 중, 스트레스 조건에서 미세조류를 배양하는 방법에 주목하게 되었다.The present inventors have been paying attention to a method of culturing the microalgae under stress conditions while performing various studies to develop microalgae having a high lipid content for the production of biodiesel.
상기 미세조류 중에서 염류 스트레스 또는 산화 스트레스 등의 다양한 스트레스 조건에서도 생존할 수 있는 미세조류는 스트레스 조건이 주어질 경우, 균체의 증식을 억제하여 균체 수를 감소시키면서, 균체 자체의 부피를 증가시켜서, 외부 스트레스 조건에 대한 내성을 증대시킴으로써, 최종적으로는 생존성을 증가시키게 되는데, 이같은 균체의 부피증가를 야기하는 수단으로서 균체내 지질의 함량을 증가시킬 것으로 예상하였다. 이를 확인하고자 염류 스트레스 또는 산화 스트레스가 주어진 조건에서 상기 미세조류를 배양하고, 배양된 균체에 포함된 지질함량을 측정한 결과, 스트레스 조건이 주어진 환경에서 배양된 미세조류의 균체는 스트레스 조건이 주어지지 않은 환경에서 배양된 미세조류 보다도 균체내 지질함량이 현저하게 증가함을 확인하였다.Among the microalgae, the microalgae that can survive in various stress conditions such as salt stress or oxidative stress are given a stress condition, while reducing the number of cells by inhibiting the growth of the cells, increasing the volume of the cells themselves, external stress Increasing the resistance to the condition ultimately increases the viability, which is expected to increase the content of lipids in the cells as a means of causing an increase in the volume of such cells. In order to confirm this, the microalgae were cultured under the conditions of salt stress or oxidative stress, and the lipid content contained in the cultured cells was measured. It was confirmed that the lipid content in the cells was significantly increased than that of the microalgae cultured in the environment.
종래에는 미세조류의 균체내 지질함량을 증가시키기 위하여, 영양공급을 중단한 조건에서 미세조류를 장시간 동안 배양하는 방법이 사용되었는데, 상기 방법은 장시간의 배양시간이 소요되기 때문에, 시간당 생산성이 낮다는 문제점이 있었다. 이러한 종래기술과는 달리 본 발명에서 제공하는 스트레스 조건에서 미세조류를 배양하는 방법은 장시간의 배양시간이 필요하지 않으므로, 종래기술보다도 시간당 생산성이 우수하다는 장점이 있다. Conventionally, in order to increase the lipid content of microalgae in the microbial cells, a method of culturing the microalgae for a long time under the condition that the nutrient supply is stopped, the method is low productivity per hour because it takes a long time incubation time There was a problem. Unlike the prior art, the method of culturing the microalgae under the stress conditions provided by the present invention does not require a long incubation time, and thus has an advantage of better productivity per hour than the prior art.
따라서, 본 발명에서 제공하는 스트레스 조건에서 미세조류를 배양하는 방법으로 제조된 균체내 지질함량이 우수한 미세조류는 바이오 디젤의 생산을 위한 바이오매스로서 사용될 수 있을 뿐만 아니라, 바이오디젤의 경제적인 생산에도 활용될 수 있을 것이다. Therefore, the microalgae excellent in the lipid content of the microbial cells prepared by the method of culturing the microalgae under stress conditions provided by the present invention can be used not only as a biomass for the production of biodiesel, but also for the economic production of biodiesel. Could be utilized.
상술한 목적을 달성하기 위한 일 실시양태로서, 본 발명은 스트레스 조건에서 미세조류를 배양하는 단계를 포함하는, 지질함량이 증대된 미세조류의 제조방법을 제공한다.As one embodiment for achieving the above object, the present invention provides a method for producing a microalgae with increased lipid content, comprising culturing the microalgae under stress conditions.
본 발명의 용어 "스트레스 조건(stress condition)"이란, 미세조류의 배양환경을 악화시켜서 미세조류의 증식을 억제할 수 있는 조건을 의미한다. 상기 스트레스 조건은 미세조류의 증식을 억제하여 균체내 지질함량을 증대시킬 수 있는 한 특별히 이에 제한되지 않으나, 바람직하게는 염류 스트레스, 산화 스트레스 등이 될 수 있다.The term "stress condition" of the present invention means a condition that can inhibit the growth of microalgae by deteriorating the culture environment of the microalgae. The stress condition is not particularly limited as long as it can increase the lipid content in the cell by inhibiting the growth of microalgae, but may preferably be salt stress, oxidative stress and the like.
본 발명의 용어 "염류 스트레스"란, 산과 염기가 결합된 결합산물인 염류가 미세조류의 배양환경에 과도하게 존재함으로써 미세조류에 가하여지는 스트레스를 의미한다. 미세조류의 배양환경 중에 상기 염류가 증가하면, 미세조류내의 삼투압이 저하되어 미세조류 내부의 수분이 배양환경으로 유출되기 때문에 상기 배양환경내의 염류의 농도가 높을 수록 미세조류의 성장이 감소하게 되고, 일정 수준 이상인 경우에는 미세조류가 사멸하게 된다. As used herein, the term "salt stress" refers to stress applied to microalgae because salt, which is a combined product of acid and base, is excessively present in the microalgae culture environment. When the salts increase in the culture environment of the microalgae, the osmotic pressure in the microalgae decreases, so that the water inside the microalgae flows out into the cultured environment, and the growth of the microalgae decreases as the concentration of the salts in the cultured environment increases. If it is above a certain level, the microalgae will die.
본 발명에 있어서, 상기 염류는 미세조류의 배양배지에 첨가되어 미세조류 균체내의 지질함량을 증가시키는 수단으로 사용되는데, 상기 염류는 미세조류의 균체내 지질의 함량을 증가시킬 수 있는 한 특별히 이에 제한되지 않으나, 바람직하게는 염화나트륨(NaCl), 염화마그네슘(MgCl2), 황산마그네슘(MgSO4), 황산칼슘(CaSO4), 황산칼륨(K2SO4), 탄산칼슘(CaCO3), 브로민화마그네슘(MgBr2) 등을 단독으로 또는 혼합하여 사용할 수 있고, 상기 염류의 부가량 역시 특별히 이에 제한되지 않으나, 바람직하게는 1 내지 30%(w/v), 보다 바람직하게는 5 내지 20%(w/v), 가장 바람직하게는 10 내지 15%(w/v)가 될 수 있다. In the present invention, the salt is added to the culture medium of the microalgae is used as a means for increasing the lipid content in the microalgal cells, the salt is particularly limited to this as long as it can increase the content of lipids in the microalgae cells But preferably sodium chloride (NaCl), magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ), calcium sulfate (CaSO 4 ), potassium sulfate (K 2 SO 4 ), calcium carbonate (CaCO 3 ), brominated Magnesium (MgBr 2 ) and the like may be used alone or in combination. The addition amount of the salts is not particularly limited, but it is preferably 1 to 30% (w / v), more preferably 5 to 20% ( w / v), most preferably 10 to 15% (w / v).
본 발명의 용어 "산화 스트레스"란, 세포의 주변환경에 높은 함량의 산화성 물질이 존재하여, 상기 산화성 물질로 인하여 세포의 막에 포함된 지질 등의 성분이 산화될 수 있는 가능성이 증가되는 스트레스를 의미한다. 생체내에서는 상기 산화스트레스를 경감시킬 수 있는 항산화물질을 분비하여, 상기 산화 스트레스를 해소할 수 있으나, in vitro 조건에서는 항산화물질을 인위적으로 첨가하여야 한다. 특히, 클로렐라 속 균주와 같은 미세조류의 배양환경에 산화 스트레스가 부가되면, 미세조류의 세포막의 지질 성분을 산화시켜서 미세조류의 성장, 증식 등의 다양한 대사를 저해하기 때문에, 상기 배양환경내의 산화 스트레스의 수준이 증가할 수록 미세조류의 성장이 감소하게 되고, 일정 수준 이상인 경우에는 미세조류가 사멸하게 된다. As used herein, the term "oxidative stress" refers to a stress in which a high content of an oxidizing substance is present in a cell's surroundings, thereby increasing the possibility of oxidizing components such as lipids contained in the cell membrane due to the oxidizing substance. it means. In vivo, the oxidative stress can be reduced by releasing an antioxidant which can alleviate the oxidative stress, but in vitro conditions, the antioxidant should be added artificially. In particular, when oxidative stress is added to the culture environment of microalgae such as chlorella strains, oxidative stress in the microalgae cell membranes inhibits various metabolisms such as growth and proliferation of microalgae. As the level of is increased, the growth of the microalgae decreases, and when the level is above a certain level, the microalgae are killed.
본 발명에 있어서, 상기 산화 스트레스는 미세조류의 배양환경에 산화제를 부가함에 의하여 형성될 수 있고, 미세조류의 균체내 지질의 함량을 증가시키기 위한 단초를 제공하는 원인으로 해석될 수 있는데, 상기 산화제는 미세조류의 균체내 지질의 함량을 증가시킬 수 있는 한 특별히 이에 제한되지 않으나, 바람직하게는 과산화수소(H2O2), 초과산화 이온(superoxide ion, 02-), 수산화 라디칼(hydroxyl radical, OH-), 차염소산(hypochlorous acid, HOCl) 등을 단독으로 또는 혼합하여 사용할 수 있고, 상기 산화제의 부가량 역시 특별히 이에 제한되지 않으나, 바람직하게는 5 내지 100mM, 보다 바람직하게는 5 내지 50mM, 가장 바람직하게는 5 내지 20mM의 농도로 클로렐라 속 균주의 배지에 부가할 수 있다.In the present invention, the oxidative stress may be formed by adding an oxidizing agent to the culture environment of the microalgae, and may be interpreted as a cause for providing a herb for increasing the content of lipids in the microalgae, the oxidizing agent. Is not particularly limited as long as it can increase the content of lipids in microalgae cells, preferably hydrogen peroxide (H 2 O 2 ), superoxide ion (0 2- ), hydroxyl radical, OH − ), hypochlorous acid (HOCl) and the like may be used alone or in combination, and the addition amount of the oxidizing agent is not particularly limited thereto, but is preferably 5 to 100 mM, more preferably 5 to 50 mM, Most preferably, it can be added to the medium of the strain of the genus Chlorella at a concentration of 5-20 mM.
본 발명의 용어 "미세조류(microalgae)"란, "식물성 플랑크톤"이라고도 하고, 수생환경에서 생존하면서, 포자로 번식하며, 광합성 색소를 가지고 광합성을 하는 단세포성 원핵생물을 의미한다. The term "microalgae" of the present invention, also referred to as "phytoplankton", refers to a unicellular prokaryote that survives in an aquatic environment, reproduces with spores, and photosynthesizes with photosynthetic pigments.
본 발명에 있어서, 상기 미세조류는 스트레스 환경에서도 생존하면서 균체내에 지질을 축적할 수 있는 한 특별히 이에 제한되지 않으나, 바람직하게는 클로렐라 속 균주, 스티제오클로니움 속 균주 등이 될 수 있고, 보다 바람직하게는 클로렐라 소로키니아나 HS 균주(Chlorella sorokiniana HS)(KCTC 12171BP), 클로렐라 불가리스 OW-01 균주(Chlorella vulgaris OW-01)(KCTC 12553BP), 스티제오클로니움 속 HS 균주(Stigeoclonium sp. HS)(KCTC 12676BP) 등이 될 수 있다.In the present invention, the microalgae is not particularly limited as long as it can accumulate lipids in the cells while living in a stress environment, but preferably may be a strain of the genus Chlorella, the strain of the genus Stizelonium, and the like. Advantageously chlorella Thoreau Kearney Ana HS strain (chlorella sorokiniana HS) (KCTC 12171BP ), chlorella vulgaris OW-01 strain (chlorella vulgaris OW-01) ( KCTC 12553BP), styryl fifth claw nium in HS strain (Stigeoclonium sp. HS) ( KCTC 12676BP).
본 발명에서 제공하는 클로렐라 소로키니아나 HS 균주는 2012년 3월 21일자로 한국생명공학연구원 생물자원센터(Korean Collection for Type Culture)에 수탁번호 KCTC 12171BP로 기탁된 균주를 의미한다.Chlorella sorochiniana HS strain provided by the present invention means a strain deposited with the accession number KCTC 12171BP to the Korea Biotechnology Center (Korean Collection for Type Culture) as of March 21, 2012.
본 발명에서 제공하는 클로렐라 불가리스 OW-01 균주는 2014년 2월 11일자로 한국생명공학연구원 생물자원센터(Korean Collection for Type Culture)에 수탁번호 KCTC 12553BP로 기탁된 균주를 의미한다.Chlorella vulgaris OW-01 strain provided by the present invention means a strain deposited with the accession number KCTC 12553BP to the Korea Collection for Type Culture (Korea Biotechnology Research Institute) on February 11, 2014.
본 발명에서 제공하는 스티제오클로니움 속 HS 균주는 2014년 9월 12일자로 한국생명공학연구원 생물자원센터(Korean Collection for Type Culture)에 수탁번호 KCTC 12676BP로 기탁된 균주를 의미한다.HS strain of the genus styeoclonium provided by the present invention means a strain deposited with the accession number KCTC 12676BP to the Korea Biotechnology Center (Korean Collection for Type Culture) on September 12, 2014.
본 발명의 용어 "배양"이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 일련의 행위를 의미한다. As used herein, the term "culture" refers to a series of actions for growing microorganisms under appropriately artificially controlled environmental conditions.
본 발명에 있어서, 상기 배양은 미세조류를 배양하는 방법을 의미하는 것으로 해석될 수 있는데, 상기 배양방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 수행할 수 있다.In the present invention, the culturing may be interpreted to mean a method of culturing microalgae, the culturing method may be performed using a method well known in the art. Specifically, the culturing may be performed continuously in a batch process or in a fed batch or repeated fed batch process.
상기 미세조류를 배양하기 위하여는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 생존요건을 충족시켜야 한다. 사용될 수 있는 탄소원으로는 주로 CO2와 카보네이트이며, 글루코즈 및 자일로즈의 혼합당을 탄소원으로 사용할 수 있고, 이외에 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다. 예를 들어, 미세조류 배양용 배지로는 NaNO3, K2HPO4, MgSO4.7H2O, CaCl2.2H2O, 구연산, EDTA Na2, 암모늄 페릭 시트레이트 그린(Ammonium ferric citrate green), Na2CO3 및 트레이스 금속용액(H3BO3, MnCl2.4H2O, ZnSO4.7H2O, Na2MoO4.2H2O, CuSO4.5H2O, Co(NO3)2.6H2O)을 포함하는 BG11 배지를 사용할 수 있다.In order to culture the microalgae, it is necessary to meet the survival requirements of specific strains in an appropriate manner while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like. Carbon sources that can be used are mainly CO 2 and carbonate, and mixed sugars of glucose and xylose may be used as the carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch, cellulose, and soybean oil Oils such as sunflower oil, castor oil, coconut oil and the like, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid. These materials can be used individually or as a mixture. Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination. The medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts. Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. In addition, as the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins can be used. For example, microalgae as a culture medium for the NaNO 3, K 2 HPO 4, MgSO 4 .7H 2 O, CaCl 2 .2H 2 O, citric acid, Na 2 EDTA, ammonium ferric citrate, green (Ammonium ferric citrate green) , Na 2 CO 3, and trace metals solution (H 3 BO 3, MnCl 2 .4H 2 O, ZnSO 4 .7H 2 O, Na 2 MoO 4 .2H 2 O, CuSO 4 .5H 2 O, Co (NO 3) BG11 medium containing 2 .6H 2 O) can be used.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 기체(예, 공기)를 주입할 수 있다. 배양물의 온도는 보통 20℃ 내지 35℃, 바람직하게는 25℃ 내지 30℃로 유지할 수 있다. In addition, antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation. Gas (eg, air) can be injected to maintain aerobic conditions. The temperature of the culture can usually be maintained at 20 ° C to 35 ° C, preferably 25 ° C to 30 ° C.
아울러, 광합성을 수행하는 상기 미세조류의 특성상 배양시 빛을 제공함이 바람직한데, 제공되는 빛의 양과 제공시간은 당업자가 필요에 따라 적절하게 조절할 수 있으나, 약 50 내지 100μmole/㎡/s의 광도조건으로 빛을 제공할 수 있다.In addition, the nature of the microalgae to perform photosynthesis is preferable to provide light during the cultivation, the amount of light provided and the time provided can be appropriately adjusted by those skilled in the art as needed, luminous conditions of about 50 to 100μmole / ㎡ / s Can provide light.
본 발명의 일 실시예에 의하면, 염류를 포함하지 않은 BG11 배지와 3%의 NaCl을 포함하는 BG11 배지에 클로렐라 소로키니아나 HS 균주를 접종하고, 배양한 다음, 전자현미경(TEM)을 이용해 균체내 변화를 확인한 결과, 클로렐라 소로키니아나 HS 균주를 염류를 포함하는 배지에서 배양할 경우에는 균체내의 스타치와 지질체의 함량이 증가하여 전체적으로 균체의 크기가 증가함을 확인하였고(도 1), 0, 1, 2, 3 또는 4%의 염류를 포함하는 BG11 배지에서 배양된 클로렐라 소로키니아나 HS 균주의 균체에 포함된 지질의 함량을 측정한 결과, 염류가 포함되지 않은 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 10%이고, 1%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 15%이며, 2%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 25%이고, 3%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 34%이며, 4%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 32%임을 확인하였다(도 2). 또한, 상기 균주를 염류가 없는 배지에서 배양하고, 염류를 추가하여 상기 균주에 염류쇼크를 가할 경우에도 균체에 포함된 지질함량이 증대됨을 확인하였다(도 4, 도 5 및 표 2). According to one embodiment of the present invention, BG11 medium containing no salt and BG11 medium containing 3% NaCl were inoculated with Chlorella sorokinia or HS strain, cultured, and then in cells using an electron microscope (TEM). As a result of confirming the change, when chlorella sorkinonia or HS strains were cultured in a salt-containing medium, the contents of starch and lipids in the cells were increased to increase the size of the cells as a whole (FIG. 1). As a result of measuring the content of lipids contained in the cells of Chlorella soroquinia or HS strains cultured in BG11 medium containing 1, 2, 3 or 4% of salt, the strains cultured in BG11 medium containing no salts were measured. The lipid content in the cells was about 10%, the lipid content in the cells of the strain cultured in BG11 medium containing 1% of the salt was about 15%, and cultured in BG11 medium containing 2% of the salt Strain The lipid content in the sieve is about 25%, the lipid content in the cells of the strain cultured in BG11 medium containing 3% of the salt is about 34%, and cultured in BG11 medium containing 4% of the salt Lipid content contained in the cells of the strain was found to be about 32% (Fig. 2). In addition, the strain was cultured in a salt-free medium, and it was confirmed that the lipid content contained in the cells was increased even when the salt shock was added to the strain by adding salts (FIG. 4, FIG. 5 and Table 2).
따라서, 염류를 포함하는 배지에서 배양된 미세조류는 균체내 지질함량이 증대됨을 알 수 있었다.Therefore, it was found that the microalgae cultured in a medium containing salts increased lipid content in cells.
본 발명의 다른 실시예에 의하면, 클로렐라 속 균주의 일종인 클로렐라 불가리스 OW-01 균주를 다양한 농도의 산화제인 과산화수소가 첨가된 배지에서 배양하고, 배양시간의 경과에 따른 균주내의 지질함량의 변화를 측정한 결과, 5mM 이상의 산화제를 처리할 경우, 균주내의 지질함량이 증대되고, 10mM 이상의 산화제를 처리할 경우에는 균주내의 지질함량이 더욱 더 증가하였으며, 이처럼 증가된 지질함량이 계속적으로 유지됨을 확인하였고, 최대 지질함량은 산화 스트레스가 부여되지 않은 배지에서 배양된 균주의 지질함량 대비 약 1.7배임을 확인하였다(도 6 및 7). 또한, 다른 클로렐라 속 균주인 클로렐라 소로키니아나 HS 균주를 다양한 농도의 산화제인 과산화수소가 첨가된 배지에서 배양하고, 배양시간의 경과에 따른 균주내의 지질함량의 변화를 측정한 결과, 10mM 이상의 산화제를 처리할 경우, 균주내의 지질함량이 증대되고, 15mM 이상의 산화제를 처리할 경우에는 균주내의 지질함량이 더욱 더 증가하였으며, 이처럼 증가된 지질함량이 계속적으로 유지됨을 확인하였고, 최대 지질함량은 산화 스트레스가 부여되지 않은 배지에서 배양된 균주의 지질함량 대비 약 1.6배임을 확인하였다(도 8 및 9). 아울러, 다른 종류의 미세조류인 스티제오클로니움 속 HS 균주를 산화 스트레스가 부여된 조건에서 배양할 경우에도 균체내 지질함량이 증대됨을 확인하였다(도 10, 11 및 표 3)According to another embodiment of the present invention, the chlorella vulgaris OW-01 strain, a strain of the genus Chlorella, is cultured in a medium to which hydrogen peroxide, an oxidizing agent of various concentrations, is added, and the change of lipid content in the strain is measured with the cultivation time. As a result, it was confirmed that the lipid content in the strain was increased when the oxidizing agent was 5mM or more, and the lipid content in the strain was further increased when the oxidizing agent was 10mM or more, and thus the increased lipid content was continuously maintained. It was confirmed that the maximum lipid content was about 1.7 times the lipid content of the strain cultured in the medium without oxidative stress (FIGS. 6 and 7). In addition, chlorella soroquinia or HS strains, which are strains of other chlorella species, were cultured in a medium to which hydrogen peroxide, which is an oxidizing agent of various concentrations, was measured, and the change in lipid content in the strain was measured as a result of culturing time. When the lipid content in the strain was increased, the lipid content in the strain was further increased when the oxidizing agent was treated more than 15mM. The increased lipid content was continuously maintained, and the maximum lipid content was given to the oxidative stress. It was confirmed that about 1.6 times the lipid content of the strain cultured in the medium (Fig. 8 and 9). In addition, it was confirmed that the lipid content in the microbial cells was increased even when cultured under the condition that oxidative stress of HS strain of Stizeoclonium, which is another microalgae (FIG. 10, 11 and Table 3).
따라서, 산화 스트레스가 부가된 배지에서 배양된 미세조류는 균체내 지질함량이 증대됨을 알 수 있었다.Therefore, it was found that the microalgal cultured in the medium to which oxidative stress was added increased lipid content in cells.
상술한 목적을 달성하기 위한 다른 실시양태로서, 본 발명은 상기 방법을 이용하여 제조되어, 스트레스 조건 없이 배양된 균주에 비하여, 균체내 지질함량이 증대된 미세조류를 제공한다.As another embodiment for achieving the above object, the present invention provides a microalgae prepared using the above method, the lipid content in the cells is increased compared to the strain cultured without stress conditions.
상기 방법으로 제조된 미세조류는 염류를 포함하지 않은 배지에서 배양된 균체에 비하여 균체내 지질함량이 증대되는 특징을 갖는다. 예를 들어, 미세조류의 일종인 클로렐라 소로키니아나 HS를 염류 스트레스가 부여된 환경에서 배양할 경우, 염류 스트레스가 부여되지 않은 환경에서 배양할 경우 보다도, 약 3 내지 4배, 바람직하게는 약 3.4배 향상된 함량의 지질을 포함한다. 이때, 상기 클로렐라 소로키니아나 HS에 포함된 지질은 팔미테이트(palmitate, C16:0), 팔미톨레이트(palmitoleate, C16:1), 스테아레이트(stearate, C18:0), 올레이트(oleate, C18:1), 리놀레이트(linoleate, C18:2), 리놀레네이트(linolenate, C18:3) 등을 포함한다. 특히, 팔미톨레이트(palmitoleate, C16:1)는 염류를 포함하지 않은 배지에서 배양된 클로렐라 소로키니아나 HS에는 포함되지 않는다. 따라서, 팔미톨레이트는 본 발명의 방법으로 제조된 미세조류를 종래의 방법으로 제조된 미세조류와 구별할 수 있는 주요 마커로서 사용될 수 있다.The microalgae prepared by the above method is characterized in that the lipid content in the cells is increased compared to the cells cultured in a medium containing no salts. For example, when culturing microalgae chlorella sorokinia or HS is cultured in a salt stressed environment, it is about 3 to 4 times, preferably about 3.4 than when cultured in a salt stressed environment. Contains three times the enhanced content of lipids. At this time, the lipid contained in the Chlorella Sorokini or HS is palmitate (palmitate, C16: 0), palmitate (palmitoleate, C16: 1), stearate (stearate, C18: 0), oleate (oleate, C18) : 1), linoleate (C18: 2), linolenate (C18: 3) and the like. In particular, palmitoleate (C16: 1) is not included in chlorella sorokinia or HS cultured in a medium containing no salts. Thus, palmitolate can be used as the main marker to distinguish the microalgae prepared by the method of the present invention from microalgae prepared by the conventional method.
본 발명의 일 실시예에 의하면, 0, 1, 2, 3 또는 4%의 염류를 포함하는 BG11 배지에서 배양된 클로렐라 소로키니아나 HS에 포함된 지질의 조성을 분석한 결과, 팔미테이트(palmitate, C16:0), 팔미톨레이트(palmitoleate, C16:1), 스테아레이트(stearate, C18:0), 올레이트(oleate, C18:1), 리놀레이트(linoleate, C18:2), 리놀레네이트(linolenate, C18:3) 등을 포함한다. 특히, 팔미톨레이트는 염류를 포함하지 않은 배지에서 배양된 클로렐라 소로키니아나 HS에는 포함되어 있지 않고, 염류를 포함하는 배지에서 배양된 클로렐라 소로키니아나 HS에만 포함되어 있으며, 배지에 포함된 염류의 농도가 증가할 수록 상기 지방산 중에서 함량이 증가되는 경향을 나타냄을 확인하였다(도 3).According to one embodiment of the present invention, as a result of analyzing the composition of the lipid contained in Chlorella sorokinya or HS cultured in BG11 medium containing 0, 1, 2, 3 or 4% of salt, palmitate (C16) : 0), palmitoleate (C16: 1), stearate (C18: 0), oleate (C18: 1), linoleate (C18: 2), linolenate , C18: 3) and the like. In particular, palmitate is not included in chlorella sorokinia or HS cultured in a medium that does not contain salts, and is contained only in chlorella sorokinia or HS cultured in a medium containing salts. As the concentration was increased, it was confirmed that the content of the fatty acid tended to increase (FIG. 3).
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 균체내 지질함량이 증대된 미세조류를 포함하는 바이오매스 및 상기 바이오매스를 이용하여 바이오디젤을 제조하는 방법 및 상기 방법으로 제조된 바이오디젤을 제공한다.As another embodiment for achieving the above object, the present invention provides a biomass comprising microalgae with increased lipid content in cells and a method for producing biodiesel using the biomass and the bio-diesel produced by the method Provide diesel.
본 발명의 용어 "바이오매스(biomass)"란, 광합성에 의하여 생성되는 다양한 조류(藻類) 및 식물 자원, 즉 나무, 풀, 농작물의 가지, 잎, 뿌리, 열매 등을 의미한다.As used herein, the term "biomass" refers to a variety of algae and plant resources produced by photosynthesis, such as trees, grasses, branches of crops, leaves, roots, fruits and the like.
본 발명에 있어서, 상기 바이오매스는 스트레스 조건의 배지에서 배양되어 균체내 지질함량이 증대된 미세조류, 상기 미세조류를 포함하는 배양물, 배양분획물 등으로 해석될 수 있고, 상기 바이오매스는 바이오디젤의 제조원료로서 사용될 수 있다.In the present invention, the biomass may be interpreted as microalgae, cultures containing the microalgae, culture fractions, etc., in which the lipid content in cells is increased by culturing in a medium under stress conditions, and the biomass is biodiesel It can be used as a raw material for the preparation.
한편, 본 발명의 바이오디젤의 제조방법은 (a) 상기 바이오매스로부터 지질성분을 수득하는 단계; 및 (b) 상기 수득한 지질에 메탄올을 가하고 알칼리 촉매하에서 반응시켜서 바이오디젤인 FAME(fatty acid methyl)을 수득하는 단계를 포함한다. 이때, FAME의 수율을 증가시키기 위하여 반응부산물인 글리세롤을 제거하는 단계를 추가로 포함할 수 있다.On the other hand, the method for producing a biodiesel of the present invention (a) obtaining a lipid component from the biomass; And (b) adding methanol to the obtained lipids and reacting under an alkali catalyst to obtain FAME (fatty acid methyl), which is biodiesel. At this time, in order to increase the yield of FAME may further comprise the step of removing the reaction by-product glycerol.
본 발명의 바이오디젤의 제조방법에 있어서, 상기 바이오매스로부터 지질성분을 수득하기 위하여는 공지된 다양한 방법을 사용할 수 있다. 예를 들어, 상기 바이오매스에 포함된 미세조류를 건조시키고, 이를 물리적으로 파쇄하여 수득할 수도 있고, 상기 바이오매스에 유기용매를 가하여 미세조류로부터 지질성분을 추출할 수도 있다. 이때, 상기 용매로는 비극성 용매를 사용할 수 있고, 바람직하게는 헥산, DMSO(dimethyl sulfoxide), DMC(dimethyl carnonate) 등을 사용할 수 있다.In the production method of the biodiesel of the present invention, in order to obtain a lipid component from the biomass, various known methods can be used. For example, the microalgae contained in the biomass may be dried and obtained by physically crushing the microalgae, or lipid components may be extracted from the microalgae by adding an organic solvent to the biomass. In this case, a non-polar solvent may be used as the solvent, and preferably hexane, dimethyl sulfoxide (DMSO), dimethyl carnonate (DMC), or the like may be used.
또한, 상기 바이오매스로부터 수득한 지질성분은 본 발명에서 제공하는 균체내 지질함량이 증대된 미세조류로부터 유래된 것이므로, 팔미테이트(palmitate, C16:0), 팔미톨레이트(palmitoleate, C16:1), 스테아레이트(stearate, C18:0), 올레이트(oleate, C18:1), 리놀레이트(linoleate, C18:2), 리놀레네이트(linolenate, C18:3) 등을 단독으로 또는 조합하여 포함할 수 있다.In addition, since the lipid component obtained from the biomass is derived from the microalgae with increased lipid content in the cells provided by the present invention, palmitate (palmitate, C16: 0), palmitoleate (palmitoleate, C16: 1) , Stearate (C18: 0), oleate (C18: 1), linoleate (C18: 2), linolenate (C18: 3), etc., alone or in combination Can be.
본 발명의 용어 "바이오디젤(bio-diesel)"이란, 넓게는 식물성 기름을 원료로 해서 만든 무공해 연료를 통틀어 의미하고, 좁게는 콩기름 등의 식물성 기름을 원료로 사용하여 제조된 지방산메틸에스테르(FAME)를 의미한다. 상기 바이오디젤은 다양한 방법으로 제조될 수 있는데, 대체로 중성지방에 알칼리 촉매와 함께 메탄올을 처리하여 제조된다.The term "bio-diesel" of the present invention broadly refers to the whole of pollution-free fuel made from vegetable oils, and narrowly to fatty acid methyl esters prepared using vegetable oils such as soybean oil as raw materials. ). The biodiesel can be prepared by various methods, and is usually prepared by treating methanol with an alkaline catalyst in triglycerides.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 바이오디젤의 제조를 위한 지질함량이 증대된 미세조류의 용도를 제공한다.As another embodiment for achieving the above object, the present invention provides the use of microalgae with increased lipid content for the production of biodiesel.
상술한 바와 같이, 본 발명의 방법으로 제조된 지질함량이 증대된 미세조류는 미세조류의 균체내에 다양한 지방산을 포함하는 지질을 대량으로 포함하므로, 이를 바이오디젤의 제조시에 원료(바이오매스)로서 사용할 수 있다.As described above, since the microalgae increased in the lipid content produced by the method of the present invention contain a large amount of lipids containing various fatty acids in the microalgal cells, it is used as a raw material (biomass) in the production of biodiesel. Can be used.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예 1: 미세조류에 미치는 염류 스트레스의 효과Example 1 Effect of Salt Stress on Microalgae
본 발명자들은 축산폐수에서 분리동정된 클로렐라 소로키니아나 HS 균주(Chlorella sorokiniana HS)(KCTC 12171BP)를 배양할 때, 배지내의 염류의 농도가 증가하면 균체의 수는 감소하지만, 균체 자체의 부피가 증가하여 건조중량을 증가시키는 특성을 나타냄을 확인하고, 이를 특허출원하였다(대한민국 특허출원 제2012-0073061호, 2012년 7월 4일). 이하에서는, 상기 미세조류에 미치는 염류 스트레스의 효과를 분석하고자 하였다.When culturing Chlorella sorokiniana HS strain (KCTC 12171BP) isolated from livestock wastewater, the inventors found that the increase in the concentration of salt in the medium reduced the number of cells, but increased the volume of the cells themselves. It was confirmed that it exhibits a characteristic of increasing the dry weight, and a patent application (Korean Patent Application No. 2012-0073061, July 4, 2012). In the following, it was intended to analyze the effect of salt stress on the microalgae.
실시예 1-1: 염류 스트레스 조건에서 균주의 배양Example 1-1 Cultivation of Strains Under Salt Stress Conditions
고농도의 염류를 포함하는 배양액을 사용한 염류 스트레스 조건이 클로렐라 소로키니아나 HS 균주에 미치는 효과를 분석하기 위해, 염류를 포함하지 않은 BG11 배지와 3%의 염류(NaCl)를 포함하는 BG11 배지에 상기 클로렐라 소로키니아나 HS 균주를 접종하고, 배양한 다음, 배양물을 수집하였다. 이때, 상기 BG11 배지는 하기 표 1에 개시된 Stock No.1 내지 Stock No.9를 혼합하여 제조하였는데, 구체적으로, 배지 1ℓ당, Stock No.1 100㎖, Stock No.2 10㎖, Stock No.3 10㎖, Stock No.4 10㎖, Stock No.5 10㎖, Stock No.7 10㎖, Stock No.8 10㎖, Stock No.9 10㎖ 및 여분의 증류수를 포함하도록 혼합하고, 멸균한 후, 최종적으로 Stock No.6 1㎖을 가하여 제작하였다. In order to analyze the effect of salt stress conditions using a culture solution containing a high concentration of salt on chlorella soroquinia or HS strain, the chlorella in BG11 medium containing no salt and BG11 medium containing 3% of salt (NaCl) was not included. Sorokonia or HS strains were inoculated, incubated and the cultures collected. At this time, the BG11 medium was prepared by mixing Stock No. 1 to Stock No. 9 disclosed in Table 1 below, specifically, per 1 L of medium, 100 ml of Stock No. 1, 10 ml of Stock No. 2, and Stock No. 3 10 ml, 10 ml of Stock No. 4, 10 ml of Stock No. 5, 10 ml of Stock No. 7, 10 ml of Stock No. 8, 10 ml of Stock No. 8 and 10 ml of excess distilled water. After that, 1 ml of Stock No. 6 was finally added to prepare.
표 1 BG11 배지의 조성
Table 1 Composition of BG11 Medium
Stock no. | 배지성분 | 용량 | 1ℓ당 첨가량 |
1 | NaNO3 | 15 g/ℓ | 100㎖ |
2 | K2HPO4 | 4.0 g/500㎖ | 10㎖ |
3 | MgSO4.7H2O | 3.75 g/500㎖ | 10㎖ |
4 | CaCl2.2H2O | 1.80 g/500㎖ | 10㎖ |
5 | citric acid | 0.30 g/500㎖ | 10㎖ |
6 | EDTA Na2 | 0.05 g/500㎖ | 1㎖ |
7 | Ammonium ferric citrate green | 0.30 g/500㎖ | 10㎖ |
8 | Na2CO3 | 1.0 g/500㎖ | 10㎖ |
9 | Trace metal solution | 10㎖ | |
H3BO3 | 2.86 g/ℓ | ||
MnCl24H2O | 1.81 g/ℓ | ||
ZnSO47H2O | 0.22 g/ℓ | ||
Na2MoO42H2O | 0.39 g/ℓ | ||
CuSO45H2O | 0.08 g/ℓ | ||
Co(NO3)26H2O | 0.05 g/ℓ |
Stock no. | Medium | Volume | Addition per liter |
One | NaNO 3 | 15 g / ℓ | 100 ml |
2 | K 2 HPO 4 | 4.0 g / 500 | 10 |
3 | MgSO 4 .7H 2 O | 3.75 g / 500 | 10 |
4 | CaCl 2 .2H 2 O | 1.80 g / 500 | 10 |
5 | citric acid | 0.30 g / 500 | 10 |
6 | EDTA Na 2 | 0.05 g / | 1 |
7 | Ammonium ferric citrate green | 0.30 g / 500 | 10 ml |
8 | Na 2 CO 3 | 1.0 g / 500 | 10 ml |
9 | | 10 ml | |
H 3 BO 3 | 2.86 g / ℓ | ||
MnCl 2 4H 2 O | 1.81 g / ℓ | ||
ZnSO 4 7H 2 O | 0.22 g / ℓ | ||
Na 2 MoO 4 2H 2 O | 0.39 g / ℓ | ||
CuSO 4 5H 2 O | 0.08 g / ℓ | ||
Co (NO 3 ) 2 6H 2 O | 0.05 g / ℓ |
실시예 1-2: 염류 스트레스 조건에서 배양된 균주의 형태적 특성 분석Example 1-2 Morphological Characterization of Strains Cultured Under Salt Stress Conditions
상기 실시예 1-1에서 수집된 배양물을 전자현미경(TEM)에 적용하여, 배양물에 포함된 균체내 변화를 확인하였다(도 1). The culture collected in Example 1-1 was applied to an electron microscope (TEM) to confirm the intracellular changes contained in the culture (FIG. 1).
도 1의 A는 염류를 포함하지 않은 BG11 배지에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내부를 나타내는 TEM 사진이고, 도 1의 B는 염류를 포함하는 BG11 배지에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내부를 나타내는 TEM 사진이다. 도 1의 A에서 보듯이, 염류를 포함하지 않은 BG11 배지에서 배양된 클로렐라 소로키니아나 HS 균주는 약 2㎛의 크기를 갖고, 균체내에는 틸라코이드, 클로로플라스트, 파이레노이드, 스타치(S) 및 지질체(L)가 포함되어 있음을 알 수 있었다. 이에 반하여, 도 1의 B에서 보듯이, 염류를 포함하는 BG11 배지에서 배양된 클로렐라 소로키니아나 HS 균주는 약 6㎛의 크기를 갖고, 균체내에는 틸라코이드, 클로로플라스트, 파이레노이드, 다수의 스타치(S) 및 다수의 지질체(L)가 포함되어 있음을 알 수 있었다. 이로부터, 클로렐라 소로키니아나 HS 균주를 염류를 포함하는 배지에서 배양할 경우에는 균체내의 스타치와 지질체의 함량이 증가하여 전체적으로 세포의 크기가 증가함을 알 수 있었다.FIG. 1A is a TEM photograph showing the inside of cells of chlorella soroquinia or HS strain cultured in BG11 medium containing no salt, and FIG. 1B is a chlorella soroquinia or HS strain cultured in BG11 medium containing salt. TEM image showing the inside of the cell. As shown in Figure 1A, Chlorella Sorokonia or HS strains cultured in BG11 medium containing no salts have a size of about 2㎛, and in the cells, thylakoids, chloroplasts, pyrenoids, starch (S ) And lipids (L) were found. On the contrary, as shown in FIG. 1B, the Chlorella sorokiniana or HS strain cultured in BG11 medium containing salts has a size of about 6 μm, and thylakoids, chloroplasts, pyrenoids, and a plurality of strains are Starch (S) and a large number of lipids (L) was found to be included. From this, when chlorella Sorokonia or HS strains were cultured in a medium containing salts, it was found that the content of starch and lipids in the cells increased, thereby increasing the cell size as a whole.
실시예 1-3: 지질함량 분석Example 1-3 Lipid Content Analysis
상기 실시예 1-2의 결과로부터, 염류 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주는 균체내의 스타치와 지질의 함량이 증가하여 전체적으로 균체의 크기가 증가함을 확인하였으므로, 상기 증가된 균체내 지질함량의 변화를 측정하였다.From the results of Example 1-2, it was confirmed that the chlorella soroquinia or HS strain cultured under salt stress conditions increased the size of the cells as a result of increasing the content of starch and lipids in the cells. The change in lipid content was measured.
구체적으로, 0, 1, 2, 3 또는 4%의 염류(NaCl)를 포함하는 BG11 배지에 클로렐라 소로키니아나 HS 균주를 접종하여 배양하여 배양물을 수집하고, 상기 배양액으로부터 각각의 균체를 수득하였다. 상기 수득한 각 균체에 클로로포름과 메탄올이 2:1(v/v)로 포함된 혼합용매를 가하고 교반한 다음, 다시 증류수를 첨가하여 최종적으로는 클로로포름, 메탄올 및 증류수의 비율이 1:1:0.9(v/v/v)이 되도록 하였다. 이어, 교반을 중지하고, 클로로포름 층을 분획하였으며, 상기 분획된 클로로포름에 용해된 각 균체로부터 유래된 지질의 함량을 공지된 방법(Bioresource Technology 101: S75-S77)으로 측정하였다(도 2). Specifically, inoculating BG11 medium containing 0, 1, 2, 3 or 4% of the salt (NaCl) inoculated with the chlorella soro kina or HS strain culture to collect the cultures, each cell was obtained from the culture solution. . To each cell obtained, a mixed solvent containing chloroform and methanol in a ratio of 2: 1 (v / v) was added thereto, followed by stirring. Then, distilled water was further added. Finally, the ratio of chloroform, methanol, and distilled water was 1: 1: 0.9. (v / v / v). Then, the stirring was stopped, the chloroform layer was fractionated, and the content of lipid derived from each cell dissolved in the fractionated chloroform was measured by a known method (Bioresource Technology 101: S75-S77) (FIG. 2).
도 2는 배지에 포함된 염류의 농도변화에 따른 클로렐라 소로키니아나 HS 균주의 균체내 지질함량의 변화를 나타내는 그래프이다. 도 2에서 보듯이, 염류가 포함되지 않은 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 10%이고, 1%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 15%이며, 2%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 25%이고, 3%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 34%이며, 4%의 염류를 포함하는 BG11 배지에서 배양된 균주의 균체에 포함된 지질함량은 약 32%임을 확인하였다. 이로부터, 3%의 염류를 포함하는 배지에서 배양된 균체가 가장 높은 균체내 지질함량을 나타내고, 염류를 포함하지 않는 배지에서 배양된 균체에 비하여 균체내 지질함량이 약 3.4배 증가하며, 그 이상의 염류를 포함하는 배지에서 배양된 균체는 균체내 지질함량이 다소 감소하는 경향을 나타냄을 알 수 있었다.Figure 2 is a graph showing the change in lipid content of the mycelia of Chlorella Sorokonia or HS strain according to the concentration of salts contained in the medium. As shown in Figure 2, the lipid content contained in the cells of the strain cultured in BG11 medium containing no salt is about 10%, lipid content contained in the cells of the strain cultured in BG11 medium containing 1% salt Is about 15% and the lipid content contained in the cells of the strain cultured in BG11 medium containing 2% of the salt is about 25%, contained in the cells of the strain cultured in BG11 medium containing 3% of the salt Lipid content is about 34%, it was confirmed that the lipid content contained in the cells of the strain cultured in BG11 medium containing 4% salt of about 32%. From this, the cells cultured in a medium containing 3% salt showed the highest intracellular lipid content, and the lipid content in the cells was increased by about 3.4 times as compared to the cells cultured in the medium containing no salt. Cells cultured in a medium containing salts showed a tendency to decrease the lipid content in the cells slightly.
실시예 1-4: 클로렐라 소로키니아나 HS 균주의 균체내 지질의 조성 분석Example 1-4 Analysis of the Composition of Lipids in Cells of Chlorella Sorokini and HS Strains
상기 실시예 1-3에서 수득한 각 균체 유래 지질의 조성을 GC 분석을 통해 확인하였다.The composition of each cell-derived lipid obtained in Example 1-3 was confirmed by GC analysis.
구체적으로, 상기 실시예 1-3에서 수득한 배양균체 50 mg에 1㎖의 KOH-CH3OH를 가하여 75℃에서 10분동안 반응시키고, 이에 5% HCl과 메탄올을 추가한 다음 다시 75℃에서 10분동안 반응시켰다. 이어, 상기 반응물에 헥산과 (CH3)3COCH3을 가하여 반응시키고, 증류수를 가한 후 격렬히 혼합하였으며, 상기 혼합물을 상온에서 방치하고 분별추출하여, 지질성분이 포함된 유기용매층을 수득하였다. 상기 수득한 유기용매층을 감압농축 및 동결건조시켜서 지질성분을 수득하고, 상기 수득한 지질성분을 이용하여 다음과 같은 조건으로 GC 분석을 수행하였다: GC 분석장치로는 Gas chromatograph Shimadzu GC-2010, Japan)를 이용하고, GC 컬럼으로는 DB-WAX (30 m, 0.25 mm)를 사용하였으며, 캐리어 가스(carrier gas)로는 헬륨(30 ㎖/min)을 사용하고, 주입량(injection volumne)은 1㎕이며, 분리비(split ratio)는 20:1이고, 오븐조건(Oven condition)은 170℃에서 1분, 250℃까지 1분당 5℃로 승온시켰으며, 250℃에서 12분 동안 유지하였다(도 3). Specifically, 1 mL of KOH-CH 3 OH was added to 50 mg of the culture cell obtained in Example 1-3 and reacted at 75 ° C. for 10 minutes, and 5% HCl and methanol were added thereto and then again at 75 ° C. The reaction was carried out for 10 minutes. Subsequently, hexane and (CH 3 ) 3 COCH 3 were added to the reactants, and the mixture was mixed vigorously after distilled water was added. The mixture was left at room temperature and fractionated to obtain an organic solvent layer containing lipid components. The obtained organic solvent layer was concentrated under reduced pressure and lyophilized to obtain a lipid component, and GC analysis was performed using the obtained lipid component under the following conditions: Gas chromatograph Shimadzu GC-2010, Japan), DB-WAX (30 m, 0.25 mm) was used as the GC column, helium (30 ml / min) was used as the carrier gas, and the injection volume was 1 μl. The split ratio was 20: 1, and the oven condition was raised to 5 ° C. per minute up to 250 ° C. for 1 minute at 170 ° C. and maintained at 250 ° C. for 12 minutes (FIG. 3). .
도 3은 다양한 염류 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내 지질의 조성을 나타내는 그래프이다. 도 3에서 보듯이, 클로렐라 소로키니아나 HS 균주의 균체내 지질은 주요 지방산으로서 팔미테이트(palmitate, C16:0), 팔미톨레이트(palmitoleate, C16:1), 스테아레이트(stearate, C18:0), 올레이트(oleate, C18:1), 리놀레이트(linoleate, C18:2), 리놀레네이트(linolenate, C18:3) 등을 포함한다. 특히, 팔미톨레이트는 염류를 포함하지 않은 배지에서 배양된 클로렐라 소로키니아나 HS에는 포함되어 있지 않고, 염류를 포함하는 배지에서 배양된 클로렐라 소로키니아나 HS에만 포함되어 있으며, 배지에 포함된 염류의 농도가 증가할 수록 상기 지방산 중에서 함량이 증가되는 경향을 나타냄을 확인하였다.Figure 3 is a graph showing the composition of lipids in cells of chlorella sorokinia or HS strain cultured under various salt stress conditions. As shown in Fig. 3, the intracellular lipids of chlorella soroquinia or HS strain are palmitate (C16: 0), palmitoleate (C16: 1), stearate (Stearate, C18: 0) as major fatty acids. , Oleate (C18: 1), linoleate (C18: 2), linolenate (C18: 3) and the like. In particular, palmitate is not included in chlorella sorokinia or HS cultured in a medium that does not contain salts, and is contained only in chlorella sorokinia or HS cultured in a medium containing salts. As the concentration was increased, it was confirmed that the content of the fatty acid tended to increase.
실시예 1-5: 염류쇼크에 의한 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주의 Nile red 염색분석Example 1-5 Nile red Staining Analysis of Chlorella Sorokini or HS Strains Cultured Under Stress Conditions by Salt Shock
상기 실시예 1-3의 결과로부터, 클로렐라 소로키니아나 HS 균주를 염류를 포함하는 배지에서 배양할 경우, 균체내 지질의 함량이 증가함을 확인하였으므로, 상기 균주를 염류가 없는 배지에서 배양하고, 염류를 추가하여 상기 균주에 염류쇼크를 가할 경우에도 동일한 결과를 얻을 수 있는지 확인하고자 하였다.From the results of Examples 1-3, when chlorella Sorokonia or HS strains were cultured in a medium containing salts, it was confirmed that the content of lipids in the cells increased, the strains were cultured in a salt-free medium, The addition of the salt was to determine whether the same result can be obtained even if the salt shock to the strain.
실시예 1-5-1: 염류 스트레스 조건에서 균주의 배양Example 1-5-1: Cultivation of Strains Under Salt Stress Conditions
염류를 포함하지 않은 BG11 배지에서 클로렐라 소로키아나 HS 균주를 배양하여 균체를 수득한 다음, 상기 수득한 균체를 다양한 농도(0, 1, 3, 5, 7, 10 또는 15%(w/v))의 NaCl이 포함된 BG11 배지에 접종하고 30시간 동안 추가로 배양하면서 6, 12, 24 또는 30시간이 경과된 시점에서 각각의 배양물을 수집하였다.Cells were obtained by culturing the Chlorella Sorokiana HS strain in BG11 medium without salts, and then the cells were obtained at various concentrations (0, 1, 3, 5, 7, 10 or 15% (w / v). Each culture was collected at 6, 12, 24 or 30 hours after inoculation into BG11 medium containing NaCl and further incubation for 30 hours.
실시예 1-5-2: 지질함량 분석Example 1-5-2: Lipid Content Analysis
상기 실시예 1-5-1에서 수집된 배양물 중에서, 0, 7, 10 또는 15%(w/v)의 NaCl이 포함된 BG11 배지에서 6, 12, 24 또는 30시간 동안 배양된 클로렐라 소로키니아나 HS 균주의 배양물을 사용하는 것을 제외하고는, 상기 실시예 1-3의 방법을 수행하여, 염류 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내에 포함된 지질의 함량을 분석하였다(도 4 및 표 2). Chlorella sorokini cultured for 6, 12, 24 or 30 hours in BG11 medium containing 0, 7, 10 or 15% (w / v) of NaCl in the culture collected in Example 1-5-1 Except for using the culture of Ana HS strain, the method of Example 1-3 was carried out to analyze the content of lipids contained in the cells of Chlorella sorokinia or HS strain cultured under salt stress conditions ( 4 and Table 2).
도 4는 클로렐라 소로키니아나 HS 균주를 0, 7, 10 또는 15%(w/v)의 NaCl이 포함된 BG11 배지에서 6, 12, 24 또는 30시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 이들 균체내의 지질함량을 분석한 결과를 나타내는 그래프이다.4 is incubated for 6, 12, 24 or 30 hours in BG11 medium containing 0, 7, 10 or 15% (w / v) of NaCl, Chlorella sorokinina HS strain, the cultured Chlorella sorokiniana It is a graph showing the results of analyzing the lipid content in these cells in HS strains.
표 2 염류 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내 지질함량
TABLE 2 Intracellular Lipid Contents of Chlorella Sorokini and HS Strains Cultured in Salt Stress Conditions
배양시간 | 배지에 포함된 NaCl 농도 | |||
0% | 7% | 10% | 15% | |
6시간 | 20.94% | 26.57% | 26.72% | 27.00% |
12시간 | 20.94% | 33.52% | 34.09% | 37.26% |
24시간 | 24.52% | 36.58% | 38.63% | 38.70% |
30시간 | 24.79% | 25.00% | 38.35% | 38.90% |
Incubation time | NaCl concentration in the medium | |||
0% | 7% | 10% | 15% | |
6 hours | 20.94% | 26.57% | 26.72% | 27.00% |
12 hours | 20.94% | 33.52% | 34.09% | 37.26% |
24 hours | 24.52% | 36.58% | 38.63% | 38.70% |
30 hours | 24.79% | 25.00% | 38.35% | 38.90% |
상기 도 4 및 표 2에서 보듯이, 클로렐라 소로키니아나 HS 균주는 배지에 포함된 NaCl의 농도 및 배양시간에 비례하여 균체내 지질함량이 증대되었으나, 10%(w/v) 이상의 NaCl이 포함된 BG11 배지에서 24시간 이상 배양할 경우에는 배양시간이 경과하여도 균체내 지질함량이 더 이상 증대되지 않음을 알 수 있었다. 상기 클로렐라 소로키니아나 HS 균주를 NaCl이 포함된 배지에서 배양하여 얻을 수 있는 균체내 지질함량의 최고값은 15%(w/v) NaCl이 포함된 BG11 배지에서 30시간 동안 배양된 균체에서 얻어진 38.90% 임을 알 수 있었다.As shown in Figure 4 and Table 2, Chlorella Sorokonia or HS strain increased the lipid content in the cells in proportion to the concentration and the culture time of NaCl contained in the medium, but contains more than 10% (w / v) NaCl Incubation in BG11 medium for 24 hours or more did not increase the lipid content in the cells even after the incubation time. The highest value of lipid content in cells obtained by culturing the Chlorella Sorokonia or HS strain in a medium containing NaCl was 38.90 obtained in a cell cultured for 30 hours in BG11 medium containing 15% (w / v) NaCl. It was found to be%.
실시예 1-5-3: Nile red 염색분석Example 1-5-3: Nile red staining analysis
상기 실시예 1-5-1에서 수집된 배양물 중에서, 0, 1, 3, 5, 7, 10 또는 15%(w/v)의 NaCl이 포함된 BG11 배지에서 0, 6, 24 또는 30시간 동안 배양된 클로렐라 소로키니아나 HS 균주의 각 배양물로부터 균체를 수득하고, 균체내 지질에 의해 반응하는 Nile red 염색을 수행하였으며, 그 결과를 형광현미경으로 관찰하였다(도 5). 이때, Nile red 염색은, 0.25mg/㎖의 농도로 Nile red를 아세톤에 용해시킨 염색용액 을 상기 각 균체시료에 가하여 5분 동안 교반하면서 반응시키고, 공초점형광현미경(confocal fluorescence microscope, ZEISS LSM510Meta, Germany)을 이용하여 490nm에서 여기(excitation)시키고 585nm에서의 방출(emission)된 형광값을 측정하는 방식으로 수행하였다.In cultures collected in Examples 1-5-1, 0, 6, 24 or 30 hours in BG11 medium containing 0, 1, 3, 5, 7, 10 or 15% (w / v) of NaCl Cells were obtained from each of the cultures of Chlorella Sorokonia or HS strains cultured during the period, and Nile red staining was performed by lipids in the cells, and the results were observed with a fluorescence microscope (FIG. 5). At this time, Nile red staining, the dye solution in which Nile red was dissolved in acetone at a concentration of 0.25mg / ㎖ was added to each of the cell samples and reacted for 5 minutes while stirring, confocal fluorescence microscope (ZEISS LSM510Meta, Germany) was used to measure excitation at 490 nm and emission value at 585 nm.
도 5는 염류를 포함하지 않는 배지에서 배양된 클로렐라 소로키니아나 HS 균주를 0, 1, 3, 5, 7, 10 또는 15%(w/v)의 NaCl이 포함된 BG11 배지에서 0, 6, 24 또는 30시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 Nile red 염색을 수행한 결과를 나타내는 형광현미경 사진이다. 도 5에서 보듯이, 배지에 포함된 NaCl의 함량이 증가되면, 균체내의 지질함량이 증대되어 Nile red 염색수준이 증가함을 확인하였다. FIG. 5 shows chlorella sorokiniana or HS strains cultured in a salt-free medium, 0, 6, in BG11 medium containing 0, 1, 3, 5, 7, 10 or 15% (w / v) NaCl. After culturing for 24 or 30 hours, it is a fluorescence micrograph showing the result of performing Nile red staining on the cultured Chlorella Sorokonia or HS strain. As shown in Figure 5, when the content of NaCl contained in the medium was increased, the lipid content in the cells was confirmed that the Nile red staining level is increased.
상기 실시예 1-5-1 내지 1-5-3의 결과로부터, 배지내 염류의 함량을 증가시키면, 미세조류의 균체내의 지질함량이 증대됨을 알 수 있었다. From the results of Examples 1-5-1 to 1-5-3, it was found that increasing the content of salts in the medium increased the lipid content in the microalgae cells.
실시예 2: 미세조류에 미치는 산화 스트레스의 효과Example 2 Effect of Oxidative Stress on Microalgae
미세조류인 클로렐라 불가리스 OW-01 균주(Chlorella vulgaris OW-01)(KCTC 12553BP), 클로렐라 소로키니아나 HS 균주(Chlorella sorokiniana HS)(KCTC 12171BP) 또는 스티제오클로니움 속 HS 균주(Stigeoclonium sp. HS)(KCTC 12676BP)에 미치는 산화 스트레스의 효과를 분석하고자 하였다.Microalgae Chlorella vulgaris OW-01 strain (Chlorella vulgaris OW-01) ( KCTC 12553BP), Chlorella Thoreau Kearney Ana HS strain (Chlorella sorokiniana HS) (KCTC 12171BP ) or styryl fifth claw nium in HS strain (Stigeoclonium sp. HS) We tried to analyze the effect of oxidative stress on (KCTC 12676BP).
실시예 2-1: 클로렐라 불가리스 OW-01 균주에 미치는 산화 스트레스의 효과Example 2-1 Effect of Oxidative Stress on Chlorella vulgaris OW-01 Strain
클로렐라 불가리스 OW-01 균주의 배지에 산화제를 첨가하여 산화 스트레스를 가한 다음, 이에 의한 균체내 지질함량의 변화수준을 측정하고자 하였다.The oxidative stress was added to the medium of Chlorella vulgaris OW-01 strain, and then the level of change in lipid content was measured.
실시예 2-1-1: 산화 스트레스 조건에서 균주의 배양Example 2-1-1: Cultivation of Strains Under Oxidative Stress Conditions
클로렐라 불가리스 OW-01 균주(Chlorella vulgaris OW-01)(KCTC 12553BP)를 BG11 배지에 접종하고, 이에 산화제인 과산화수소를 각각 0, 1, 5, 10 또는 20 mM의 농도로 처리하여 산화스트레스를 가하였으며, 이후 배양하면서 6시간 및 24시간이 경과된 시점에서 각각의 배양물을 수집하였다.Chlorella vulgaris was treated with OW-01 strain (Chlorella vulgaris OW-01) ( KCTC 12553BP) , the concentration of hydrogen peroxide of inoculation, thereby oxidizing agent in BG11 medium of 0, 1, 5, 10, or 20 mM was the oxidative stress Each culture was collected at 6 and 24 hours after incubation.
실시예 2-1-2: 지질함량 분석Example 2-1-2: Lipid Content Analysis
상기 실시예 2-1-1에서 수집된 배양물을 사용하는 것을 제외하고는, 상기 실시예 1-3의 방법을 수행하여, 산화 스트레스 조건에서 배양된 클로렐라 불가리스 OW-01 균주의 균체내에 포함된 지질의 함량을 분석하였다(도 6). Except for using the culture collected in Example 2-1-1, by performing the method of Example 1-3, contained in the cells of Chlorella vulgaris OW-01 strain cultured under oxidative stress conditions The content of lipids was analyzed (FIG. 6).
도 6은 산화제인 과산화수소를 포함하지 않은 BG11배지에서 배양된 클로렐라 불가리스 OW-01에 과산화수소를 첨가하여 산화 스트레스를 가한 후, 배양시간의 경과에 따른 균체내 지질함량의 변화를 나타내는 그래프이다. 도 6에서 보듯이, 산화제를 첨가하지 않은 대조군(0mM)의 균주에 포함된 지질의 함량은 약 18.22%이고, 1mM의 산화제를 첨가하고 24시간 동안 배양된 실험군의 균주에 포함된 지질의 함량은 약 18.93%로서 별다른 차이를 나타내지 않았다. 그러나, 5mM의 산화제를 첨가하고 24시간 동안 배양된 실험군의 균주에 포함된 지질의 함량은 약 24.23%이고, 10mM의 산화제를 첨가하고 24시간 동안 배양된 실험군의 균주에 포함된 지질의 함량은 약 31.67%이며, 20mM의 산화제를 첨가하고 24시간 동안 배양된 실험군의 균주에 포함된 지질의 함량은 약 31.25%임을 확인하였다.FIG. 6 is a graph showing the change in lipid content in cells over time after the addition of hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium not containing hydrogen peroxide as an oxidizing agent. As shown in Figure 6, the content of the lipid contained in the strain of the control group (0mM) without addition of the oxidant is about 18.22%, the content of lipids contained in the strain of the experimental group incubated for 24 hours with the addition of 1mM oxidant There was no difference as about 18.93%. However, the content of lipid in the strain of the experimental group incubated for 24 hours with 5 mM oxidant was about 24.23%, and the content of lipid in the strain of the experimental group incubated for 24 hours with 10 mM oxidant was 31.67%, the content of lipid contained in the strain of the experimental group incubated for 24 hours with the addition of 20mM oxidant was confirmed that about 31.25%.
실시예 2-1-3: Nile red 염색분석Example 2-1-3: Nile red staining analysis
상기 실시예 2-1-1에서 수집된 배양물을 사용하는 것을 제외하고는, 상기 실시예 1-5-3의 방법을 수행하여, 산화 스트레스 조건에서 배양된 클로렐라 불가리스 OW-01 균주의 균체를 대상으로 Nile red 염색분석을 수행하였다(도 7). Except for using the culture collected in Example 2-1-1, by performing the method of Example 1-5-3, cells of Chlorella vulgaris OW-01 strain cultured under oxidative stress conditions Nile red staining analysis was performed on the subject (FIG. 7).
도 7은 산화제인 과산화수소를 포함하지 않은 BG11배지에서 배양된 클로렐라 불가리스 OW-01에 과산화수소를 첨가하여 산화 스트레스를 가한 후, 배양시간의 경과에 따른 균체내 지질함량의 변화를 나타내는 현미경 사진이다. 도 7에서 보듯이, 산화제를 첨가하지 않은 대조군(0mM)의 균주에서는 노란색으로 표시되는 균주가 관찰되지 않았으나, 산화제의 처리농도와 배양시간이 증가할 수록 노란색으로 표시되는 균주의 수가 증가함을 확인하였다. 특히, 10mM 이상의 농도로 산화제가 처리된 실험군에서는 대부분의 균주가 노란색으로 표시됨을 확인하였다.FIG. 7 is a micrograph showing changes in lipid content in cells over time after oxidative stress was added by adding hydrogen peroxide to chlorella vulgaris OW-01 cultured in BG11 medium without hydrogen peroxide as an oxidizing agent. As shown in Figure 7, in the control group without addition of the oxidizing agent (0mM) was not observed in the yellow strain, but as the concentration of the oxidizing agent and the incubation time was confirmed that the number of strains displayed in yellow increases It was. In particular, in the experimental group treated with the oxidant at a concentration of 10mM or more, it was confirmed that most strains are displayed in yellow.
상기 실시예 2-1-1 내지 2-1-3의 결과로부터, 클로렐라 불가리스 OW-01 균주에 5mM 이상의 농도로 산화제를 처리할 경우, 균주내의 지질함량이 증대되고, 10mM의 산화제를 처리할 경우, 균주내의 지질함량이 최대값을 나타내었으며, 상기 산화제를 10mM 이상의 농도로 처리하는 경우 증가되는 지질함량이 계속적으로 유지됨을 알 수 있었다. 산화스트레스에 의하여 증가된 균체내 지질함량의 최대값은 대조군 대비 약 1.7배로 확인되었다.From the results of Examples 2-1-1 to 2-1-3, when oxidizing agent is treated with Chlorella vulgaris OW-01 strain at a concentration of 5 mM or more, the lipid content in the strain is increased, and when 10 mM oxidant is treated. , The lipid content in the strain showed a maximum value, it was found that the increased lipid content is continuously maintained when the oxidant is treated at a concentration of 10mM or more. The maximum value of the lipid content in the cells increased by oxidative stress was about 1.7 times compared to the control.
실시예 2-2: 클로렐라 소로키니아나 HS 균주에 미치는 산화 스트레스의 효과Example 2-2 Effect of Oxidative Stress on Chlorella Sorokini and HS Strains
클로렐라 소로키니아나 HS 균주에 산화제를 첨가하여 산화스트레스를 가한 다음, 이에 의한 균체내 지질함량의 변화수준을 측정하고자 하였다.An oxidative stress was added to chlorella soroquinia or HS strain, and then the level of change in lipid content was measured.
실시예 2-2-1: 산화 스트레스 조건에서 균주의 배양Example 2-2-1: Culture of Strains under Oxidative Stress Conditions
염류를 포함하지 않은 BG11 배지에서 클로렐라 소로키니아나 HS 균주(Chlorella sorokiniana HS)(KCTC 12171BP)를 배양하여 균체를 수득한 다음, 상기 수득한 각 균체를 다양한 농도(0, 1, 3, 5, 10, 15 또는 20mM)의 과산화수소가 포함된 BG11 배지에 접종하고 30시간 동안 추가로 배양하면서, 0, 6, 12, 24 또는 30시간이 경과된 시점에서 각각의 배양물을 수집하였다. Chlorella sorokiniana HS strain (KCTC 12171BP) was cultured in BG11 medium without salts to obtain the cells, and then the cells were obtained at various concentrations (0, 1, 3, 5, 10). , 15 or 20 mM) was inoculated in BG11 medium containing hydrogen peroxide and further incubated for 30 hours, with each culture collected at time points 0, 6, 12, 24 or 30 hours had elapsed.
실시예 2-2-2: 지질함량 분석Example 2-2-2: lipid content analysis
상기 실시예 2-2-1에서 수집된 배양물 중에서, 0, 1, 5, 10 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6 또는 24시간 동안 배양된 클로렐라 소로키니아나 HS 균주의 배양물을 사용하는 것을 제외하고는, 상기 실시예 1-3의 방법을 수행하여, 산화 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주의 균체내에 포함된 지질의 함량을 분석하였다(도 8). Among the cultures collected in Example 2-2-1, cultures of Chlorella sorokiniana or HS strains cultured for 0, 6 or 24 hours in BG11 medium containing 0, 1, 5, 10 or 20 mM hydrogen peroxide Except for using, the method of Example 1-3 was carried out to analyze the content of lipids contained in the cells of Chlorella Sorokonia or HS strain cultured under oxidative stress conditions (Fig. 8).
도 8은 클로렐라 소로키니아나 HS 균주를 0, 1, 5, 10 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6 또는 24시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 이들 균체내의 지질함량을 분석한 결과를 나타내는 그래프이다. 상기 도 8에서 보듯이, 클로렐라 소로키니아나 HS 균주는 배지에 포함된 과산화수소의 농도 및 배양시간에 비례하여 균체내 지질함량이 증대되었으나, 10mM 이상의 과산화수소가 포함된 BG11 배지에서 배양할 경우에는 배양시간이 경과하여도 균체내 지질함량이 더 이상 증가하지 않음을 알 수 있었다. 상기 클로렐라 소로키니아나 HS 균주를 과산화수소가 포함된 배지에서 배양하여 얻을 수 있는 균체내 지질함량의 최고값은 10mM 과산화수소가 포함된 BG11 배지에서 24시간 동안 배양된 균체에서 얻어진 31.67% 임을 알 수 있었다.8 is incubated for 0, 6, or 24 hours in BG11 medium containing 0, 1, 5, 10 or 20 mM hydrogen peroxide for chlorella sorokinina or HS strains, It is a graph showing the result of analyzing lipid content in cells. As shown in FIG. 8, the chlorella soroquinia or HS strain increased the lipid content in the cells in proportion to the concentration of hydrogen peroxide in the medium and the culture time, but the culture time when incubated in BG11 medium containing more than 10 mM hydrogen peroxide Even after this time, it was found that the lipid content in the cells was no longer increased. The maximum value of lipid content in cells obtained by culturing the Chlorella Sorokonia or HS strain in a medium containing hydrogen peroxide was 31.67% obtained in cells cultured in BG11 medium containing 10 mM hydrogen peroxide for 24 hours.
실시예 2-2-3: Nile red 염색분석Example 2-2-3: Nile red staining analysis
상기 실시예 2-2-1에서 수집된 배양물 중에서, 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6, 24 또는 30시간 동안 배양된 클로렐라 소로키니아나 HS 균주의 배양물을 사용하는 것을 제외하고는, 상기 실시예 1-5-3의 방법을 수행하여, 산화 스트레스 조건에서 배양된 클로렐라 소로키니아나 HS 균주의 균체를 대상으로 Nile red 염색분석을 수행하였다(도 9). Chlorella sorokini cultured for 0, 6, 24 or 30 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide in the culture collected in Example 2-2-1 Except for using the culture of the Ana HS strain, by performing the method of Example 1-5-3, Nile red staining analysis was performed on the cells of Chlorella Sorokonia or HS strain cultured under oxidative stress conditions Was performed (FIG. 9).
도 9는 클로렐라 소로키니아나 HS 균주를 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6, 24 또는 30시간 동안 배양하고, 상기 배양된 클로렐라 소로키니아나 HS 균주를 대상으로 Nile red 염색을 수행한 결과를 나타내는 형광현미경 사진이다. 도 9에서 보듯이, 배지에 포함된 과산화수소의 함량이 증가되면, 균체내의 지질함량이 증대되어 Nile red 염색수준이 증가함을 확인하였다. 구체적으로, 클로렐라 소로키니아나 HS 균주의 경우에는 5mM 이상의 과산화수소를 포함하는 배지에서 지질함량의 증가로 인한 Nile red 염색수준의 증가가 관찰되었고, 10mM 이상의 과산화수소를 포함하는 배지에서는 더 이상 Nile red 염색수준이 증가하지 않았다. 또한, 고농도의 과산화수소를 포함하는 배지에서 배양할 경우에도 배양시간에 따른 Nile red 염색수준의 차이가 관찰되었다.9 is a chlorella sorokinina HS strain incubated for 0, 6, 24 or 30 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide, the cultured chlorella sorokinina Fluorescence micrograph showing the result of performing Nile red staining on HS strain. As shown in Figure 9, when the content of hydrogen peroxide contained in the medium was increased, the lipid content in the cells was confirmed that the Nile red staining level is increased. Specifically, an increase in Nile red staining level due to an increase in lipid content was observed in a medium containing more than 5 mM hydrogen peroxide in the case of Chlorella Sorokonia or HS strain, and furthermore Nile red staining level in a medium containing more than 10 mM hydrogen peroxide. This did not increase. In addition, even when cultured in a medium containing a high concentration of hydrogen peroxide, the difference in the Nile red staining level according to the culture time was observed.
상기 실시예 2-2-1 내지 2-2-3의 결과로부터, 클로렐라 불가리스 OW-01 균주 뿐만 아니라, 클로렐라 소로키니아나 HS 균주 역시 배지내 산화제의 함량을 증가시키면, 균체내의 지질함량이 증대됨을 알 수 있었다. From the results of Examples 2-2-1 to 2-2-3, as well as Chlorella vulgaris OW-01 strain, Chlorella sorokinia or HS strain also increased the lipid content in the cells when the oxidant content was increased in the medium. Could know.
실시예 2-3: 스티제오클로니움 속 HS 균주에 미치는 산화 스트레스의 효과Example 2-3: Effect of Oxidative Stress on HS Strains of Stimeoclonium
상기 실시예 2-1 및 2-2의 결과로부터 산화 스트레스를 가한 조건에서 클로렐라 속 균주인 클로렐라 불가리스 OW-01 균주 또는 클로렐라 소로키아나 HS 균주를 배양할 경우, 균체내의 지질함량이 증대됨을 확인하였으므로, 상기 클로렐라 속 균주 이외의 다른 균주에서도 동일한 효과를 나타내는지의 여부를 확인하고자 하였다.When the chlorella vulgaris OW-01 strain or chlorella Sorokiana HS strain, which is a chlorella strain under conditions subjected to oxidative stress, was observed from the results of Examples 2-1 and 2-2, it was confirmed that the lipid content in the cells was increased. , To determine whether the same effect in other strains than the strain of the genus Chlorella.
실시예 2-3-1: 산화 스트레스 조건에서 균주의 배양Example 2-3-1: Culture of Strains under Oxidative Stress Conditions
염류를 포함하지 않은 BG11 배지에서 진균류에 속하는 스티제오클로니움 속 HS 균주(Stigeoclonium sp. HS)(KCTC 12676BP)를 배양하여 균체를 수득한 다음, 상기 수득한 각 균체를 다양한 농도(0, 1, 3, 5, 10, 15 또는 20mM)의 과산화수소가 포함된 BG11 배지에 접종하고 30시간 동안 추가로 배양하면서, 0, 6, 12, 24 또는 30시간이 경과된 시점에서 각각의 배양물을 수집하였다. Stigeoclonium sp. HS (KCTC 12676BP), which belongs to the fungus, was cultured in BG11 medium without salts to obtain the cells, and then the cells were obtained at various concentrations (0, 1, Each culture was collected at 0, 6, 12, 24 or 30 hours, inoculating BG11 medium containing 3, 5, 10, 15 or 20 mM hydrogen peroxide and further incubating for 30 hours. .
실시예 2-3-2: 지질함량 분석Example 2-3-2: Lipid Content Analysis
상기 실시예 2-3-1에서 수집된 배양물 중에서, 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 6, 12 또는 24시간 동안 배양된 스티제오클로니움 속 HS 균주의 배양물을 사용하는 것을 제외하고는, 상기 실시예 1-3의 방법을 수행하여, 산화 스트레스 조건에서 배양된 스티제오클로니움 속 HS 균주의 균체내에 포함된 지질의 함량을 분석하였다(도 10 및 표 3). Among the cultures collected in Example 2-3-1, the genus Stizeoclonium cultured for 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide Except for using the culture of the HS strain, the method of Example 1-3 was carried out to analyze the content of lipids contained in the cells of the HS strain of the genus Styreclonium cultured under oxidative stress conditions ( 10 and Table 3).
도 10은 스티제오클로니움 속 HS 균주를 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 6, 12 또는 24시간 동안 배양하고, 상기 배양된 스티제오클로니움 속 HS 균주를 대상으로 이들 균체내의 지질함량을 분석한 결과를 나타내는 그래프이다.FIG. 10 shows HS strains of the genus Stizelonium incubated for 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide, It is a graph showing the results of analyzing the lipid content in these cells in HS strains.
표 3 다양한 조건에서 배양된 스티제오클로니움 속 HS 균주의 균체내 지질함량
TABLE 3 Intracellular Lipid Contents of HS Strains of Stimeoclonium Cultured in Various Conditions
배양시간 | 배지에 포함된 과산화수소 농도 | ||||||
0mM | 1mM | 3mM | 5mM | 10mM | 15mM | 20mM | |
6시간 | 21.95% | 26.72% | 27.12% | 29.62% | 28.53% | 28.00% | 29.08% |
12시간 | 23.58% | 29.65% | 30.25% | 33.73% | 37.09% | 38.21% | 38.24% |
24시간 | 24.52% | 34.52% | 35.17% | 36.84% | 38.51% | 39.51% | 37.51% |
Incubation time | Hydrogen Peroxide Concentration in | ||||||
0mM | |||||||
1 mM | 3mM | 5 | 10 | 15 | 20mM | ||
6 hours | 21.95% | 26.72% | 27.12% | 29.62% | 28.53% | 28.00% | 29.08% |
12 hours | 23.58% | 29.65% | 30.25% | 33.73% | 37.09% | 38.21% | 38.24% |
24 hours | 24.52% | 34.52% | 35.17% | 36.84% | 38.51% | 39.51% | 37.51% |
상기 도 10 및 표 3에서 보듯이, 스티제오클로니움 속 HS 균주는 배지에 포함된 과산화수소의 농도 및 배양시간에 비례하여 균체내 지질함량이 증대되었고, 10mM 이상의 과산화수소가 포함된 BG11 배지에서 배양할 경우에는 배양시간이 경과하여도 균체내 지질함량이 더 이상 증가하지 않음을 알 수 있었다. 상기 스티제오클로니움 속 HS 균주를 과산화수소가 포함된 배지에서 배양하여 얻을 수 있는 균체내 지질함량의 최고값은 15mM 과산화수소가 포함된 BG11 배지에서 24시간 동안 배양된 균체에서 얻어진 39.51% 임을 알 수 있었다.As shown in FIG. 10 and Table 3, HS strains of the genus Stizeoclonium increased the lipid content in the cells in proportion to the concentration of hydrogen peroxide contained in the medium and incubation time, to be cultured in BG11 medium containing more than 10 mM hydrogen peroxide In this case, it was found that the lipid content in the cells did not increase any more even after the incubation time. It can be seen that the highest value of lipid content in cells obtained by culturing the HS strain of S. zeoclonium in a medium containing hydrogen peroxide was 39.51% obtained in cells cultured in BG11 medium containing 15 mM hydrogen peroxide for 24 hours. .
실시예 2-3-3: Nile red 염색분석Example 2-3-3: Nile red staining analysis
상기 실시예 2-3-1에서 수집된 배양물 중에서, 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6, 12 또는 24시간 동안 배양된 스티제오클로니움 속 HS 균주의 배양물을 사용하는 것을 제외하고는, 상기 실시예 1-5-3의 방법을 수행하여, 산화 스트레스 조건에서 배양된 스티제오클로니움 속 HS 균주의 균체를 대상으로 Nile red 염색분석을 수행하였다(도 11). Among the cultures collected in Example 2-3-1, Stizeoclo incubated for 0, 6, 12 or 24 hours in BG11 medium containing 0, 1, 3, 5, 10, 15 or 20 mM hydrogen peroxide Nile red staining was performed on the cells of HS strain of S. zeoclonium cultured under oxidative stress conditions by performing the method of Example 1-5-3, except that a culture of the strain of S. nilium was used. Analysis was performed (FIG. 11).
도 11은 스티제오클로니움 속 HS 균주를 0, 1, 3, 5, 10, 15 또는 20mM의 과산화수소가 포함된 BG11 배지에서 0, 6, 12 또는 24시간 동안 배양하고, 상기 배양된 스티제오클로니움 속 HS 균주를 대상으로 Nile red 염색을 수행한 결과를 나타내는 형광현미경 사진이다. 도 11에서 보듯이, 배지에 포함된 과산화수소의 함량이 증가되면, 균체내의 지질함량이 증대되어 Nile red 염색수준이 증가함을 확인하였다. 구체적으로, 1mM 이상의 과산화수소를 포함하는 배지에서 지질함량의 증가로 인한 Nile red 염색수준의 증가가 관찰되었고, 10mM 이상의 과산화수소를 포함하는 배지에서 배양할 경우에는 12시간 이상 배양할 경우, 더 이상 Nile red 염색수준의 차이가 관찰되지 않았다.FIG. 11 is incubated with 0, 1, 3, 5, 10, 15, or 20 mM BG11 medium containing 0, 1, 3, 5, 10, 15, or 20 mM hydrogen peroxide for 0, 6, 12, or 24 hours, and the cultured Stizeoclo Fluorescence micrograph showing the result of performing Nile red staining on the HS strain of the genus. As shown in Figure 11, when the content of hydrogen peroxide contained in the medium was increased, the lipid content in the cells was confirmed that the Nile red staining level is increased. Specifically, an increase in Nile red staining level was observed due to an increase in lipid content in a medium containing more than 1 mM hydrogen peroxide, and when incubated in a medium containing more than 10 mM hydrogen peroxide for 12 hours, Nile red was no longer present. No difference in staining levels was observed.
상기 실시예 2-3-1 내지 2-3-3의 결과로부터, 본 발명에서 제공하는 클로렐라 속 이외의 다른 미세조류에서도 배지내 산화제의 함량을 증가시키면, 미세조류의 균체내의 지질함량이 증대됨을 알 수 있었다. From the results of the above Examples 2-3-1 to 2-3-3, increasing the content of the oxidant in the medium in the microalgae other than the genus Chlorella provided by the present invention, the lipid content in the microalgae is increased Could know.
Claims (9)
- 스트레스 조건에서 미세조류를 배양하는 단계를 포함하는, 지질함량이 증대된 미세조류의 제조방법.Comprising a step of culturing the microalgae under stress conditions, a method of producing a microalgae with increased lipid content.
- 제1항에 있어서,The method of claim 1,상기 스트레스 조건은 염류 스트레스 또는 산화 스트레스에 의해 야기되는 것인 방법.Wherein said stress condition is caused by salt stress or oxidative stress.
- 제2항에 있어서,The method of claim 2,상기 염류 스트레스는 염화나트륨(NaCl), 염화마그네슘(MgCl2), 황산마그네슘(MgSO4), 황산칼슘(CaSO4), 황산칼륨(K2SO4), 탄산칼슘(CaCO3), 브로민화마그네슘(MgBr2) 및 이들의 조합으로 구성된 군으로부터 선택되는 염류를 미세조류의 배지에 가하여 형성되는 것인 방법.The salt stress is sodium chloride (NaCl), magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ), calcium sulfate (CaSO 4 ), potassium sulfate (K 2 SO 4 ), calcium carbonate (CaCO 3 ), magnesium bromide ( MgBr 2 ) and a salt selected from the group consisting of a combination thereof are formed by adding to the medium of microalgae.
- 제3항에 있어서,The method of claim 3,상기 배지에 포함된 염류의 농도는 1 내지 30%(w/v)인 것인 방법.The concentration of the salt contained in the medium is 1 to 30% (w / v).
- 제2항에 있어서,The method of claim 2,상기 산화 스트레스는 과산화수소(H2O2), 초과산화 이온(superoxide ion, 02-), 수산화 라디칼(hydroxyl radical, OH-), 차염소산(hypochlorous acid, HOCl) 및 이들의 조합으로 구성된 군으로부터 선택되는 산화제를 미세조류의 배지에 가하여 형성되는 것인 방법.The oxidative stress is hydrogen peroxide (H 2 O 2), excess oxidizing ion (superoxide ion, 0 2-), hydroxyl radicals (hydroxyl radical, OH -), tea acid (hypochlorous acid, HOCl), and from the group consisting of a combination of Wherein the oxidant of choice is added to the medium of microalgae.
- 제5항에 있어서,The method of claim 5,상기 배지에 포함된 산화제의 농도는 5 내지 100mM인 것인 방법.The concentration of the oxidant contained in the medium is 5 to 100mM.
- 제1항에 있어서,The method of claim 1,상기 미세조류는 클로렐라 속 균주, 스티제오클로니움 속 균주 및 이들의 조합으로 구성된 군으로부터 선택되는 균주인 것인 방법.Wherein said microalgae is a strain selected from the group consisting of chlorella genus strain, stigeoclonium strain and combinations thereof.
- 제1항 내지 제7항 중 어느 한 항의 방법을 이용하여 제조되어, 스트레스 조건 없이 배양된 균주에 비하여, 균체내 지질함량이 증대된 미세조류.A microalgae prepared using the method of any one of claims 1 to 7, wherein the lipid content in the cells is increased compared to the strain cultured without stress conditions.
- 제8항의 균체내 지질함량이 증대된 미세조류를 포함하는 바이오매스.A biomass comprising microalgae having an increased lipid content in cells of claim 8.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0154227 | 2013-12-11 | ||
KR1020130154227A KR101743232B1 (en) | 2013-12-11 | 2013-12-11 | Microalgae comprising increased lipid contents using salt stress and process for preparing the same |
KR10-2014-0031184 | 2014-03-17 | ||
KR1020140031184A KR101625074B1 (en) | 2014-03-17 | 2014-03-17 | Microalgae comprising increased lipid contents using oxidative stress and process for preparing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015088127A1 true WO2015088127A1 (en) | 2015-06-18 |
Family
ID=53371402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/008536 WO2015088127A1 (en) | 2013-12-11 | 2014-09-12 | Method for preparing microalgae with increased lipid content |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015088127A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011097261A1 (en) * | 2010-02-03 | 2011-08-11 | Sapphire Energy, Inc. | Stress-induced lipid trigger |
US20110294196A1 (en) * | 2009-12-30 | 2011-12-01 | Marcelo Gonzalez Machin | Methods and systems for producing lipids from microalgae using cultured multi-species microalgae |
-
2014
- 2014-09-12 WO PCT/KR2014/008536 patent/WO2015088127A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110294196A1 (en) * | 2009-12-30 | 2011-12-01 | Marcelo Gonzalez Machin | Methods and systems for producing lipids from microalgae using cultured multi-species microalgae |
WO2011097261A1 (en) * | 2010-02-03 | 2011-08-11 | Sapphire Energy, Inc. | Stress-induced lipid trigger |
Non-Patent Citations (3)
Title |
---|
CAO, JLNG ET AL.: "Significance evaluation of the effects or environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition", BIORESOUR. TECHNOL., vol. 152, 5 November 2003 (2003-11-05), pages 177 - 184 * |
DUAN, XU ET AL.: "Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris", AFRICAN JOURNAL OF BIOTECHNOLOGY, vol. 11, no. 27, 3 April 2012 (2012-04-03), pages 7072 - 7078 * |
ZHANG, YUN-MING ET AL.: "Nitrogen starvation induced oxidative stress in an oil- producing green alga Chlorella sorokiniana C3", PLOS ONE., vol. 8, no. 7, 16 July 2013 (2013-07-16), pages 1 - 12 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011139040A2 (en) | Novel thraustochytrid-based microalgae, and method for preparing bio-oil by using same | |
Ramachandran et al. | Oil cakes and their biotechnological applications–A review | |
Cheirsilp et al. | Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: fed-batch and repeated-batch fermentations | |
Kitcha et al. | Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy | |
Koutb et al. | A potent lipid producing isolate of Epicoccum purpurascens AUMC5615 and its promising use for biodiesel production | |
Ribeiro et al. | Production of Chlorella protothecoides biomass, chlorophyll and carotenoids using the dairy industry by-product scotta as a substrate | |
Dittamart et al. | Effects of organic carbon source and light-dark period on growth and lipid accumulation of Scenedesmus sp. AARL G022. | |
Liu et al. | Isochrysis sp. IOAC724S, a newly isolated, lipid-enriched, marine microalga for lipid production, and optimized cultivation conditions | |
KR101777217B1 (en) | Microalgae Schizochytrium sp. SH103 strain producing bio-oil containing high concentration of DHA and uses thereof | |
Jiang et al. | Effects of Xanthophyllomyces dendrorhous on cell growth, lipid, and astaxanthin production of Chromochloris zofingiensis by mixed culture strategy | |
CN111057726A (en) | Method for efficiently synthesizing fatty acid by inducing euglena gracilis | |
WO2014109438A1 (en) | High starch and high lipid producing microalgae cholorella cell strain isolated from artic ocean and use therefor | |
WO2015088127A1 (en) | Method for preparing microalgae with increased lipid content | |
WO2015068896A1 (en) | Novel micractinium inermum nlp-f014 strain and use thereof | |
WO2013118942A1 (en) | Etlia sp. strain having superior carbon dioxide fixation ability and lipid producing ability and use thereof | |
KR102647564B1 (en) | Lutein and oleic acid-producing novel microalgae of Asterarcys quadricellulare AQYS21 and its culturing method | |
KR101743232B1 (en) | Microalgae comprising increased lipid contents using salt stress and process for preparing the same | |
NO20031225D0 (en) | Process for the preparation of raw materials for the recovery of conjugated linoleic acid | |
WO2017039344A1 (en) | Method for producing microalgae of which autophagy is inhibited and amounts of starch and lipids are increased | |
Abirami et al. | Screening and optimization of culture conditions of Nannochloropsis gaditana for omega 3 fatty acid production | |
JP3499259B2 (en) | Method for producing astaxanthin | |
Xie et al. | Isolation and identification of oleaginous endophytic fungi | |
Leong et al. | Upcycling of carbon from waste via bioconversion into biofuel and feed | |
WO2024228564A1 (en) | White microalgae strain with restricted pigment biosynthesis, method for producing useful substances from same, and composition comprising same | |
KR101625074B1 (en) | Microalgae comprising increased lipid contents using oxidative stress and process for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14869002 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14869002 Country of ref document: EP Kind code of ref document: A1 |