[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017013841A1 - 飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置 - Google Patents

飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置 Download PDF

Info

Publication number
WO2017013841A1
WO2017013841A1 PCT/JP2016/003143 JP2016003143W WO2017013841A1 WO 2017013841 A1 WO2017013841 A1 WO 2017013841A1 JP 2016003143 W JP2016003143 W JP 2016003143W WO 2017013841 A1 WO2017013841 A1 WO 2017013841A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
flight route
time
air vehicle
unmanned air
Prior art date
Application number
PCT/JP2016/003143
Other languages
English (en)
French (fr)
Inventor
俊介 久原
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016123243A external-priority patent/JP6662720B2/ja
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN201680026930.1A priority Critical patent/CN107532909B/zh
Priority to CN202111597386.5A priority patent/CN114253298B/zh
Publication of WO2017013841A1 publication Critical patent/WO2017013841A1/ja
Priority to US15/841,506 priority patent/US10685573B2/en
Priority to US16/862,713 priority patent/US11257380B2/en
Priority to US17/570,064 priority patent/US11837097B2/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present disclosure relates to a flight route generation method, a flight route generation program, and a flight route display device that generate a flight route of an unmanned air vehicle flying autonomously.
  • This unmanned aerial vehicle includes a plurality of propellers, and can freely fly in the air by controlling the rotation speed of each of the plurality of propellers, and autonomously fly along a predetermined flight route. .
  • the remote control device superimposes a turning position for turning an unmanned mobile body and an operation icon associated with the moving direction at the turning position on the indicated position of the image on the display unit.
  • a travel planning unit that gives a travel instruction by performing a movement instruction, and the unmanned moving body plans a travel route for autonomous movement based on the turning position instructed by the travel instruction unit and the movement direction at the turning position.
  • a flight route generation method is a flight route generation method for generating a flight route of an unmanned air vehicle that autonomously flies, and accepts input of a departure point and a passing point through which the unmanned air vehicle passes.
  • the end time arrival point at which the unmanned air vehicle arrives at the end time of the time zone during which the unmanned air vehicle is permitted to fly is displayed on the flight route passing through the departure point and the passing point.
  • a recording medium such as an apparatus, a system, an integrated circuit, a computer program, or a computer-readable CD-ROM.
  • the apparatus, system, method, computer program, and You may implement
  • Embodiment 1 of this indication It is a figure which shows the structure of the flight control system in Embodiment 1 of this indication. It is a general view showing an example of an unmanned aerial vehicle in Embodiment 1 of the present disclosure. It is a block diagram which shows the structure of the unmanned air vehicle in Embodiment 1 of this indication. It is a block diagram which shows the structure of the communication terminal in Embodiment 1 of this indication. It is a block diagram which shows the structure of the flight route production
  • Embodiment 10 is a second flowchart for describing the flight route generation processing of the communication terminal and the flight route generation server according to Embodiment 1 of the present disclosure. It is a figure which shows an example of the display screen displayed on the display part of a communication terminal in this Embodiment 1.
  • this Embodiment 1 it is a figure which shows an example of the display screen which displays the animation which moves an icon on the flight route which flies by the sunset time.
  • Embodiment 1 it is a figure which shows an example of the display screen which displays the flight route to the passing point just before the sunset point, and the flight route after the passing point immediately before the sunset point in a different mode. It is a block diagram which shows the structure of the flight route production
  • 10 is a first flowchart for describing flight route generation processing of a communication terminal and a flight route generation server according to Embodiment 2 of the present disclosure.
  • 12 is a second flowchart for describing the flight route generation processing of the communication terminal and the flight route generation server according to Embodiment 2 of the present disclosure. It is a figure which shows an example of the display screen displayed on the display part of a communication terminal in this Embodiment 2.
  • Embodiment 2 it is a figure which shows an example of the display screen which displays the passing point which can return to a departure point by the sunset time, and the passing point which cannot return in a different aspect.
  • the second embodiment on the return route returning from the passing point to the departure point, the flight route from the passing point to the end time arrival point and the flight route from the end time arrival point to the departure point are displayed differently.
  • FIG. 15 is a flowchart for describing flight route generation processing of a communication terminal and a flight route generation server according to Embodiment 4 of the present disclosure. It is a figure which shows an example of the display screen displayed on the display part of a communication terminal in this Embodiment 4.
  • FIG. It is a figure which shows an example of the display screen displayed on the display part of a communication terminal in the modification of this Embodiment 4.
  • the movement route for autonomous movement is planned based on the turning position and the moving direction.
  • the unmanned mobile object is autonomous only during the time zone when the unmanned mobile object is allowed to move. There is no disclosure of moving.
  • a flight route generation method is a flight route generation method for generating a flight route of an unmanned air vehicle that autonomously flies, and accepts input of a departure point and a passing point through which the unmanned air vehicle passes.
  • the end time arrival point at which the unmanned air vehicle arrives at the end time of the time zone during which the unmanned air vehicle is permitted to fly is displayed on the flight route passing through the departure point and the passing point.
  • the input of the departure point and the passing point through which the unmanned air vehicle passes is accepted. Then, an end time arrival point at which the unmanned air vehicle arrives at the end time of the time zone in which the flight of the unmanned air vehicle is permitted is displayed on the flight route passing through the departure point and the passing point.
  • the unmanned air vehicle can fly to the user. It is possible to prompt the user to set a flight route to return by the end time of the permitted time zone, and it is possible to prevent the unmanned air vehicle from flying after the end time.
  • the first partial flight route from the departure point to the end time arrival point and the second partial flight route after the end time arrival point are different from each other. It may be displayed.
  • the first partial flight route from the departure point to the end time arrival point and the second partial flight route after the end time arrival point are displayed in different modes, so that the flight is possible.
  • the first partial flight route and the second partial flight route incapable of flying can be easily distinguished.
  • the passing point includes a first passing point through which the unmanned air vehicle passes, and a second passing point through which the unmanned air vehicle passes after the first passing point.
  • the third partial flight route to the passing point immediately before the end time arrival point and the fourth partial flight route after the passing point immediately before the end time arrival point are different from each other in the flight route. It may be displayed.
  • the passing points include a first passing point through which the unmanned air vehicle passes and a second passing point through which the unmanned air vehicle passes after the first passing point.
  • the third partial flight route up to the passing point immediately before the end time arrival point and the fourth partial flight route after the passing point immediately before the end time arrival point are displayed in a different manner.
  • the third partial flight route to the passing point immediately before the end time arrival point and the fourth partial flight route after the passing point immediately before the end time arrival point are displayed in different modes. It is possible to easily distinguish the third partial flight route that can fly and the fourth partial flight route that cannot fly.
  • the passing point includes a first passing point through which the unmanned air vehicle passes, and a second passing point through which the unmanned air vehicle passes after the first passing point. Including.
  • the first passing point that the unmanned air vehicle can reach by the end time and the second passing point that the unmanned air vehicle cannot reach by the end time may be displayed in different modes. Good.
  • the passing points include a first passing point through which the unmanned air vehicle passes and a second passing point through which the unmanned air vehicle passes after the first passing point.
  • a first passing point where the unmanned air vehicle can reach by the end time of the time zone during which the unmanned air vehicle is permitted to fly, and a second passing point where the unmanned air vehicle cannot reach by the end time Are displayed in a different manner.
  • an input of a departure time to depart from the departure point is further received, a first scheduled arrival time at which the unmanned air vehicle reaches the first passing point, and the unmanned air vehicle. May display a second scheduled arrival time at which the second arrival point is reached.
  • a first scheduled arrival time when the unmanned air vehicle reaches the first passing point and a second scheduled arrival time when the unmanned air vehicle reaches the second passing point are displayed. Therefore, the user can confirm the first scheduled arrival time when the unmanned air vehicle reaches the first passing point and the second scheduled arrival time when the unmanned air vehicle reaches the second passing point.
  • the destination point where the unmanned air vehicle finally arrives is the departure point
  • the scheduled arrival time when the unmanned air vehicle reaches the passing point and the unmanned air vehicle. May further display a scheduled return time for returning from the passing point to the departure point.
  • the scheduled arrival time when the unmanned air vehicle reaches the passing point and the scheduled return time when the unmanned air vehicle returns from the passing point to the starting point are displayed, so that the user can leave before the end time. It can be easily confirmed whether or not it is possible to return to the point.
  • the user when the passing point is input, if the scheduled return time exceeds the end time, the user may be notified that the scheduled return time exceeds the end time. Good.
  • the user when the passing point is input, if the scheduled return time exceeds the end time, the user is notified that the scheduled return time exceeds the end time. Therefore, the user can set the flight route so that the scheduled return time does not exceed the end time.
  • the estimated arrival time when the unmanned air vehicle reaches the second passing point is Even if the end time is exceeded, the input of the second passing point may be accepted.
  • the second passing point can be input even if the estimated arrival time exceeds the end time, and the unmanned air vehicle can fly after the end time.
  • the unmanned air vehicle when the first passing point is input, the unmanned air vehicle reaches the first passing point from the first scheduled arrival time to the end time.
  • a range in which the unmanned air vehicle can fly may be displayed.
  • the unmanned air vehicle when the first passing point is input, there is a range in which the unmanned air vehicle can fly from the first scheduled arrival time to the end time when the unmanned air vehicle reaches the first passing point. Is displayed. Therefore, when setting the flight route, the range that can fly from the first passing point to the end time is displayed, and the user is prompted to set the flight route to return by the end time. It is possible to prevent the unmanned air vehicle from flying past the end time.
  • the unmanned air vehicle moves from the first passage point to the first passage point. You may further display the range which can fly with remaining capacity.
  • the range in which the unmanned air vehicle can fly from the first passage point with the remaining capacity is further increased. Is displayed. Therefore, when the flight route is set, the range in which the battery can fly is displayed based on the remaining capacity of the battery. Therefore, it is possible to prevent the remaining capacity of the battery from being lost during the flight and the unmanned air vehicle from being unable to fly.
  • a flight route generation program is a flight route generation program that generates a flight route of an unmanned air vehicle that autonomously flies, and includes a computer, a departure point, and a passing point through which the unmanned air vehicle passes.
  • An input receiving unit that receives the input, and an end of arrival of the unmanned air vehicle at an end time of a time zone in which the flight of the unmanned air vehicle is permitted on a flight route passing through the departure point and the passing point It is made to function as a display control part which displays a time arrival point on a display part.
  • the input of the departure point and the passing point through which the unmanned air vehicle passes is accepted. Then, an end time arrival point at which the unmanned air vehicle arrives at the end time of the time zone in which the flight of the unmanned air vehicle is permitted is displayed on the flight route passing through the departure point and the passing point.
  • the unmanned air vehicle can fly to the user. It is possible to prompt the user to set a flight route to return by the end time of the permitted time zone, and it is possible to prevent the unmanned air vehicle from flying after the end time.
  • a flight route display device is a flight route display device that displays a flight route of an unmanned air vehicle that autonomously flies, the flight route display device including an input unit that receives user input, and information A display unit for displaying the information, wherein the input unit receives an input of a departure point and a passing point through which the unmanned air vehicle passes, and the display unit is a flight that passes through the starting point and the passing point.
  • an end time arrival point at which the unmanned air vehicle arrives at an end time of a time zone in which the unmanned air vehicle is permitted to fly is displayed.
  • the input of the departure point and the passing point through which the unmanned air vehicle passes is accepted.
  • An end time arrival point at which the unmanned air vehicle arrives at the end time of the time zone in which the flight of the unmanned air vehicle is permitted is displayed on the flight route passing through the departure point and the passing point.
  • the unmanned air vehicle can fly to the user. It is possible to prompt the user to set a flight route to return by the end time of the permitted time zone, and it is possible to prevent the unmanned air vehicle from flying after the end time.
  • FIG. 1 is a diagram illustrating a configuration of a flight control system according to the first embodiment of the present disclosure.
  • the flight control system shown in FIG. 1 includes a communication terminal 10, a flight route generation server 20, an external server 30, and an unmanned air vehicle 40.
  • the communication terminal 10 is used by the user 1 and accepts input of a starting point of the unmanned air vehicle 40 and a passing point through which the unmanned air vehicle 40 passes.
  • the communication terminal 10 can generate a flight route by downloading a flight route generation program.
  • the communication terminal 10 is communicably connected to the flight route generation server 20 and the external server 30 via the network 50.
  • the communication terminal 10 is, for example, a smartphone, a tablet computer, a stationary personal computer, or a shared personal computer. Note that the communication terminal 10 may be a pilot that remotely controls the unmanned air vehicle 40, for example.
  • the flight route generation server 20 generates a flight route on which the unmanned air vehicle 40 autonomously flies.
  • the flight route generation server 20 is communicably connected to the communication terminal 10, the external server 30, and the unmanned aircraft 40 via the network 50.
  • the external server 30 provides sunset time information and map information to the flight route generation server 20. Note that the server that provides the sunset time information and the server that provides the map information may be the same or different.
  • the unmanned air vehicle 40 autonomously flies based on the flight route generated by the flight route generation server 20.
  • the unmanned aerial vehicle 40 includes a plurality of propellers, and moves in the forward, backward, leftward, rightward, upward, and downward directions by controlling the rotational speed of each of the plurality of propellers.
  • the unmanned aerial vehicle 40 autonomously flies along the flight route generated by the flight route generation server 20 while acquiring the current position by GPS (Global Positioning System).
  • FIG. 2 is an overall view illustrating an example of the unmanned aerial vehicle according to the first embodiment of the present disclosure.
  • FIG. 3 is a block diagram illustrating a configuration of the unmanned air vehicle according to the first embodiment of the present disclosure.
  • the unmanned air vehicle 40 includes at least various sensors 1001 and a propulsion device 1002.
  • a communication unit 1003, a battery 1004, a control unit 1005, an inertia measurement unit 1006, and a position measurement unit 1007 are housed inside the unmanned air vehicle 40.
  • the various sensors 1001 are, for example, image sensors or human sensors, and are freely mounted according to the purpose of use of the unmanned air vehicle 40.
  • the propulsion device 1002 includes a propeller for obtaining lift, thrust and torque for flying the unmanned air vehicle 40, and a motor for rotating the propeller.
  • the unmanned air vehicle 40 includes four propulsion devices 1002, but the number of propulsion devices 1002 may be five or more, for example.
  • the unmanned air vehicle 40 includes at least various sensors 1001, a propulsion device 1002, a communication unit 1003, a battery 1004, a control unit 1005, an inertia measurement unit 1006, and a position measurement unit 1007.
  • the communication unit 1003 includes an electronic circuit for performing wireless communication with another unmanned air vehicle or an external communication terminal, and receives wireless communication such as a command related to flight control from another unmanned air vehicle or an external communication terminal. Or transmitting a radio signal to another unmanned air vehicle or an external communication terminal.
  • the battery 1004 supplies a power supply voltage to each element of the unmanned air vehicle 40.
  • the control unit 1005 controls the movement of the unmanned air vehicle 40 and further includes a plurality of components.
  • an information processing apparatus including a processor and a memory that stores a program operates as the control unit 1005.
  • Inertial measurement unit 1006 includes a gyro sensor or an acceleration sensor, and measures the acceleration or angular velocity of unmanned air vehicle 40.
  • the unmanned air vehicle 40 is controlled to fly based on the output from the inertial measurement unit 1006.
  • the position measuring unit 1007 measures the current position of the unmanned air vehicle 40.
  • the position measuring unit 1007 uses a GPS (Global Positioning System) sensor.
  • the unmanned air vehicle 40 configured as described above performs flight control autonomously.
  • FIG. 4 is a block diagram illustrating a configuration of the communication terminal according to Embodiment 1 of the present disclosure.
  • the communication terminal 10 illustrated in FIG. 4 includes a storage unit 101, a control unit 102, a communication unit 103, a position measurement unit 104, a user input unit 105, and a display unit 106.
  • the storage unit 101 is a semiconductor memory, for example, and stores various information.
  • the storage unit 101 stores a flight route generation program 111.
  • the flight route generation program 111 is a program for generating a flight route of the unmanned air vehicle 40.
  • the communication unit 103 transmits various information to the flight route generation server 20 and receives various information from the flight route generation server 20 according to a communication standard such as LTE (Long Term Evolution).
  • LTE Long Term Evolution
  • the position measuring unit 104 is, for example, a GPS, and measures the current position of the communication terminal 10.
  • the user input unit 105 is a touch panel or an operation button, for example, and accepts user input.
  • the user input unit 105 includes a starting point of the unmanned air vehicle 40, a first passing point through which the unmanned air vehicle 40 passes, and a second passing point through which the unmanned air vehicle 40 passes next to the first passing point. Accepts input.
  • the user input unit 105 further receives an input of a departure time from the departure point.
  • the display unit 106 displays various information.
  • the display unit 106 includes a first passing point where the unmanned air vehicle 40 can reach by the end time of the time zone in which the unmanned air vehicle 40 is permitted to fly, and the unmanned air vehicle 40 cannot reach by the end time.
  • the second passing point is displayed in a different manner.
  • the display unit 106 displays an end time arrival point (a sunset time arrival point described later) at which the unmanned air vehicle arrives at the end time on the flight route passing through the departure point, the first passage point, and the second passage point. Is displayed.
  • the display unit 106 displays a first scheduled arrival time when the unmanned air vehicle 40 reaches the first passing point and a second scheduled arrival time when the unmanned flying vehicle 40 reaches the second passing point.
  • the time zone in which the unmanned air vehicle 40 is permitted to fly is, for example, the daytime from the sunrise time to the sunset time.
  • the end time is, for example, the sunset time of the destination point where the unmanned air vehicle 40 finally arrives, the sunset time of the place where the communication terminal 10 exists, or the sunset time of the departure point from which the unmanned air vehicle 40 departs. .
  • the control unit 102 is, for example, a CPU (Central Processing Unit) and controls the operation of the communication terminal 10.
  • the control unit 102 includes a program execution unit 121, a display control unit 122, and a position acquisition unit 123.
  • the program execution unit 121 executes the flight route generation program 111 stored in the storage unit 101.
  • the display control unit 122 controls the display unit 106.
  • the position acquisition unit 123 acquires the current position of the communication terminal 10 measured by the position measurement unit 104.
  • FIG. 5 is a block diagram illustrating a configuration of the flight route generation server according to the first embodiment of the present disclosure.
  • the flight route generation server 20 illustrated in FIG. 5 includes a storage unit 201, a control unit 202, a first communication unit 203, a second communication unit 204, and a clock 205.
  • the storage unit 201 is, for example, a semiconductor memory or a hard disk drive, and stores various information.
  • the storage unit 201 stores map information 211, sunset time information 212, and moving speed information 213.
  • Map information 211 represents a map.
  • the sunset time information 212 represents the sunset time.
  • the moving speed information 213 represents the moving speed of the unmanned air vehicle 40.
  • the moving speed is a speed that is set in advance in the unmanned air vehicle 40 during autonomous flight.
  • the control unit 202 is, for example, a CPU, and controls the operation of the flight route generation server 20.
  • the control unit 202 includes a communication control unit 221, a scheduled arrival time calculation unit 222, a sunset time arrival point calculation unit 223, and a flight route setting unit 224.
  • the communication control unit 221 controls the first communication unit 203 and the second communication unit 204.
  • the communication control unit 221 acquires information indicating the position of the departure point, information indicating the position of the passing point, and the departure time transmitted by the communication terminal 10.
  • the estimated arrival time calculation unit 222 calculates the movement distance from the departure point to the first passing point.
  • the estimated arrival time calculation unit 222 acquires the moving speed of the unmanned air vehicle 40 from the storage unit 201.
  • the estimated arrival time calculation unit 222 calculates the travel time from the departure point to the first passage point based on the travel distance and the travel speed.
  • the estimated arrival time calculation unit 222 calculates a first estimated arrival time when the unmanned air vehicle 40 reaches the first passing point based on the departure time and the travel time.
  • the communication control unit 221 transmits the estimated arrival time calculated by the estimated arrival time calculation unit 222 to the communication terminal 10 via the first communication unit 203.
  • the estimated arrival time calculation unit 222 extends from the first passage point where the estimated arrival time has already been calculated as the first estimated arrival time to the second passage point input next to the first passage point. Calculate the travel distance.
  • the estimated arrival time calculation unit 222 acquires the moving speed of the unmanned air vehicle 40 from the storage unit 201.
  • the estimated arrival time calculation unit 222 calculates the movement time from the first passage point to the second passage point based on the movement distance and the movement speed.
  • the estimated arrival time calculation unit 222 calculates a second estimated arrival time at which the unmanned air vehicle 40 reaches the second passing point based on the first estimated arrival time and the movement time.
  • the communication control unit 221 transmits the second scheduled arrival time calculated by the scheduled arrival time calculation unit 222 to the communication terminal 10 via the first communication unit 203.
  • the sunset time arrival point calculation unit 223 calculates the sunset time arrival point where the unmanned air vehicle 40 arrives at the sunset time on the flight route.
  • the sunset time arrival point calculation unit 223 calculates the travel time from the estimated arrival time to the sunset time when the input estimated arrival time of the passing point passes the sunset time. Then, the sunset time arrival point calculation unit 223 calculates a movement distance from the sunset time to the passage point by multiplying the calculated movement time by the movement speed.
  • the sunset time arrival point calculation unit 223 calculates a point on the flight route that is away from the passage point by the calculated travel distance as the sunset time arrival point.
  • the communication control unit 221 transmits information indicating the position of the sunset time arrival point calculated by the sunset time arrival point calculation unit 223 to the communication terminal 10 via the first communication unit 203.
  • the flight route setting unit 224 sets the generated flight route in the unmanned air vehicle 40.
  • the flight route setting unit 224 transmits the generated flight route to the unmanned air vehicle 40 via the first communication unit 203.
  • the first communication unit 203 transmits various information to the communication terminal 10 and receives various information from the communication terminal 10 according to a communication standard such as LTE. Further, the first communication unit 203 transmits various information to the unmanned air vehicle 40.
  • the second communication unit 204 receives various information from the external server 30 via the Internet, for example.
  • the second communication unit 204 receives the map information 211 and the sunset time information 212 from the external server 30.
  • the map information 211 and the sunset time information 212 are received from the external server 30, but the present disclosure is not particularly limited to this, and the first communication unit 203 determines that the map information 211 and the sunset time information input by the user. 212 may be received from the communication terminal 10.
  • the first communication unit 203 may receive the moving speed information 213 input by the user from the communication terminal 10 or may receive the moving speed information 213 transmitted by the unmanned air vehicle 40. Further, the second communication unit 204 may receive the movement speed information 213 transmitted by the external server 30 and store it in the storage unit 201.
  • the clock 205 measures time and acquires the current time.
  • FIG. 6 is a first flowchart for explaining the flight route generation processing of the communication terminal and the flight route generation server in the first embodiment of the present disclosure
  • FIG. 7 is the communication terminal in the first embodiment of the present disclosure.
  • 4 is a second flowchart for explaining the flight route generation processing of the flight route generation server.
  • step S1 the program execution unit 121 of the communication terminal 10 executes a flight route generation program based on an instruction from the user input unit 105, and starts generating a flight route.
  • the user presses a button provided in the user input unit 105 for starting the flight route generation.
  • the user input unit 105 instructs the program execution unit 121 to generate a flight route.
  • step S2 the display control unit 122 transmits a map information request for requesting map information via the communication unit 103.
  • the location information of the communication terminal 10 acquired by the location acquisition unit 123 is included in the map information request.
  • step S3 the communication control unit 221 of the flight route generation server 20 receives the map information request transmitted by the communication terminal 10 via the first communication unit 203.
  • step S ⁇ b> 4 the communication control unit 221 reads out map information corresponding to the position information of the communication terminal 10 included in the map information request from the storage unit 201, and reads out the map information via the first communication unit 203. Is transmitted to the communication terminal 10.
  • the position information of the communication terminal 10 is expressed by latitude and longitude, and the communication control unit 221 reads out map information in a predetermined range centering on the position of the communication terminal 10 from the storage unit 201.
  • step S5 the display control unit 122 of the communication terminal 10 receives the map information transmitted by the flight route generation server 20 via the communication unit 103.
  • step S6 the display control unit 122 displays the received map information on the display unit 106.
  • the communication terminal 10 transmits a map information request including the position information of the communication terminal 10 to the flight route generation server 20, and a predetermined range of map information centered on the position of the communication terminal 10. Is received from the flight route generation server 20, but the present disclosure is not particularly limited thereto.
  • the communication terminal 10 receives the position information of the unmanned air vehicle 40 from the unmanned air vehicle 40 and transmits a map information request including the received position information of the unmanned air vehicle 40 to the flight route generation server 20. Map information of a predetermined range centering on the position may be received from the flight route generation server 20. This can be similarly applied to other embodiments.
  • the user input unit 105 receives an input of a departure point by the user.
  • the departure point may be a predetermined point on the map, and the current position of the communication terminal 10 may be the departure point.
  • the user inputs a departure point using the user input unit 105.
  • the user input unit 105 is a touch panel, the input of the departure point is accepted by touching the position corresponding to the departure point on the map displayed on the display unit 106.
  • the user input unit 105 may accept input of information that can specify a position on a map such as an address of a departure point.
  • step S8 the display control unit 122 displays an icon representing the departure point input by the user on the display unit 106.
  • the icon showing a departure point For example, it represents with various shapes, such as a white circle or a black circle.
  • step S9 the user input unit 105 receives an input of departure time.
  • the departure time may be the current time or a specific time in the future.
  • step S10 the display control unit 122 displays the departure time input by the user on the display unit 106.
  • the position for displaying the departure time is not particularly limited, and is displayed in the vicinity of an icon representing the departure point, for example.
  • the user input unit 105 receives an input of a passing point by the user.
  • the user inputs a passing point using the user input unit 105.
  • the passing point is a point through which the unmanned aerial vehicle 40 flying autonomously passes.
  • the user input unit 105 is a touch panel, a position corresponding to a passing point on the map displayed on the display unit 106 is touched, whereby an input of the passing point is accepted.
  • the user input unit 105 may accept input of information that can specify a position on a map such as an address of a passing point.
  • step S ⁇ b> 12 the display control unit 122 displays an icon representing the passing point input by the user on the display unit 106.
  • the icon showing a passage point For example, it represents with various shapes, such as a white circle or a black circle.
  • the icon representing the passing point is preferably different from the icon representing the starting point.
  • the display control part 122 may connect the icon showing a departure point, and the icon showing a passage point with the straight line or the arrow, and can show the flight route of the unmanned air vehicle 40 by this.
  • step S ⁇ b> 13 the communication unit 103 transmits the departure point information, the passage point information, and the departure time information to the flight route generation server 20.
  • the departure point information is, for example, information indicating the latitude and longitude of the departure point, and may be information that can specify the position on the map.
  • the passing point information is, for example, information indicating the latitude and longitude of the passing point, and may be information that can specify the position on the map.
  • the departure time information is information indicating the departure time designated by the user.
  • step S14 the communication control unit 221 of the flight route generation server 20 receives the departure point information, the passage point information, and the departure time information transmitted by the communication terminal 10 via the first communication unit 203.
  • the received departure point information, passage point information, and departure time information are stored in the storage unit 201.
  • step S15 the estimated arrival time calculation unit 222 calculates the travel distance from the departure point to the passage point based on the received departure point information and passage point information.
  • step S ⁇ b> 16 the estimated arrival time calculation unit 222 acquires travel speed information indicating the travel speed of the unmanned air vehicle 40 from the storage unit 201.
  • step S17 the estimated arrival time calculation unit 222 calculates the travel time from the departure point to the passing point based on the moving distance and moving speed from the starting point to the passing point. That is, the estimated arrival time calculation unit 222 calculates the movement time by dividing the movement distance from the departure point to the passage point by the movement speed.
  • the estimated arrival time calculation unit 222 calculates the estimated arrival time at which the unmanned air vehicle 40 reaches the passing point based on the travel time from the starting point to the passing point and the departure time information. That is, the estimated arrival time calculation unit 222 calculates the time when the travel time has elapsed from the departure time as the estimated arrival time.
  • the communication control unit 221 may transmit the estimated arrival time information indicating the calculated estimated arrival time to the communication terminal 10 via the first communication unit 203.
  • the communication unit 103 of the communication terminal 10 receives the estimated arrival time information, and the display control unit 122 may display the estimated arrival time indicated by the received estimated arrival time information in the vicinity of the icon indicating the passing point. .
  • step S ⁇ b> 19 the sunset time arrival point calculation unit 223 obtains sunset time information indicating the sunset time from the storage unit 201.
  • the sunset time is, for example, the sunset time at the destination point.
  • step S20 the sunset time arrival point calculation unit 223 determines whether the estimated arrival time is within the sunset time. If it is determined that the estimated arrival time is within the sunset time (YES in step S20), the process proceeds to step S26.
  • step S21 when it is determined that the estimated arrival time is not within the sunset time, that is, the estimated arrival time exceeds the sunset time (NO in step S20), in step S21, the sunset time arrival point calculation unit 223 determines the departure time. The elapsed time from to the sunset time is calculated.
  • step S22 the sunset time arrival point calculation unit 223 multiplies the elapsed time from the departure time to the sunset time by the moving speed, thereby moving the unmanned air vehicle 40 from the departure time to the sunset time. Is calculated.
  • step S23 the sunset time arrival point calculation unit 223 calculates, as a sunset point, a position traveled from the departure point on a straight line connecting the departure point and the passing point.
  • step S ⁇ b> 24 the communication control unit 221 transmits sunset point information indicating the position of the sunset point to the communication terminal 10 via the first communication unit 203.
  • the sunset point information is, for example, information indicating the latitude and longitude of the sunset point, and may be any information that can specify the position on the map.
  • the communication control unit 221 may transmit sunset time information indicating the sunset time to the communication terminal 10.
  • step S25 the communication unit 103 of the communication terminal 10 receives the sunset point information transmitted by the flight route generation server 20.
  • the display control unit 122 displays an icon representing the sunset point on the display unit 106.
  • the icon showing a sunset point For example, it represents with various shapes, such as X shape.
  • the icon representing the sunset point is preferably different from the icon representing the departure point and the icon representing the departure point.
  • the display control unit 122 may display the sunset time in the vicinity of an icon representing the sunset point.
  • step S27 the display control unit 122 determines whether or not the input of the passing point has been completed.
  • the user input unit 105 includes an end button for ending input of a passing point, that is, for determining a flight route.
  • the end button is pressed, the display control unit 122 determines that the input of the passing point is ended.
  • step S28 the user input unit 105 receives the input of the passing point by the user.
  • the method for inputting the passage point is as described above.
  • step S29 the display control unit 122 displays an icon representing the passing point input by the user on the display unit 106.
  • the display method of the icon representing the passing point is as described above.
  • step S ⁇ b> 30 the communication unit 103 transmits passing point information to the flight route generation server 20.
  • step S31 the communication control unit 221 of the flight route generation server 20 receives the passing point information transmitted by the communication terminal 10 via the first communication unit 203.
  • the received passing point information is stored in the storage unit 201.
  • step S32 the estimated arrival time calculation unit 222, based on the received current passing point information and the previous passing point information, travels from the currently input passing point to the previously input passing point. Is calculated. Since the previous passing point information is stored in the storage unit 201, the estimated arrival time calculation unit 222 reads the previous passing point information from the storage unit 201.
  • step S33 the estimated arrival time calculation unit 222 is input from the previously input passing point based on the moving distance and moving speed from the previously input passing point to the currently input passing point.
  • the travel time to the passing point is calculated. That is, the estimated arrival time calculation unit 222 calculates the travel time by dividing the travel distance from the previously input passage point to the currently input passage point by the movement speed.
  • step S34 the estimated arrival time calculation unit 222 is unmanned based on the travel time from the previously input passing point to the currently input passing point and the previously input estimated time of arrival at the passing point.
  • the estimated arrival time at which the flying object 40 reaches the passing point input this time is calculated.
  • the estimated arrival time calculation unit 222 calculates the time when the travel time has elapsed from the previously-arrived estimated arrival time of the passing point as the estimated arrival time of the passing point input this time, and returns to the process of step S20.
  • the communication control unit 221 may transmit the estimated arrival time information indicating the calculated estimated arrival time to the communication terminal 10 via the first communication unit 203.
  • the communication unit 103 of the communication terminal 10 receives the estimated arrival time information, and the display control unit 122 may display the estimated arrival time indicated by the received estimated arrival time information in the vicinity of the icon indicating the passing point. .
  • step S20 the sunset time arrival point calculation unit 223 determines whether the estimated arrival time of the passing point input this time is within the sunset time. If it is determined that the estimated arrival time of the passing point input this time is within the sunset time (YES in step S20), the process proceeds to step S27.
  • step S ⁇ b> 21 the sunset time arrival point calculation unit 223 calculates the elapsed time from the arrival time at the passing point input last time to the sunset time.
  • step S22 the sunset time arrival point calculation unit 223 multiplies the elapsed time from the arrival time at the passage point input last time to the sunset time by the moving speed, so that the arrival point of the passage point input at the previous time is reached.
  • the moving distance that the unmanned air vehicle 40 moves from the scheduled time to the sunset time is calculated.
  • step S23 the sunset time arrival point calculation unit 223 sets the position where the travel distance has advanced from the previously input passing point on the straight line connecting the previously input passing point and the currently input passing point. Calculate as a point. And the process after said step S24 is performed.
  • step S35 the communication unit 103 of the communication terminal 10 transmits a flight route determination signal indicating that the flight route has been determined. Transmit to the flight route generation server 20.
  • step S36 the communication control unit 221 of the flight route generation server 20 receives the flight route determination signal transmitted by the communication terminal 10 via the first communication unit 203.
  • step S ⁇ b> 37 the flight route setting unit 224 transmits flight route information indicating a flight route on which the unmanned air vehicle 40 autonomously flies to the unmanned air vehicle 40 via the first communication unit 203.
  • the flight route information includes departure point information indicating the position of the departure point, passage point information indicating the position of the passage point, and departure time information indicating the departure time.
  • the unmanned air vehicle 40 receives the flight route information, and starts autonomous flight when the departure time indicated by the departure time information is reached.
  • the unmanned air vehicle 40 passes through the passing point indicated by the passing point information, and finally returns to the starting point.
  • the unmanned air vehicle 40 returns to the departure point via at least one passing point, but the present disclosure is not particularly limited to this.
  • the communication terminal 10 may receive an input of a final destination different from the departure point, and the unmanned air vehicle 40 may land at the final destination via at least one passing point.
  • the unmanned air vehicle 40 may use the last input passing point among the plurality of input passing points as the final destination.
  • the unmanned aerial vehicle 40 may use the only input passing point as the final destination.
  • the flight route setting unit 224 may not accept the input passage point as a flight route. Further, even if the input estimated arrival time of the passing point exceeds the sunset time, the flight route setting unit 224 may accept the input passing point as the flight route. In this case, the display control unit 122 may display on the display unit 106 a notification screen that notifies the user that the flight can only be made until the sunset time.
  • the input of the departure point is received before the input of the departure point is received and the input of the passage point is received.
  • the present disclosure is not particularly limited thereto, and After the input is accepted, the input of the departure time may be accepted. In this case, the input of the departure time is accepted at an arbitrary timing after the flight route is generated. Then, the display of the flight route generation screen is updated based on the input departure time. This can be similarly applied to other embodiments.
  • the flight route generation server 20 transmits the flight route information to the unmanned air vehicle 40.
  • the present disclosure is not particularly limited to this, and the flight route generation server 20 has the flight route information. May be transmitted to the communication terminal 10, and the communication terminal 10 may transmit the received flight route information to the unmanned air vehicle 40. This can be similarly applied to other embodiments.
  • FIG. 8 is a diagram showing an example of a display screen displayed on the display unit of the communication terminal in the first embodiment.
  • the display unit 106 includes an icon 501 indicating a departure point, an icon 502 indicating a first passage point that passes next to the departure point, and a first passage, which are respectively input by the user.
  • An icon 503 indicating a second passage point that passes next to the point is displayed.
  • the departure time (“16:30” in FIG. 8) is displayed.
  • the estimated arrival time (“17:00” in FIG. 8) when the unmanned air vehicle 40 arrives at the first passing point is displayed.
  • an icon 504 indicating the sunset point is displayed.
  • the sunset time (“17:30” in FIG. 8) is displayed in the vicinity of the icon 504.
  • the icon 502 indicating the first passage point that can arrive by the sunset time and the icon 503 indicating the second passage point that cannot arrive by the sunset time are as follows: , It may be displayed in a different manner. For example, the icon 502 and the icon 503 may be displayed in different colors, and the icon 502 and the icon 503 may be displayed in different shapes.
  • the unmanned air vehicle 40 can be prevented from flying.
  • the flight route flying before the sunset time and the flight route flying beyond the sunset time may be displayed in different modes.
  • FIG. 9 is a diagram showing an example of a display screen that displays the flight route flying before the sunset time and the flight route flying beyond the sunset time in different modes in the first embodiment.
  • an icon 501 indicating a departure point, an icon 502 indicating a first passage point that passes next to the departure point, and a second passage point that passes next to the first passage point are shown.
  • Each icon 503 is connected by an arrow.
  • the flight route 5041 from the icon 501 indicating the departure point to the icon 504 indicating the sunset point is displayed in blue, and a second passing point that cannot be reached by the sunset time from the icon 504 indicating the sunset point is displayed.
  • the flight route 5042 up to the icon 503 shown is displayed in red.
  • the line indicating the flight route 5041 may be displayed in a dark color, and the line indicating the flight route 5042 may be displayed in a light color.
  • the line indicating the flight route 5041 may be displayed with a different transparency from the line indicating the flight route 5042.
  • the route up to the sunset time may be displayed with higher transparency than the route after the sunset time.
  • a line indicating the flight route 5041 may be filled, and a line indicating the flight route 5042 may be displayed only by an unfilled frame line.
  • the line indicating the flight route 5041 may be displayed as a line having a different shape from the line indicating the flight route 5042.
  • the route to the sunset time may be displayed with a thin line
  • the route after the sunset time may be displayed with a thick line.
  • characters may be superimposed on the line indicating the flight route 5041 and the line indicating the flight route 5042.
  • characters such as “after sunset” may be superimposed on a line indicating the flight route 5042.
  • characters such as “before sunset” may be superimposed on a line indicating the flight route 5041.
  • characters may be superimposed only on one of the line indicating the flight route 5041 and the line indicating the flight route 5042.
  • different marks may be superimposed on the line indicating the flight route 5041 and the line indicating the flight route 5042.
  • a mark imitating the moon may be superimposed on a line indicating the flight route 5042.
  • a mark imitating the sun may be superimposed on a line indicating the flight route 5041.
  • the mark may be superimposed only on one of the line indicating the flight route 5041 and the line indicating the flight route 5042.
  • the line indicating the flight route 5042 may not be displayed.
  • the flight route up to the sunset time is displayed in some manner, but the flight route after the sunset time may not be displayed.
  • the flight route 5041 may be represented by an animation in which an icon moves on the flight route 5041.
  • FIG. 10 is a diagram showing an example of a display screen that displays an animation for moving an icon on a flight route that flies by the sunset time in the first embodiment. As shown in FIG. 10, for example, on the flight route from the icon 501 indicating the departure point to the icon 504 indicating the sunset point, an animation in which the icon 531 imitating an unmanned flying object moves is displayed. The animation is not displayed on the flight route after the icon 504 indicating the point.
  • the user can easily make the flight route that can fly and the flight route that cannot fly. And can assist in setting the flight route for flying only during the day.
  • the end time of the time zone in which the flight of the unmanned air vehicle 40 is permitted is the sunset time, but the present disclosure is not particularly limited to this, for example, 17:00 or 18:00 A predetermined time may be set as the end time.
  • the unmanned air vehicle 40 may not only simply pass over the passing point, but also land at the passing point and then depart to the next passing point. Therefore, the communication terminal 10 may accept an input of the time to depart from the passing point.
  • the flight route setting unit 224 departs so that the unmanned air vehicle 40 can arrive at the destination by the sunset time.
  • the time may be changed.
  • the display control unit 122 notifies the user that the departure time is to be changed.
  • the flight route setting unit 224 allows the unmanned air vehicle 40 to reach the destination by the sunset time.
  • the moving speed of the flying object 40 may be changed.
  • the display control unit 122 notifies the user that the moving speed is to be changed.
  • the display control unit 122 differs between the flight route up to the passing point immediately before the end time arrival point and the flight route after the passing point immediately before the end time arrival point in the flight route. You may display in an aspect.
  • FIG. 11 is a diagram showing an example of a display screen that displays the flight route to the passing point immediately before the sunset point and the flight route after the passing point immediately before the sunset point in different modes in the first embodiment. is there.
  • an icon 501 indicating a departure point, an icon 502 indicating a first passage point that passes next to the departure point, and a second passage point that passes next to the first passage point are shown.
  • Each icon 503 is connected by an arrow.
  • the flight route 5011 from the icon 501 indicating the departure point to the icon 502 indicating the first passage point is displayed as a solid line, and it is impossible to arrive by the sunset time from the icon 502 indicating the first passage point.
  • the flight route 5012 to the icon 503 indicating the second passing point is displayed with a broken line. Note that the flight route 5011 and the flight route 5012 may be displayed in different colors. Further, the flight route 5011 and the flight route 5012 may be displayed in different modes.
  • the communication terminal 10 may have the function of the flight route generation server 20. That is, the communication terminal 10 may further include a second communication unit 204 and a clock 205 of the flight route generation server 20, and the control unit 102 of the communication terminal 10 may be configured to reach the communication control unit 221 of the flight route generation server 20 and the arrival schedule.
  • the time calculation unit 222, the sunset time arrival point calculation unit 223, and the flight route setting unit 224 may be further provided.
  • the storage unit 101 of the communication terminal 10 stores the map information 211, the sunset time information 212, and the movement of the flight route generation server 20.
  • the speed information 213 may be further stored.
  • FIG. 12 is a block diagram illustrating a configuration of the flight route generation server according to the second embodiment of the present disclosure.
  • the configuration of the communication terminal in the second embodiment is the same as the configuration of the communication terminal in the first embodiment.
  • the flight route generation server 21 according to the second embodiment the same components as those of the flight route generation server 20 according to the first embodiment shown in FIG.
  • the flight route generation server 21 shown in FIG. 12 includes a storage unit 201, a control unit 202, a first communication unit 203, a second communication unit 204, and a clock 205.
  • the control unit 202 is a CPU, for example, and controls the operation of the flight route generation server 21.
  • the control unit 202 includes a communication control unit 221, a scheduled arrival time calculation unit 222, a flight route setting unit 224, and a return time calculation unit 225.
  • the return time calculation unit 225 has a first return scheduled time for returning from the first passage point input by the user to the departure point, and a second return for returning to the departure point from the second passage point input by the user. Calculate the estimated return time.
  • the display unit 106 of the communication terminal 10 includes a first scheduled arrival time when the unmanned air vehicle 40 reaches the first passing point, a second scheduled arrival time when the unmanned flying vehicle 40 reaches the second passing point, and The first scheduled return time when the unmanned air vehicle 40 returns from the first passage point to the departure point and the second scheduled return time when the unmanned vehicle 40 returns from the second passage point to the departure point are displayed. To do.
  • FIG. 13 is a first flowchart for describing the flight route generation processing of the communication terminal and the flight route generation server according to the second embodiment of the present disclosure
  • FIG. 14 is a communication terminal according to the second embodiment of the present disclosure
  • 4 is a second flowchart for explaining the flight route generation processing of the flight route generation server.
  • step 13 is the same as the process from step S1 to step S3 shown in FIG. 6, and thus the description thereof is omitted.
  • step S44 the communication control unit 221 acquires map information and sunset time information from the storage unit 201.
  • the sunset time is, for example, the sunset time at the position where the communication terminal 10 exists.
  • the communication control unit 221 reads map information and sunset time information corresponding to the location information of the communication terminal 10 included in the map information request from the storage unit 201.
  • step S ⁇ b> 45 the communication control unit 221 transmits the acquired map information and sunset time information to the communication terminal 10 via the first communication unit 203.
  • step S46 the display control unit 122 of the communication terminal 10 receives the map information and the sunset time information transmitted by the flight route generation server 21 via the communication unit 103.
  • step S47 the display control unit 122 displays the received map information on the display unit 106.
  • step S48 the display control unit 122 displays the sunset time indicated by the received sunset time information on the display unit 106.
  • step 13 is the same as the process from step S7 to step S18 shown in FIG. 6, and the description thereof will be omitted.
  • step S61 the return time calculation unit 225 calculates the scheduled return time for returning from the passage point input by the user to the departure point. Specifically, the return time calculation unit 225 calculates, as the scheduled return time, the time when twice the travel time from the departure point to the passing point has elapsed since the departure time.
  • step S62 the communication control unit 221 transmits to the communication terminal 10 the scheduled arrival time information indicating the scheduled arrival time and the scheduled return time information indicating the scheduled return time via the first communication unit 203.
  • step S63 the communication unit 103 of the communication terminal 10 receives the scheduled arrival time information and the scheduled return time information transmitted by the flight route generation server 21.
  • step S64 the display control unit 122 displays the estimated arrival time indicated by the estimated arrival time information and the estimated return time indicated by the estimated return time information in the vicinity of the icon representing the passing point.
  • step S 14 is the same as the process from step S27 to step S34 shown in FIG. 7, and the description thereof will be omitted.
  • step S73 the return time calculation unit 225 calculates a travel distance from the passing point input this time to the starting point based on the received passing point information and starting point information received this time. Since the departure point information is stored in the storage unit 201, the return time calculation unit 225 reads the departure point information from the storage unit 201.
  • step S74 the return time calculation unit 225 calculates the travel time from the pass point input this time to the start point based on the travel distance and travel speed from the pass point to the start point input this time. To do. That is, the return time calculation unit 225 calculates the travel time by dividing the travel distance from the passing point input this time to the departure point by the travel speed.
  • step S75 the return time calculation unit 225 calculates, as the estimated return time, the time when the travel time from the currently input passing point to the departure point has elapsed from the currently scheduled passing point arrival time. To do.
  • step S76 the communication control unit 221 transmits to the communication terminal 10 the scheduled arrival time information indicating the scheduled arrival time and the scheduled return time information indicating the scheduled return time via the first communication unit 203.
  • step S77 the communication unit 103 of the communication terminal 10 receives the scheduled arrival time information and the scheduled return time information transmitted by the flight route generation server 21.
  • step S78 the display control unit 122 displays the estimated arrival time indicated by the estimated arrival time information and the estimated return time indicated by the estimated return time information in the vicinity of the icon representing the passing point input this time. indicate. Then, the process returns to step S65, and the processes in steps S65 to S78 are performed until the input of the passing point is completed.
  • step S79 the communication unit 103 of the communication terminal 10 transmits a flight route determination signal indicating that the flight route has been determined. It transmits to the generation server 21.
  • step S14 is the same as the process from step S36 to step S37 shown in FIG. 7, and the description thereof will be omitted.
  • FIG. 15 is a diagram showing an example of a display screen displayed on the display unit of the communication terminal in the second embodiment.
  • the display unit 106 includes an icon 501 indicating a departure point, an icon 502 indicating a first passage point that passes next to the departure point, and a first passage each input by the user.
  • An icon 503 indicating a second passage point that passes next to the point and a sunset time 505 are displayed.
  • the departure time (“15:30” in FIG. 15) is displayed.
  • the estimated arrival time (“16:00” in FIG. 15) when the unmanned air vehicle 40 arrives at the first passing point is displayed, and the unmanned air vehicle 40 passes through the first passing point.
  • the scheduled return time (“16:30” in FIG. 15) for returning from the point to the departure point is displayed.
  • the estimated arrival time (“16:30” in FIG. 15) at which the unmanned air vehicle 40 arrives at the second passing point is displayed near the icon 503, and the unmanned air vehicle 40 is in the second passing position.
  • the scheduled return time (“17:10” in FIG. 15) for returning from the point to the departure point is displayed.
  • the scheduled return time for returning from each passing point to the departure point is displayed together with the sunset time, so the flight route for returning to the user by the sunset time is set.
  • the unmanned air vehicle 40 can be prevented from flying past the sunset time.
  • the user input may not accept the input of the second passing point.
  • the unit 122 may notify the user that the second scheduled return time exceeds the end time.
  • the display control unit 122 displays an icon indicating the sunset point as in the first embodiment. May be displayed.
  • the display control unit 122 displays a passing point that can be returned to the departure point by the end time (sunset time) and a passing point that cannot be returned in a different manner in the flight route. May be.
  • FIG. 16 is a diagram showing an example of a display screen that displays a passing point that can be returned to the departure point by the sunset time and a passing point that cannot be returned in a different manner in the second embodiment.
  • the display unit 106 has an icon 501 indicating a departure point, an icon 502 indicating a first passage point that passes next to the departure point, and a first passage, which are respectively input by the user.
  • An icon 503 indicating a second passage point that passes next to the point and a sunset time 505 are displayed.
  • the departure time (“16:30” in FIG. 16) is displayed near the icon 501.
  • the estimated arrival time (“17:00” in FIG. 16) at which the unmanned air vehicle 40 arrives at the first passing point is displayed, and the unmanned air vehicle 40 is in the first passage.
  • the scheduled return time (“17:20” in FIG. 16) for returning from the point to the departure point is displayed.
  • the estimated arrival time (“17:30” in FIG. 16) at which the unmanned air vehicle 40 arrives at the second passing point is displayed, and the unmanned air vehicle 40 is in the second passage.
  • the scheduled return time (“18:10” in FIG. 16) for returning from the point to the departure point is displayed.
  • an icon 502 indicating a first passage point that can be returned to the departure point by the sunset time may be displayed in a different manner.
  • the icon 502 and the icon 503 may be displayed in different colors, and the icon 502 and the icon 503 may be displayed in different shapes.
  • the display control unit 122 on the return route returning from the passing point to the departure point, the flight route from the passing point to the end time arrival point and the end time arrival point to the departure point.
  • the flight route may be displayed in a different manner.
  • FIG. 17 shows a flight route from the passing point to the end time arrival point and a flight route from the end time reaching point to the departure point on the return route returning from the passing point to the departure point in the second embodiment. It is a figure which shows an example of the display screen displayed in a different aspect.
  • the display unit 106 has an icon 501 indicating a departure point, an icon 502 indicating a first passage point that passes next to the departure point, and a first passage, which are respectively input by the user.
  • An icon 503 indicating a second passage point that passes next to the point and a sunset time 505 are displayed.
  • the departure time (“16:30” in FIG. 17) is displayed.
  • the estimated arrival time (“17:00” in FIG. 17) at which the unmanned air vehicle 40 arrives at the first passing point is displayed, and the unmanned air vehicle 40 is first passed.
  • the scheduled return time (“17:20” in FIG. 17) for returning from the point to the departure point is displayed.
  • the estimated arrival time (“17:30” in FIG. 17) at which the unmanned air vehicle 40 arrives at the second passage point is displayed near the icon 503, and the unmanned air vehicle 40 is in the second passage.
  • the scheduled return time (“18:10” in FIG. 17) for returning from the point to the departure point is displayed.
  • an icon 504 indicating the sunset point is displayed. Also, the sunset time (“18:00” in FIG. 17) is displayed in the vicinity of the icon 504.
  • the icon 503 indicating the second passing point and the icon 501 indicating the departure point are connected by an arrow.
  • the flight route 5051 from the second passage point icon 503 to the sunset point icon 504 is indicated by a broken line, and the sunset point icon 504 is displayed.
  • the flight route 5052 to the icon 501 indicating the departure point is displayed with a one-dot chain line.
  • flight route 5051 and the flight route 5052 may be displayed in different colors. Further, the flight route 5051 and the flight route 5052 may be displayed in different modes.
  • the communication terminal 10 may have the function of the flight route generation server 21. That is, the communication terminal 10 may further include a second communication unit 204 and a clock 205 of the flight route generation server 21, and the control unit 102 of the communication terminal 10 may be configured to reach the communication control unit 221 of the flight route generation server 21 and the arrival schedule.
  • the time calculation unit 222, the flight route setting unit 224, and the return time calculation unit 225 may be further provided.
  • the storage unit 101 of the communication terminal 10 stores the map information 211, the sunset time information 212, and the travel speed information of the flight route generation server 21. 213 may be further stored.
  • FIG. 18 is a block diagram illustrating a configuration of a communication terminal according to Embodiment 3 of the present disclosure.
  • 18 includes a storage unit 101, a control unit 102, a position measurement unit 104, a user input unit 105, a display unit 106, a first communication unit 1031 and a second communication unit 1032.
  • symbol is attached
  • the first communication unit 1031 transmits various information to the flight route generation server 22 and receives various information from the flight route generation server 22 according to a communication standard such as LTE.
  • First communication unit 1031 has the same function as communication unit 103 in the first embodiment.
  • the second communication unit 1032 receives various information from the external server 30 via, for example, the Internet.
  • the second communication unit 1032 receives permission information from the external server 30.
  • the permission information is information for permitting the flight of the unmanned air vehicle 40 beyond the end time (sunset time).
  • the permission information may be input by the user using the user input unit 105. In this case, the second communication unit 1032 is not necessary.
  • the control unit 102 is a CPU, for example, and controls the operation of the communication terminal 11.
  • the control unit 102 includes a program execution unit 121, a display control unit 122, a position acquisition unit 123, and a permission information acquisition unit 124.
  • the permission information acquisition unit 124 acquires permission information from the external server 30 via the second communication unit 1032. Note that the permission information acquisition unit 124 may acquire the permission information input by the user input unit 105.
  • the first communication unit 1031 transmits the permission information acquired by the permission information acquisition unit 124 to the flight route generation server 22. Further, the first communication unit 1031 receives the verification result of the permission information transmitted by the flight route generation server 22. The verification result indicates whether or not the permission information is valid.
  • the user input unit 105 When the user input unit 105 acquires permission information that permits the flight of the unmanned air vehicle 40 beyond the end time (sunset time), the estimated arrival time when the unmanned air vehicle 40 reaches the second passing point is the end time. Even if (sunset time) is exceeded, the input of the passing point is accepted. The user input unit 105 receives the second passage point that reaches the scheduled arrival time that exceeds the end time (sunset time) when the verification result that the permission information is determined to be valid by the first communication unit 1031 is received. Allow input.
  • the user input unit 105 determines the end time (sunset time). The input of the second passing point reaching the scheduled arrival time exceeding (time) is not accepted.
  • FIG. 19 is a block diagram illustrating a configuration of the flight route generation server according to the third embodiment of the present disclosure.
  • the flight route generation server 22 shown in FIG. 19 includes a storage unit 201, a control unit 202, a first communication unit 203, a second communication unit 204, and a clock 205.
  • the control unit 202 is, for example, a CPU, and controls the operation of the flight route generation server 22.
  • the control unit 202 includes a communication control unit 221, a scheduled arrival time calculation unit 222, a sunset time arrival point calculation unit 223, a flight route setting unit 224, and a permission information verification unit 226.
  • the permission information verification unit 226 verifies the validity of the permission information transmitted by the communication terminal 11 and transmits the verification result to the communication terminal 11.
  • the permission information acquisition unit 124 of the communication terminal 11 acquires permission information from the external server 30 via the second communication unit 1032.
  • the first communication unit 1031 transmits the permission information acquired by the permission information acquisition unit 124 to the flight route generation server 22.
  • the first communication unit 203 of the flight route generation server 22 receives the permission information transmitted by the communication terminal 11.
  • the permission information verification unit 226 verifies whether the permission information received by the first communication unit 203 is valid. The permission information verification unit 226 determines that the permission information is valid if it has been issued properly, and determines that the permission information is not valid if the permission information has not been properly issued.
  • the first communication unit 203 transmits the verification result of the permission information verified by the permission information verification unit 226 to the communication terminal 11.
  • the first communication unit 1031 of the communication terminal 11 receives the verification result of the permission information transmitted by the flight route generation server 22.
  • the user input unit 105 receives an input of a passing point whose scheduled arrival time exceeds the end time (sunset time).
  • FIG. 20 is a diagram showing an example of a display screen displayed on the display unit of the communication terminal in the third embodiment.
  • the display unit 106 includes an icon 501 indicating a departure point, an icon 502 indicating a first passage point that passes next to the departure point, and a first passage, which are respectively input by the user.
  • An icon 506 indicating a second passing point that passes next to the point and an icon 507 indicating a third passing point that passes next to the second passing point are displayed.
  • the departure time (“16:30” in FIG. 20) is displayed.
  • the estimated arrival time (“17:00” in FIG. 20) when the unmanned air vehicle 40 arrives at the first passing point is displayed.
  • an icon 504 indicating the sunset point is displayed.
  • the sunset time (“17:30” in FIG. 20) is displayed near the icon 504.
  • the second passage point and the third passage point that arrive after the sunset time can be set as the flight route.
  • the icon 506 indicating the second passage point and the icon 507 indicating the third passage point may be displayed in a different manner from the icon 502 indicating the first passage point that can arrive by the sunset time. That is, the shape of the icon 506 and the icon 507 may be different from the shape of the icon 502.
  • the display control unit 122 may display the flight route from the departure point to the end time arrival point and the flight route after the end time arrival point in a different manner in the flight route. .
  • FIG. 21 is a diagram showing an example of a display screen that displays the flight route from the departure point to the end time arrival point and the flight route after the end time arrival point in a different manner in the flight route according to the third embodiment. It is.
  • the flight route flying from the departure point to the sunset time and the flight route flying beyond the sunset time may be displayed in different modes. That is, as shown in FIG. 21, for example, the flight route 5081 from the icon 501 indicating the departure point to the icon 504 indicating the sunset point is displayed with a solid line, and the icon 504 indicating the sunset point indicates the third passing point.
  • the flight route 5082 up to 507 may be displayed by a broken line. Flight route 5081 may be displayed in blue, flight route 5082 may be displayed in red, and flight route 5081 and flight route 5082 may be displayed in different colors.
  • FIG. 22 is a block diagram illustrating a configuration of a flight route generation server according to the fourth embodiment of the present disclosure.
  • the configuration of the communication terminal in the fourth embodiment is the same as the configuration of the communication terminal in the first embodiment.
  • the flight route generation server 23 according to the fourth embodiment the same components as those of the flight route generation server 20 according to the first embodiment shown in FIG.
  • the flight route generation server 23 illustrated in FIG. 22 includes a storage unit 201, a control unit 202, a first communication unit 203, a second communication unit 204, and a clock 205.
  • the control unit 202 is a CPU, for example, and controls the operation of the flight route generation server 23.
  • the control unit 202 includes a communication control unit 221, a scheduled arrival time calculation unit 222, a flight route setting unit 224, and a flightable distance calculation unit 227.
  • the flightable distance calculation unit 227 calculates the flightable distance that the unmanned air vehicle 40 can fly from the input passage point to the sunset time.
  • the communication control unit 221 transmits the flightable distance calculated by the flightable distance calculation unit 227 to the communication terminal 10 via the first communication unit 203.
  • the communication unit 103 of the communication terminal 10 receives the flightable distance transmitted by the flight route generation server 23.
  • the display control unit 122 of the communication terminal 10 displays a circular flightable range centered on the input passing point and having a flightable distance received by the communication unit 103 as a radius.
  • the display unit 106 displays the unmanned flying object 40 from the first scheduled arrival time when the unmanned flying object 40 reaches the first passing point to the end time (sunset time). Display the flight range.
  • FIG. 23 is a flowchart for explaining the flight route generation processing of the communication terminal and the flight route generation server according to the fourth embodiment of the present disclosure.
  • the processing before step S91 is the same as the processing from step S1 to step 19 shown in FIG. 6, and thus the description thereof is omitted, and only the processing after step S91 is described.
  • step S91 the flightable distance calculation unit 227 can fly based on the estimated arrival time, the sunset time, and the moving speed, so that the unmanned air vehicle 40 can fly from the input passage point to the sunset time. Is calculated. That is, the flightable distance calculation unit 227 calculates the travel time from the estimated arrival time to the sunset time, and multiplies the calculated travel time by the travel speed, so that the unmanned air vehicle 40 flies from the passage point to the sunset time. The possible flight distance is calculated.
  • step S92 the communication control unit 221 transmits to the communication terminal 10 via the first communication unit 203, the arrival time information indicating the arrival time and the flight distance information indicating the flight distance.
  • step S93 the communication unit 103 of the communication terminal 10 receives the estimated arrival time information and the flightable distance information transmitted by the flight route generation server 21.
  • step S94 the display control unit 122 displays the estimated arrival time indicated by the estimated arrival time information in the vicinity of the icon representing the passing point.
  • step S95 the display control unit 122 displays a circular flightable range centered on an icon representing a passing point, with the flightable distance indicated by the flightable distance information as a radius.
  • step S 23 is the same as the processing from step S27 to step S34 shown in FIG. 7, and thus the description thereof is omitted.
  • step S103 After the process of step S103, the process returns to the process of step S91, and the flightable distance calculation unit 227 calculates the unmanned aerial vehicle from the currently input passing point to the sunset time based on the estimated arrival time, the sunset time, and the moving speed. The flightable distance that 40 can fly is calculated.
  • step S95 the display control unit 122 may display the flightable range corresponding to the passing point inputted this time and the flightable range corresponding to the passing point inputted last time. Further, the display control unit 122 may display only the flightable range corresponding to the currently input passing point without displaying the flightable range corresponding to the previously input passing point.
  • step S104 the communication unit 103 of the communication terminal 10 transmits a flight route determination signal indicating that the flight route has been determined. It transmits to the generation server 21.
  • step S36 is the same as the process from step S36 to step S37 shown in FIG. 7, and the description thereof will be omitted.
  • FIG. 24 is a diagram showing an example of a display screen displayed on the display unit of the communication terminal in the fourth embodiment.
  • the display unit 106 displays an icon 501 indicating a departure point and an icon 502 indicating a passing point that passes next to the departure point, each input by the user. In the vicinity of the icon 501, the departure time (“16:30” in FIG. 24) is displayed.
  • the display unit 106 displays a circular flightable range 511 centered on an icon 502 representing a passing point, where the flightable distance indicated by the flightable distance information is a radius.
  • the flightable range from the passing point to the sunset time is displayed, so the user is prompted to set the flight route to return by the sunset time. It is possible to prevent the unmanned air vehicle 40 from flying after the sunset time.
  • the display unit 106 may display a possible flight range according to the remaining capacity of the battery of the unmanned air vehicle 40.
  • FIG. 25 is a diagram showing an example of a display screen displayed on the display unit of the communication terminal in the modification of the fourth embodiment.
  • the first flightable range 521 in which the unmanned air vehicle 40 can fly from the passage point to the sunset time and the unmanned flight according to the remaining capacity of the battery of the unmanned air vehicle 40 A flight range 522 in which the body 40 can fly is displayed on the display unit 106.
  • the flight route generation server 23 further includes a remaining capacity acquisition unit that acquires the remaining capacity of the battery included in the unmanned air vehicle 40.
  • the remaining capacity acquisition unit receives the remaining capacity of the battery from the unmanned air vehicle 40 via the first communication unit 203.
  • the flightable distance calculation unit 227 calculates a first flightable distance that the unmanned air vehicle 40 can fly from the input passage point to the sunset time.
  • the flightable distance calculation unit 227 calculates a second flightable distance that the unmanned air vehicle 40 can fly from the input passing point according to the remaining battery capacity of the unmanned air vehicle 40.
  • the communication control unit 221 transmits the first flightable distance and the second flightable distance calculated by the flightable distance calculation unit 227 to the communication terminal 10 via the first communication unit 203.
  • the communication unit 103 of the communication terminal 10 receives the first flightable distance and the second flightable distance transmitted by the flight route generation server 23.
  • the display control unit 122 of the communication terminal 10 displays a circular first flightable range centered on the input passing point and having the first flightable distance received by the communication unit 103 as a radius.
  • the display control unit 122 displays a circular second flightable range centered on the input passing point and having the second flightable distance received by the communication unit 103 as a radius.
  • the display unit 106 When the first passing point is input, the display unit 106 further displays a range in which the unmanned air vehicle 40 can fly from the first passing point with the remaining capacity.
  • the communication control unit 221 transmits a remaining capacity request for requesting the remaining capacity of the battery to the unmanned air vehicle 40 via the first communication unit 203. Receive the remaining capacity.
  • the flightable distance calculation unit 227 can fly the unmanned aerial vehicle 40 from the input passage point to the sunset time based on the estimated arrival time, the sunset time, and the moving speed.
  • the first flightable distance is calculated.
  • the flightable distance calculation unit 227 calculates a second flightable distance corresponding to the remaining battery capacity indicated by the received remaining battery capacity information.
  • the storage unit 201 stores a table in which the remaining battery capacity is associated with the second flightable distance.
  • the flightable distance calculation unit 227 reads out the second flightable distance corresponding to the remaining battery capacity indicated by the received remaining battery capacity information from the storage unit 201.
  • step S ⁇ b> 92 the communication control unit 221, via the first communication unit 203, arrives at the scheduled arrival time information indicating the scheduled arrival time, the first flightable distance information indicating the first flightable distance, and the second.
  • the second flightable distance information indicating the flightable distance is transmitted to the communication terminal 10.
  • step S93 the communication unit 103 of the communication terminal 10 receives the estimated arrival time information, the first flightable distance information, and the second flightable distance information transmitted by the flight route generation server 21.
  • step S94 the display control unit 122 displays the estimated arrival time indicated by the estimated arrival time information in the vicinity of the icon representing the passing point.
  • step S95 the display control unit 122 uses a first flightable distance indicated by the first flightable distance information as a radius, and a first flightable circle having an icon representing a passing point as a center. A range 521 is displayed. Further, the display control unit 122 displays a circular second flightable range 522 centered on an icon representing a passing point, with the second flightable distance indicated by the second flightable distance information as a radius. .
  • the second flightable distance that the unmanned aerial vehicle 40 can fly according to the remaining capacity of the battery is such that the unmanned aerial vehicle 40 moves from the passing point to the sunset time.
  • the display control unit 122 may display only the second flightable range 522 without displaying the first flightable range 521. .
  • first flightable range 521 and the second flightable range 522 are displayed in different modes.
  • all or part of a unit, device, member, or part, or all or part of functional blocks in the block diagrams shown in FIGS. 3, 4, 5, 12, 18, 19, and 22 are semiconductor devices, It may be executed by one or a plurality of electronic circuits including a semiconductor integrated circuit (IC) or LSI (Large Scale Integration).
  • the LSI or IC may be integrated on a single chip, or may be configured by combining a plurality of chips.
  • the functional blocks other than the memory element may be integrated on one chip.
  • it is called LSI or IC, but the name changes depending on the degree of integration and may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGA Field Programmable Gate Array
  • a Reconfigurable Logic Device that can reconfigure the connection relationship inside the LSI or set up the circuit partition inside the LSI can be used for the same purpose.
  • the software is recorded on a non-temporary recording medium such as one or more ROMs, optical disks, hard disk drives, etc., and is specified by the software when the software is executed by a processor.
  • Functions are executed by a processor and peripheral devices.
  • the system or apparatus may include one or more non-transitory recording media on which software is recorded, a processor, and a required hardware device such as an interface.
  • the flight route generation method, the flight route generation program, and the flight route display device set the flight route to return to the user by the end time of the time zone in which the flight of the unmanned air vehicle is permitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

飛行ルート生成方法は、出発地点と無人飛行体(40)が通過する通過地点との入力を受け付け、出発地点と通過地点とを通過する飛行ルート上に、無人飛行体(40)の飛行が許可されている時間帯の終了時刻に無人飛行体(40)が到達する終了時刻到達地点を表示させる。

Description

飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置
 本開示は、自律飛行する無人飛行体の飛行ルートを生成する飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置に関するものである。
 近年、予め決められた飛行ルートを自律飛行する小型の無人飛行体が開発されている。この無人飛行体は、複数のプロペラを備えており、複数のプロペラのそれぞれの回転数を制御することにより、空中を自在に飛行することができ、予め決められた飛行ルートに沿って自律飛行する。
 例えば、特許文献1では、遠隔操作装置は、無人移動体を旋回させようとする旋回位置と、この旋回位置における移動方向に対応付けた操作用アイコンを、表示部の画像の指示位置に重畳設定することによる移動指示を行う走行指示手段を備え、無人移動体は、走行指示手段によって指示された旋回位置と、この旋回位置における移動方向に基づき、自律移動のための移動経路を計画する経路計画手段と、移動経路に応じた無人移動体の移動速度を計画する速度計画手段と、計画した移動経路と移動速度に従って無人移動体を移動させる自律移動手段とを備えている。
特開2010-152834号公報
 しかしながら、上記従来の技術では、更なる改善が必要とされていた。
 本開示の一態様に係る飛行ルート生成方法は、自律飛行する無人飛行体の飛行ルートを生成する飛行ルート生成方法であって、出発地点と前記無人飛行体が通過する通過地点との入力を受け付け、前記出発地点と前記通過地点とを通過する飛行ルート上に、前記無人飛行体の飛行が許可されている時間帯の終了時刻に前記無人飛行体が到達する終了時刻到達地点を表示させる。
 なお、これらの全般的または具体的な態様は、装置、システム、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、装置、システム、方法、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示によれば、ユーザに対して、無人飛行体の飛行が許可されている時間帯の終了時刻までに帰還する飛行ルートを設定するように促すことができ、終了時刻を過ぎて無人飛行体が飛行するのを防止することができる。
 なお、本開示の更なる効果及び利点は、本明細書及び図面の開示内容から明らかとなるであろう。上記更なる効果及び利点は、本明細書及び図面に開示されている様々な実施の形態及び特徴によって個別に提供されてもよく、必ずしもすべての効果及び利点が提供される必要はない。
本開示の実施の形態1における飛行制御システムの構成を示す図である。 本開示の実施の形態1における無人飛行体の一例を示す全体図である。 本開示の実施の形態1における無人飛行体の構成を示すブロック図である。 本開示の実施の形態1における通信端末の構成を示すブロック図である。 本開示の実施の形態1における飛行ルート生成サーバの構成を示すブロック図である。 本開示の実施の形態1における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第1のフローチャートである。 本開示の実施の形態1における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第2のフローチャートである。 本実施の形態1において通信端末の表示部に表示される表示画面の一例を示す図である。 本実施の形態1において、日の入り時刻までに飛行する飛行ルートと、日の入り時刻を越えて飛行する飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。 本実施の形態1において、日の入り時刻までに飛行する飛行ルート上にアイコンを移動させるアニメーションを表示する表示画面の一例を示す図である。 本実施の形態1において、日の入り地点の直前の通過地点までの飛行ルートと、日の入り地点の直前の通過地点以降の飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。 本開示の実施の形態2における飛行ルート生成サーバの構成を示すブロック図である。 本開示の実施の形態2における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第1のフローチャートである。 本開示の実施の形態2における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第2のフローチャートである。 本実施の形態2において通信端末の表示部に表示される表示画面の一例を示す図である。 本実施の形態2において、日の入り時刻までに出発地点に帰還可能な通過地点と、帰還不可能な通過地点とを異なる態様で表示する表示画面の一例を示す図である。 本実施の形態2において、通過地点から出発地点に帰還する帰還ルート上において、通過地点から終了時刻到達地点までの飛行ルートと、終了時刻到達地点から出発地点までの飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。 本開示の実施の形態3における通信端末の構成を示すブロック図である。 本開示の実施の形態3における飛行ルート生成サーバの構成を示すブロック図である。 本実施の形態3において通信端末の表示部に表示される表示画面の一例を示す図である。 本実施の形態3において、飛行ルートにおいて、出発地点から終了時刻到達地点までの飛行ルートと、終了時刻到達地点以降の飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。 本開示の実施の形態4における飛行ルート生成サーバの構成を示すブロック図である。 本開示の実施の形態4における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するためのフローチャートである。 本実施の形態4において通信端末の表示部に表示される表示画面の一例を示す図である。 本実施の形態4の変形例において通信端末の表示部に表示される表示画面の一例を示す図である。
 (本開示の基礎となった知見)
 上記のように、無人飛行体は、空中を飛行することができるため、様々な無人飛行体の飛行に関する規制が検討されており、例えば、夜間の無人飛行体の飛行を禁止して日中のみ無人飛行体の飛行を許可する規制について検討されている。
 しかしながら、従来の無人移動体では、旋回位置及び移動方向に基づいて自律移動のための移動経路を計画しているが、無人移動体の移動が許可されている時間帯のみに無人移動体を自律移動させることについては開示されていない。
 以上の検討を踏まえ、本発明者は、本開示の各態様を想到するに至った。
 本開示の一態様に係る飛行ルート生成方法は、自律飛行する無人飛行体の飛行ルートを生成する飛行ルート生成方法であって、出発地点と前記無人飛行体が通過する通過地点との入力を受け付け、前記出発地点と前記通過地点とを通過する飛行ルート上に、前記無人飛行体の飛行が許可されている時間帯の終了時刻に前記無人飛行体が到達する終了時刻到達地点を表示させる。
 この構成によれば、出発地点と無人飛行体が通過する通過地点との入力が受け付けられる。そして、出発地点と通過地点とを通過する飛行ルート上に、無人飛行体の飛行が許可されている時間帯の終了時刻に無人飛行体が到達する終了時刻到達地点が表示される。
 したがって、飛行ルート上に、無人飛行体の飛行が許可されている時間帯の終了時刻に無人飛行体が到達する終了時刻到達地点が表示されるので、ユーザに対して、無人飛行体の飛行が許可されている時間帯の終了時刻までに帰還する飛行ルートを設定するように促すことができ、終了時刻を過ぎて無人飛行体が飛行するのを防止することができる。
 また、上記の飛行ルート生成方法において、前記飛行ルートにおいて、前記出発地点から前記終了時刻到達地点までの第1部分飛行ルートと、前記終了時刻到達地点以降の第2部分飛行ルートとを異なる態様で表示させてもよい。
 この構成によれば、飛行ルートにおいて、出発地点から終了時刻到達地点までの第1部分飛行ルートと、終了時刻到達地点以降の第2部分飛行ルートとが異なる態様で表示されるので、飛行可能な第1部分飛行ルートと飛行不可能な第2部分飛行ルートとを容易に判別することができる。
 また、上記の飛行ルート生成方法において、前記通過地点は、前記無人飛行体が通過する第1の通過地点と、前記無人飛行体が前記第1の通過地点の次に通過する第2の通過地点とを含み、前記飛行ルートにおいて、前記終了時刻到達地点の直前の通過地点までの第3部分飛行ルートと、前記終了時刻到達地点の直前の通過地点以降の第4部分飛行ルートとを異なる態様で表示させてもよい。
 この構成によれば、通過地点は無人飛行体が通過する第1の通過地点と、無人飛行体が第1の通過地点の次に通過する第2の通過地点とを含む。そして、飛行ルートにおいて、終了時刻到達地点の直前の通過地点までの第3部分飛行ルートと、終了時刻到達地点の直前の通過地点以降の第4部分飛行ルートとが異なる態様で表示される。
 したがって、飛行ルートにおいて、終了時刻到達地点の直前の通過地点までの第3部分飛行ルートと、終了時刻到達地点の直前の通過地点以降の第4部分飛行ルートとが異なる態様で表示されるので、飛行可能な第3部分飛行ルートと飛行不可能な第4部分飛行ルートとを容易に判別することができる。
 また、上記の飛行ルート生成方法において、前記通過地点は、前記無人飛行体が通過する第1の通過地点と、前記無人飛行体が前記第1の通過地点の次に通過する第2の通過地点とを含む。前記終了時刻までに前記無人飛行体が到達可能な前記第1の通過地点と、前記終了時刻までに前記無人飛行体が到達不可能な前記第2の通過地点とを異なる態様で表示させてもよい。
 この構成によれば、通過地点は、無人飛行体が通過する第1の通過地点と、無人飛行体が第1の通過地点の次に通過する第2の通過地点とを含む。そして、無人飛行体の飛行が許可されている時間帯の終了時刻までに無人飛行体が到達可能な第1の通過地点と、終了時刻までに無人飛行体が到達不可能な第2の通過地点とが異なる態様で表示される。
 したがって、無人飛行体の飛行が許可されている時間帯の終了時刻までに無人飛行体が到達可能な第1の通過地点と、終了時刻までに無人飛行体が到達不可能な第2の通過地点とが異なる態様で表示されるので、ユーザに対して、無人飛行体の飛行が許可されている時間帯の終了時刻までに帰還する飛行ルートを設定するように促すことができ、終了時刻を過ぎて無人飛行体が飛行するのを防止することができる。
 また、上記の飛行ルート生成方法において、前記出発地点を出発する出発時刻の入力をさらに受け付け、前記無人飛行体が前記第1の通過地点に到達する第1の到達予定時刻と、前記無人飛行体が前記第2の通過地点に到達する第2の到達予定時刻とを表示させてもよい。
 この構成によれば、出発地点を出発する出発時刻の入力がさらに受け付けられる。そして、無人飛行体が第1の通過地点に到達する第1の到達予定時刻と、無人飛行体が第2の通過地点に到達する第2の到達予定時刻とが表示される。したがって、ユーザは、無人飛行体が第1の通過地点に到達する第1の到達予定時刻と、無人飛行体が第2の通過地点に到達する第2の到達予定時刻とを確認することができる。
 また、上記の飛行ルート生成方法において、前記無人飛行体が最終的に到着する目的地点は、前記出発地点であり、前記無人飛行体が前記通過地点に到達する到達予定時刻と、前記無人飛行体が前記通過地点から前記出発地点に帰還する帰還予定時刻とをさらに表示させてもよい。
 この構成によれば、無人飛行体が通過地点に到達する到達予定時刻と、無人飛行体が通過地点から出発地点に帰還する帰還予定時刻とが表示されるので、ユーザは、終了時刻までに出発地点に帰還することが可能か否かを容易に確認することができる。
 また、上記の飛行ルート生成方法において、前記通過地点が入力される際に、前記帰還予定時刻が前記終了時刻を越える場合、前記通過地点の入力を受け付けなくてもよい。
 この構成によれば、通過地点が入力される際に、帰還予定時刻が終了時刻を越える場合、通過地点の入力が受け付けられない。したがって、終了時刻を越えて無人飛行体が飛行するのを確実に防止することができる。
 また、上記の飛行ルート生成方法において、前記通過地点が入力される際に、前記帰還予定時刻が前記終了時刻を越える場合、前記帰還予定時刻が前記終了時刻を越えることをユーザに通知してもよい。
 この構成によれば、通過地点が入力される際に、帰還予定時刻が終了時刻を越える場合、帰還予定時刻が終了時刻を越えることがユーザに通知される。したがって、ユーザは、帰還予定時刻が終了時刻を越えないように飛行ルートを設定することができる。
 また、上記の飛行ルート生成方法において、前記終了時刻を越えて前記無人飛行体の飛行を許可する許可情報を取得した場合、前記無人飛行体が前記第2の通過地点に到達する到達予定時刻が前記終了時刻を越えても前記第2の通過地点の入力を受け付けてもよい。
 この構成によれば、終了時刻を越えて無人飛行体の飛行を許可する許可情報が取得された場合、無人飛行体が第2の通過地点に到達する到達予定時刻が終了時刻を越えても第2の通過地点の入力が受け付けられる。
 したがって、許可された場合に、到達予定時刻が終了時刻を越えても第2の通過地点を入力することができ、終了時刻以降に無人飛行体を飛行させることができる。
 また、上記の飛行ルート生成方法において、前記第1の通過地点が入力される際に、前記無人飛行体が前記第1の通過地点に到達する第1の到達予定時刻から前記終了時刻までに前記無人飛行体が飛行可能な範囲を表示させてもよい。
 この構成によれば、第1の通過地点が入力される際に、無人飛行体が第1の通過地点に到達する第1の到達予定時刻から終了時刻までに無人飛行体が飛行可能な範囲が表示される。したがって、飛行ルートを設定する際に、第1の通過地点から終了時刻までに飛行可能な範囲が表示されるので、ユーザに対して、終了時刻までに帰還する飛行ルートを設定するように促すことができ、終了時刻を過ぎて無人飛行体が飛行するのを防止することができる。
 また、上記の飛行ルート生成方法において、前記無人飛行体が備えるバッテリの残容量を取得し、前記第1の通過地点が入力される際に、前記無人飛行体が前記第1の通過地点から前記残容量で飛行可能な範囲をさらに表示させてもよい。
 この構成によれば、無人飛行体が備えるバッテリの残容量が取得され、第1の通過地点が入力される際に、無人飛行体が第1の通過地点から残容量で飛行可能な範囲がさらに表示される。したがって、飛行ルートを設定する際に、バッテリの残容量で飛行可能な範囲が表示されるので、飛行中にバッテリの残容量がなくなり、無人飛行体が飛行できなくなるのを防止することができる。
 本開示の他の態様に係る飛行ルート生成プログラムは、自律飛行する無人飛行体の飛行ルートを生成する飛行ルート生成プログラムであって、コンピュータを、出発地点と前記無人飛行体が通過する通過地点との入力を受け付ける入力受付部と、前記出発地点と前記通過地点とを通過する飛行ルート上に、前記無人飛行体の飛行が許可されている時間帯の終了時刻に前記無人飛行体が到達する終了時刻到達地点を表示部に表示させる表示制御部として機能させる。
 この構成によれば、出発地点と無人飛行体が通過する通過地点との入力が受け付けられる。そして、出発地点と通過地点とを通過する飛行ルート上に、無人飛行体の飛行が許可されている時間帯の終了時刻に無人飛行体が到達する終了時刻到達地点が表示される。
 したがって、飛行ルート上に、無人飛行体の飛行が許可されている時間帯の終了時刻に無人飛行体が到達する終了時刻到達地点が表示されるので、ユーザに対して、無人飛行体の飛行が許可されている時間帯の終了時刻までに帰還する飛行ルートを設定するように促すことができ、終了時刻を過ぎて無人飛行体が飛行するのを防止することができる。
 本開示の他の態様に係る飛行ルート表示装置は、自律飛行する無人飛行体の飛行ルートを表示する飛行ルート表示装置であって、前記飛行ルート表示装置は、ユーザ入力を受け付ける入力部と、情報を表示する表示部と、を備え、前記入力部は、出発地点と前記無人飛行体が通過する通過地点との入力を受け付け、前記表示部は、前記出発地点と前記通過地点とを通過する飛行ルート上に、前記無人飛行体の飛行が許可されている時間帯の終了時刻に前記無人飛行体が到達する終了時刻到達地点を表示する。
 この構成によれば、出発地点と無人飛行体が通過する通過地点との入力が受け付けられる。出発地点と通過地点とを通過する飛行ルート上に、無人飛行体の飛行が許可されている時間帯の終了時刻に無人飛行体が到達する終了時刻到達地点が表示される。
 したがって、飛行ルート上に、無人飛行体の飛行が許可されている時間帯の終了時刻に無人飛行体が到達する終了時刻到達地点が表示されるので、ユーザに対して、無人飛行体の飛行が許可されている時間帯の終了時刻までに帰還する飛行ルートを設定するように促すことができ、終了時刻を過ぎて無人飛行体が飛行するのを防止することができる。
 以下添付図面を参照しながら、本開示の実施の形態について説明する。なお、以下の実施の形態は、本開示を具体化した一例であって、本開示の技術的範囲を限定するものではない。
 (実施の形態1)
 図1は、本開示の実施の形態1における飛行制御システムの構成を示す図である。図1に示す飛行制御システムは、通信端末10、飛行ルート生成サーバ20、外部サーバ30及び無人飛行体40を備える。
 通信端末10は、ユーザ1によって使用され、無人飛行体40の出発地点と、無人飛行体40が通過する通過地点との入力を受け付ける。通信端末10は、飛行ルート生成プログラムをダウンロードすることで、飛行ルートを生成できる。通信端末10は、飛行ルート生成サーバ20及び外部サーバ30とネットワーク50を介して通信可能に接続される。通信端末10は、例えば、スマートフォン、タブレット型コンピュータ、据え置きパーソナルコンピュータ又は共用パーソナルコンピュータである。なお、通信端末10は、例えば、無人飛行体40を遠隔操作する操縦器であってもよい。
 飛行ルート生成サーバ20は、無人飛行体40が自律飛行する飛行ルートを生成する。飛行ルート生成サーバ20は、通信端末10、外部サーバ30及び無人飛行体40とネットワーク50を介して通信可能に接続される。
 外部サーバ30は、日の入り時刻情報及び地図情報を飛行ルート生成サーバ20に提供する。なお、日の入り時刻情報を提供するサーバと、地図情報を提供するサーバとは、同じであってもよいし、異なっていてもよい。
 無人飛行体40は、飛行ルート生成サーバ20によって生成された飛行ルートに基づいて自律飛行する。無人飛行体40は、複数のプロペラを備えており、複数のプロペラのそれぞれの回転数を制御することにより、前方、後方、左方向、右方向、上方向及び下方向に移動する。無人飛行体40は、GPS(Global Positioning System)により現在位置を取得しながら、飛行ルート生成サーバ20によって生成された飛行ルートに沿って自律飛行する。
 図2は、本開示の実施の形態1における無人飛行体の一例を示す全体図である。図3は、本開示の実施の形態1における無人飛行体の構成を示すブロック図である。
 無人飛行体40は、図2に示すように、各種センサ1001と推進器1002とを少なくとも備える。また、無人飛行体40の内部には、通信部1003、バッテリ1004、制御部1005、慣性計測部1006及び位置測定部1007が収納されている。
 各種センサ1001は、例えばイメージセンサ又は人感センサであり、無人飛行体40の使用目的に応じて自由に実装される。
 推進器1002は、無人飛行体40を飛行させるための揚力、推力及びトルクを得るためのプロペラと、プロペラを回転させるモータとからなる。図2の例では、無人飛行体40は4個の推進器1002を有しているが、推進器1002の数は例えば5個以上であってもよい。
 無人飛行体40は、図3に示すように、各種センサ1001、推進器1002、通信部1003、バッテリ1004、制御部1005、慣性計測部1006及び位置測定部1007を少なくとも備える。
 各種センサ1001及び推進器1002は、図2の全体図で説明したので説明を省略する。
 通信部1003は、他の無人飛行体又は外部の通信端末と無線通信を行うための電子回路を含み、他の無人飛行体又は外部の通信端末などから飛行制御等に関するコマンドなどの無線通信を受信したり、他の無人飛行体又は外部の通信端末などに無線信号を発信したりする。
 バッテリ1004は、無人飛行体40の各要素に電源電圧を供給する。
 制御部1005は、無人飛行体40の移動を制御し、さらに複数の構成要素からなる。例えば、プロセッサと、プログラムを記憶したメモリとを備えた情報処理装置が、制御部1005として動作する。
 慣性計測部1006は、ジャイロセンサ又は加速度センサを備え、無人飛行体40の加速度又は角速度を計測する。無人飛行体40は、慣性計測部1006からの出力に基づき、飛行が制御される。
 位置測定部1007は、無人飛行体40の現在位置を計測する。ここでは、位置測定部1007は、GPS(Global Positioning System)センサを用いる。
 以上のように構成される無人飛行体40は、自律的に飛行制御を行う。
 図4は、本開示の実施の形態1における通信端末の構成を示すブロック図である。図4に示す通信端末10は、記憶部101、制御部102、通信部103、位置測定部104、ユーザ入力部105及び表示部106を備える。
 記憶部101は、例えば半導体メモリであり、種々の情報を記憶する。記憶部101は、飛行ルート生成プログラム111を記憶する。飛行ルート生成プログラム111は、無人飛行体40の飛行ルートを生成するためのプログラムである。
 通信部103は、例えばLTE(Long Term Evolution)などの通信規格により、飛行ルート生成サーバ20に種々の情報を送信するとともに、飛行ルート生成サーバ20から種々の情報を受信する。
 位置測定部104は、例えば、GPSであり、通信端末10の現在位置を測定する。
 ユーザ入力部105は、例えば、タッチパネル又は操作ボタンであり、ユーザ入力を受け付ける。ユーザ入力部105は、無人飛行体40の出発地点と、無人飛行体40が通過する第1の通過地点と、無人飛行体40が第1の通過地点の次に通過する第2の通過地点との入力を受け付ける。ユーザ入力部105は、出発地点を出発する出発時刻の入力をさらに受け付ける。
 表示部106は、種々の情報を表示する。表示部106は、無人飛行体40の飛行が許可されている時間帯の終了時刻までに無人飛行体40が到達可能な第1の通過地点と、終了時刻までに無人飛行体40が到達不可能な第2の通過地点とを異なる態様で表示する。表示部106は、出発地点と第1の通過地点と第2の通過地点とを通過する飛行ルート上に、終了時刻に無人飛行体が到達する終了時刻到達地点(後述する、日の入り時刻到達地点)を表示する。表示部106は、無人飛行体40が第1の通過地点に到達する第1の到達予定時刻と、無人飛行体40が第2の通過地点に到達する第2の到達予定時刻とを表示する。
 なお、本実施の形態では、無人飛行体40の飛行が許可されている時間帯は、例えば、日の出時刻から日の入り時刻までの日中である。また、終了時刻は、例えば、無人飛行体40が最終的に到着する目的地点の日の入り時刻、通信端末10が存在する場所の日の入り時刻、又は無人飛行体40が出発する出発地点の日の入り時刻である。
 制御部102は、例えばCPU(中央演算処理装置)であり、通信端末10の動作を制御する。制御部102は、プログラム実行部121、表示制御部122及び位置取得部123を備える。
 プログラム実行部121は、記憶部101に記憶されている飛行ルート生成プログラム111を実行する。表示制御部122は、表示部106を制御する。位置取得部123は、位置測定部104によって測定された通信端末10の現在位置を取得する。
 図5は、本開示の実施の形態1における飛行ルート生成サーバの構成を示すブロック図である。図5に示す飛行ルート生成サーバ20は、記憶部201、制御部202、第1通信部203、第2通信部204及び時計205を備える。
 記憶部201は、例えば、半導体メモリ又はハードディスクドライブであり、種々の情報を記憶する。記憶部201は、地図情報211、日の入り時刻情報212及び移動速度情報213を記憶する。地図情報211は、地図を表す。日の入り時刻情報212は、日の入り時刻を表す。移動速度情報213は、無人飛行体40の移動速度を表す。なお、移動速度は、自律飛行する際に無人飛行体40に予め設定されている速度である。
 制御部202は、例えばCPUであり、飛行ルート生成サーバ20の動作を制御する。制御部202は、通信制御部221、到達予定時刻算出部222、日の入り時刻到達地点算出部223及び飛行ルート設定部224を備える。
 通信制御部221は、第1通信部203及び第2通信部204を制御する。通信制御部221は、通信端末10によって送信された出発地点の位置を示す情報、通過地点の位置を示す情報及び出発時刻を取得する。
 到達予定時刻算出部222は、出発地点から第1の通過地点までの移動距離を算出する。到達予定時刻算出部222は、記憶部201から無人飛行体40の移動速度を取得する。到達予定時刻算出部222は、移動距離と移動速度とに基づいて、出発地点から第1の通過地点までの移動時間を算出する。到達予定時刻算出部222は、出発時刻と移動時間とに基づいて、無人飛行体40が第1の通過地点に到達する第1の到達予定時刻を算出する。通信制御部221は、到達予定時刻算出部222によって算出された到達予定時刻を、第1通信部203を介して通信端末10へ送信する。
 また、到達予定時刻算出部222は、既に到達予定時刻が第1の到達予定時刻として算出された第1の通過地点から、第1の通過地点の次に入力された第2の通過地点までの移動距離を算出する。到達予定時刻算出部222は、記憶部201から無人飛行体40の移動速度を取得する。到達予定時刻算出部222は、移動距離と移動速度とに基づいて、第1の通過地点から第2の通過地点までの移動時間を算出する。到達予定時刻算出部222は、第1の到達予定時刻と移動時間とに基づいて、無人飛行体40が第2の通過地点に到達する第2の到達予定時刻を算出する。通信制御部221は、到達予定時刻算出部222によって算出された第2の到達予定時刻を、第1通信部203を介して通信端末10へ送信する。
 日の入り時刻到達地点算出部223は、飛行ルート上に、日の入り時刻に無人飛行体40が到達する日の入り時刻到達地点を算出する。日の入り時刻到達地点算出部223は、入力された通過地点の到着予定時刻が日の入り時刻を過ぎる場合、到着予定時刻から日の入り時刻までの移動時間を算出する。そして、日の入り時刻到達地点算出部223は、算出した移動時間に移動速度を乗算することにより、日の入り時刻から通過地点までの移動距離を算出する。日の入り時刻到達地点算出部223は、飛行ルート上を、算出された移動距離だけ通過地点から離れた地点を日の入り時刻到達地点として算出する。通信制御部221は、日の入り時刻到達地点算出部223によって算出された日の入り時刻到達地点の位置を示す情報を、第1通信部203を介して通信端末10へ送信する。
 飛行ルート設定部224は、生成した飛行ルートを無人飛行体40に設定する。飛行ルート設定部224は、第1通信部203を介して、生成した飛行ルートを無人飛行体40へ送信する。
 第1通信部203は、例えばLTEなどの通信規格により、通信端末10に種々の情報を送信するとともに、通信端末10から種々の情報を受信する。また、第1通信部203は、無人飛行体40に種々の情報を送信する。
 第2通信部204は、例えばインターネットにより、外部サーバ30から種々の情報を受信する。第2通信部204は、外部サーバ30から地図情報211及び日の入り時刻情報212を受信する。なお、地図情報211及び日の入り時刻情報212は外部サーバ30から受信されているが、本開示は特にこれに限定されず、第1通信部203は、ユーザによって入力された地図情報211及び日の入り時刻情報212を通信端末10から受信してもよい。
 また、第1通信部203は、ユーザによって入力された移動速度情報213を通信端末10から受信してもよく、無人飛行体40によって送信された移動速度情報213を受信してもよい。また、第2通信部204は、外部サーバ30によって送信された移動速度情報213を受信し、記憶部201に記憶してもよい。
 時計205は、時間を計測し、現在時刻を取得する。
 続いて、本実施の形態1における通信端末10及び飛行ルート生成サーバ20の飛行ルート生成処理について説明する。
 図6は、本開示の実施の形態1における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第1のフローチャートであり、図7は、本開示の実施の形態1における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第2のフローチャートである。
 まず、ステップS1において、通信端末10のプログラム実行部121は、ユーザ入力部105からの指示に基づき、飛行ルート生成プログラムを実行し、飛行ルートの生成を開始する。ユーザは、ユーザ入力部105に設けられた、飛行ルートの生成を開始するためのボタンを押下する。ユーザ入力部105は、プログラム実行部121に飛行ルートの生成を指示する。
 次に、ステップS2において、表示制御部122は、通信部103を介して、地図情報を要求するための地図情報要求を送信する。ここで、地図情報要求には、位置取得部123によって取得された通信端末10の位置情報が含まれる。
 次に、ステップS3において、飛行ルート生成サーバ20の通信制御部221は、第1通信部203を介して、通信端末10によって送信された地図情報要求を受信する。
 次に、ステップS4において、通信制御部221は、地図情報要求に含まれる通信端末10の位置情報に対応する地図情報を記憶部201から読み出し、第1通信部203を介して、読み出した地図情報を通信端末10へ送信する。通信端末10の位置情報は、緯度及び経度で表され、通信制御部221は、通信端末10の位置を中心とする所定の範囲の地図情報を記憶部201から読み出す。
 次に、ステップS5において、通信端末10の表示制御部122は、通信部103を介して、飛行ルート生成サーバ20によって送信された地図情報を受信する。
 次に、ステップS6において、表示制御部122は、受信した地図情報を表示部106に表示する。
 なお、本実施の形態1において、通信端末10は、通信端末10の位置情報を含む地図情報要求を飛行ルート生成サーバ20へ送信し、通信端末10の位置を中心とする所定の範囲の地図情報を飛行ルート生成サーバ20から受信しているが、本開示は特にこれに限定されない。通信端末10は、無人飛行体40の位置情報を無人飛行体40から受信し、受信した無人飛行体40の位置情報を含む地図情報要求を飛行ルート生成サーバ20へ送信し、無人飛行体40の位置を中心とする所定の範囲の地図情報を飛行ルート生成サーバ20から受信してもよい。このことは、他の実施の形態でも同様に適用可能である。
 次に、ステップS7において、ユーザ入力部105は、ユーザによる出発地点の入力を受け付ける。なお、出発地点は、地図上の所定の地点であってもよく、通信端末10の現在位置を出発地点としてもよい。ユーザは、ユーザ入力部105を用いて出発地点を入力する。例えば、ユーザ入力部105がタッチパネルである場合、表示部106に表示されている地図上の出発地点に対応する位置がタッチされることにより、出発地点の入力が受け付けられる。なお、ユーザ入力部105は、出発地点の住所などの地図上の位置を特定することが可能な情報の入力を受け付けてもよい。
 次に、ステップS8において、表示制御部122は、ユーザによって入力された出発地点を表すアイコンを表示部106に表示する。なお、出発地点を表すアイコンについては特に限定されず、例えば白い丸又は黒い丸などの種々の形状で表される。
 次に、ステップS9において、ユーザ入力部105は、出発時刻の入力を受け付ける。出発時刻は、現在時刻であってもよく、将来の特定の時刻であってもよい。
 次に、ステップS10において、表示制御部122は、ユーザによって入力された出発時刻を表示部106に表示する。なお、出発時刻を表示する位置については特に限定されず、例えば出発地点を表すアイコンの近傍に表示される。
 次に、ステップS11において、ユーザ入力部105は、ユーザによる通過地点の入力を受け付ける。ユーザは、ユーザ入力部105を用いて通過地点を入力する。通過地点は、自律飛行する無人飛行体40が通過する地点である。例えば、ユーザ入力部105がタッチパネルである場合、表示部106に表示されている地図上の通過地点に対応する位置がタッチされることにより、通過地点の入力が受け付けられる。なお、ユーザ入力部105は、通過地点の住所などの地図上の位置を特定することが可能な情報の入力を受け付けてもよい。
 次に、ステップS12において、表示制御部122は、ユーザによって入力された通過地点を表すアイコンを表示部106に表示する。なお、通過地点を表すアイコンについては特に限定されず、例えば白い丸又は黒い丸などの種々の形状で表される。通過地点を表すアイコンは、出発地点を表すアイコンとは異なることが好ましい。また、表示制御部122は、出発地点を表すアイコンと通過地点を表すアイコンとを直線又は矢印で繋いでもよく、これにより、無人飛行体40の飛行ルートを明示することができる。
 次に、ステップS13において、通信部103は、出発地点情報、通過地点情報及び出発時刻情報を飛行ルート生成サーバ20へ送信する。出発地点情報は、例えば、出発地点の緯度及び経度を示す情報であり、地図上の位置を特定することが可能な情報であればよい。通過地点情報は、例えば、通過地点の緯度及び経度を示す情報であり、地図上の位置を特定することが可能な情報であればよい。出発時刻情報は、ユーザによって指定された出発時刻を示す情報である。
 次に、ステップS14において、飛行ルート生成サーバ20の通信制御部221は、第1通信部203を介して、通信端末10によって送信された出発地点情報、通過地点情報及び出発時刻情報を受信する。なお、受信された出発地点情報、通過地点情報及び出発時刻情報は、記憶部201に記憶される。
 次に、ステップS15において、到達予定時刻算出部222は、受信された出発地点情報及び通過地点情報に基づいて、出発地点から通過地点までの移動距離を算出する。
 次に、ステップS16において、到達予定時刻算出部222は、無人飛行体40の移動速度を示す移動速度情報を記憶部201から取得する。
 次に、ステップS17において、到達予定時刻算出部222は、出発地点から通過地点までの移動距離と移動速度とに基づいて、出発地点から通過地点までの移動時間を算出する。すなわち、到達予定時刻算出部222は、出発地点から通過地点までの移動距離を移動速度で除算することにより、移動時間を算出する。
 次に、ステップS18において、到達予定時刻算出部222は、出発地点から通過地点までの移動時間と出発時刻情報とに基づいて、無人飛行体40が通過地点に到達する到達予定時刻を算出する。すなわち、到達予定時刻算出部222は、出発時刻から移動時間経過した時刻を到達予定時刻として算出する。ここで、通信制御部221は、第1通信部203を介して、算出された到着予定時刻を示す到着予定時刻情報を通信端末10へ送信してもよい。通信端末10の通信部103は、到着予定時刻情報を受信し、表示制御部122は、受信した到着予定時刻情報で示される到着予定時刻を、通過地点を示すアイコンの近傍に表示してもよい。
 次に、ステップS19において、日の入り時刻到達地点算出部223は、日の入り時刻を表す日の入り時刻情報を記憶部201から取得する。なお、日の入り時刻は、例えば目的地点の日の入り時刻である。
 次に、ステップS20において、日の入り時刻到達地点算出部223は、到着予定時刻が日の入り時刻以内であるか否かを判断する。ここで、到着予定時刻が日の入り時刻以内であると判断された場合(ステップS20でYES)、ステップS26の処理へ移行する。
 一方、到着予定時刻が日の入り時刻以内ではない、すなわち到着予定時刻が日の入り時刻を越えていると判断された場合(ステップS20でNO)、ステップS21において、日の入り時刻到達地点算出部223は、出発時刻から日の入り時刻までの経過時間を算出する。
 次に、ステップS22において、日の入り時刻到達地点算出部223は、出発時刻から日の入り時刻までの経過時間に移動速度を乗算することにより、出発時刻から日の入り時刻までに無人飛行体40が移動する移動距離を算出する。
 次に、ステップS23において、日の入り時刻到達地点算出部223は、出発地点と通過地点とを結ぶ直線上において、出発地点から移動距離進んだ位置を日の入り地点として算出する。
 次に、ステップS24において、通信制御部221は、第1通信部203を介して、日の入り地点の位置を示す日の入り地点情報を通信端末10へ送信する。日の入り地点情報は、例えば、日の入り地点の緯度及び経度を示す情報であり、地図上の位置を特定することが可能な情報であればよい。また、通信制御部221は、日の入り地点情報に加えて、日の入り時刻を示す日の入り時刻情報を通信端末10へ送信してもよい。
 次に、ステップS25において、通信端末10の通信部103は、飛行ルート生成サーバ20によって送信された日の入り地点情報を受信する。
 次に、ステップS26において、表示制御部122は、日の入り地点を表すアイコンを表示部106に表示する。なお、日の入り地点を表すアイコンについては特に限定されず、例えばX字状などの種々の形状で表される。日の入り地点を表すアイコンは、出発地点を表すアイコン及び出発地点を表すアイコンとは異なることが好ましい。また、日の入り時刻情報が受信された場合、表示制御部122は、日の入り地点を表すアイコンの近傍に日の入り時刻を表示してもよい。
 次に、ステップS27において、表示制御部122は、通過地点の入力が終了されたか否かを判断する。例えば、ユーザ入力部105は、通過地点の入力を終了するため、すなわち飛行ルートを確定させるための終了ボタンを含む。終了ボタンが押下された場合、表示制御部122は、通過地点の入力が終了されたと判断する。ここで、通過地点の入力が終了されていないと判断された場合(ステップS27でNO)、ステップS28において、ユーザ入力部105は、ユーザによる通過地点の入力を受け付ける。通過地点の入力方法については、上述したとおりである。
 次に、ステップS29において、表示制御部122は、ユーザによって入力された通過地点を表すアイコンを表示部106に表示する。通過地点を表すアイコンの表示方法については、上述したとおりである。
 次に、ステップS30において、通信部103は、通過地点情報を飛行ルート生成サーバ20へ送信する。
 次に、ステップS31において、飛行ルート生成サーバ20の通信制御部221は、第1通信部203を介して、通信端末10によって送信された通過地点情報を受信する。なお、受信された通過地点情報は、記憶部201に記憶される。
 次に、ステップS32において、到達予定時刻算出部222は、受信された今回の通過地点情報及び前回の通過地点情報に基づいて、今回入力された通過地点から前回入力された通過地点までの移動距離を算出する。なお、前回の通過地点情報は、記憶部201に記憶されているので、到達予定時刻算出部222は、前回の通過地点情報を記憶部201から読み出す。
 次に、ステップS33において、到達予定時刻算出部222は、前回入力された通過地点から今回入力された通過地点までの移動距離と移動速度とに基づいて、前回入力された通過地点から今回入力された通過地点までの移動時間を算出する。すなわち、到達予定時刻算出部222は、前回入力された通過地点から今回入力された通過地点までの移動距離を移動速度で除算することにより、移動時間を算出する。
 次に、ステップS34において、到達予定時刻算出部222は、前回入力された通過地点から今回入力された通過地点までの移動時間と、前回入力された通過地点の到着予定時刻とに基づいて、無人飛行体40が今回入力された通過地点に到達する到達予定時刻を算出する。すなわち、到達予定時刻算出部222は、前回入力された通過地点の到着予定時刻から移動時間経過した時刻を、今回入力された通過地点の到達予定時刻として算出し、ステップS20の処理に戻る。ここで、通信制御部221は、第1通信部203を介して、算出された到着予定時刻を示す到着予定時刻情報を通信端末10へ送信してもよい。通信端末10の通信部103は、到着予定時刻情報を受信し、表示制御部122は、受信した到着予定時刻情報で示される到着予定時刻を、通過地点を示すアイコンの近傍に表示してもよい。
 次に、ステップS20において、日の入り時刻到達地点算出部223は、今回入力された通過地点の到着予定時刻が日の入り時刻以内であるか否かを判断する。ここで、今回入力された通過地点の到着予定時刻が日の入り時刻以内であると判断された場合(ステップS20でYES)、ステップS27の処理へ移行する。
 一方、今回入力された通過地点の到着予定時刻が日の入り時刻以内ではない、すなわち今回入力された通過地点の到着予定時刻が日の入り時刻を越えていると判断された場合(ステップS20でNO)、ステップS21において、日の入り時刻到達地点算出部223は、前回入力された通過地点の到着予定時刻から日の入り時刻までの経過時間を算出する。
 次に、ステップS22において、日の入り時刻到達地点算出部223は、前回入力された通過地点の到着予定時刻から日の入り時刻までの経過時間に移動速度を乗算することにより、前回入力された通過地点の到着予定時刻から日の入り時刻までに無人飛行体40が移動する移動距離を算出する。
 次に、ステップS23において、日の入り時刻到達地点算出部223は、前回入力された通過地点と今回入力された通過地点とを結ぶ直線上において、前回入力された通過地点から移動距離進んだ位置を日の入り地点として算出する。そして、上記のステップS24以降の処理が行われる。
 一方、ステップS27において通過地点の入力が終了されたと判断された場合(ステップS27でYES)、ステップS35において、通信端末10の通信部103は、飛行ルートが決定したことを示す飛行ルート決定信号を飛行ルート生成サーバ20へ送信する。
 次に、ステップS36において、飛行ルート生成サーバ20の通信制御部221は、第1通信部203を介して、通信端末10によって送信された飛行ルート決定信号を受信する。
 次に、ステップS37において、飛行ルート設定部224は、第1通信部203を介して、無人飛行体40が自律飛行する飛行ルートを示す飛行ルート情報を無人飛行体40へ送信する。飛行ルート情報は、出発地点の位置を示す出発地点情報、通過地点の位置を示す通過地点情報及び出発時刻を示す出発時刻情報を含む。無人飛行体40は、飛行ルート情報を受信し、出発時刻情報で示される出発時刻になると、自律飛行を開始する。そして、無人飛行体40は、通過地点情報で示される通過地点を通過し、最終的に出発地点に帰還する。
 なお、本実施の形態1では、無人飛行体40は、少なくとも1つの通過地点を経由して出発地点に帰還するが、本開示は特にこれに限定されない。通信端末10は、出発地点とは異なる最終目的地の入力を受け付けてもよく、無人飛行体40は、少なくとも1つの通過地点を経由して最終目的地に着陸してもよい。また、無人飛行体40は、入力された複数の通過地点のうち、最後に入力された通過地点を最終目的地としてもよい。また、無人飛行体40は、唯一入力された通過地点を最終目的地としてもよい。
 また、入力された通過地点の到着予定時刻が日の入り時刻を越える場合、飛行ルート設定部224は、当該入力された通過地点を飛行ルートとして受け付けなくてもよい。また、入力された通過地点の到着予定時刻が日の入り時刻を越える場合であっても、飛行ルート設定部224は、当該入力された通過地点を飛行ルートとして受け付けてもよい。この場合、表示制御部122は、日の入り時刻までしか飛行することができないことをユーザに通知する通知画面を表示部106に表示してもよい。
 また、本実施の形態1では、出発地点の入力を受け付けられて通過地点の入力が受け付けられる前に、出発時刻の入力を受け付けているが、本開示は特にこれに限定されず、通過地点の入力が受け付けられた後に、出発時刻の入力を受け付けてもよい。この場合、飛行ルート生成後の任意のタイミングで出発時刻の入力が受け付けられる。そして、入力された出発時刻に基づき、飛行ルート生成画面の表示が更新される。このことは、他の実施の形態でも同様に適用可能である。
 また、本実施の形態1では、飛行ルート生成サーバ20が飛行ルート情報を無人飛行体40へ送信しているが、本開示は特にこれに限定されず、飛行ルート生成サーバ20は、飛行ルート情報を通信端末10へ送信してもよく、通信端末10は、受信した飛行ルート情報を無人飛行体40へ送信してもよい。このことは、他の実施の形態でも同様に適用可能である。
 図8は、本実施の形態1において通信端末の表示部に表示される表示画面の一例を示す図である。
 図8に示すように、表示部106には、それぞれユーザによって入力された、出発地点を示すアイコン501と、出発地点の次に通過する第1の通過地点を示すアイコン502と、第1の通過地点の次に通過する第2の通過地点を示すアイコン503とが表示される。アイコン501の近傍には、出発時刻(図8では“16:30”)が表示される。
 また、アイコン502の近傍には、無人飛行体40が第1の通過地点に到着する到着予定時刻(図8では“17:00”)が表示される。そして、入力された第2の通過地点に到着する到着予定時刻が日の入り時刻を越える場合、日の入り地点を示すアイコン504が表示される。また、アイコン504の近傍には、日の入り時刻(図8では“17:30”)が表示される。
 本実施の形態1において、日の入り時刻までに到着することが可能な第1の通過地点を示すアイコン502と、日の入り時刻までに到着することが不可能な第2の通過地点を示すアイコン503とは、異なる態様で表示してもよい。例えば、アイコン502とアイコン503とを異なる色で表示してもよく、アイコン502とアイコン503とを異なる形状で表示してもよい。
 このように、飛行ルートを設定する際に、日の入り時刻を迎える地点が表示されるので、ユーザに対して、日の入り時刻までに帰還する飛行ルートを設定するように促すことができ、日の入り時刻を過ぎて無人飛行体40が飛行するのを防止することができる。
 また、飛行ルートのうち、日の入り時刻までに飛行する飛行ルートと、日の入り時刻を越えて飛行する飛行ルートとを異なる態様で表示してもよい。
 図9は、本実施の形態1において、日の入り時刻までに飛行する飛行ルートと、日の入り時刻を越えて飛行する飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。
 図9に示すように、出発地点を示すアイコン501と、出発地点の次に通過する第1の通過地点を示すアイコン502と、第1の通過地点の次に通過する第2の通過地点を示すアイコン503とは、それぞれ矢印によって繋がれている。例えば、出発地点を示すアイコン501から日の入り地点を示すアイコン504までの飛行ルート5041は青色で表示され、日の入り地点を示すアイコン504から日の入り時刻までに到着することが不可能な第2の通過地点を示すアイコン503までの飛行ルート5042は赤色で表示される。なお、飛行ルート5041を示すラインは濃い色で表示され、飛行ルート5042を示すラインは薄い色で表示されてもよい。
 また、飛行ルート5041を示すラインは、飛行ルート5042を示すラインと異なる透過度で表示されてもよい。例えば、日の入り時刻までのルートは、日の入り時刻以降のルートに比べて高い透過度で表示されてもよい。
 また、例えば、飛行ルート5041を示すラインは塗りつぶされていてもよく、飛行ルート5042を示すラインは塗りつぶされていない枠線のみで表示されてもよい。
 また、飛行ルート5041を示すラインは、飛行ルート5042を示すラインと異なる形状の線で表示されてもよい。例えば、日の入り時刻までのルートは細線で表示されてもよく、日の入り時刻以降のルートは太線で表示されてもよい。
 また、飛行ルート5041を示すライン及び飛行ルート5042を示すラインには、互いに異なる文字が重畳されてもよい。例えば、飛行ルート5042を示すライン上に「日の入り後」などという文字が重畳されてもよい。また、例えば、飛行ルート5041を示すライン上に「日の入り前」などという文字が重畳されてもよい。さらに、飛行ルート5041を示すライン及び飛行ルート5042を示すラインの一方のみに、文字が重畳されてもよい。
 また、飛行ルート5041を示すライン及び飛行ルート5042を示すラインには、互いに異なるマークが重畳されてもよい。例えば、飛行ルート5042を示すライン上に月を模したマークが重畳されてもよい。また、例えば、飛行ルート5041を示すライン上に太陽を模したマークが重畳されてもよい。さらに、飛行ルート5041を示すライン及び飛行ルート5042を示すラインの一方のみに、マークが重畳されてもよい。
 また、飛行ルート5042を示すラインは表示されなくてもよい。例えば、日の入り時刻までの飛行ルートは、何かしらの態様で表示されるが、日の入り時刻以降の飛行ルートは表示されなくてもよい。
 また、飛行ルート5041は、飛行ルート5041上をアイコンが移動するアニメーションによって表されてもよい。図10は、本実施の形態1において、日の入り時刻までに飛行する飛行ルート上にアイコンを移動させるアニメーションを表示する表示画面の一例を示す図である。図10に示すように、例えば、出発地点を示すアイコン501から日の入り地点を示すアイコン504までの飛行ルート上には、無人飛行体を模したアイコン531が動くようなアニメーションが表示されるが、日の入り地点を示すアイコン504以降の飛行ルートではアニメーションは表示されない。
 このように、日の入り時刻までに飛行する飛行ルートと、日の入り時刻を越えて飛行する飛行ルートとが異なる態様で表示されるので、ユーザは、飛行可能な飛行ルートと飛行不可能な飛行ルートを容易に識別することができ、日中のみ飛行する飛行ルートの設定を支援することができる。
 なお、本実施の形態1では、無人飛行体40の飛行が許可されている時間帯の終了時刻を日の入り時刻としているが、本開示は特にこれに限定されず、例えば17時又は18時などの予め決められた時刻を終了時刻としてもよい。
 また、本実施の形態1において、無人飛行体40は、単に通過地点の上空を通過するだけでなく、通過地点に着陸した後、次の通過地点へ出発してもよい。そのため、通信端末10は、通過地点を出発する時刻の入力を受け付けてもよい。
 また、本実施の形態1において、無人飛行体40が日の入り時刻までに目的地点に到着できない場合、飛行ルート設定部224は、無人飛行体40が日の入り時刻までに目的地点に到着できるように、出発時刻を変更してもよい。この場合、表示制御部122は、出発時刻を変更することをユーザに通知する。
 また、本実施の形態1において、無人飛行体40が日の入り時刻までに目的地点に到着できない場合、飛行ルート設定部224は、無人飛行体40が日の入り時刻までに目的地点に到着できるように、無人飛行体40の移動速度を変更してもよい。この場合、表示制御部122は、移動速度を変更することをユーザに通知する。
 また、本実施の形態1において、表示制御部122は、飛行ルートにおいて、終了時刻到達地点の直前の通過地点までの飛行ルートと、終了時刻到達地点の直前の通過地点以降の飛行ルートとを異なる態様で表示させてもよい。
 図11は、本実施の形態1において、日の入り地点の直前の通過地点までの飛行ルートと、日の入り地点の直前の通過地点以降の飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。
 図11に示すように、出発地点を示すアイコン501と、出発地点の次に通過する第1の通過地点を示すアイコン502と、第1の通過地点の次に通過する第2の通過地点を示すアイコン503とは、それぞれ矢印によって繋がれている。例えば、出発地点を示すアイコン501から第1の通過地点を示すアイコン502までの飛行ルート5011は実線で表示され、第1の通過地点を示すアイコン502から日の入り時刻までに到着することが不可能な第2の通過地点を示すアイコン503までの飛行ルート5012は破線で表示される。なお、飛行ルート5011と飛行ルート5012とは、互いに異なる色で表示されてもよい。また、飛行ルート5011と飛行ルート5012とは、互いに異なる態様で表示されてもよい。
 また、本実施の形態1において、通信端末10が飛行ルート生成サーバ20の機能を備えてもよい。すなわち、通信端末10は、飛行ルート生成サーバ20の第2通信部204及び時計205をさらに備えてもよく、通信端末10の制御部102は、飛行ルート生成サーバ20の通信制御部221、到達予定時刻算出部222、日の入り時刻到達地点算出部223及び飛行ルート設定部224をさらに備えてもよく、通信端末10の記憶部101は、飛行ルート生成サーバ20の地図情報211、日の入り時刻情報212及び移動速度情報213をさらに記憶してもよい。
 (実施の形態2)
 実施の形態2では、ユーザによって入力された通過地点から出発地点へ帰還する帰還予定時刻が表示される。
 図12は、本開示の実施の形態2における飛行ルート生成サーバの構成を示すブロック図である。なお、本実施の形態2における通信端末の構成は、実施の形態1における通信端末の構成と同じである。また、本実施の形態2における飛行ルート生成サーバ21において、図5に示す実施の形態1の飛行ルート生成サーバ20と同じ構成については同じ符号を付し、詳細な説明を省略する。図12に示す飛行ルート生成サーバ21は、記憶部201、制御部202、第1通信部203、第2通信部204及び時計205を備える。
 制御部202は、例えばCPUであり、飛行ルート生成サーバ21の動作を制御する。制御部202は、通信制御部221、到達予定時刻算出部222、飛行ルート設定部224及び帰還時刻算出部225を備える。
 帰還時刻算出部225は、ユーザによって入力された第1の通過地点から出発地点へ帰還する第1の帰還予定時刻と、ユーザによって入力された第2の通過地点から出発地点へ帰還する第2の帰還予定時刻とを算出する。
 通信端末10の表示部106は、無人飛行体40が第1の通過地点に到達する第1の到達予定時刻と、無人飛行体40が第2の通過地点に到達する第2の到達予定時刻と、無人飛行体40が第1の通過地点から出発地点に帰還する第1の帰還予定時刻と、無人飛行体40が第2の通過地点から出発地点に帰還する第2の帰還予定時刻とを表示する。
 続いて、本実施の形態2における通信端末10及び飛行ルート生成サーバ21の飛行ルート生成処理について説明する。
 図13は、本開示の実施の形態2における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第1のフローチャートであり、図14は、本開示の実施の形態2における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するための第2のフローチャートである。
 図13に示すステップS41~ステップS43の処理は、図6に示すステップS1~ステップS3の処理と同じであるので、説明を省略する。
 次に、ステップS44において、通信制御部221は、地図情報及び日の入り時刻情報を記憶部201から取得する。なお、日の入り時刻は、例えば通信端末10が存在する位置の日の入り時刻である。通信制御部221は、地図情報要求に含まれる通信端末10の位置情報に対応する地図情報及び日の入り時刻情報を記憶部201から読み出す。
 次に、ステップS45において、通信制御部221は、第1通信部203を介して、取得した地図情報及び日の入り時刻情報を通信端末10へ送信する。
 次に、ステップS46において、通信端末10の表示制御部122は、通信部103を介して、飛行ルート生成サーバ21によって送信された地図情報及び日の入り時刻情報を受信する。
 次に、ステップS47において、表示制御部122は、受信した地図情報を表示部106に表示する。
 次に、ステップS48において、表示制御部122は、受信した日の入り時刻情報で示される日の入り時刻を表示部106に表示する。
 図13に示すステップS49~ステップS60の処理は、図6に示すステップS7~ステップS18の処理と同じであるので、説明を省略する。
 次に、ステップS61において、帰還時刻算出部225は、ユーザによって入力された通過地点から出発地点へ帰還する帰還予定時刻を算出する。具体的には、帰還時刻算出部225は、出発時刻から、出発地点から通過地点までの移動時間の2倍の時間が経過した時刻を帰還予定時刻として算出する。
 次に、ステップS62において、通信制御部221は、第1通信部203を介して、到達予定時刻を示す到達予定時刻情報及び帰還予定時刻を示す帰還予定時刻情報を通信端末10へ送信する。
 次に、ステップS63において、通信端末10の通信部103は、飛行ルート生成サーバ21によって送信された到達予定時刻情報及び帰還予定時刻情報を受信する。
 次に、ステップS64において、表示制御部122は、通過地点を表すアイコンの近傍に、到達予定時刻情報で示される到達予定時刻と、帰還予定時刻情報で示される帰還予定時刻とを表示する。
 図14に示すステップS65~ステップS72の処理は、図7に示すステップS27~ステップS34の処理と同じであるので、説明を省略する。
 次に、ステップS73において、帰還時刻算出部225は、受信された今回の通過地点情報及び出発地点情報に基づいて、今回入力された通過地点から出発地点までの移動距離を算出する。なお、出発地点情報は、記憶部201に記憶されているので、帰還時刻算出部225は、出発地点情報を記憶部201から読み出す。
 次に、ステップS74において、帰還時刻算出部225は、今回入力された通過地点から出発地点までの移動距離と移動速度とに基づいて、今回入力された通過地点から出発地点までの移動時間を算出する。すなわち、帰還時刻算出部225は、今回入力された通過地点から出発地点までの移動距離を移動速度で除算することにより、移動時間を算出する。
 次に、ステップS75において、帰還時刻算出部225は、今回入力された通過地点の到達予定時刻から、今回入力された通過地点から出発地点までの移動時間が経過した時刻を、帰還予定時刻として算出する。
 次に、ステップS76において、通信制御部221は、第1通信部203を介して、到達予定時刻を示す到達予定時刻情報及び帰還予定時刻を示す帰還予定時刻情報を通信端末10へ送信する。
 次に、ステップS77において、通信端末10の通信部103は、飛行ルート生成サーバ21によって送信された到達予定時刻情報及び帰還予定時刻情報を受信する。
 次に、ステップS78において、表示制御部122は、今回入力された通過地点を表すアイコンの近傍に、到達予定時刻情報で示される到達予定時刻と、帰還予定時刻情報で示される帰還予定時刻とを表示する。そして、ステップS65の処理へ戻り、ステップS65~ステップS78の処理が、通過地点の入力が終了するまで行われる。
 ステップS65において通過地点の入力が終了されたと判断された場合(ステップS65でYES)、ステップS79において、通信端末10の通信部103は、飛行ルートが決定したことを示す飛行ルート決定信号を飛行ルート生成サーバ21へ送信する。
 図14に示すステップS80~ステップS81の処理は、図7に示すステップS36~ステップS37の処理と同じであるので、説明を省略する。
 図15は、本実施の形態2において通信端末の表示部に表示される表示画面の一例を示す図である。
 図15に示すように、表示部106には、それぞれユーザによって入力された、出発地点を示すアイコン501と、出発地点の次に通過する第1の通過地点を示すアイコン502と、第1の通過地点の次に通過する第2の通過地点を示すアイコン503と、日の入り時刻505とが表示される。アイコン501の近傍には、出発時刻(図15では“15:30”)が表示される。
 また、アイコン502の近傍には、無人飛行体40が第1の通過地点に到着する到着予定時刻(図15では“16:00”)が表示されるとともに、無人飛行体40が第1の通過地点から出発地点に帰還する帰還予定時刻(図15では“16:30”)が表示される。
 また、アイコン503の近傍には、無人飛行体40が第2の通過地点に到着する到着予定時刻(図15では“16:30”)が表示されるとともに、無人飛行体40が第2の通過地点から出発地点に帰還する帰還予定時刻(図15では“17:10”)が表示される。
 このように、飛行ルートを設定する際に、日の入り時刻とともに、各通過地点から出発地点に帰還する帰還予定時刻が表示されるので、ユーザに対して、日の入り時刻までに帰還する飛行ルートを設定するように促すことができ、日の入り時刻を過ぎて無人飛行体40が飛行するのを防止することができる。
 なお、第2の通過地点が入力される際に、無人飛行体40が第2の通過地点から出発地点に帰還する第2の帰還予定時刻が、終了時刻(日の入り時刻)を越える場合、ユーザ入力部105は、第2の通過地点の入力を受け付けなくてもよい。
 また、第2の通過地点が入力される際に、無人飛行体40が第2の通過地点から出発地点に帰還する第2の帰還予定時刻が、終了時刻(日の入り時刻)を越える場合、表示制御部122は、第2の帰還予定時刻が終了時刻を越えることをユーザに通知してもよい。
 また、本実施の形態2において、入力された第2の通過地点の第2の到着予定時刻が日の入り時刻を越える場合、表示制御部122は、実施の形態1と同様に、日の入り地点を示すアイコンを表示してもよい。
 また、本実施の形態2において、表示制御部122は、飛行ルートにおいて、終了時刻(日の入り時刻)までに出発地点に帰還可能な通過地点と、帰還不可能な通過地点とを異なる態様で表示してもよい。
 図16は、本実施の形態2において、日の入り時刻までに出発地点に帰還可能な通過地点と、帰還不可能な通過地点とを異なる態様で表示する表示画面の一例を示す図である。
 図16に示すように、表示部106には、それぞれユーザによって入力された、出発地点を示すアイコン501と、出発地点の次に通過する第1の通過地点を示すアイコン502と、第1の通過地点の次に通過する第2の通過地点を示すアイコン503と、日の入り時刻505とが表示される。アイコン501の近傍には、出発時刻(図16では“16:30”)が表示される。
 また、アイコン502の近傍には、無人飛行体40が第1の通過地点に到着する到着予定時刻(図16では“17:00”)が表示されるとともに、無人飛行体40が第1の通過地点から出発地点に帰還する帰還予定時刻(図16では“17:20”)が表示される。
 また、アイコン503の近傍には、無人飛行体40が第2の通過地点に到着する到着予定時刻(図16では“17:30”)が表示されるとともに、無人飛行体40が第2の通過地点から出発地点に帰還する帰還予定時刻(図16では“18:10”)が表示される。
 図16において、日の入り時刻までに出発地点に帰還することが可能な第1の通過地点を示すアイコン502と、日の入り時刻までに出発地点に帰還することが不可能な第2の通過地点を示すアイコン503とは、異なる態様で表示してもよい。例えば、アイコン502とアイコン503とを異なる色で表示してもよく、アイコン502とアイコン503とを異なる形状で表示してもよい。
 これにより、設定した通過地点から出発地点に終了時刻までに帰還可能であるか否かをユーザに把握させることができる。
 また、本実施の形態2において、表示制御部122は、通過地点から出発地点に帰還する帰還ルート上において、通過地点から終了時刻到達地点までの飛行ルートと、終了時刻到達地点から出発地点までの飛行ルートとを異なる態様で表示してもよい。
 図17は、本実施の形態2において、通過地点から出発地点に帰還する帰還ルート上において、通過地点から終了時刻到達地点までの飛行ルートと、終了時刻到達地点から出発地点までの飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。
 図17に示すように、表示部106には、それぞれユーザによって入力された、出発地点を示すアイコン501と、出発地点の次に通過する第1の通過地点を示すアイコン502と、第1の通過地点の次に通過する第2の通過地点を示すアイコン503と、日の入り時刻505とが表示される。アイコン501の近傍には、出発時刻(図17では“16:30”)が表示される。
 また、アイコン502の近傍には、無人飛行体40が第1の通過地点に到着する到着予定時刻(図17では“17:00”)が表示されるとともに、無人飛行体40が第1の通過地点から出発地点に帰還する帰還予定時刻(図17では“17:20”)が表示される。
 また、アイコン503の近傍には、無人飛行体40が第2の通過地点に到着する到着予定時刻(図17では“17:30”)が表示されるとともに、無人飛行体40が第2の通過地点から出発地点に帰還する帰還予定時刻(図17では“18:10”)が表示される。
 第2の通過地点から出発地点に帰還する帰還予定時刻が日の入り時刻を越える場合、日の入り地点を示すアイコン504が表示される。また、アイコン504の近傍には、日の入り時刻(図17では“18:00”)が表示される。
 また、第2の通過地点を示すアイコン503と出発地点を示すアイコン501とは、矢印によって繋がれている。第2の通過地点から出発地点に帰還する帰還ルート上において、第2の通過地点を示すアイコン503から日の入り地点を示すアイコン504までの飛行ルート5051は破線で表示され、日の入り地点を示すアイコン504から出発地点を示すアイコン501までの飛行ルート5052は一点鎖線で表示される。
 なお、飛行ルート5051と飛行ルート5052とは、互いに異なる色で表示されてもよい。また、飛行ルート5051と飛行ルート5052とは、互いに異なる態様で表示されてもよい。
 これにより、設定した通過地点から出発地点までの帰還ルート上において、終了時刻までに到達可能な場所をユーザに把握させることができる。また、終了時刻までに到達可能な場所がわかるので、ユーザは、終了時刻までに到達可能な場所へ無人飛行体40を回収しに行くことができる。
 また、本実施の形態2において、通信端末10が飛行ルート生成サーバ21の機能を備えてもよい。すなわち、通信端末10は、飛行ルート生成サーバ21の第2通信部204及び時計205をさらに備えてもよく、通信端末10の制御部102は、飛行ルート生成サーバ21の通信制御部221、到達予定時刻算出部222、飛行ルート設定部224及び帰還時刻算出部225をさらに備えてもよく、通信端末10の記憶部101は、飛行ルート生成サーバ21の地図情報211、日の入り時刻情報212及び移動速度情報213をさらに記憶してもよい。
 (実施の形態3)
 災害時又は緊急時には、日の入り時刻後の夜間であっても無人飛行体40を飛行させる必要がある。そこで、実施の形態3では、日の入り時刻を越えても無人飛行体40の飛行が許可されている場合、通過地点の到達予定時刻が日の入り時刻を越えていたとしても、飛行ルートとしての設定を受け付ける。
 図18は、本開示の実施の形態3における通信端末の構成を示すブロック図である。図18に示す通信端末11は、記憶部101、制御部102、位置測定部104、ユーザ入力部105、表示部106、第1通信部1031及び第2通信部1032を備える。なお、本実施の形態3における通信端末11において、図4に示す実施の形態1の通信端末10と同じ構成については同じ符号を付し、詳細な説明を省略する。
 第1通信部1031は、例えばLTEなどの通信規格により、飛行ルート生成サーバ22に種々の情報を送信するとともに、飛行ルート生成サーバ22から種々の情報を受信する。第1通信部1031は、実施の形態1における通信部103と同じ機能を有している。
 第2通信部1032は、例えばインターネットにより、外部サーバ30から種々の情報を受信する。第2通信部1032は、外部サーバ30から許可情報を受信する。許可情報は、終了時刻(日の入り時刻)を越えて無人飛行体40の飛行を許可するための情報である。なお、許可情報は、ユーザ入力部105を用いてユーザによって入力されてもよい。この場合、第2通信部1032は不要となる。
 制御部102は、例えばCPUであり、通信端末11の動作を制御する。制御部102は、プログラム実行部121、表示制御部122、位置取得部123及び許可情報取得部124を備える。
 許可情報取得部124は、第2通信部1032を介して、外部サーバ30から許可情報を取得する。なお、許可情報取得部124は、ユーザ入力部105によって入力された許可情報を取得してもよい。
 第1通信部1031は、許可情報取得部124によって取得された許可情報を飛行ルート生成サーバ22に送信する。また、第1通信部1031は、飛行ルート生成サーバ22によって送信された許可情報の検証結果を受信する。検証結果は、許可情報が妥当であるか否かを示す。
 ユーザ入力部105は、終了時刻(日の入り時刻)を越えて無人飛行体40の飛行を許可する許可情報を取得した場合、無人飛行体40が第2の通過地点に到達する到達予定時刻が終了時刻(日の入り時刻)を越えても通過地点の入力を受け付ける。ユーザ入力部105は、第1通信部1031によって許可情報が妥当であると判断された検証結果が受信された場合、終了時刻(日の入り時刻)を越えた到達予定時刻に到達する第2の通過地点の入力を許可する。一方、ユーザ入力部105は、第1通信部1031によって許可情報が妥当ではないと判断された検証結果が受信された場合、又は許可情報取得部124によって許可情報が取得されない場合、終了時刻(日の入り時刻)を越えた到達予定時刻に到達する第2の通過地点の入力を受け付けない。
 図19は、本開示の実施の形態3における飛行ルート生成サーバの構成を示すブロック図である。図19に示す飛行ルート生成サーバ22は、記憶部201、制御部202、第1通信部203、第2通信部204及び時計205を備える。
 制御部202は、例えばCPUであり、飛行ルート生成サーバ22の動作を制御する。制御部202は、通信制御部221、到達予定時刻算出部222、日の入り時刻到達地点算出部223、飛行ルート設定部224及び許可情報検証部226を備える。
 許可情報検証部226は、通信端末11によって送信された許可情報の妥当性を検証し、検証結果を通信端末11へ送信する。
 続いて、本実施の形態3における通信端末11及び飛行ルート生成サーバ22の飛行ルート生成処理について説明する。
 まず、通信端末11の許可情報取得部124は、第2通信部1032を介して、外部サーバ30から許可情報を取得する。
 次に、第1通信部1031は、許可情報取得部124によって取得された許可情報を飛行ルート生成サーバ22に送信する。
 次に、飛行ルート生成サーバ22の第1通信部203は、通信端末11によって送信された許可情報を受信する。
 次に、許可情報検証部226は、第1通信部203によって受信された許可情報が妥当であるか否かを検証する。許可情報検証部226は、許可情報が正規に発行されたものであれば、妥当であると判断し、許可情報が正規に発行されたものでなければ、妥当ではないと判断する。
 次に、第1通信部203は、許可情報検証部226によって検証された許可情報の検証結果を通信端末11へ送信する。
 次に、通信端末11の第1通信部1031は、飛行ルート生成サーバ22によって送信された許可情報の検証結果を受信する。
 そして、許可情報が妥当であると判断された検証結果が受信された場合、ユーザ入力部105は、到達予定時刻が終了時刻(日の入り時刻)を越えている通過地点の入力を受け付ける。
 なお、出発地点及び通過地点の入力、到達予定時刻の算出及び日の入り地点の算出などの処理は、実施の形態1と同じであるので、説明を省略する。
 図20は、本実施の形態3において通信端末の表示部に表示される表示画面の一例を示す図である。
 図20に示すように、表示部106には、それぞれユーザによって入力された、出発地点を示すアイコン501と、出発地点の次に通過する第1の通過地点を示すアイコン502と、第1の通過地点の次に通過する第2の通過地点を示すアイコン506と、第2の通過地点の次に通過する第3の通過地点を示すアイコン507とが表示される。アイコン501の近傍には、出発時刻(図20では“16:30”)が表示される。
 また、アイコン502の近傍には、無人飛行体40が第1の通過地点に到着する到着予定時刻(図20では“17:00”)が表示される。そして、入力された第2の通過地点に到着する到着予定時刻が日の入り時刻を越える場合、日の入り地点を示すアイコン504が表示される。また、アイコン504の近傍には、日の入り時刻(図20では“17:30”)が表示される。
 また、図20に示す例では、許可情報が取得され、日の入り時刻後も無人飛行体40を飛行させることが可能である。そのため、日の入り時刻後に到着する第2の通過地点及び第3の通過地点は、飛行ルートとして設定可能である。第2の通過地点を示すアイコン506及び第3の通過地点を示すアイコン507は、日の入り時刻までに到着することが可能な第1の通過地点を示すアイコン502と異なる態様で表示してもよい。すなわち、アイコン506及びアイコン507の形状は、アイコン502の形状と異ならせてもよい。
 また、本実施の形態3において、表示制御部122は、飛行ルートにおいて、出発地点から終了時刻到達地点までの飛行ルートと、終了時刻到達地点以降の飛行ルートとを異なる態様で表示してもよい。
 図21は、本実施の形態3において、飛行ルートにおいて、出発地点から終了時刻到達地点までの飛行ルートと、終了時刻到達地点以降の飛行ルートとを異なる態様で表示する表示画面の一例を示す図である。
 飛行ルートのうち、出発地点から日の入り時刻までに飛行する飛行ルートと、日の入り時刻を越えて飛行する飛行ルートとを異なる態様で表示してもよい。すなわち、図21に示すように、例えば、出発地点を示すアイコン501から日の入り地点を示すアイコン504までの飛行ルート5081は実線で表示され、日の入り地点を示すアイコン504から第3の通過地点を示すアイコン507までの飛行ルート5082は破線で表示されてもよい。また、飛行ルート5081は青色で表示され、飛行ルート5082は赤色で表示されてもよく、飛行ルート5081と飛行ルート5082とは、互いに異なる色で表示されてもよい。
 (実施の形態4)
 実施の形態4では、入力された通過地点から日の入り時刻までに移動可能な範囲が表示される。
 図22は、本開示の実施の形態4における飛行ルート生成サーバの構成を示すブロック図である。なお、本実施の形態4における通信端末の構成は、実施の形態1における通信端末の構成と同じである。また、本実施の形態4における飛行ルート生成サーバ23において、図5に示す実施の形態1の飛行ルート生成サーバ20と同じ構成については同じ符号を付し、詳細な説明を省略する。図22に示す飛行ルート生成サーバ23は、記憶部201、制御部202、第1通信部203、第2通信部204及び時計205を備える。
 制御部202は、例えばCPUであり、飛行ルート生成サーバ23の動作を制御する。制御部202は、通信制御部221、到達予定時刻算出部222、飛行ルート設定部224及び飛行可能距離算出部227を備える。
 飛行可能距離算出部227は、入力された通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な飛行可能距離を算出する。通信制御部221は、第1通信部203を介して、飛行可能距離算出部227によって算出された飛行可能距離を通信端末10へ送信する。
 通信端末10の通信部103は、飛行ルート生成サーバ23によって送信された飛行可能距離を受信する。通信端末10の表示制御部122は、入力された通過地点を中心とし、通信部103によって受信された飛行可能距離を半径とする円形状の飛行可能範囲を表示する。
 表示部106は、第1の通過地点が入力される際に、無人飛行体40が第1の通過地点に到達する第1の到達予定時刻から終了時刻(日の入り時刻)までに無人飛行体40が飛行可能な範囲を表示する。
 続いて、本実施の形態4における通信端末10及び飛行ルート生成サーバ23の飛行ルート生成処理について説明する。
 図23は、本開示の実施の形態4における通信端末及び飛行ルート生成サーバの飛行ルート生成処理について説明するためのフローチャートである。なお、本実施の形態4において、ステップS91より前の処理は、図6に示すステップS1~ステップ19の処理と同じであるので、説明を省略し、ステップS91以降の処理のみを説明する。
 ステップS91において、飛行可能距離算出部227は、到着予定時刻と日の入り時刻と移動速度とに基づいて、入力された通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な飛行可能距離を算出する。すなわち、飛行可能距離算出部227は、到着予定時刻から日の入り時刻までの移動時間を算出し、算出した移動時間に移動速度を乗算することにより、通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な飛行可能距離を算出する。
 次に、ステップS92において、通信制御部221は、第1通信部203を介して、到達予定時刻を示す到達予定時刻情報及び飛行可能距離を示す飛行可能距離情報を通信端末10へ送信する。
 次に、ステップS93において、通信端末10の通信部103は、飛行ルート生成サーバ21によって送信された到達予定時刻情報及び飛行可能距離情報を受信する。
 次に、ステップS94において、表示制御部122は、通過地点を表すアイコンの近傍に、到達予定時刻情報で示される到達予定時刻を表示する。
 次に、ステップS95において、表示制御部122は、飛行可能距離情報で示される飛行可能距離を半径とし、通過地点を表すアイコンを中心とする円形状の飛行可能範囲を表示する。
 図23に示すステップS96~ステップS103の処理は、図7に示すステップS27~ステップS34の処理と同じであるので、説明を省略する。
 ステップS103の処理の後、ステップS91の処理に戻り、飛行可能距離算出部227は、到着予定時刻と日の入り時刻と移動速度とに基づいて、今回入力された通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な飛行可能距離を算出する。
 なお、ステップS95において、表示制御部122は、今回入力された通過地点に対応する飛行可能範囲と、前回入力された通過地点に対応する飛行可能範囲とを表示してもよい。また、表示制御部122は、前回入力された通過地点に対応する飛行可能範囲を表示せずに、今回入力された通過地点に対応する飛行可能範囲のみを表示してもよい。
 ステップS96において通過地点の入力が終了されたと判断された場合(ステップS96でYES)、ステップS104において、通信端末10の通信部103は、飛行ルートが決定したことを示す飛行ルート決定信号を飛行ルート生成サーバ21へ送信する。
 図23に示すステップS105~ステップS106の処理は、図7に示すステップS36~ステップS37の処理と同じであるので、説明を省略する。
 図24は、本実施の形態4において通信端末の表示部に表示される表示画面の一例を示す図である。
 図24に示すように、表示部106には、それぞれユーザによって入力された、出発地点を示すアイコン501と、出発地点の次に通過する通過地点を示すアイコン502とが表示される。アイコン501の近傍には、出発時刻(図24では“16:30”)が表示される。
 また、アイコン502の近傍には、無人飛行体40が通過地点に到着する到着予定時刻(図24では“17:00”)が表示される。さらに、表示部106には、飛行可能距離情報で示される飛行可能距離を半径とし、通過地点を表すアイコン502を中心とする円形状の飛行可能範囲511が表示される。
 このように、飛行ルートを設定する際に、通過地点から日の入り時刻までに飛行可能な飛行可能範囲が表示されるので、ユーザに対して、日の入り時刻までに帰還する飛行ルートを設定するように促すことができ、日の入り時刻を過ぎて無人飛行体40が飛行するのを防止することができる。
 なお、本実施の形態4において、表示部106は、無人飛行体40のバッテリの残容量に応じて飛行することが可能な飛行可能範囲を表示してもよい。
 図25は、本実施の形態4の変形例において通信端末の表示部に表示される表示画面の一例を示す図である。
 実施の形態4の変形例では、通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な第1の飛行可能範囲521と、無人飛行体40のバッテリの残容量に応じて無人飛行体40が飛行することが可能な飛行可能範囲522とが表示部106に表示される。
 この場合、飛行ルート生成サーバ23は、無人飛行体40が備えるバッテリの残容量を取得する残容量取得部をさらに備える。残容量取得部は、第1通信部203を介して、無人飛行体40からバッテリの残容量を受信する。
 また、飛行可能距離算出部227は、入力された通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な第1の飛行可能距離を算出する。また、飛行可能距離算出部227は、入力された通過地点から無人飛行体40のバッテリの残容量に応じて無人飛行体40が飛行することが可能な第2の飛行可能距離を算出する。通信制御部221は、第1通信部203を介して、飛行可能距離算出部227によって算出された第1の飛行可能距離及び第2の飛行可能距離を通信端末10へ送信する。
 通信端末10の通信部103は、飛行ルート生成サーバ23によって送信された第1の飛行可能距離及び第2の飛行可能距離を受信する。通信端末10の表示制御部122は、入力された通過地点を中心とし、通信部103によって受信された第1の飛行可能距離を半径とする円形状の第1の飛行可能範囲を表示する。また、表示制御部122は、入力された通過地点を中心とし、通信部103によって受信された第2の飛行可能距離を半径とする円形状の第2の飛行可能範囲を表示する。
 表示部106は、第1の通過地点が入力される際に、無人飛行体40が第1の通過地点から残容量で飛行可能な範囲をさらに表示する。
 続いて、本実施の形態4の変形例における通信端末10及び飛行ルート生成サーバ23の飛行ルート生成処理について説明する。なお、以下の説明では、上記の実施の形態4の飛行ルート生成処理とは異なる処理についてのみ説明する。
 図23のステップS91の前に、通信制御部221は、第1通信部203を介して、バッテリの残容量を要求する残容量要求を無人飛行体40へ送信し、無人飛行体40からバッテリの残容量を受信する。
 そして、図23ステップS91において、飛行可能距離算出部227は、到着予定時刻と日の入り時刻と移動速度とに基づいて、入力された通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な第1の飛行可能距離を算出する。また、飛行可能距離算出部227は、受信されたバッテリ残容量情報で示されるバッテリの残容量に応じた第2の飛行可能距離を算出する。記憶部201は、バッテリの残容量と、第2の飛行可能距離とを対応付けたテーブルを記憶している。飛行可能距離算出部227は、受信されたバッテリ残容量情報で示されるバッテリの残容量に対応する第2の飛行可能距離を記憶部201から読み出す。
 次に、ステップS92において、通信制御部221は、第1通信部203を介して、到達予定時刻を示す到達予定時刻情報、第1の飛行可能距離を示す第1の飛行可能距離情報及び第2の飛行可能距離を示す第2の飛行可能距離情報を通信端末10へ送信する。
 次に、ステップS93において、通信端末10の通信部103は、飛行ルート生成サーバ21によって送信された到達予定時刻情報、第1の飛行可能距離情報及び第2の飛行可能距離情報を受信する。
 次に、ステップS94において、表示制御部122は、通過地点を表すアイコンの近傍に、到達予定時刻情報で示される到達予定時刻を表示する。
 次に、ステップS95において、表示制御部122は、第1の飛行可能距離情報で示される第1の飛行可能距離を半径とし、通過地点を表すアイコンを中心とする円形状の第1の飛行可能範囲521を表示する。また、表示制御部122は、第2の飛行可能距離情報で示される第2の飛行可能距離を半径とし、通過地点を表すアイコンを中心とする円形状の第2の飛行可能範囲522を表示する。
 なお、本実施の形態4の変形例において、バッテリの残容量に応じて無人飛行体40が飛行することが可能な第2の飛行可能距離が、通過地点から日の入り時刻までに無人飛行体40が飛行することが可能な第1の飛行可能距離よりも短い場合、表示制御部122は、第1の飛行可能範囲521を表示せずに、第2の飛行可能範囲522のみを表示してもよい。
 また、第1の飛行可能範囲521と、第2の飛行可能範囲522とは、異なる態様で表示することが好ましい。
 本開示において、ユニット、装置、部材又は部の全部又は一部、又は図3,4,5,12,18,19,22に示されるブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、LSIやICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるReconfigurable Logic Deviceも同じ目的で使うことができる。
 さらに、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウエア処理によって実行することが可能である。この場合、ソフトウエアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウエアが処理装置(Processor)によって実行されたときに、そのソフトウエアで特定された機能が処理装置(Processor)および周辺装置によって実行される。システム又は装置は、ソフトウエアが記録されている一つ又は複数の非一時的記録媒体、処理装置(Processor)、及び必要とされるハードウエアデバイス、例えばインターフェース、を備えていてもよい。
 本開示に係る飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置は、ユーザに対して、無人飛行体の飛行が許可されている時間帯の終了時刻までに帰還する飛行ルートを設定するように促すことができ、終了時刻を過ぎて無人飛行体が飛行するのを防止することができ、無人飛行体が自律飛行する飛行ルートを生成する飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置として有用である。
 1  ユーザ
 10,11  通信端末
 20,21,22,23  飛行ルート生成サーバ
 30  外部サーバ
 40  無人飛行体
 50  ネットワーク
 101  記憶部
 102  制御部
 103  通信部
 104  位置測定部
 105  ユーザ入力部
 106  表示部
 111  飛行ルート生成プログラム
 121  プログラム実行部
 122  表示制御部
 123  位置取得部
 124  許可情報取得部
 201  記憶部
 202  制御部
 203  第1通信部
 204  第2通信部
 205  時計
 211  地図情報
 212  時刻情報
 213  移動速度情報
 221  通信制御部
 222  到達予定時刻算出部
 223  日の入り時刻到達地点算出部
 224  飛行ルート設定部
 225  帰還時刻算出部
 226  許可情報検証部
 227  飛行可能距離算出部
 1001  各種センサ
 1002  推進器
 1003  通信部
 1004  バッテリ
 1005  制御部
 1006  慣性計測部
 1007  位置測定部
 1031  第1通信部
 1032  第2通信部

Claims (13)

  1.  自律飛行する無人飛行体の飛行ルートを生成する飛行ルート生成方法であって、
     出発地点と前記無人飛行体が通過する通過地点との入力を受け付け、
     前記出発地点と前記通過地点とを通過する飛行ルート上に、前記無人飛行体の飛行が許可されている時間帯の終了時刻に前記無人飛行体が到達する終了時刻到達地点を表示させる、
     飛行ルート生成方法。
  2.  前記飛行ルートにおいて、前記出発地点から前記終了時刻到達地点までの第1部分飛行ルートと、前記終了時刻到達地点以降の第2部分飛行ルートとを異なる態様で表示させる、
     請求項1記載の飛行ルート生成方法。
  3.  前記通過地点は、前記無人飛行体が通過する第1の通過地点と、前記無人飛行体が前記第1の通過地点の次に通過する第2の通過地点とを含み、
     前記飛行ルートにおいて、前記終了時刻到達地点の直前の通過地点までの第3部分飛行ルートと、前記終了時刻到達地点の直前の通過地点以降の第4部分飛行ルートとを異なる態様で表示させる、
     請求項1記載の飛行ルート生成方法。
  4.  前記通過地点は、前記無人飛行体が通過する第1の通過地点と、前記無人飛行体が前記第1の通過地点の次に通過する第2の通過地点とを含み、
     前記終了時刻までに前記無人飛行体が到達可能な前記第1の通過地点と、前記終了時刻までに前記無人飛行体が到達不可能な前記第2の通過地点とを異なる態様で表示させる、
     請求項1記載の飛行ルート生成方法。
  5.  前記出発地点を出発する出発時刻の入力をさらに受け付け、
     前記無人飛行体が前記第1の通過地点に到達する第1の到達予定時刻と、前記無人飛行体が前記第2の通過地点に到達する第2の到達予定時刻とを表示させる、
     請求項3又は4記載の飛行ルート生成方法。
  6.  前記無人飛行体が最終的に到着する目的地点は、前記出発地点であり、
     前記無人飛行体が前記通過地点に到達する到達予定時刻と、前記無人飛行体が前記通過地点から前記出発地点に帰還する帰還予定時刻とをさらに表示させる、
     請求項1記載の飛行ルート生成方法。
  7.  前記通過地点が入力される際に、前記帰還予定時刻が前記終了時刻を越える場合、前記通過地点の入力を受け付けない、
     請求項6記載の飛行ルート生成方法。
  8.  前記通過地点が入力される際に、前記帰還予定時刻が前記終了時刻を越える場合、前記帰還予定時刻が前記終了時刻を越えることをユーザに通知する、
     請求項6記載の飛行ルート生成方法。
  9.  前記終了時刻を越えて前記無人飛行体の飛行を許可する許可情報を取得した場合、前記無人飛行体が前記第2の通過地点に到達する到達予定時刻が前記終了時刻を越えても前記第2の通過地点の入力を受け付ける、
     請求項4記載の飛行ルート生成方法。
  10.  前記第1の通過地点が入力される際に、前記無人飛行体が前記第1の通過地点に到達す
    る第1の到達予定時刻から前記終了時刻までに前記無人飛行体が飛行可能な範囲を表示させる、
     請求項4記載の飛行ルート生成方法。
  11.  前記無人飛行体が備えるバッテリの残容量を取得し、
     前記第1の通過地点が入力される際に、前記無人飛行体が前記第1の通過地点から前記残容量で飛行可能な範囲をさらに表示させる、
     請求項4記載の飛行ルート生成方法。
  12.  自律飛行する無人飛行体の飛行ルートを生成する飛行ルート生成プログラムであって、
     コンピュータを、
     出発地点と前記無人飛行体が通過する通過地点との入力を受け付ける入力受付部と、
     前記出発地点と前記通過地点とを通過する飛行ルート上に、前記無人飛行体の飛行が許可されている時間帯の終了時刻に前記無人飛行体が到達する終了時刻到達地点を表示部に表示させる表示制御部として機能させる、
     飛行ルート生成プログラム。
  13.  自律飛行する無人飛行体の飛行ルートを表示する飛行ルート表示装置であって、
     前記飛行ルート表示装置は、
     ユーザ入力を受け付ける入力部と、
     情報を表示する表示部と、
     を備え、
     前記入力部は、
     出発地点と前記無人飛行体が通過する通過地点との入力を受け付け、
     前記表示部は、
     前記出発地点と前記通過地点とを通過する飛行ルート上に、前記無人飛行体の飛行が許可されている時間帯の終了時刻に前記無人飛行体が到達する終了時刻到達地点を表示する、
     飛行ルート表示装置。
PCT/JP2016/003143 2015-07-17 2016-06-30 飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置 WO2017013841A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680026930.1A CN107532909B (zh) 2015-07-17 2016-06-30 飞行路线生成方法、飞行路线显示装置以及记录介质
CN202111597386.5A CN114253298B (zh) 2015-07-17 2016-06-30 飞行路线生成方法及计算机程序产品
US15/841,506 US10685573B2 (en) 2015-07-17 2017-12-14 Method of displaying flight route of unmanned aerial vehicle that flies autonomously, terminal, and non-transitory computer-readable recording medium storing program
US16/862,713 US11257380B2 (en) 2015-07-17 2020-04-30 Method of displaying flight route of unmanned aerial vehicle that flies autonomously, terminal, and non-transitory computer-readable recording medium storing program
US17/570,064 US11837097B2 (en) 2015-07-17 2022-01-06 Method of displaying flight route of unmanned aerial vehicle that flies autonomously, terminal, and non-transitory computer-readable recording medium storing program

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562193660P 2015-07-17 2015-07-17
US62/193,660 2015-07-17
JP2015210331 2015-10-27
JP2015-210331 2015-10-27
JP2016123243A JP6662720B2 (ja) 2015-07-17 2016-06-22 飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置
JP2016-123243 2016-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/841,506 Continuation US10685573B2 (en) 2015-07-17 2017-12-14 Method of displaying flight route of unmanned aerial vehicle that flies autonomously, terminal, and non-transitory computer-readable recording medium storing program

Publications (1)

Publication Number Publication Date
WO2017013841A1 true WO2017013841A1 (ja) 2017-01-26

Family

ID=57834186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003143 WO2017013841A1 (ja) 2015-07-17 2016-06-30 飛行ルート生成方法、飛行ルート生成プログラム及び飛行ルート表示装置

Country Status (3)

Country Link
US (2) US11257380B2 (ja)
CN (2) CN114253298B (ja)
WO (1) WO2017013841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021064127A1 (en) 2019-10-04 2021-04-08 Borealis Ag Mixed-plastic polyethylene blend

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201608233D0 (en) * 2016-05-04 2016-06-22 Tomtom Navigation Bv Methods and systems for determining safe return range
CN110603425A (zh) * 2018-03-07 2019-12-20 深圳市大疆创新科技有限公司 无人机的夜间飞行管理方法和设备
KR102381678B1 (ko) * 2021-03-31 2022-04-01 주식회사 클로버스튜디오 포인트 클라우드를 이용한 무인이동체의 4차원 경로 표출 방법
CN113138607B (zh) * 2021-04-15 2023-04-07 西安联飞智能装备研究院有限责任公司 无人机航点传输控制方法、装置及地面控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241100A (ja) * 1997-02-27 1998-09-11 Oki Electric Ind Co Ltd 自動従属監視環境下における進入管制区航空機個別誘導システム
JPH11201766A (ja) * 1998-01-08 1999-07-30 Nissan Motor Co Ltd 経路誘導装置
JP2000258177A (ja) * 1999-03-05 2000-09-22 Aisin Aw Co Ltd ナビゲーション装置及び記録媒体
JP2009031084A (ja) * 2007-07-26 2009-02-12 Sanyo Electric Co Ltd ナビゲーション装置
WO2011114635A1 (ja) * 2010-03-17 2011-09-22 日本電気株式会社 スケジューリングシステム、方法及びプログラム
JP2014016324A (ja) * 2012-07-11 2014-01-30 Toyota Motor Corp 車両の運行支援装置、運行支援システム及び運行支援方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379215A (en) * 1991-02-25 1995-01-03 Douglas P. Kruhoeffer Method for creating a 3-D image of terrain and associated weather
JP2002211494A (ja) 2001-01-17 2002-07-31 Todaka Seisakusho:Kk 無人ヘリコプタ用飛行計画装置
US6711477B1 (en) * 2002-08-29 2004-03-23 Lockheed Corp Automatic flight envelope protection for uninhabited air vehicles: method for determining point in flight envelope
US9178709B2 (en) * 2004-03-30 2015-11-03 Panasonic Intellectual Property Management Co., Ltd. Communication system and method for distributing content
US7512462B2 (en) * 2004-11-16 2009-03-31 Northrop Grumman Corporation Automatic contingency generator
JP4648010B2 (ja) * 2005-01-11 2011-03-09 富士通テン株式会社 交通機関案内装置および方法
JP2008105591A (ja) * 2006-10-26 2008-05-08 Hiroboo Kk 自律制御無人飛行体の飛行管理方法
US8538673B2 (en) * 2008-10-31 2013-09-17 Czech Technical University In Prague System and method for planning/replanning collision free flight plans in real or accelerated time
JP5187758B2 (ja) 2008-12-26 2013-04-24 株式会社Ihiエアロスペース 無人移動体システム
US8515596B2 (en) 2009-08-18 2013-08-20 Honeywell International Inc. Incremental position-based guidance for a UAV
FR2953302B1 (fr) * 2009-11-27 2012-08-10 Thales Sa Procede de planification, de calcul de trajectoire, de predictions et de guidage pour le respect d'une contrainte de temps de passage d'un aeronef
CN102207736B (zh) * 2010-03-31 2013-01-02 中国科学院自动化研究所 基于贝塞尔曲线的机器人路径规划方法及装置
KR20110124859A (ko) * 2010-05-12 2011-11-18 나비스오토모티브시스템즈 주식회사 네비게이션 장치의 경로안내방법
JP5853499B2 (ja) * 2011-08-31 2016-02-09 日産自動車株式会社 走行可能領域表示装置
WO2013069172A1 (ja) * 2011-11-10 2013-05-16 三菱電機株式会社 ナビゲーション装置および方法
CA2872698C (en) 2012-05-04 2018-07-24 Aeryon Labs Inc. System and method for controlling unmanned aerial vehicles
FR2993063B1 (fr) * 2012-07-05 2014-08-22 Thales Sa Procede d'aide a la navigation permettant de gerer une contrainte verticale de maniere anticipee
US8797190B2 (en) 2012-07-26 2014-08-05 General Electric Company Method for displaying a user entered flight path
CN102854886B (zh) * 2012-08-29 2016-01-20 深圳一电科技有限公司 飞行线路编辑及控制的方法和装置
US8788189B2 (en) * 2012-08-31 2014-07-22 Honeywell International Inc. Aircraft control system and method for reaching a waypoint at a required time of arrival
JP5960019B2 (ja) * 2012-10-02 2016-08-02 三菱重工業株式会社 運航管理支援装置、運航管理支援システム、運航管理支援方法、及び表示装置
KR20130009894A (ko) * 2013-01-05 2013-01-23 이상윤 공간정보기술을 이용한 근거리 정밀타격 무인항공기시스템
JP6081806B2 (ja) * 2013-01-30 2017-02-15 三菱重工業株式会社 電動移動体情報提供装置、電動移動体情報提供方法、プログラム及びev管理システム
US9102406B2 (en) * 2013-02-15 2015-08-11 Disney Enterprises, Inc. Controlling unmanned aerial vehicles as a flock to synchronize flight in aerial displays
CN103267528A (zh) * 2013-05-07 2013-08-28 西北工业大学 禁飞区限制下的多无人机协同区域搜索方法
US9824596B2 (en) 2013-08-30 2017-11-21 Insitu, Inc. Unmanned vehicle searches
CN105247593B (zh) 2014-04-17 2017-04-19 深圳市大疆创新科技有限公司 飞行禁区的飞行控制
US9334052B2 (en) * 2014-05-20 2016-05-10 Verizon Patent And Licensing Inc. Unmanned aerial vehicle flight path determination, optimization, and management
US9601022B2 (en) 2015-01-29 2017-03-21 Qualcomm Incorporated Systems and methods for restricting drone airspace access
US9933780B2 (en) 2015-06-17 2018-04-03 Qualcomm Incorporated Systems and methods for remote distributed control of unmanned aircraft
US10902734B2 (en) 2015-11-17 2021-01-26 SZ DJI Technology Co., Ltd. Systems and methods for managing flight-restriction regions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241100A (ja) * 1997-02-27 1998-09-11 Oki Electric Ind Co Ltd 自動従属監視環境下における進入管制区航空機個別誘導システム
JPH11201766A (ja) * 1998-01-08 1999-07-30 Nissan Motor Co Ltd 経路誘導装置
JP2000258177A (ja) * 1999-03-05 2000-09-22 Aisin Aw Co Ltd ナビゲーション装置及び記録媒体
JP2009031084A (ja) * 2007-07-26 2009-02-12 Sanyo Electric Co Ltd ナビゲーション装置
WO2011114635A1 (ja) * 2010-03-17 2011-09-22 日本電気株式会社 スケジューリングシステム、方法及びプログラム
JP2014016324A (ja) * 2012-07-11 2014-01-30 Toyota Motor Corp 車両の運行支援装置、運行支援システム及び運行支援方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021064127A1 (en) 2019-10-04 2021-04-08 Borealis Ag Mixed-plastic polyethylene blend

Also Published As

Publication number Publication date
US11837097B2 (en) 2023-12-05
CN114253298B (zh) 2024-07-23
CN114253298A (zh) 2022-03-29
US20200258399A1 (en) 2020-08-13
CN107532909A (zh) 2018-01-02
US11257380B2 (en) 2022-02-22
US20220165166A1 (en) 2022-05-26
CN107532909B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
JP7014832B2 (ja) 飛行ルート生成方法及びプログラム
US11837097B2 (en) Method of displaying flight route of unmanned aerial vehicle that flies autonomously, terminal, and non-transitory computer-readable recording medium storing program
US11599110B2 (en) Notification method, notification device, and terminal
US20200019189A1 (en) Systems and methods for operating unmanned aerial vehicle
JP6657030B2 (ja) 無人飛行体、飛行制御方法、飛行基本プログラム及び強制移動プログラム
US9886863B2 (en) Method for generating flight route with which observer can visually observe drone
CN112034827A (zh) 通知方法和通知装置
WO2021079516A1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
WO2020042186A1 (zh) 可移动平台的控制方法、可移动平台、终端设备和系统
CN111532427B (zh) 无人飞行器、方法和存储介质
JP6818379B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
JP6915109B2 (ja) 無人飛行体、方法及びプログラム
WO2021087724A1 (zh) 一种控制方法、控制设备、可移动平台及控制系统
WO2021064982A1 (ja) 情報処理装置および情報処理方法
US10023310B2 (en) Unmanned flying object and flight control method thereof
JP6810498B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
JP6810497B1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
US20240201698A1 (en) Information processing method, information processing device, computer-readable medium, and imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827409

Country of ref document: EP

Kind code of ref document: A1