WO2017014262A1 - アナログマルチプレクサコア回路及びアナログマルチプレクサ回路 - Google Patents
アナログマルチプレクサコア回路及びアナログマルチプレクサ回路 Download PDFInfo
- Publication number
- WO2017014262A1 WO2017014262A1 PCT/JP2016/071385 JP2016071385W WO2017014262A1 WO 2017014262 A1 WO2017014262 A1 WO 2017014262A1 JP 2016071385 W JP2016071385 W JP 2016071385W WO 2017014262 A1 WO2017014262 A1 WO 2017014262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- emitter
- analog
- signal
- analog multiplexer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/60—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
- H03K17/62—Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/01—Modifications for accelerating switching
- H03K19/013—Modifications for accelerating switching in bipolar transistor circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
Definitions
- the present invention relates to an analog multiplexer core circuit and an analog multiplexer circuit having a function of time-multiplexing two or more analog signals in a highly linear manner at a high speed.
- a transmitter of such an optical communication system requires a high-speed digital / analog converter (hereinafter referred to as DAC) in order to generate a multilevel modulation signal.
- DAC digital / analog converter
- a time interleave type as shown in FIG. 19 is useful (for example, see Non-Patent Document 1).
- the time interleave type digital / analog converter shown in FIG. 19 will be described.
- the first digital / analog converter DAC1 receives an N-bit first digital signal D1 at an input terminal and a clock signal CLK (0 °) whose phase is shifted by 0 ° by the phase shifter S1. To perform analog / digital conversion and output a first analog signal A1.
- the Nbit second digital signal D2 is input to the input terminal, and the clock signal CLK (180 °) whose phase is shifted by 180 ° by the phase shifter S2 is the synchronous input terminal.
- the clock signal CLK 180 °
- the analog multiplexer core circuit M receives the first and second analog signals A1 and A2 and also receives the clock signal CLK (90 °) whose phase is shifted by 90 ° by the phase shifter S3. Multiplexing is performed to output a time multiplexed analog signal Aout.
- FIG. 20 is a timing chart showing signal waveforms in the digital / analog converter of FIG.
- A) is the analog signal A1
- B) is the analog signal A2
- c) is the time multiplexed analog signal Aout
- (d) is the clock signal CLK (0 °) input to the digital / analog converter DAC1.
- E) shows the clock signal CLK (180 °) input to the digital / analog converter DAC2, and
- (f) shows the clock signal CLK (90 °) input to the analog multiplexer core circuit M.
- the performance of the analog multiplexer core circuit M which is a component, greatly affects the overall characteristics.
- the analog multiplexer can be functionally regarded as an analog switch as shown in FIG. That is, the analog multiplexer, when the switching frequency is f SW, the switching period as 1 / f SW, by outputting selectively switching the analog signal Ain1 and analog signals Ain2 an input signal, time-multiplexed It has a function of outputting an analog signal Aout.
- FIG. 1 An example of a general analog multiplexer core circuit having the simplest configuration is shown in FIG.
- analog signals can be selectively switched and output by FET gating. That is, in this analog multiplexer core circuit, the drain of the FET gating F1 and the drain of the FET gating F2 are connected, and this connection portion is an output terminal.
- the analog signal Ain1 is input to the source, and the positive-phase clock signal CLK + is input to the gate.
- an analog signal Ain2 is input to the source, and a clock signal CLK ⁇ having a reverse phase (phase shifted by 180 ° with respect to the normal phase) is input to the gate.
- the FET gating F1 and the FET gating F2 are alternately turned on, and the time multiplexed analog signal Aout is output.
- the analog multiplexer core circuit shown in FIG. 22 is excellent in linearity but has a problem in high-speed operation. This is because the switching speed of the FET gatings F1 and F2 cannot follow the required high speed.
- multiplexer (core) circuits that handle digital signals as shown in FIG. 23 have been reported to operate at a speed of 50 Gb / s or more (see, for example, Non-Patent Document 2).
- the multiplexer core circuit shown in FIG. 23 is formed using emitter-coupled logic (Emitter Coupled Logic: ECL), and can operate at a very high speed because the transistor is operated in a non-saturated region. Details will be described below.
- ECL emitter Coupled Logic
- the reverse phase signal of the signal means a signal having the same amplitude and a phase inverted by 180 °.
- the differential pair 11 arranged in the upper stage is formed by an emitter-coupled logic in which the emitter of the transistor Q1 and the emitter of the transistor Q2 are connected.
- the collectors of the transistors Q1 and Q2 are connected to the high potential power supply VCC via collector resistors Rc1 and Rc2, respectively.
- the positive phase signal Din1 + of the first digital signal is input to the base of the transistor Q1.
- the negative phase signal Din1- of the first digital signal is input to the base of the transistor Q2.
- the differential pair 12 arranged in the upper stage is formed by an emitter-coupled logic in which the emitter of the transistor Q3 and the emitter of the transistor Q4 are connected.
- the collectors of the transistors Q3 and Q4 are connected to the high potential power supply VCC via collector resistors Rc1 and Rc2, respectively.
- the positive phase signal Din2 + of the second digital signal is input to the base of the transistor Q3.
- the negative phase signal Din2- of the second digital signal is input to the base of the transistor Q4.
- the output terminal OUT + is connected to the collectors of the transistors Q2 and Q4.
- the output terminal OUT ⁇ is connected to the collectors of the transistors Q1 and Q3.
- the differential pair 13 arranged in the lower stage is formed by an emitter-coupled logic in which the emitter of the transistor Q5 and the emitter of the transistor Q6 are connected.
- the collector of the transistor Q5 is connected to the emitters of the transistors Q1 and Q2.
- the collector of the transistor Q6 is connected to the emitters of the transistors Q3 and Q4.
- the positive-phase signal CLK + of the clock signal is input to the base of the transistor Q5.
- the anti-phase signal CLK ⁇ of the clock signal is input to the base of the transistor Q6.
- the constant current source 14 supplies a constant current I EE having a predetermined value.
- the transistor Q5 when the positive phase signal CLK + of the clock signal is high level (H) and the negative phase signal CLK ⁇ is low level (L), the transistor Q5 is turned on and the transistor Q6 is turned off. . Therefore, the first digital signals Din1 + and Din1- are amplified by the first differential pair 11 (transistors Q1 and Q2) and output from the output terminals OUT + and OUT-.
- the transistor Q6 when the positive phase signal CLK + of the clock signal is L and the negative phase signal CLK ⁇ is H, the transistor Q6 is turned on and the transistor Q5 is turned off. Therefore, the second digital signals Din2 + and Din2- are amplified by the second differential pair 12 (transistors Q3 and Q4) and output from the output terminals OUT + and OUT-.
- the first digital signals Din1 + and Din1 ⁇ and the second digital signal are output from the output terminals OUT + and OUT ⁇ .
- the signals Din2 + and Din2- are alternately output and output as time multiplexed digital signals Dout + and Dout-.
- an object of the present invention is to provide an analog multiplexer core circuit and an analog multiplexer circuit capable of time-multiplexing two or more analog signals in a highly linear manner at a high speed.
- an analog multiplexer core circuit of the present invention includes a first transistor and a second transistor, and the first transistor is connected to a high potential power supply via a first collector resistor.
- a first analog signal and a collector including a collector and a base to which a positive-phase signal of the first analog signal is input and an emitter, the second transistor being connected to a high potential power source via a second collector resistor
- a first differential pair including a base and an emitter to which a negative-phase signal is input, and a third transistor and a fourth transistor, and the third transistor is a high-potential power supply via a first collector resistor.
- a second differential pair including a base and an emitter to which a negative phase signal of the second analog signal is input, and a collector of the second transistor and a collector of the fourth transistor.
- a resistance value R EA of each of the first to fourth emitter resistors is R EA ⁇ I EE ⁇ each of the first and second analog signals. Amplitude (1) Meet.
- the analog multiplexer circuit of the present invention is connected to the above-described analog multiplexer core circuit and the first output terminal and the second output terminal of the analog multiplexer core circuit, and is a time-multiplexed analog signal output from the first output terminal. And a differential amplifier that differentially amplifies the positive phase signal and the reverse phase signal of the time-multiplexed analog signal output from the second output terminal.
- two or more analog signals can be time-multiplexed with high linearity and at high speed.
- FIG. 1 is a block diagram showing an analog multiplexer circuit that is Embodiment 1 of the present invention.
- FIG. 2 is a circuit diagram showing a first specific configuration example of the analog multiplexer core circuit.
- FIG. 3 is a characteristic diagram showing input / output characteristics of the differential pair of the analog multiplexer core circuit.
- FIG. 4 is a circuit diagram showing a second specific configuration example of the analog multiplexer core circuit.
- FIG. 5 is a circuit diagram showing a first specific configuration example of the linear differential amplifier.
- FIG. 6 is a circuit diagram illustrating a second specific configuration example of the linear differential amplifier.
- FIG. 7A is a block diagram showing an analog multiplexer circuit that is Embodiment 2 of the present invention.
- FIG. 7B is a block diagram showing a reception / control circuit of the analog multiplexer circuit.
- FIG. 8 is a circuit diagram showing a third specific configuration example of the analog multiplexer core circuit.
- FIG. 9 is a circuit diagram showing a fourth specific configuration example of the analog multiplexer core circuit.
- FIG. 10A is a block diagram illustrating an analog multiplexer circuit that is Embodiment 3 of the present invention.
- FIG. 10B is a block diagram illustrating a reception / control circuit of the analog multiplexer circuit.
- FIG. 11 is a circuit diagram showing a third specific configuration example of the linear differential amplifier.
- FIG. 12 is a circuit diagram showing a fourth specific configuration example of the linear differential amplifier.
- FIG. 10A is a block diagram illustrating an analog multiplexer circuit that is Embodiment 3 of the present invention.
- FIG. 10B is a block diagram illustrating a reception / control circuit of the analog multiplexer circuit.
- FIG. 11 is a circuit diagram showing a
- FIG. 13A is a block diagram showing an analog multiplexer circuit that is Embodiment 4 of the present invention.
- FIG. 13B is a block diagram illustrating a detection / control circuit of the analog multiplexer circuit.
- FIG. 14A is a block diagram illustrating another example of an analog multiplexer circuit that is Embodiment 4 of the present invention.
- FIG. 14B is a block diagram illustrating a detection / control circuit of the analog multiplexer circuit.
- FIG. 15 is a conceptual diagram showing an example in which analog multiplexer core circuits are cascade-connected in a tree shape.
- FIG. 16 is a block diagram illustrating an example in which analog multiplexer core circuits are cascade-connected in a tree shape.
- 17A to 17D are characteristic diagrams showing waveform response characteristics (simulation results) of a sine wave (1 GHz).
- 18A to 18D are characteristic diagrams showing characteristics of the analog multiplexer core circuit.
- FIG. 19 is a block diagram showing a time interleave type digital / analog converter.
- FIG. 20 is a timing chart showing signal waveforms in the digital / analog converter.
- FIG. 21 is a block diagram functionally showing the analog multiplexer.
- FIG. 22 is a circuit diagram showing a general analog multiplexer core circuit.
- FIG. 23 is a circuit diagram showing a multiplexer core circuit that handles digital signals.
- FIG. 1 shows a block diagram (basic system) of an analog multiplexer circuit 100 that is Embodiment 1 of the present invention.
- the analog multiplexer circuit 100 has a fully differential configuration.
- the fully differential configuration refers to a configuration in which all signals are differential signals to form a symmetric circuit.
- the analog signals Ain1 (Ain1 +, Ain1-) and Ain2 (Ain2 +, Ain2-) are input to the analog multiplexer core circuit 120 via the linear buffers 111 and 112.
- time multiplexing processing is performed according to the clock signal CLK (CLK +, CLK ⁇ ), and the time multiplexed analog signal Aout (Aout +, Aout ⁇ ) is passed through the differential amplifier 130 of one or more stages. Is output.
- the clock signal CLK is input to the analog multiplexer core circuit 120 via the buffer 140.
- a circuit having a configuration to be described later is adopted as the analog multiplexer core circuit 120, and one or more stages of differential amplifiers 130 are arranged immediately thereafter.
- FIG. 2 shows an analog multiplexer core circuit 120A as a first specific configuration example that can be used as the analog multiplexer core circuit 120 shown in FIG.
- the first differential pair 121 arranged in the upper stage is formed by emitter-coupled logic in which the emitter of the transistor (first transistor) Q1 and the emitter of the transistor (second transistor) Q2 are connected. Yes.
- the collector of the transistor Q1 is connected to the high potential power supply VCC via a collector resistor (first collector resistor) Rc1.
- the collector of the transistor Q2 is connected to the high potential power supply VCC via a collector resistance (second collector resistance) Rc2.
- the positive phase signal Ain1 + of the first analog signal Ain1 is input to the base of the transistor Q1.
- the negative phase signal Ain1- of the first analog signal Ain1 is input to the base of the transistor Q2.
- the second differential pair 122 arranged in the upper stage in the drawing is formed by emitter coupled logic in which the emitter of the transistor (third transistor) Q3 and the emitter of the transistor (fourth transistor) Q4 are connected. Yes.
- the collector of the transistor Q3 is connected to the high potential power supply VCC via the collector resistor Rc1.
- the collector of the transistor Q4 is connected to the high potential power supply VCC via the collector resistor Rc2.
- the positive phase signal Ain2 + of the second analog signal Ain2 is input to the base of the transistor Q3.
- the negative phase signal Ain2- of the second analog signal Ain2 is input to the base of the transistor Q4.
- the output terminal (first output terminal) OUT + is connected to the collectors of the transistors Q2 and Q4.
- the output terminal (second output terminal) OUT ⁇ is connected to the collectors of the transistors Q1 and Q3.
- the third differential pair 123 arranged in the lower stage in the figure is formed by emitter coupled logic in which the emitter of the transistor (fifth transistor) Q5 and the emitter of the transistor (sixth transistor) Q6 are connected. Yes.
- the collector of the transistor Q5 is connected to the emitters of the transistors Q1 and Q2.
- the collector of the transistor Q6 is connected to the emitters of the transistors Q3 and Q4.
- the positive phase signal CLK + of the clock signal CLK is input to the base of the transistor Q5.
- the reverse phase signal CLK ⁇ of the clock signal CLK is input to the base of the transistor Q6.
- the constant current source 124 supplies a constant current I EE having a predetermined value.
- an emitter resistor (first emitter resistor) R EA 1 is connected to the emitter of the transistor Q1.
- an emitter resistor (second emitter resistor) R EA 2 is connected to the emitter of the transistor Q2
- an emitter resistor (third emitter resistor) R EA 3 is connected to the emitter of the transistor Q3, and the emitter of the transistor Q4.
- the emitter resistor R EA 1 is connected between the emitter of the transistor Q1 and the collector of the transistor Q5
- the emitter resistor R EA 2 is connected between the emitter of the transistor Q2 and the collector of the transistor Q5, and the emitter of the transistor Q3.
- the emitter resistance R EA 4 is connected between the collector of the emitter and the transistor Q6 of the transistor Q4.
- the emitter resistances R EA 1 to R EA 4 are represented as representatives, they are indicated as emitter resistances R EA .
- an emitter resistor R EA satisfying the following equation (1) is provided. It is characterized by being inserted into the upper differential pair 121,122.
- the amplitude of the analog signal is a voltage amplitude. In the case of the analog signal Ain1, it is the peak value of the voltage amplitude of Ain1 + and Ain1-. In the case of the analog signal Ain2, the amplitude of the voltage amplitude of Ain2 + and Ain2-. It is a peak value.
- This equation (1) indicates that the product of the resistance value R EA of each of the emitter resistors R EA 1 to R EA 4 and the current value I EE flowing through the constant current source 124 is greater than or equal to the amplitude of each of the analog signals Ain1 and Ain2. It represents something.
- the transistor Q5 becomes conductive and the transistor Q6 is cut off. It becomes a state. Therefore, the first analog signals Ain1 + and Ain1- are amplified by the first differential pair 121 (transistors Q1 and Q2) and output from the output terminals OUT + and OUT-.
- the transistor Q6 is turned on and the transistor Q5 is turned off. Therefore, the second analog signals Ain2 + and Ain2- are amplified by the second differential pair 122 (transistors Q3 and Q4) and output from the output terminals OUT + and OUT-.
- the first analog signals Ain1 + and Ain1 ⁇ and the second analog signal are output from the output terminals OUT + and OUT ⁇ .
- Signals Ain2 + and Ain2- are alternately output and output as time-multiplexed analog signals Aout + and Aout-.
- the analog multiplexer core circuit 120A satisfies the above-described expression (1), and therefore, linearity of the response to the analog signals Ain1 and Ain2 that are input signals can be ensured.
- the reason why the linearity of the response can be ensured in this way is as follows.
- Transistors generally provide a linear response as long as the collector current increases linearly as the base current increases.
- the emitter resistor R EA When the emitter resistor R EA is connected to the emitters of the transistors Q1 to Q4 as in this configuration example, the emitter resistor R EA functions as a negative feedback resistor, and an increase in base current is suppressed. Therefore, even when analog signals Ain1 and Ain2 having relatively large amplitudes are input, a linear response is obtained by suppressing the base current.
- FIG. 3 shows input / output characteristics of the differential pairs 121 and 122.
- the horizontal axis shows the amplitude ⁇ Vin of the input analog signal, and the vertical axis shows the amplitude ⁇ Vout of the amplified analog signal.
- the solid line shows the characteristics when inserting an emitter resistor R EA, the dotted line represents the characteristic when not inserted an emitter resistor R EA. It can be seen from the characteristics of FIG. 3 that the input range in which the differential pairs 121 and 122 linearly respond is expanded.
- FIG. 4 shows an analog multiplexer core circuit 120B as a second specific configuration example that can be used as the analog multiplexer core circuit 120 shown in FIG.
- an emitter resistor (fifth emitter resistor) R EC 1 is connected to the emitter of the transistor Q5, and an emitter resistor (sixth emitter resistor) R EC 2 is connected to the emitter of the transistor Q6.
- an emitter resistor R EC 1 is connected between the emitter of the transistor Q5 and one end of the constant current source 124
- an emitter resistor R EC 2 is connected between the emitter of the transistor Q6 and one end of the constant current source 124.
- the emitter resistances R EC 1 and R EC 2 are represented as representatives, the emitter resistances R EC are indicated.
- the other parts are the same as those of the analog multiplexer core circuit 120A shown in FIG. 2 having the emitter resistor R EA .
- an emitter resistor R EA satisfying the following equation (1) is provided. while being inserted in the upper part of the differential pair 121, 122 is characterized in that the emitter resistance R EC satisfies the following formula (2) is inserted in the lower part of the differential pair 123.
- This equation (2) represents that the product of the resistance value R EC of each of the emitter resistors R EC 1 and R EC 2 and the current value I EE flowing through the constant current source 124 is smaller than the amplitude of the clock signal CLK. ing.
- the analog multiplexer core circuit 120B satisfies the above formulas (1) and (2), so that the linearity of the response to the analog signals Ain1 and Ain2 that are input signals can be ensured.
- the reason why the linearity of the response can be ensured in this way will be described below.
- the linear response input range can be expanded to ensure the linearity of the response.
- the characteristic of Expression (2) which is the reverse characteristic (characteristic that does not expand the linear response range) of the characteristic of Expression (1) (characteristic that extends the linear response range), is obtained. Therefore, a switching operation in which one of the transistor Q5 and the transistor Q6 is on and the other is off can be secured. That is, in the lower part of the differential pair 123, may be inserted an emitter resistor R EC as a negative feedback resistor to improve the stability of operation, to ensure the switching operation, that satisfies the formula (2) It shows that the resistance value should be the upper limit.
- FIG. 5 shows a linear differential amplifier 130A as a first specific configuration example that can be used as the linear differential amplifier 130 shown in FIG.
- analog multiplexer core circuit 120A shown in FIG. 2 or the analog multiplexer core circuit 120B shown in FIG. 4 By using the analog multiplexer core circuit 120A shown in FIG. 2 or the analog multiplexer core circuit 120B shown in FIG. 4, the linearity of the response to the analog input signal can be ensured. However, leakage of switching noise to the output terminal due to the clock signal CLK cannot be prevented with this. Therefore, in the analog multiplexer circuit 100 shown in FIG. 1, one or more stages of the linear differential amplifier 130A shown in FIG. 5 are provided immediately after the analog multiplexer core circuits 120A and 120B shown in FIG.
- the linear differential amplifier 130A is connected to the output terminals OUT + and OUT ⁇ of the analog multiplexer core circuit 120A (or 120B), and is output from the positive phase signal Aout + of the time multiplexed analog signal output from the output terminal OUT + and the output terminal OUT ⁇ .
- the differential phase signal Aout ⁇ of the time-multiplexed analog signal is differentially amplified.
- the linear differential amplifier 130A includes an upstream emitter follower circuit (level shifter) 131 for shifting the direct current (DC) voltage level of the time multiplexed analog signals Aout + and Aout ⁇ , and a differential pair (fourth differential pair). And a differential amplifier circuit section in the subsequent stage, which includes 132 as a main member.
- the emitter follower circuit unit 131 includes two types of emitter follower circuits.
- the first-system emitter follower circuit includes a transistor (11th transistor) Q11 having a collector connected to the high potential power supply VCC and a base connected to an input terminal IN +, and one end connected to the emitter of the transistor Q11.
- a constant current source (first constant current source) 131a having the other end connected to the low potential power source VEE.
- the output terminal OUT + of the analog multiplexer core circuit 120A (or 120B) is connected to the input terminal IN +, and the time multiplexed analog signal Aout + is input from the output terminal OUT +.
- the constant current source 131a supplies a constant current I EE2 having a predetermined constant value.
- the second-system emitter follower circuit has a transistor (twelfth transistor) Q12 having a collector connected to the high potential power supply VCC and a base connected to the input terminal IN-, and one end connected to the emitter of the transistor Q12. And a constant current source (second constant current source) 131b whose other end is connected to the low potential power source VEE.
- the output terminal OUT ⁇ of the analog multiplexer core circuit 120A (or 120B) is connected to the input terminal IN ⁇ , and the time multiplexed analog signal Aout ⁇ is input from the output terminal OUT ⁇ .
- the constant current source 131b supplies a constant current I EE2 having a predetermined constant value.
- the differential pair 132 of the differential amplifier circuit section is formed by an emitter-coupled logic in which the emitter of a transistor (seventh transistor) Q13 and the emitter of a transistor (eighth transistor) Q14 are connected.
- the collector of the transistor Q13 is connected to the high potential power supply VCC via a collector resistance (third collector resistance) Rcc.
- the base of the transistor Q13 is connected to the emitter of the transistor Q11 constituting the first system emitter follower circuit. That is, the time multiplexed analog signal Aout + is input to the base of the transistor Q13 via the transistor Q11.
- the collector of the transistor Q14 is connected to the high potential power supply VCC via a collector resistance (fourth collector resistance) Rcc.
- the base of the transistor Q14 is connected to the emitter of the transistor Q12 constituting the second-system emitter follower circuit. That is, the time multiplexed analog signal Aout ⁇ is input to the base of the transistor Q14 via the transistor Q12.
- the output terminal (third output terminal) OUT + is connected to the collector of the transistor Q14.
- the output terminal (fourth output terminal) OUT ⁇ is connected to the collector of the transistor Q13.
- One end of the constant current source (second current reduction) 133 is connected to the emitters of the transistors Q13 and Q14.
- the other end of the constant current source 133 is connected to the low voltage power supply VEE.
- the constant current source 133 flows a constant current I EE1 having a predetermined constant value.
- the emitter of the transistor Q13 is connected to the emitter resistor (the emitter resistor of the first 7) R E, to the emitter of the transistor Q14 is connected to the emitter resistor (emitter resistor of the first 8) R E. That is, between the end of the emitter and the constant current source 133 of the transistor Q13 is connected to the emitter resistors R E, between the end of the emitter and the constant current source 133 of the transistor Q14 is connected to the emitter resistor R E Yes.
- This differential amplifier circuit section is also to ensure the linearity of the response, it is characterized in that it comprises an emitter resistor R E satisfying the formula (3).
- Equation (3) indicates that the product of the resistance value R E of each emitter resistor R E and the current value I EE1 flowing through the constant current source 133 is greater than or equal to the amplitude of the time multiplexed analog signals Aout + and Aout ⁇ . ing.
- the technical meaning of Equation (3) is the same as that of Equation (1), and the linear response input range is expanded to ensure the linearity of the response.
- the time multiplexed analog signals Aout + and Aout ⁇ output from the analog multiplexer core circuit 120A (or 120B) are input to the input terminals IN + and IN ⁇ , respectively, and the DC level is set by the emitter follower circuit 131. Adjusted.
- the time multiplexed analog signals Aout + and Aout ⁇ whose DC level is adjusted are differentially amplified by the differential pair 132 (transistors Q13 and Q14).
- the amplified time-multiplexed analog signals Aout + and Aout ⁇ are output from the output terminals OUT + and OUT ⁇ .
- the emitter follower circuit unit 131 is not an essential configuration.
- the bases of the transistors Q13 and Q14 constituting the differential pair 132 of the differential amplifier circuit unit are directly connected to the input terminals IN + and IN ⁇ , respectively. Become.
- the input terminals IN + and IN ⁇ of the subsequent linear differential amplifier 130A are connected to the output terminals OUT + and IN + of the preceding linear differential amplifier 130A, respectively.
- OUT- is connected to each other.
- FIG. 6 shows a linear differential amplifier 130B, which is a second specific configuration example, that can be used as the linear differential amplifier 130 shown in FIG.
- This linear differential amplifier 130B is an improvement of the linear differential amplifier 130A shown in FIG. Therefore, only the portion added to the linear differential amplifier 130A in the linear differential amplifier 130B will be described.
- a transistor Q11a having a collector and a base connected is added.
- the collector and base of the transistor Q11a are connected to the emitter of the transistor Q11, and the emitter of the transistor Q11a is connected to one end of the constant current source 131a.
- a transistor Q12a having a collector and a base connected is added to the second-system emitter follower circuit.
- the collector and base of the transistor Q12a are connected to the emitter of the transistor Q12, and the emitter of the transistor Q12a is connected to one end of the constant current source 131b.
- the transistors Q11a and Q12a function as first and second diodes and are used to lower the DC shift level.
- a transistor (9th transistor) Q15 is cascode-connected to the transistor Q13
- a transistor (tenth transistor) Q16 is cascode-connected to the transistor Q14.
- the emitters of the transistors Q15 and Q16 are connected to the collectors of the transistors Q13 and Q14, respectively, and the collectors of the transistors Q15 and Q16 are connected to the output terminals OUT ⁇ and OUT +, respectively.
- the bases of the transistors Q15 and Q16 are connected to the bias voltage Vbias and are grounded in terms of alternating current. That is, the transistors Q15 and Q16 are grounded at the base.
- linear differential amplifier 130B Other parts of the linear differential amplifier 130B are the same as those of the linear differential amplifier 130A shown in FIG.
- the linear differential amplifiers 130A and 130B shown in FIGS. 5 and 6 can also be applied to the linear buffers 111 and 112 (see FIG. 1) arranged at the first stage of the analog input signal in order to achieve impedance matching. . Further, the linear differential amplifiers 130A and 130B shown in FIG. 5 and FIG. 6 can be applied to the clock signal buffer 140 (see FIG. 1). However, the clock signal buffer 140 does not need to be particularly concerned with linearity, and does not necessarily satisfy the expression (3).
- FIG. 7A shows an analog multiplexer circuit 100A according to the second embodiment that is configured to receive an external signal and adjust the linear response range.
- amplitude information J indicating the amplitude values of the input analog signals Ain1 and Ain2 is input from the outside.
- analog multiplexer core circuit 120 of the analog multiplexer circuit 100A analog multiplexer core circuits 120C and 120D shown in FIGS. 8 and 9 described later are employed. Then, the amplitude information J is input to the reception / control circuit 201.
- the reception / control circuit 201 receives the amplitude information J and controls the amplitudes of the analog signals Ain1 and Ain2 so as to satisfy the above-described equation (1).
- the reception / control circuit 201 is formed of a voltage-voltage conversion circuit, for example.
- An analog multiplexer core circuit 120C shown in FIG. 8 is obtained by changing the constant current source 124 used in the analog multiplexer core circuit 120A shown in FIG. 2 to a variable current source 124a.
- An analog multiplexer core circuit 120D shown in FIG. 9 is obtained by changing the constant current source 124 used in the analog multiplexer core circuit 120B shown in FIG. 4 to a variable current source 124a.
- the reception / control circuit 201 includes an amplitude information reception circuit 201a and a current source control circuit 201b.
- the amplitude information receiving circuit 201a is a circuit that receives amplitude information J indicating the amplitude values of the analog signals Ain1 and Ain2 input from the outside and outputs the amplitude information J to the current source control circuit 201b.
- the current source control circuit 201b generates a current I EE that satisfies the above-described formula (1) or formula (1) and formula (2) according to the amplitude values of the analog signals Ain1 and Ain2 indicated by the amplitude information J. It is a circuit that flows through the variable current sources 124a and 124a of 120C and 120D.
- the reception / control circuit 201 controls the values of the currents flowing through the variable current sources 124a and 124a of the multiplexer core circuits 120C and 120D.
- the current value I EE is set so as to satisfy the expression (1) or the expressions (1) and (2) with respect to the amplitude of the analog signal. By performing such control, the linear response range is adjusted.
- Example 3 In the analog multiplexer circuit 100B according to the third embodiment illustrated in FIG. 10A, almost all the configuration blocks have variable current sources, and the linear response amplitude range can be adjusted. That is, as the analog multiplexer core circuit 120, the above-described multiplexer core circuits 120C and 120D shown in FIG. 8 or FIG. 9 are used. As the linear differential amplifier 130 and the linear buffers 111 and 112, linear differential amplifiers 130C and 130D shown in FIGS. 11 and 12 described later are used.
- a linear differential amplifier 130C shown in FIG. 11 is obtained by changing the constant current source 133 used in the linear differential amplifier 130A shown in FIG. 5 to a variable current source 133a.
- a linear differential amplifier 130D shown in FIG. 12 is obtained by changing the constant current source 133 used in the linear differential amplifier 130B shown in FIG. 6 to a variable current source 133a.
- the reception / control circuit 202 includes an amplitude information reception circuit 202a and a current source control circuit 202b.
- the amplitude information receiving circuit 202a is the same circuit as the amplitude information receiving circuit 201a of FIG. 7B.
- the current source control circuit 202b generates a current I EE that satisfies the above-described equation (1) or equations (1) and (2) according to the amplitude values of the analog signals Ain1 and Ain2 indicated by the amplitude information J.
- the reception / control circuit 202 controls and inputs the current values flowing through the variable current sources 124a and 124a of the multiplexer core circuits 120C and 120D.
- the current value I EE is set so as to satisfy the expression (1) or the expressions (1) and (2) with respect to the amplitude of the analog signal.
- the reception / control circuit 202 controls the current value flowing through the variable current source 133a of the linear differential amplifier 130 and the linear buffers 111 and 112,
- the current value I EE1 is set so as to satisfy the expression (3) with respect to the amplitude of the analog signal to be processed .
- control signal is not supplied to the clock signal buffer 140 in which linearity is not important.
- the clock buffer 140 may be controlled to have a variable current source.
- FIGS. 13A and 14A show analog multiplexer circuits 100C and 100D that are Embodiment 4 that automatically detect the amplitudes of input analog signals Ain1 and Ain2 and adjust the variable current source.
- An analog multiplexer circuit 100C illustrated in FIG. 13A is obtained by replacing the reception / control circuit 201 used in the analog multiplexer circuit 100A illustrated in FIG. 7A with a detection / control circuit 203.
- the detection / control circuit 203 includes an amplitude detection circuit 203a and a current source control circuit 203b.
- the amplitude detection circuit 203a is formed of an IC, detects amplitude values (peak values) of the analog signals Ain1 and Ain2 input to the analog multiplexer circuit 100C, and supplies amplitude information J indicating the amplitude values to the current source control circuit 203b. It is a circuit to output.
- the current source control circuit 203b is the same circuit as the current source control circuit 201b in FIG. 7B. That is, the detection / control circuit 203 detects the amplitude values (peak values) of the input analog signals Ain1 and Ain2 inside the IC, and the variable current source 124a (in the analog multiplexer core circuit 120) according to the detected values. Adjust the current I EE to be passed through (see FIGS. 8 and 9).
- An analog multiplexer circuit 100D shown in FIG. 14A is obtained by replacing the reception / control circuit 202 employed in the analog multiplexer circuit 100B shown in FIG. 10A with a detection / control circuit 204.
- the detection / control circuit 204 includes an amplitude detection circuit 204a and a current source control circuit 204b.
- the amplitude detection circuit 204a is the same circuit as the amplitude detection circuit 204a in FIG. 13B.
- the current source control circuit 204b is the same circuit as the current source control circuit 202b in FIG. 10B.
- the detection / control circuit 204 detects the amplitude values (peak values) of the input analog signals Ain1 and Ain2 inside the IC, and according to the detected values, the variable current source 124a ( 8, the adjusting the current I EE flowing in FIG. 9), the variable current source 133a (FIG. 11 of the linear differential amplifier 130 and the linear buffer 111 to adjust the current I EE1 flowing in FIG. 12).
- the linear response range can be adaptively adjusted automatically.
- the analog multiplexer circuits 100, 100A, 100B, 100C, and 100D described above are circuits that time-multiplex two analog signals into one signal.
- the above-described analog multiplexer (core) circuits may be cascaded in a tree shape as shown in FIGS.
- the analog multiplexer at the subsequent stage needs to operate at a cycle twice that of the analog multiplexer at the previous stage, so that the clock frequency input to the subsequent stage is twice the clock frequency input to the preceding stage.
- the analog multiplexer core circuits M1, M2, and M3 are the analog multiplexer core circuits 120, 120A, 120B, 120C, and 120D (or the analog multiplexer circuits 100, 100A, 120A, and 120D including the analog multiplexer core circuits 120, 120A, 120B, 120C, and 120D). 100B, 100C, 100D).
- two analog multiplexer core circuits M1 and M2 are arranged in the first stage, and one analog multiplexer core circuit M3 is arranged in the second stage.
- the analog multiplexer core circuit (first analog multiplexer core circuit) M1 includes two analog signals Ain1 and Ain2 and a clock signal (first clock signal) CLK1 (signal whose phase is shifted by 0 ° by the phase shifter S11, for example. (Cycle: 1 / f SW ) is input.
- a time multiplexed analog signal Aout1 is output from the analog multiplexer core circuit M1.
- the analog multiplexer core circuit (second analog multiplexer core circuit) M2 includes two analog signals Ain3 and Ain4 different from the two analog signals Ain1 and Ain2, and a clock signal whose phase is shifted by, for example, 180 ° by the phase shifter S12. CLK1 (signal cycle: 1 / f SW ) is input. Note that the analog multiplexer core circuit M2 may be input with the clock signal CLK1 having a phase different from that of the analog multiplexer core circuit M1. A time multiplexed analog signal Aout2 is output from the analog multiplexer core circuit M2.
- the analog multiplexer core circuit (third analog multiplexer core circuit) M3 includes two time-multiplexed analog signals Aout1 and Aout2 and a clock signal (second clock signal) CLK2 (signal cycle) whose phase is shifted by the phase shifter S13. : 1 / 2f SW ) is input.
- the analog multiplexer core circuit M3 outputs a time multiplexed analog signal Aout3.
- the time-multiplexed analog signal Aout3 becomes a signal obtained by time-multiplexing four analog signals Ain1, Ain2, Ain3, and Ain4.
- FIGS. 17A to 17D show waveform response characteristics (simulation results) when a sine wave (1 GHz) is input as an input signal when Expression (1) is satisfied or not satisfied. That is, FIG. 17A is a time waveform characteristic diagram when Expression (1) is satisfied, FIG. 17B is a spectrum characteristic diagram when Expression (1) is satisfied, and FIG. 17C is a time waveform characteristic diagram when Expression (1) is not satisfied. FIG. 17D shows the spectral characteristics when Expression (1) is not satisfied. As can be confirmed from these waveforms, when the expression (1) is not satisfied, the output waveform is largely distorted from the sine wave, but in the configuration satisfying the expression (1), the waveform distortion is small. This can also be confirmed from the fact that harmonic distortion can be suppressed on the spectrum.
- FIG. 18A and FIG. 18B show waveforms that are directly output without adding anything after the analog multiplexer core circuit.
- FIG. 18B is an enlarged view of the time axis of FIG. 18A.
- FIG. 18C and FIG. 18D show output waveforms in the configuration of the above-described embodiment (a configuration in which a multi-stage differential amplifier is arranged at the subsequent stage of the analog multiplexer core circuit).
- FIG. 18D is an enlarged view of the time axis of FIG. 18C.
- the switching noise can be reduced by the configuration of the embodiment, and the waveform quality is greatly improved.
- analog multiplexer circuit or the analog multiplexer core circuit of the above-described embodiment, two or more analog signals can be time-multiplexed with low noise and high linearity at high speed.
- the present invention can be applied to an analog multiplexer core circuit and an analog multiplexer circuit including the analog multiplexer core circuit.
- Analog multiplexer circuit 111 112 Linear buffer 120, 120A, 120B, 120C, 120D Analog multiplexer core circuit 121, 122, 123 Differential pair 130, 130A, 130B, 130C, 130D
- Linear differential amplifier 140 buffers 201 and 202 receiving and control circuits 203 and 204 detect and control circuit RC1, RC2 collector resistor R EA 1, R EA 2, R EA 3, R EA 4 emitter resistor R EC 1, R EC 2 emitter resistor Ain1, Ain1 +, Ain1- first analog signal Ain2, Ain2 +, Ain2- second analog signal Aout, Aout +, Aout- time multiplexed analog signal CLK, CLK +, CLK- clock signal VCC high potential power supply VEE low potential power supply IN +, IN- Input terminal OUT +, OUT- output terminals
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Electronic Switches (AREA)
- Amplifiers (AREA)
Abstract
Description
REA・IEE ≧ 第1および第2のアナログ信号の各々の振幅 …(1)
を満たしている。
図1に本発明の実施例1であるアナログマルチプレクサ回路100のブロック図(基本系)を示す。アナログマルチプレクサ回路100は全差動の構成をとる。全差動の構成とは、全ての信号を差動信号にして対称回路になっている構成をいう。アナログ信号Ain1(Ain1+,Ain1-),Ain2(Ain2+,Ain2-)は、線形バッファ111,112を介してアナログマルチプレクサコア回路120に入力される。アナログマルチプレクサコア回路120では、クロック信号CLK(CLK+,CLK-)に応じた時間多重化処理がなされ、1段若しくは複数段の差動アンプ130を介して時間多重アナログ信号Aout(Aout+,Aout-)が出力される。なお、クロック信号CLKはバッファ140を介してアナログマルチプレクサコア回路120に入力される。
図1に示すアナログマルチプレクサコア回路120として用いることができる、第1の具体的構成例であるアナログマルチプレクサコア回路120Aを図2に示す。
図1に示すアナログマルチプレクサコア回路120として用いることができる、第2の具体的構成例であるアナログマルチプレクサコア回路120Bを図4に示す。
図1に示す線形差動アンプ130として用いることができる、第1の具体的構成例である線形差動アンプ130Aを図5に示す。
図1に示す線形差動アンプ130として用いることができる、第2の具体的構成例である線形差動アンプ130Bを図6に示す。この線形差動アンプ130Bは、図5に示す線形差動アンプ130Aを改良したものである。したがって、線形差動アンプ130Bのうち、線形差動アンプ130Aに対して追加した部分についてのみ説明する。
次に、本発明のアナログマルチプレクサ回路の拡張技術を実施例2として述べる。上記に述べた実施例1であるアナログマルチプレクサ回路100は、その動作の線形性を確保するために入力されるアナログ信号の振幅が設計の段階で既知である必要がある。しかしながら、取り扱うアナログ入力振幅(DACからの信号振幅)はアプリケーションによって異なるので、汎用性向上の観点からは、後からある程度対応可能な振幅レンジを調整できることが好ましい。さらには、適応的にそれを自動調整できると、ユーザビリティがさらに向上する。それを可能とする回路構成を実施例2として以下に説明する。
図10Aに示す実施例3のアナログマルチプレクサ回路100Bは、略すべての構成ブロックが可変電流源を有し、その線形応答振幅レンジが調整可能な構成とされている。即ち、アナログマルチプレクサコア回路120としては、前述した図8または図9に示すマルチプレクサコア回路120C,120Dが用いられている。線形差動アンプ130及び線形バッファ111,112としては、後述する図11や図12に示す線形差動アンプ130C,130Dが用いられている。
図13A及び図14Aに、入力されるアナログ信号Ain1,Ain2の振幅を自動で検出して可変電流源を調整する、実施例4であるアナログマルチプレクサ回路100C,100Dを示す。
前述したアナログマルチプレクサ回路100,100A,100B,100C,100Dは全て2つのアナログ信号を1つの信号に時間多重する回路である。これを2つ以上の信号に拡張するには、前述したアナログマルチプレクサ(コア)回路を図15、図16に示すようにツリー状に縦続接続すればよい。ただし、このとき後段のアナログマルチプレクサはその前段のアナログマルチプレクサの2倍の周期で動作する必要があるため、後段に入力されるクロック周波数はその前段に入力されるクロック周波数の2倍となる。
前述した実施例の効果について説明する。アナログマルチプレクサコア回路120,120A,120B,120C,120Dについては、式(1)を満たす構成とすることで、その線形性が大幅に改善される。その効果(シミュレーション結果)を図17A~図17Dに示す。
111,112 線形バッファ
120,120A,120B,120C,120D アナログマルチプレクサコア回路
121,122,123 差動対
130,130A,130B,130C,130D 線形差動アンプ
140 バッファ
201,202 受信・制御回路
203,204 検出・制御回路
RC1,RC2 コレクタ抵抗
REA1,REA2,REA3,REA4 エミッタ抵抗
REC1,REC2 エミッタ抵抗
Ain1,Ain1+,Ain1- 第1のアナログ信号
Ain2,Ain2+,Ain2- 第2のアナログ信号
Aout,Aout+,Aout- 時間多重アナログ信号
CLK,CLK+,CLK- クロック信号
VCC 高電位電源
VEE 低電位電源
IN+,IN- 入力端子
OUT+,OUT- 出力端子
Claims (15)
- 第1のトランジスタと第2のトランジスタを含み、前記第1のトランジスタが第1のコレクタ抵抗を介して高電位電源に接続されたコレクタと第1のアナログ信号の正相信号が入力されるベースとエミッタとを含み、前記第2のトランジスタが第2のコレクタ抵抗を介して前記高電位電源に接続されたコレクタと前記第1のアナログ信号の逆相信号が入力されるベースとエミッタとを含む第1の差動対と、
第3のトランジスタと第4のトランジスタを含み、前記第3のトランジスタが前記第1のコレクタ抵抗を介して前記高電位電源に接続されたコレクタと第2のアナログ信号の正相信号が入力されるベースとエミッタとを含み、前記第4のトランジスタが前記第2のコレクタ抵抗を介して前記高電位電源に接続されたコレクタと前記第2のアナログ信号の逆相信号が入力されるベースとエミッタとを含む第2の差動対と、
前記第2のトランジスタのコレクタ及び前記第4のトランジスタのコレクタに接続された第1の出力端子と、
前記第1のトランジスタのコレクタ及び前記第3のトランジスタのコレクタに接続された第2の出力端子と、
第5のトランジスタと第6のトランジスタを含み、前記第5のトランジスタがコレクタとクロック信号の正相信号が入力されるベースとエミッタとを含み、前記第6のトランジスタがコレクタと前記クロック信号の逆相信号が入力されるベースとエミッタとを含む第3の差動対と、
前記第5のトランジスタのエミッタ及び第6のトランジスタのエミッタに接続された一端と低電位電源に接続された他端とを含み、電流値IEEの電流を流す第1の電流源と、
前記第1のトランジスタのエミッタと前記第5のトランジスタのコレクタとの間に接続された第1のエミッタ抵抗と、
前記第2のトランジスタのエミッタと前記第5のトランジスタのコレクタとの間に接続された第2のエミッタ抵抗と、
前記第3のトランジスタのエミッタと前記第6のトランジスタのコレクタとの間に接続された第3のエミッタ抵抗と、
前記第4のトランジスタのエミッタと前記第6のトランジスタのコレクタとの間に接続された第4のエミッタ抵抗とを備え、
前記第1のエミッタ抵抗から前記第4のエミッタ抵抗の各々の抵抗値REAが
REA・IEE ≧ 前記第1および第2のアナログ信号の各々の振幅 …(1)
を満たすことを特徴とするアナログマルチプレクサコア回路。 - 請求項1に記載のアナログマルチプレクサコア回路において、
前記第5のトランジスタのエミッタと前記第1の電流源の一端との間に接続された第5のエミッタ抵抗と、
前記第6のトランジスタのエミッタと前記第1の電流源の一端との間に接続された第6のエミッタ抵抗とをさらに備え、
前記第5のエミッタ抵抗及び前記第6のエミッタ抵抗の各々の抵抗値RECが
REC・IEE < 前記クロック信号の振幅 …(2)
を満たすことを特徴とするアナログマルチプレクサコア回路。 - 請求項1または請求項2に記載のアナログマルチプレクサコア回路において、
前記第1の電流源は、定電流源であることを特徴とするアナログマルチプレクサコア回路。 - 請求項1または請求項2に記載のアナログマルチプレクサコア回路において、
前記第1の電流源は、可変電流源であることを特徴とするアナログマルチプレクサコア回路。 - 請求項1から請求項4のいずれか一項に記載のアナログマルチプレクサコア回路と、
前記アナログマルチプレクサコア回路の前記第1の出力端子及び前記第2の出力端子に接続され、前記第1の出力端子から出力される時間多重アナログ信号の正相信号と前記第2の出力端子から出力される前記時間多重アナログ信号の逆相信号とを差動増幅する差動アンプと
を備えることを特徴とするアナログマルチプレクサ回路。 - 請求項5に記載のアナログマルチプレクサ回路において、
前記差動アンプは、
第7のトランジスタと第8のトランジスタを含み、前記第7のトランジスタが第3のコレクタ抵抗を介して前記高電位電源に接続されたコレクタと前記時間多重アナログ信号の正相信号が入力されるベースとエミッタとを含み、前記第8のトランジスタが第4のコレクタ抵抗を介して前記高電位電源に接続されたコレクタと前記時間多重アナログ信号の逆相信号が入力されるベースとエミッタとを含む第4の差動対と、
前記第8のトランジスタのコレクタに接続された第3の出力端子と、
前記第7のトランジスタのコレクタに接続された第4の出力端子と、
一端と前記低電位電源に接続された他端とを含み、電流値IEE1の電流を流す第2の電流源と、
前記第7のトランジスタのエミッタと前記第2の電流源の一端との間に接続された第7のエミッタ抵抗と、
前記第8のトランジスタのエミッタと前記第2の電流源の一端との間に接続された第8のエミッタ抵抗とを備え、
前記第7のエミッタ抵抗及び前記第8のエミッタ抵抗の各々の抵抗値REが
RE・IEE1 ≧ 前記時間多重アナログ信号の振幅 …(3)
を満たすことを特徴とするアナログマルチプレクサ回路。 - 請求項4に記載のアナログマルチプレクサコア回路と、
前記アナログマルチプレクサコア回路の前記第1の出力端子及び前記第2の出力端子に接続され、前記第1の出力端子から出力される時間多重アナログ信号の正相信号と前記第2の出力端子から出力される前記時間多重アナログ信号の逆相信号とを差動増幅する差動アンプと、
前記第1のアナログ信号及び前記第2のアナログ信号の振幅に応じて、式(1)を満たす電流を前記可変電流源に流させる制御回路と
を備えることを特徴とするアナログマルチプレクサ回路。 - 請求項7に記載のアナログマルチプレクサ回路において、
前記第1のアナログ信号及び前記第2のアナログ信号の振幅値を示す振幅情報を受信し、この振幅情報を前記制御回路に出力する受信回路をさらに備えることを特徴とするアナログマルチプレクサ回路。 - 請求項7に記載のアナログマルチプレクサ回路において、
前記第1のアナログ信号及び前記第2のアナログ信号の振幅値を検出し、この振幅値を示す振幅情報を前記制御回路に出力する検出回路をさらに備えることを特徴とするアナログマルチプレクサ回路。 - 請求項7から請求項9のいずれか1項に記載のアナログマルチプレクサ回路において、
前記差動アンプは、
第7のトランジスタと第8のトランジスタを含み、前記第7のトランジスタが第3のコレクタ抵抗を介して前記高電位電源に接続されたコレクタと前記時間多重アナログ信号の正相信号が入力されるベースとエミッタとを含み、前記第8のトランジスタが第4のコレクタ抵抗を介して前記高電位電源に接続されたコレクタと前記時間多重アナログ信号の逆相信号が入力されるベースとエミッタとを含む第4の差動対と、
前記第8のトランジスタのコレクタに接続された第3の出力端子と、
前記第7のトランジスタのコレクタに接続された第4の出力端子と、
一端と前記低電位電源に接続された他端とを含み、電流値IEE1の電流を流す第2の電流源と、
前記第7のトランジスタのエミッタと前記第2の電流源の一端との間に接続された第7のエミッタ抵抗と、
前記第8のトランジスタのエミッタと前記第2の電流源の一端との間に接続された第8のエミッタ抵抗とを備え、
前記第2の電流源は、可変電流源であり、
前記制御回路は、前記第1のアナログ信号及び前記第2のアナログ信号の振幅に応じて、前記第7のエミッタ抵抗及び前記第8のエミッタ抵抗の各々の抵抗値REが
RE・IEE1 ≧ 前記時間多重アナログ信号の振幅 …(3)
を満たすように電流を前記第2の電流源に流させることを特徴とするアナログマルチプレクサ回路。 - 請求項6または請求項10に記載のアナログマルチプレクサ回路において、
前記第7のトランジスタにカスコード接続された第9のトランジスタと、
前記第8のトランジスタにカスコード接続された第10のトランジスタと
をさらに備えることを特徴とするアナログマルチプレクサ回路。 - 請求項6、請求項10及び請求項11のいずれか一つに記載のアナログマルチプレクサ回路において、
前記差動アンプは、前記時間多重アナログ信号の正相信号及び前記時間多重アナログ信号の逆相信号の直流電圧レベルをシフトさせるレベルシフタをさらに含むことを特徴とするアナログマルチプレクサ回路。 - 請求項12に記載のアナログマルチプレクサ回路において、
前記レベルシフタは、
前記高電位電源に接続されたコレクタと前記時間多重アナログ信号の正相信号が入力されるベースとエミッタとを含む第11のトランジスタと、
前記第11のトランジスタのエミッタに接続された一端と前記低電位電源に接続された他端とを含む第1の定電流源と、
前記高電位電源に接続されたコレクタと前記時間多重アナログ信号の逆相信号が入力されるベースとエミッタとを含む第12のトランジスタと、
前記第12のトランジスタのエミッタに接続された一端と前記低電位電源に接続された他端とを含む第2の定電流源と
を含むことを特徴とするアナログマルチプレクサ回路。 - 請求項13に記載のアナログマルチプレクサ回路において、
前記レベルシフタは、
前記第11のトランジスタのエミッタと前記第1の定電流源の一端との間に接続された第1のダイオードと、
前記第12のトランジスタのエミッタと前記第2の定電流源の一端との間に接続された第2のダイオードと
をさらに含むことを特徴とするアナログマルチプレクサ回路。 - 請求項1から請求項4のいずれか一項に記載のアナログマルチプレクサコア回路からなり、前記第1のアナログ信号及び前記第2のアナログ信号として2つのアナログ信号が入力されると共に、前記クロック信号として第1のクロック信号が入力される第1のアナログマルチプレクサコア回路と、
請求項1から請求項4のいずれか一項に記載のアナログマルチプレクサコア回路からなり、前記第1のアナログ信号及び前記第2のアナログ信号として前記2つのアナログ信号とは異なる2つのアナログ信号が入力されると共に、前記クロック信号として前記第1のクロック信号が第1のアナログマルチプレクサコア回路とは異なる位相で入力される第2のアナログマルチプレクサコア回路と、
請求項1から請求項4のいずれか一項に記載のアナログマルチプレクサコア回路からなり、前記第1のアナログ信号及び前記第2のアナログ信号として第1のアナログマルチプレクサコア回路及び第2のアナログマルチプレクサコア回路から出力される2つの時間多重アナログ信号が入力されると共に、前記クロック信号として前記第1のクロック信号の周期の1/2倍の周期を有する第2のクロック信号が入力される第3のアナログマルチプレクサコア回路と
を備えることを特徴とするアナログマルチプレクサ回路。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680043321.7A CN107852160B (zh) | 2015-07-23 | 2016-07-21 | 模拟多路复用器核心电路和模拟多路复用器电路 |
CA2991865A CA2991865C (en) | 2015-07-23 | 2016-07-21 | Analog multiplexer core circuit and analog multiplexer circuit |
JP2017529923A JP6475335B2 (ja) | 2015-07-23 | 2016-07-21 | アナログマルチプレクサコア回路及びアナログマルチプレクサ回路 |
US15/747,139 US10425051B2 (en) | 2015-07-23 | 2016-07-21 | Analog multiplexer core circuit and analog multiplexer circuit |
EP16827822.4A EP3327934B1 (en) | 2015-07-23 | 2016-07-21 | Analog multiplexer core circuit and analog multiplexer circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-145430 | 2015-07-23 | ||
JP2015145430 | 2015-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017014262A1 true WO2017014262A1 (ja) | 2017-01-26 |
Family
ID=57834409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/071385 WO2017014262A1 (ja) | 2015-07-23 | 2016-07-21 | アナログマルチプレクサコア回路及びアナログマルチプレクサ回路 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10425051B2 (ja) |
EP (1) | EP3327934B1 (ja) |
JP (1) | JP6475335B2 (ja) |
CN (1) | CN107852160B (ja) |
CA (1) | CA2991865C (ja) |
WO (1) | WO2017014262A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018133761A (ja) * | 2017-02-17 | 2018-08-23 | 富士通コンポーネント株式会社 | 増幅回路 |
JP6889413B2 (ja) * | 2018-12-25 | 2021-06-18 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路、および通信装置 |
JP6939763B2 (ja) * | 2018-12-25 | 2021-09-22 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路、および通信装置 |
US11239633B2 (en) * | 2020-02-19 | 2022-02-01 | Globalfoundries U.S. Inc. | Photonic transmitter drivers with logic using cascaded differential transistor pairs stepped by supply voltage differences |
CN117652100A (zh) * | 2021-06-30 | 2024-03-05 | 华为技术有限公司 | 模拟多路复用器电路、级联多路复用器电路和用于光通信的发送器 |
US12074593B1 (en) * | 2021-10-31 | 2024-08-27 | Synopsys, Inc. | High-voltage tolerant multiplexer |
US11979151B2 (en) * | 2022-09-20 | 2024-05-07 | Nxp Usa, Inc. | Integrated circuit (IC) having an analog multiplexer (MUX) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08307228A (ja) * | 1995-04-27 | 1996-11-22 | Toshiba Corp | 信号選択スイッチ回路 |
JP2010272921A (ja) * | 2009-05-19 | 2010-12-02 | Nippon Telegr & Teleph Corp <Ntt> | 高速多重化回路 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355035A (en) * | 1993-01-08 | 1994-10-11 | Vora Madhukar B | High speed BICMOS switches and multiplexers |
JP3380371B2 (ja) * | 1995-06-22 | 2003-02-24 | 三菱電機株式会社 | 広帯域増幅器 |
JP2002246861A (ja) * | 2001-02-22 | 2002-08-30 | Hitachi Ltd | 利得可変増幅器及びこれを用いた光受信器 |
CN102420612B (zh) * | 2011-12-16 | 2013-11-13 | 电子科技大学 | 一种可抑制采样时间失配的时间交织模数转换器 |
JP6052932B2 (ja) * | 2013-05-09 | 2016-12-27 | 日本電信電話株式会社 | 光変調器ドライバ回路および光送信器 |
CN103618536A (zh) * | 2013-11-27 | 2014-03-05 | 苏州贝克微电子有限公司 | 一种混合模式的多协议串行接口驱动器 |
-
2016
- 2016-07-21 EP EP16827822.4A patent/EP3327934B1/en active Active
- 2016-07-21 JP JP2017529923A patent/JP6475335B2/ja active Active
- 2016-07-21 CN CN201680043321.7A patent/CN107852160B/zh active Active
- 2016-07-21 CA CA2991865A patent/CA2991865C/en active Active
- 2016-07-21 US US15/747,139 patent/US10425051B2/en active Active
- 2016-07-21 WO PCT/JP2016/071385 patent/WO2017014262A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08307228A (ja) * | 1995-04-27 | 1996-11-22 | Toshiba Corp | 信号選択スイッチ回路 |
JP2010272921A (ja) * | 2009-05-19 | 2010-12-02 | Nippon Telegr & Teleph Corp <Ntt> | 高速多重化回路 |
Also Published As
Publication number | Publication date |
---|---|
EP3327934B1 (en) | 2020-11-04 |
CA2991865A1 (en) | 2017-01-26 |
CN107852160A (zh) | 2018-03-27 |
CN107852160B (zh) | 2021-05-14 |
US20180219517A1 (en) | 2018-08-02 |
US10425051B2 (en) | 2019-09-24 |
EP3327934A4 (en) | 2019-03-13 |
EP3327934A1 (en) | 2018-05-30 |
JP6475335B2 (ja) | 2019-02-27 |
CA2991865C (en) | 2021-04-13 |
JPWO2017014262A1 (ja) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6475335B2 (ja) | アナログマルチプレクサコア回路及びアナログマルチプレクサ回路 | |
US8698559B2 (en) | Amplifier circuit and method | |
US7560969B2 (en) | Receiver of high speed digital interface | |
JP5098617B2 (ja) | プリエンファシス回路 | |
EP2512030A1 (en) | Differential output stage | |
US7782142B2 (en) | High speed differential to single ended converting circuit | |
US20160072460A1 (en) | Differential amplifier | |
US7342418B2 (en) | Low voltage differential signal receiver | |
US9432126B1 (en) | Reconfigurable filter | |
JP2007528682A (ja) | ハイリニア可変利得増幅器 | |
WO2014182876A1 (en) | Differential sampling circuit with harmonic cancellation | |
JP5859168B2 (ja) | エンファシス回路 | |
US20150280950A1 (en) | Signal Processing | |
US8742846B1 (en) | Selectable gain differential amplifier | |
KR102424468B1 (ko) | 증폭 회로, 및 멀티패스 네스티드 밀러 증폭 회로 | |
CN116073921A (zh) | 用于校正低附加噪声差分信号的占空比和相位误差的电路 | |
JPWO2017169769A1 (ja) | ドライバ回路および光送信器 | |
CN109391248B (zh) | 一种信号分发电路及信号分发电路系统 | |
JP6399486B2 (ja) | 演算増幅回路 | |
US9124215B2 (en) | Mixer circuit | |
JP2018164216A (ja) | 増幅器 | |
JP6716478B2 (ja) | D/a変換装置 | |
JP2017092921A (ja) | デューティ比調整回路 | |
WO2018180111A1 (ja) | ノイズ除去回路 | |
CN111434033A (zh) | 一种用于光通信设备中的放大器及其方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017529923 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2991865 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15747139 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016827822 Country of ref document: EP |