[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4484162B2 - Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk - Google Patents

Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk Download PDF

Info

Publication number
JP4484162B2
JP4484162B2 JP2009110256A JP2009110256A JP4484162B2 JP 4484162 B2 JP4484162 B2 JP 4484162B2 JP 2009110256 A JP2009110256 A JP 2009110256A JP 2009110256 A JP2009110256 A JP 2009110256A JP 4484162 B2 JP4484162 B2 JP 4484162B2
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic disk
substrate
polishing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009110256A
Other languages
Japanese (ja)
Other versions
JP2009176415A (en
Inventor
栄次 奥田
武夫 渡辺
佳彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2009110256A priority Critical patent/JP4484162B2/en
Publication of JP2009176415A publication Critical patent/JP2009176415A/en
Application granted granted Critical
Publication of JP4484162B2 publication Critical patent/JP4484162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)

Description

この発明は、コンピューターに用いられる磁気記録装置に関するものであって、さらには磁気記録装置の高密度化、安定作動に寄与する磁気ディスクおよびその製造方法の技術に関する。   The present invention relates to a magnetic recording device used in a computer, and more particularly to a technology of a magnetic disk that contributes to high density and stable operation of the magnetic recording device and a method for manufacturing the same.

コンピューターの磁気記録装置、例えばハードディスクには、アルミ製またはガラス製のディスクが基板として用いられる。この基板上には金属磁気薄膜が形成され、金属磁気薄膜を磁気ヘッドで磁化することにより、情報が記録される。磁気記録装置の内部では基板が一定速度で回転し、その時磁気ヘッドは基板表面から一定の間隔をおいて宙に浮いている。この磁気ヘッドの基板表面からの高さをフライングハイトという。フライングハイトは、磁気記録装置の性能を大きく左右する重要な要素である。フライングハイトが低くなると、磁気ヘッドの発する磁力が金属磁気薄膜の小さい面積に対してのみ機能するようになり、磁気記録装置の高密度化が可能となる。しかし、一方で磁気ヘッドと基板表面との接触による磁気記録装置の誤作動および再生不可の危険性が高まる。   An aluminum or glass disk is used as a substrate for a magnetic recording device of a computer, for example, a hard disk. A metal magnetic thin film is formed on the substrate, and information is recorded by magnetizing the metal magnetic thin film with a magnetic head. Inside the magnetic recording apparatus, the substrate rotates at a constant speed, and at that time, the magnetic head floats in the air at a constant interval from the substrate surface. The height of the magnetic head from the substrate surface is called a flying height. Flying height is an important factor that greatly affects the performance of a magnetic recording apparatus. When the flying height is lowered, the magnetic force generated by the magnetic head functions only for a small area of the metal magnetic thin film, and it is possible to increase the density of the magnetic recording apparatus. However, on the other hand, there is an increased risk of malfunction of the magnetic recording apparatus due to contact between the magnetic head and the substrate surface and the impossibility of reproduction.

磁気記録装置の基板としては、製造コストおよび加工の容易さからアルミ基板が一般に用いられてきたが、近年ではガラス基板が注目されてきている。このガラス基板には、アモルファスガラス基板と結晶化ガラス基板とがある。   As a substrate of a magnetic recording apparatus, an aluminum substrate has generally been used because of manufacturing cost and ease of processing, but in recent years, a glass substrate has attracted attention. The glass substrate includes an amorphous glass substrate and a crystallized glass substrate.

アモルファスガラス基板の製造方法は、先ずガラス板をドーナツ形に切り出し、内外周を所定の面幅、角度、面粗さに面取りおよび研削加工する。その後、アルミナ、ジルコニアなどで粗研磨し、さらに酸化セリウムなどで精研磨し、化学強化する方法である。一方、結晶化ガラス基板の製造方法は、ドーナツ形に成形したガラスディスクを熱処理により結晶化させ、次いで研削、内外周加工、粗研磨、精研磨することにより製造するものである。   In the method for producing an amorphous glass substrate, first, a glass plate is cut into a donut shape, and the inner and outer circumferences are chamfered and ground to a predetermined surface width, angle, and surface roughness. Then, it is a method of rough polishing with alumina, zirconia or the like, and further finely polishing with cerium oxide or the like and chemically strengthening. On the other hand, the crystallized glass substrate is manufactured by crystallizing a glass disk formed into a donut shape by heat treatment, and then grinding, inner and outer peripheral processing, rough polishing, and fine polishing.

この方法で製造されたアモルファスガラス基板または結晶化ガラス基板の表面には、精研磨後に振幅1.2〜1.5nmの微小うねりが残る。また、アモルファスガラス基板は、精研磨の後に化学強化され、その振幅がさらに大きくなることが知られている。   On the surface of the amorphous glass substrate or the crystallized glass substrate manufactured by this method, fine waviness with an amplitude of 1.2 to 1.5 nm remains after fine polishing. In addition, it is known that an amorphous glass substrate is chemically strengthened after fine polishing and the amplitude thereof is further increased.

ここで、上記基板表面の「微小うねり」について説明する。「微小うねり」は、基板表面形状の一種で、周期がミリメートルオーダー、振幅がナノメートルオーダーの波形形状のものをいう。周期がこれより小さいものは「粗さ」と呼ばれ、一方大きいものは「平坦度」と呼ばれる。この「粗さ」「微小うねり」「平坦度」はいずれも基板表面の形状を表す概念であり、これらを画する明確な基準があるわけではない。現実の基板表面には、周期および振幅が共にオングストロームオーダーの凹凸(以下、「極小凹凸」とする)がランダムに存在する。「極小凹凸」の出現態様をマイクロメートルオーダーのスパンで捉えたものが「粗さ」である。「粗さ」において、「極小凹凸」の出現態様はランダムであるが、比較的長いスパンで捉えると、一定の周期性が確認される。この「極小凹凸」の出現態様の周期性が、「微小うねり」である。したがって、「微小うねり」は、「極小凹凸」の出現態様の傾向であるといえる。   Here, the “micro wave” on the substrate surface will be described. “Micro waviness” is a kind of substrate surface shape, which has a waveform shape with a period of millimeter order and amplitude of nanometer order. Those with a period smaller than this are called "roughness", while those with a larger period are called "flatness". The “roughness”, “microwaviness”, and “flatness” are all concepts representing the shape of the substrate surface, and there is no clear standard that defines them. On the actual substrate surface, irregularities having an angstrom order (hereinafter referred to as “minimal irregularities”) are present randomly at both the period and amplitude. “Roughness” is the one that captures the appearance of “minimal irregularities” with a span of micrometer order. In “Roughness”, the appearance of “minimum unevenness” is random, but a certain periodicity is confirmed when captured with a relatively long span. The periodicity of the appearance mode of the “minimal unevenness” is “micro swell”. Therefore, it can be said that “micro swell” is a tendency of appearance of “minimal unevenness”.

「微小うねり」は、「OPTI FLAT(商品名:Phase Shift社製)」なる光学測定装置で測定される。   “Slight undulation” is measured by an optical measuring device “OPTI FLAT (trade name: manufactured by Phase Shift)”.

特許文献1には、RMSが1nm以下の磁気ディスク、ガラス基板を化学強化し、その後研磨する磁気ディスクの製造方法、研磨には粒径1μmの酸化セリウムを用いること、が記載されている。Patent Document 1 describes a magnetic disk having an RMS of 1 nm or less, a method for manufacturing a magnetic disk in which a glass substrate is chemically strengthened and then polished, and cerium oxide having a particle diameter of 1 μm is used for polishing.

また、特許文献2には、ガラス基板を化学強化し、その後研磨する磁気ディスクの製造方法、研磨には酸化セリウムとウレタンパッドを用いること、及び、0.5〜5μm程度研磨すること、が記載されている。Patent Document 2 describes a method for manufacturing a magnetic disk in which a glass substrate is chemically strengthened and then polished, cerium oxide and a urethane pad are used for polishing, and polishing is performed for about 0.5 to 5 μm. Has been.

また、特許文献3には、研磨には酸化セリウムとウレタンパッドを用いること、及び、1〜5μm研磨することが記載されている。Patent Document 3 describes that cerium oxide and a urethane pad are used for polishing and that 1 to 5 μm is polished.

また、特許文献4には、うねり形状を有する磁気ディスクが記載されている。Patent Document 4 describes a magnetic disk having a wavy shape.

また、特許文献5には、表面粗度および表面うねりの小さい方がグライド高さが低くなること、表面うねりの振幅が0.9nmであるものが記載されている。Patent Document 5 describes that the smaller the surface roughness and the surface waviness, the lower the glide height and the surface waviness amplitude is 0.9 nm.

特開平10−241144号公報JP-A-10-241144 特開平10−222842号公報JP-A-10-222842 特開平08−124153号公報Japanese Patent Laid-Open No. 08-124153 特開平09−326115号公報JP 09-326115 A 特開平08−147688号公報Japanese Patent Laid-Open No. 08-147688

磁気記録装置は、今後さらに高密度化、アクセスタイムの短縮が要求される。高密度化にはフライングハイトを低くすることが、またアクセスタイムの短縮には基板の回転数を上げることが不可欠である。磁気ディスクの回転数は、従来約4000r.p.m程度であるが、今後は7,000r.p.m以上が必要となる。この回転が速くなると、磁気記録装置の誤作動および再生不可の危険性が必然的に高くなる。すなわち、磁気記録装置の高密度化およびアクセスタイムの短縮を実現するためには、フライングハイトを低くし、磁気ディスクの回転数を高め、さらに誤作動および再生不可の危険性を抑えなければならない。   In the future, magnetic recording devices will be required to have higher density and shorter access time. To increase the density, it is indispensable to lower the flying height, and to shorten the access time, it is essential to increase the number of rotations of the substrate. Conventionally, the rotational speed of the magnetic disk has been about 4000 rpm. p. m, but 7,000r. p. m or more is required. If this rotation speeds up, the risk of malfunction of the magnetic recording device and the impossibility of reproduction is inevitably increased. That is, in order to realize a high density magnetic recording apparatus and a short access time, the flying height must be lowered, the rotational speed of the magnetic disk must be increased, and the risk of malfunction and inability to reproduce must be suppressed.

フライングハイトを低くするためには、基板表面が完全に平坦であることが理想的である。しかし、現在の基板の製造方法はその表面を研削研磨するものであるから、研磨砥粒との接触で形成される極小凹凸を全く無くすことはできない。したがって、極小凹凸を小さくすると伴に、より均一に形成させることが重要である。   In order to reduce the flying height, it is ideal that the substrate surface is completely flat. However, since the current substrate manufacturing method grinds and polishes the surface, it is impossible to completely eliminate the minimal unevenness formed by contact with the abrasive grains. Therefore, it is important to make the minimum unevenness smaller and to make it more uniform.

本発明者らは、上記観点に基づき鋭意研究した結果、「微小うねり」の振幅をより小さくできる製造方法を見出した。これにより、「極小凹凸」をより均一に形成させ、そこ結果フライングハイトを低くできる磁気ディスクを得ることかできる。   As a result of intensive studies based on the above viewpoint, the present inventors have found a manufacturing method that can further reduce the amplitude of “microwaviness”. As a result, it is possible to obtain a magnetic disk in which “minimal irregularities” can be formed more uniformly, and as a result, the flying height can be lowered.

この発明は、このような従来技術に存在する問題に着目してなされたものである。その目的とするところは、高密度化およびアクセスタイムの短縮を可能とする磁気記録装置、それに用いられる磁気ディスクおよび磁気ディスク用ガラス基板、ならびに磁気ディスク用ガラス基板の製造方法を提供することにある。 The present invention has been made paying attention to such problems existing in the prior art. An object of the present invention is to provide a magnetic recording apparatus capable of increasing the density and shortening the access time, a magnetic disk used therefor, a glass substrate for the magnetic disk, and a method for manufacturing the glass substrate for the magnetic disk. .

上述の課題を解決するための第1の手段は、アモルファスガラス基板の表面の、周期が0.1〜5mmの微小うねりの振幅が0.1〜0.78nmであることを特徴とする磁気ディスク用ガラス基板(ただし、微小うねりは、光学測定装置で測定された値である)である。A first means for solving the above-mentioned problem is a magnetic disk characterized in that the amplitude of a microwaviness with a period of 0.1 to 5 mm on the surface of an amorphous glass substrate is 0.1 to 0.78 nm. Glass substrate (however, the minute waviness is a value measured by an optical measuring device).

第2の手段は、上記ガラス基板の表面が、ガラス基板を化学強化し、その後研磨されたものであることを特徴とする第1の手段に係る磁気ディスク用ガラス基板である。The second means is the glass substrate for a magnetic disk according to the first means, wherein the surface of the glass substrate is obtained by chemically strengthening the glass substrate and then polishing.

第3の手段は、7,000rpm以上で回転する磁気記録装置に使用される磁気ディスク対応の磁気ディスク用ガラス基板であることを特徴とする第1または第2の手段に係る磁気ディスク用ガラス基板である。The third means is a magnetic disk glass substrate corresponding to a magnetic disk used in a magnetic recording apparatus rotating at 7,000 rpm or more, wherein the magnetic disk glass substrate according to the first or second means is characterized in that It is.

第4の手段は、第1〜第3のいずれかの手段に係る磁気ディスク用ガラス基板上に金属磁気薄膜を形成したことを特徴とする磁気ディスクである。A fourth means is a magnetic disk characterized in that a metal magnetic thin film is formed on a magnetic disk glass substrate according to any one of the first to third means.

第5の手段は、アモルファスガラス基板を化学強化後に仕上げ研磨する磁気ディスク用ガラス基板の製造方法において、前記化学強化は、前記アモルファスガラス基板の表層に50〜200μmの圧縮応力層を形成するものであり、前記化学強化後の仕上げ研磨は、前記アモルファスガラス基板の両面を均等に0.5〜10μm研磨することにより、前記アモルファスガラス基板の表面の周期が0.1〜5mmの微小うねりの振幅を0.1〜0.78nmにするものであることを特徴とする磁気ディスク用ガラス基板の製造方法である。A fifth means is a method for manufacturing a glass substrate for magnetic disk, in which an amorphous glass substrate is finish-polished after chemical strengthening, and the chemical strengthening forms a 50-200 μm compressive stress layer on the surface layer of the amorphous glass substrate. Yes, the final polishing after the chemical strengthening is performed by uniformly polishing both surfaces of the amorphous glass substrate by 0.5 to 10 μm, thereby increasing the amplitude of the micro waviness of the surface period of the amorphous glass substrate of 0.1 to 5 mm. It is a manufacturing method of the glass substrate for magnetic discs characterized by being 0.1-0.78 nm.

この発明は、以上のように構成されているため、次のような効果を奏する。   Since this invention is comprised as mentioned above, there exist the following effects.

この発明による磁気ディスク用ガラス基板は、表面の微小うねりが周期0.1〜5mm、振幅0.1〜0.78nmであるので、アクセスタイムの短い高密度磁気記録装置に資することができる。 The glass substrate for a magnetic disk according to the present invention can contribute to a high-density magnetic recording apparatus having a short access time because the surface has a fine waviness of 0.1 to 5 mm and an amplitude of 0.1 to 0.78 nm .

また、ガラス基板を化学強化後研磨するので、微小うねりの振幅を0.1〜0.78nmに収めることができる。 Further, since the glass substrate is polished after chemical strengthening, the amplitude of the microwaviness can be kept within a range of 0.1 to 0.78 nm .

また、この発明の磁気ディスク用ガラス基板の製造方法によれば、化学強化後の研磨がガラス基板を0.5〜10μm研磨するものであるので、微小うねりの振幅をより確実に0.1〜0.78nmに収めることができる。Further, according to the method for manufacturing a glass substrate for a magnetic disk of the present invention, the polishing after chemical strengthening polishes the glass substrate by 0.5 to 10 μm. It can be within 0.78 nm.

また、この発明による磁気ディスクを用いた磁気記録装置であれば、アクセスタイムの短縮と高密度化とを両立できる。   Further, the magnetic recording apparatus using the magnetic disk according to the present invention can achieve both shortening of access time and high density.

なお、結晶化ガラス基板の研磨に、圧縮弾性率が70〜90%、密度が0.4〜0.6g/cmFor polishing a crystallized glass substrate, the compression modulus is 70 to 90% and the density is 0.4 to 0.6 g / cm. 3 、C硬度が70〜80の高密度、高硬度のパッドを用いれば、結晶化ガラス基板の微小うねりの振幅を0.1〜0.77nmに収めることができる。If a high-density, high-hardness pad having a C hardness of 70 to 80 is used, the amplitude of the microwaviness of the crystallized glass substrate can be set to 0.1 to 0.77 nm.

以下、この発明の実施形態について詳細に説明する。磁気ディスクの微小うねりは、周期が0.1〜5mm、振幅が0.1〜1nmである。この周期が0.1mmより短い場合は、周期が磁気ヘッドのスライダー幅の1/4より短いため、磁気ヘッドとの関係を考慮すれば、この場合の極小凹凸の出現態様は、微小うねりとしてより、粗さとして捉える方が妥当である。一方、この周期が5mmより長い場合は、周期が磁気ヘッド自体の幅より
も数倍長いため、微小うねりとしてより、平坦度として捉える方が妥当である。なお、この発明で磁気ディスクという場合は、金属磁気薄膜を備える場合と基板だけの場合とのどちらも含む。
Hereinafter, embodiments of the present invention will be described in detail. The micro waviness of the magnetic disk has a period of 0.1 to 5 mm and an amplitude of 0.1 to 1 nm. When this period is shorter than 0.1 mm, the period is shorter than ¼ of the slider width of the magnetic head. Therefore, in consideration of the relationship with the magnetic head, the appearance of the minimal unevenness in this case is more like a micro waviness. It is more appropriate to regard it as roughness. On the other hand, when this period is longer than 5 mm, the period is several times longer than the width of the magnetic head itself, so that it is more appropriate to regard it as flatness rather than as fine waviness. In the present invention, the term “magnetic disk” includes both a case where a metal magnetic thin film is provided and a case where only a substrate is provided.

微小うねりの振幅は0.1〜1nmであって、測定器「OPTI FLAT」で簡易的に測定できる。この「OPTI FLAT」の「RMS」という測定項目の値が、微小うねりの振幅を示すものである。「RMS」の測定は、対象とする周期範囲を予め入力して、その範囲の微小うねりの振幅を自乗平均するものである。なお、特に明記しない場合、「RMS」の値は、周期範囲を0.1〜5mmとしたときの振幅である。従来の技術で製造された磁気ディスクは、この「RMS」が1.2nmを越えており、1nm以下の磁気ディスクを製造することはできなかった。また、この振幅は0nmであることが理想的であるが、現実には0.1nm程度が限界である。   The amplitude of the microwaviness is 0.1 to 1 nm, and can be easily measured with a measuring instrument “OPTI FLAT”. The value of the measurement item “RMS” of “OPTI FLAT” indicates the amplitude of the minute swell. In the measurement of “RMS”, a target periodic range is input in advance, and the amplitude of the minute waviness in the range is square-averaged. Unless otherwise specified, the value of “RMS” is the amplitude when the period range is 0.1 to 5 mm. In the magnetic disk manufactured by the conventional technique, this “RMS” exceeds 1.2 nm, and a magnetic disk of 1 nm or less cannot be manufactured. The amplitude is ideally 0 nm, but in reality, the limit is about 0.1 nm.

微小うねりの振幅が0.1〜1nmであれば、磁気ディスクの回転数が7,000r.p.m以上、フライングハイトが30nmであっても、磁気記録装置は誤作動を起こさない。   If the amplitude of the microwaviness is 0.1 to 1 nm, the rotational speed of the magnetic disk is 7,000 r. p. Even when the flying height is 30 nm or more, the magnetic recording device does not malfunction.

磁気ディスクの基板としては、アルミニウム、アモルファスガラスおよび結晶化ガラスなどを利用できる。以下ではアモルファスガラス基板および結晶化ガラス基板を用いた場合について説明する。なお、単にガラス基板という場合は、アモルファスガラス基板を指す。   As the substrate of the magnetic disk, aluminum, amorphous glass, crystallized glass, or the like can be used. Below, the case where an amorphous glass substrate and a crystallized glass substrate are used is demonstrated. Note that the term “glass substrate” refers to an amorphous glass substrate.

ガラス基板の種類としては、特に限定されるものではなく、ソーダ石灰ガラス、アルミノケイ酸塩ガラス、ホウケイ酸塩ガラスなどが挙げられる。一方、結晶化ガラスとしては、リチウムシリケートガラスなどが挙げられる。   The type of the glass substrate is not particularly limited, and examples thereof include soda lime glass, aluminosilicate glass, and borosilicate glass. On the other hand, examples of crystallized glass include lithium silicate glass.

ガラス基板の製造方法は、概略的には、
(A1)ガラスをディスク状に成形・加工する工程
(A2)粗研磨工程
(A3)精研磨工程
(A4)化学強化工程
(A5)仕上げ研磨工程
(A6)最終洗浄工程
からなる。
The method for producing a glass substrate is roughly as follows:
(A1) A step of forming and processing glass into a disk shape (A2) A rough polishing step (A3) A fine polishing step (A4) A chemical strengthening step (A5) A final polishing step (A6) A final cleaning step.

また、結晶化ガラス基板の製造方法は、
(C1)ガラスをディスク状に成形する工程
(C2)結晶化工程
(C3)粗研磨工程
(C4)精研磨工程
(C5)最終洗浄工程
からなる。
Moreover, the manufacturing method of a crystallized glass substrate is as follows:
(C1) A step of forming glass into a disk (C2) a crystallization step (C3) a rough polishing step (C4) a fine polishing step (C5) and a final cleaning step.

ガラス基板の製造方法において、(A1)ディスク状に成形する工程は、予めシート状に成形されたガラスをディスク状に切り出すものでも、また熔融ガラスをディスク状の型に流し込むものでも良い。つぎに、この基板は、(A2)粗研磨工程において、平均粒径5〜10μmの遊離砥粒(アルミナなど)で、その表面を0.4mm程度研削される。なお、研削の際、基板の両面を均等に削ることが好ましい。さらに、この基板は(A3)精研磨工程において、平均粒径1μmの遊離砥粒(酸化セリウムなど)で精研磨される。   In the method for producing a glass substrate, (A1) the step of forming into a disk shape may be a method of cutting glass previously formed into a sheet shape into a disk shape, or pouring molten glass into a disk-shaped mold. Next, in the (A2) rough polishing step, the surface of the substrate is ground by about 0.4 mm with free abrasive grains (such as alumina) having an average particle diameter of 5 to 10 μm. In addition, it is preferable to grind both surfaces of a board | substrate uniformly in the case of grinding. Further, this substrate is finely polished with free abrasive grains (such as cerium oxide) having an average particle diameter of 1 μm in the fine polishing step (A3).

つづいて、ガラス基板は、(A4)化学強化工程において、硝酸カリウム(60%)と硝酸ナトリウム(40%)とを混合した化学強化処理液(380℃)に、約3時間浸漬される。この基板の表層は、化学強化処理液中のナトリウムイオン、カリウムイオンによってイオン置換され、圧縮応力を備えるようになる。この基板の表層に形成される圧縮応力層の厚さは、約50〜200μmである。この化学強化により、精研磨工程終了時よりも基板の微小うねりが幾分大きくなる。これは、高温下でイオン交換反応を行うためであると考えられる。   Subsequently, in the (A4) chemical strengthening step, the glass substrate is immersed in a chemical strengthening treatment liquid (380 ° C.) in which potassium nitrate (60%) and sodium nitrate (40%) are mixed for about 3 hours. The surface layer of this substrate is ion-replaced by sodium ions and potassium ions in the chemical strengthening treatment solution, and comes to have compressive stress. The thickness of the compressive stress layer formed on the surface layer of the substrate is about 50 to 200 μm. Due to this chemical strengthening, the fine waviness of the substrate is somewhat larger than at the end of the fine polishing process. This is considered to be for performing an ion exchange reaction under high temperature.

そこで、従来の技術では行っていなかった(A5)仕上げ研磨工程を取り入れる。仕上げ研磨工程は、平均粒径0.6〜1μmの酸化セリウムなどの遊離砥粒を用いて、基板を0.5〜10μm研磨するものである。この仕上げ研磨を施すことにより、微小うねりの振幅を0.1〜1nmに収めることができるようになる。研磨厚さが0.5μmより薄い場合は、仕上げ研磨の効果が現れ難い。対して、10μmより多く研磨しても、微小うねりの振幅にあまり変化がない。仕上げ研磨を行わない場合、微小うねりは1.2〜1.5nmであり、仕上げ研磨の有効性は明白である。仕上げ研磨においては、基板の両面を均等に削ることが好ましい。   Therefore, a final polishing step (A5) that has not been performed in the conventional technique is incorporated. In the final polishing step, the substrate is polished by 0.5 to 10 μm using free abrasive grains such as cerium oxide having an average particle size of 0.6 to 1 μm. By performing this finish polishing, the amplitude of the microwaviness can be kept within a range of 0.1 to 1 nm. When the polishing thickness is thinner than 0.5 μm, the effect of finish polishing is difficult to appear. On the other hand, even when polishing more than 10 μm, the amplitude of the microwaviness does not change much. When the final polishing is not performed, the fine waviness is 1.2 to 1.5 nm, and the effectiveness of the final polishing is obvious. In the finish polishing, it is preferable that both sides of the substrate are evenly shaved.

最終的に、ガラス基板は、(A6)最終洗浄工程に送られる。この最終洗浄工程は、基板を酸または(および)アルカリ洗剤、純水、イソプロピルアルコール(以下「IPA」とする)で充たした各槽に順次浸漬し、最後にIPA蒸気乾燥によって洗浄するものである。なお、各洗浄槽では、超音波(周波数28〜40kHz)を印加し、洗浄効果を高める。   Finally, the glass substrate is sent to (A6) final cleaning step. In this final cleaning step, the substrate is sequentially immersed in each tank filled with acid or (and) alkaline detergent, pure water, isopropyl alcohol (hereinafter referred to as “IPA”), and finally cleaned by IPA vapor drying. . In each cleaning tank, ultrasonic waves (frequency 28 to 40 kHz) are applied to enhance the cleaning effect.

つぎに、結晶化ガラス基板の製造方法について説明する。(C1)ガラスをディスク状に成形する工程は、上記ガラス基板の場合と同様である。成形されたガラスは、(C2)結晶化工程に送られる。ガラスの結晶化は、ガラス軟化点付近までガラスを加熱し、数時間放置することにより行われる。   Next, a method for producing a crystallized glass substrate will be described. (C1) The step of forming the glass into a disk shape is the same as that for the glass substrate. The formed glass is sent to (C2) crystallization step. Crystallization of glass is performed by heating the glass to near the glass softening point and allowing it to stand for several hours.

(C3)粗研磨工程において、結晶化ガラス基板は、まずダイヤペレットなどの固定砥粒でその両面を荒削りされ、平均粒径5〜10μmの遊離砥粒(アルミナなど)で0.4mm程度両面研削される。   (C3) In the rough polishing step, the crystallized glass substrate is first rough-cut with fixed abrasive grains such as diamond pellets, and double-sided by about 0.4 mm with free abrasive grains (such as alumina) having an average particle diameter of 5 to 10 μm. Is done.

その後、結晶化ガラス基板は、(C4)精研磨工程において、平均粒径1μm程度の遊離砥粒(酸化セリウムなど)で精研磨される。その際、圧縮弾性率が70〜90%、密度が0.4〜0.6g/cm、C硬度が70〜80の高密度、高硬度のパッドを用いることにより、微小うねりの振幅を0.1〜1nmに確実に収めることができる。結晶化ガラス基板は、硬度が高いため固定砥粒による研削を行う必要があり、その研削痕が粗研磨後も基板表面に残る場合が多い。上記高密度、高硬度パッドと平均粒径1μm程度の遊離砥粒とを組み合わせることにより、基板表面に砥粒を均等に接触させることができるようになる。したがって、高密度、高硬度パッドと平均粒径1μm程度の遊離砥粒を用いることが、上記研削痕を消すために好ましい。 Thereafter, the crystallized glass substrate is finely polished with free abrasive grains (such as cerium oxide) having an average particle diameter of about 1 μm in the (C4) fine polishing step. At that time, by using a high-density, high-hardness pad having a compression elastic modulus of 70 to 90%, a density of 0.4 to 0.6 g / cm 3 , and a C hardness of 70 to 80, the amplitude of the microwaviness is reduced to 0. .1 to 1 nm can be surely accommodated. Since the crystallized glass substrate has high hardness, it is necessary to perform grinding with fixed abrasive grains, and the grinding traces often remain on the substrate surface even after rough polishing. By combining the high-density, high-hardness pad and free abrasive grains having an average particle diameter of about 1 μm, the abrasive grains can be brought into uniform contact with the substrate surface. Accordingly, it is preferable to use a high-density, high-hardness pad and loose abrasive grains having an average particle diameter of about 1 μm in order to eliminate the grinding traces.

また、結晶化ガラス基板の(C5)最終洗浄工程は、上記ガラス基板の(A6)最終洗浄工程と同じ方法により行われる。   The (C5) final cleaning step of the crystallized glass substrate is performed by the same method as the (A6) final cleaning step of the glass substrate.

基板上に金属磁気薄膜を形成させる方法には、公知の方法がそのまま利用できる。例えば、枚葉式やインラインスパッタリング法などである。さらに、磁気ディスクを磁気記録装置に組み込む方法も、従来の技術がそのまま利用できる。   As a method for forming a metal magnetic thin film on a substrate, a known method can be used as it is. For example, a single wafer type or an in-line sputtering method. Furthermore, a conventional technique can be used as it is for a method of incorporating a magnetic disk into a magnetic recording apparatus.

上述の方法により製造された磁気ディスクは、周期0.1〜5nmの微小うねりの振幅
が極めて小さいものであるから、フライングハイトを低く設計した磁気ディスクにおいて、その利点を効果的に発揮する。さらには、磁気ディスクが7,000r.p.m以上で回転する磁気記録装置に適している。
Since the magnetic disk manufactured by the above-mentioned method has a very small amplitude of micro-waviness with a period of 0.1 to 5 nm, the advantage is effectively exhibited in a magnetic disk designed with a low flying height. Furthermore, the magnetic disk is 7,000 r. p. It is suitable for a magnetic recording apparatus that rotates at m or more.

なお、この発明は、物品表面の平坦度を高める技術であるから、その他の用途として光学器材、例えばプリズムやレンズなどの加工に応用できる。   Since the present invention is a technique for increasing the flatness of the article surface, it can be applied to processing of optical equipment such as prisms and lenses as other uses.

以下、実施例および比較例により、この発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
厚さ1.1mmのアルミノケイ酸塩ガラスのシート材を外径66.0mm、内径19.0mmの円盤状に切り出し、ドーナツ形のアモルファスガラス基板とした。つづいて、基板の内周面と外周面に面取り加工および端面研磨を施し、外径65.00mm、内径20.02mmとした。つぎに、平均粒径が5〜10μmの遊離砥粒(アルミナなど)を用いて基板両面を約0.690mmまで粗研磨し、さらに平均粒径が約1μmの酸化セリウムを用いて精研磨をし、厚さ約0.635mmで表面粗さRa1nm以下の基板を得た。そして、この基板に上記化学強化処理を施した。
Example 1
An aluminosilicate glass sheet material having a thickness of 1.1 mm was cut into a disk shape having an outer diameter of 66.0 mm and an inner diameter of 19.0 mm to obtain a donut-shaped amorphous glass substrate. Subsequently, the inner peripheral surface and the outer peripheral surface of the substrate were chamfered and end-face polished to obtain an outer diameter of 65.00 mm and an inner diameter of 20.02 mm. Next, both sides of the substrate are roughly polished to about 0.690 mm using loose abrasive grains (such as alumina) having an average particle size of 5 to 10 μm, and further finely polished using cerium oxide having an average particle size of about 1 μm. A substrate having a thickness of about 0.635 mm and a surface roughness Ra of 1 nm or less was obtained. And the said chemical strengthening process was performed to this board | substrate.

化学強化処理後の基板を「OPTI FLAT」を用いて測定したところ、その微小うねりは下記「表1」に示すように「RMS」が1.26nmであった。この化学強化後の基板を、平均粒径が約0.8μmの酸化セリウムの研磨剤を用いて約1μm研磨した。そして、上記の方法により、この基板を洗浄した。この洗浄後の基板の微小うねりは、「OPTI FLAT」で測定したところ、「RMS」が0.78nmであった。   When the substrate after the chemical strengthening treatment was measured using “OPTI FLAT”, the microwaviness was “RMS” of 1.26 nm as shown in “Table 1” below. The chemically strengthened substrate was polished by about 1 μm using a cerium oxide abrasive having an average particle size of about 0.8 μm. And this board | substrate was wash | cleaned by said method. The micro-waviness of the substrate after this cleaning was measured by “OPTI FLAT” and “RMS” was 0.78 nm.

このように製造したアモルファスガラス基板上に、公知の方法で下地膜、Cr化合物、CoCrPt、カーボン保護膜等からなる金属磁気薄膜を順次形成させ、公知の方法により磁気記録装置に組み込んだ。この磁気記録装置は、回転数7,200r.p.m、フライングハイト30nmであった。この磁気記録装置に、通常の使用状態と同じ条件下におけるデータ読み込みおよび書き込み試験(以下、「誤作動試験」とする)を行った。その結果、誤作動、再生不可は起きなかった。   On the amorphous glass substrate thus produced, a metal magnetic thin film composed of a base film, Cr compound, CoCrPt, carbon protective film, and the like was sequentially formed by a known method, and incorporated in a magnetic recording apparatus by a known method. This magnetic recording apparatus has a rotational speed of 7,200 r. p. m, flying height 30 nm. This magnetic recording apparatus was subjected to a data reading and writing test (hereinafter referred to as “malfunction test”) under the same conditions as in normal use. As a result, no malfunction or inability to regenerate occurred.

(比較例1)
実施例1における化学強化処理後の基板を仕上げ研磨せずに最終洗浄し、比較例1の磁気ディスクとし、「OPTI FLAT」で測定した。さらに、この磁気ディスクに誤作動試験を行った。その結果を「表1」に示す。
(Comparative Example 1)
The substrate after the chemical strengthening treatment in Example 1 was finally cleaned without final polishing to obtain a magnetic disk of Comparative Example 1 and measured by “OPTI FLAT”. Further, a malfunction test was performed on the magnetic disk. The results are shown in “Table 1”.

(実施例2)
厚さ1.3mmにプレス成形されたリチウムシリケートガラスを、所定の温度で熱処理し結晶化させて、外径66.0mmの円盤状にした。そして、その中心に内径19.0mmの孔を明け、ドーナツ形の円盤とした。続いて、ダイヤペレットで基板の両面を荒削りし、厚さを約0.9mmとし、内外周を面取加工および端面研磨して、外径65.0mm、内径20.02mmにした。その後平均粒径5〜10μmのアルミナ研磨剤で粗研磨した。
(Example 2)
Lithium silicate glass press-molded to a thickness of 1.3 mm was crystallized by heat treatment at a predetermined temperature to obtain a disk shape having an outer diameter of 66.0 mm. Then, a hole with an inner diameter of 19.0 mm was made in the center to form a donut-shaped disk. Subsequently, both sides of the substrate were rough-cut with diamond pellets to a thickness of about 0.9 mm, and the inner and outer circumferences were chamfered and end-face polished to an outer diameter of 65.0 mm and an inner diameter of 20.02 mm. Thereafter, rough polishing was performed with an alumina abrasive having an average particle diameter of 5 to 10 μm.

そして、密度が0.5g/cmの高密度、高硬度のウレタンパッドと平均粒径が約0.8μmの酸化セリウム研磨剤とを用いて、一次精研磨を行った。さらに、圧縮弾性率が70%、密度が0.45g/cm、C硬度が70以上のスエードタイプの高密度、高硬度パッドと平均粒径が約0.8μmの研磨剤とを用いて、約6μm精研磨を行い、厚さ0.635mmにした。なお、上記パッドの硬度は、JIS−K6301に基づいて測定し
たものである。
Then, primary fine polishing was performed using a high-density, high-hardness urethane pad having a density of 0.5 g / cm 3 and a cerium oxide abrasive having an average particle diameter of about 0.8 μm. Further, using a suede-type high-density, high-hardness pad having a compression elastic modulus of 70%, a density of 0.45 g / cm 3 , and a C hardness of 70 or more, and an abrasive having an average particle diameter of about 0.8 μm, About 6 μm fine polishing was performed to a thickness of 0.635 mm. In addition, the hardness of the said pad is measured based on JIS-K6301.

この2度の精研磨後の結晶化ガラス基板を「OPTI FLAT」を用いて測定したところ、その微小うねりは「RMS」が0.77nmであった。この基板を実施例1と同様にして、金属磁気薄膜を形成させ、磁気記録装置に組み込み、誤作動試験を行った。その結果、磁気記録装置は誤作動を起こさなかった。   When the crystallized glass substrate after the two fine polishings was measured using “OPTI FLAT”, the minute undulation “RMS” was 0.77 nm. A metal magnetic thin film was formed on this substrate in the same manner as in Example 1, and incorporated in a magnetic recording apparatus, and a malfunction test was performed. As a result, the magnetic recording apparatus did not malfunction.

(比較例2)
実施例2の粗研磨後の基板に対して、密度が0.5g/cmの高密度、高硬度のウレタンパッドと平均粒径が約0.8μmの酸化セリウムの研磨剤とを用いて、一次精研磨を行った。さらに、圧縮弾性率が50%、密度が0.3g/cm、C硬度が50程度のパッドと平均粒径が約0.8μmの研磨剤とを用いて、約6μm精研磨を行い、厚さ0.635mmの比較用基板を得た。
(Comparative Example 2)
For the substrate after rough polishing in Example 2, using a high-density, high-hardness urethane pad with a density of 0.5 g / cm 3 and a cerium oxide abrasive with an average particle size of about 0.8 μm, Primary polishing was performed. Further, fine polishing of about 6 μm is performed using a pad having a compression elastic modulus of 50%, a density of 0.3 g / cm 3 , a C hardness of about 50 and an abrasive having an average particle size of about 0.8 μm, A comparative substrate having a thickness of 0.635 mm was obtained.

この基板を「OPTI FLAT」を用いて測定したところ、その微小うねりは「RMS」が1.35nmであった。さらに、この基板に実施例1と同様にして金属磁気薄膜を形成させ、磁気記録装置に組み込み、誤作動試験を行ったところ、誤作動を起こした。   When this substrate was measured using “OPTI FLAT”, the minute undulation “RMS” was 1.35 nm. Further, a metal magnetic thin film was formed on this substrate in the same manner as in Example 1, and incorporated in a magnetic recording apparatus, and a malfunction test was conducted.

Figure 0004484162
Figure 0004484162

Claims (5)

アモルファスガラス基板の表面の、周期が0.1〜5mmの微小うねりの振幅が0.1〜0.78nmであることを特徴とする磁気ディスク用ガラス基板(ただし、微小うねりは、光学測定装置で測定された値である)。The surface of the amorphous glass substrate has a micro-waviness with a period of 0.1 to 5 mm, and the amplitude of the micro-waviness is 0.1 to 0.78 nm. Measured value). 上記ガラス基板の表面は、ガラス基板を化学強化し、その後研磨されたものであることを特徴とする請求項1記載の磁気ディスク用ガラス基板。2. The glass substrate for a magnetic disk according to claim 1, wherein the surface of the glass substrate is obtained by chemically strengthening the glass substrate and then polishing it. 7,000rpm以上で回転する磁気記録装置に使用される磁気ディスク対応の磁気ディスク用ガラス基板であることを特徴とする請求項1または2記載の磁気ディスク用ガラス基板。3. The glass substrate for a magnetic disk according to claim 1, wherein the glass substrate is for a magnetic disk used in a magnetic recording device rotating at 7,000 rpm or more. 請求項1〜3のいずれか1項に記載の磁気ディスク用ガラス基板上に金属磁気薄膜を形成したことを特徴とする磁気ディスク。A magnetic disk comprising a magnetic metal thin film formed on the glass substrate for a magnetic disk according to claim 1. アモルファスガラス基板を化学強化後に仕上げ研磨する磁気ディスク用ガラス基板の製造方法において、In the method for manufacturing a glass substrate for magnetic disk, in which the amorphous glass substrate is finish-polished after chemical strengthening,
前記化学強化は、前記アモルファスガラス基板の表層に50〜200μmの圧縮応力層を形成するものであり、前記化学強化後の仕上げ研磨は、前記アモルファスガラス基板の両面を均等に0.5〜10μm研磨することにより、前記アモルファスガラス基板の表面の周期が0.1〜5mmの微小うねりの振幅を0.1〜0.78nmにするものであることを特徴とする磁気ディスク用ガラス基板の製造方法。The chemical strengthening forms a 50-200 μm compressive stress layer on the surface of the amorphous glass substrate, and the final polishing after the chemical strengthening is performed by polishing 0.5 to 10 μm evenly on both sides of the amorphous glass substrate. A method for producing a glass substrate for a magnetic disk, wherein the amplitude of the microwaviness with a period of 0.1 to 5 mm on the surface of the amorphous glass substrate is 0.1 to 0.78 nm.
JP2009110256A 2009-04-30 2009-04-30 Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk Expired - Lifetime JP4484162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110256A JP4484162B2 (en) 2009-04-30 2009-04-30 Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110256A JP4484162B2 (en) 2009-04-30 2009-04-30 Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008327851A Division JP4484160B2 (en) 2008-12-24 2008-12-24 Manufacturing method of glass substrate for magnetic disk

Publications (2)

Publication Number Publication Date
JP2009176415A JP2009176415A (en) 2009-08-06
JP4484162B2 true JP4484162B2 (en) 2010-06-16

Family

ID=41031325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110256A Expired - Lifetime JP4484162B2 (en) 2009-04-30 2009-04-30 Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk

Country Status (1)

Country Link
JP (1) JP4484162B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009572B1 (en) 2020-08-21 2022-01-25 株式会社Uacj Manufacturing method of substrate for magnetic disk

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115875A (en) * 1990-09-07 1992-04-16 Daiichi Lace Kk Polyurethane foaming body and polishing method using the same
JPH04212714A (en) * 1990-09-10 1992-08-04 Hitachi Metals Ltd Magnetic recording medium
JPH08124153A (en) * 1994-10-24 1996-05-17 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium, its production and magnetic recording medium
JPH08147688A (en) * 1994-11-16 1996-06-07 Ohara Inc Manufacture of magnetic disk substrate
JPH09326115A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Magnetic disk device and production of magnetic disk
JPH10222842A (en) * 1997-02-04 1998-08-21 Nishimura Seiko Kk Manufacture of glass substrate for high recording density magnetic disk
JPH10241144A (en) * 1996-12-27 1998-09-11 Hoya Corp Glass substrate for information recording medium, manufacture of the same, magnetic recording medium using the substrate and manufacture of the same
JP2001167430A (en) * 1999-12-08 2001-06-22 Asahi Techno Glass Corp Substrate for magnetic disk and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115875A (en) * 1990-09-07 1992-04-16 Daiichi Lace Kk Polyurethane foaming body and polishing method using the same
JPH04212714A (en) * 1990-09-10 1992-08-04 Hitachi Metals Ltd Magnetic recording medium
JPH08124153A (en) * 1994-10-24 1996-05-17 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium, its production and magnetic recording medium
JPH08147688A (en) * 1994-11-16 1996-06-07 Ohara Inc Manufacture of magnetic disk substrate
JPH09326115A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Magnetic disk device and production of magnetic disk
JPH10241144A (en) * 1996-12-27 1998-09-11 Hoya Corp Glass substrate for information recording medium, manufacture of the same, magnetic recording medium using the substrate and manufacture of the same
JPH10222842A (en) * 1997-02-04 1998-08-21 Nishimura Seiko Kk Manufacture of glass substrate for high recording density magnetic disk
JP2001167430A (en) * 1999-12-08 2001-06-22 Asahi Techno Glass Corp Substrate for magnetic disk and its manufacturing method

Also Published As

Publication number Publication date
JP2009176415A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JPWO2005093720A1 (en) Glass substrate for magnetic disk
JP2011000704A (en) Method of manufacturing glass substrate for magnetic disk, and method for manufacturing the magnetic disk
JP4293389B2 (en) Manufacturing method of magnetic disk
JP5661950B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2011033948A1 (en) Glass substrate for information recording medium, information recording medium, and method for producing glass substrate for information recording medium
JP2009076167A (en) Method of manufacturing glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5311731B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and polishing cloth
JP5636508B2 (en) Glass substrate, information recording medium using the glass substrate, and method for producing the glass substrate
JP4484162B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
JP4484160B2 (en) Manufacturing method of glass substrate for magnetic disk
JP4808985B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2006099949A (en) Glass substrate for magnetic recording medium and magnetic recording medium
JP5781845B2 (en) HDD glass substrate, HDD glass substrate manufacturing method, and HDD magnetic recording medium
JP5235916B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk
JP2006068870A (en) Method of manufacturing glass substrate for magnetic disk, method of manufacturing magnetic disk, and polishing cloth
JP2007245265A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP4942305B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5032758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP6225248B2 (en) Glass substrate for magnetic disk, magnetic disk for heat-assisted magnetic recording, and method for manufacturing magnetic disk for heat-assisted magnetic recording
JP2007012247A (en) Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2007284339A (en) Method for producing magnetic disk glass substrate and method for producing magnetic disk
JP2007090452A (en) Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
WO2014103284A1 (en) Method for producing glass substrate for information recording medium
WO2012042735A1 (en) Manufacturing method for glass substrate for information recording medium
JP2005293840A (en) Glass disk substrate, magnetic disk, method for manufacturing glass disk substrate for magnetic disk, and method for manufacturing magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term