[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017014085A1 - 航空機管理装置、航空機、及び航空機の軌道算出方法 - Google Patents

航空機管理装置、航空機、及び航空機の軌道算出方法 Download PDF

Info

Publication number
WO2017014085A1
WO2017014085A1 PCT/JP2016/070413 JP2016070413W WO2017014085A1 WO 2017014085 A1 WO2017014085 A1 WO 2017014085A1 JP 2016070413 W JP2016070413 W JP 2016070413W WO 2017014085 A1 WO2017014085 A1 WO 2017014085A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
role
trajectory
objective function
constraint condition
Prior art date
Application number
PCT/JP2016/070413
Other languages
English (en)
French (fr)
Inventor
光一 山崎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP16827646.7A priority Critical patent/EP3255371B1/en
Priority to US15/561,645 priority patent/US10627834B2/en
Publication of WO2017014085A1 publication Critical patent/WO2017014085A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G9/00Systems for controlling missiles or projectiles, not provided for elsewhere
    • F41G9/002Systems for controlling missiles or projectiles, not provided for elsewhere for guiding a craft to a correct firing position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0005Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with arrangements to save energy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/107Simultaneous control of position or course in three dimensions specially adapted for missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/24Beam riding guidance systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/30Command link guidance systems

Definitions

  • the present invention relates to an aircraft management apparatus, an aircraft, and an aircraft trajectory calculation method.
  • This management apparatus determines which aircraft on our side has which role, which role, and what trajectory is most efficient or advantageous.
  • This management apparatus is provided in an aircraft, for example, and transmits the determination result to a wingman constituting a formation via a network, and displays it on an MFD (Multi Function Display) or the like of the wingman.
  • MFD Multi Function Display
  • Patent Document 1 discloses the role of each aircraft with respect to the target aircraft based on the relative positional relationship between the aircraft and the target aircraft using an air battle trajectory program (also referred to as “air combat maneuver program”), and the aircraft.
  • An aircraft management apparatus that determines a trajectory for each aircraft based on a maneuvering action determined according to the role of the aircraft is disclosed. And this aircraft management device calculates a role determination evaluation value based on the prediction result of the trajectory of the aircraft and the trajectory of the target aircraft, determines the role of the aircraft that has the maximum evaluation value as the role of the aircraft, The aircraft trajectory based on the determined role is determined as the aircraft trajectory.
  • the above-described air battle trajectory program determines the trajectory of an aircraft based on an action database created in advance from a pilot's rule of thumb. For this reason, since the trajectory of the aircraft finally obtained includes a human element that is difficult to evaluate whether the pilot's rule of thumb is correct or incorrect, it may not be an optimal solution. Also, the role allocation solution calculated on the premise of the air combat trajectory program may not be the optimal solution. Furthermore, the trajectory and role of the aircraft must be determined in a state where the target aircraft is moving together with the aircraft and the wingman, and it is necessary to obtain an optimal solution in a short time.
  • the present invention has been made in view of such circumstances, and provides an aircraft management apparatus, an aircraft, and an aircraft trajectory calculation method that can calculate a more optimal trajectory according to the role of the aircraft in a shorter time. For the purpose.
  • the aircraft management apparatus, aircraft, and aircraft trajectory calculation method of the present invention employ the following means.
  • An aircraft management apparatus is an aircraft management apparatus that calculates trajectories of a plurality of aircrafts participating in a formation using a calculation method that obtains an optimal solution by discretizing continuous variables. Calculating discrete points indicating the trajectory by substituting the aircraft control variables discretized into the equation of motion of the aircraft, and according to the role among the trajectories satisfying the constraint conditions according to the role of the aircraft Trajectory determining means for determining the optimal trajectory based on the evaluation value obtained by the objective function.
  • the aircraft management apparatus calculates the trajectories of a plurality of aircraft participating in the formation. For this purpose, a calculation method for obtaining an optimal solution by discretizing continuous variables, for example, Direct Collocation with Nonlinear Programming (DCNLP) is used.
  • DCNLP Direct Collocation with Nonlinear Programming
  • the discrete points indicating the trajectory of the aircraft are calculated by substituting the discretized aircraft control variables into the aircraft motion equation by the trajectory determining means.
  • the amount of calculation is reduced by handling it in a discrete manner, and the trajectory can be calculated in a short time.
  • Discrete points that satisfy the constraint conditions according to the role of the aircraft are taken as the trajectory of the aircraft.
  • the role of the aircraft is, for example, the firing of a guided bullet (the role of firing a guided bullet is also referred to as a shooter), the target search enemy or tracking (the role of performing a target search enemy or tracking is also referred to as a sensor), And guiding the guided bullet (the role of guiding the guided bullet is also referred to as a guider), and the constraint condition is determined in advance according to each role.
  • an optimal trajectory is determined based on an evaluation value obtained by an objective function (evaluation function) corresponding to the role. As described above, this configuration can calculate a more optimal trajectory corresponding to the role of the aircraft in a shorter time by using a calculation method for obtaining an optimal solution by discretizing continuous variables.
  • a variable is assigned to each of the objective function and the constraint condition according to the role so that the objective function and the constraint condition that do not correspond to the role set in the aircraft become invalid. Furthermore, a role determining unit that determines the value of the variable for each objective function and for each constraint condition may be provided.
  • a variable is assigned to each of the objective function and the constraint condition according to the role.
  • This variable is for invalidating an objective function and constraint conditions that do not correspond to the role set for the aircraft.
  • the assignment here means, for example, multiplying an objective function or a constraint condition by a variable.
  • the role determination means determines the value of the variable for each objective function and each constraint condition so that the objective function and the constraint condition that do not correspond to the role set in the aircraft become invalid. Since the invalidated objective function and the constraint condition do not affect the calculation of the trajectory of the aircraft, the trajectory is calculated based only on the objective function and the constraint condition that are not invalidated.
  • This configuration determines the optimal role and trajectory of the aircraft at the same time by calculating the trajectory of the aircraft and evaluating the results each time the role of the aircraft, ie, the invalid objective function and constraint conditions are changed. can do.
  • variable may be 1 or 0.
  • This configuration makes it possible to easily invalidate objective functions and constraints that do not correspond to the role set for the aircraft.
  • variable may be multiplied with the objective function and the constraint condition as an equation.
  • the inequality when the variable is set to 0 with respect to the constraint condition that is an inequality, the inequality may be given in any state.
  • This configuration can easily invalidate unnecessary objective functions and inequality constraints.
  • the objective function may include a function for calculating a distance between the aircraft and the target.
  • This configuration can determine the optimal trajectory based on the positional relationship between the aircraft and the target.
  • the constraint condition when the role of the aircraft is target search / tracking, the constraint condition may always capture the target within the radar coverage. Further, when the role of the aircraft is guidance bullet guidance, the constraint condition may be that the target is always captured within the coverage area of the guidance radio wave.
  • This configuration can determine the optimal trajectory according to the role of the aircraft.
  • the constraint condition when the role of the aircraft is guided bullet firing, the constraint condition is that the nose of the aircraft faces the target when the guided bullet is fired and the target is guided when the guided bullet is fired. It may be located within the bullet range.
  • This configuration can determine the optimal trajectory according to the role of the aircraft.
  • An aircraft according to the second aspect of the present invention includes the aircraft management apparatus described above.
  • An aircraft trajectory calculation method is an aircraft trajectory for calculating trajectories of a plurality of aircraft participating in a formation using a calculation method for obtaining an optimal solution by discretizing continuous variables.
  • a calculation method for calculating discrete points indicating the trajectory by substituting the discretized control variables of the aircraft into an equation of motion of the aircraft, and among the trajectories satisfying a constraint condition according to a role of the aircraft The optimum trajectory is determined based on the evaluation value obtained by the objective function corresponding to the role.
  • FIG. 1 is a block diagram showing an electrical configuration of the aircraft management apparatus 10 according to the present embodiment.
  • the aircraft management apparatus 10 according to the present embodiment is an apparatus that determines the roles of a plurality of aircraft 40 (see FIG. 2) participating in a formation and the trajectory of the aircraft 40.
  • the aircraft management apparatus 10 is provided in the aircraft 40. Further, in the following description, the aircraft 40 participating in the formation is also referred to as our aircraft, and the target aircraft 42 is also referred to as his aircraft.
  • the aircraft management apparatus 10 includes a CPU (Central Processing Unit) 12 that executes various arithmetic processes, a ROM (Read Only Memory) 14 that stores various programs executed by the CPU 12, various information, and the like, and a CPU 12 Random Access Memory (RAM) 16 used as a work area during execution of various programs by HDD, HDD (Hard Disk) as a storage means for storing various programs and various information such as airframe specifications of aircraft 40 to be simulated Drive) 18.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 12, ROM 14, RAM 16, HDD 18, receiving unit 20, and transmitting unit 22 are electrically connected to each other via a system bus 24.
  • the aircraft management apparatus 10 receives various information from the wingman, such as wingman information, information (target machine information) of the target machine 42 (see FIG. 2) obtained by searching for and tracking the wingman, and the CPU 12.
  • wingman information includes position information of the wingman, the speed of the wingman, and the like.
  • the own machine information includes the position information of the own machine, the speed of the own machine, and the like.
  • the target machine information includes the position information of the target machine 42, the speed of the target machine 42, and the like.
  • the aircraft 40 according to the present embodiment can transmit and receive various types of information (data link) between the aircrafts 40. That is, each aircraft 40 is networked to share various types of information such as own aircraft information, wing machine information, target aircraft information, and instruction information for other aircraft 40 by the data link.
  • FIG. 2 is a schematic diagram showing the role and trajectory of the aircraft 40 according to the present embodiment.
  • only one target machine 42 is shown as an example, but a plurality of target machines 42 may be provided.
  • the example of FIG. 2 simulates an MRM (Medium Range Missiles) battle, and is in a state where the target aircraft 42 cannot be visually recognized from the aircraft 40.
  • MRM Medium Range Missiles
  • the aircraft 40 is capable of, for example, launching a guided bullet (missile) 44 (shooter) to the target aircraft 42, guiding the guided bullet 44 (guider), and searching for and tracking (sensors) the target aircraft 42.
  • the role of the aircraft 40 is, for example, searching for and tracking the target aircraft 42, guiding the guided bullet 44, and firing the guided bullet 44.
  • the guide bullet 44 may be guided by the guide bullet 44 fired by itself or by the guide bullet 44 fired by the wingman.
  • the role of the aircraft 40A is the firing of the guided bullet 44
  • the role of the aircraft 40B is the guidance of the guided bullet 44
  • the role of the aircraft 40C is the role of the aircraft 40C (sensor device 40C). Is the enemy search and tracking of the target aircraft 42.
  • the range is narrow in the order of the search and tracking range of the aircraft 40, the guideable range of the guided bullet 44, and the range of the guided bullet 44.
  • the shooter aircraft 40A is in a state of facing the target aircraft 42 (a state where the nose faces each other, so-called head-on). It is preferable because the range of the guide bullet 44 is longest and can be shot away from the target aircraft 42.
  • the guider machine 40B is preferably positioned so as to catch the target machine 42 and the guide bullet 44 around the end of the guideable range.
  • the sensor device 40C is preferably positioned so as to catch the target device 42 around the end of the searchable / trackable range. This is because the range of the target aircraft 42 is reduced, and even if the own aircraft approaches the range of the target aircraft 42, it can quickly leave the range of the target aircraft 42.
  • the sensor device 40C searches and tracks the target device 42 and transmits position / speed information of the target device 42 to the shooter device 40A and the guider device 40B.
  • the shota machine 40A launches the guide bullet 44 to the target machine 42.
  • the shooter machine 40A may have entered the range of the target machine 42. For this reason, the shooter machine 40 ⁇ / b> A is reversed and separated from the target machine 42 immediately after the firing of the guide bullet 44.
  • the guider machine 40B guides the guide bullet 44 fired by the shooter machine 40A.
  • the guider 40B uses a so-called A-Pole that catches the guide bullet 44 in the vicinity of the end of the guideable range and avoids it from the target machine 42 while guiding the guide bullet 44.
  • the sensor machine 40C uses the A-Pole that avoids the target machine 42 while searching for and tracking the target machine 42 around the end of the searchable / trackable range.
  • the trajectory of the aircraft 40 is determined according to the role of each aircraft 40 with respect to the target aircraft 42.
  • the aircraft management apparatus 10 calculates a trajectory of a plurality of aircrafts 40 participating in a formation by a calculation method for obtaining an optimal solution by discretizing continuous variables (state variables and control variables), for example, Direct Collocation with Nonlinear programming (DCNLP) is used. More specifically, DCNLP treats an optimal control problem as a non-linear programming problem by discretizing continuous variables of a continuous problem that is a function of time, and obtains a solution in which the value of an objective function (evaluation function) is minimum or maximum. It is what you want. Note that DCNLP is easy to handle inequality constraints on state variables and has high robustness to initial conditions and constraints. It is also possible to treat the equation of motion as a constraint condition.
  • DCNLP is easy to handle inequality constraints on state variables and has high robustness to initial conditions and constraints. It is also possible to treat the equation of motion as a constraint condition.
  • FIG. 3 is a schematic diagram showing the concept of DCNLP. Note that both the vertical and horizontal axes in FIG. 3 are state variables.
  • DCNLP the problem is discretized into N nodes (hereinafter also referred to as “discrete points”) t 1 to t N according to time t.
  • the state variable is calculated as a node by substituting the control variable for the equation of motion indicating the behavior of the aircraft 40.
  • the present invention is not limited to this, and the state variable may be set as a node by another appropriate method.
  • the initial value of the control variable is substituted into the equation of motion.
  • the initial estimated solutions of the nodes t 1 to t N may be set by other appropriate methods in addition to the method of substituting the control variables into the equation of motion.
  • This node is corrected based on the change of the objective function with respect to the minute change of the control variable and the state variable in each node (during calculation in FIG. 3).
  • a node that satisfies the constraints described later and has the minimum (or maximum) value of the objective function (also referred to as an evaluation function) is determined as the optimal solution as the trajectory of the aircraft 40.
  • the calculated nodes are interpolated using, for example, a polynomial.
  • this node since this node is not continuous, it may be a trajectory that cannot be realized by the actual aircraft 40 depending on the state variable. Therefore, a constraint condition is set such that the amount of deviation between the calculated next node and the next node that should actually be is 0 (zero). This constraint is a defect in terms of DCNLP. By satisfying this constraint, the calculated node can satisfy the equation of motion of the aircraft 40.
  • FIG. 4 is a schematic diagram showing the concept of DCNLP defect.
  • the horizontal axis is time
  • the vertical axis is a state variable indicating the position of the aircraft 40
  • two discrete nodes adjacent to node A (t k , X k ) and node C (t k + 1 , X k + 1 ) are shown. Is a point. Since the nodes A and C are originally positions on the orbit of the aircraft 40, they should be connected by the relationship of the differential equation f.
  • the node A, each f k the slope is a differential value of C, and f k + 1, two adjacent nodes A, the difference between C and two nodes A, inclination f k in C, based on the f k + 1 variation
  • a difference defined by 0 is defined as a constraint defined by defect.
  • the point B is a value obtained recursively from the previous node A. If the state variable satisfies the equation of motion, the point B and the node C coincide with each other, and the point B and the node C The deviation from is defective. Specifically, the difference between the difference (X k + 1 ⁇ X k ) between the two nodes A and C and the amount of change v expressed by the expression (2) becomes the defect. That is, the defect is a residual between the point B and the node C obtained based on the differential values of the adjacent nodes A and C, and is expressed by the following equation (3) where the defect is ⁇ k .
  • the aircraft management apparatus 10 is based on the objective function value (evaluation value) obtained by the objective function according to a role among the restrictions defined according to the defect and the trajectory satisfying the constraint condition according to the role of the aircraft 40. To determine the optimal trajectory.
  • the role of the aircraft 40 is, for example, as described above, the shooter (shooter machine 40A) that launches the guide bullet 44, the target search enemy and the sensor that performs tracking (sensor machine 40C), and the guidance bullet 44 guidance.
  • the guider to perform guider machine 40B).
  • the state variable X is expressed by the following equation (4), where azimuth indicating the attitude of the aircraft 40 is ⁇ , and the aircraft coordinates indicating the position of the aircraft 40 are x and y.
  • the machine coordinate x is based on the north direction
  • the machine coordinate y is based on the east direction.
  • the speed and altitude of the aircraft 40 are constant, but the speed and altitude may also be used as state variables.
  • the control variable u in the equation of motion is expressed by the following equation (5), where the angle of attack is ⁇ , the bank angle is ⁇ , and the thrust is T.
  • the equation of motion of the aircraft 40 is expressed by the following three-degree-of-freedom equation of equation (6) where m is mass, velocity is v, flight path angle is ⁇ , lift is L, and drag is D. .
  • the state variables of the aircraft 40 are calculated, whereby the initial estimated solution of the trajectory of the aircraft 40 is calculated.
  • the initial estimated solution for the trajectory of the aircraft 40 may be set by setting the state variable by another appropriate method.
  • Equation (8) is a constraint condition that keeps the speed constant, and D is a drag force.
  • Equation (9) is a constraint condition that keeps the altitude constant. Note that the constraint conditions represented by equations as in equations (7) to (9) are referred to as equation constraint conditions.
  • the right side of equation (8) may be set to, for example, a certain range without setting 0 on the right side. Further, when a change in altitude is allowed, the right side of equation (9) may be set to a certain range, for example, without setting the right side to 0. Furthermore, another constraint condition different from the expressions (8) and (9) may be added.
  • Nz in equation (10) is a vertical load multiple (hereinafter referred to as “turn G”) applied when the aircraft 40 turns, and as an example in equation (10), it is constrained that no more than 4 G turns G are added.
  • the upper limit of the turning G is determined according to the performance of the aircraft 40 and the battle situation of the aircraft 40, and may be a larger value in the close combat than the MRM battle.
  • a constraint condition represented by an inequality such as equation (10) is referred to as an inequality constraint condition.
  • the vertical axis direction is north-south (upward in the drawing is north), and the horizontal axis direction is east-west (right in the drawing is east).
  • the restriction condition and objective function of the guider machine 40B are the same as those of the sensor machine 40C when the searchable / trackable range is the same as the navigable range (guided radio wave coverage that can catch the guided bullet 44). is there.
  • trajectory of the target aircraft 42 is assumed to be straight as an example. However, the trajectory of the target aircraft 42 is not limited to this, and the trajectory of the target aircraft 42 may be other than straight travel using another simulation or the like.
  • the sensor machine 40C needs to always capture the target machine 42, which is his machine, within the radar coverage, and this is a constraint condition according to the role of the sensor machine 40C.
  • This constraint condition is expressed by the following equation (11), where the radar coverage in the azimuth direction is RC AZ, and the direction of the aircraft seen from our aircraft is ⁇ BtoR .
  • (11) becomes an inequality constraint condition for calculating the trajectory of the sensor device 40C.
  • the equation constraint of the sensor device 40C is unnecessary as an example, but some equation constraint may be set.
  • the objective function J ( ⁇ ) corresponding to the role of the sensor device 40C is expressed by the following equation (12), where the coordinates of the aircraft are (x red , y red ) and the weight coefficients are k 1 and k 2 . Note that the state variable X and the control variable u are input to the objective function J ( ⁇ ), and the objective function value obtained thereby is used as the evaluation value.
  • the first term on the right side of equation (12), which is the objective function J ( ⁇ ), is the distance between the aircraft 40 (our aircraft) and the target aircraft 42 (his aircraft) at each node (discrete point)
  • the second term is the sum of squares of the bank angles of the aircraft 40 (our aircraft) at each node. Since the aircraft 40 is preferably as far away from the target aircraft 42 as possible, the value of the first term is preferably larger.
  • the second term is a term indicating the stability of the bank angle. The smaller the value of the second term, the more stable the trajectory with less fluctuation of the bank angle. Therefore, it is preferable that the value of the second term is small.
  • the first and second terms are multiplied by weighting factors k 1 and k 2 in order to adjust the weight for the objective function J ( ⁇ ) of the distance between the self and the bank.
  • the first term is a negative function
  • the second term is added to the first term.
  • the vertical axis direction is north-south (the upper direction in the drawing is north), and the horizontal axis direction is east-west (the right direction in the drawing is east).
  • the starter aircraft 40A needs to have its nose facing the target aircraft 42 when the guided bullet is fired. This is a restriction condition according to the role of the shooter machine 40A. This constraint condition is expressed by the following equation (13), where t shoot is the firing time of the guide bullet 44 and ⁇ (t shoot ) is the direction of our aircraft at that time.
  • equation (13) may be an inequality constraint condition in which the left side is within a predetermined angle range (for example, ⁇ 5 °) without being an equality constraint condition.
  • the shooter aircraft 40A has an inequality restriction condition that the distance between itself and the shot bullet is within the range R maxl of the guide bullet 44 and the guide bullet 44 is fired within the simulation time.
  • This inequality constraint condition is expressed by the following equation (14), where the simulation time is t 1 to t N and the guided bullet firing time is t shoot .
  • the range R maxl differs depending on the relative angle (angle off) between the shooter machine 40A and the target machine 42.
  • the objective function J ( ⁇ ) corresponding to the role of the shooter 40A is expressed by the following equation (15) with the weighting factors k 3 to k 7 .
  • the first term on the right side of equation (15) is the time from the start of the simulation to the firing of the guided bullet
  • the second term is the distance between the self at the time of the firing of the guided bullet
  • the third term is the minimum distance between the guards. Value (hereinafter referred to as “minimum distance between self and self”)
  • the fourth term is the sum of the distance between the self and the self after firing the guided bullet
  • the fifth term is the sum of squares of the bank angle of the aircraft at each node. is there.
  • the first to fifth terms are multiplied by weighting factors k 3 to k 7 respectively.
  • the shooter 40A shortens the time until the guided bullet is fired, increases the distance between the self when the guided bullet is fired, increases the minimum distance between the self, and the distance between the self after the guided bullet is fired. It is preferable that the trajectory increase the sum of. The smaller the value calculated by the objective function J ( ⁇ ) expressed by the equation (15), the higher the evaluation.
  • the objective function J ( ⁇ ) calculates the distance between the self, which is the distance between the aircraft 40 and the target aircraft 42, regardless of the role of the aircraft 40. Function is included, and the trajectory in which the distance between the two is a suitable value according to the role is determined as the optimal trajectory.
  • FIG. 7 is a flowchart showing the flow of the optimal trajectory calculation process.
  • the optimal trajectory calculation is executed by the aircraft management apparatus 10.
  • step 100 the motion of the aircraft 40 is calculated by substituting the control variable u, which is the initial estimated solution, into the equation of motion, but the initial estimated solution may be set by another appropriate method.
  • the control variable u serving as the initial estimated solution is set by the pilot of the aircraft 40 based on the experience value as an example.
  • step 102 the control variable u and the state variable X that satisfy the constraint condition corresponding to the set role are substituted into the objective function J ( ⁇ ) corresponding to the role, and the objective function value J (evaluation value) is calculated.
  • step 103 a minute change amount of the control variable / state variable (at least one of the control variable and the state variable) is calculated.
  • the minute change amount is set to a predetermined value corresponding to the control variable / state variable.
  • control variable / state variable (at least one of the control variable and the state variable) is corrected.
  • the correction amount of the control variable / state variable is calculated according to the change in the objective function value J with respect to the previous minute change of the control variable / state variable.
  • the objective function value J is calculated using the corrected control variable / state variable.
  • the change amount of the objective function value J with respect to the minute change of the control variable / state variable is calculated.
  • step 110 it is determined whether or not the evaluation termination condition is satisfied. If the determination is affirmative, the present simulation is terminated. On the other hand, in the case of negative determination, the process returns to step 104, and the control variable and the state variable are slightly changed, and the calculation of the change amount of the objective function value is repeated.
  • the evaluation termination conditions in step 110 will be described with reference to FIG.
  • the abscissa indicates the control variable / state variable ⁇
  • the ordinate indicates the objective function value J
  • points a to e indicate changes in the objective function value J with respect to the control variable / state variable ⁇ .
  • Condition 1 When the change amount of the control variable / state variable ⁇ is smaller than the allowable value Tol ⁇ .
  • Condition 2 When the change amount of the objective function value J becomes smaller than the allowable value TolFun.
  • Condition 3 When the first-order optimality measure is less than the allowable value.
  • Condition 4 The number of iterations from step 104 to step 108 or the number of evaluations of the objective function value J is greater than the allowable value.
  • the first-order optimality for the constrained nonlinear programming problem is obtained based on the Karush-Kuhu-Tucker condition (hereinafter referred to as “KKT condition”).
  • the KKT condition is a gradient ⁇ which is a slope in the vicinity of the minimum value of the objective function J ( ⁇ ) in the vicinity of the minimum value of the objective function J ( ⁇ ) in the vicinity of the point e in FIG. This corresponds to the condition that J ( ⁇ ) becomes substantially zero.
  • the Lagrangian function L ( ⁇ , ⁇ ) used for the KKT condition is expressed as the following equation (16).
  • g ( ⁇ ) is an inequality constraint condition
  • h ( ⁇ ) is an equation constraint condition.
  • ⁇ g is a Lagrangian multiplier related to the inequality constraint equation
  • ⁇ h is a Lagrange multiplier related to the equation constraint equation.
  • the second-order sufficient condition indicating the sufficiency of the optimal solution is a condition in which the Hessian matrix of the Lagrangian function L ( ⁇ , ⁇ ) becomes positive definite as represented by the following equation (19).
  • Expression (19) indicates that the change in the objective function value J is in a downwardly convex state with respect to the control variable / state variable ⁇ . For this reason, it can be said that the objective function value J is an optimal solution when the second-order sufficient condition is satisfied in addition to the first-order optimality that is a necessary condition.
  • FIGS. 9A, FIG. 10A, FIG. 11A, and FIG. 12A show the optimal trajectory solution of our machine obtained by calculating the optimal trajectory, and FIG. 9B, FIG. 10B, FIG. 11B, and FIG. And a time change graph of the turning G as reference information together with a time change in which the thrust is discretized.
  • white is the initial estimated solution
  • the hatched hatched one is the optimal trajectory. It is the optimal trajectory solution calculated by calculation. It is assumed that the target aircraft 42 goes straight from the north direction.
  • FIG. 9 and 10 show the calculation results of the optimum trajectory of the sensor device 40C, FIG. 9 shows the sensor coverage is ⁇ 60 °, and FIG. 10 shows the sensor coverage is ⁇ 120 °.
  • FIG. 11 and 12 show the results of calculating the optimum trajectory of the shooter 40A.
  • FIG. 11 shows the range of the guide bullet 44 being about 50 miles
  • FIG. 12 shows the range of the guide bullet 44 being about 80 miles.
  • the range surrounded by the alternate long and short dash line indicates the approximate range of the guide bullet 44.
  • the simultaneous optimization process according to the present embodiment is performed together with the above-described optimal trajectory calculation.
  • all the objective functions and constraint conditions corresponding to the above-described roles are integrated and handled.
  • a variable (hereinafter referred to as “indicator variable”) is assigned to each of the objective function and the constraint condition according to the role. This indicator variable is for invalidating an objective function and a constraint condition that do not correspond to the role set in the aircraft 40.
  • the value of the indicator variable is determined for each objective function and each constraint condition so that the objective function and the constraint condition that do not correspond to the role set in the aircraft 40 become invalid. Since the invalidated objective function and the constraint condition do not affect the calculation of the trajectory of the aircraft 40, the trajectory is calculated based only on the objective function and the constraint condition that are not invalidated.
  • the simultaneous optimization process calculates the optimal role of the aircraft 40 by calculating the trajectory of the aircraft 40 and evaluating the result every time the role of the aircraft 40, ie, the invalid objective function and constraint conditions are changed. And the trajectory can be determined simultaneously.
  • the indicator variable according to the present embodiment is changed to 1 or 0 as an example.
  • the objective function corresponding to the role set in the aircraft 40 and the indicator variable given to the constraint condition are set to 1 and validated.
  • the objective function not corresponding to the role set in the aircraft 40 and the indicator variable given to the constraint condition are set to 0 and invalidated.
  • the role of the aircraft 40 is set by the indicator variable. That is, the role corresponding to the objective function and the constraint condition in which the indicator variable is 1 is set as the role of the aircraft 40.
  • Table 1 shows the objective function and constraint conditions when the role of the aircraft 40 is the shooter aircraft 40A (SHT).
  • is B # 1 or B # 2
  • is R # 1 or R # 2.
  • the objective function J SHT B # 1, R # 2 is an objective function value when B # 1 launches the guide bullet 44 to R # 2.
  • the inequality constraint condition g SHT B # 1, R # 2 is an inequality constraint condition when B # 1 launches the guide bullet 44 to R # 2.
  • the equality constraint condition h SHT B # 1, R # 2 is an equality constraint condition when B # 1 launches the guide bullet 44 to R # 2.
  • Table 2 shows objective functions and constraints when the role of the aircraft 40 is the sensor device 40C (SNS).
  • is B # 1 or B # 2
  • is R # 1 or R # 2.
  • the objective function J SNS B # 1, R # 1 is an objective function when B # 1 searches and tracks R # 2.
  • the inequality constraint condition g SHT B # 1, R # 1 is an inequality constraint condition when B # 1 searches and tracks R # 2. Note that the equality constraint condition is unnecessary as an example as described in the above-described DCNLP.
  • ⁇ in the inequality constraints in Table 3 is B # 1 or B # 2, or B # 1 and B # 2.
  • the inequality constraint condition where ⁇ is B # 1 and B # 2 is for the purpose of avoiding collision between wingmen, and on the condition that the distance between B # 1 and B # 2 is longer than a predetermined value. It is a thing.
  • Table 4 shows the types of indicator variables.
  • the indicator variable is represented by ⁇ ij .
  • Task i indicates the role that I will perform, and agent j indicates the mechanism that performs the task (role).
  • This is an equality constraint condition h tsk 0 regarding task (role) assignment, and more specifically is expressed by the following equation (20).
  • the constraint condition regarding task assignment is that one machine can only be assigned one role.
  • integrated objective function J INT an integrated objective function
  • Integrated objective function J INT is multiplied indicator variable [delta] ij for each objective function, indicator variable [delta] ij is the sum of the objective function multiplied.
  • the indicator variables ⁇ ij of all objective functions are set to 1 or 0.
  • the following equation (22) is an integrated equation constraint (hereinafter referred to as “integrated equation constraint h INT ”).
  • integrated equation constraint h INT handles each equation constraint collectively.
  • the integrated equality constraint h INT is multiplied by the indicator variable ⁇ ij for each equality constraint. Then, when determining whether or not the integrated equality constraint condition h INT is possible, the indicator variables ⁇ ij of all equality constraint conditions are set to 1 or 0.
  • the indicator variable ⁇ ij is multiplied by the objective function and the equation constraint. Then, the indicator function ⁇ ij given to the objective function and the equation constraint corresponding to the role set in the aircraft 40 is set to 1. On the other hand, the indicator variable ⁇ ij added to the unnecessary objective function and equation constraint that does not correspond to the role set in the aircraft 40 is set to 0, and the unnecessary objective function and equation constraint are invalidated. As described above, since the value of the unnecessary objective function becomes 0 by the indicator variable ⁇ ij , the integrated objective function J INT is not affected by the unnecessary objective function, and the target function value corresponding to the role set in the aircraft 40 is obtained. (Evaluation value) can be calculated. Since the equality constraint condition is satisfied when the value of the unnecessary equality constraint condition becomes 0, the integrated equality constraint condition h INT is set in the aircraft 40 without being affected by the unnecessary equality constraint condition. Only equality constraints according to the role played can be determined.
  • integrated inequality constraint g INT is an integrated inequality constraint (hereinafter referred to as “integrated inequality constraint g INT ”).
  • an indicator variable ⁇ ij is assigned so that the inequality is satisfied.
  • a term of “(1- ⁇ ij ) ⁇ M” is given for each inequality constraint condition, and the value of g is subtracted by this term.
  • M is a positive integer sufficiently larger than the assumed value of g.
  • the indicator variable ⁇ ij is set to 0 for unnecessary inequality constraints that do not correspond to the role of the aircraft 40, the above term becomes a large integer, and the inequality holds in any state, affecting the integrated inequality constraint g INT Will not be given. Therefore, the integrated inequality constraint condition g INT can determine only the inequality constraint condition according to the role set in the aircraft 40 without being affected by the unnecessary inequality constraint condition.
  • FIG. 13 is a functional block diagram relating to the simultaneous optimization of the role and trajectory of the aircraft 40 (hereinafter referred to as “role trajectory optimization processing”) in the aircraft management apparatus 10 according to the present embodiment.
  • the CPU 12 has functions of a role determination unit 50, a trajectory determination unit 52, and an optimal solution determination unit 54 by executing a program stored in advance in the HDD 18.
  • the HDD 18 stores the integrated objective function J INT , the integrated equation constraint condition h INT , and the integrated inequality constraint condition g INT described above.
  • Role determining unit 50 determines the role of aircraft 40. Specifically, the role determination unit 50 reads the integrated objective function J INT , the integrated equality constraint condition h INT , and the integrated inequality constraint condition g INT from the HDD 18 and determines the integrated objective function according to the role set in the aircraft 40.
  • the indicator variable ⁇ ij of J INT , unified equality constraint h INT , and unified inequality constraint g INT is set to 1 or 0.
  • the trajectory determining unit 52 performs a graph based on the integrated objective function J INT , the integrated equality constraint condition h INT , and the integrated inequality constraint condition g INT after the indicator variable ⁇ ij is set to 1 or 0 by the role determining module 50. 7 is calculated, the optimal trajectory corresponding to the role of the aircraft 40 is calculated.
  • the role determination unit 50 by changing the indicator variable [delta] ij, changing the role of setting the aircraft 40.
  • the trajectory determination unit 52 calculates an optimal trajectory corresponding to the role of the aircraft 40 each time the role set for the aircraft 40 is changed.
  • the optimal solution determination unit 54 sets the role that minimizes the integrated objective function and the trajectory at that time among the plurality of trajectories calculated for each role set in the aircraft 40 as the optimal role and the optimal trajectory.
  • the role and trajectory set for the aircraft 40 are determined. This optimizes the role and trajectory of the aircraft 40 simultaneously.
  • an evolutionary calculation method such as a genetic algorithm or a branch and bound method is used, and an optimal trajectory is obtained by solving DCNLP in this loop. Calculated.
  • the aircraft management apparatus 10 has, as an example, all the aircrafts 40 constituting the formation.
  • a predetermined wingman for example, a leader machine
  • executes a role trajectory optimization process to perform the role of the wingman and The trajectory is determined, and the determined role and trajectory are transmitted to the wing machine as role trajectory information.
  • the role trajectory information transmitted to the wingman is displayed on the MFD of the wingman, and the pilot of the wingman pilots according to the displayed information.
  • the aircraft management apparatus 10 calculates N nodes indicating the trajectory by substituting the discretized control variable of the aircraft 40 into the motion equation of the aircraft 40, or other N
  • This node indicating a trajectory is set by an appropriate method, and a constraint condition in which a deviation amount between the next node and the next node that should actually be is 0 between each node and a constraint condition according to the role of the aircraft 40
  • the optimum trajectory is determined based on the evaluation value obtained by the objective function corresponding to the role.
  • the aircraft management apparatus 10 can calculate a more optimal trajectory corresponding to the role of the aircraft 40 in a shorter time by using a calculation method for obtaining an optimal solution by discretizing continuous variables.
  • the aircraft management apparatus 10 assigns an indicator variable to each of the objective function and the constraint condition according to the role, so that the objective function and the constraint condition that do not correspond to the role set in the aircraft 40 become invalid.
  • the value of the variable is determined for each objective function and each constraint condition. Therefore, the aircraft management apparatus 10 calculates the trajectory of the aircraft 40 and evaluates the result every time the role of the aircraft 40, that is, the objective function to be invalidated and the constraint condition are changed, thereby evaluating the optimum role of the aircraft 40. And the trajectory can be determined simultaneously.
  • the role trajectory optimization process is described as being performed by the aircraft 40.
  • the present invention is not limited to this, and distributed processing is performed on all the aircraft 40 participating in the formation.
  • the ground facility that receives various information from the aircraft 40 may perform the role and trajectory of the determined aircraft 40 and transmit the aircraft 40 to each aircraft 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

航空機管理装置は、連続変数を離散化することで最適解を得る計算法、例えばDirect Collocation with Nonlinear Programming(DCNLP)を用いて、編隊に参加している複数の航空機の軌道を算出する。そして、離散化した航空機の制御変数を航空機の運動方程式に代入することで、又は他の方法で軌道を示すノードが算出・設定される。航空機の軌道を時間的に連続したものとして算出するよりも、離散化して扱うことにより計算量が少なくなり、短時間での軌道算出が可能である。そして、航空機管理装置は、航空機の役割に応じた制約条件を満たす軌道のうち、役割に応じた目的関数によって得られる評価値に基づいて最適な軌道を決定する。従って、航空機管理装置は、航空機の役割に応じたより最適な軌道をより短時間で算出できる。

Description

航空機管理装置、航空機、及び航空機の軌道算出方法
 本発明は、航空機管理装置、航空機、及び航空機の軌道算出方法に関するものである。
 複数の航空機が目標に対する射撃や射撃のための索敵や追尾を行う場合、効率的な火器管制が行われなければならない。
 このため、我側のどの機体が、どの目標に対して、どの役割を負い、どのような軌道をとるのが最も効率的又は有利であるのかを判断する管理装置が開発されている。この管理装置は、例えば航空機に備えられ、編隊を構成する僚機にネットワークを介して上記判断結果を送信し、僚機のMFD(Multi Function Display)等に表示させる。なお、上記役割とは、例えば、誘導弾の発射、目標の索敵や追尾、及び誘導弾の誘導である。
 例えば、特許文献1には、空戦軌道プログラム(「空戦機動プログラム」ともいう。)を用いて、航空機と目標機との相対的な位置関係に基づいて、目標機に対する航空機毎の役割、及び航空機の役割に応じて定められた操縦行動に基づいた航空機毎の軌道を決定する航空機管理装置が開示されている。そして、この航空機管理装置は、航空機の軌道と目標機の軌道の予測結果に基づいて、役割決定評価値を算出し、この評価値が最大となった航空機の役割を航空機の役割として決定し、決定した役割に基づいた航空機の軌道を航空機の軌道として決定している。
特開2014-129996号公報
 上述の空戦軌道プログラムは、パイロットの経験則等から予め作成された行動データベースに基づいて、航空機の軌道を決定するものである。このため、最終的に得られる航空機の軌道は、パイロットの経験則という正誤が評価し難い人的要素が含まれているため、最適解でない可能性がある。また、空戦軌道プログラムを前提として算出された役割配分の解も最適解でない可能性がある。
 さらに、自機や僚機と共に目標機が移動している状態で、航空機の軌道や役割は決定されなければならず、短時間で最適解を得る必要がある。
 本発明は、このような事情に鑑みてなされたものであって、航空機の役割に応じたより最適な軌道をより短時間で算出できる、航空機管理装置、航空機、及び航空機の軌道算出方法を提供することを目的とする。
 上記課題を解決するために、本発明の航空機管理装置、航空機、及び航空機の軌道算出方法は以下の手段を採用する。
 本発明の第一態様に係る航空機管理装置は、連続変数を離散化することで最適解を得る計算法を用いて、編隊に参加している複数の航空機の軌道を算出する航空機管理装置であって離散化した前記航空機の制御変数を前記航空機の運動方程式に代入することで前記軌道を示す離散点を算出し、前記航空機の役割に応じた制約条件を満たす前記軌道のうち、前記役割に応じた目的関数によって得られる評価値に基づいて最適な前記軌道を決定する軌道決定手段と、を備える。
 本構成に係る航空機管理装置は、編隊に参加している複数の航空機の軌道を算出する。このために、連続変数を離散化することで最適解を得る計算法、例えばDirect Collocation with Nonlinear Programming(DCNLP)が用いられる。
 軌道決定手段によって、離散化した航空機の制御変数を航空機の運動方程式に代入することで、航空機の軌道を示す離散点が算出される。なお、離散点の初期解については、制御変数を運動方程式に代入する方法の他に、他の適切な方法によって設定してもよい。航空機の軌道を時間的に連続したものとして算出するよりも、離散化して扱うことにより計算量が少なくなり、短時間での軌道算出が可能である。
 そして、航空機の役割に応じた制約条件を満たす離散点が航空機の軌道とされる。なお、航空機の役割とは、例えば、誘導弾の発射(誘導弾の発射を行う役割をシュータともいう。)、目標の索敵や追尾(目標の索敵や追尾を行う役割をセンサともいう。)、及び誘導弾の誘導を行う(誘導弾の誘導を行う役割をガイダともいう。)であり、各々の役割に応じて制約条件が予め定められている。この制約条件を満たす航空機の軌道のうち、役割に応じた目的関数(評価関数)によって得られる評価値に基づいて最適な軌道が決定される。
 以上説明したように、本構成は、連続変数を離散化することで最適解を得る計算法を用いることによって、航空機の役割に応じたより最適な軌道をより短時間で算出できる。
 上記第一態様では、前記役割に応じた前記目的関数及び前記制約条件の各々に対して変数が付与され、前記航空機に設定した前記役割に対応しない前記目的関数及び前記制約条件が無効となるように、前記変数の値を前記目的関数毎及び前記制約条件毎に決定する役割決定手段を備えてもよい。
 本構成によれば、役割に応じた目的関数及び制約条件の各々に対して、変数が付与される。この変数は、航空機に設定した役割に対応しない目的関数及び制約条件を無効化するためのものである。ここでいう付与とは、例えば目的関数や制約条件に変数を乗算することである。
 役割決定手段は、航空機に設定した役割に対応しない目的関数及び制約条件が無効となるように、変数の値を目的関数毎及び制約条件毎に決定する。無効化された目的関数及び制約条件は、航空機の軌道の算出に影響を与えないこととなるので、無効とされない目的関数及び制約条件のみに基づいて軌道が算出されることとなる。
 そして、本構成は、航空機の役割、すなわち無効とする目的関数及び制約条件を変化させる毎に、航空機の軌道を算出してその結果を評価することによって、航空機の最適な役割及び軌道を同時に決定することができる。
 上記第一態様では、前記変数を1又は0としてもよい。
 本構成によれば、航空機に設定した役割に対応しない目的関数及び制約条件を簡易に無効化できる。
 上記第一態様では、前記変数が、前記目的関数及び等式とされる前記制約条件に対して乗算されてもよい。
 本構成によれば、不要な目的関数及び等式制約条件を簡易に無効化できる。
 上記第一態様では、不等式とされている前記制約条件に対して前記変数が0とされるといかなる状態においても不等式が成立するように付与されてもよい。
 本構成によれば、不要な目的関数及び不等式制約条件を簡易に無効化できる。
 上記第一態様では、前記目的関数に前記航空機と目標との間の距離を算出するための関数が含まれてもよい。
 本構成によれば、航空機と目標との位置関係に基づいて最適な軌道を決定できる。
 上記第一態様では、前記航空機の役割が目標の索敵・追尾である場合、前記制約条件は、目標を常にレーダの覆域内に捉えるとしてもよい。また、前記航空機の役割が誘導弾の誘導である場合、前記制約条件は、目標を常に誘導電波の覆域内に捉えるとしてもよい。
 本構成によれば、航空機の役割に応じた最適な軌道を決定できる。
 上記第一態様では、前記航空機の役割が誘導弾の発射である場合、前記制約条件は、誘導弾発射時に該航空機の機首が目標に向いていること、かつ誘導弾の発射時に目標が誘導弾の射程範囲内に位置するとしてもよい。
 本構成によれば、航空機の役割に応じた最適な軌道を決定できる。
 本発明の第二態様に係る航空機は、上記記載の航空機管理装置を備える。
 本発明の第三態様に係る航空機の軌道算出方法は、連続変数を離散化することで最適解を得る計算法を用いて、編隊に参加している複数の航空機の軌道を算出する航空機の軌道算出方法であって、離散化した前記航空機の制御変数を前記航空機の運動方程式に代入することで前記軌道を示す離散点を算出し、前記航空機の役割に応じた制約条件を満たす前記軌道のうち、前記役割に応じた目的関数によって得られる評価値に基づいて最適な前記軌道を決定する。
 本発明によれば、航空機の役割に応じたより最適な軌道をより短時間で算出できる、という優れた効果を有する。
本発明の実施形態に係る航空機管理装置の電気的構成を示すブロック図である。 本発明の実施形態に係る航空機の役割及び軌道を示す模式図である。 DCNLPの概念を示す模式図である。 DCNLPのdefectの概念を示す模式図である。 本発明の実施形態に係るDCNLPで算出されるセンサ機の軌道を示す模式図である。 本発明の実施形態に係るDCNLPで算出されるシュータ機の軌道を示す模式図である。 本発明の実施形態に係る最適軌道算出の流れを示すフローチャートである。 本発明の実施形態に係る最適軌道算出における目的関数値の評価の終了条件を示す模式図である。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、最適軌道算出によって得られた我機の最適軌道解を示す。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、制御変数の時間変化を示す。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、最適軌道算出によって得られた我機の最適軌道解を示す。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、制御変数の時間変化を示す。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、最適軌道算出によって得られた我機の最適軌道解を示す。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、制御変数の時間変化を示す。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、最適軌道算出によって得られた我機の最適軌道解を示す。 本発明の実施形態に係る最適軌道算出の結果を示す図であり、制御変数の時間変化を示す。 本発明の実施形態に係る航空機管理装置の機能ブロック図である。
 以下に、本発明に係る航空機管理装置、航空機、及び航空機の軌道算出方法の一実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る航空機管理装置10の電気的構成を示すブロック図である。本実施形態に係る航空機管理装置10は、編隊に参加している複数の航空機40(図2参照)の役割及び航空機40の軌道を求める装置である。なお、航空機管理装置10は、航空機40に備えられている。また、以下の説明において、編隊に参加している航空機40を我機ともいい、目標機42を彼機ともいう。
 本実施形態に係る航空機管理装置10は、各種演算処理を実行するCPU(Central Processing Unit)12、CPU12で実行される各種プログラム及び各種情報等が予め記憶されたROM(Read Only Memory)14、CPU12による各種プログラムの実行時のワークエリア等として用いられるRAM(Random Access Memory)16、各種プログラム及びシミュレーションの対象となる航空機40の機体諸元等の各種情報を記憶する記憶手段としてのHDD(Hard Disk Drive)18を備えている。
 これらCPU12、ROM14、RAM16、HDD18、受信部20、及び送信部22は、システムバス24を介して相互に電気的に接続されている。
 さらに、航空機管理装置10は、僚機情報や僚機の索敵や追尾により得られた目標機42(図2参照)の情報(目標機情報)等の各種情報を僚機から受信する受信部20、及びCPU12による演算結果や自機情報を僚機へ送信する送信部22を備えている。なお、僚機情報には、僚機の位置情報や僚機の速度等が含まれる。自機情報には、自機の位置情報や自機の速度等が含まれる。目標機情報には、目標機42の位置情報や目標機42の速度等が含まれる。
 このように、本実施形態に係る航空機40は、各航空機40間で各種情報の送受信(データリンク)が可能とされている。すなわち、データリンクによって各航空機40は、自機情報、僚機情報、目標機情報、及び他の航空機40に対する指示情報等の各種情報を共有するためにネットワーク化されている。
 図2は、本実施形態に係る航空機40の役割及び軌道を示す模式図である。なお、図2では、一例として目標機42を一機のみ示しているが、目標機42は複数であってもよい。図2の例は、MRM(Medium Range Missiles)戦を模しており、航空機40から目標機42が視認できないほど離れた状態である。
 航空機40は、例えば、目標機42に対する誘導弾(ミサイル)44の発射(シュータ)、誘導弾44の誘導(ガイダ)、及び目標機42の索敵や追尾(センサ)が可能とされている。
 すなわち、航空機40の役割は、例えば、目標機42の索敵や追尾、誘導弾44の誘導、及び誘導弾44の発射である。誘導弾44の誘導は、自機が発射した誘導弾44の誘導であってもよいし、僚機が発射した誘導弾44の誘導であってもよい。図2において例えば、航空機40A(シュータ機40A)の役割が誘導弾44の発射であり、航空機40B(ガイダ機40B)の役割が誘導弾44の誘導であり、航空機40C(センサ機40C)の役割は、目標機42の索敵や追尾である。
 図2の例では、航空機40の索敵・追尾可能範囲、誘導弾44の誘導可能範囲、誘導弾44の射程範囲の順にその範囲は狭い。
 図2に示されるように、航空機40と目標機42とが向かい合って飛行している場合、シュータ機40Aは、目標機42と対向している状態(機首が向かい合う状態、所謂ヘッドオン)が、最も誘導弾44の射程範囲が長く、目標機42から離れて射撃することができるため好ましい。一方、ガイダ機40Bは、誘導可能範囲の端周辺に目標機42及び誘導弾44を捉えるように位置することが好ましい。センサ機40Cは、索敵・追尾可能範囲の端周辺に目標機42を捉えるように位置することが好ましい。目標機42の射程範囲を小さくすると共に、その射程範囲に自機が近づいたとしても、素早く目標機42の射程範囲から離脱できるためである。
 次に、図2を参照して各航空機40の目標機42に対する一連の役割及び軌道について説明する。
 センサ機40Cは、目標機42の索敵や追尾を行い、目標機42の位置・速度情報をシュータ機40Aとガイダ機40Bへ送信する。シュータ機40Aは、誘導弾44の射程範囲に目標機42が進入すると、目標機42へ誘導弾44を発射する。目標機42がシュータ機40Aの誘導弾44の射程範囲に進入することは、すなわち、目標機42の射程範囲にシュータ機40Aが進入した可能性がある。このため、シュータ機40Aは、誘導弾44の発射直後に目標機42に対して反転、離脱する。このため、誘導弾44を発射したシュータ機40Aは、誘導弾44の誘導ができないので、シュータ機40Aが発射した誘導弾44の誘導を、ガイダ機40Bが行うこととなる。
 なお、ガイダ機40Bは、誘導弾44を誘導可能範囲の端周辺で捉えて誘導弾44の誘導を行いながら目標機42からの回避を行う、所謂A-Poleをその軌道とする。同様にセンサ機40Cも、目標機42を索敵・追尾可能範囲の端周辺で索敵や追尾しながら目標機42からの回避を行うA-Poleをその軌道とする。
 このように、目標機42に対する航空機40毎の役割に応じて、航空機40の軌道は決定される。
 次に、本実施形態に係る航空機管理装置10による航空機40の軌道の算出(以下「最適軌道算出」という。)について説明する。
 航空機管理装置10は、編隊に参加している複数の航空機40の軌道を算出するために、連続変数(状態変数及び制御変数)を離散化することで最適解を得る計算法、例えばDirect Collocation with Nonlinear Programming(DCNLP)が用いられる。
 より詳しくは、DCNLPは、時間の関数である連続問題の連続変数を離散化することで、最適制御問題を非線形計画問題として扱い、目的関数(評価関数)の値が最小又は最大となる解を求めるものである。なお、DCNLPは、状態変数に対する不等式制約条件を扱いやすく、初期条件や制約条件に対するロバスト性が高い。また、運動方程式を制約条件として扱うこともできる。
 図3は、DCNLPの概念を示す模式図である。なお、図3の縦軸及び横軸は共に状態変数とされる。
 DCNLPでは、問題を時間tによってN個のノード(以下「離散点」ともいう。)t~tに離散化する。本実施形態に係るDCNLPでは、航空機40の挙動を示す運動方程式に対して制御変数を代入することで状態変数をノードとして算出する。なお、これに限らず、他の適切な方法によって状態変数がノードとして設定されてもよい。
 まず、ノードt~tの初期推定解を算出するために、制御変数の初期値が運動方程式に代入される。なお、ノードt~tの初期推定解については、制御変数を運動方程式に代入する方法の他に、他の適切な方法によって設定されてもよい。このノードは、各ノードにおける制御変数や状態変数の微小変化に対する目的関数の変化分に基づき、修正される(図3の計算途中)。そして、後述する制約条件を満たし、かつ目的関数(評価関数ともいう。)の値が最小(又は最大)となるノードが航空機40の軌道としての最適解とされる。なお、算出されたノードの間は、例えば多項式等により補間される。
 このように、航空機40の軌道を時間的に連続したものとして算出するよりも、DCNLPを用いて状態変数や制御変数を離散化して扱うことにより計算量が少なくなり、短時間での軌道算出が可能となる。
 しかしながら、このノードは、連続していないために状態変数によっては、実際の航空機40では実現できない軌道ともなり得る。そこで、算出した次のノードと実際にあるべき次のノードとのずれ量が0(零)とする制約条件が与えられる。この制約条件は、DCNLPでいうところのdefectであり、この制約条件を満たすことにより、算出されたノードは航空機40の運動方程式を満たしたものとなり得る。
 図4は、DCNLPのdefectの概念を示す模式図である。図4において、横軸が時間であり、縦軸が航空機40の位置を示す状態変数であり、ノードA(t,X)とノードC(tk+1,Xk+1)が隣接する二つの離散点である。そして、本来、ノードA,Cは、航空機40の軌道上の位置であるため、微分方程式fの関係で繋がるはずである。
 そこで、ノードA,Cの微分値である傾きを各々f,fk+1とし、隣接する二つのノードA,C間の差と二つのノードA,Cにおける傾きf,fk+1に基づく変化量との差を0とすることを、defectで定義される制約条件とする。
 そして、下記(1)式で表される二つのノードA,Cの平均微分値を用いて、二つのノードA,Cにおける傾きf,fk+1に基づく変化量を下記(2)式のように表す。下記(2)式で算出される値は、図4における点Bとなる。なお、(2)式に基づく点Bの算出方法は、一例であり、これに限られるものではない。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
 このように、点Bは、前のノードAから帰納的に求まる値であり、状態変数が運動方程式を満たしているならば点BとノードCとは一致するものであり、点BとノードCとのズレがdefectとなる。具体的には、二つのノードA,C間の差(Xk+1-X)と(2)式で表される変化量vとの差がdefectとなる。
 すなわち、defectは、隣接するノードA,Cの微分値に基づいて求まる点BとノードCとの残差であり、defectをζとした下記(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
 
 そして、ζ=0となれば、点BとノードCとが一致し、DCNLPを用いて算出されたノードA,Cは運動方程式を満たすこととなる。このように、defectで定義される制約条件を満たす解(状態変数)は運動方程式を満たしながら滑らかに連続することとなる。
 そして、航空機管理装置10は、defectで定義される制約条件、及び航空機40の役割に応じた制約条件を満たす軌道のうち、役割に応じた目的関数によって得られる目的関数値(評価値)に基づいて最適な軌道を決定する。
 以下に、航空機40の役割に応じた制約条件について詳細に説明する。
 なお、航空機40の役割とは、例えば、上述したように誘導弾44の発射を行うシュータ(シュータ機40A)、目標の索敵や追尾を行うセンサ(センサ機40C)、及び誘導弾44の誘導を行うガイダ(ガイダ機40B)である。
 まず、本実施形態に係る状態変数Xは、航空機40の姿勢を示す方位角をψ、航空機40の位置を示す我機座標をx,yとして、下記(4)式で表される。なお、一例として、我機座標xは北方向を基準とし、我機座標yは東方向を基準とする。また、本実施形態では、航空機40の速度及び高度は一定としているが、速度及び高度も状態変数としてもよい。
Figure JPOXMLDOC01-appb-M000004
 
 運動方程式における制御変数uは、迎角をα、バンク角をφ、推力をTとして、下記(5)式で表される。
Figure JPOXMLDOC01-appb-M000005
 
 そして、航空機40の運動方程式は、一例として、質量をm、速度をv、飛行経路角をγ、揚力をL、抗力をDとして、下記(6)式の3自由度運動方程式で表される。(6)式で表される運動方程式に上述した制御変数を離散変数として代入することで、航空機40の状態変数が算出され、これにより航空機40の軌道の初期推定解が算出されることとなる。なお、これに限らず、他の適切な方法によって状態変数を設定することにより、航空機40の軌道の初期推定解が設定されてもよい。
Figure JPOXMLDOC01-appb-M000006
 
 次に航空機40の役割に応じた制約条件について具体的に説明する。
 まず、航空機40の役割にかかわらず共通の制約条件(以下「共通制約条件」という。)について説明する。
 共通制約条件は、下記(7)式から(10)式で表される。
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000009
 
 (7)式は、defect:ζ=0とする制約条件である。(8)式は、速度を一定とする制約条件であり、Dは抗力である。(9)式は、高度を一定とする制約条件である。なお、(7)式から(9)式のように等式で表される制約条件を等式制約条件という。
 なお、速度の変化を許容する場合は、(8)式の右辺を0とせずに、例えばある一定の範囲としてもよい。また、高度の変化も許容する場合には、(9)式の右辺を0とせずに、例えばある一定の範囲としてもよい。さらに、(8),(9)式とは異なる他の制約条件を追加してもよい。
Figure JPOXMLDOC01-appb-M000010
 
 (10)式のNzは航空機40の旋回時に加えられる垂直荷重倍数(以下「旋回G」という。)であり、(10)式では一例として、4G以上の旋回Gが加えられないように制約される。この旋回Gの上限は、航空機40の性能や航空機40の戦闘状況に応じて決定されるものであり、MRM戦よりも近接戦闘においてはより大きな値とされてもよい。
 また、(10)式のように不等式で表される制約条件を不等式制約条件という。
 次にセンサ機40Cに特有の制約条件及び目的関数について、図5を参照して説明する。図5において、縦軸方向が南北(図面上方向が北)であり、横軸方向が東西(図面右方向が東)である。なお、ガイダ機40Bの制約条件及び目的関数は、索敵・追尾可能範囲と誘導可能範囲(誘導弾44を捉えることができる誘導電波の覆域)とが同一である場合、センサ機40Cと同様である。
 また、以下の説明において、目標機42の軌道は、一例として直進と仮定するが、これに限らず、目標機42の軌道を他のシミュレーション等を用いて直進以外としてもよい。
 センサ機40Cは、彼機である目標機42を常にレーダの覆域内に捉えることが必要あり、これがセンサ機40Cの役割に応じた制約条件となる。この制約条件は、アジマス方向のレーダ覆域をRCAZとし、我機から見た彼機の方位をψBtoRとして、下記(11)式で表される。
Figure JPOXMLDOC01-appb-M000011
 
 (11)式は、センサ機40Cの軌道を算出するための不等式制約条件となる。なお、センサ機40Cの等式制約条件は、一例として不要としているが、何かしらの等式制約条件を設定してもよい。
 センサ機40Cの役割に応じた目的関数J(ξ)は、彼機座標を(xred,yred)とし、重み係数をk,kとして、下記(12)式で表される。なお、目的関数J(ξ)には、状態変数X及び制御変数uが入力され、これによって求められる目的関数値が評価値とされる。
Figure JPOXMLDOC01-appb-M000012
 
 目的関数J(ξ)である(12)式の右辺の第1項は、各ノード(離散点)における航空機40(我機)と目標機42(彼機)との距離(以下「彼我間距離」という。)の総和であり、第2項は、各ノードにおける航空機40(我機)のバンク角の二乗和である。
 航空機40は、可能な限り目標機42から離れることが好ましいため、第1項の値はより大きい方が好ましい。第2項は、バンク角の安定性を示した項であり、第2項の値が小さい程、バンク角の変動が少ない安定した軌道となるため、第2項の値は小さい方が好ましい。さらに、彼我間距離及びバンク角の目的関数J(ξ)に対する重みを調整するために、第1項及び第2項には重み係数k,kが乗算される。
 また、目的関数値が小さい程評価を高くするために、第1項は負の関数とされ、第1項に第2項が加算される。
 次にシュータ機40Aに特有の制約条件及び目的関数について、図6を参照して説明する。なお、図6において、縦軸方向が南北(図面上方向が北)であり、横軸方向が東西(図面右方向が東)である。
 シュータ機40Aは、誘導弾発射時に機首が目標機42に向いている必要がある。これがシュータ機40Aの役割に応じた制約条件となる。この制約条件は、誘導弾44の発射時刻をtshootとし、そのときの我機の方位をψ(tshoot)として、下記(13)式で表される。
Figure JPOXMLDOC01-appb-M000013
 
 なお、(13)式は等式制約条件とはされずに、左辺が所定角度の範囲内(例えば±5°)とされる不等式制約条件とされてもよい。
 また、シュータ機40Aは、誘導弾発射時に彼我間距離が誘導弾44の射程範囲Rmaxl内であり、かつ、シミュレーション時間内に誘導弾44を発射することが不等式制約条件となる。この不等式制約条件は、シミュレーション時間をtからtとし、誘導弾発射時間をtshootとして、下記(14)式で表される。なお、一例として、射程範囲Rmaxlは、シュータ機40Aと目標機42との相対角(アングル・オフ)によって異なるものである。
Figure JPOXMLDOC01-appb-M000014
 
 また、シュータ機40Aの役割に応じた目的関数J(ξ)は、重み係数をk~kとして、下記(15)式で表される。
Figure JPOXMLDOC01-appb-M000015
 
 (15)式の右辺の第1項はシミュレーションの開始から誘導弾発射までの時間であり、第2項は誘導弾発射時の彼我間距離であり、第3項は被我間距離の最小値(以下「最小彼我間距離」という。)であり、第4項は誘導弾発射後の彼我間距離の総和であり、第5項は各ノードにおける我機のバンク角の二乗和である。なお、第1項から第5項には各々重み係数k~kが乗算される。
 すなわち、シュータ機40Aは、誘導弾発射時までの時間を小さく、かつ、誘導弾発射時の彼我間距離を大きく、かつ最小彼我間距離を大きく、かつ誘導弾発射後の彼我間距離の和を大きくする軌道であることが好ましい。そして、(15)式で表される目的関数J(ξ)によって算出される値が小さい方がより評価が高い。
 (12)式及び(15)式に示されるように目的関数J(ξ)は、航空機40の役割にかかわりなく、航空機40と目標機42との間の距離である彼我間距離を算出するための関数が含まれ、彼我間距離が役割に応じて適した値となる軌道が最適な軌道とされる。
 次に、上述したDCNLPを用いた最適軌道算出(「制約条件付き非線形計画問題」ともいう。)について説明する。
 図7は、最適軌道算出の処理の流れを示すフローチャートである。最適軌道算出は、航空機管理装置10によって実行される。
 まず、ステップ100では、初期推定解となる制御変数uを運動方程式に代入することで航空機40の機動を算出するが、初期推定解は他の適切な方法で設定されてもよい。ここで、初期推定解によって求解の実現可能性や求解までの計算時間が変化するので、制約条件をより確実に満たす初期推定解とする必要がある。なお、初期推定解となる制御変数uは、一例として、航空機40のパイロット自身が経験値に基づいて設定する。
 ステップ102では、設定された役割に応じた制約条件を満たす制御変数u及び状態変数Xが役割に応じた目的関数J(ξ)に代入され、目的関数値J(評価値)が算出される。
 次のステップ103では、制御変数・状態変数(制御変数及び状態変数少なくとも一方)の微小変化量を算出する。なお、ステップ103では、一例として、微小変化量を制御変数・状態変数に応じた予め定められた値とする。
 次のステップ104では、制御変数・状態変数(制御変数及び状態変数少なくとも一方)を修正する。なお、制御変数・状態変数の修正量は、制御変数・状態変数の前回の微小変化に対する目的関数値Jの変化分に応じて算出される。
 次のステップ106では、修正した制御変数・状態変数を用いて目的関数値Jを算出する。
 次のステップ108では、制御変数・状態変数の微小変化に対する目的関数値Jの変化量を算出する。
 次のステップ110では、評価の終了条件を満たしたか否かを判定し、肯定判定の場合は本シミュレーションを終了する。一方、否定判定の場合はステップ104へ戻り、制御変数や状態変数を微小変化させ、目的関数値の変化量の算出を繰り返す。
 ここで、ステップ110における評価の終了条件について、図8を参照して説明する。図8は、横軸が制御変数・状態変数ξを示し、縦軸が目的関数値Jを示し、点a~eは制御変数・状態変数ξに対する目的関数値Jの変化を示している。
 終了条件としては、例えば下記のように4つの条件がある。
 条件1:制御変数・状態変数ξの変化量が許容値Tolξよりも小さくなった場合。
 条件2:目的関数値Jの変化量が許容値TolFunよりも小さくなった場合。
 条件3:1次の最適性の尺度が許容値未満となった場合。
 条件4:ステップ104からステップ108までの反復回数、又は目的関数値Jの評価回数が許容値よりも大きくなった場合。
 次に上記条件3における1次の最適性について説明する。
 制約条件付き非線形計画問題に対する1次の最適性は、Karush-Kuhu-Tucker条件(以下「KKT条件」)に基づいて求められる。
 KKT条件は、制約条件が無い場合に目的関数J(ξ)の最小値近傍(図8における点e近傍であり、目的関数値Jの変化が下に凸の状態)において、傾きである勾配∇J(ξ)が略零になるという条件に相当する。しかし、制約条件を考慮する場合には下記(16)式で表される定義となる。
 なお、1次の最適性を満たすことは、必要条件ではあるが十分条件ではない。目的関数値Jの変化が上に凸となる最大値近傍においても勾配∇J(ξ)=0となり得るためである。
 そして、KKT条件に使用するラグランジュ関数L(ξ,λ)を下記(16)式のように表す。なお、下記(16)式において、g(ξ)は不等式制約条件式であり、h(ξ)は等式制約条件である。そして、λは不等式制約条件式に関するラグランジュ乗数であり、λは等式制約条件式に関するラグランジュ乗数である。
Figure JPOXMLDOC01-appb-M000016
 
 そして、満たすべきKKT条件は、ラグランジュ関数を用いて下記(17),(18)式のように表される。
Figure JPOXMLDOC01-appb-M000017
 
Figure JPOXMLDOC01-appb-M000018
 
 さらに、最適解の十分性を示す2次の十分条件は、ラグランジュ関数L(ξ,λ)のHessian行列が、下記(19)式で表されるように正定となる条件である。
Figure JPOXMLDOC01-appb-M000019
 
 (19)式は、目的関数値Jの変化が制御変数・状態変数ξに対して下に凸の状態であることを示している。このため、必要条件である1次の最適性に加えて2次の十分条件を満たす場合に、目的関数値Jが最適解であるといえる。
 次に、図9から図12を参照して、最適軌道算出結果の例について説明する。図9A、図10A、図11A、図12Aは最適軌道算出によって得られた我機の最適軌道解を示し、図9B、図10B、図11B、図12Bは、制御変数である迎角、バンク角、及び推力の離散化された時間変化と共に、参考情報としての旋回Gの時間変化のグラフである。
 また、図9A、図10A、図11A、図12AのX=0[NM]から最適軌道算出が開始される我機のうち、白色が初期推定解であり、斜線でハッチングされたものが最適軌道算出によって算出された最適軌道解である。なお、目標機42は北方向から直進すると仮定している。
 図9,10はセンサ機40Cの最適軌道算出結果であり、図9はセンサ覆域が±60°であり、図10はセンサ覆域が±120°である。
 図11,12はシュータ機40Aの最適軌道算出結果であり、図11は誘導弾44の射程範囲が約50マイル、図12は誘導弾44の射程範囲が約80マイルである。なお、図11,12における一点鎖線で囲まれた範囲は誘導弾44の大まかな射程範囲を示している。
 次に、航空機40の軌道と役割の同時最適化(以下「同時最適化処理」という。)について説明する。
 本実施形態に係る同時最適化処理は、上述した最適軌道算出と共に行われる。
 同時最適化処理では、上述した役割に応じた目的関数及び制約条件をすべて統合して扱う。さらに、役割に応じた目的関数及び制約条件の各々に対して、変数(以下「インディケータ変数」という。)が付与される。このインディケータ変数は、航空機40に設定した役割に対応しない目的関数及び制約条件を無効化するためのものである。
 そして、同時最適化処理は、航空機40に設定した役割に対応しない目的関数及び制約条件が無効となるように、インディケータ変数の値を目的関数毎及び制約条件毎に決定する。無効化された目的関数及び制約条件は、航空機40の軌道の算出に影響を与えないこととなるので、無効とされない目的関数及び制約条件のみに基づいて軌道が算出されることとなる。
 そして、同時最適化処理は、航空機40の役割、すなわち無効とする目的関数及び制約条件を変化させる毎に、航空機40の軌道を算出してその結果を評価することによって、航空機40の最適な役割及び軌道を同時に決定することができる。
 なお、本実施形態に係るインディケータ変数は、一例として、1又は0に変化される。
 これにより、航空機40に設定した役割に対応する目的関数及び制約条件に付与されたインディケータ変数は1とされて有効とされる。一方、航空機40に設定した役割に対応しない目的関数及び制約条件に付与されたインディケータ変数は0とされ、無効化される。
 換言すると、インディケータ変数によって航空機40の役割が設定される。すなわち、インディケータ変数が1とされた目的関数及び制約条件に対応する役割が、航空機40の役割として設定されることとなる。
 次に航空機40の役割の決定について具体的に説明する。なお、以下の説明では、一例として、航空機40である我機が2機であり、目標機42である彼機が2機であると仮定して説明する。このため、2機の我機はB#1、B#2で表記され、2機の彼機はR#1、R#2で表記される。
 航空機40の役割をシュータ機40A(SHT)とする場合における、目的関数及び制約条件を表1に示す。
Figure JPOXMLDOC01-appb-T000020
 表1におけるαはB#1又はB#2であり、βはR#1又はR#2である。
 一例として、目的関数JSHT B#1,R#2は、B#1がR#2へ誘導弾44を発射する場合の目的関数値である。また、不等式制約条件gSHT B#1,R#2は、B#1がR#2へ誘導弾44を発射する場合の不等式制約条件である。また、等式制約条件hSHT B#1,R#2は、B#1がR#2へ誘導弾44を発射する場合の等式制約条件である。
 次に、航空機40の役割をセンサ機40C(SNS)とする場合における、目的関数及び制約条件を表2に示す。
Figure JPOXMLDOC01-appb-T000021
 表2におけるαはB#1又はB#2であり、βはR#1又はR#2である。
 一例として、目的関数JSNS B#1,R#1は、B#1がR#2を索敵・追尾する場合の目的関数である。また、不等式制約条件gSHT B#1,R#1は、B#1がR#2を索敵・追尾する場合の不等式制約条件である。なお、等式制約条件は、上述したDCNLPで説明したように一例として不要とする。
 また、設定された役割にかかわらず、2機の我機に共通の制約条件が表3に示すように設定されてもよい。
Figure JPOXMLDOC01-appb-T000022
 表3における不等式制約条件のαはB#1又はB#2、若しくはB#1とB#2である。そして、特に、αをB#1とB#2とした不等式制約条件は、僚機同士の衝突回避を目的とし、B#1とB#2との距離が所定値よりも長くなることを条件としたものである。
 次に、インディケータ変数について説明する。
 表4はインディケータ変数の種類を示したものである。表4においてインディケータ変数はδijで表記される。タスクiは我機が行う役割を示し、エージェントjはタスク(役割)を行う我機を示す。
Figure JPOXMLDOC01-appb-T000023
 そして、タスクiをエージェントjに割り当てる場合はδij=1とされ、タスクiをエージェントjに割り当てない場合はδij=0とされる。例えば、エージェントであるB#1がR#1に誘導弾44を発射するというタスクを行う場合は、δ11は1とされる一方、他のタスクiとエージェントjの組み合わせのδijは0とされる。
 なお、本実施形態では、一例として、同一の目標機42に対して、同一の役割の航空機40が複数割り当てられることはない。すなわち、例えばδ11=1の場合にはδ12=0となる。このことは、タスク(役割)の割り当てに関する等式制約条件htsk=0となり、より具体的には下記(20)式で表される。
Figure JPOXMLDOC01-appb-M000024
 
 すなわち、タスクの割り当てに関する制約条件は、1機の我機は1つの役割しか割り当てられないというものである。
 次に、統合した目的関数と統合した制約条件に付いて説明する。
 下記(21)式は、統合した目的関数(以下「統合目的関数JINT」という。)である。
Figure JPOXMLDOC01-appb-M000025
 
 統合目的関数JINTは、目的関数毎にインディケータ変数δijが乗算され、インディケータ変数δijが乗算された目的関数の総和とされる。そして、統合目的関数JINTから目的関数値(評価値)を算出する場合に、全ての目的関数のインディケータ変数δijが1又は0とされる。
 下記(22)式は、統合した等式制約条件(以下「統合等式制約条件hINT」という。)である。統合等式制約条件hINTは、各等式制約条件を一括して扱う。
Figure JPOXMLDOC01-appb-M000026
 
 なお、上述したようにセンサ機40Cには等式制約条件が設定されないので、(22)式はセンサ機40Cに特有の等式制約条件が含まれていない。しかしながら、センサ機40Cにも等式制約条件が設定されている場合は、下記(23)式で表されるセンサ機40Cに特有の等式制約条件が(22)式に追加される。
Figure JPOXMLDOC01-appb-M000027
 
 統合等式制約条件hINTは、等式制約条件毎にインディケータ変数δijが乗算される。そして、統合等式制約条件hINTの可否を判定する場合に、全ての等式制約条件のインディケータ変数δijが1又は0とされる。
 上記(21)式から(23)式で表されるように、インディケータ変数δijは、目的関数及び等式制約条件に対して各々乗算される。そして、航空機40に設定した役割に対応する目的関数及び等式制約条件に付与されているインディケータ変数δijは1とされる。一方、航空機40に設定した役割に対応しない、不要な目的関数及び等式制約条件に付与されているインディケータ変数δijは0とされ、不要な目的関数及び等式制約条件は無効化される。
 このように、インディケータ変数δijによって不要な目的関数の値は0となるので、統合目的関数JINTは不要な目的関数の影響を受けることなく、航空機40に設定した役割に応じた目標関数値(評価値)を算出できる。また、不要な等式制約条件の値が0となることで等式制約条件が成立するので、統合等式制約条件hINTは不要な等式制約条件の影響を受けることなく、航空機40に設定した役割に応じた等式制約条件のみを判定できる。
 さらに、下記(24)式は、統合した不等式制約条件(以下「統合不等式制約条件gINT」という。)である。
Figure JPOXMLDOC01-appb-M000028
 
 統合不等式制約条件gINTは、不等式制約条件に対して0とされると不等式が成立するようにインディケータ変数δijが付与される。具体的には、(24)式に表されるように、不等式制約条件毎に“(1-δij)・M”の項が付与され、gの値はこの項で減算される。なお、Mは、想定されるgの値よりも十分に大きな正の整数である。そして、統合不等式制約条件gINTの可否を判定する場合に、全ての不等式制約条件のインディケータ変数δijが1又は0とされる。
 すなわち、航空機40の役割に対応した不等式制約条件のインディケータ変数δijは1とされるので、上記項の値は0となり、上記項の影響はない。一方、航空機40の役割に対応しない、不要な不等式制約条件ではインディケータ変数δijが0とされ、上記項は大きな整数となっていかなる状態においても不等式が成立し、統合不等式制約条件gINTに影響を与えないこととなる。従って、統合不等式制約条件gINTは不要な不等式制約条件の影響を受けることなく、航空機40に設定した役割に応じた不等式制約条件のみを判定できる。
 図13は、本実施形態に係る航空機管理装置10における航空機40の役割及び軌道の同時最適化(以下「役割軌道最適化処理」という。)に関する機能ブロック図である。
 CPU12は予めHDD18に記憶されているプログラムを実行することにより、役割決定部50、軌道決定部52、及び最適解判定部54の機能を有する。また、HDD18には、上述した統合目的関数JINT、統合等式制約条件hINT、及び統合不等式制約条件gINTが記憶されている。
 役割決定部50は、航空機40の役割を決定する。
 具体的には、役割決定部50は、統合目的関数JINT、統合等式制約条件hINT、及び統合不等式制約条件gINTをHDD18から読み出し、航空機40に設定した役割に応じて、統合目的関数JINT、統合等式制約条件hINT、及び統合不等式制約条件gINTのインディケータ変数δijを1又は0とする。
 軌道決定部52は、役割決定部50によってインディケータ変数δijが1又は0とされた後の統合目的関数JINT、統合等式制約条件hINT、及び統合不等式制約条件gINTに基づいて、図7に示される最適軌道算出を行うことによって航空機40の役割に応じた最適な軌道を算出する。
 なお、役割決定部50は、インディケータ変数δijを変化させることで、航空機40に設定する役割を変化させる。そして、軌道決定部52は、航空機40に設定する役割が変化される毎に、航空機40の役割に応じた最適な軌道を算出する。
 最適解判定部54は、航空機40に設定した役割毎に算出された複数の軌道のうち、統合目的関数を最も小さくする役割とそのときの軌道を、最適な役割及び最適な軌道とし、実際に航空機40に設定する役割及び軌道として決定する。
 これにより、航空機40の役割及び軌道が同時に最適化される。
 なお、役割軌道最適化処理では、航空機40の役割を変化させるために、例えば遺伝的アルゴリズム等の進化的計算手法や分岐限定法を用い、このループの中でDCNLPを解くことで最適な軌道が算出される。
 なお、航空機管理装置10は、一例として、編隊を構成する全ての航空機40が有しているが、例えば、所定の僚機(例えばリーダ機)が役割軌道最適化処理を実行して僚機の役割及び軌道を決定し、決定した役割及び軌道は役割軌道情報として僚機に送信する。僚機に送信された役割軌道情報は、僚機のMFDに表示され、僚機のパイロットは表示された情報に従って操縦する。
 以上説明したように、本実施形態に係る航空機管理装置10は、離散化した航空機40の制御変数を航空機40の運動方程式に代入することで軌道を示すN個のノードを算出し、又は他の適切な方法で軌道を示すNこのノードを設定し、各ノード間において、次のノードと実際にあるべき次のノードとのずれ量を0とする制約条件及び航空機40の役割に応じた制約条件を満たす軌道のうち、役割に応じた目的関数によって得られる評価値に基づいて最適な軌道を決定する。
 このように、航空機管理装置10は、連続変数を離散化することで最適解を得る計算法を用いることによって、航空機40の役割に応じたより最適な軌道をより短時間で算出できる。
 また、航空機管理装置10は、役割に応じた目的関数及び制約条件の各々に対してインディケータ変数を付与し、航空機40に設定した役割に対応しない目的関数及び制約条件が無効となるように、インディケータ変数の値を目的関数毎及び制約条件毎に決定する。
 従って、航空機管理装置10は、航空機40の役割、すなわち無効とする目的関数及び制約条件を変化させる毎に、航空機40の軌道を算出してその結果を評価することによって、航空機40の最適な役割及び軌道を同時に決定することができる。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。
 例えば、上記実施形態では、役割軌道最適化処理は航空機40が行う形態について説明したが、本発明は、これに限定されるものではなく、編隊に参加している航空機40全てで分散処理しても良いし、航空機40から各種情報を受信した地上設備が行い、決定した航空機40の役割及び軌道を各航空機40へ送信する形態としてもよい。
 また、上記実施形態で説明した最適軌道算出及び役割軌道最適化処理に関する処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
 10  航空機管理装置
 40  航空機
 42  目標機
 44  誘導弾
 50  役割決定部
 52  軌道決定部

Claims (11)

  1.  連続変数を離散化することで最適解を得る計算法を用いて、編隊に参加している複数の航空機の軌道を算出する航空機管理装置であって、
     離散化した前記航空機の制御変数を前記航空機の運動方程式に代入することで前記軌道を示す離散点を算出し、前記航空機の役割に応じた制約条件を満たす前記軌道のうち、前記役割に応じた目的関数によって得られる評価値に基づいて最適な前記軌道を決定する軌道決定手段と、
    を備える航空機管理装置。
  2.  前記役割に応じた前記目的関数及び前記制約条件の各々に対して変数が付与され、
     前記航空機に設定した前記役割に対応しない前記目的関数及び前記制約条件が無効となるように、前記変数の値を前記目的関数毎及び前記制約条件毎に決定する役割決定手段を備える請求項1記載の航空機管理装置。
  3.  前記変数は、1又は0である請求項2記載の航空機管理装置。
  4.  前記変数は、前記目的関数及び等式とされる前記制約条件に対して乗算される請求項3記載の航空機管理装置。
  5.  前記変数は、不等式とされている前記制約条件に対して前記変数が0とされると不等式が成立するように付与される請求項3又は請求項4記載の航空機管理装置。
  6.  前記目的関数は、前記航空機と目標との間の距離を算出するための関数が含まれる請求項1から請求項5の何れか1項記載の航空機管理装置。
  7.  前記制約条件は、前記航空機の役割が目標の索敵・追尾である場合、目標を常にレーダの覆域内に捉えることである請求項1から請求項6の何れか1項記載の航空機管理装置。
  8.  前記制約条件は、前記航空機の役割が誘導弾の誘導である場合、目標を常に誘導電波の覆域内に捉えることである請求項1から請求項7の何れか1項記載の航空機管理装置。
  9.  前記制約条件は、前記航空機の役割が誘導弾の発射である場合、誘導弾発射時に該航空機の機首が目標に向いていること、かつ誘導弾の発射時に目標が誘導弾の射程範囲内に位置することである請求項1から請求項8の何れか1項記載の航空機管理装置。
  10.  請求項1から請求項9の何れか1項記載の航空機管理装置を備えた航空機。
  11.  連続変数を離散化することで最適解を得る計算法を用いて、編隊に参加している複数の航空機の軌道を算出する航空機の軌道算出方法であって、
     離散化した前記航空機の制御変数を前記航空機の運動方程式に代入することで前記軌道を示す離散点を算出し、前記航空機の役割に応じた制約条件を満たす前記軌道のうち、前記役割に応じた目的関数によって得られる評価値に基づいて最適な前記軌道を決定する航空機の軌道算出方法。
PCT/JP2016/070413 2015-07-17 2016-07-11 航空機管理装置、航空機、及び航空機の軌道算出方法 WO2017014085A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16827646.7A EP3255371B1 (en) 2015-07-17 2016-07-11 Aircraft control device, aircraft, and method for computing aircraft trajectory
US15/561,645 US10627834B2 (en) 2015-07-17 2016-07-11 Aircraft control device, aircraft, and method for computing aircraft trajectory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-143183 2015-07-17
JP2015143183A JP6517104B2 (ja) 2015-07-17 2015-07-17 航空機管理装置、航空機、及び航空機の軌道算出方法

Publications (1)

Publication Number Publication Date
WO2017014085A1 true WO2017014085A1 (ja) 2017-01-26

Family

ID=57833984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070413 WO2017014085A1 (ja) 2015-07-17 2016-07-11 航空機管理装置、航空機、及び航空機の軌道算出方法

Country Status (4)

Country Link
US (1) US10627834B2 (ja)
EP (1) EP3255371B1 (ja)
JP (1) JP6517104B2 (ja)
WO (1) WO2017014085A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121015A (zh) * 2017-06-16 2017-09-01 湖北航天技术研究院总体设计所 一种快速弹上弹道在线规划方法
CN111045447A (zh) * 2019-11-21 2020-04-21 浙江大学 高精度的高超声速飞行器轨迹优化多尺度最优控制系统
CN113221389A (zh) * 2021-06-17 2021-08-06 中国人民解放军火箭军工程大学 一种飞行器发射时间筹划方法及系统
CN114510067A (zh) * 2022-01-28 2022-05-17 北京航空航天大学 一种可重复使用飞行器近似最优制导方法
CN115145295A (zh) * 2022-07-13 2022-10-04 西北工业大学 一种动态环境下无人机在线自主航迹优化控制方法
CN115327499A (zh) * 2022-08-16 2022-11-11 扬州宇安电子科技有限公司 一种基于载荷无人机的雷达目标航迹模拟方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678506B2 (en) 2014-06-19 2017-06-13 Skydio, Inc. Magic wand interface and other user interaction paradigms for a flying digital assistant
US12007763B2 (en) 2014-06-19 2024-06-11 Skydio, Inc. Magic wand interface and other user interaction paradigms for a flying digital assistant
US9798322B2 (en) 2014-06-19 2017-10-24 Skydio, Inc. Virtual camera interface and other user interaction paradigms for a flying digital assistant
US9564056B1 (en) * 2015-09-03 2017-02-07 General Electric Company Flight path optimization using nonlinear programming
US10435176B2 (en) 2016-05-25 2019-10-08 Skydio, Inc. Perimeter structure for unmanned aerial vehicle
US10520943B2 (en) 2016-08-12 2019-12-31 Skydio, Inc. Unmanned aerial image capture platform
US11295458B2 (en) 2016-12-01 2022-04-05 Skydio, Inc. Object tracking by an unmanned aerial vehicle using visual sensors
CN109186611B (zh) * 2018-10-31 2020-09-15 南京航空航天大学 无人机飞行路径分配方法及装置
CN109840916B (zh) * 2019-01-22 2019-12-13 中国海洋大学 高频地波雷达舰船目标跟踪算法的测评方法
US11573577B2 (en) * 2019-01-30 2023-02-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method and system for optimal trajectory path tasking for an unmanned aerial vehicle (UAV)
CN110470306B (zh) * 2019-08-27 2023-03-10 中山大学 一种可保证连通性约束的基于深度强化学习的多机器人编队导航方法
CN113093716B (zh) * 2019-12-19 2024-04-30 广州极飞科技股份有限公司 一种运动轨迹规划方法、装置、设备及存储介质
CN116513467B (zh) * 2023-04-27 2023-12-26 华中科技大学 一种考虑进气安全的高速飞行器优化控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025966A (ja) * 2002-06-24 2004-01-29 Mitsubishi Heavy Ind Ltd 航空機の機動選択システム
WO2014083993A1 (ja) * 2012-11-29 2014-06-05 三菱重工業株式会社 航空機管理装置、航空機、及び航空機管理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536051B2 (ja) 1972-07-20 1978-03-04
US20040068351A1 (en) * 2002-04-22 2004-04-08 Neal Solomon System, methods and apparatus for integrating behavior-based approach into hybrid control model for use with mobile robotic vehicles
FR2897959B1 (fr) 2006-02-28 2008-04-04 Airbus France Sas Dispositif d'aide au guidage d'un aeronef suiveur faisant partie d'une patrouille, ainsi qu'un systeme d'aide a un vol en patrouille comportant un tel dispositif.
ATE514986T1 (de) * 2007-10-15 2011-07-15 Saab Ab Verfahren und vorrichtung zur erzeugung mindestens einer gewählten flugbahn eines fahrzeugs
JP5306051B2 (ja) 2008-05-20 2013-10-02 三菱電機株式会社 火力配分装置
CN107655362A (zh) * 2009-02-02 2018-02-02 威罗门飞行公司 多模式无人驾驶航空飞行器
JP5748506B2 (ja) 2011-02-28 2015-07-15 三菱重工業株式会社 管制装置、航空機、及び管制方法
FR3021107B1 (fr) * 2014-05-16 2018-01-26 Thales Procede d'aide a la navigation d'un aeronef avec correlation d'informations dynamiques avec une trajectoire de vol 4d

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025966A (ja) * 2002-06-24 2004-01-29 Mitsubishi Heavy Ind Ltd 航空機の機動選択システム
WO2014083993A1 (ja) * 2012-11-29 2014-06-05 三菱重工業株式会社 航空機管理装置、航空機、及び航空機管理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GEIGER, BRIAN: "Unmanned Aerial Vehicle Trajectory Planning with Direct Methods", THE PENNSYLVANIA STATE UNIVERSITY, August 2009 (2009-08-01), pages 13 - 17, XP055408517 *
RAIVIO, T. ET AL.: "Aircraft Trajectory Optimization using Nonlinear Programming", SYSTEM MODELLING OPTIMIZATION, 1996, pages 435 - 441, XP055349007 *
See also references of EP3255371A4 *
YOKOYAMA, NOBUHIRO ET AL.: "Decentralized Flight Trajectory Planning of Multiple Aircraft", PROCEEDINGS OF LECTURES AND WORKSHOP INTERNATIONAL -RECENT ADVANCES IN MULTIDISCIPLINARY TECHNOLOGY AND MODELING-, JAPAN AEROSPACE EXPLORATION AGENCY, February 2008 (2008-02-01), pages 88 - 97, XP055349005 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121015A (zh) * 2017-06-16 2017-09-01 湖北航天技术研究院总体设计所 一种快速弹上弹道在线规划方法
CN111045447A (zh) * 2019-11-21 2020-04-21 浙江大学 高精度的高超声速飞行器轨迹优化多尺度最优控制系统
CN111045447B (zh) * 2019-11-21 2023-08-29 浙江大学 高精度的高超声速飞行器轨迹优化多尺度最优控制系统
CN113221389A (zh) * 2021-06-17 2021-08-06 中国人民解放军火箭军工程大学 一种飞行器发射时间筹划方法及系统
CN113221389B (zh) * 2021-06-17 2023-08-08 中国人民解放军火箭军工程大学 一种飞行器发射时间筹划方法及系统
CN114510067A (zh) * 2022-01-28 2022-05-17 北京航空航天大学 一种可重复使用飞行器近似最优制导方法
CN115145295A (zh) * 2022-07-13 2022-10-04 西北工业大学 一种动态环境下无人机在线自主航迹优化控制方法
CN115327499A (zh) * 2022-08-16 2022-11-11 扬州宇安电子科技有限公司 一种基于载荷无人机的雷达目标航迹模拟方法
CN115327499B (zh) * 2022-08-16 2023-09-22 扬州宇安电子科技有限公司 一种基于载荷无人机的雷达目标航迹模拟方法

Also Published As

Publication number Publication date
EP3255371B1 (en) 2020-01-29
EP3255371A4 (en) 2018-01-17
US20180074524A1 (en) 2018-03-15
EP3255371A1 (en) 2017-12-13
JP6517104B2 (ja) 2019-05-22
US10627834B2 (en) 2020-04-21
JP2017026190A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2017014085A1 (ja) 航空機管理装置、航空機、及び航空機の軌道算出方法
Taub et al. Intercept angle missile guidance under time varying acceleration bounds
CN107643764B (zh) 一种基于双旋Lyapunov矢量场的无人飞行器避障方法
KR20130087307A (ko) 포탄의 탄도 수정 방법
CN112782984A (zh) 多飞行器反拦截协同打击的制导方法、装置和飞行器
CN114740883B (zh) 一种协同点侦察任务规划跨层联合优化方法
Alkaher et al. Dynamic-escape-zone to avoid energy-bleeding coasting missile
US6473747B1 (en) Neural network trajectory command controller
Alkaher et al. Game-based safe aircraft navigation in the presence of energy-bleeding coasting missile
AU2018273014B2 (en) Mission planning for weapons systems
US9777995B2 (en) System and method for displaying weapon engagement feasibility
CN114742264A (zh) 舰艇编队网络化协同防空任务规划方法及系统
EP2876401A1 (en) System integration
EP2876402A1 (en) System integration
Wei et al. UCAV formation online collaborative trajectory planning using hp adaptive pseudospectral method
GB2522110A (en) System integration
CN116088586B (zh) 一种无人机作战过程中的临机任务规划的方法
Zhou et al. Multi‐UAVs Formation Autonomous Control Method Based on RQPSO‐FSM‐DMPC
Ummah et al. A simple fight decision support system for BVR air combat using fuzzy logic algorithm
Huang et al. Improved UCAV attack trajectory planning algorithm based on GWO and dubins curve
Fügenschuh et al. Flight Planning for Unmanned Aerial Vehicles
JP5797047B2 (ja) フライトシミュレーション装置、フライトシミュレーション方法、及びフライトシミュレーションプログラム
Huang et al. Study on 4D path planning and tracking controlling of UCAV in multiple constraints dynamic condition
CN118466556B (zh) 基于轨迹预判的瞄准点控制方法及系统、无人机、介质
EP3407004A1 (en) Mission planning for weapons systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827646

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016827646

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561645

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE