WO2017014230A1 - フッ化マグネシウム焼結体、フッ化マグネシウム焼結体の製造方法、中性子モデレータ及び中性子モデレータの製造方法 - Google Patents
フッ化マグネシウム焼結体、フッ化マグネシウム焼結体の製造方法、中性子モデレータ及び中性子モデレータの製造方法 Download PDFInfo
- Publication number
- WO2017014230A1 WO2017014230A1 PCT/JP2016/071263 JP2016071263W WO2017014230A1 WO 2017014230 A1 WO2017014230 A1 WO 2017014230A1 JP 2016071263 W JP2016071263 W JP 2016071263W WO 2017014230 A1 WO2017014230 A1 WO 2017014230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium fluoride
- sintered body
- fluoride sintered
- neutron moderator
- hole
- Prior art date
Links
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 title claims abstract description 165
- 229910001635 magnesium fluoride Inorganic materials 0.000 title claims abstract description 165
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 57
- 238000005245 sintering Methods 0.000 claims description 66
- 239000000843 powder Substances 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 39
- 230000002093 peripheral effect Effects 0.000 claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 238000010030 laminating Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000005304 joining Methods 0.000 claims description 2
- 238000005429 filling process Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract description 18
- 229910002804 graphite Inorganic materials 0.000 description 30
- 239000010439 graphite Substances 0.000 description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 27
- 238000010586 diagram Methods 0.000 description 24
- 238000003754 machining Methods 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000010079 rubber tapping Methods 0.000 description 5
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000010583 slow cooling Methods 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- 229910000604 Ferrochrome Inorganic materials 0.000 description 3
- 239000011796 hollow space material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-BJUDXGSMSA-N Boron-10 Chemical compound [10B] ZOXJGFHDIHLPTG-BJUDXGSMSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010038111 Recurrent cancer Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/553—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/009—Neutron capture therapy, e.g. using uranium or non-boron material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/001—Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/10—Scattering devices; Absorbing devices; Ionising radiation filters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H3/00—Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
- H05H3/06—Generating neutron beams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N2005/1085—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
- A61N2005/109—Neutrons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
- C04B2235/445—Fluoride containing anions, e.g. fluosilicate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6021—Extrusion moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6028—Shaping around a core which is removed later
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/95—Products characterised by their size, e.g. microceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/62—Forming laminates or joined articles comprising holes, channels or other types of openings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- magnesium fluoride is considered to be excellent as a neutron moderating function for decelerating to an energy region of 10 keV or less.
- the moderator which combined magnesium fluoride and polytetrafluoroethylene.
- the present invention has been made in view of the above, and includes a magnesium fluoride sintered body in which cracking or chipping is suppressed to increase the relative density, a method for manufacturing the magnesium fluoride sintered body, a neutron moderator, and a neutron moderator.
- An object is to provide a manufacturing method.
- the magnesium fluoride sintered body of the present invention is a disk-shaped magnesium fluoride sintered body, and is the center of the disk-shaped magnesium fluoride sintered body. It has a through hole penetrating the shaft, and the magnesium fluoride sintered body has a relative density of 95% or more.
- the inner wall of the through-hole has a taper that gradually varies in diameter along the central axis. This makes it possible to insert a target.
- the neutron moderator of the present invention is formed by laminating a plurality of the above-mentioned magnesium fluoride sintered bodies and a disk-shaped magnesium fluoride sintered body having no through holes.
- This neutron moderator can suppress neutrons having energy smaller than 0.5 eV by a magnesium fluoride sintered body that suppresses cracking or chipping and increases the relative density.
- the neutron moderator can suppress neutrons having an energy higher than 10 keV by a magnesium fluoride sintered body in which cracking or chipping is suppressed to increase the relative density.
- the core is preferably a nickel-based alloy.
- tip of a magnesium fluoride sintered compact can be suppressed and it can endure the sintering temperature of magnesium fluoride.
- the processing step it is preferable to taper the central through hole with respect to the magnesium fluoride sintered body having the through hole in the center. Thereby, the processing amount of inner diameter processing can be reduced.
- the disk-shaped magnesium fluoride sintered body has a tapered outer peripheral shape. Thereby, the precision of an outer periphery shape can be improved.
- FIG. 1 is an explanatory diagram for explaining a neutron source generator equipped with a neutron moderator according to this embodiment.
- FIG. 2 is a perspective view of the neutron moderator according to the present embodiment.
- FIG. 3 is a side view of FIG.
- FIG. 4 is a top view of FIG.
- FIG. 5 is a cross-sectional view taken along the line AA shown in FIG.
- FIG. 6 is a flowchart for explaining the manufacturing method of the neutron moderator according to the present embodiment.
- FIG. 7 is a schematic view schematically showing a pulse current pressurizing and sintering apparatus for producing the first sintered body.
- FIG. 8 is a side view of the first sintered body according to the present embodiment.
- FIG. 9 is a top view of FIG. FIG.
- FIG. 10 is an explanatory diagram for explaining a stacking state of the first intermediate stack that is the stack of the first sintered bodies according to the present embodiment.
- FIG. 11 is an explanatory diagram for explaining a machining process for manufacturing the first intermediate laminate according to the present embodiment.
- FIG. 12 is a schematic diagram showing a first intermediate laminate according to this embodiment.
- FIG. 13 is a schematic diagram schematically showing a pulse-current-pressure-sintering apparatus for producing the second sintered body or the third sintered body.
- FIG. 14 is a schematic view schematically showing a disk-shaped magnesium fluoride sintered body.
- FIG. 15 is a top view of FIG. FIG.
- FIG. 16 is an explanatory diagram for explaining a laminated state of a second intermediate laminated body that is a laminated body of the second sintered bodies according to the present embodiment.
- FIG. 17 is a schematic view showing a second intermediate laminate according to the present embodiment.
- FIG. 18 is an explanatory diagram for explaining a laminated state of a third intermediate laminated body that is a laminated body of the third sintered bodies according to the present embodiment.
- FIG. 19 is an explanatory diagram for explaining a machining process for manufacturing the third intermediate laminate according to the present embodiment.
- FIG. 20 is a schematic diagram showing a third intermediate laminate according to the present embodiment.
- FIG. 21 is a side view of the first ring of the first sintered body according to the modification of the present embodiment.
- FIG. 21 is a side view of the first ring of the first sintered body according to the modification of the present embodiment.
- FIG. 1 is an explanatory diagram for explaining a neutron source generator equipped with a neutron moderator according to this embodiment.
- the neutron source generator includes an accelerator 100, a beam transport 125, a bending magnet 126, and a target unit 200.
- the accelerator 100 is an apparatus for accelerating protons, and an ion source 121, a low energy beam transport system (LEBT) 122, and an acceleration tube 123 are arranged in order from the upstream side to the downstream side.
- the ion source 121 is a device that converts protons into positive ions.
- the low energy beam transport system 122 is an interface between the ion source 121 and the acceleration tube 123.
- the beam transport 125 is a beam path for guiding protons accelerated by the accelerator 100 to the target unit 200.
- the beam transport 125 is changed so that the traveling direction of the accelerated proton is guided to the target unit 200 arranged at an arbitrary position via the bending magnet 126.
- the bending magnet 126 is for bending the traveling direction of the proton accelerated by the accelerator 100.
- the beam transport 125 may guide protons accelerated by the accelerator 100 to the target unit 200 without using the bending magnet 126.
- the target unit 200 is a device that generates neutrons by the reaction between protons and the target 127.
- the target unit 200 includes a target 127, a neutron moderator 1, a neutron reflector 129, and an irradiation unit 128.
- the neutron reflector 129 covers the periphery of the target 127 and the neutron moderator 1 with lead or the like so as not to emit unnecessary neutrons outside the target unit 200.
- the irradiation unit 128 is an opening that emits neutrons decelerated by the neutron moderator 1.
- neutron capture therapy that selectively kills cancer cells has been studied and clinically implemented in reactor facilities.
- the neutron source generator shown in FIG. 1 can obtain neutrons without using a nuclear reactor.
- a substance that easily undergoes a nuclear reaction with thermal neutrons for example, a compound containing boron-10 (B-10), which is a non-radioactive isotope, is drugized and administered in advance to the human body. It is taken into only the existing region, that is, the cancer cell mixed with normal cells.
- Neutron capture therapy is a neutron source generator shown in Fig. 1, which irradiates cancer sites with neutrons (thermal neutrons and epithermal neutrons) that have little effect on the human body, and selectively suppresses only cancer cells. Is the law.
- the entire shape of the neutron moderator 1 is integrally sintered and the shape of the neutron moderator 1 is a rectangular solid, for example, a rectangular parallelepiped, if the shape of the neutron moderator 1 is cut from the rectangular solid, There are many subsequent processing steps, and the entire neutron moderator 1 may become unusable due to some cracks or chipping.
- the inventors have devised a method for sintering in a near net shape shape in which a core is provided in the center of the mold and the machining process is reduced when filling the magnesium fluoride powder material. It was. Specifically, when sintering is performed, a ring-shaped magnesium fluoride sintered body can be obtained by providing a core in the center of the sintering mold. As a result, it is possible to reduce the drilling process and time after sintering, so that the processing cost can be reduced and the influence of cracks on the sintered body due to the processing can be reduced, yield. The rate can be increased.
- FIG. 6 is a flowchart for explaining a method of manufacturing the neutron moderator according to the present embodiment.
- the method for manufacturing a sintered body according to the present embodiment was obtained by a step of manufacturing a first intermediate laminate, a step of manufacturing a second intermediate laminate, and a step of manufacturing a third intermediate laminate.
- the first intermediate laminate, the second intermediate laminate, and the third intermediate laminate are assembled into a neutron moderator.
- a magnesium fluoride powder material M is prepared and powder filling is performed by tapping.
- the sintered mold surrounded by the graphite die GD and the graphite punch GP forms a cylindrical hollow space.
- a core CR is disposed at a central position in plan view.
- the pulse energization pressure sintering apparatus 30 applies pressure between the two energization pressure shafts GG so that the filled powder is compacted and the core CR is held.
- the core CR is a cylindrical body having a predetermined diameter.
- the thermal expansion coefficient of magnesium fluoride is 8.48 ⁇ 10 ⁇ 6 / ° C. or more and 13.7 ⁇ 10 ⁇ 6 / ° C. or less.
- the thermal expansion coefficient of the core CR is equivalent to that of the magnesium fluoride sintered body.
- the thermal expansion coefficient of the magnesium fluoride sintered body is equivalent to the thermal expansion coefficient of the core CR material in the range of 8.48 ⁇ 10 ⁇ 6 / ° C. to 13.7 ⁇ 10 ⁇ 6 / ° C. Says that it is expansion rate.
- the core CR material preferably has a higher melting point than the highest temperature rise and (sintering) holding temperature of magnesium fluoride. As a result, the core CR is sintered and the sintered mold shape is maintained.
- the shrinkage rate of magnesium fluoride and the shrinkage rate of the core are approximately the same during cooling after sintering. Therefore, the stress load at the time of cooling can be reduced. Therefore, it is possible to reduce the possibility of cracking of the sintered body.
- the core CR material includes, for example, chromium (Cr) having a mass of 10% to 20% by mass, Fe having a mass of 5% to 10% by mass, and the balance being Ni.
- Cr chromium
- Fe having a mass of 5% to 10% by mass
- NiFeCr alloy The thermal expansion coefficient of the NiFeCr alloy is 13.5 ⁇ 10 ⁇ 6 / ° C., for example, and the melting point is 1400 ° C. or higher and 1500 ° C. or lower.
- the NiFeCr alloy contains unavoidable impurities.
- the material of the core CR may be, for example, an FeCr alloy (for example, JIS standard SUS405) of a ferritic Fe alloy containing chromium (Cr) in an amount of 11% by mass to 15% by mass and the balance being Fe.
- the thermal expansion coefficient of the FeCr alloy (for example, JIS standard SUS405) is, for example, 10 ⁇ 10 ⁇ 6 / ° C. or more and 13.5 ⁇ 10 ⁇ 6 / ° C. or less, and the melting point is 1500 ° C.
- Ferritic FeCr alloys contain inevitable impurities.
- the inner wall 11 ⁇ / b> I has a circular shape having a predetermined diameter in a top view, which is equidistant from a straight line passing through the central axis O.
- the thickness t with respect to the diameter Dt is more preferably 8% or more and 15% or less.
- the first sintered body ds1 is filled and sintered in a sintering mold in which the magnesium fluoride powder material M is provided with the core CR for forming the through hole H1.
- the processing man-hour of the recessed part 27H shown in FIG. 5 can be reduced, and the possibility of breakage, such as a crack by processing, can be reduced.
- the coefficient of thermal expansion of the material of the core CR is in the range of 8.48 ⁇ 10 ⁇ 6 / ° C. to 13.7 ⁇ 10 ⁇ 6 / ° C., and is 8.48 ⁇ 10 ⁇ 6 / ° C. to 13. It is more preferable that the thermal expansion coefficient is closer to 13.7 ⁇ 10 ⁇ 6 / ° C. than the intermediate thermal expansion coefficient of 7 ⁇ 10 ⁇ 6 / ° C.
- 13.7 ⁇ 10 -6 / °C closer thermal expansion coefficient than the intermediate coefficient of thermal expansion of the thermal expansion coefficient of the material of the core CR is 8.48 ⁇ 10 -6 / °C least 13.7 ⁇ 10 -6 / °C
- the shrinkage of the core CR is likely to be the same as the shrinkage of the first sintered body ds1 or faster than the shrinkage of the first sintered body ds1. For this reason, it is difficult for distortion to occur between the core CR and the inner wall 11I of the through hole H1 of the first sintered body ds1, and the probability of cracking around the inner wall 11I is reduced.
- the predetermined number of the first sintered bodies ds1 is 3, and the three first sintered bodies ds1 are not obtained (S13; No)
- the first powder filling step S11 the first powder filling step S11, The sintered body sintering step S12 is repeated.
- the predetermined number of first sintered bodies ds1 is 3, and three first sintered bodies ds1 are obtained (S13; Yes)
- the process proceeds to the next step (S14).
- the predetermined number is not limited to three.
- a plurality of first sintered bodies ds1 are overlapped and pressed in a direction parallel to the central axis O to be temporarily fixed. And The plurality of first sintered bodies ds1 are overlapped so that the inner walls 11I of the respective through holes H1 are flush with each other.
- the temporary fixing may be temporary fixing with an adhesive.
- the outer diameter shape of the first intermediate body 11 is a cylindrical shape.
- the first sintered body processing step S15 As shown in FIG. 10, as the first sintered body processing step S15, the first sintered body ds1 is overlapped with the through hole H1 of the first sintered body ds1 in a spiral manner while being rotated while inserting the drill 40. , The taper surface 1C shown in FIG. As shown in FIG. 11, since the first sintered body ds1 has the through hole H1 in advance, the amount of processing can be reduced as compared with the case where the disk-shaped sintered body is drilled from the beginning. .
- the cutting device can stop the spiral revolution just before the drill 40 of the first sintered body ds1 penetrates the other surface and leave a part of the inner wall 11I of the through hole H1 as the inner wall 11S. Cracking or chipping can be suppressed.
- the thicknesses of the disk-shaped magnesium fluoride sintered bodies ds may not be the same.
- one of the first sintered bodies ds1 that becomes the upper surface may be formed by cutting the surface 11a and cutting the surface up to the upper surface 11A to leave the protrusion 11Q around the edge of the tapered surface 1C.
- the first sintered bodies ds1 are joined in the thickness direction and temporarily stored as a first intermediate laminate completion step S16.
- the relative density of the magnesium fluoride sintered body if the relative density is lower than 95%, the sintered finish size increases, which increases the load on the sintering mold, and increases the size and labor of processing. Since it increases, there is a possibility that the risk of processing cracks and the like increases.
- FIG. 13 is a schematic diagram schematically showing a pulse-current-pressure-sintering apparatus for producing the second sintered body or the third sintered body.
- FIG. 14 is a schematic view schematically showing a disk-shaped magnesium fluoride sintered body.
- FIG. 15 is a top view of FIG.
- FIG. 16 is an explanatory diagram for explaining a laminated state of a second intermediate laminated body that is a laminated body of the second sintered bodies according to the present embodiment.
- FIG. 17 is a schematic view showing a second intermediate laminate according to the present embodiment.
- the second powder filling step S21, the second sintered body sintering step S22, and the second sintering are performed.
- the pulse energization pressure sintering apparatus 30 is the same as the pulse energization pressure sintering apparatus 30 described above except that the core shown in FIG. 7 is not provided. Also in the pulse energization pressure sintering apparatus 30 shown in FIG. 13, the same components as shown in FIG.
- magnesium fluoride powder material M is prepared and powder filling is performed by tapping in the second powder filling step S21.
- the sintered mold surrounded by the graphite die GD and the graphite punch GP forms a cylindrical hollow space.
- the predetermined number of the second sintered bodies ds2 is 4, and the four second sintered bodies ds2 are not obtained (S23; No), the second powder filling step S21 and the second The sintered body sintering step S22 is repeated.
- the predetermined number of second sintered bodies ds2 is set to 4 and four second sintered bodies ds2 are obtained (S23; Yes)
- the process proceeds to the next step (S24).
- the predetermined number is not limited to four.
- the manufacturing method of the neutron moderator according to the present embodiment prepares and prepares a plurality of disc-shaped second sintered bodies ds2 as an intermediate laminate as described above, The layers are stacked in the stacking step S24 and bonded in the thickness direction.
- a third powder filling step S31 a third sintered body sintering step S32, and an outer peripheral taper processing step.
- S34 a third sintered body stacking step S35, and a second intermediate stacked body completing step S36.
- the method for manufacturing a sintered body prepares a magnesium fluoride powder material M and performs powder filling by tapping in the third powder filling step S31.
- the sintered mold surrounded by the graphite die GD and the graphite punch GP forms a cylindrical hollow space.
- the third sintered body ds3 is a disk-shaped magnesium fluoride sintered body having a thickness t and a diameter Dt, for example.
- the thickness t with respect to the diameter Dt is more preferably 8% or more and 15% or less.
- the predetermined number of the third sintered bodies ds3 is 4, and the four third sintered bodies ds3 are not obtained (S33; No)
- the third powder filling step S31, the third The sintered body sintering step S32 is repeated.
- the predetermined number of the third sintered bodies ds3 is four and four third sintered bodies ds3 are obtained (S33; Yes)
- the process proceeds to the next step (S34).
- the predetermined number is not limited to four.
- the disc-shaped layers stacked in the third sintered body stacking step S35 are prepared.
- a stacking step S35 of the third sintered body is performed in consideration of the order of the third sintered body ds3.
- the third intermediate laminated body 31 is formed by laminating and bonding a plurality of third sintered bodies ds3 in the thickness direction so that the outer peripheral tapered surface 1T is connected in the vertical direction.
- the manufacturing method of the neutron moderator according to the present embodiment manufactures the third intermediate laminate 31 shown in FIG.
- the outer peripheral shape of the third intermediate laminate 31 is substantially a truncated cone shape having an upper surface 31A, a lower surface 31B, and a tapered surface 1T.
- the prototype of the third intermediate laminate 31 shown in FIG. 20 is made, it is temporarily stored as a completion step S36 of the third intermediate laminate.
- the upper surface 21A of the second intermediate laminate 21 and the lower surface 11B of the first intermediate laminate 11 are joined.
- the upper surface 11A of the first intermediate laminate 11 becomes the upper surface 1A of the neutron moderator 1.
- the lower surface 21B of the second intermediate laminate 21 and the upper surface 31A of the third intermediate laminate 31 are joined.
- the lower surface 31B of the third intermediate laminate 31 becomes the lower surface 1B of the neutron moderator 1.
- the second intermediate laminated body 21, the first intermediate laminated body 11, and the third intermediate laminated body 31 are stacked to become the neutron moderator 1 shown in FIGS.
- the neutron moderator 1 includes a combination of a plurality of first sintered bodies ds1, a disk-shaped second sintered body ds2 without through-holes H1, and a disk-shaped third sintered body ds3 without through-holes H1. It can be said that they are laminated. By comprising in this way, the processed body made from magnesium fluoride can be prepared easily. For this reason, the neutron moderator 1 can be manufactured easily.
- the first sintered body ds1, the second sintered body ds2, and the third sintered body ds3 are subjected to mechanical pressurization and ON-OFF direct current pulse voltage current to sinter the magnesium fluoride powder material M. It is obtained by (pulse current pressure sintering).
- pulsed current pressure sintering When pulsed current pressure sintering is performed, the relative density of the magnesium fluoride powder material M increases. For this reason, the first sintered body ds1, the second sintered body ds2, and the third sintered body ds3 become a magnesium fluoride sintered body that has little variation in the particle size distribution and suppresses the growth of the particle size, and is cracked or chipped. Is suppressed.
- the magnesium fluoride powder material M filled in the first powder filling step S11, the second powder filling step S21, and the third powder filling step S31 is a high-purity material of 99% by mass or more, and the balance May contain inevitable impurities.
- the neutron moderating performance per unit volume of the sintered body can be sufficiently exerted, and even if the relative density of the sintered finish is somewhat reduced, the dimensions of the sintered body itself can be reduced. There is an advantage that it is not necessary to design an excessively large size.
- the neutron moderator 1 can suppress the neutron which has an energy smaller than 0.5 eV.
- the magnesium fluoride sintered body ds can suppress neutrons having energy greater than 10 keV.
- a first powder filling step S11 for performing tapping filling with a magnesium fluoride powder material M on a sintered mold in which a core CR is installed at a central position in plan view;
- the magnesium fluoride powder material M filled in the first powder filling step S11 is subjected to mechanical pressurization and ON-OFF DC pulse voltage current to sinter the magnesium fluoride powder material M (pulse And a first sintered body sintering step S12 for obtaining a magnesium fluoride sintered body having a through hole H1 in the center.
- the thermal expansion coefficient of the core CR is equal to the thermal expansion coefficient of the magnesium fluoride sintered body.
- the first sintered body processing step S15 and the first sintered body processing step as a processing step for processing the magnesium fluoride sintered body having the through hole H1 in the center.
- the first intermediate laminate 11 as the magnesium fluoride processed body having the tapered surface 1C is obtained.
- the magnesium fluoride processed body having the tapered surface 1C may be one layer of the first sintered body ds1.
- the neutron moderator 1 includes a disk-shaped sintered body ds3 that has been subjected to taper machining S34 on the outer periphery by a machining process. Since the disk-shaped third sintered body ds3 is thinned, the processing accuracy of the magnesium fluoride sintered body, in which cracks or chips are likely to occur on the outer periphery, is improved.
- the neutron moderator 1 is a magnesium fluoride sintered body in which cracking or chipping is suppressed and the relative density is high, neutrons having energy less than 0.5 eV can be suppressed. Moreover, since the neutron moderator 1 is a magnesium fluoride sintered body having a high relative density in which cracking or chipping is suppressed, it is possible to suppress neutrons having energy greater than 10 keV.
- the first intermediate laminate 11, the second intermediate laminate 21, and the third intermediate laminate 31 are laminated, so that the neutron moderation performance is uniform at any laminated portion.
- FIG. 21 is a side view of the first ring of the first sintered body according to the modification of the present embodiment.
- FIG. 22 is a side view of the second ring of the first sintered body according to the modification of the present embodiment.
- FIG. 23 is a side view of the third ring of the first sintered body according to the modification of the present embodiment.
- the core arranged at the center position in the plan view of the sintered mold of FIG. 7 is changed from a cylindrical shape to a truncated cone shape.
- the core CR1 shown in FIG. 21 has a truncated cone shape with an upper surface having a circular cross section with a diameter W111 and a lower surface having a circular cross section with a diameter W112.
- the sintered first ring ds11 of the first sintered body has a through hole having a tapered surface 111C at the position of the central axis O.
- the core CR2 shown in FIG. 22 has a truncated cone shape with an upper surface having a circular cross section with a diameter W121 and a lower surface having a circular cross section with a diameter W122.
- the sintered second ring ds12 of the first sintered body has a through hole having a tapered surface 112C at the position of the central axis O.
- the sintered third ring ds13 of the first sintered body has a through hole having a tapered surface 113C at the position of the central axis O.
- FIG. 24 is an explanatory diagram for explaining a machining process for manufacturing the first intermediate laminate according to the modification of the present embodiment.
- the first intermediate stacked body 11 according to the modification of the present embodiment includes a first ring ds11, a second ring ds12, and a third ring ds13.
- the inner surface is processed so that the tapered surface 111C in FIG. 21, the tapered surface 112C in FIG. 22 and the tapered surface 113C in FIG. 23 become the tapered surface 1C shown in FIG. is doing.
- the through hole having the tapered surface was previously provided, the amount of processing can be reduced.
- FIG. 25 is a schematic diagram schematically showing a pulse-current-pressure-sintering apparatus that manufactures a modified example of the third sintered body.
- the third sintered body ds3 is a disk-shaped magnesium fluoride sintered body, and the outer peripheral surface of the magnesium fluoride sintered body is tapered.
- the outer peripheral shape of the disk-shaped magnesium fluoride sintered body has the tapered surface 1T having gradually different diameters along the central axis.
- the tapered surface 1T is formed by a sintered frame type GD.
- the frame mold GD is a ring-shaped frame mold positioned on the outer periphery of the sintered mold, and has a tapered surface GRT having an angle ⁇ on the inner diameter.
- the neutron moderator 1 includes at least one disc-shaped third sintered body ds3 in which the outer peripheral surface of the sintered third sintered body ds3 is tapered and has no through hole H1.
- Example 2 The sample was filled with a magnesium fluoride powder (manufactured by Morita Chemical Co., Ltd.) having a purity of 99% or more in a sintered mold having an inner volume of diameter ⁇ (mm) ⁇ thickness (mm), and tapped filling was performed. A cylindrical core was disposed at the center of the sintering mold.
- a magnesium fluoride powder manufactured by Morita Chemical Co., Ltd.
- the container filled with the magnesium fluoride powder is set in a pulse current pressure sintering apparatus.
- the pulse energization pressure sintering apparatus the sintering atmosphere was reduced to a vacuum atmosphere by reducing the pressure.
- the pressurizing conditions in the pulse current pressurizing and sintering apparatus were 10 MPa or more and 20 MPa or less for any sample, and a magnesium fluoride sintered body was produced.
- the samples of Examples 1 to 4 and Comparative Examples 1 to 2 are magnesium fluoride sintered bodies that are sintered by applying an ON-OFF DC pulse voltage current to the magnesium fluoride powder.
- the energization conditions of the pulse energization pressure sintering apparatus were the same in each example and each comparative example.
- FIG. 26 is a schematic diagram for explaining a temperature rise state of energization pulse energization pressure sintering.
- the temperature rise rate is adjusted in the range of 1 ° C./min (min) to 15 ° C./min so as to reach the temperature rise maximum point TA in the temperature rise time Hta shown in FIG. 26, and the holding temperature TB shown in FIG.
- the magnesium fluoride powder of each sample was heated while being held for a holding time of Htb.
- the holding temperature was heated in the range of 750 ° C. or higher and 770 ° C. or lower.
- the holding time was set in the range of 150 minutes to 180 minutes. After the elapse of the holding time Htb, each sample was cooled to room temperature over the slow cooling time Htc. The presence or absence of cracks was investigated, and samples without cracks were designated as Examples 1 to 4, and samples with cracks were designated as Comparative Examples 1 and 2.
- Graphite has a melting point of 3500 ° C. and seems to be suitable as a core.
- the thermal expansion coefficient of graphite is 5.6 ⁇ 10 ⁇ 6 / ° C. or higher and 7.1 ⁇ 10 ⁇ 6 / ° C. or higher.
- the thermal expansion coefficient of this graphite does not fall within the range of 8.48 ⁇ 10 ⁇ 6 / ° C. or more and 13.7 ⁇ 10 ⁇ 6 / ° C. or less, which is the range of the thermal expansion coefficient of magnesium fluoride. Since the thermal expansion coefficient of graphite is not equivalent to the thermal expansion coefficient of magnesium fluoride, it is considered that sintering cracks occurred after the sintering process.
- the core is a NiFeCr alloy
- the thermal expansion coefficient of the core is equivalent to the thermal expansion coefficient of magnesium fluoride, and the sintering crack after the sintering process is suppressed.
- Example 1 to Example 4 According to the knowledge of the example, with respect to Example 1 to Example 4 and Comparative Example 1 of the magnesium fluoride sintered body having a through hole in the center, rotation is performed while inserting the drill 40 into the through hole H1.
- Comparative Example 1 a sintered crack after the processing step occurred (denoted as “present” in Table 1).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- High Energy & Nuclear Physics (AREA)
- Inorganic Chemistry (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Plasma & Fusion (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Particle Accelerators (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
図1は、本実施形態に係る中性子モデレータを備える中性子源発生装置を説明する説明図である。図1に示すように、中性子源発生装置は、加速器100と、ビームトランスポート125と、ベンディング磁石126と、ターゲットユニット200とを備えている。
図2は、本実施形態に係る中性子モデレータの斜視図である。図3は、図2の側面図である。図4は、図3の上面図である。図5は、図3に示すA-A断面の断面図である。中性子モデレータ1は、図3に示すように、図1に示すターゲット127側を上面1A、照射部128側を下面1B、外周1Pを有する略円柱体である。図3に示すように、中性子モデレータ1の厚みを図1に示すターゲット127から照射部128に向かう中性子の通過方向の厚みLとした場合、中性子モデレータ1は、直径Dに対する厚みLの比(厚みL/直径D)が180%以上であることが多い。
以下、第1中間積層体を製造する工程について、図6から図10及び適宜図2から図5を用いて説明する。図7は、第1焼結体を製造するパルス通電加圧焼結装置を模式的に示す模式図である。図8は、本実施形態に係る第1焼結体の側面図である。図9は、図8の上面図である。図10は、本実施形態に係る第1焼結体の積層体である第1中間積層の積層状態を説明するための説明図である。図11は、本実施形態に係る第1中間積層体を製造する機械加工工程を説明するための説明図である。図12は、本実施形態に係る第1中間積層体を示す模式図である。
以下、第2中間積層体を製造する工程について、図6、図13から図17及び適宜図2から図5を用いて説明する。図13は、第2焼結体又は第3焼結体を製造するパルス通電加圧焼結装置を模式的に示す模式図である。図14は、円盤状のフッ化マグネシウム焼結体を模式的に示す模式図である。図15は、図14の上面図である。図16は、本実施形態に係る第2焼結体の積層体である第2中間積層体の積層状態を説明するための説明図である。図17は、本実施形態に係る第2中間積層体を示す模式図である。
以下、第3中間積層体を製造する工程について、図6、図13から図15、図18から図20及び適宜図2から図5を用いて説明する。図18は、本実施形態に係る第3焼結体の積層体である第3中間積層体の積層状態を説明するための説明図である。図19は、本実施形態に係る第3中間積層体を製造する機械加工工程を説明するための説明図である。図20は、本実施形態に係る第3中間積層体を示す模式図である。
中性子モデレータの組み立て工程S40において、第2中間積層体21の上面21Aと第1中間積層体11の下面11Bとを接合する。第1中間積層体11の上面11Aが中性子モデレータ1の上面1Aになる。また、第2中間積層体21の下面21Bと第3中間積層体31の上面31Aとを接合する。第3中間積層体31の下面31Bが中性子モデレータ1の下面1Bになる。第2中間積層体21、第1中間積層体11及び第3中間積層体31は、積層されることにより、図2から図5に示す中性子モデレータ1となる。
図21は、本実施形態の変形例に係る第1焼結体の第1リングの側面図である。図22は、本実施形態の変形例に係る第1焼結体の第2リングの側面図である。図23は、本実施形態の変形例に係る第1焼結体の第3リングの側面図である。本実施形態の変形例として、図7の焼結型の平面視で中央の位置に配置する中子を円筒形状から円錐台形状に変更している。
図25は、第3焼結体の変形例を製造するパルス通電加圧焼結装置を模式的に示す模式図である。第3焼結体ds3は、円盤状のフッ化マグネシウム焼結体であり、フッ化マグネシウム焼結体の外周面がテーパである。上述したように、この円盤状のフッ化マグネシウム焼結体の外周形状には、中心軸に沿って直径が徐々に異なるテーパ面1Tを有している。そして、第3焼結体の変形例において、テーパ面1Tが焼結型の枠型GDで成形されている。枠型GDは、焼結型の外周に位置するリング状の枠型であって、内径に角度βのテーパ面GRTを有している。これにより焼結後の第3焼結体ds3の外周面がテーパとなり、割れ又は欠けが抑制される。そして、中性子モデレータ1は、焼結後の第3焼結体ds3の外周面がテーパであって、かつ貫通孔H1のない円盤状の第3焼結体ds3を少なくとも1つ含む。テーパ面を有する枠型GDを用いることで、直接図18に示すような、外周面にテーパ面を有する第3焼結体ds3を得ることができるので、製造工程を低減できる。
試料は、純度99%以上のフッ化マグネシウム粉末(森田化学工業製)を、内容積が直径φ(mm)×厚さ(mm)となる焼結型に充填し、タッピング充填を行った。この焼結型の中央には、円筒形の中子を配置した。
11 第1中間積層体
21 第2中間積層体
31 第3中間積層体
30 パルス通電加圧焼結装置
40 ドリル
121 イオン源
122 低エネルギービーム輸送系
123 加速管
125 ビームトランスポート
126 ベンディング磁石
127 ターゲット
128 照射部
129 中性子反射体
100 加速器
200 ターゲットユニット
ds1 第1焼結体(フッ化マグネシウム焼結体)
ds2 第2焼結体(フッ化マグネシウム焼結体)
ds3 第3焼結体(フッ化マグネシウム焼結体)
E 直流パルス電源
GD グラファイトダイ
GP グラファイトパンチ
GS グラファイトスペーサー
GR 枠型
H1 貫通孔
Claims (11)
- 円盤状のフッ化マグネシウム焼結体であって、前記円盤状のフッ化マグネシウム焼結体の中心軸を貫通する貫通孔を有し、
前記フッ化マグネシウム焼結体の相対密度が95%以上であることを特徴とするフッ化マグネシウム焼結体。 - 前記貫通孔の内壁が、中心軸に沿って直径が徐々に異なるテーパである、請求項1に記載のフッ化マグネシウム焼結体。
- 請求項1又は請求項2に記載のフッ化マグネシウム焼結体と、貫通孔のない円盤状のフッ化マグネシウム焼結体とが、それぞれ複数組み合わせられて積層されている中性子モデレータ。
- 複数の前記貫通孔のない円盤状のフッ化マグネシウム焼結体のうち少なくとも1つの前記貫通孔のない円盤状のフッ化マグネシウム焼結体は、外周面がテーパである、請求項3に記載の中性子モデレータ。
- 平面視で中央の位置に中子を設置した焼結型に、フッ化マグネシウム粉末材をタッピング充填を行う粉体充填工程と、
前記粉体充填工程で充填された前記フッ化マグネシウム粉末材を、機械的な加圧とON-OFF直流パルス電圧電流とを印加し焼結するパルス通電加圧焼結を行い、中央に貫通孔を有するフッ化マグネシウム焼結体を得る焼結工程と、を含み、
前記中子の熱膨張率が、フッ化マグネシウム焼結体の熱膨張率と同等であることを特徴とするフッ化マグネシウム焼結体の製造方法。 - 前記中子が、ニッケル基合金である請求項5に記載のフッ化マグネシウム焼結体の製造方法。
- 前記粉体充填工程において、前記フッ化マグネシウム粉末材が99質量%以上の高純度材であり、残部に不可避不純物を含む、請求項5又は請求項6に記載のフッ化マグネシウム焼結体の製造方法。
- 請求項5乃至請求項7のいずれか1項に記載のフッ化マグネシウム焼結体の製造方法で製造された、前記中央に貫通孔を有するフッ化マグネシウム焼結体を複数準備する準備工程と、
前記中央に貫通孔を有するフッ化マグネシウム焼結体を加工する加工工程と、
前記加工工程後の貫通孔を有するフッ化マグネシウム加工体と、円盤状のフッ化マグネシウム焼結体とをそれぞれ複数組み合わせて積層及び接合する工程と、
を含む中性子モデレータの製造方法。 - 前記加工工程では、前記中央に貫通孔を有するフッ化マグネシウム焼結体に対して、前記中央の貫通孔をテーパ加工する、請求項8に記載の中性子モデレータの製造方法。
- 前記円盤状のフッ化マグネシウム焼結体において、外周形状がテーパ加工されている、請求項8又は請求項9に記載の中性子モデレータの製造方法。
- 前記円盤状のフッ化マグネシウム焼結体として、外周形状がテーパである焼結成形体を焼結する、請求項8又は請求項9に記載の中性子モデレータの製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017529908A JP6524391B2 (ja) | 2015-07-21 | 2016-07-20 | フッ化マグネシウム焼結体の製造方法、及び中性子モデレータの製造方法 |
KR1020187001855A KR101924308B1 (ko) | 2015-07-21 | 2016-07-20 | 불화마그네슘 소결체, 불화마그네슘 소결체의 제조 방법, 중성자 모더레이터 및 중성자 모더레이터의 제조 방법 |
EP16827790.3A EP3326984A4 (en) | 2015-07-21 | 2016-07-20 | MAGNESIUM FLUORIDE SINTERED BODY, METHOD FOR PRODUCING A MAGNESIUM FLUORIDE SINTERED BODY, NEUTRON MOTORATOR AND METHOD FOR PRODUCING A NEUTRON MOTORATOR |
AU2016294873A AU2016294873B2 (en) | 2015-07-21 | 2016-07-20 | Magnesium fluoride sintered body, method for producing magnesium fluoride sintered body, neutron moderator and method for producing neutron moderator |
CN201680042562.XA CN107848895B (zh) | 2015-07-21 | 2016-07-20 | 氟化镁烧结体、氟化镁烧结体的制造方法、中子减速剂和中子减速剂的制造方法 |
RU2018101984A RU2686785C1 (ru) | 2015-07-21 | 2016-07-20 | Спеченный компакт фторида магния, способ изготовления спеченного компакта фторида магния, замедлитель нейтронов и способ изготовления замедлителя нейтронов |
US15/874,496 US10343951B2 (en) | 2015-07-21 | 2018-01-18 | Magnesium fluoride sintered compact, method for manufacturing magnesium fluoride sintered compact, neutron moderator, and method for manufacturing neutron moderator |
HK18107714.0A HK1248207A1 (zh) | 2015-07-21 | 2018-06-14 | 氟化鎂燒結體、氟化鎂燒結體的製造方法、中子減速劑和中子減速劑的製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015144389 | 2015-07-21 | ||
JP2015-144389 | 2015-07-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/874,496 Continuation US10343951B2 (en) | 2015-07-21 | 2018-01-18 | Magnesium fluoride sintered compact, method for manufacturing magnesium fluoride sintered compact, neutron moderator, and method for manufacturing neutron moderator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017014230A1 true WO2017014230A1 (ja) | 2017-01-26 |
Family
ID=57834436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/071263 WO2017014230A1 (ja) | 2015-07-21 | 2016-07-20 | フッ化マグネシウム焼結体、フッ化マグネシウム焼結体の製造方法、中性子モデレータ及び中性子モデレータの製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10343951B2 (ja) |
EP (1) | EP3326984A4 (ja) |
JP (1) | JP6524391B2 (ja) |
KR (1) | KR101924308B1 (ja) |
CN (1) | CN107848895B (ja) |
AU (1) | AU2016294873B2 (ja) |
HK (1) | HK1248207A1 (ja) |
RU (1) | RU2686785C1 (ja) |
TW (2) | TWI637932B (ja) |
WO (1) | WO2017014230A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111494812A (zh) * | 2017-08-18 | 2020-08-07 | 南京中硼联康医疗科技有限公司 | 用于慢化中子的缓速体 |
JP2021512334A (ja) * | 2018-01-22 | 2021-05-13 | ウルトラ セーフ ニュークリア コーポレーションUltra Safe Nuclear Corporation | 原子炉システム用の複合減速材 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI614042B (zh) * | 2016-12-02 | 2018-02-11 | 財團法人工業技術研究院 | 中子束源產生器及其濾屏 |
TWI757716B (zh) * | 2019-04-15 | 2022-03-11 | 禾榮科技股份有限公司 | 微創型中子束產生裝置及微創型中子捕獲治療系統 |
US11517769B2 (en) * | 2019-07-10 | 2022-12-06 | Ricoh Company, Ltd. | Neutron beam transmission adjusting device comprising a neutron beam transmission unit including a neutron reactant, method for producing neutron beam transmission adjusting device, and neutron beam adjusting method |
KR102584101B1 (ko) * | 2021-08-13 | 2023-10-05 | 한국광기술원 | 불화물계 가압 성형체, 그를 제조하기 위한 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000086344A (ja) * | 1998-09-14 | 2000-03-28 | Kyocera Corp | 高密度フッ化物焼結体およびその製造方法並びにそれを用いた半導体製造装置用部材 |
JP2008096405A (ja) * | 2006-10-16 | 2008-04-24 | Mitsubishi Heavy Ind Ltd | 中性子モデレータ及び中性子照射方法並びに危険物質検出装置 |
JP2012206913A (ja) * | 2011-03-30 | 2012-10-25 | Ngk Insulators Ltd | フッ化マグネシウム焼結体、その製法及び半導体製造装置用部材 |
JP2013062193A (ja) * | 2011-09-14 | 2013-04-04 | Sumitomo Heavy Ind Ltd | 中性子線照射装置 |
WO2015005006A1 (ja) * | 2013-07-08 | 2015-01-15 | 国立大学法人筑波大学 | 中性子線減速材用フッ化物焼結体及びその製造方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3301781A (en) | 1964-10-27 | 1967-01-31 | Gen Motors Corp | Method of making magnesium fluoride articles |
JP2762225B2 (ja) | 1994-02-07 | 1998-06-04 | 住友石炭鉱業株式会社 | 放電プラズマ焼結方法および装置 |
US5880478A (en) * | 1997-05-19 | 1999-03-09 | Lucent Technologies Inc. | Compound refractive lenses for low energy neutrons |
JPH11139862A (ja) | 1997-11-04 | 1999-05-25 | Sumitomo Metal Mining Co Ltd | 高密度MgO焼結体及びその製造方法 |
JP4083273B2 (ja) | 1997-12-03 | 2008-04-30 | ペンタックス株式会社 | セラミックスと金属との接合方法 |
US20030112916A1 (en) | 2000-02-25 | 2003-06-19 | Keeney Franklin W. | Cold nuclear fusion under non-equilibrium conditions |
JP4617027B2 (ja) | 2001-08-03 | 2011-01-19 | 富士重工業株式会社 | 焼結体の製造方法 |
JP2004233168A (ja) | 2003-01-29 | 2004-08-19 | Japan Science & Technology Agency | 中性子捕捉療法に用いる中性子遮蔽板、およびヒト以外の哺乳動物に対して行なう中性子捕捉療法、ならびに治療用中性子照射装置 |
CN1763239A (zh) * | 2004-10-20 | 2006-04-26 | 悦城科技股份有限公司 | 蒸镀遮罩 |
JP4282586B2 (ja) | 2004-11-02 | 2009-06-24 | Spsシンテックス株式会社 | ナノ精密焼結システム |
EP1895819A1 (en) | 2006-08-29 | 2008-03-05 | Ion Beam Applications S.A. | Neutron generating device for boron neutron capture therapy |
JP5092135B2 (ja) * | 2007-03-20 | 2012-12-05 | 宮城県 | 多孔質体およびその製造方法 |
JP5112105B2 (ja) | 2008-02-18 | 2013-01-09 | 住友重機械工業株式会社 | 減速材及び減速装置 |
US8178455B2 (en) | 2009-03-26 | 2012-05-15 | Ngk Insulatores, Ltd. | Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member |
RU2436877C1 (ru) * | 2010-05-06 | 2011-12-20 | Закрытое акционерное общество (ЗАО) "ИНКРОМ" | Способ получения фторидной нанокерамики |
FR2961623B1 (fr) | 2010-06-16 | 2013-08-30 | Commissariat Energie Atomique | Joint d'interface solide a porosite ouverte pour crayon de combustible nucleaire et pour barre de commande nucleaire |
US20130087499A1 (en) | 2010-06-18 | 2013-04-11 | Nitto Denko Corporation | Spiral separation membrane element, perforated hollow tube, and method of producing the same |
US8771391B2 (en) | 2011-02-22 | 2014-07-08 | Baker Hughes Incorporated | Methods of forming polycrystalline compacts |
JP2013217874A (ja) | 2012-04-12 | 2013-10-24 | Toshiba Corp | 高速炉および高速炉の反射体集合体 |
JP6113453B2 (ja) | 2012-07-13 | 2017-04-12 | 株式会社八神製作所 | 中性子発生装置用のターゲットとその製造方法 |
WO2014084638A1 (en) | 2012-11-28 | 2014-06-05 | Samsung Electronics Co., Ltd. | Method and apparatus for performing communication in a wireless communication system |
JP6261919B2 (ja) * | 2013-09-06 | 2018-01-17 | 三菱重工機械システム株式会社 | 中性子照射装置 |
TWI532056B (zh) * | 2013-10-15 | 2016-05-01 | 財團法人工業技術研究院 | 濾屏與中子束源 |
WO2015111586A1 (ja) * | 2014-01-22 | 2015-07-30 | 日本軽金属株式会社 | フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ |
US9789335B2 (en) | 2014-09-24 | 2017-10-17 | Techno Eye Corporation | MgF2—CaF2 binary system sintered body for radiation moderator and method for producing the same |
-
2016
- 2016-07-20 AU AU2016294873A patent/AU2016294873B2/en active Active
- 2016-07-20 JP JP2017529908A patent/JP6524391B2/ja active Active
- 2016-07-20 WO PCT/JP2016/071263 patent/WO2017014230A1/ja active Application Filing
- 2016-07-20 RU RU2018101984A patent/RU2686785C1/ru active
- 2016-07-20 KR KR1020187001855A patent/KR101924308B1/ko active IP Right Grant
- 2016-07-20 EP EP16827790.3A patent/EP3326984A4/en not_active Withdrawn
- 2016-07-20 CN CN201680042562.XA patent/CN107848895B/zh active Active
- 2016-07-21 TW TW105123042A patent/TWI637932B/zh active
- 2016-07-21 TW TW107103092A patent/TWI655169B/zh active
-
2018
- 2018-01-18 US US15/874,496 patent/US10343951B2/en active Active
- 2018-06-14 HK HK18107714.0A patent/HK1248207A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000086344A (ja) * | 1998-09-14 | 2000-03-28 | Kyocera Corp | 高密度フッ化物焼結体およびその製造方法並びにそれを用いた半導体製造装置用部材 |
JP2008096405A (ja) * | 2006-10-16 | 2008-04-24 | Mitsubishi Heavy Ind Ltd | 中性子モデレータ及び中性子照射方法並びに危険物質検出装置 |
JP2012206913A (ja) * | 2011-03-30 | 2012-10-25 | Ngk Insulators Ltd | フッ化マグネシウム焼結体、その製法及び半導体製造装置用部材 |
JP2013062193A (ja) * | 2011-09-14 | 2013-04-04 | Sumitomo Heavy Ind Ltd | 中性子線照射装置 |
WO2015005006A1 (ja) * | 2013-07-08 | 2015-01-15 | 国立大学法人筑波大学 | 中性子線減速材用フッ化物焼結体及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3326984A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111494812A (zh) * | 2017-08-18 | 2020-08-07 | 南京中硼联康医疗科技有限公司 | 用于慢化中子的缓速体 |
CN111494812B (zh) * | 2017-08-18 | 2022-03-22 | 南京中硼联康医疗科技有限公司 | 用于慢化中子的缓速体 |
JP2021512334A (ja) * | 2018-01-22 | 2021-05-13 | ウルトラ セーフ ニュークリア コーポレーションUltra Safe Nuclear Corporation | 原子炉システム用の複合減速材 |
JP7287742B2 (ja) | 2018-01-22 | 2023-06-06 | ウルトラ セーフ ニュークリア コーポレーション | 原子炉システム用の複合減速材 |
Also Published As
Publication number | Publication date |
---|---|
CN107848895B (zh) | 2021-04-09 |
TWI637932B (zh) | 2018-10-11 |
EP3326984A1 (en) | 2018-05-30 |
TWI655169B (zh) | 2019-04-01 |
JPWO2017014230A1 (ja) | 2018-05-24 |
EP3326984A4 (en) | 2019-03-20 |
JP6524391B2 (ja) | 2019-06-05 |
CN107848895A (zh) | 2018-03-27 |
HK1248207A1 (zh) | 2018-10-12 |
TW201710219A (zh) | 2017-03-16 |
US20180141869A1 (en) | 2018-05-24 |
AU2016294873A1 (en) | 2018-02-15 |
US10343951B2 (en) | 2019-07-09 |
KR20180021811A (ko) | 2018-03-05 |
RU2686785C1 (ru) | 2019-04-30 |
AU2016294873B2 (en) | 2019-08-08 |
KR101924308B1 (ko) | 2018-11-30 |
TW201819342A (zh) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6085782B2 (ja) | フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ | |
WO2017014230A1 (ja) | フッ化マグネシウム焼結体、フッ化マグネシウム焼結体の製造方法、中性子モデレータ及び中性子モデレータの製造方法 | |
JP6113453B2 (ja) | 中性子発生装置用のターゲットとその製造方法 | |
CN107082642B (zh) | 中子射线减速材料用氟化物烧结体及中子射线减速材料 | |
JPWO2013146073A1 (ja) | R−t−b系焼結磁石の製造方法 | |
CN112831678B (zh) | 一种铝/氟化铝复合陶瓷中子慢化体及其制备方法 | |
JP2019075493A (ja) | 磁石接合体 | |
JP2013089377A (ja) | X線管用ターゲットおよびそれを用いたx線管、x線検査装置ならびにx線管用ターゲットの製造方法 | |
CN110053328A (zh) | 一种层状梯度结构钨基复合材料及其制备方法 | |
CN114164406B (zh) | 用于脉冲功率装置的颗粒压结式二极管阳极靶及制备方法 | |
JP2004077200A (ja) | 元素変換体およびその製造方法 | |
JP7401899B2 (ja) | 中性子発生用リチウムターゲット及びその製造方法 | |
CN114914135A (zh) | 一种耐高温复合阳极基体及其制备方法 | |
CN114682896A (zh) | 一种扩散连接制备阳极基体的方法 | |
US20200328005A1 (en) | Low density porous iridium | |
Stadlmann | Future accelerators for Secondary particle production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827790 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017529908 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018101984 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 20187001855 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016294873 Country of ref document: AU Date of ref document: 20160720 Kind code of ref document: A |