WO2017038201A1 - Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium - Google Patents
Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium Download PDFInfo
- Publication number
- WO2017038201A1 WO2017038201A1 PCT/JP2016/067643 JP2016067643W WO2017038201A1 WO 2017038201 A1 WO2017038201 A1 WO 2017038201A1 JP 2016067643 W JP2016067643 W JP 2016067643W WO 2017038201 A1 WO2017038201 A1 WO 2017038201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass substrate
- polishing
- recording medium
- information recording
- producing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C19/00—Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
- G11B5/73911—Inorganic substrates
- G11B5/73921—Glass or ceramic substrates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
Definitions
- the present invention relates to a method for manufacturing a glass substrate for information recording medium, a method for manufacturing an information recording medium, a glass substrate for information recording medium, and a magnetic recording medium.
- Ra arithmetic mean roughness
- the surface of the glass substrate may be polished using fine abrasive grains.
- polishing abrasive grains having a diameter of 30 nm or less a final polishing is performed using a colloidal silica slurry.
- colloidal silica has a particle diameter of 10 nm or less, when used as an abrasive, colloidal silica has a high affinity with a glass substrate, and has a problem that Ra adheres firmly to the glass substrate and raises Ra.
- Patent Document 1 has a problem that the improvement range of Ra is small.
- the particles since the particles are large, it has been confirmed that there are cases where the particles do not sufficiently enter between the glass substrate and the polishing pad at the initial stage of the polishing machine, the polishing load increases, and the glass substrate may crack. Yes.
- Ra on the main surface of the glass substrate is 0.05 nm or less, but it is difficult to perform final polishing with organic particles. Further, in other polishing slurries, a glass substrate having a main surface Ra of 0.05 nm or less has not been realized. Therefore, there is a possibility that the conventional technology cannot cope with the further increase in recording capacity and accuracy required in the future.
- One object of the present invention is to solve the above-mentioned problems, and to provide a method for producing a glass substrate for a minute information recording medium of Ra that can sufficiently cope with further higher recording capacity and higher accuracy required in the future. It is to provide.
- the above issues in the method for producing a glass substrate for information recording medium for polishing a glass substrate By the rough polishing step of polishing the main surface of the glass substrate, the arithmetic average roughness Ra on the main surface when measured with a resolution of 256 ⁇ 256 pixels at 1 ⁇ m ⁇ 1 ⁇ m square using an atomic force microscope is 0.2 nm.
- the following glass substrates are manufactured, Thereafter, the glass substrate is polished by a final polishing step in which polishing is performed using a polishing slurry containing at least one abrasive selected from the group consisting of diamond, aluminum oxide and cerium oxide having an average particle size of 15 nm or less.
- glass substrate for a magnetic disk glass substrate for hard disk; hereinafter simply referred to as “glass substrate”.
- any glass that can be used for a normal glass substrate for a magnetic disk can be used.
- glass plates having the following glass composition in terms of mol%. (1) 55 to 75% of SiO 2 , 5 to 17% of Al 2 O 3 , 4 to 27% of Li 2 O + Na 2 O + K 2 O, 0 to 20% of MgO + CaO + SrO + BaO, the total content of these components Is 90% or more, ZrO 2 may be contained in an amount of 0 to 6%, TiO 2 may be contained in an amount of 0 to 6%, or SiO 2 in an amount of 62 to 74% and Al 2 O 3 in an amount of 7 to 18 in terms of mol%.
- the total content of the seven components is 95% or more, Li Glass which may contain any one or more of 2 O, Na 2 O and K 2 O in total less than 4%.
- Li Glass which may contain any one or more of 2 O, Na 2 O and K 2 O in total less than 4%.
- the total content of the seven components is 95% or more, and any one or more of Li 2 O, Na 2 O and K 2 O may be contained in total in less than 4%.
- a glass substrate made of, for example, Al 2 O 3 —SiO 2 glass (aluminosilicate glass) is used as a starting material.
- a glass substrate is manufactured through the following steps. That is, a circular hole is formed in the center of the glass substrate, and chamfering, main surface lapping, and end mirror polishing are sequentially performed. Then, the glass substrate in which the above-mentioned processing was performed may be laminated, and an inner peripheral end face may be etched. Then, the main surface of the glass substrate is polished to a flat and smooth surface (hereinafter referred to as a main surface polishing step), and a magnetic recording medium is applied to the main surface (film formation of a magnetic film) to form a glass substrate.
- a main surface polishing step a flat and smooth surface
- the main surface lapping process may be divided into a rough lapping process and a fine lapping process, and a shape processing process (drilling in the center of the glass plate, chamfering, end mirror polishing) may be provided between them.
- a chemical strengthening step may be provided after the polishing step.
- the punching of the glass substrate center is unnecessary.
- the main surface lapping is performed using aluminum oxide abrasive grains having an average particle diameter of 6 to 8 ⁇ m or aluminum oxide abrasive grains in a typical example.
- the reduction amount (polishing amount) of the main surface of the glass substrate due to lapping is usually 100 to 400 ⁇ m. However, as long as the arithmetic average roughness Ra on the main surface of the glass substrate can be finally set to 0.05 nm or less, it may be out of the numerical range.
- the main surface polishing step includes a rough polishing step and a final polishing step, and may further include, for example, three polishing steps in which the rough polishing step is divided into a plurality of steps.
- the rough polishing step is divided into two steps, a first polishing step and a second polishing step, and the finish polishing step will be described as an example of one step of the third polishing step. May be divided into three or more steps, and the finish polishing step may be divided into two or more steps.
- the first polishing step is a rough polishing step, in which the main surface of the glass substrate is polished with abrasive grains of cerium oxide, aluminum oxide, or zirconium oxide.
- abrasive grains of cerium oxide, aluminum oxide, or zirconium oxide.
- cerium oxide abrasive grains because it is easy to achieve both a polishing rate and a polished surface quality.
- the main surface of the substrate is polished with a polishing slurry containing abrasive grains having an average particle size of usually 0.5 to 2.0 ⁇ m.
- polishing may be performed using the polishing slurry and a urethane polishing pad.
- a suede pad is preferable as the polishing pad.
- the suede pad is typically a polishing pad in which a foamed urethane sheet having a foam layer and a base layer are laminated, and the foamed hole is long in the thickness direction of the sheet. is there.
- the average particle diameter of this embodiment shall be based on the volume-based average particle diameter (dispersion diameter) measured using the laser diffraction / scattering method.
- the first polishing step may be divided into two or more polishing steps using different polishing conditions and polishing apparatuses such as different abrasive grain size, polishing slurry composition, and polishing pad.
- the polishing amount of the glass substrate in this polishing is approximately 20 to 50 ⁇ m, but is appropriately set so that the arithmetic average roughness Ra on the main surface of the glass substrate after the second polishing step is 0.2 nm or less. That's fine.
- the second polishing step is also a rough polishing step, which is a step of polishing the main surface of the glass substrate with a colloidal silica slurry (hereinafter also referred to as a colloidal silica polishing step).
- a colloidal silica polishing step the main surface of the glass substrate is polished using a colloidal silica slurry and a polishing pad.
- the colloidal silica abrasive has an average particle size of 30 nm or less, more preferably 20 nm or less.
- the polishing pad is preferably a suede pad.
- the glass substrate polished with the colloidal silica slurry is polished so that the Ra of the main surface measured by AFM is 0.2 nm or less.
- this second polishing step is also divided into two or more polishing steps using different polishing conditions and polishing apparatuses such as colloidal silica abrasive grain size, colloidal silica slurry composition, and different polishing pads. It may be polished so that Ra of the main surface of the glass substrate finally measured by AFM is 0.2 nm or less.
- the third polishing process is a process that characterizes the present invention and is a finish polishing process.
- colloidal silica has a high affinity with a glass substrate when the particle diameter is 10 nm or less, and even if it adheres firmly to the glass substrate and is polished, Ra (arithmetic mean roughness) Will rise.
- Ra arithmetic mean roughness
- a glass substrate is polished with particles of colloidal silica having a particle diameter smaller than 10 nm, it is considered that Ra of the substrate can be lowered if the glass substrate can be cleaned appropriately.
- the abrasive grains are firmly attached to the glass substrate by a dehydration condensation reaction between the colloidal silica and the hydroxyl group on the surface of the glass substrate.
- the present applicants considered that the adhesion to the glass substrate can be changed by the material of the particles, and investigated particles having an average particle diameter of 15 nm or less. As a result, as compared with colloidal silica smaller than 10 nm, it was found that Ra was reduced by using particles (inactive) having low reactivity with the glass substrate, and the target Ra of 0.05 nm or less could be realized. .
- the final polishing step of the present embodiment is a polishing that includes at least one type of abrasive selected from the group consisting of diamond, aluminum oxide, and cerium oxide having an average particle diameter of 15 nm or less on the main surface of the glass substrate. Polishing is performed using the slurry.
- the average particle diameter of the polishing slurry it is preferable to use the BET diameter calculated from the BET specific surface area. Further, the particle diameter may be measured from a transmission electron microscope image.
- the polishing slurry using diamond preferably has an average particle diameter of 10 nm or less. More preferably, it is 4 nm or less. Further, the maximum diameter is more preferably 30 nm or less.
- the polishing slurry using aluminum oxide or cerium oxide preferably has an average particle diameter of 20 nm or less. More preferably, it is 15 nm or less.
- the above-described polishing slurry is a so-called aqueous medium, and the slurry contains water. Further, it may contain a water-soluble polymer, oligomer or monomer.
- a water-soluble polymer oligomer or monomer.
- Polycarboxylic acids such as salts, salts of polycarboxylic acid salts and copolymers thereof
- B) polyvinyl polymers such as polyvinyl alcohol and polyvinylpyrrolidone
- organic acid salts such as citrate and oleate, Diphosphate and the like are used.
- the pH of the polishing slurry is preferably 4-9. If the pH is 4 or less, a leaching layer is generated on the glass surface, and the glass surface becomes rough when cleaning with an alkaline cleaning agent after polishing. On the other hand, when the pH is 9 or more, deterioration of the urethane resin contained in the suede pad, the nonwoven fabric pad, and the hard urethane pad used as the polishing pad is not preferable.
- various dispersants may be appropriately added.
- an organic acid salt such as sodium citrate and sodium oleate
- an anionic polymer such as a polyacrylate and polysulfonate
- a salt of a copolymer of polyacrylic acid and polymaleic acid can be used.
- the solid content concentration of the polishing slurry is preferably 0.0001 to 0.1% by weight. If it is less than 0.001% by weight, there is no polishing ability, and if it is 0.1% by weight or more, scratches occur on the glass substrate due to agglomeration of abrasive grains, which is not preferable. More preferably, the content is 0.001 to 0.01% by weight.
- the solid content concentration of the polishing slurry of this embodiment is very low as described above, an increase in cost can be suppressed even if a relatively expensive diamond slurry is used.
- the solid content concentration of the diamond slurry may be 0.01%.
- a suede pad As the polishing pad to be used, a suede pad, a nonwoven fabric pad, or a hard urethane pad used in conventional colloidal silica polishing can be used.
- a suede pad is preferable.
- the suede pad of this embodiment is a polishing pad in which a foamed urethane sheet having a foam layer and a base layer are laminated as a representative, and the foamed holes are long in the thickness direction of the sheet.
- As a foundation layer of this polishing pad for example, one using a PET film can be used.
- the main surface of the glass substrate is subjected to atomic force microscopy ( Ra measured by AFM) has a flatness of 0.05 nm or less.
- a drying method a drying method using isopropyl alcohol vapor, spin drying, vacuum drying, or the like is used.
- the glass substrate of the present invention is obtained by the above series of steps. Further, the magnetic recording medium (magnetic film) is coated on the main surface to obtain the magnetic recording medium of the present invention.
- the glass substrate of the present embodiment has excellent flatness (smoothness) with an Ra of 0.05 nm or less, further higher recording capacity and higher accuracy required for magnetic recording media in the future. It can respond enough.
- the present embodiment is configured to perform the final polishing process using an inert and fine polishing slurry having a small average particle diameter, the orientation of the magnetic film formed on the glass substrate is improved, and further memory is obtained. Higher density can be expected. Further, in a heat-assisted magnetic recording type hard disk, the distance between the head that oscillates near-field light that heats the magnetic film and the substrate is 10 nm or less, and the unevenness of the irradiation spot is made smaller, thereby making the substrate more uniform. Can be heated. Then, the effect of improving the stability of writing can be expected.
- Aluminosilicate glass A formed by the float process (mol% display content is SiO 2 : 67.7%, Al 2 O 3 : 4.9%, MgO: 10.9%, TiO 2 : 4%, Na 2 O: 4.9%, K 2 O: 7.6% Al 2 O 3 —SiO 2 glass plate) and aluminosilicate glass B (in terms of mol%, SiO 2 : 67%, Al 2 O 3 : 13%, B 2 O 3 : 1%, MgO: 9%, CaO: 5.5%, SrO ;: 4.5% Al 2 O 3 —SiO 2 glass plate) with an outer diameter of 65 mm
- the glass substrate A and the glass substrate B (glass substrate having a circular hole in the center) were obtained so that a glass substrate having an inner diameter of 20 mm and a plate thickness of 0.635 mm was obtained.
- the inner peripheral surface and the outer peripheral surface were ground using a diamond grindstone, and the upper and lower surfaces of the glass substrate were lapped
- the end surfaces of the inner and outer circumferences were chamfered so that the chamfering width was 0.15 mm and the chamfering angle was 45 °.
- a cerium oxide slurry was used as an abrasive
- a brush was used as a polishing tool
- the end face was mirror-finished by brush polishing.
- the removal amount in the radial direction was 30 ⁇ m.
- first polishing step rough polishing step
- first polishing step rough polishing step
- a colloidal silica polishing step (second polishing step: rough polishing step) was performed. That is, the upper and lower main surfaces of the glass substrate were polished by a double-side polishing apparatus using a colloidal silica slurry (colloidal silica average particle size: about 20 nm) as an abrasive and a suede pad as a polishing tool. The amount of polishing was 2.6 ⁇ m in total in the thickness direction of the upper and lower main surfaces.
- the glass substrate was polished so that the arithmetic average roughness Ra on the main surface was 0.15 to 0.2 nm.
- a final polishing step (third polishing step) was performed using the following test slurries A to D and the following polishing pads F and G.
- Test slurry A While 4.9 L of distilled water was irradiated with ultrasonic waves, 0.1 L of diamond slurry (product name ⁇ Diamond Andante) manufactured by Air Brown Co., Ltd. was added to prepare a test slurry A.
- the slurry had a pH of 4.5 and a solid content concentration of 0.01% by weight.
- a diamond abrasive having an average particle diameter of 4 nm was used.
- Test slurry B 0.2 g of sodium oleate was added to 0.1 L of distilled water and stirred. While stirring, 2 g of aluminum oxide particles (average particle size 15 nm) manufactured by NANAREAN NANOPRODUCT TECHNOLOGY were added, and bead mill dispersion was performed to prepare dispersion B. 2 g of dispersion B and 500 g of pure water were mixed to prepare test slurry B. The slurry had a pH of 4.2 and a solid content concentration of 0.008% by weight.
- Test slurry C 0.2 g of sodium oleate was added to 0.1 L of distilled water and stirred. While stirring, 2 g of cerium oxide particles (average particle size: 15 nm) manufactured by NANAREAN NANOPRODUCT TECHNOLOGY were added, and bead mill dispersion was performed to prepare dispersion C.
- Test slurry C was prepared by mixing 2 g of dispersion C, 500 g of water, and 0.0014 g of citric acid. The slurry had a pH of 3.9 and a solid content concentration of 0.008% by weight.
- Test slurry D 10.0 mL of nitric acid was added to 1.52 L of distilled water and stirred. While stirring, 1.48 L of colloidal silica (product name ST-XL) manufactured by Nissan Chemical Industries, Ltd. was added to prepare a test slurry D. The pH of the slurry was 1.9. The average particle diameter was 7 nm.
- the suede pad was made of urethane foam, and the physical properties were a Shore A hardness of 65.0 °, a compressibility of 2.3%, and a density of 0.68 g / cm 3 .
- Examples 1 and 5 The main surfaces of the glass substrate A (Example 1) and the glass substrate B (Example 5) after the colloidal silica polishing step are subjected to a speed fam 9B double-side polishing machine using the test slurry A and the polishing pad F. Polished for 5 minutes.
- Examples 3 and 7 The main surfaces of the glass substrate A (Example 3) and the glass substrate B (Example 7) after the colloidal silica polishing step are subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry B and the polishing pad F. Polished for a minute.
- AFM measurement was performed using AFM (trade name Cypher) manufactured by Allaisam, and Ra on the main surface was determined.
- the measurement area was 1 ⁇ 1 ⁇ m, and the number of measurement points was measured at 256 points (resolution of 256 ⁇ 256 pixels) in both X and Y directions. The results are shown in Table 1.
- the present invention is not limited to the above-described embodiments and examples, and the present invention described in the claims.
- Various modifications and improvements can be made within the scope of the present invention.
- the example in which the polishing process of the main surface of the glass substrate has three polishing processes has been shown, this is not restrictive. In short, other methods may be performed for the pre-process before the finish polishing process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Surface Treatment Of Glass (AREA)
- Magnetic Record Carriers (AREA)
Abstract
[Problem] The present invention provides an information recording medium glass substrate production method, the glass substrate having a very low Ra and being able to sufficiently support higher recording capacity and higher accuracy, which will be sought in the future. [Solution] By means of a rough polishing step for polishing the main surface of a glass substrate, the glass substrate is produced, the main surface of which has an arithmetic average roughness Ra of 0.2 nm or less if measured using an atomic force microscope at a resolution of 256×256 pixels and a scan size of 1×1 μm, and thereafter the glass substrate is polished by means of a finish polishing step for polishing using a polishing slurry including at least one type of abrasive grain selected from the group consisting of diamond, aluminum oxide, and cerium oxide having an average particle size of 15 nm or less.
Description
本発明は、情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法、情報記録媒体用ガラス基板、並びに磁気記録媒体に関する。
The present invention relates to a method for manufacturing a glass substrate for information recording medium, a method for manufacturing an information recording medium, a glass substrate for information recording medium, and a magnetic recording medium.
近年、ハードディスク(情報記録媒体)の高記録容量化が著しくなっている。ハードディスクの基板には、耐衝撃性に優れ、平坦性(平滑性)が得られやすい化学強化ガラス、結晶化ガラスなどのガラス基板が用いられてきている。ガラス基板を使用したハードディスクの容量を高めるために、ガラス基板の上に成膜される磁性膜の高性能化が重要な要素となっている。
In recent years, the increase in recording capacity of hard disks (information recording media) has become remarkable. Glass substrates such as chemically tempered glass and crystallized glass, which are excellent in impact resistance and easily obtain flatness (smoothness), have been used for hard disk substrates. In order to increase the capacity of a hard disk using a glass substrate, it is important to improve the performance of a magnetic film formed on the glass substrate.
磁性膜の性能改善のためには、ガラス基板の主表面のRa(算術平均粗さ)を低くすることが求められている。Raを低くすることで磁性膜の凹凸が軽減され、読み取りヘッドとガラス基板との距離が縮まって記憶素子の高密度化が可能になる。
In order to improve the performance of the magnetic film, it is required to reduce the Ra (arithmetic mean roughness) of the main surface of the glass substrate. By reducing Ra, the unevenness of the magnetic film is reduced, and the distance between the read head and the glass substrate is shortened, so that the density of the memory element can be increased.
Raを低くするためには、ガラス基板の表面を細かい砥粒を用いて研磨すればよい。一般的に直径が30nm以下の研磨砥粒としては、コロイダルシリカスラリーを用いて仕上げ研磨を行っている。コロイダルシリカは、直径10nm以下の粒子径の場合、研磨剤として利用すると、ガラス基板との親和性が高く、ガラス基板に強固に付着してRaを上昇させてしまう問題がある。
In order to reduce Ra, the surface of the glass substrate may be polished using fine abrasive grains. Generally, as polishing abrasive grains having a diameter of 30 nm or less, a final polishing is performed using a colloidal silica slurry. When colloidal silica has a particle diameter of 10 nm or less, when used as an abrasive, colloidal silica has a high affinity with a glass substrate, and has a problem that Ra adheres firmly to the glass substrate and raises Ra.
上記のような背景から、コロイダルシリカではなく、有機系粒子、例えばスチレン系樹脂、アクリル系樹脂、ウレタン系樹脂などの粒子を研磨剤として用いて、平坦性を改善することが提案されている(例えば、特許文献1参照)。
From the above background, it has been proposed to improve the flatness by using organic particles, for example, particles of styrene resin, acrylic resin, urethane resin, or the like as an abrasive instead of colloidal silica ( For example, see Patent Document 1).
しかしながら、上記特許文献1の有機系粒子は、Raの改善幅が小さいという問題がある。また、粒子が大きいため、研磨機の立ち上げ初期にガラス基板と研磨パッドとの間に充分粒子が入り込まず、研磨負荷が大きくなり、ガラス基板に割れが発生する場合があることが確認されている。
However, the organic particles of Patent Document 1 have a problem that the improvement range of Ra is small. In addition, since the particles are large, it has been confirmed that there are cases where the particles do not sufficiently enter between the glass substrate and the polishing pad at the initial stage of the polishing machine, the polishing load increases, and the glass substrate may crack. Yes.
高記録容量化、高精度化のためには、ガラス基板の主表面のRaが0.05nm以下であることが好ましいが、有機系粒子による仕上げ研磨では困難である。また、他の研磨スラリーにおいても、主表面のRaが0.05nm以下となるガラス基板を実現できていない。したがって、従来の技術では今後求められる更なる高記録容量化、高精度化に対応できない虞がある。
In order to increase the recording capacity and the accuracy, it is preferable that Ra on the main surface of the glass substrate is 0.05 nm or less, but it is difficult to perform final polishing with organic particles. Further, in other polishing slurries, a glass substrate having a main surface Ra of 0.05 nm or less has not been realized. Therefore, there is a possibility that the conventional technology cannot cope with the further increase in recording capacity and accuracy required in the future.
本発明の一つの目的は、上記課題を解決することであり、今後求められる更なる高記録容量化、高精度化にも充分に対応できるRaの微小な情報記録媒体用ガラス基板の製造方法を提供することにある。
One object of the present invention is to solve the above-mentioned problems, and to provide a method for producing a glass substrate for a minute information recording medium of Ra that can sufficiently cope with further higher recording capacity and higher accuracy required in the future. It is to provide.
上記の課題は、
ガラス基板を研磨する情報記録媒体用ガラス基板の製造方法において、
前記ガラス基板の主表面を研磨する粗研磨工程により、原子間力顕微鏡を用いて1μm×1μm角で256×256ピクセルの解像度で測定した場合の前記主表面における算術平均粗さRaが0.2nm以下のガラス基板を製造し、
その後、平均粒子径が15nm以下のダイヤモンド、酸化アルミニウム及び酸化セリウムなる群から選ばれる少なくとも1種の砥粒を含む研磨スラリーを用いて研磨をする仕上げ研磨工程により、前記ガラス基板を研磨することを特徴とする情報記録媒体用ガラス基板の製造方法により解決できる。 The above issues
In the method for producing a glass substrate for information recording medium for polishing a glass substrate,
By the rough polishing step of polishing the main surface of the glass substrate, the arithmetic average roughness Ra on the main surface when measured with a resolution of 256 × 256 pixels at 1 μm × 1 μm square using an atomic force microscope is 0.2 nm. The following glass substrates are manufactured,
Thereafter, the glass substrate is polished by a final polishing step in which polishing is performed using a polishing slurry containing at least one abrasive selected from the group consisting of diamond, aluminum oxide and cerium oxide having an average particle size of 15 nm or less. This can be solved by the method for producing a glass substrate for information recording media.
ガラス基板を研磨する情報記録媒体用ガラス基板の製造方法において、
前記ガラス基板の主表面を研磨する粗研磨工程により、原子間力顕微鏡を用いて1μm×1μm角で256×256ピクセルの解像度で測定した場合の前記主表面における算術平均粗さRaが0.2nm以下のガラス基板を製造し、
その後、平均粒子径が15nm以下のダイヤモンド、酸化アルミニウム及び酸化セリウムなる群から選ばれる少なくとも1種の砥粒を含む研磨スラリーを用いて研磨をする仕上げ研磨工程により、前記ガラス基板を研磨することを特徴とする情報記録媒体用ガラス基板の製造方法により解決できる。 The above issues
In the method for producing a glass substrate for information recording medium for polishing a glass substrate,
By the rough polishing step of polishing the main surface of the glass substrate, the arithmetic average roughness Ra on the main surface when measured with a resolution of 256 × 256 pixels at 1 μm × 1 μm square using an atomic force microscope is 0.2 nm. The following glass substrates are manufactured,
Thereafter, the glass substrate is polished by a final polishing step in which polishing is performed using a polishing slurry containing at least one abrasive selected from the group consisting of diamond, aluminum oxide and cerium oxide having an average particle size of 15 nm or less. This can be solved by the method for producing a glass substrate for information recording media.
本発明によれば、今後求められる更なる高記録容量化、高精度化にも充分に対応できるRaの微小な情報記録媒体用ガラス基板の製造方法を提供できる。
According to the present invention, it is possible to provide a method of manufacturing a glass substrate for a minute information recording medium of Ra that can sufficiently cope with further higher recording capacity and higher accuracy required in the future.
以下、本発明を実施するための形態について説明する。本実施形態に関して磁気ディスク用のガラス基板(ハードディスク用ガラス基板;以下、単に「ガラス基板」という)の製造を例にして詳細に説明する。
Hereinafter, modes for carrying out the present invention will be described. The present embodiment will be described in detail by taking as an example the production of a glass substrate for a magnetic disk (glass substrate for hard disk; hereinafter simply referred to as “glass substrate”).
本発明のガラス基板に使用するガラスとしては、通常の磁気ディスク用のガラス基板に使用できるガラスであれば、使用できる。例えば、モル%表示で以下のようなガラス組成のガラス板等がある。
(1)SiO2を55~75%、Al2O3を5~17%、Li2O+Na2O+K2Oを4~27%、MgO+CaO+SrO+BaOを0~20%含有し、これら成分の含有量の合計が90%以上であり、ZrO2を0~6%、TiO2を0~6%含有してもよいガラス、またはモル%表示でSiO2を62~74%、Al2O3を7~18%、B2O3を2~15%、MgO、CaO、SrOおよびBaOのいずれか1成分以上を合計で8~21%含有し、上記7成分の含有量合計が95%以上であり、Li2O、Na2OおよびK2Oのいずれか1成分以上を合計で4%未満含有してもよいガラス。
(2)SiO2を60~75%、Al2O3を7~17%、B2O3を0~2%、MgO、CaO、SrOおよびBaOのいずれか1成分以上を合計で8~26%含有し、上記7成分の含有量合計が95%以上であり、Li2O、Na2OおよびK2Oのいずれか1成分以上を合計で4%未満含有してもよいガラス。
(3)SiO2を55~75%、Al2O3を3~17%、B2O3を0~10%、MgO、CaO、SrOおよびBaOのいずれか1成分以上を合計で0~8%含有し、これら成分の含有量の合計が90%以上であり、Li2O、Na2OおよびK2Oのいずれか1成分以上を合計で0~4%未満、ZrO2を0~6%、TiO2を0~6%含有してもよいガラス。 As the glass used for the glass substrate of the present invention, any glass that can be used for a normal glass substrate for a magnetic disk can be used. For example, there are glass plates having the following glass composition in terms of mol%.
(1) 55 to 75% of SiO 2 , 5 to 17% of Al 2 O 3 , 4 to 27% of Li 2 O + Na 2 O + K 2 O, 0 to 20% of MgO + CaO + SrO + BaO, the total content of these components Is 90% or more, ZrO 2 may be contained in an amount of 0 to 6%, TiO 2 may be contained in an amount of 0 to 6%, or SiO 2 in an amount of 62 to 74% and Al 2 O 3 in an amount of 7 to 18 in terms of mol%. %, B 2 O 3 2 to 15%, MgO, CaO, SrO and BaO at least one component in a total content of 8 to 21%, the total content of the seven components is 95% or more, Li Glass which may contain any one or more of 2 O, Na 2 O and K 2 O in total less than 4%.
(2) 60 to 75% of SiO 2 , 7 to 17% of Al 2 O 3 , 0 to 2% of B 2 O 3 , and any one or more of MgO, CaO, SrO and BaO in total 8 to 26 %, The total content of the seven components is 95% or more, and any one or more of Li 2 O, Na 2 O and K 2 O may be contained in total in less than 4%.
(3) 55 to 75% of SiO 2 , 3 to 17% of Al 2 O 3 , 0 to 10% of B 2 O 3 , and one or more components of MgO, CaO, SrO and BaO in total from 0 to 8 The total content of these components is 90% or more, and any one or more of Li 2 O, Na 2 O and K 2 O is 0 to less than 4% in total, and ZrO 2 is 0 to 6 %, Glass containing 0 to 6% TiO 2 .
(1)SiO2を55~75%、Al2O3を5~17%、Li2O+Na2O+K2Oを4~27%、MgO+CaO+SrO+BaOを0~20%含有し、これら成分の含有量の合計が90%以上であり、ZrO2を0~6%、TiO2を0~6%含有してもよいガラス、またはモル%表示でSiO2を62~74%、Al2O3を7~18%、B2O3を2~15%、MgO、CaO、SrOおよびBaOのいずれか1成分以上を合計で8~21%含有し、上記7成分の含有量合計が95%以上であり、Li2O、Na2OおよびK2Oのいずれか1成分以上を合計で4%未満含有してもよいガラス。
(2)SiO2を60~75%、Al2O3を7~17%、B2O3を0~2%、MgO、CaO、SrOおよびBaOのいずれか1成分以上を合計で8~26%含有し、上記7成分の含有量合計が95%以上であり、Li2O、Na2OおよびK2Oのいずれか1成分以上を合計で4%未満含有してもよいガラス。
(3)SiO2を55~75%、Al2O3を3~17%、B2O3を0~10%、MgO、CaO、SrOおよびBaOのいずれか1成分以上を合計で0~8%含有し、これら成分の含有量の合計が90%以上であり、Li2O、Na2OおよびK2Oのいずれか1成分以上を合計で0~4%未満、ZrO2を0~6%、TiO2を0~6%含有してもよいガラス。 As the glass used for the glass substrate of the present invention, any glass that can be used for a normal glass substrate for a magnetic disk can be used. For example, there are glass plates having the following glass composition in terms of mol%.
(1) 55 to 75% of SiO 2 , 5 to 17% of Al 2 O 3 , 4 to 27% of Li 2 O + Na 2 O + K 2 O, 0 to 20% of MgO + CaO + SrO + BaO, the total content of these components Is 90% or more, ZrO 2 may be contained in an amount of 0 to 6%, TiO 2 may be contained in an amount of 0 to 6%, or SiO 2 in an amount of 62 to 74% and Al 2 O 3 in an amount of 7 to 18 in terms of mol%. %, B 2 O 3 2 to 15%, MgO, CaO, SrO and BaO at least one component in a total content of 8 to 21%, the total content of the seven components is 95% or more, Li Glass which may contain any one or more of 2 O, Na 2 O and K 2 O in total less than 4%.
(2) 60 to 75% of SiO 2 , 7 to 17% of Al 2 O 3 , 0 to 2% of B 2 O 3 , and any one or more of MgO, CaO, SrO and BaO in total 8 to 26 %, The total content of the seven components is 95% or more, and any one or more of Li 2 O, Na 2 O and K 2 O may be contained in total in less than 4%.
(3) 55 to 75% of SiO 2 , 3 to 17% of Al 2 O 3 , 0 to 10% of B 2 O 3 , and one or more components of MgO, CaO, SrO and BaO in total from 0 to 8 The total content of these components is 90% or more, and any one or more of Li 2 O, Na 2 O and K 2 O is 0 to less than 4% in total, and ZrO 2 is 0 to 6 %, Glass containing 0 to 6% TiO 2 .
本実施形態では、出発原料として、例えばAl2O3-SiO2系ガラス(アルミノシリケートガラス)からなるガラス基板を用いる。そして、通常、以下のような各工程を経てガラス基板を製造する。即ち、ガラス基板の中央に円孔を開け、面取り、主表面ラッピング、端面鏡面研磨を順次行う。その後、前述の加工が行われたガラス基板を積層し、内周端面をエッチング処理する場合もある。そして、ガラス基板の主表面を研磨して平坦かつ平滑な面(以下、主表面の研磨工程という)とし、当該主表面に磁気記録媒体を塗工(磁性膜の成膜)してガラス基板を製造する。
In this embodiment, a glass substrate made of, for example, Al 2 O 3 —SiO 2 glass (aluminosilicate glass) is used as a starting material. And usually a glass substrate is manufactured through the following steps. That is, a circular hole is formed in the center of the glass substrate, and chamfering, main surface lapping, and end mirror polishing are sequentially performed. Then, the glass substrate in which the above-mentioned processing was performed may be laminated, and an inner peripheral end face may be etched. Then, the main surface of the glass substrate is polished to a flat and smooth surface (hereinafter referred to as a main surface polishing step), and a magnetic recording medium is applied to the main surface (film formation of a magnetic film) to form a glass substrate. To manufacture.
因みに、主表面ラッピング工程を、粗ラッピング工程と精ラッピング工程とに分け、それらの間に形状加工工程(ガラス板円中央の孔開け、面取り、端面鏡面研磨)を設けてもよいし、主表面の研磨工程の後に化学強化工程を設けてもよい。なお、中央に円孔を有さないガラス基板を製造する場合には、ガラス基板中央の孔開けは不要である。
Incidentally, the main surface lapping process may be divided into a rough lapping process and a fine lapping process, and a shape processing process (drilling in the center of the glass plate, chamfering, end mirror polishing) may be provided between them. A chemical strengthening step may be provided after the polishing step. In addition, when manufacturing the glass substrate which does not have a circular hole in the center, the punching of the glass substrate center is unnecessary.
主表面ラッピングは、代表的な例では平均粒子径が6~8μmである酸化アルミニウム砥粒または酸化アルミニウム質の砥粒を用いて行う。ラッピングにより、ガラス基板の主表面の板厚の減少量(研磨量)は通常、100~400μmである。ただし、最終的にガラス基板の主表面における算術平均粗さRaが0.05nm以下にできれば、上記数値範囲を外れていてよい。
The main surface lapping is performed using aluminum oxide abrasive grains having an average particle diameter of 6 to 8 μm or aluminum oxide abrasive grains in a typical example. The reduction amount (polishing amount) of the main surface of the glass substrate due to lapping is usually 100 to 400 μm. However, as long as the arithmetic average roughness Ra on the main surface of the glass substrate can be finally set to 0.05 nm or less, it may be out of the numerical range.
(主表面の研磨工程)
次に、本発明の特徴を含む主表面の研磨工程について具体的に説明する。主表面の研磨工程は、粗研磨工程と、仕上げ研磨工程とからなり、さらに粗研磨工程が複数の工程に分かれる、例えば3つの研磨工程を有してよい。次に、粗研磨工程が第1の研磨工程と第2の研磨工程の2工程に分かれており、仕上げ研磨工程が第3の研磨工程の1つの工程である例で説明するが、粗研磨工程が3工程以上に分かれていてもよいし、仕上げ研磨工程が2工程以上に分かれていてもよい。 (Main surface polishing process)
Next, the polishing process of the main surface including the features of the present invention will be specifically described. The main surface polishing step includes a rough polishing step and a final polishing step, and may further include, for example, three polishing steps in which the rough polishing step is divided into a plurality of steps. Next, the rough polishing step is divided into two steps, a first polishing step and a second polishing step, and the finish polishing step will be described as an example of one step of the third polishing step. May be divided into three or more steps, and the finish polishing step may be divided into two or more steps.
次に、本発明の特徴を含む主表面の研磨工程について具体的に説明する。主表面の研磨工程は、粗研磨工程と、仕上げ研磨工程とからなり、さらに粗研磨工程が複数の工程に分かれる、例えば3つの研磨工程を有してよい。次に、粗研磨工程が第1の研磨工程と第2の研磨工程の2工程に分かれており、仕上げ研磨工程が第3の研磨工程の1つの工程である例で説明するが、粗研磨工程が3工程以上に分かれていてもよいし、仕上げ研磨工程が2工程以上に分かれていてもよい。 (Main surface polishing process)
Next, the polishing process of the main surface including the features of the present invention will be specifically described. The main surface polishing step includes a rough polishing step and a final polishing step, and may further include, for example, three polishing steps in which the rough polishing step is divided into a plurality of steps. Next, the rough polishing step is divided into two steps, a first polishing step and a second polishing step, and the finish polishing step will be described as an example of one step of the third polishing step. May be divided into three or more steps, and the finish polishing step may be divided into two or more steps.
第1の研磨工程は粗研磨工程であり、ガラス基板の主表面を酸化セリウム、酸化アルミニウム、または酸化ジルコニムの砥粒により研磨する工程である。特に、酸化セリウムの砥粒を使用することが、研磨レートと研磨面品質を両立させやすいため好ましい。
The first polishing step is a rough polishing step, in which the main surface of the glass substrate is polished with abrasive grains of cerium oxide, aluminum oxide, or zirconium oxide. In particular, it is preferable to use cerium oxide abrasive grains because it is easy to achieve both a polishing rate and a polished surface quality.
この第1研磨工程は、基板の主表面を通常平均粒子径が0.5~2.0μmである砥粒を含有する研磨スラリーを用いて研磨する。この際、前記研磨スラリーとウレタン製の研磨パッドとを用いて研磨してよい。研磨パッドとしてはスエードパッドが好ましい。このスエードパッドとは、代表的なものとして、発泡層を有する発泡ウレタンシートと下地層が積層された研磨パッドであり、発泡させた穴がシートの厚み方向に長いことを特徴とする研磨パッドである。なお、本実施形態の平均粒子径はレーザー回折・散乱法を用いて測定された体積基準の平均粒子径(分散径)に基づくものとする。
In the first polishing step, the main surface of the substrate is polished with a polishing slurry containing abrasive grains having an average particle size of usually 0.5 to 2.0 μm. At this time, polishing may be performed using the polishing slurry and a urethane polishing pad. A suede pad is preferable as the polishing pad. The suede pad is typically a polishing pad in which a foamed urethane sheet having a foam layer and a base layer are laminated, and the foamed hole is long in the thickness direction of the sheet. is there. In addition, the average particle diameter of this embodiment shall be based on the volume-based average particle diameter (dispersion diameter) measured using the laser diffraction / scattering method.
この第1の研磨工程を、研磨砥粒の粒径、研磨スラリーの組成、研磨パッドが異なる等の異なる研磨条件や研磨装置を用いた2つ以上の研磨工程に分けたりしてよい。
The first polishing step may be divided into two or more polishing steps using different polishing conditions and polishing apparatuses such as different abrasive grain size, polishing slurry composition, and polishing pad.
その際、三次元表面構造解析顕微鏡(例えばZygo社製NV200)を用いて、波長領域がλ≦0.25mmの条件で1mm×0.7mmの範囲で測定された微小うねり(Wa)を、例えば1nm以下となるように研磨する。
At that time, by using a three-dimensional surface structure analysis microscope (for example, NV200 manufactured by Zygo), a fine waviness (Wa) measured in a wavelength region of 1 mm × 0.7 mm under the condition of λ ≦ 0.25 mm, for example, Polish to 1 nm or less.
この研磨におけるガラス基板の研磨量は、概ね20~50μmとされるが、第2研磨工程を経た後のガラス基板の主表面における算術平均粗さRaが0.2nm以下となるように適宜設定すればよい。
The polishing amount of the glass substrate in this polishing is approximately 20 to 50 μm, but is appropriately set so that the arithmetic average roughness Ra on the main surface of the glass substrate after the second polishing step is 0.2 nm or less. That's fine.
次に、第2の研磨工程を説明する。第2の研磨工程も粗研磨工程であり、ガラス基板の主表面をコロイダルシリカスラリーにより研磨する工程(以下、コロイダルシリカ研磨工程ともいう)である。コロイダルシリカ研磨工程は、ガラス基板の主表面をコロイダルシリカスラリーと研磨パッドを用いて研磨する。コロイダルシリカ砥粒は、平均粒子径が30nm以下、より好ましくは20nm以下が好ましい。研磨パッドは、スエードパッドが好ましい。コロイダルシリカスラリーで研磨されたガラス基板はAFMで測定される主表面のRaが0.2nm以下となるように研磨される。
Next, the second polishing process will be described. The second polishing step is also a rough polishing step, which is a step of polishing the main surface of the glass substrate with a colloidal silica slurry (hereinafter also referred to as a colloidal silica polishing step). In the colloidal silica polishing step, the main surface of the glass substrate is polished using a colloidal silica slurry and a polishing pad. The colloidal silica abrasive has an average particle size of 30 nm or less, more preferably 20 nm or less. The polishing pad is preferably a suede pad. The glass substrate polished with the colloidal silica slurry is polished so that the Ra of the main surface measured by AFM is 0.2 nm or less.
前記したように、この第2の研磨工程も、コロイダルシリカ砥粒の粒径、コロイダルシリカスラリーの組成、研磨パッドが異なる等の異なる研磨条件や研磨装置を用いた2つ以上の研磨工程に分けたりしてもよく、最終的にAFMで測定されるガラス基板の主表面のRaが0.2nm以下となるように研磨されればよい。
As described above, this second polishing step is also divided into two or more polishing steps using different polishing conditions and polishing apparatuses such as colloidal silica abrasive grain size, colloidal silica slurry composition, and different polishing pads. It may be polished so that Ra of the main surface of the glass substrate finally measured by AFM is 0.2 nm or less.
次に、第3の研磨工程を説明する。第3の研磨工程は、本発明の特徴を成す工程であり仕上げ研磨工程である。
Next, the third polishing process will be described. The third polishing process is a process that characterizes the present invention and is a finish polishing process.
仕上げ研磨工程に使用する研磨スラリーとして、本出願人らは以下の検討を行った。即ち、前述したようにコロイダルシリカは、直径10nm以下の粒子径の場合、ガラス基板との親和性が高く、ガラス基板に強固に付着して、研磨を行っても、Ra(算術平均粗さ)が上昇してしまう。コロイダルシリカで粒子径が10nmより小さい粒子でガラス基板を研磨した場合、適切に洗浄ができれば、基板のRaを下げられると考えられる。しかし、コロイダルシリカとガラス基板の表面の水酸基の脱水縮合反応により強固にガラス基板に砥粒が付着している可能性が高い。そこで、本出願人らは、粒子の材質により、ガラス基板との付着性を変えられると思料し、平均粒子径が15nm以下の粒子を調査した。その結果、10nmより小さいコロイダルシリカと比較して、ガラス基板との反応性の低い(不活性)粒子を用いることでRaが小さくなり、目的とする0.05nm以下のRaが実現できることを見出した。
As the polishing slurry used in the final polishing process, the present applicants conducted the following examination. That is, as described above, colloidal silica has a high affinity with a glass substrate when the particle diameter is 10 nm or less, and even if it adheres firmly to the glass substrate and is polished, Ra (arithmetic mean roughness) Will rise. When a glass substrate is polished with particles of colloidal silica having a particle diameter smaller than 10 nm, it is considered that Ra of the substrate can be lowered if the glass substrate can be cleaned appropriately. However, there is a high possibility that the abrasive grains are firmly attached to the glass substrate by a dehydration condensation reaction between the colloidal silica and the hydroxyl group on the surface of the glass substrate. Therefore, the present applicants considered that the adhesion to the glass substrate can be changed by the material of the particles, and investigated particles having an average particle diameter of 15 nm or less. As a result, as compared with colloidal silica smaller than 10 nm, it was found that Ra was reduced by using particles (inactive) having low reactivity with the glass substrate, and the target Ra of 0.05 nm or less could be realized. .
したがって、本実施形態の仕上げ研磨工程は、ガラス基板の主表面を、不活性で平均粒子径が15nm以下のダイヤモンド、酸化アルミニウム及び、酸化セリウムなる群から選ばれる少なくとも1種の砥粒を含む研磨スラリーを用いて研磨を行う。
Therefore, the final polishing step of the present embodiment is a polishing that includes at least one type of abrasive selected from the group consisting of diamond, aluminum oxide, and cerium oxide having an average particle diameter of 15 nm or less on the main surface of the glass substrate. Polishing is performed using the slurry.
研磨スラリーの平均粒子径の測定に関しては、BET比表面積から算出されるBET径を用いることが好ましい。また、透過電子顕微鏡像から、粒子径を測定してもよい。
Regarding the measurement of the average particle diameter of the polishing slurry, it is preferable to use the BET diameter calculated from the BET specific surface area. Further, the particle diameter may be measured from a transmission electron microscope image.
ダイヤモンドを使用した研磨スラリーは、具体的には平均粒子径が10nm以下のものが好ましい。より好ましくは4nm以下である。また、最大径が30nm以下であることがより好ましい。因みに、酸化アルミニウム又は酸化セリウムを使用した研磨スラリーは、平均粒子径が20nm以下のものが好ましい。より好ましくは15nm以下である。
Specifically, the polishing slurry using diamond preferably has an average particle diameter of 10 nm or less. More preferably, it is 4 nm or less. Further, the maximum diameter is more preferably 30 nm or less. Incidentally, the polishing slurry using aluminum oxide or cerium oxide preferably has an average particle diameter of 20 nm or less. More preferably, it is 15 nm or less.
前記した研磨スラリーはいわゆる水系媒体であり、スラリーは水を含有する。また、水溶性のポリマー、オリゴマー、モノマーを含んでもよい。具体的には、(A)ポリアクリル酸、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩等のポリカルボン酸、ポリカルボン酸塩及びこれらの共重合体の塩、(B)ポリビニルアルコール、ポリビニルピロリドン等のポリビニル系ポリマー、(C)クエン酸塩、オレイン酸塩等の有機酸塩、2りん酸塩等が用いられる。
The above-described polishing slurry is a so-called aqueous medium, and the slurry contains water. Further, it may contain a water-soluble polymer, oligomer or monomer. Specifically, (A) polyacrylic acid, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamide, polyamic acid ammonium salt, polyamic acid sodium salt Polycarboxylic acids such as salts, salts of polycarboxylic acid salts and copolymers thereof, (B) polyvinyl polymers such as polyvinyl alcohol and polyvinylpyrrolidone, (C) organic acid salts such as citrate and oleate, Diphosphate and the like are used.
研磨スラリーのpHは、4~9で使用することが望ましい。pH4以下であれば、ガラス表面にリーチング層が発生し、研磨後にアルカリ性の洗浄剤により洗浄を行う際に、ガラス表面が荒れてしまうため、好ましくない。一方、pH9以上であれば、研磨パッドとして用いられるスエードパッド、不織布パッド、硬質ウレタンパッドに含まれるウレタン樹脂の劣化が発生するため、好ましくない。
The pH of the polishing slurry is preferably 4-9. If the pH is 4 or less, a leaching layer is generated on the glass surface, and the glass surface becomes rough when cleaning with an alkaline cleaning agent after polishing. On the other hand, when the pH is 9 or more, deterioration of the urethane resin contained in the suede pad, the nonwoven fabric pad, and the hard urethane pad used as the polishing pad is not preferable.
研磨スラリー中の粒子の分散性を安定化させるため、各種分散剤を適宜添加してよい。
例えば、クエン酸ナトリウム、オレイン酸ナトリウムなどの有機酸塩、ポリアクリル酸塩やポリスルフォン酸塩、またはポリアクリル酸とポリマレイン酸の共重合体の塩などのアニオン系ポリマーなどを使用できる。 In order to stabilize the dispersibility of the particles in the polishing slurry, various dispersants may be appropriately added.
For example, an organic acid salt such as sodium citrate and sodium oleate, an anionic polymer such as a polyacrylate and polysulfonate, or a salt of a copolymer of polyacrylic acid and polymaleic acid can be used.
例えば、クエン酸ナトリウム、オレイン酸ナトリウムなどの有機酸塩、ポリアクリル酸塩やポリスルフォン酸塩、またはポリアクリル酸とポリマレイン酸の共重合体の塩などのアニオン系ポリマーなどを使用できる。 In order to stabilize the dispersibility of the particles in the polishing slurry, various dispersants may be appropriately added.
For example, an organic acid salt such as sodium citrate and sodium oleate, an anionic polymer such as a polyacrylate and polysulfonate, or a salt of a copolymer of polyacrylic acid and polymaleic acid can be used.
研磨スラリーの固形分濃度としては、0.0001~0.1重量%が好ましい。0.001重量%未満では、研磨能力がなく、0.1重量%以上であれば、砥粒の凝集により、ガラス基板に傷が発生するため、好ましくない。より好ましくは0.001~0.01重量%である。
The solid content concentration of the polishing slurry is preferably 0.0001 to 0.1% by weight. If it is less than 0.001% by weight, there is no polishing ability, and if it is 0.1% by weight or more, scratches occur on the glass substrate due to agglomeration of abrasive grains, which is not preferable. More preferably, the content is 0.001 to 0.01% by weight.
本実施形態の研磨スラリーの固形分濃度は、上記のように非常に低いため比較的高価なダイヤモンドスラリーを使用してもコストの上昇を抑えることができる。因みにダイヤモンドスラリーの固形分濃度は、0.01%としてよい。
Since the solid content concentration of the polishing slurry of this embodiment is very low as described above, an increase in cost can be suppressed even if a relatively expensive diamond slurry is used. Incidentally, the solid content concentration of the diamond slurry may be 0.01%.
使用する研磨パッドとしては、従来のコロイダルシリカ研磨で使用されるスエードパッド、不織布パッド、硬質ウレタンパッドを用いることができる。本実施形態ではスエードパッドが好ましい。本実施形態のスエードパッドとは、代表的なものとして、発泡層を有する発泡ウレタンシートと下地層が積層された研磨パッドであり、発泡させた穴がシートの厚み方向に長いことを特徴とする研磨パッドがある。この研磨パッドの下地層としては、たとえば、PETフィルムを使用しているものを使用できる。
As the polishing pad to be used, a suede pad, a nonwoven fabric pad, or a hard urethane pad used in conventional colloidal silica polishing can be used. In this embodiment, a suede pad is preferable. The suede pad of this embodiment is a polishing pad in which a foamed urethane sheet having a foam layer and a base layer are laminated as a representative, and the foamed holes are long in the thickness direction of the sheet. There is a polishing pad. As a foundation layer of this polishing pad, for example, one using a PET film can be used.
上記の平均粒子径が15nm以下のダイヤモンド、酸化アルミニウム、酸化セリウムのうち、いずれか一つの砥粒を含む研磨スラリーを用いて研磨することにより、ガラス基板の主表面は、原子間力顕微鏡法(AFM)で測定されるRaが0.05nm以下の平坦性を有するようになる。
By polishing with a polishing slurry containing any one of diamond, aluminum oxide, and cerium oxide having an average particle diameter of 15 nm or less, the main surface of the glass substrate is subjected to atomic force microscopy ( Ra measured by AFM) has a flatness of 0.05 nm or less.
研磨後、砥粒を除去するために洗浄を行う。そして、洗浄後にガラス基板を乾燥させる。乾燥方法としてはイソプロピルアルコール蒸気を用いる乾燥方法やスピン乾燥、真空乾燥などが用いられる。
研磨 After polishing, wash to remove abrasive grains. And a glass substrate is dried after washing | cleaning. As a drying method, a drying method using isopropyl alcohol vapor, spin drying, vacuum drying, or the like is used.
上記一連の工程により本発明のガラス基板が得られる。また、主表面に磁気記録媒体(磁性膜)を塗工して本発明の磁気記録媒体が得られる。
The glass substrate of the present invention is obtained by the above series of steps. Further, the magnetic recording medium (magnetic film) is coated on the main surface to obtain the magnetic recording medium of the present invention.
上記してきたように本実施形態のガラス基板は、Raが0.05nm以下の優れた平坦性(平滑性)を有するため、今後、磁気記録媒体に求められる更なる高記録容量化、高精度化にも充分に対応できる。
As described above, since the glass substrate of the present embodiment has excellent flatness (smoothness) with an Ra of 0.05 nm or less, further higher recording capacity and higher accuracy required for magnetic recording media in the future. It can respond enough.
また、本実施形態は、不活性で平均粒子径の細かい研磨スラリーを使用して仕上げ研磨工程を行う構成としたため、ガラス基板上に成膜される磁性膜の配向性が改善され、更なる記憶容量の高密度化が期待できる。また、熱アシスト磁気記録方式のハードディスクにおいて、磁性膜を加熱させる近接場光を発振させるヘッドと基板の距離を10nm以下でかつ、照射スポットの凹凸をより小さくすることにより、より均一的に基板を加熱できる。すると、書き込みの安定性を向上させる効果を期待できる。
In addition, since the present embodiment is configured to perform the final polishing process using an inert and fine polishing slurry having a small average particle diameter, the orientation of the magnetic film formed on the glass substrate is improved, and further memory is obtained. Higher density can be expected. Further, in a heat-assisted magnetic recording type hard disk, the distance between the head that oscillates near-field light that heats the magnetic film and the substrate is 10 nm or less, and the unevenness of the irradiation spot is made smaller, thereby making the substrate more uniform. Can be heated. Then, the effect of improving the stability of writing can be expected.
以下、実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(ガラス基板の作製)
フロート法で成形されたアルミノシリケートガラスA(モル%表示含有量が、SiO2:67.7%、Al2O3:4.9%、MgO:10.9%、TiO2:4%、Na2O:4.9%、K2O:7.6%であるAl2O3-SiO2系ガラス板)、及び、アルミノシリケートガラスB(モル%表示でSiO2:67%、Al2O3:13%、B2O3:1%、MgO:9%、CaO:5.5%、SrO;:4.5%であるAl2O3-SiO2系ガラス板)を、外径65mm、内径20mm、板厚0.635mmのガラス基板が得られるようなドーナツ状のガラス基板A及びガラス基板B(中央に円孔を有するガラス基板)に加工した。なお、内周面および外周面の研削加工は、ダイヤモンド砥石を用いて行い、ガラス基板上下面のラッピングは酸化アルミニウム砥粒を用いて行った。 (Production of glass substrate)
Aluminosilicate glass A formed by the float process (mol% display content is SiO 2 : 67.7%, Al 2 O 3 : 4.9%, MgO: 10.9%, TiO 2 : 4%, Na 2 O: 4.9%, K 2 O: 7.6% Al 2 O 3 —SiO 2 glass plate) and aluminosilicate glass B (in terms of mol%, SiO 2 : 67%, Al 2 O 3 : 13%, B 2 O 3 : 1%, MgO: 9%, CaO: 5.5%, SrO ;: 4.5% Al 2 O 3 —SiO 2 glass plate) with an outer diameter of 65 mm The glass substrate A and the glass substrate B (glass substrate having a circular hole in the center) were obtained so that a glass substrate having an inner diameter of 20 mm and a plate thickness of 0.635 mm was obtained. The inner peripheral surface and the outer peripheral surface were ground using a diamond grindstone, and the upper and lower surfaces of the glass substrate were lapped using aluminum oxide abrasive grains.
フロート法で成形されたアルミノシリケートガラスA(モル%表示含有量が、SiO2:67.7%、Al2O3:4.9%、MgO:10.9%、TiO2:4%、Na2O:4.9%、K2O:7.6%であるAl2O3-SiO2系ガラス板)、及び、アルミノシリケートガラスB(モル%表示でSiO2:67%、Al2O3:13%、B2O3:1%、MgO:9%、CaO:5.5%、SrO;:4.5%であるAl2O3-SiO2系ガラス板)を、外径65mm、内径20mm、板厚0.635mmのガラス基板が得られるようなドーナツ状のガラス基板A及びガラス基板B(中央に円孔を有するガラス基板)に加工した。なお、内周面および外周面の研削加工は、ダイヤモンド砥石を用いて行い、ガラス基板上下面のラッピングは酸化アルミニウム砥粒を用いて行った。 (Production of glass substrate)
Aluminosilicate glass A formed by the float process (mol% display content is SiO 2 : 67.7%, Al 2 O 3 : 4.9%, MgO: 10.9%, TiO 2 : 4%, Na 2 O: 4.9%, K 2 O: 7.6% Al 2 O 3 —SiO 2 glass plate) and aluminosilicate glass B (in terms of mol%, SiO 2 : 67%, Al 2 O 3 : 13%, B 2 O 3 : 1%, MgO: 9%, CaO: 5.5%, SrO ;: 4.5% Al 2 O 3 —SiO 2 glass plate) with an outer diameter of 65 mm The glass substrate A and the glass substrate B (glass substrate having a circular hole in the center) were obtained so that a glass substrate having an inner diameter of 20 mm and a plate thickness of 0.635 mm was obtained. The inner peripheral surface and the outer peripheral surface were ground using a diamond grindstone, and the upper and lower surfaces of the glass substrate were lapped using aluminum oxide abrasive grains.
次に、内外周の端面を、面取り幅0.15mm、面取り角度45°となるように面取り加工を行った。内外周加工の後、研磨剤として酸化セリウムスラリーを用い、研磨具としてブラシを用い、ブラシ研磨により端面の鏡面加工を行った。研磨量は、半径方向の除去量で30μmであった。
Next, the end surfaces of the inner and outer circumferences were chamfered so that the chamfering width was 0.15 mm and the chamfering angle was 45 °. After the inner and outer peripheral processing, a cerium oxide slurry was used as an abrasive, a brush was used as a polishing tool, and the end face was mirror-finished by brush polishing. The removal amount in the radial direction was 30 μm.
その後、酸化セリウム研磨工程(第1の研磨工程:粗研磨工程)を行った。即ち、研磨材として酸化セリウムスラリー(酸化セリウム平均粒子径:約1.1μm)を用い、研磨具としてスエードパッドを用いて、両面研磨装置によりガラス基板の上下主表面の研磨加工を行った。研磨量は、上下主表面の厚さ方向で計35μmであった。
Thereafter, a cerium oxide polishing step (first polishing step: rough polishing step) was performed. That is, the upper and lower main surfaces of the glass substrate were polished by a double-side polishing apparatus using a cerium oxide slurry (cerium oxide average particle size: about 1.1 μm) as an abrasive and a suede pad as a polishing tool. The amount of polishing was 35 μm in total in the thickness direction of the upper and lower main surfaces.
その後、コロイダルシリカ研磨工程(第2の研磨工程:粗研磨工程)を行った。即ち、研磨剤としてコロイダルシリカスラリー(コロイダルシリカ平均粒子径:約20nm)を用い、研磨具としてスエードパッドを用いて、両面研磨装置によりガラス基板の上下主表面の研磨加工を行った。研磨量は、上下主表面の厚さ方向で計2.6μmであった。
Thereafter, a colloidal silica polishing step (second polishing step: rough polishing step) was performed. That is, the upper and lower main surfaces of the glass substrate were polished by a double-side polishing apparatus using a colloidal silica slurry (colloidal silica average particle size: about 20 nm) as an abrasive and a suede pad as a polishing tool. The amount of polishing was 2.6 μm in total in the thickness direction of the upper and lower main surfaces.
また、ガラス基板の主表面における算術平均粗さRaが0.15~0.2nmとなるように研磨した。
Also, the glass substrate was polished so that the arithmetic average roughness Ra on the main surface was 0.15 to 0.2 nm.
次いで、下記の試験スラリーA~Dと、下記の研磨パッドF、Gを用いて仕上げ研磨工程(第3の研磨工程)を行った。
Next, a final polishing step (third polishing step) was performed using the following test slurries A to D and the following polishing pads F and G.
(試験スラリーA)
蒸留水4.9Lに超音波を照射しながら、エア・ブラウン(株)製のダイヤモンドスラリー(製品名μDiamond Andante)を0.1L添加して試験スラリーAを調製した。なお、スラリーのpHは4.5、固形分濃度は0.01重量%であった。なお、ダイヤモンド砥粒の平均粒子径4nmのものを使用した。 (Test slurry A)
While 4.9 L of distilled water was irradiated with ultrasonic waves, 0.1 L of diamond slurry (product name μ Diamond Andante) manufactured by Air Brown Co., Ltd. was added to prepare a test slurry A. The slurry had a pH of 4.5 and a solid content concentration of 0.01% by weight. A diamond abrasive having an average particle diameter of 4 nm was used.
蒸留水4.9Lに超音波を照射しながら、エア・ブラウン(株)製のダイヤモンドスラリー(製品名μDiamond Andante)を0.1L添加して試験スラリーAを調製した。なお、スラリーのpHは4.5、固形分濃度は0.01重量%であった。なお、ダイヤモンド砥粒の平均粒子径4nmのものを使用した。 (Test slurry A)
While 4.9 L of distilled water was irradiated with ultrasonic waves, 0.1 L of diamond slurry (product name μ Diamond Andante) manufactured by Air Brown Co., Ltd. was added to prepare a test slurry A. The slurry had a pH of 4.5 and a solid content concentration of 0.01% by weight. A diamond abrasive having an average particle diameter of 4 nm was used.
(試験スラリーB)
蒸留水0.1Lに対し、オレイン酸ソーダをそれぞれ0.2g添加し、攪拌した。攪拌したまま、NANARREAN NANOPRODUCT TECHNOLOGY製酸化アルミニウム粒子(平均粒子径15nm)を2g添加して、ビーズミル分散を行い、分散液Bを作成した。分散液Bを2g、純水500gを混ぜ、試験スラリーBを調製した。なお、スラリーのpHは4.2、固形分濃度は0.008重量%であった。 (Test slurry B)
0.2 g of sodium oleate was added to 0.1 L of distilled water and stirred. While stirring, 2 g of aluminum oxide particles (average particle size 15 nm) manufactured by NANAREAN NANOPRODUCT TECHNOLOGY were added, and bead mill dispersion was performed to prepare dispersion B. 2 g of dispersion B and 500 g of pure water were mixed to prepare test slurry B. The slurry had a pH of 4.2 and a solid content concentration of 0.008% by weight.
蒸留水0.1Lに対し、オレイン酸ソーダをそれぞれ0.2g添加し、攪拌した。攪拌したまま、NANARREAN NANOPRODUCT TECHNOLOGY製酸化アルミニウム粒子(平均粒子径15nm)を2g添加して、ビーズミル分散を行い、分散液Bを作成した。分散液Bを2g、純水500gを混ぜ、試験スラリーBを調製した。なお、スラリーのpHは4.2、固形分濃度は0.008重量%であった。 (Test slurry B)
0.2 g of sodium oleate was added to 0.1 L of distilled water and stirred. While stirring, 2 g of aluminum oxide particles (average particle size 15 nm) manufactured by NANAREAN NANOPRODUCT TECHNOLOGY were added, and bead mill dispersion was performed to prepare dispersion B. 2 g of dispersion B and 500 g of pure water were mixed to prepare test slurry B. The slurry had a pH of 4.2 and a solid content concentration of 0.008% by weight.
(試験スラリーC)
蒸留水0.1Lに対し、オレイン酸ソーダをそれぞれ0.2g添加し、攪拌した。攪拌したまま、NANARREAN NANOPRODUCT TECHNOLOGY製酸化セリウム粒子(平均粒子径15nm)を2g添加して、ビーズミル分散を行い、分散液Cを作成した。分散液Cを2g、水500g、クエン酸0.0014gを混ぜ、試験スラリーCを調製した。なお、スラリーのpHは3.9、固形分濃度は0.008重量%であった。 (Test slurry C)
0.2 g of sodium oleate was added to 0.1 L of distilled water and stirred. While stirring, 2 g of cerium oxide particles (average particle size: 15 nm) manufactured by NANAREAN NANOPRODUCT TECHNOLOGY were added, and bead mill dispersion was performed to prepare dispersion C. Test slurry C was prepared by mixing 2 g of dispersion C, 500 g of water, and 0.0014 g of citric acid. The slurry had a pH of 3.9 and a solid content concentration of 0.008% by weight.
蒸留水0.1Lに対し、オレイン酸ソーダをそれぞれ0.2g添加し、攪拌した。攪拌したまま、NANARREAN NANOPRODUCT TECHNOLOGY製酸化セリウム粒子(平均粒子径15nm)を2g添加して、ビーズミル分散を行い、分散液Cを作成した。分散液Cを2g、水500g、クエン酸0.0014gを混ぜ、試験スラリーCを調製した。なお、スラリーのpHは3.9、固形分濃度は0.008重量%であった。 (Test slurry C)
0.2 g of sodium oleate was added to 0.1 L of distilled water and stirred. While stirring, 2 g of cerium oxide particles (average particle size: 15 nm) manufactured by NANAREAN NANOPRODUCT TECHNOLOGY were added, and bead mill dispersion was performed to prepare dispersion C. Test slurry C was prepared by mixing 2 g of dispersion C, 500 g of water, and 0.0014 g of citric acid. The slurry had a pH of 3.9 and a solid content concentration of 0.008% by weight.
(試験スラリーD)
蒸留水1.52Lに対し、硝酸を10.0mL添加し、攪拌した。攪拌したまま、日産化学工業(株)製コロイダルシリカ(製品名ST-XL)を1.48L添加して試験スラリーDを調製した。なお、スラリーのpHは1.9であった。なお、平均粒子径は、7nmのものを使用した。 (Test slurry D)
10.0 mL of nitric acid was added to 1.52 L of distilled water and stirred. While stirring, 1.48 L of colloidal silica (product name ST-XL) manufactured by Nissan Chemical Industries, Ltd. was added to prepare a test slurry D. The pH of the slurry was 1.9. The average particle diameter was 7 nm.
蒸留水1.52Lに対し、硝酸を10.0mL添加し、攪拌した。攪拌したまま、日産化学工業(株)製コロイダルシリカ(製品名ST-XL)を1.48L添加して試験スラリーDを調製した。なお、スラリーのpHは1.9であった。なお、平均粒子径は、7nmのものを使用した。 (Test slurry D)
10.0 mL of nitric acid was added to 1.52 L of distilled water and stirred. While stirring, 1.48 L of colloidal silica (product name ST-XL) manufactured by Nissan Chemical Industries, Ltd. was added to prepare a test slurry D. The pH of the slurry was 1.9. The average particle diameter was 7 nm.
(研磨パッドF)
発泡ウレタンからなるスエードパッドであり、物性値は、ショアA硬度が65.0°、圧縮率が2.3%かつ密度が0.68g/cm3であった。 (Polishing pad F)
The suede pad was made of urethane foam, and the physical properties were a Shore A hardness of 65.0 °, a compressibility of 2.3%, and a density of 0.68 g / cm 3 .
発泡ウレタンからなるスエードパッドであり、物性値は、ショアA硬度が65.0°、圧縮率が2.3%かつ密度が0.68g/cm3であった。 (Polishing pad F)
The suede pad was made of urethane foam, and the physical properties were a Shore A hardness of 65.0 °, a compressibility of 2.3%, and a density of 0.68 g / cm 3 .
(研磨パッドG)
不織布パッドであり、物性値は、ショアA硬度が51.5°、圧縮率が11.7%かつ密度が0.28g/cm3であった。 (Polishing pad G)
The physical properties of the nonwoven fabric pad were as follows: Shore A hardness 51.5 °, compression rate 11.7%, and density 0.28 g / cm 3 .
不織布パッドであり、物性値は、ショアA硬度が51.5°、圧縮率が11.7%かつ密度が0.28g/cm3であった。 (Polishing pad G)
The physical properties of the nonwoven fabric pad were as follows: Shore A hardness 51.5 °, compression rate 11.7%, and density 0.28 g / cm 3 .
[実施例1、5]
コロイダルシリカ研磨工程後のガラス基板A(実施例1)及びガラス基板B(実施例5)の主表面を、試験スラリーAを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機にて5分間研磨した。 [Examples 1 and 5]
The main surfaces of the glass substrate A (Example 1) and the glass substrate B (Example 5) after the colloidal silica polishing step are subjected to a speed fam 9B double-side polishing machine using the test slurry A and the polishing pad F. Polished for 5 minutes.
コロイダルシリカ研磨工程後のガラス基板A(実施例1)及びガラス基板B(実施例5)の主表面を、試験スラリーAを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機にて5分間研磨した。 [Examples 1 and 5]
The main surfaces of the glass substrate A (Example 1) and the glass substrate B (Example 5) after the colloidal silica polishing step are subjected to a speed fam 9B double-side polishing machine using the test slurry A and the polishing pad F. Polished for 5 minutes.
[実施例2、6]
コロイダルシリカ研磨工程後のガラス基板A(実施例2)及びガラス基板B(実施例6)の主表面を、試験スラリーAを使用し研磨パッドGを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Examples 2 and 6]
The main surfaces of the glass substrate A (Example 2) and the glass substrate B (Example 6) after the colloidal silica polishing step are subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry A and the polishing pad G. Polished for a minute.
コロイダルシリカ研磨工程後のガラス基板A(実施例2)及びガラス基板B(実施例6)の主表面を、試験スラリーAを使用し研磨パッドGを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Examples 2 and 6]
The main surfaces of the glass substrate A (Example 2) and the glass substrate B (Example 6) after the colloidal silica polishing step are subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry A and the polishing pad G. Polished for a minute.
[実施例3、7]
コロイダルシリカ研磨工程後のガラス基板A(実施例3)及びガラス基板B(実施例7)の主表面を、試験スラリーBを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Examples 3 and 7]
The main surfaces of the glass substrate A (Example 3) and the glass substrate B (Example 7) after the colloidal silica polishing step are subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry B and the polishing pad F. Polished for a minute.
コロイダルシリカ研磨工程後のガラス基板A(実施例3)及びガラス基板B(実施例7)の主表面を、試験スラリーBを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Examples 3 and 7]
The main surfaces of the glass substrate A (Example 3) and the glass substrate B (Example 7) after the colloidal silica polishing step are subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry B and the polishing pad F. Polished for a minute.
[実施例4、8]
コロイダルシリカ研磨工程後のガラス基板A(実施例4)及びガラス基板B(実施例8)の主表面を、試験スラリーCを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Examples 4 and 8]
The main surfaces of the glass substrate A (Example 4) and the glass substrate B (Example 8) after the colloidal silica polishing step were subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry C and the polishing pad F. Polished for a minute.
コロイダルシリカ研磨工程後のガラス基板A(実施例4)及びガラス基板B(実施例8)の主表面を、試験スラリーCを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Examples 4 and 8]
The main surfaces of the glass substrate A (Example 4) and the glass substrate B (Example 8) after the colloidal silica polishing step were subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry C and the polishing pad F. Polished for a minute.
[比較例1、2]
コロイダルシリカ研磨工程後のガラス基板A(比較例1)及びガラス基板B(比較例2)の主表面を、試験スラリーDを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Comparative Examples 1 and 2]
The main surfaces of the glass substrate A (Comparative Example 1) and the glass substrate B (Comparative Example 2) after the colloidal silica polishing step are subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry D and the polishing pad F. Polished for a minute.
コロイダルシリカ研磨工程後のガラス基板A(比較例1)及びガラス基板B(比較例2)の主表面を、試験スラリーDを使用し研磨パッドFを用いて、スピードファム製9B両面研磨機により5分間研磨した。 [Comparative Examples 1 and 2]
The main surfaces of the glass substrate A (Comparative Example 1) and the glass substrate B (Comparative Example 2) after the colloidal silica polishing step are subjected to 5 by a speed fam 9B double-side polishing machine using the test slurry D and the polishing pad F. Polished for a minute.
そして、実施例1~8及び比較例1~2において、上記各仕上げ研磨工程を行った後、純水シャワー洗浄、ベルクリンおよび水によるスクラブ洗浄、ベルクリンおよびアルカリ洗剤によるスクラブ洗浄、ベルクリンおよび水によるスクラブ洗浄、純水シャワー洗浄を順次行い、エアブローを行った。
In Examples 1 to 8 and Comparative Examples 1 and 2, after each of the above-described finish polishing steps, pure water shower cleaning, scrub cleaning with Berglin and water, scrub cleaning with Berglin and an alkaline detergent, scrub cleaning with Berglin and water Cleaning and pure water shower cleaning were sequentially performed, and air blowing was performed.
その後、アライサム製のAFM(商品名Cypher)にてAFM測定を行い、主表面のRaを求めた。測定エリアは1×1μm、測定点数はX、Y方向共に256ポイント(256×256ピクセルの解像度)で測定した。その結果を表1に示す。
Thereafter, AFM measurement was performed using AFM (trade name Cypher) manufactured by Allaisam, and Ra on the main surface was determined. The measurement area was 1 × 1 μm, and the number of measurement points was measured at 256 points (resolution of 256 × 256 pixels) in both X and Y directions. The results are shown in Table 1.
また、ガラス基板Bで、試験スラリーA~試験スラリーC、を使用した場合(実施例5~8)、Raが0.05nm以下になることが確認された。一方、コロイダルシリカ粒子(試験スラリーD)を使用した場合(比較例2)、Raは0.72nmであり親和性などによりRaが上昇したと推察される。
Further, when test slurry A to test slurry C were used on glass substrate B (Examples 5 to 8), it was confirmed that Ra was 0.05 nm or less. On the other hand, when colloidal silica particles (test slurry D) are used (Comparative Example 2), Ra is 0.72 nm, and it is presumed that Ra has increased due to affinity and the like.
以上、ガラス基板及びその製造方法、並びに磁気記録媒体の実施形態や実施例などを説明したが、本発明は上記実施形態や実施例などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。例えば、ガラス基板の主表面の研磨工程が、3つの研磨工程を有する例を示したが、この限りではない。端的に云うと、仕上げ研磨工程以前の前工程については、他の方法が実施されてよい。
Although the embodiments and examples of the glass substrate and the manufacturing method thereof, and the magnetic recording medium have been described above, the present invention is not limited to the above-described embodiments and examples, and the present invention described in the claims. Various modifications and improvements can be made within the scope of the present invention. For example, although the example in which the polishing process of the main surface of the glass substrate has three polishing processes has been shown, this is not restrictive. In short, other methods may be performed for the pre-process before the finish polishing process.
また、本願は、日本国に2015年9月2日に出願された基礎出願2015-172727号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。
In addition, this application claims priority based on basic application No. 2015-172727 filed on September 2, 2015 in Japan, and the entire contents of these Japanese patent applications are incorporated herein by reference. To do.
Claims (9)
- ガラス基板を研磨する情報記録媒体用ガラス基板の製造方法において、
前記ガラス基板の主表面を研磨する粗研磨工程により、原子間力顕微鏡を用いて1μm×1μm角で256×256ピクセルの解像度で測定した場合の前記主表面における算術平均粗さRaが0.2nm以下のガラス基板を製造し、
その後、平均粒子径が15nm以下のダイヤモンド、酸化アルミニウム及び酸化セリウムなる群から選ばれる少なくとも1種の砥粒を含む研磨スラリーを用いて研磨をする仕上げ研磨工程により、前記ガラス基板を研磨することを特徴とする情報記録媒体用ガラス基板の製造方法。 In the method for producing a glass substrate for information recording medium for polishing a glass substrate,
By the rough polishing step of polishing the main surface of the glass substrate, the arithmetic average roughness Ra on the main surface when measured with a resolution of 256 × 256 pixels at 1 μm × 1 μm square using an atomic force microscope is 0.2 nm. The following glass substrates are manufactured,
Thereafter, the glass substrate is polished by a final polishing step in which polishing is performed using a polishing slurry containing at least one abrasive selected from the group consisting of diamond, aluminum oxide and cerium oxide having an average particle size of 15 nm or less. A method for producing a glass substrate for an information recording medium. - 前記仕上げ研磨工程で用いる研磨スラリーの砥粒は、平均粒子径が10nm以下のダイヤモンドであることを特徴とする請求項1に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to claim 1, wherein the abrasive grains of the polishing slurry used in the final polishing step are diamond having an average particle diameter of 10 nm or less.
- 前記仕上げ研磨工程で用いる研磨スラリーの固形分濃度は、0.0001~0.1重量%であることを特徴とする請求項1又は2に記載の情報記録媒体用ガラス基板の製造方法。 3. The method for producing a glass substrate for an information recording medium according to claim 1, wherein the solid content concentration of the polishing slurry used in the finish polishing step is 0.0001 to 0.1% by weight.
- 前記仕上げ研磨工程により、前記ガラス基板の主表面における算術平均粗さRaが0.05nm以下とされる請求項1~3のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 4. The method for producing a glass substrate for an information recording medium according to claim 1, wherein the arithmetic average roughness Ra on the main surface of the glass substrate is set to 0.05 nm or less by the finish polishing step.
- 前記粗研磨工程が、酸化アルミニウム又は酸化セリウムの砥粒を含む研磨スラリーによる研磨であることを特徴とする請求項1~4のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for an information recording medium according to any one of claims 1 to 4, wherein the rough polishing step is polishing with a polishing slurry containing abrasive grains of aluminum oxide or cerium oxide.
- 前記粗研磨工程が、酸化セリウムの砥粒を含む研磨スラリーによる研磨工程と、その後に続くコロイダルシリカの砥粒を含む研磨スラリーによる研磨工程とからなる請求項5に記載の情報記録媒体用ガラス基板の製造方法。 6. The glass substrate for an information recording medium according to claim 5, wherein the rough polishing step comprises a polishing step with a polishing slurry containing cerium oxide abrasive grains, and a subsequent polishing step with a polishing slurry containing colloidal silica abrasive grains. Manufacturing method.
- 請求項1~6のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法で製造された情報記録媒体用ガラス基板の主表面に磁気記録層を形成する情報記録媒体の製造方法。 A method for producing an information recording medium, wherein a magnetic recording layer is formed on the main surface of the glass substrate for information recording medium produced by the method for producing a glass substrate for information recording medium according to any one of claims 1 to 6.
- 中央に円孔を有する円板状の情報記録媒体用ガラス基板であって、
原子間力顕微鏡を用いて1μm×1μm角で256×256ピクセルの解像度で測定したガラス基板の主表面における算術平均粗さRaが0.05nm以下であることを特徴とする情報記録媒体用ガラス基板。 A disk-shaped information recording medium glass substrate having a circular hole in the center,
A glass substrate for an information recording medium, wherein the arithmetic average roughness Ra on the main surface of the glass substrate measured at a resolution of 256 × 256 pixels at 1 μm × 1 μm square using an atomic force microscope is 0.05 nm or less . - 請求項8に記載の情報記録媒体用ガラス基板の主表面に磁気記録層が設けられたことを特徴とする磁気記録媒体。 A magnetic recording medium, wherein a magnetic recording layer is provided on the main surface of the glass substrate for information recording medium according to claim 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-172727 | 2015-09-02 | ||
JP2015172727A JP2018174005A (en) | 2015-09-02 | 2015-09-02 | Manufacturing method of glass substrate for information recording medium, manufacturing method of information recording medium, glass substrate for information recording medium, and magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038201A1 true WO2017038201A1 (en) | 2017-03-09 |
Family
ID=58187172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067643 WO2017038201A1 (en) | 2015-09-02 | 2016-06-14 | Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018174005A (en) |
WO (1) | WO2017038201A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018174012A (en) * | 2017-03-31 | 2018-11-08 | 株式会社フジミインコーポレーテッド | Method of polishing magnetic dis substrate, polishing composition and polishing composition set |
CN109439282A (en) * | 2018-10-23 | 2019-03-08 | 蓝思科技(长沙)有限公司 | Composite Nano abrasive material, polishing fluid and preparation method thereof, chip glass and electronic equipment |
JP2019119776A (en) * | 2017-12-28 | 2019-07-22 | 花王株式会社 | Polishing liquid composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113924276B (en) * | 2019-06-28 | 2024-10-01 | Hoya株式会社 | Method for manufacturing glass plate and method for manufacturing magnetic disk |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010115751A (en) * | 2008-11-13 | 2010-05-27 | Showa Denko Kk | Recycling method for aqueous diamond slurry |
WO2014208762A1 (en) * | 2013-06-29 | 2014-12-31 | Hoya株式会社 | Manufacturing method for glass substrate, manufacturing method for magnetic disk, and polishing solution composition for glass substrate |
JP2015035245A (en) * | 2013-08-09 | 2015-02-19 | 旭硝子株式会社 | Glass substrate carrier, polishing method of glass substrate for magnetic recording medium, and manufacturing method of glass substrate for magnetic recording medium |
-
2015
- 2015-09-02 JP JP2015172727A patent/JP2018174005A/en active Pending
-
2016
- 2016-06-14 WO PCT/JP2016/067643 patent/WO2017038201A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010115751A (en) * | 2008-11-13 | 2010-05-27 | Showa Denko Kk | Recycling method for aqueous diamond slurry |
WO2014208762A1 (en) * | 2013-06-29 | 2014-12-31 | Hoya株式会社 | Manufacturing method for glass substrate, manufacturing method for magnetic disk, and polishing solution composition for glass substrate |
JP2015035245A (en) * | 2013-08-09 | 2015-02-19 | 旭硝子株式会社 | Glass substrate carrier, polishing method of glass substrate for magnetic recording medium, and manufacturing method of glass substrate for magnetic recording medium |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018174012A (en) * | 2017-03-31 | 2018-11-08 | 株式会社フジミインコーポレーテッド | Method of polishing magnetic dis substrate, polishing composition and polishing composition set |
JP2019119776A (en) * | 2017-12-28 | 2019-07-22 | 花王株式会社 | Polishing liquid composition |
CN109439282A (en) * | 2018-10-23 | 2019-03-08 | 蓝思科技(长沙)有限公司 | Composite Nano abrasive material, polishing fluid and preparation method thereof, chip glass and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2018174005A (en) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003036528A (en) | Base for information recording medium, its manufacturing method, and information recording medium | |
JP6078942B2 (en) | Glass substrate manufacturing method, magnetic disk manufacturing method, and polishing composition for glass substrate | |
JP4790973B2 (en) | Method for manufacturing glass substrate for information recording medium using polishing pad and glass substrate for information recording medium obtained by the method | |
US20120244388A1 (en) | Glass substrate for information recording media, process for its production, and magnetic recording medium | |
JP5168387B2 (en) | Method for manufacturing glass substrate for magnetic recording medium | |
JP5321594B2 (en) | Manufacturing method of glass substrate and manufacturing method of magnetic recording medium | |
WO2017038201A1 (en) | Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium | |
JP6243920B2 (en) | Glass substrate manufacturing method and magnetic disk manufacturing method | |
JP6060166B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
WO2010041536A1 (en) | Process for producing glass substrate, and process for producing magnetic recording medium | |
WO2010041537A1 (en) | Process for producing glass substrate, and process for producing magnetic recording medium | |
JP2011233205A (en) | Information recording medium glass substrate, polishing colloidal silica slurry for manufacturing thereof, and information recording medium | |
JP6099034B2 (en) | Method for manufacturing glass substrate for magnetic disk, magnetic disk, and magnetic recording / reproducing apparatus | |
JP2009087439A (en) | Manufacturing method of glass substrate for magnetic disk | |
JPWO2011021478A1 (en) | Glass substrate manufacturing method, glass substrate, magnetic recording medium manufacturing method, and magnetic recording medium | |
JP2012256424A (en) | Glass substrate for magnetic recording medium | |
JP5636243B2 (en) | Manufacturing method of glass substrate for information recording medium | |
JP4484162B2 (en) | Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk | |
WO2014103284A1 (en) | Method for producing glass substrate for information recording medium | |
JP2012079365A (en) | Method for manufacturing glass substrate for information recording medium | |
JP2010073289A (en) | Substrate for magnetic disk and magnetic disk | |
JP2012203960A (en) | Manufacturing method for glass substrate for magnetic information recording medium | |
JP4484160B2 (en) | Manufacturing method of glass substrate for magnetic disk | |
WO2012042735A1 (en) | Manufacturing method for glass substrate for information recording medium | |
JP2013012281A (en) | Method for manufacturing glass substrate for hdd |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841233 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841233 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |