[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017013796A1 - 半導体装置用ボンディングワイヤ - Google Patents

半導体装置用ボンディングワイヤ Download PDF

Info

Publication number
WO2017013796A1
WO2017013796A1 PCT/JP2015/071002 JP2015071002W WO2017013796A1 WO 2017013796 A1 WO2017013796 A1 WO 2017013796A1 JP 2015071002 W JP2015071002 W JP 2015071002W WO 2017013796 A1 WO2017013796 A1 WO 2017013796A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
bonding
coating layer
core material
bonding wire
Prior art date
Application number
PCT/JP2015/071002
Other languages
English (en)
French (fr)
Inventor
山田 隆
大造 小田
良 大石
宇野 智裕
Original Assignee
日鉄住金マイクロメタル株式会社
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55541238&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017013796(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日鉄住金マイクロメタル株式会社, 新日鉄住金マテリアルズ株式会社 filed Critical 日鉄住金マイクロメタル株式会社
Priority to EP15866376.5A priority Critical patent/EP3136435B1/en
Priority to CN201580002602.3A priority patent/CN107004610B/zh
Priority to DE112015005172.4T priority patent/DE112015005172B4/de
Priority to KR1020167012367A priority patent/KR101659254B1/ko
Priority to PCT/JP2015/071002 priority patent/WO2017013796A1/ja
Priority to US15/107,427 priority patent/US10468370B2/en
Priority to JP2015540380A priority patent/JP5893230B1/ja
Priority to SG11201604430YA priority patent/SG11201604430YA/en
Priority to SG11201606185QA priority patent/SG11201606185QA/en
Priority to PCT/JP2015/086550 priority patent/WO2017013817A1/ja
Priority to JP2016507915A priority patent/JP5964534B1/ja
Priority to KR1020167019958A priority patent/KR101742450B1/ko
Priority to US15/116,145 priority patent/US9773748B2/en
Priority to DE112015005005.1T priority patent/DE112015005005B4/de
Priority to MYPI2016702688A priority patent/MY162882A/en
Priority to CN201580005634.9A priority patent/CN105981164B/zh
Priority to TW105101101A priority patent/TWI574279B/zh
Priority to JP2016127446A priority patent/JP2017028262A/ja
Priority to PH12016501450A priority patent/PH12016501450A1/en
Publication of WO2017013796A1 publication Critical patent/WO2017013796A1/ja
Priority to US16/576,683 priority patent/US20200013748A1/en
Priority to JP2020107511A priority patent/JP2020174185A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53233Copper alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/431Pre-treatment of the preform connector
    • H01L2224/4312Applying permanent coating, e.g. in-situ coating
    • H01L2224/43125Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/4382Applying permanent coating, e.g. in-situ coating
    • H01L2224/43825Plating, e.g. electroplating, electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/43985Methods of manufacturing wire connectors involving a specific sequence of method steps
    • H01L2224/43986Methods of manufacturing wire connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45155Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45164Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/45798Fillers
    • H01L2224/45799Base material
    • H01L2224/458Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45838Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45847Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/45798Fillers
    • H01L2224/45899Coating material
    • H01L2224/459Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45938Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45944Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/45798Fillers
    • H01L2224/45899Coating material
    • H01L2224/459Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45963Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45964Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4801Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4801Structure
    • H01L2224/48011Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48507Material at the bonding interface comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48863Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48864Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85464Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15763Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550 C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • H01L2924/35121Peeling or delaminating

Definitions

  • the present invention relates to a bonding wire for a semiconductor device used for connecting an electrode on a semiconductor element and an external connection terminal.
  • the electrodes on the semiconductor element and the external connection terminals are connected using a semiconductor bonding wire (hereinafter also referred to as “bonding wire”).
  • bonding wire In order to bond the bonding wire to the electrode on the silicon chip, which is a semiconductor element, ball bonding by a thermocompression bonding method using ultrasonic waves is performed.
  • bonding wire when connecting a bonding wire to an external connection terminal such as a lead or a land, a so-called 2nd bonding is generally performed in which the bonding wire is directly bonded to an electrode without forming a ball portion.
  • the bonding wire has a wire diameter of about 15-50 ⁇ m, and the material is Au (gold) with high purity 4N (4-Nine, purity 99.99 mass% or more) Au bonding wire (gold bonding wire) was mainly used.
  • Patent Document 1 discloses a Cu bonding wire in which a surface of a high-purity Cu extra fine wire is coated with a noble metal such as Au or Pd.
  • Cu bonding wire with a precious metal coated on the surface of the Cu wire is excellent in long-term storage and 2nd bonding characteristics of the wire because the oxidation of the Cu bonding wire is suppressed.
  • the concern that the ball portion is oxidized when the ball portion is formed at the tip of the wire is greatly improved, without using hydrogen, which is a dangerous gas,
  • a ball portion of a true sphere can be formed simply by using pure nitrogen gas to create a nitrogen atmosphere around the ball portion.
  • the surface of the lead frame was generally plated with silver, but recently, the use of lead frames plated with Pd is progressing.
  • a Cu bonding wire in which the surface of the Cu wire is coated with Pd it has not been revealed in the conventional silver-plated lead frame, but there are many cases where the 2nd bondability to the lead frame plated with Pd is insufficient.
  • a new problem was discovered. The same applies to a lead frame in which Au plating is applied on Pd plating.
  • the present inventors use a bonding wire in which the surface of the Cu wire is coated with Pd and the surface of the Pd coating layer has an alloy layer containing Au and Pd. We have found that this problem can be alleviated somewhat.
  • the present invention has a 2nd bondability to a lead frame plated with Pd or a lead frame plated with Au on Pd plating, and a fishtail shape of 2nd bond (fish bottom).
  • the first object is to further improve the crimping portion symmetry.
  • a PCT test pressure cooker test
  • typical test conditions are a temperature of 121 ° C., a relative humidity of 100% RH (Relative Humidity), and 2 atm.
  • a second object of the present invention is to further reduce defects in high-humidity heating evaluation in a Cu wire having a Pd coating layer.
  • the inventors have a core material mainly composed of Cu, a coating layer mainly composed of Pd on the surface of the core material, and a skin alloy layer containing Au and Pd on the surface of the coating layer.
  • a lead frame plated with Pd is obtained by containing a predetermined amount of one or both of Pd and Pt in the core material mainly composed of Cu and setting the Cu concentration on the outermost surface of the wire to 1 at% or more. It has been found that the 2nd bondability to a lead frame plated with Au on Pd plating and the symmetry of the pressure-bonded portion of the fishtail-like (fish bottom) can be further improved.
  • the present inventors can also reduce the occurrence of defects even in severe high-humidity heating evaluations such as the HAST test by including a predetermined amount of one or both of Pd and Pt in the core material mainly composed of Cu. I found.
  • the thickness of the coating layer containing Pd as a main component is 20 to 90 nm, the thickness of the skin alloy layer containing Au and Pd is 0.5 to 40 nm, and the maximum concentration of Au is 15 to 75 at%.
  • the bonding wire for a semiconductor device according to (1) (3)
  • the core material further contains one or both of Au and Ni, and the total amount of Pd, Pt, Au, and Ni in the core material is more than 0.1% by mass and 3.0% by mass or less.
  • the bonding wire further contains one or more of P, B, Be, Fe, Mg, Ti, Zn, Ag, and Si, and the total concentration of these elements in the entire wire is 0.0001 to 0.00.
  • the bonding wire for a semiconductor device according to any one of (1) to (3) which is in a range of 01% by mass.
  • the present invention relates to a core material mainly composed of Cu, a coating layer mainly composed of Pd provided on the surface of the Cu alloy core material, and a skin containing Au and Pd provided on the surface of the coating layer
  • a predetermined amount of one or both of Pd and Pt is contained in a core material mainly composed of Cu, and the Cu concentration on the outermost surface of the wire is set to 1 to 10 at%. Further, it is possible to further improve the 2nd bonding property to a lead frame plated with Pd or a lead frame plated with Au on Pd plating.
  • the ball bonding portion between the bonding wire and the electrode is excellent in high humidity heating conditions. Can be realized.
  • the bonding wire for a semiconductor device of the present invention is provided on the surface of a core material containing Cu as a main component and containing one or both of Pt and Pd in a total amount of 0.1 to 3.0% by mass. It includes a coating layer containing Pd as a main component and a skin alloy layer containing Au and Pd provided on the surface of the coating layer, and the Cu concentration on the outermost surface of the wire is 1 to 10 at%.
  • Cu alloy core material a core material containing Cu as a main component and containing one or both of Pt and Pd in a total amount of 0.1 to 3.0 mass%
  • the defect rate is still high compared to Au wires.
  • the Pd concentrated layer on the ball surface formed at the time of ball bonding the Pd concentrated layer is not always formed on the entire ball surface, but the Pd concentrated layer is formed only on the side surface of the ball. In some cases, a Pd enriched layer is not formed. Then, the present inventors have found that when a Pd concentrated layer is not formed at the tip of the ball, the frequency of occurrence of defects in the high-humidity heating evaluation increases. This is because the amount of Pd contained in the Cu bonding wire is not sufficient. Therefore, it is conceivable to increase the thickness of the coating layer mainly composed of Pd as a means for increasing the amount of Pd. However, as will be described later, the thickness of the Pd coating layer has a suitable upper limit from the viewpoint of reducing chip damage, etc. There is a limit to increasing the amount of Pd by increasing the thickness of the coating layer.
  • a Cu alloy core material containing Cu as a main component and containing one or both of Pd and Pt in a predetermined amount is used.
  • Pd and Pt in the Cu alloy core material diffuse or concentrate to the bonding interface at the time of ball bonding and affect the mutual diffusion between Cu and Al, thereby delaying the corrosion reaction.
  • the role of Pd and Pt in the vicinity of the bonding interface may be a barrier function that inhibits the movement of corrosion reactants, a function that controls interdiffusion of Cu and Al, growth of intermetallic compounds, and the like.
  • the total concentration of Pd and Pt in the Cu alloy core material is 0.1% by mass or more, the mutual diffusion of Cu and Al at the bonding interface can be sufficiently controlled, and in a severe high-humidity heating evaluation test Even in a certain HAST test, the life of the joint is improved to 380 hours or more.
  • resin is opened and removed after a HAST test, and the fracture condition of a junction part is evaluated by a pull test after that. From the viewpoint of sufficiently obtaining the above HAST test reliability improvement effect, the total concentration of Pd and Pt in the Cu alloy core material is 0.1% by mass or more, preferably 0.2% by mass or more.
  • the initial bonding strength with the Al electrode in the low-temperature bonding is good, long-term reliability in the HAST test, bonding to substrates such as BGA (Ball Grid Array) and CSP (Chip Size Package), tape, etc.
  • the total concentration of Pd and Pt in the Cu alloy core is 3.0% by mass or less, preferably 2.5% by mass It is as follows.
  • the reliability in the HAST test is further improved by setting the total concentration of Pd and Pt in the Cu alloy core material within the above preferable range. For example, it is possible to realize a bonding wire that has a lifetime of up to 450 hours until a failure occurs in the HAST test. This may correspond to a life extension of 1.5 times or more that of a conventional Cu bonding wire, and can be used in harsh environments.
  • a method of obtaining the concentration of the element contained in the Cu alloy core material from the bonding wire product for example, a method of exposing the cross section of the bonding wire and analyzing the concentration of the Cu alloy core material region, the surface of the bonding wire
  • a method of analyzing the concentration of the Cu alloy core material region while cutting from the surface to the depth direction by sputtering or the like for example, when the Cu alloy core material includes a region having a concentration gradient of Pd, a line analysis is performed on the cross section of the bonding wire, and a region having no concentration gradient of Pd (for example, a change in concentration of Pd in the depth direction).
  • the concentration analysis may be performed on a region whose degree is less than 10 mol% per 0.1 ⁇ m. The concentration analysis method will be described later.
  • the Cu alloy core material may further contain one or both of Au and Ni.
  • Au and Ni are further added to the Cu alloy core material, the recrystallization temperature rises, the dynamic structure becomes uniform to prevent dynamic recrystallization during wire drawing, and the grain size after tempering is relatively high. It becomes uniform. Thereby, the breaking elongation of the wire is improved, and a stable wire loop can be formed when bonding is performed.
  • the lower limit of the total amount of Pd, Pt, Au, and Ni in the core material is more preferably 0.2% by mass or more, 0.3% by mass or more, 0.4% by mass or more, or 0.5% by mass or more.
  • the upper limit of the total is more preferably 2.5% by mass or less, 2.0% by mass or less, 1.5% by mass or less, 1.3% by mass or less, or 1.1% by mass or less.
  • the bonding wire of the present invention further contains one or more elements selected from P, B, Be, Fe, Mg, Ti, Zn, Ag, and Si, and the total concentration of these elements in the entire wire is 0.0001 to It is preferable in the range of 0.01% by mass. Thereby, a better ball shape can be realized.
  • the lower limit of the total of these element concentrations is more preferably 0.0003 mass% or more, 0.0005 mass% or more, or 0.001 mass% or more, and the upper limit of these element concentrations is more preferably 0.00. 009 mass% or less, or 0.008 mass% or less.
  • these elements may be contained in Cu alloy core material, and may be contained in the coating layer and skin alloy layer mentioned later.
  • the components contained in the Cu alloy core material are the remaining Cu and inevitable impurities in addition to the above components including Pd and Pt.
  • the purity of Cu in the Cu alloy core material is 3N or less (preferably 2N or less).
  • a high purity (4N or more) Cu core material is used, and the use of a low purity Cu core material tends to be avoided.
  • a Cu alloy core material, a coating layer mainly composed of Pd provided on the surface of the Cu alloy core material, and a skin alloy layer containing Au and Pd provided on the surface of the coating layer are provided.
  • the bonding wire of the present invention having a Cu concentration of 1 to 10 at% on the outermost surface of the wire was particularly preferably Pd plated when using a Cu alloy core material having a relatively low Cu purity as described above. What led to further improvement of 2nd bondability for leadframe or leadframe with Pd plating on Au plating and excellent ball bondability in severe high-humidity heating evaluation such as HAST test It is.
  • the thickness of the coating layer mainly composed of Pd formed on the surface of the Cu alloy core material is preferably 20 to 90 nm. If the thickness of the coating layer is 20 nm or more, the oxidation suppressing effect is sufficient, and the 2nd bondability and the FAB shape are improved, which is preferable.
  • the FAB shape means true sphericity, presence / absence of eccentricity, and presence / absence of shrinkage nest.
  • the thickness of the coating layer is more preferably 25 nm or more, or 30 nm or more.
  • the thickness of the coating layer is 90 nm or less, chip damage is reduced, the FAB shape is improved, and bubbles with a diameter of several ⁇ m are hardly generated on the surface of the ball part, which is preferable.
  • the thickness of the coating layer is more preferably 85 nm or less, or 80 nm or less.
  • the bonding wire of the present invention has a diffusion region at the boundary between the core material and the coating layer and at the boundary between the coating layer and the skin alloy layer.
  • the boundary between the core material and the coating layer is the position where the Pd concentration is 50 at%
  • the boundary between the coating layer and the skin alloy layer is the position where Au is 10 at%
  • the space between these boundaries is between the boundary of the coating layer. Thickness.
  • the skin alloy layer containing Au and Pd will be described. As described above, only a configuration having a coating layer mainly composed of Pd on the surface of the Cu alloy core material cannot ensure a good 2nd bondability on the Pd plated lead frame.
  • a skin alloy layer further containing Au and Pd is formed on the surface of the coating layer containing Pd as a main component.
  • the thickness of the skin alloy layer containing Au and Pd is preferably 0.5 to 40 nm. If the outermost surface region of the wire is an alloy layer of Au and Pd, when the wire is bonded to the Pd plating lead frame by 2nd, Au in the skin alloy layer constituting the outermost surface of the wire is on the Pd plating lead frame.
  • the thickness of the skin alloy layer is preferably 0.5 nm or more, more preferably 1 nm or more, 2 nm or more, or 3 nm or more.
  • the thickness of the skin alloy layer is preferably 40 nm or less, More preferably, it is 35 nm or less, or 30 nm or less.
  • the HAST evaluation result is further improved. This is because, in the Pd concentrated layer formed on the ball surface, Pd in the Pd concentrated layer is formed by combining Pd of the coating layer on the wire surface with Pd and Pt contained in the Cu alloy core material. It is considered that the total concentration of Pt and Pt is increased to promote the function of controlling the interdiffusion of Cu and Al at the bonding interface and the growth of intermetallic compounds.
  • the Au element contained in the skin alloy layer enhances the action of the Pd enriched layer formed by both Pd of the coating layer on the wire surface and Pd / Pt in the Cu alloy core material to stably form on the ball surface.
  • the phenomenon that Al of the electrode diffuses in the ball direction from the bonding interface is promoted, and the interdiffusion rate at the bonding interface, which is slow only by Pd and Pt, is promoted. It is thought to promote growth.
  • the maximum concentration of Au in the skin alloy layer containing Au and Pd is preferably 15 at% or more. .
  • the balance of the skin alloy layer is Pd and inevitable impurities. Note that Cu is concentrated on the outermost surface of the skin alloy layer as described later.
  • the maximum concentration of Au in the skin alloy layer is more preferably 20 at% or more, further preferably 25 at% or more, 30 at% or more, 35 at% or more, or 40 at%. That's it.
  • the maximum concentration of Au is preferably 40 at% or more.
  • the maximum concentration of Au exceeds 75 at%, when the ball part is formed at the tip of the wire, Au in the skin alloy layer containing Au and Pd is preferentially melted to form an irregular ball part. There is a possibility that the FAB shape becomes defective.
  • the maximum concentration of Au in the skin alloy layer is 75 at% or less, there is a risk that when forming the ball part at the tip of the wire, only Au is preferentially melted to form a distorted ball part.
  • the maximum concentration of Au in the skin alloy layer is preferably 75 at% or less, more preferably 70 at% or less, further preferably 65 at% or less, 60 at% or less, Or it is 55 at% or less. From the viewpoint of improving the sphericity and dimensional accuracy of the ball portion and realizing a particularly good FAB shape, the maximum concentration of Au is preferably 55 at% or less.
  • the bonding wire of the present invention is characterized in that the Cu concentration on the outermost surface of the wire is 1 to 10 at%.
  • the wire outermost surface means the surface of the skin alloy layer containing Au and Pd.
  • a region where the Cu concentration is high on the outermost surface of the wire (hereinafter referred to as “Cu-enriched portion”) preferably has a thickness of 2 to 9 nm.
  • the thickness of the Cu enriched portion is the thickness from the outermost surface of the wire to the position where the Cu concentration is half of the outermost surface of the wire.
  • bonding includes a core material mainly composed of Cu, a coating layer mainly composed of Pd on the surface of the core material, and an alloy layer containing Au and Pd on the surface of the coating layer.
  • a predetermined amount of one or both of Pd and Pt is contained in a core containing Cu as a main component, and the Cu concentration on the outermost surface of the wire is set to a predetermined range, whereby 2nd with respect to a lead frame plated with Pd. Bondability was greatly improved.
  • a specific Cu alloy core material containing a predetermined amount of one or both of Pd and Pt is used, and the Cu concentration on the outermost surface of the wire is 1 at% or more, so that a lead frame plated with Pd or Pd Further improvement of the 2nd bondability to the lead frame plated with Au on the plating and the improvement of the symmetry of the fishtail-like (fish bottom) crimp portion of the 2nd bond could be achieved at the same time.
  • action it uses by combining the said specific Cu alloy core material, and the coating structure by the coating layer which has as a main component the skin alloy layer / Pd containing Cu concentration part / Au and Pd of the wire outermost surface A remarkable improvement effect is obtained.
  • Cu when contained in other metals, has the property of being easily diffused by intragranular diffusion, grain boundary diffusion, and the like at high temperatures.
  • the core Cu of the material when a diffusion heat treatment or an annealing heat treatment is performed as described later, can diffuse in the coating layer and the skin alloy layer, and can reach the outermost surface of the skin alloy layer.
  • the state of Cu on the outermost surface of the wire is considered to be surface enrichment or surface segregation, but a part of Cu is oxidized or an alloy containing Au and Pd in the skin alloy layer has a Cu in the above concentration range. May be partly dissolved.
  • a phenomenon that the FAB shape becomes defective when Cu is concentrated on the outermost surface of the wire was observed.
  • the FAB shape means the presence of true sphericity, eccentricity, and shrinkage.
  • a phenomenon in which the performance that was insufficient with respect to the 2nd bondability was further decreased was observed.
  • the main object of the present invention is a specific Cu alloy core material containing Cu as a main component and containing one or both of Pd and Pt in a predetermined amount, and Pd provided on the surface of the Cu alloy core material.
  • a bonding wire for a semiconductor device including a coating layer as a component and a skin alloy layer containing Au and Pd provided on the surface of the coating layer
  • the performance deterioration due to the concentration of Cu on the outermost surface of the wire is presently present.
  • the Cu concentration on the outermost surface of the wire is preferably 1.5 at% or more, more preferably 2 at% or more, 2.5 at% or more, or 3 at. % Or more.
  • the Cu concentration on the outermost surface of the wire is 10 at% or less in the bonding wire of the present invention. , Preferably 9.5 at% or less, or 9 at% or less.
  • the surface of the Cu alloy core material is coated with Pd, further coated with Au, and then the wire is heat treated to interdiffuse Pd and Au.
  • the wire is heat treated to interdiffuse Pd and Au.
  • the Pd concentration on the surface becomes 25 at% or more
  • the Au concentration on the surface of the skin alloy layer becomes 75 at% or less.
  • Pd is coated on the surface of a Cu alloy core material, Au plating is performed, wire drawing is performed, and then heat treatment is performed twice at a wire diameter of 200 ⁇ m and 100 ⁇ m, so that the Pd concentration on the surface at the final wire diameter Becomes 25 at% or more.
  • a concentration gradient is formed in which the Pd concentration sequentially increases from the outermost surface of the skin alloy layer toward the center of the wire.
  • the maximum concentration of Au in the skin alloy layer can be set to 15 at% to 75 at%.
  • the position where the Au concentration is 10 at% is defined as the boundary between the skin alloy layer and the coating layer containing Pd as a main component.
  • the above heat treatment for diffusing Pd in the skin alloy layer causes mutual diffusion between the Cu alloy core material and the coating layer containing Pd as a main component.
  • a region in which the Pd concentration decreases sequentially from the surface side toward the center and the Cu concentration increases is formed, or at the boundary portion, 20 nm
  • a PdCu intermetallic compound layer having a thickness of less than the thickness is formed.
  • the concentration analysis of the coating layer and the skin alloy layer and the concentration analysis of Pd, Pt, Au, Ni in the Cu alloy core material
  • a method of performing analysis while scraping from the surface of the bonding wire toward the depth direction by sputtering or the like, or A method of performing line analysis, point analysis, etc. by exposing the cross section of the wire is effective.
  • the former is effective when the skin alloy layer and the coating layer are thin, but if the thickness is thick, it takes too much measurement time.
  • the analysis of the latter cross section is effective when the skin alloy layer and the coating layer are thick, and the advantage is that it is relatively easy to confirm the concentration distribution over the entire cross section and reproducibility at several locations.
  • the accuracy decreases. It is also possible to measure by enlarging the thickness of the diffusion region in the skin alloy layer, the coating layer, the core material, and the boundary portion thereof by obliquely polishing the bonding wire.
  • line analysis is relatively simple. However, if you want to improve the accuracy of the analysis, it is also effective to narrow the analysis interval of the line analysis or perform point analysis focusing on the area to be observed near the interface. .
  • Analytical devices used for these concentration analyzes are Auger electron spectroscopy (AES) devices, energy dispersive X-ray analysis (EDX) devices, electron beams provided in scanning electron microscopes (SEM) or transmission electron microscopes (TEM).
  • a microanalyzer (EPMA) or the like can be used.
  • As a method for exposing the cross section of the wire mechanical polishing, ion etching, or the like can be used. In particular, the method using the AES apparatus is effective for the concentration analysis of the thinnest region because the spatial resolution is high.
  • the core material cross section perpendicular to the wire axis of the bonding wire is hereinafter referred to as “vertical cross section”.
  • the orientation ratio of the crystal orientation ⁇ 100> having an angle difference of 15 ° or less with respect to the wire longitudinal direction out of the crystal orientations in the wire longitudinal direction can be evaluated.
  • the orientation ratio of the crystal orientation ⁇ 100> having an angle difference of 15 ° or less with respect to the wire longitudinal direction is 30% or more of the crystal orientation in the wire longitudinal direction. .
  • the orientation ratio of the crystal orientation ⁇ 100> is more preferably 35% or more, further preferably 40% or more. It is 45% or more, 50% or more, or 55% or more.
  • the crystal orientation observed in the vertical cross section of the core material can be measured by a micro-region X-ray method or a backscattered electron diffraction method (EBSD, Electron Backscattered Diffraction) installed in a TEM observation apparatus.
  • EBSD backscattered electron diffraction
  • the EBSD method has a feature that the crystal orientation of the observation surface can be observed and the angle difference between the crystal orientations between adjacent measurement points can be illustrated, and even a thin wire such as a bonding wire is relatively simple. It is more preferable because the crystal orientation can be observed with high accuracy.
  • the orientation ratio of the crystal orientation ⁇ 100> having an angle difference of 15 ° or less with respect to the longitudinal direction of the wire is the volume ratio of the crystal orientation based on the X-ray intensity of each crystal orientation in the micro-region X-ray method.
  • the orientation ratio of the vertical cross section the entire cross section of the bonding wire was observed in a direction perpendicular to the drawing direction of the bonding wire.
  • the calculation method of the crystal orientation ratio was set in the dedicated software in the measurement area to exclude the part where the crystal orientation could not be measured, or the part that could be measured but the reliability of orientation analysis was low
  • the area of only the crystal orientation that could be identified based on the reliability was taken as the population. If the thickness and composition obtained by any one of the above methods are within the scope of the present invention, the effects of the present invention can be obtained.
  • high-purity Cu purity 99.99% or more
  • an additive element material is weighed as starting materials, and then weighed in a high vacuum or in an inert atmosphere such as nitrogen or Ar.
  • Ingots having a diameter of about 2 to 10 mm containing predetermined components and the remainder being Cu and unavoidable impurities are obtained by melting with heating.
  • the ingot is forged, rolled, and drawn to produce a wire having a diameter of about 0.3 to 1.5 mm to form a coating layer.
  • a method for forming a coating layer containing Pd as a main component on the surface of the Cu alloy core material electrolytic plating, electroless plating, vapor deposition or the like can be used, but electrolytic plating capable of stably controlling the film thickness is used. This is most preferable industrially.
  • a skin alloy layer containing Au and Pd is formed on the surface of the coating layer. Any method may be used to form the skin alloy layer, but after forming the coating layer, an Au film is further formed as a skin layer on the surface, and the deposited Au is formed into an alloy layer containing Au and Pd.
  • Pd may be diffused by heat treatment so that Pd reaches the surface of Au.
  • a method of promoting alloying by continuously sweeping the wire at a constant speed in an electric furnace at a constant furnace temperature is preferable because the composition and thickness of the alloy can be controlled reliably.
  • electrolytic plating, electroless plating, vapor deposition, or the like can be used as a method for forming the Au film on the surface of the coating layer.
  • electrolytic plating electroless plating, vapor deposition, or the like can be used.
  • the step of depositing the coating layer and the skin alloy layer on the surface of the Cu alloy core material is most preferably performed after drawing to the final diameter of the Cu alloy core material. It is good also as attaching to the time of drawing to a predetermined wire diameter, and drawing to the final wire diameter after that. It may be deposited at the ingot stage.
  • the atmosphere in the furnace is an inert atmosphere such as nitrogen or Ar. Furthermore, unlike the conventional bonding wire heating method, the atmosphere The oxygen concentration contained therein is set to 5000 ppm or less. More preferably, when at least 500 ppm of a reducing gas such as hydrogen is mixed in the inert gas, the effect of preventing the contamination of the wire raw material can be further enhanced.
  • the appropriate temperature in the furnace and the wire sweep speed vary depending on the wire composition, but the furnace temperature is generally in the range of 210 ° C. to 700 ° C., and the wire sweep speed is, for example, 20 to 40 m / min.
  • Heating for alloying the skin alloy layer is preferably performed after drawing to the final diameter of the core material because it can also serve as annealing of the wire after drawing.
  • the heating for alloying the skin alloy layer may be performed after drawing to an intermediate diameter.
  • heat treatment is performed after the surface of the Cu alloy core is coated with Pd rather than a simple one-time heat treatment, and Au is further deposited. It is effective to perform a heat treatment after the heat treatment. In this case, there is an advantage that the furnace temperature and the wire sweep rate can be individually set for each heat treatment condition.
  • the post-processing heat treatment step is required to be performed with a final wire diameter, but it is difficult to obtain a desired alloy layer, coating layer thickness, maximum Au concentration, and surface Cu concentration. In that case, it is effective to perform the heat treatment process 2 to 3 times during the processing.
  • Au and Pd have different melting points and are easily processed (strength)
  • the oxygen concentration is too high, there is a concern about the oxidation of Cu in the Cu alloy core material. Therefore, it is desirable to set the oxygen concentration to 0.2% to 0.7%. It is good to keep it down.
  • the orientation ratio of the crystal orientation ⁇ 100> whose angle difference with respect to the longitudinal direction of the wire is 15 ° or less is the heat treatment performed after the final wire drawing. It can be controlled by conditions. That is, when the heat treatment temperature is set to a relatively low temperature, for example, 350 to 550 ° C., recrystallization (primary recrystallization) for removing processing strain occurs, but growth of coarse crystal grains (secondary recrystallization) is small. It can be suppressed. Primary recrystallized grains have a large proportion of ⁇ 100> crystal orientation, but secondary recrystallized grains have a small proportion of ⁇ 100> crystal orientation. Thereby, in the vertical cross section of the Cu alloy core material, the crystal orientation ⁇ 100> in which the angle difference with respect to the wire longitudinal direction is 15 ° or less with respect to the wire longitudinal direction is 30% or more. Can do.
  • Cu having a purity of 99.99 mass% or more for producing a Cu alloy core material, and Pd, Pt, Au, Ni, P, B, Be, Fe, Mg, Ti, Zn as additive elements , Ag, and Si were prepared, Pd having a purity of 99.99% by mass or more was prepared for forming a coating layer, and Au having a purity of 99.99% by mass or more was prepared for forming a skin alloy layer.
  • Cu and an additive element material were weighed as starting materials, and then heated and melted under high vacuum to obtain an ingot having a Cu alloy diameter of about 10 mm. Thereafter, the ingot was forged, rolled, and drawn to prepare a Cu alloy core material having a diameter of 500 ⁇ m.
  • the Pd coating layer had a thickness of 1 to 3 ⁇ m on the surface of the Cu alloy core and the Au skin layer had a thickness of 0.05 to 0.2 ⁇ m on the surface of the coating layer.
  • the final thicknesses of the Pd coating layer and the AuPd skin alloy layer are shown in Table 1.
  • the boundary between the core material and the coating layer was set at a position where the Pd concentration was 50 at%, and the boundary between the coating layer and the skin alloy layer was set at a position where the Au concentration was 10 at%.
  • continuous wire drawing was performed at a wire drawing speed of 100 to 700 m / min and a die area reduction rate of 8 to 30% to obtain final wire diameters shown in Table 1.
  • the thickness of the skin alloy layer, the maximum Au concentration, the surface Cu concentration, and the thickness of the coating layer were controlled by performing heat treatment 2 to 3 times during wire drawing.
  • the conditions at that time are as follows: wire temperature is 200 to 250 ⁇ m, temperature is 500 to 700 ° C., speed is 10 to 70 m / min, wire diameter is 70 to 100 ⁇ m, temperature is 450 to 650 ° C., speed is 20 to 90 m / min, and final wire diameter is thin.
  • the wire diameter was 40 to 70 ⁇ m
  • the temperature was 300 to 500 ° C.
  • the speed was 30 to 100 m / min.
  • heat treatment was carried out at the final wire diameter at the temperature shown in Table 1 at a speed of 30 to 120 m / min.
  • the oxygen concentration in the heat treatment furnace was set to 0.2 to 0.7% higher than usual for only one heat treatment. If possible, this heat treatment should be performed at the end, because the Cu is likely to be oxidized if the wire drawing is repeated after the Cu is exposed to the surface. In other heat treatments, the oxygen concentration in the heat treatment furnace was set to less than 0.2%, thereby controlling the stable thickness and composition while suppressing excessive oxidation of the skin alloy layer. In this way, a bonding wire having a diameter of 15 to 25 ⁇ m was obtained.
  • Concentration analysis of coating layer and skin alloy layer and concentration analysis of Pd, Pt, Au, Ni in Cu alloy core material are analyzed using AES equipment while sputtering with Ar ions from the surface of the bonding wire in the depth direction. did.
  • the thicknesses of the coating layer and the skin alloy layer were determined from the obtained concentration profile in the depth direction (the unit of depth is converted to SiO 2 ).
  • analysis using an EPMA, EDX apparatus or the like was also performed.
  • a region where the Pd concentration is 50 at% or more and the Au concentration is less than 10 at% is defined as a coating layer, and a region where the Au concentration on the surface of the coating layer is within a range of 10 at% or more is defined as a skin alloy layer. did.
  • the thickness and composition of the coating layer and the skin alloy layer are shown in Table 1, respectively.
  • concentrations of P, B, Be, Fe, Mg, Ti, Zn, Ag, and Si in the bonding wire were measured with an ICP emission spectroscopic analyzer, an ICP mass spectrometer, and the like.
  • a commercially available automatic wire bonder was used for bonding wire connection.
  • a ball portion was produced at the tip of the bonding wire by arc discharge immediately before bonding, and the diameter thereof was selected to be 1.7 times the diameter of the bonding wire. Nitrogen was used as an atmosphere for producing the ball part.
  • an Al electrode having a thickness of 1 ⁇ m formed on a Si chip and a lead having a Pd-plated lead frame on the surface were used. After the produced ball part is ball-bonded to the electrode heated to 260 ° C., the bus wire part of the bonding wire is joined to the lead heated to 260 ° C. for 2nd, and the ball part is produced again, thereby continuously bonding. Repeated. There were two types of loop lengths of 3 mm and 5 mm, and two types of loop heights of 0.3 mm and 0.5 mm.
  • the 2nd bondability of the bonding wire was evaluated for margin, peeling, strength, and fishtail symmetry.
  • margin 100 continuous bonding was performed under 56 conditions from 20 gf to 90 gf in 20 gf increments to 90 gf and ultrasonic waves in 60 mA increments from 10 mA to 120 mA, and the conditions under which continuous bonding was possible were counted.
  • the conditions under which continuous bonding was possible were rated as ⁇ for 40 or more, ⁇ for 30 or more and less than 40, and x for less than 30.
  • For peeling 100 bonding portions of the bonding wires in the 2nd bonding state were observed, and those where the bonding portions were peeled were counted as NG.
  • NG is 0 for NG, 1-10 for NG, and 11 or more for X.
  • the bonding wire in the 2nd bonded state was pinched immediately above the 2nd bonded portion, lifted upward until it was cut, and the breaking load obtained at the cutting was read. Since the strength depends on the wire diameter, the ratio of strength / wire tensile strength was used.
  • the ratio is 85% or more, it is good ⁇ , 70 to 85% is judged as no problem ⁇ , 55 to 70% is judged to be defective ⁇ , 55% or less is judged as bad It was set as x and indicated in the column of “2nd bonding strength” in the table.
  • the HAST test ball bondability of the bonding wire
  • ball shape ball shape
  • FAB shape chip damage
  • chip damage was evaluated.
  • the bonded semiconductor device is left in a high-temperature and high-humidity furnace at a temperature of 130 ° C. and a relative humidity of 85% RH (Relative Humidity), 5 V every 48 hours. It was taken out and evaluated.
  • RH Relative Humidity
  • the electrical resistance was measured, and the resistance increased as NG.
  • the time until becoming NG was evaluated as ⁇ for 480 hours or more, ⁇ for 384 hours or more and less than 480 hours, and ⁇ for less than 384 hours.
  • NG is 0: ⁇ 1, 1-5: ⁇ , 6-10: ⁇ , 11 or more: ⁇ . ⁇ and ⁇ are acceptable, and ⁇ is acceptable, but the quality is slightly poor.
  • each sample was observed with 100 loops with an optical microscope. If a leaning defect is observed only in the loop, it is good. If it is observed only in 3 to 4 loops, it is o. Is marked with ⁇ , and if a leaning failure is observed in 8 or more loops, it is bad and marked with a “x” in the “leaning” column. ⁇ , ⁇ , and ⁇ are acceptable.
  • the orientation ratio of the crystal orientation ⁇ 100> having an angle difference of 15 ° or less with respect to the longitudinal direction of the wire observed in the vertical cross section of the core material was calculated after observing the crystal orientation of the observation surface by the EBSD method.
  • Dedicated software OSL analysis, etc., manufactured by TSL
  • the entire area of the bonding wire was selected, and each sample was observed in three fields. Enter the crystal orientation ⁇ 100> orientation ratio with an angle difference of 15 ° or less with respect to the wire longitudinal direction in the vertical cross section of the core material in the “Crystal orientation ⁇ 100>” column of “Vertical cross section” in Table 2. ing.
  • Comparative Example 26 since the Cu concentration on the outermost surface of the wire is less than the lower limit, the peeling and fishtail symmetry of the 2nd junction are poor, and the thickness of the coating layer exceeds the upper limit of the preferable range. The shape was acceptable but the quality was slightly poor. In Comparative Example 27, since the Cu concentration on the outermost surface of the wire is less than the lower limit, the peeling of the 2nd junction and the fishtail symmetry are poor, and the thickness of the coating layer is less than the lower limit of the preferred range, so the FAB shape is acceptable. However, the quality was somewhat poor.
  • Comparative Example 28 since the amount of additive element 1 as an essential element is less than the lower limit, the ball bondability (HAST evaluation) under high-humidity heating conditions is poor, and the margin and strength of the 2nd bond are poor. Since the thickness of the coating layer was less than the lower limit of the preferred range, the FAB shape was acceptable, but the quality was slightly poor. In Comparative Example 29, since the Cu concentration on the outermost surface of the wire is less than the lower limit, the peeling and fishtail symmetry of the 2nd junction are poor, and the thickness of the skin alloy layer and the maximum concentration of Au exceed the upper limit of the preferred range. Therefore, although the FAB shape was acceptable, the quality was slightly poor.
  • Comparative Example 31 which uses a high purity (4N or more) Cu core material and the amount of additive element 1 which is an essential element is less than the lower limit, was poor in 2nd junction peeling and fishtail symmetry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

Cu合金芯材の表面にPdを主成分とする被覆層と、該被覆層の表面にAuとPdを含む表皮合金層を有する半導体装置用ボンディングワイヤであって、Pdめっきリードフレームでの2nd接合性をさらに改善するとともに、高湿加熱条件においても優れたボール接合性を実現することのできるボンディングワイヤを提供する。 Cu合金芯材の表面にPdを主成分とする被覆層と、該被覆層の表面にAuとPdを含む表皮合金層を有する半導体装置用ボンディングワイヤにおいて、ワイヤ最表面Cu濃度を1~10at%とし、芯材中にPd、Ptの一方又は両方を総計で0.1~3.0質量%の範囲で含有することにより、2nd接合性の改善と、高湿加熱条件における優れたボール接合性を実現することができる。さらに、表皮合金層のAuの最大濃度が15at%~75at%であると好ましい。

Description

半導体装置用ボンディングワイヤ
 本発明は、半導体素子上の電極と外部接続端子を接続するために使用される半導体装置用ボンディングワイヤに関するものである。
 半導体素子上の電極と外部接続端子との間は、半導体用ボンディングワイヤ(以下、「ボンディングワイヤ」ともいう。)を用いて接続される。ボンディングワイヤを半導体素子であるシリコンチップ上の電極に接合させるには、超音波併用熱圧着方式のボールボンディングが行われる。一方、ボンディングワイヤをリードやランド等の外部接続端子に接続する場合には、ボール部を形成することなく、ボンディングワイヤを直接電極に接合する、いわゆる2nd接合を行うことが一般的である。
 ボンディングワイヤの材質として従来は、線径15-50μm程度で、材質は高純度4N(4-Nine、純度が99.99質量%以上)のAu(金)であるAuボンディングワイヤ(金ボンディングワイヤ)が主として使用されていた。
 ところで、昨今の資源価格の高騰に伴い、Auボンディングワイヤの原料となる金の価格も急騰しており、Auに代わる低コストのワイヤ素材として、Cu(銅)が検討されている。しかしながら、Auと比べてCuは酸化されやすいことから、単純なCuボンディングワイヤでは長期の保管が難しく、2nd接合特性も良好ではない。また、このような単純なCuボンディングワイヤの先端にボール部を形成する際には、ボール部が酸化しないように、還元雰囲気にしなければならない。
 そこで、Cuボンディングワイヤの酸化という課題を解決するため、Cuワイヤの表面に貴金属を被覆したCuボンディングワイヤが提案されている。特許文献1では、高純度Cu極細線の表面に、Au、Pd等の貴金属を被覆したCuボンディングワイヤが開示されている。
 Cuワイヤの表面に貴金属を被覆したCuボンディングワイヤでは、Cuボンディングワイヤの酸化が抑制されるため、ワイヤの長期保管や2nd接合特性に優れる。特に、Cuワイヤの表面にPdを被覆したCuボンディングワイヤでは、ワイヤ先端にボール部を形成する際にボール部が酸化するという懸念が大幅に改善され、危険なガスである水素を使わずに、純窒素ガスを用いてボール部周辺を窒素雰囲気としただけでも、真球のボール部が形成できる。
特開昭62-97360号公報
 これまでのリードフレームの表面は銀めっきされているのが一般的であったのに対して、最近ではPdめっきされたリードフレームの使用が進みつつある。Cuワイヤの表面にPdを被覆したCuボンディングワイヤの場合、これまでの銀めっきリードフレームでは顕在化していなかったが、Pdめっきされたリードフレームに対する2nd接合性が不充分となるケースが多くなるという新たな問題が知見された。Pdめっきの上にAuめっきを施したリードフレームについても同様である。斯かる問題を解決すべく検討する過程において、本発明者らは、Cuワイヤの表面にPdを被覆し、該Pd被覆層の表面に、AuとPdとを含む合金層を有するボンディングワイヤを用いることにより、この問題を幾分軽減し得ることを見出した。しかし、2nd接合性についてはさらなる改善が求められている。特に、ピーリング、即ち2nd接合された状態のボンディングワイヤの接合部が剥がれる現象の改善が求められている。また、ファインピッチによる細線化に伴い、2nd接合のフィッシュテイル状(魚の尻ビれ)の圧着部対称性のさらなる改善が求められている。本発明は、Pd被覆層を有するCuワイヤにおいて、PdめっきされたリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性、2nd接合のフィッシュテイル状(魚の尻ビれ)の圧着部対称性をさらに改善することを第1の目的とする。
 また、Cuボンディングワイヤの長期信頼性について、最も多く利用される加熱試験である乾燥雰囲気での高温保管評価では特に問題は発生しない場合であっても、高湿加熱評価を行うと、不良が発生することがある。一般的な高湿加熱評価としてPCT試験(プレッシャークッカーテスト)が知られている。中でも飽和タイプのPCT試験が比較的厳しい評価としてよく用いられており、代表的な試験条件は、温度121℃、相対湿度100%RH(Relative Humidity)、2気圧で行われる。Pd被覆層を有するCuワイヤにおいては、高湿加熱評価における不良を低減し得るものの、高湿加熱評価としてさらに厳しいHAST試験(High Accelerated Temperature and humidity Stress Test)(温度130℃、相対湿度85%RH(Relative Humidity)、5V)を行うと、Auワイヤに比較するとまだ不良の発生率が高いことがわかった。本発明は、Pd被覆層を有するCuワイヤにおいて、高湿加熱評価における不良をさらに低減することを第2の目的とする。
 本発明者らは、Cuを主成分とする芯材と、該芯材の表面にPdを主成分とする被覆層と、該被覆層の表面にAuとPdとを含む表皮合金層とを有するボンディングワイヤにおいて、Cuを主成分とする芯材中にPdとPtの一方又は両方を所定量含有させると共に、ワイヤ最表面におけるCu濃度を1at%以上とすることにより、PdめっきされたリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性、2nd接合のフィッシュテイル状(魚の尻ビれ)の圧着部対称性をさらに改善できることを見出した。
 本発明者らはまた、Cuを主成分とする芯材中にPdとPtの一方又は両方を所定量含有させることにより、HAST試験のような過酷な高湿加熱評価においても不良発生を低減できることを見出した。
 本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)Cuを主成分とし、Pd、Ptの一方又は両方を総計で0.1~3.0質量%含有する芯材と、該芯材表面に設けられたPdを主成分とする被覆層と、該被覆層表面に設けられたAuとPdを含む表皮合金層とを含む半導体装置用ボンディングワイヤにおいて、ワイヤ最表面におけるCu濃度が1~10at%であることを特徴とする半導体装置用ボンディングワイヤ。
(2)前記Pdを主成分とする被覆層の厚さが20~90nm、前記AuとPdを含む表皮合金層の厚さが0.5~40nm、Auの最大濃度が15~75at%であることを特徴とする(1)に記載の半導体装置用ボンディングワイヤ。
(3)前記芯材が、さらにAu、Niの一方又は両方を含有し、芯材中のPd、Pt、Au、Niの総計が0.1質量%を超え3.0質量%以下であることを特徴とする(1)又は(2)に記載の半導体装置用ボンディングワイヤ。
(4)前記ボンディングワイヤが、さらにP、B、Be、Fe、Mg、Ti、Zn、Ag、Siの1種以上を含有し、ワイヤ全体に占めるこれら元素濃度の総計が0.0001~0.01質量%の範囲であることを特徴とする(1)乃至(3)のいずれかに記載の半導体装置用ボンディングワイヤ。
(5)前記芯材と前記被覆層との境界部、および前記被覆層と前記表皮合金層との境界部に拡散領域を有することを特徴とする(1)乃至(4)のいずれかに記載の半導体装置用ボンディングワイヤ。
(6)前記ボンディングワイヤのワイヤ軸に垂直方向の芯材断面(以下「垂直断面」という。)に対して結晶方位を測定した結果において、ワイヤ長手方向の結晶方位の内、ワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率が30%以上であることを特徴とする(1)乃至(5)のいずれかに記載の半導体装置用ボンディングワイヤ。
 本発明は、Cuを主成分とする芯材と、該Cu合金芯材の表面に設けられたPdを主成分とする被覆層と、該被覆層の表面に設けられたAuとPdを含む表皮合金層を有する半導体装置用ボンディングワイヤにおいて、Cuを主成分とする芯材中にPdとPtの一方又は両方を所定量含有させると共に、ワイヤ最表面におけるCu濃度を1~10at%とすることにより、PdめっきされたリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性をさらに改善することができる。また、Cuを主成分とする芯材中にPdとPtの一方又は両方を所定量含有させることにより、ボンディングワイヤと電極との間のボール接合部について、高湿加熱条件においても優れたボール接合性を実現することができる。
 本発明の半導体装置用ボンディングワイヤは、Cuを主成分とし、Pt、Pdの一方又は両方を総計で0.1~3.0質量%含有する芯材と、該芯材の表面に設けられたPdを主成分とする被覆層と、該被覆層の表面に設けられたAuとPdを含む表皮合金層とを含み、ワイヤ最表面におけるCu濃度が1~10at%であることを特徴とする。
 まず、Cuを主成分とし、Pt、Pdの一方又は両方を総計で0.1~3.0質量%含有する芯材(以下、「Cu合金芯材」ともいう。)について説明する。
 Cuは酸化されやすいため、Cuからなるボンディングワイヤでは長期保管や2nd接合特性が劣るが、Cu合金芯材の表面にPdを主成分とする被覆層を形成しておけば、Cu合金芯材の酸化が抑制されるため、前述の長期保管や2nd接合特性が優れる。
 また、表面にPd被覆層を有するCuワイヤを用いてAl電極上にボールボンディングを行う場合、ワイヤ先端にボールを形成した際、溶融したボールの表面にPd濃化層が形成される。このようにボール表面にPd濃化層が形成されるため、Al電極上にボールボンディングした際に、Pd被覆層を有しないCuワイヤと対比し、高湿加熱評価における不良が低減する。
 しかし、Cu芯材にPd被覆層を設けたCuボンディングワイヤの長期信頼性について、高湿加熱評価としてHAST試験(High Accelerated Temperature and humidity Stress Test)(温度130℃、相対湿度85%RH(Relative Humidity)、5V)を行うと、Auワイヤに比較するとまだ不良の発生率が高い。
 ボールボンディング時に形成されるボール表面のPd濃化層については、常にボール表面全体にPd濃化層が形成されるのではなく、Pd濃化層はボールの側面のみに形成され、ボールの先端部にはPd濃化層が形成されない場合がある。そして、ボール先端部にPd濃化層が形成されない場合に、高湿加熱評価における不良発生頻度が増大することを本発明者らは見出した。これは、Cuボンディングワイヤに含まれるPd量が十分でないことが原因である。そこでPd量を増加させる手段としてPdを主成分とする被覆層を厚くすることが考えられるが、後述するようにチップダメージ低減等の観点からPd被覆層の厚さには好適な上限があり、該被覆層を厚くしてPd量を増加させることには限度がある。
 ボール先端部にPd濃化層が形成されない状況でAl電極上にボールボンディングを行うと、Cuを主成分とする芯材がボール先端部の表面に露出しており、この部分がAl電極と直接接触して接合部が形成される。この場合、高湿加熱評価試験において、Cu/Al接合界面(CuボンディングワイヤとAl電極との接合界面)にCu-Al系の金属間化合物が成長し、このCu-Al系の金属間化合物が、封止樹脂に含まれる塩素などのガス成分又はイオン等と腐食反応を起こす。その結果として、高湿加熱評価試験での不良の原因となる。
 それに対し、本発明においては、Cuを主成分とし、PdとPtの一方又は両方を所定量含有するCu合金芯材を使用する。これにより、Cu合金芯材中のPd、Ptがボールボンディング時に接合界面まで拡散又は濃化して、CuとAlとの相互拡散に影響を及ぼすことで、腐食反応を遅らせると考えられる。接合界面近傍のPd、Ptの役割は、腐食反応物の移動を阻害するバリア機能、Cu、Alの相互拡散及び金属間化合物の成長等を制御する機能等が考えられる。
 Cu合金芯材中のPd、Ptの濃度が総計で0.1質量%以上であれば、接合界面におけるCu、Alの相互拡散を十分に制御することができ、過酷な高湿加熱評価試験であるHAST試験においても接合部の寿命が380時間以上まで向上する。ここでの接合部の評価としては、HAST試験後に樹脂を開封して除去し、その後にプル試験により接合部の破断状況を評価する。上記のHAST試験信頼性の改善効果を十分に得る観点から、Cu合金芯材中のPd、Ptの濃度は総計で、0.1質量%以上であり、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、0.4質量%以上、又は0.5質量%以上である。また、低温接合でのAl電極との初期の接合強度が良好であり、HAST試験での長期信頼性や、BGA(Ball Grid Array)、CSP(Chip Size Package)等の基板、テープ等への接合の量産マージンに優れるボンディングワイヤを得る観点、チップダメージを低減する観点から、Cu合金芯材中のPd、Ptの濃度は総計で、3.0質量%以下であり、好ましくは2.5質量%以下である。Cu合金芯材中のPd、Ptの濃度が総計で3.0質量%を超えると、チップダメージを発生させないように低荷重でボールボンディングを行う必要があり、電極との初期の接合強度が低下し、結果としてHAST試験信頼性が悪化する。本発明のボンディングワイヤでは、Cu合金芯材中のPd、Ptの濃度の総計を上記好適な範囲とすることにより、HAST試験での信頼性がさらに向上する。例えば、HAST試験の不良発生までの寿命が450時間を超えるボンディングワイヤを実現することが可能である。これは、従来のCuボンディングワイヤの1.5倍以上の長寿命化に相当する場合もあり、過酷な環境での使用にも対応可能となる。なお、ボンディングワイヤ製品からCu合金芯材に含まれる前記元素の濃度を求める方法としては、例えば、ボンディングワイヤの断面を露出させて、Cu合金芯材の領域について濃度分析する方法、ボンディングワイヤの表面から深さ方向に向かってスパッタ等で削りながら、Cu合金芯材の領域について濃度分析する方法が挙げられる。例えば、Cu合金芯材がPdの濃度勾配を有する領域を含む場合には、ボンディングワイヤの断面をライン分析し、Pdの濃度勾配を有しない領域(例えば、深さ方向へのPdの濃度変化の程度が0.1μm当たり10mol%未満の領域)について濃度分析すればよい。濃度分析の手法については後述する。
 本発明において、Cu合金芯材にさらにAu、Niの一方又は両方を含有させてもよい。Cu合金芯材にさらにAu、Niを含有させると、再結晶温度が上がって、伸線加工中の動的再結晶を防ぐため加工組織が均一になり、調質後の結晶粒サイズが比較的均一になる。それによりワイヤの破断伸びが向上し、ボンディングした際に安定的なワイヤループを形成することができる。Au、Niをさらに含有させる場合、芯材中のPd、Pt、Au、Niの総計が0.1質量%を超え3.0質量%以下となるように含有量を定めることが好適である。芯材中のPd、Pt、Au、Niの総計の下限は、より好ましくは0.2質量%以上、0.3質量%以上、0.4質量%以上、又は0.5質量%以上であり、該総計の上限は、より好ましくは2.5質量%以下、2.0質量%以下、1.5質量%以下、1.3質量%以下、又は1.1質量%以下である。
 本発明のボンディングワイヤはさらにP、B、Be、Fe、Mg、Ti、Zn、Ag、Siから選ばれる1種以上の元素を含有し、ワイヤ全体に占めるこれら元素濃度の総計が0.0001~0.01質量%の範囲であると好ましい。これにより、より良好なボール形状を実現することができる。これらの元素濃度の総計の下限は、より好ましくは0.0003質量%以上、0.0005質量%以上、又は0.001質量%以上であり、これらの元素濃度の上限は、より好ましくは0.009質量%以下、又は0.008質量%以下である。本発明のボンディングワイヤがこれらの元素を含有する場合、これらの元素はCu合金芯材中に含まれていてもよく、後述する被覆層、表皮合金層に含まれていてもよい。
 Cu合金芯材に含有する成分は、Pd、Ptをはじめとする上記の成分の他、残部Cuおよび不可避不純物である。好適な一実施形態において、Cu合金芯材のCuの純度は3N以下(好ましくは2N以下)である。従来のPd被覆Cuボンディングワイヤでは、ボンダビリティの観点から、高純度(4N以上)のCu芯材が使用され、低純度のCu芯材の使用は避けられる傾向にあった。これに対し、Cu合金芯材と、該Cu合金芯材の表面に設けられたPdを主成分とする被覆層と、該被覆層の表面に設けられたAuとPdを含む表皮合金層を有し、ワイヤ最表面におけるCu濃度が1~10at%である本発明のボンディングワイヤでは、上記のようにCuの純度が比較的低いCu合金芯材を使用した場合に特に好適に、PdめっきされたリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性の更なる改善と、HAST試験のような過酷な高湿加熱評価における優れたボール接合性とを実現するに至ったものである。
 次にPdを主成分とする被覆層について説明する。
 前述のようにCu合金芯材の酸化を抑制するため、Cu合金芯材の表面に形成するPdを主成分とする被覆層の厚みは20~90nmが好ましい。被覆層の厚みが20nm以上であれば酸化抑制効果が充分となり、2nd接合性とFAB形状が良好となるため好ましい。なお、FAB形状とは、真球性、偏芯の有無、および引け巣の有無を意味する。被覆層の厚みは、より好ましくは25nm以上、又は30nm以上である。また、被覆層の厚みが90nm以下であれば、チップダメージが低減すると共にFAB形状が良好となり、さらにボール部の表面に直径数μmの大きさの気泡が生じることが少なく、好ましい。被覆層の厚みは、より好ましくは85nm以下、又は80nm以下である。
 ここで、Pdを主成分とする被覆層におけるPd以外に含まれる元素は、Pdの不可避不純物と、被覆層の内側の芯材を構成する成分、被覆層の表面側の表皮合金層を構成する元素である。これは、後述する熱処理により、芯材を構成する元素および表皮合金層を構成する元素が被覆層へ拡散するためである。したがって一実施形態において、本発明のボンディングワイヤは、芯材と被覆層との境界部、および被覆層と表皮合金層との境界部に拡散領域を有する。そこで、本発明では芯材と被覆層との境界はPd濃度が50at%の位置とし、被覆層と表皮合金層との境界はAuが10at%の位置とし、これらの境界の間を被覆層の厚さとする。
 次にAuとPdを含む表皮合金層について説明する。
 前述のとおり、Cu合金芯材の表面にPdを主成分とする被覆層を有する構成のみでは、Pdめっきリードフレーム上で良好な2nd接合性を確保することはできない。本発明においては、Pdを主成分とする被覆層の表面に更にAuとPdを含む表皮合金層を形成する。AuとPdを含む表皮合金層の厚さは0.5~40nmが好ましい。ワイヤの最表面の領域がAuとPdとの合金層であれば、Pdめっきリードフレーム上にワイヤを2nd接合させる際、ワイヤの最表面を構成する表皮合金層中のAuがPdめっきリードフレーム上のPdに向けて優先的に拡散し、ボンディングワイヤとPdめっきリードフレームの両者の間に合金層を形成しやすくする。そのため、Pdめっきリードフレームとの2nd接合性が向上する。また、AuフラッシュめっきされたPdめっきリードフレーム上でも同様に2nd接合性が向上することを確認しており、この場合はリードフレーム上の極薄フラッシュメッキのAuと表皮合金層中のAuのお互いの密着性促進効果によると考えられる。PdめっきリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性を改善する観点から、表皮合金層の厚みは好ましくは0.5nm以上、より好ましくは1nm以上、2nm以上、又は3nm以上である。一方、表皮合金層の厚みが厚すぎると、FAB形状が悪化する場合があり、また、高価なAuの使用量が増えてコストアップとなることから、表皮合金層の厚みは好ましくは40nm以下、より好ましくは35nm以下、又は30nm以下である。
 また、前記被覆層および前記表皮合金層を有するワイヤのCu合金芯材中にPdとPtを含有させることで、Pd被覆されていないベアCu中にPdとPtを含有する場合に比べて、上記の接合信頼性向上に加え、HAST評価結果がさらに向上する。これは、ボール表面に形成されるPd濃化層において、ワイヤ表面の被覆層のPdと、Cu合金芯材中に含有させたPdとPtの両者が組み合わさることでPd濃化層中のPdとPtの合計濃度が上昇して、接合界面でのCu、Alの相互拡散及び金属間化合物の成長等を制御する機能を促進するためと考えられる。
 従来のPd被覆CuワイヤではPd層とキャピラリー内壁の摺動抵抗が高く、ボンディング動作の際にPdが削れることがあった。ボンディングを繰り返していくうちにキャピラリーに削りクズ等の異物が付着し、その量が多くなるとキャピラリーを交換しなければならない。これに対し、さらにAuとPdを含む表皮合金層を有することにより、ワイヤ最表面の摩擦抵抗が低くなる。また、前述の通り、芯材へPd,Ptを添加することにより適度な強度が保たれる。これらの効果でキャピラリー内壁とワイヤの摺動抵抗が下がってスムーズなボンディング動作が行われ、ボンディングを繰り返してもキャピラリーへの異物付着による汚染を少なく抑えることができ、キャピラリー寿命が向上する。また、キャピラリー内壁とワイヤの摺動抵抗が下がった結果として、ループ安定性やリーニング特性が向上する。
 さらに、表皮合金層に含まれるAu元素は、ワイヤ表面の被覆層のPdとCu合金芯材中のPd・Ptの両者で形成されるPd濃化層がボール表面に安定形成する作用を高めること、また、電極のAlが接合界面からボール方向に拡散する現象を促進して、Pd、Ptだけでは遅くなる接合界面での相互拡散速度を促進させて、腐食への耐性の高い金属間化合物の成長を促進していると考えられる。
 PdめっきリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性を改善する観点から、AuとPdを含む表皮合金層中のAuの最大濃度は15at%以上であることが好ましい。表皮合金層の残部はPd及び不可避不純物である。なお、表皮合金層の最表面には、後述のようにCuが濃化している。Pdめっきリードフレーム等に対する2nd接合性を改善する観点から、表皮合金層中のAuの最大濃度はより好ましくは20at%以上、さらに好ましくは25at%以上、30at%以上、35at%以上、又は40at%以上である。PdめっきリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性を特に改善する観点から、Auの最大濃度は40at%以上であることが好ましい。他方、Auの最大濃度が75at%を超えると、ワイヤ先端にボール部を形成する際にAuとPdとを含む表皮合金層中のAuが優先的に溶融することで、いびつなボール部が形成される危険性が増し、FAB形状が不良となる場合がある。それに対し、表皮合金層中のAuの最大濃度が75at%以下であれば、ワイヤ先端にボール部を形成する際に、Auだけ優先的に溶融していびつなボール部が形成される危険性はなく、ボール部の真球性や寸法精度を損なうことがないため好ましい。ボール部の真球性や寸法精度を向上させる観点から、表皮合金層中のAuの最大濃度は、好ましくは75at%以下、より好ましくは70at%以下、さらに好ましくは65at%以下、60at%以下、又は55at%以下である。ボール部の真球性や寸法精度を向上させ、特に良好なFAB形状を実現する観点から、Auの最大濃度は55at%以下であることが好ましい。
 本発明のボンディングワイヤは、ワイヤ最表面におけるCu濃度が1~10at%であることを特徴とする。ワイヤ最表面とは、AuとPdを含む表皮合金層の表面を意味する。ワイヤ最表面におけるCu濃度が高くなっている領域(以下、「Cu濃化部」という。)は、その厚みが2~9nmであると好ましい。Cu濃化部の厚みは、ワイヤ最表面から、Cu濃度がワイヤ最表面の半分になる位置までの厚みとする。
 前述の通り、Cuを主成分とする芯材と、該芯材の表面に、Pdを主成分とする被覆層と、該被覆層の表面に、AuとPdとを含む合金層とを有するボンディングワイヤにおいて、Cuを主成分とする芯材中にPdとPtの一方又は両方を所定量含有させると共に、ワイヤ最表面におけるCu濃度を所定の範囲とすることにより、Pdめっきされたリードフレームに対する2nd接合性が大幅に改善された。本発明においては、PdとPtの一方又は両方を所定量含有する特定のCu合金芯材を用いると共に、ワイヤ最表面におけるCu濃度が1at%以上であることにより、PdめっきされたリードフレームあるいはPdめっきの上にAuめっきを施したリードフレームに対する2nd接合性のさらなる改善と、2nd接合のフィッシュテイル状(魚の尻ビレ)の圧着部の対称性の向上を両立させることができた。この作用について、上記特定のCu合金芯材と、ワイヤ最表面のCu濃化部/AuとPdとを含む表皮合金層/Pdを主成分とする被覆層による被覆構造とを組み合わせて用いることにより、顕著な改善効果が得られる。これは、上記特定のCu合金芯材と、表皮合金層と、Cu濃化部との組み合わせによる相乗作用が働くことで、2nd接合性がさらに改善され、2nd接合でのワイヤ変形の対称性が向上したものと考えられる。
 Cuは、他の金属中に含まれる場合、高温において粒内拡散、粒界拡散等によって拡散しやすい性質を有している。Cu合金芯材と、その表面にPdを主成分とする被覆層とさらにその表面にAuとPdを含む表皮合金層を有する本発明において、後述するように拡散熱処理や焼鈍熱処理を行うと、芯材のCuが被覆層や表皮合金層中を拡散し、表皮合金層の最表面にCuを到達させることができる。ワイヤ最表面における上記Cuの状態は、表面濃化または表面偏析していると考えられるが、一部のCuが酸化していたり、表皮合金層のAuとPdを含む合金に上記濃度範囲のCuが一部固溶していても構わない。
 Cu芯材の表面にPdを主成分とする被覆層のみを有する従来のPd被覆Cuボンディングワイヤにおいては、先述のとおり、高純度(4N以上)のCu芯材が使用され、低純度のCu芯材の使用は避けられる傾向にあった。このような従来のPd被覆Cuボンディングワイヤにおいては、ワイヤ最表面にCuが濃化すると、FAB形状が不良となる現象が見られた。FAB形状とは、真球性、偏芯の有無、および引け巣の有無を意味する。また、2nd接合性についても、不十分であった性能がさらに低下する現象が見られた。それに対し、本発明が対象とする、Cuを主成分とし、Pd、Ptの一方又は両方を所定量含有する特定のCu合金芯材と、該Cu合金芯材の表面に設けられたPdを主成分とする被覆層と、該被覆層の表面に設けられたAuとPdを含む表皮合金層と含む半導体装置用ボンディングワイヤにおいては、ワイヤ最表面にCuが濃化することによる性能の低下は現出せず、逆に、ワイヤ最表面にCuを1at%以上含有することにより、Pdめっきされたリードフレームに対する2nd接合性、特にピーリング性を大幅に改善できることをはじめて見出したのである。2nd接合性をより一層改善し得る観点から、本発明のボンディングワイヤにおいて、ワイヤ最表面におけるCu濃度は、好ましくは1.5at%以上、より好ましくは2at%以上、2.5at%以上、又は3at%以上である。
 ただし、表皮合金層の表面、即ちワイヤ最表面のCu濃度が高すぎると、2nd接合性とFAB形状が不良となり、さらにワイヤ表面が酸化しやすくなり、経時的に品質が低下するという問題が発生する場合がある。良好な2nd接合性とFAB形状を実現する観点、ワイヤ表面の酸化を抑えて品質の経時劣化を抑制する観点から、本発明のボンディングワイヤにおいて、ワイヤ最表面におけるCu濃度は、10at%以下であり、好ましくは9.5at%以下、又は9at%以下である。
 AuとPdを含む表皮合金層の形成方法として、好ましくは、Cu合金芯材の表面にPdを被覆し、さらにその表面にAuを被着し、その後ワイヤを熱処理してPdとAuを相互拡散させ、AuとPdを含む表皮合金層を形成する。被覆層のPdが表皮合金層の表面まで到達するように拡散させ、表面におけるPd濃度が25at%以上となるように拡散を行うことにより、表皮合金層表面のAu濃度が75at%以下となる。例えば、Cu合金芯材の表面にPdを被覆し、Auめっきを施した後に伸線してワイヤ直径200μmおよび100μmで、合わせて2回熱処理を行うことで、最終線径での表面におけるPd濃度が25at%以上になる。このとき、表皮合金層の最表面からワイヤの中心に向けて、Pd濃度が順次増大する濃度勾配を構成する。これにより、表皮合金層におけるAuの最大濃度を15at%~75at%とすることができる。ここで、Au濃度が10at%となる位置を表皮合金層とPdを主成分とする被覆層との境界と定義する。
 なお、表皮合金層中にPdを拡散させる上記熱処理により、Cu合金芯材とPdを主成分とする被覆層との間も相互拡散が起きる。その結果、Cu合金芯材と被覆層との境界付近には、表面側から中心に向けて順次Pd濃度が減少するとともにCu濃度が増大する領域が形成される場合、または前記境界部に、20nm厚以下のPdCu金属間化合物層が形成される場合があるが、本発明においてはいずれの場合も拡散領域という。
 本発明のワイヤの成分組成の評価方法について説明する。
 被覆層、表皮合金層の濃度分析、Cu合金芯材におけるPd、Pt、Au、Niの濃度分析には、ボンディングワイヤの表面から深さ方向に向かってスパッタ等で削りながら分析を行う方法、あるいはワイヤ断面を露出させてライン分析、点分析等を行う方法が有効である。前者は、表皮合金層、被覆層が薄い場合に有効であるが、厚くなると測定時間がかかりすぎる。後者の断面での分析は、表皮合金層、被覆層が厚い場合に有効であり、また、断面全体での濃度分布や、数箇所での再現性の確認等が比較的容易であることが利点であるが、表皮合金層、被覆層が薄い場合には精度が低下する。ボンディングワイヤを斜め研磨して、表皮合金層、被覆層、芯材及びそれらの境界部における拡散領域の厚さを拡大させて測定することも可能である。
 断面では、ライン分析が比較的簡便であるが、分析の精度を向上したいときには、ライン分析の分析間隔を狭くするとか、界面近傍の観察したい領域に絞っての点分析を行うことも有効である。
 これらの濃度分析に用いる解析装置は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)に備え付けたオージェ電子分光分析(AES)装置、エネルギー分散型X線分析(EDX)装置、電子線マイクロアナライザ(EPMA)等を利用することができる。ワイヤ断面を露出させる方法としては、機械研磨、イオンエッチング法等を利用することができる。特にAES装置を用いた方法は、空間分解能が高いことから、最表面の薄い領域の濃度分析に有効である。
 ボンディングワイヤ中のP、B、Be、Fe、Mg、Ti、Zn、Ag、Siの分析については、ボンディングワイヤを強酸で溶解した液をICP発光分光分析装置やICP質量分析装置を利用して分析し、ボンディングワイヤ全体に含まれる元素の濃度として検出することができる。また、平均的な組成の調査等には、表面部から段階的に酸等で溶解していき、その溶液中に含まれる濃度から溶解部位の組成を求めること等も可能である。
 被覆層と芯材との境界に形成されるPdCu化合物については、EPMA、EDX装置、AES装置、TEMなどを利用し、ワイヤの研磨断面において芯材と被覆層との界面を挟んでのライン分析を行うことにより、拡散領域の厚さ、組成などを知ることができる。
 ボンディングワイヤのワイヤ軸に垂直方向の芯材断面を、以下「垂直断面」という。垂直断面において結晶方位を測定することにより、ワイヤ長手方向の結晶方位の内、ワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率を評価することができる。本発明において好ましくは、芯材の垂直断面において、ワイヤ長手方向の結晶方位の内、ワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率が30%以上とする。芯材がこのような結晶組織を有していることにより、リーニング不良を抑制することができると共に、ボールボンディング時に形成されるボール部が軟質化し、ボールボンディングにおけるチップダメージが低減する。また、ワイヤが軟質化するので、2nd接合性を改善することができる。リーニング不良を抑制する観点、チップダメージを低減する観点、2nd接合性をより一層改善する観点から、上記結晶方位<100>の方位比率は、より好ましくは35%以上、さらに好ましくは40%以上、45%以上、50%以上、又は55%以上である。
 上記芯材の垂直断面で観察される結晶方位は、TEM観察装置中に設置した微小領域X線法あるいは後方散乱電子線回折法(EBSD、Electron Backscattered Diffraction)等で測定できるものである。中でも、EBSD法は観察面の結晶方位を観察し、隣り合う測定点間での結晶方位の角度差を図示できるという特徴を有し、ボンディングワイヤのような細線であっても、比較的簡便ながら精度良く結晶方位を観察できるのでより好ましい。また、ワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率は、微小領域X線法ではそれぞれの結晶方位のX線強度をもとに結晶方位の体積比率として求めることができ、またEBSD法では、前記で観察した結晶方位から直接算出可能である。垂直断面の方位比率を算出するため、ボンディングワイヤの伸線方向と垂直な方向においてボンディングワイヤの断面全域を観察した。結晶方位比率の算出方法については、結晶方位が測定できない部位、あるいは測定できても方位解析の信頼度が低い部位等を除外して計算するために、測定領域内で、専用ソフトに設定された信頼度を基準に同定できた結晶方位だけの面積を母集団とした。上記いずれか1つの方法で得られる厚さや組成が本発明の範囲内であれば、本発明の作用効果が得られるものである。
 次に、本発明の半導体装置用ボンディングワイヤの製造方法について説明する。
 まず、Cu合金芯材の組成にあわせ、高純度のCu(純度99.99%以上)と添加元素原料を出発原料として秤量した後、これを高真空下もしくは窒素やAr等の不活性雰囲気下で加熱して溶解することで、所定の成分を含有し、残部がCu及び不可避不純物である直径約2~10mmのインゴットを得る。このインゴットを鍛造、圧延、伸線を行なって被覆層を形成する直径約0.3~1.5mmのワイヤを作製する。
 Cu合金芯材の表面にPdを主成分とする被覆層を形成する手法としては、電解めっき、無電解めっき、蒸着法等が利用できるが、膜厚を安定的に制御できる電解めっきを利用するのが工業的には最も好ましい。これらの手法でCu合金芯材表面にPdを主成分とする被覆層を形成した後、前記被覆層の表面にAuとPdを含む表皮合金層を形成する。表皮合金層を形成する方法はどのような方法でもよいが、前記被覆層を形成した後、更にその表面に表皮層としてAu膜を形成し、被着したAuをAuとPdを含む合金層にするため、Auの表面までPdが到達するように熱処理によりPdを拡散させるとよい。その方法としては一定の炉内温度で電気炉中、ワイヤを一定の速度の下で連続的に掃引することで合金化を促す方法が、確実に合金の組成と厚みを制御できるので好ましい。尚、前記被覆層の表面にAu膜を形成する手法としては、電解めっき、無電解めっき、蒸着法等が利用できるが、上記の理由から電解めっきを利用するのが工業的には最も好ましい。Cu合金芯材の表面に被覆層及び表皮合金層を被着する段階については、最終的なCu合金芯材の直径まで伸線した後に行うと最も好ましいが、Cu合金芯材の伸線途中段階で所定の線径まで伸線した時点で被着し、そのあとに最終線径まで伸線することとしても良い。インゴットの段階で被着することとしても良い。
 表皮合金層の合金化のための加熱時は、原料の汚染を考慮して、炉内の雰囲気を窒素やAr等の不活性雰囲気とし、更に、従来のボンディングワイヤの加熱法とは異なり、雰囲気中に含有される酸素濃度を5000ppm以下とする。より好ましくは、不活性ガス中に水素等の還元性ガスを少なくとも500ppm混入させると、ワイヤの原料の汚染を防止する効果が更に高まるので良い。また、炉内の適切な温度やワイヤを掃引する速度は、ワイヤの組成によっても異なるが、炉内温度をおおむね210℃~700℃の範囲とし、ワイヤを掃引する速度を例えば20~40m/min程度とすると安定した操業ができ、安定した品質のボンディングワイヤが得られるので好ましい。表皮合金層の合金化のための加熱は、最終的な芯材の直径まで伸線した後に行うと、伸線後のワイヤの焼鈍を兼ねることができるので好ましい。もちろん、表皮合金層の合金化のための加熱を、中間段階の直径まで伸線したところで行うこととしても良い。以上のようにして加熱を行うことにより、Cu合金芯材のCuが被覆層や表皮合金層中を拡散し、表皮合金層の最表面にCuを到達させることができる。加熱温度と時間を上記好適な範囲内で適切に選択することにより、ワイヤ最表面におけるCu濃度を1~10at%の範囲とすることができる。
 表皮合金層の厚みと、前記被覆層の厚みを個々に制御するには、単純な一度の熱処理よりも、Cu合金芯材の表面にPdを被覆した後に熱処理を実施し、更にAuを被着した後に熱処理を実施することが有効である。その場合、それぞれの熱処理条件に対する炉内温度、ワイヤの掃引速度は個々に設定できるという利点がある。
 表皮合金層、被覆層を形成した後の加工工程では、ロール圧延、スエージング、ダイス伸線などを目的により選択、使い分ける。加工速度、圧下率またはダイス減面率などにより、加工組織、転位、結晶粒界の欠陥などを制御することは、表皮合金層、被覆層の構造、密着性などにも影響を及ぼす。
 加工後の熱処理工程は、最終的なワイヤ直径で行うことが要求されるが、それだけでは所望の合金層、被覆層の厚み、Auの最大濃度、表面のCu濃度を得ることは難しい。その場合は、加工の途中で熱処理工程を2乃至3回実施することが有効である。
 特にAuとPdは融点も加工され易さ(強度)も違うため、加工度が低い段階で熱処理を行って、AuPdの合金層をワイヤ全周に渡って形成しておくことが重要である。また表面にCuを濃化させるためには、単純に熱処理温度を上げるのではなく、不活性ガスで充填される熱処理炉中の酸素濃度を、敢えて高めにしておくことが有効である。しかし酸素濃度が高すぎるとCu合金芯材中のCuの酸化が懸念されるため、酸素濃度は0.2%~0.7%にすることが望ましく、それ以外の熱処理は酸素濃度をppmオーダーに下げておくことが良い。
 所望する組成および膜厚の被覆層、表皮合金層、最表面へのCu濃化部を形成するためには、初期形成の膜厚、複数の熱処理条件などから、Fickの法則など通常の相互拡散の知識を利用して見積もることが有効である。さらに精度を上げるには、上記見積もりをもとにワイヤを1回程度試作し、表面解析により実際の拡散現象を求めて熱処理装置などの条件を調製することで、異なる膜厚、組成でも対応が容易となる。
 Cu合金芯材の垂直断面におけるワイヤ長手方向の結晶方位の内、ワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率については、最終伸線の後に行う熱処理の条件によって制御することができる。即ち、熱処理温度を比較的低い温度、例えば350~550℃にすると加工歪を除去するための再結晶(1次再結晶)は起こるが、粗大な結晶粒の成長(2次再結晶)は少なく抑えられる。1次再結晶粒は<100>結晶方位の割合が多いが2次再結晶粒は<100>結晶方位の割合が少ない。これにより、Cu合金芯材の垂直断面における、ワイヤ長手方向の結晶方位の内、ワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率が30%以上とすることができる。
 ボンディングワイヤの原材料として、Cu合金芯材を製造するために純度が99.99質量%以上のCu、添加元素としてPd、Pt、Au、Ni、P、B、Be、Fe、Mg、Ti、Zn、Ag、Siを用意し、被覆層形成用に純度が99.99質量%以上のPdを用意し、表皮合金層形成用に純度が99.99質量%以上のAuをそれぞれ用意した。Cuと添加元素原料を出発原料として秤量した後、これを高真空下で加熱して溶解することでCu合金の直径10mm程度のインゴットを得た。その後、該インゴットを鍛造、圧延、伸線して直径500μmのCu合金芯材を作製した。次にCu合金芯材表面にPd被覆層を1~3μm厚、被覆層の表面にAu表皮層を0.05~0.2μm厚になるように電解めっきで施した。Pd被覆層、AuPd表皮合金層の最終的な厚みを表1に記載した。ここで、芯材と被覆層との境界はPd濃度が50at%の位置とし、被覆層と表皮合金層との境界はAu濃度が10at%の位置とした。その後、伸線速度が100~700m/min、ダイス減面率が8~30%で連続伸線加工を行い表1に記載した最終線径とした。表皮合金層の厚み、Au最大濃度、表面Cu濃度、被覆層の厚みは、伸線加工の間に熱処理を2回乃至3回実施することにより制御した。その時の条件は、ワイヤ直径が200~250μmにおいて温度500~700℃、速度10~70m/min、ワイヤ直径が70~100μmにおいて温度450~650℃、速度20~90m/min、最終線径が細い場合には、更にワイヤ直径が40~70μmにおいて温度300~500℃、速度30~100m/minであった。その後、最終線径で、表1の温度、速度30~120m/minで熱処理を実施した。また、表面までCuを拡散させるために1回の熱処理だけは、熱処理炉中の酸素濃度を0.2~0.7%と通常より高めに設定した。この熱処理はできれば最後の方に行ったほうが良く、その理由はCuが表面に出てから伸線加工を繰り返すとCuの酸化が起こり易くなるからである。それ以外の熱処理では、熱処理炉中の酸素濃度を0.2%未満にすることで、表皮合金層の過剰な酸化を抑えつつ、安定した厚さ、組成などを制御した。このようにして直径が15~25μmのボンディングワイヤを得た。
 被覆層、表皮合金層の濃度分析、Cu合金芯材におけるPd、Pt、Au、Niの濃度分析は、ボンディングワイヤの表面から深さ方向に向かってArイオンでスパッタしながらAES装置を用いて分析した。被覆層及び表皮合金層の厚みは、得られた深さ方向の濃度プロファイル(深さの単位はSiO2換算)から求めた。元素分布の観察には、EPMA、EDX装置などによる分析も行った。Pdの濃度が50at%以上で、かつ、Auの濃度が10at%未満であった領域を被覆層とし、被覆層の表面にあるAu濃度が10at%以上の範囲であった領域を表皮合金層とした。被覆層及び表皮合金層の厚み及び組成をそれぞれ表1に記載した。ボンディングワイヤ中のP、B、Be、Fe、Mg、Ti、Zn、Ag、Siの濃度は、ICP発光分光分析装置、ICP質量分析装置等により測定した。
 ボンディングワイヤの接続には、市販の自動ワイヤボンダーを使用した。ボンディングの直前にアーク放電によりボンディングワイヤの先端にボール部を作製したが、その直径はボンディングワイヤの直径の1.7倍となるように選択した。ボール部作製時の雰囲気は窒素とした。
 ボンディングワイヤの接合の相手としては、Siチップ上に形成された厚さ1μmのAl電極と、表面がPdめっきリードフレームのリードをそれぞれ用いた。作製したボール部を260℃に加熱した前記電極とボール接合した後、ボンディングワイヤの母線部を260℃に加熱した前記リードと2nd接合し、再びボール部を作製することで、連続的にボンディングを繰り返した。ループ長は3mmと5mmの2種類とし、ループ高さは0.3mmと0.5mmの2種類とした。
 ボンディングワイヤの2nd接合性については、マージン、ピーリング、強度、フィッシュテイル対称性について評価を行った。マージンについては、2nd接合時の荷重を20gfから10gf刻みで90gfまで、超音波を60mAから10mA刻みで120mAまでの56条件で連続ボンディング100本を実施し、連続ボンディングできた条件をカウントした。連続ボンディングができた条件が40以上を◎、30以上40未満を○、30未満を×とした。ピーリングについては、2nd接合された状態のボンディングワイヤの接合部を100本観察し、接合部が剥がれているものをNGとカウントした。フィッシュテイル対称性については、2nd接合された状態のボンディングワイヤの接合部を100本観察し、その対称性を評価した。フィッシュテイル状圧着部の中央から左端までの長さ、右端まで長さを計測し、その差が10%以上のものをNGとカウントした。ピーリングとフィッシュテイル対称性は、NGが0個を◎、1~10個を○、11個以上を×とした。強度については、2nd接合された状態のボンディングワイヤを2nd接合部直上でつまみ、切断するまで上方に持ち上げ、その切断時に得られる破断荷重を読み取った。強度は線径に左右されるため、強度/ワイヤ引張強度の比率を利用した。その比率が85%以上なら良好であるため◎、70~85%は問題ないと判断し○、55~70%は不具合が発生する場合があると判断し△、55%以下は不良と判断し×とし、表の「2nd接合 強度」の欄に表記した。
 ボンディングワイヤの1st接合性(ボールボンディング性)に関しては、HAST試験、ボール形状、FAB形状、チップダメージについて評価を行った。HAST試験におけるボールボンディング部の健全性を評価するため、ボンディングを行った半導体装置について、温度130℃、相対湿度85%RH(Relative Humidity)、5Vという高温高湿炉中に放置し、48時間おきに取り出して評価した。評価方法として、電気抵抗を測定し、抵抗が上昇したものをNGとした。NGとなるまでの時間が480時間以上を◎、384時間以上480時間未満を○、384時間未満を×とした。
 ボール形状については、ボールボンディング部を光学顕微鏡で100個観察し、真円に近いものをOK、花びら状になっているものをNGとし、その数をカウントした。FAB形状については、リードフレームにFABを100本作製し、SEMで観察した。真球状のものをOK、偏芯、引け巣をNGとし、その数をカウントした。ボール形状とFAB形状は、NGが0個を◎、1~5個を○、6~10個を△、11個以上を×とした。◎と○は合格であり、△は合格であるがやや品質不良である。
 チップダメージの評価では、ボール接合部20個を断面研磨し、電極に亀裂が生じていれば不良と判断し、不良が4個以上の場合は×印で、3個以下の場合は△印で、1~2個の場合は○、亀裂が観察されなければ良好として◎印とし、表2の「チップダメージ」欄に表記した。○と◎は合格であり、△は合格であるがやや品質不良である。
 リーニング評価については、ループ長:3mmと5mm、ループ高さ:0.3mmと0.5mmのそれぞれについて、ボンディングをした後に各試料とも100本のループを光学顕微鏡で観察し、0~2本のループのみにリーニング不良が観察された場合は良好で◎印で、3~4本のループのみにリーニング不良が観察された場合は実用上問題の無いレベルで○印で、5~7本の場合は△印で、8本以上のループにリーニング不良が観察されれば劣悪で×印で、「リーニング」欄に表記した。△、○、◎は合格である。
 芯材の垂直断面で観察されるワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率は、EBSD法で観察面の結晶方位を観察した上で算出した。EBSD測定データの解析には専用ソフト(TSL製 OIM analysis等)を利用した。算出にあたって、ボンディングワイヤの全域を選択し、各試料とも3視野ずつ観察した。芯材の垂直断面におけるワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率を、表2の「垂直断面」の「結晶方位<100>」の欄に記入している。
 表1において、本発明範囲から外れる数値にアンダーラインを付している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明例1~25については、評価したすべての品質指標において合格レベルの品質実績を実現することができた。
 比較例26はワイヤ最表面のCu濃度が下限未満であるため、2nd接合のピーリング及びフィッシュテイル対称性が不良であり、被覆層の厚みが好ましい範囲の上限を超えているため、チップダメージとFAB形状については合格だがやや品質不良であった。比較例27はワイヤ最表面のCu濃度が下限未満であるため、2nd接合のピーリング及びフィッシュテイル対称性が不良であり、被覆層の厚みが好ましい範囲の下限未満であるため、FAB形状については合格だがやや品質不良であった。比較例28は必須元素である添加元素1の添加量が下限未満であるため、高湿加熱条件におけるボール接合性(HAST評価)が不良であり、さらに2nd接合のマージン及び強度が不良であり、被覆層の厚みが好ましい範囲の下限未満であるため、FAB形状は合格だがやや品質不良であった。比較例29はワイヤ最表面のCu濃度が下限未満であるため、2nd接合のピーリング及びフィッシュテイル対称性が不良であり、表皮合金層の厚さ及びAuの最大濃度が好ましい範囲の上限を超えているため、FAB形状は合格だがやや品質不良であった。
 比較例30はワイヤ最表面におけるCu濃度が本発明の上限を超えており、2nd接合のマージン及び強度とFAB形状が不良であった。
 なお、比較例30については、<100>結晶方位が本発明の好適範囲から外れているため、リーニングが△の結果であり、合格の範囲ではあるがやや性能が低かった。
 高純度(4N以上)のCu芯材を使用し、必須元素である添加元素1の添加量が下限未満である比較例31は、2nd接合のピーリング及びフィッシュテイル対称性が不良であった。

Claims (6)

  1.  Cuを主成分とし、Pd、Ptの一方又は両方を総計で0.1~3.0質量%含有する芯材と、該芯材表面に設けられたPdを主成分とする被覆層と、該被覆層表面に設けられたAuとPdを含む表皮合金層とを含む半導体装置用ボンディングワイヤにおいて、ワイヤ最表面におけるCu濃度が1~10at%であることを特徴とする半導体装置用ボンディングワイヤ。
  2.  前記Pdを主成分とする被覆層の厚さが20~90nm、前記AuとPdを含む表皮合金層の厚さが0.5~40nm、Auの最大濃度が15~75at%であることを特徴とする請求項1に記載の半導体装置用ボンディングワイヤ。
  3.  前記芯材が、さらにAu、Niの一方又は両方を含有し、芯材中のPd、Pt、Au、Niの総計が0.1質量%を超え3.0質量%以下であることを特徴とする請求項1又は2に記載の半導体装置用ボンディングワイヤ。
  4.  前記ボンディングワイヤが、さらにP、B、Be、Fe、Mg、Ti、Zn、Ag、Siの1種以上を含有し、ワイヤ全体に占めるこれら元素濃度の総計が0.0001~0.01質量%の範囲であることを特徴とする請求項1乃至3のいずれかに記載の半導体装置用ボンディングワイヤ。
  5.  前記芯材と前記被覆層との境界部、および前記被覆層と前記表皮合金層との境界部に拡散領域を有することを特徴とする請求項1乃至4のいずれかに記載の半導体装置用ボンディングワイヤ。
  6.  前記ボンディングワイヤのワイヤ軸に垂直方向の芯材断面(以下「垂直断面」という。)に対して結晶方位を測定した結果において、ワイヤ長手方向の結晶方位の内、ワイヤ長手方向に対して角度差が15°以下である結晶方位<100>の方位比率が30%以上であることを特徴とする請求項1乃至5のいずれかに記載の半導体装置用ボンディングワイヤ。
PCT/JP2015/071002 2015-07-23 2015-07-23 半導体装置用ボンディングワイヤ WO2017013796A1 (ja)

Priority Applications (21)

Application Number Priority Date Filing Date Title
EP15866376.5A EP3136435B1 (en) 2015-07-23 2015-07-23 Bonding wire for semiconductor device
CN201580002602.3A CN107004610B (zh) 2015-07-23 2015-07-23 半导体装置用接合线
DE112015005172.4T DE112015005172B4 (de) 2015-07-23 2015-07-23 Bonddraht für Halbleitervorrichtung
KR1020167012367A KR101659254B1 (ko) 2015-07-23 2015-07-23 반도체 장치용 본딩 와이어
PCT/JP2015/071002 WO2017013796A1 (ja) 2015-07-23 2015-07-23 半導体装置用ボンディングワイヤ
US15/107,427 US10468370B2 (en) 2015-07-23 2015-07-23 Bonding wire for semiconductor device
JP2015540380A JP5893230B1 (ja) 2015-07-23 2015-07-23 半導体装置用ボンディングワイヤ
SG11201604430YA SG11201604430YA (en) 2015-07-23 2015-07-23 Bonding wire for semiconductor device
PCT/JP2015/086550 WO2017013817A1 (ja) 2015-07-23 2015-12-28 半導体装置用ボンディングワイヤ
JP2016507915A JP5964534B1 (ja) 2015-07-23 2015-12-28 半導体装置用ボンディングワイヤ
CN201580005634.9A CN105981164B (zh) 2015-07-23 2015-12-28 半导体装置用接合线
SG11201606185QA SG11201606185QA (en) 2015-07-23 2015-12-28 Bonding wire for semiconductor device
KR1020167019958A KR101742450B1 (ko) 2015-07-23 2015-12-28 반도체 장치용 본딩 와이어
US15/116,145 US9773748B2 (en) 2015-07-23 2015-12-28 Bonding wire for semiconductor device
DE112015005005.1T DE112015005005B4 (de) 2015-07-23 2015-12-28 Bonddraht für Halbleitervorrichtung
MYPI2016702688A MY162882A (en) 2015-07-23 2015-12-28 Bonding wire for semiconductor device
TW105101101A TWI574279B (zh) 2015-07-23 2016-01-14 Connecting wires for semiconductor devices
JP2016127446A JP2017028262A (ja) 2015-07-23 2016-06-28 半導体装置用ボンディングワイヤ
PH12016501450A PH12016501450A1 (en) 2015-07-23 2016-07-22 Bonding wire for semiconductor device
US16/576,683 US20200013748A1 (en) 2015-07-23 2019-09-19 Bonding wire for semiconductor device
JP2020107511A JP2020174185A (ja) 2015-07-23 2020-06-23 半導体装置用ボンディングワイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071002 WO2017013796A1 (ja) 2015-07-23 2015-07-23 半導体装置用ボンディングワイヤ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/107,427 A-371-Of-International US10468370B2 (en) 2015-07-23 2015-07-23 Bonding wire for semiconductor device
US16/576,683 Continuation US20200013748A1 (en) 2015-07-23 2019-09-19 Bonding wire for semiconductor device

Publications (1)

Publication Number Publication Date
WO2017013796A1 true WO2017013796A1 (ja) 2017-01-26

Family

ID=55541238

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/071002 WO2017013796A1 (ja) 2015-07-23 2015-07-23 半導体装置用ボンディングワイヤ
PCT/JP2015/086550 WO2017013817A1 (ja) 2015-07-23 2015-12-28 半導体装置用ボンディングワイヤ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086550 WO2017013817A1 (ja) 2015-07-23 2015-12-28 半導体装置用ボンディングワイヤ

Country Status (11)

Country Link
US (3) US10468370B2 (ja)
EP (1) EP3136435B1 (ja)
JP (4) JP5893230B1 (ja)
KR (2) KR101659254B1 (ja)
CN (2) CN107004610B (ja)
DE (2) DE112015005172B4 (ja)
MY (1) MY162882A (ja)
PH (1) PH12016501450A1 (ja)
SG (2) SG11201604430YA (ja)
TW (1) TWI574279B (ja)
WO (2) WO2017013796A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184484A (ja) * 2016-06-20 2021-12-02 日鉄マイクロメタル株式会社 半導体装置用銅合金ボンディングワイヤ
WO2022270075A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
WO2022270050A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
WO2022270077A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
KR20230001012A (ko) 2021-06-25 2023-01-03 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
KR20230001011A (ko) 2021-06-25 2023-01-03 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
WO2023248491A1 (ja) 2022-06-24 2023-12-28 日鉄ケミカル&マテリアル株式会社 半導体装置用ボンディングワイヤ
KR20240026928A (ko) 2021-06-25 2024-02-29 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
KR20240027868A (ko) 2022-06-24 2024-03-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 반도체 장치용 본딩 와이어

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489199B (zh) 2015-06-15 2019-09-03 日铁新材料股份有限公司 半导体装置用接合线
SG11201604430YA (en) 2015-07-23 2017-02-27 Nippon Micrometal Corp Bonding wire for semiconductor device
JP6002300B1 (ja) * 2015-09-02 2016-10-05 田中電子工業株式会社 ボールボンディング用パラジウム(Pd)被覆銅ワイヤ
JP6452661B2 (ja) * 2016-11-11 2019-01-16 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
KR102011619B1 (ko) * 2017-02-22 2019-08-16 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 반도체 장치용 본딩 와이어
WO2019130570A1 (ja) * 2017-12-28 2019-07-04 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
JP7293674B2 (ja) * 2019-01-31 2023-06-20 株式会社プロテリアル ボンディングワイヤ
CN113825849B (zh) * 2019-06-04 2024-02-13 田中电子工业株式会社 钯覆盖铜接合线、钯覆盖铜接合线的制造方法、使用了其的半导体装置及半导体装置的制造方法
CN114502754B (zh) * 2019-10-01 2023-11-17 田中电子工业株式会社 引线接合结构和其中使用的接合线及半导体装置
CN116194814A (zh) 2020-10-15 2023-05-30 住友电工光学前沿株式会社 熔接作业用的托盘和熔接机套件
CN113046593B (zh) * 2021-03-27 2022-06-28 汕头市骏码凯撒有限公司 铜微合金、铜微合金导线及其制备方法
CN114318051B (zh) * 2022-01-08 2023-06-27 烟台一诺电子材料有限公司 一种不同材质的多层环状键合丝及其制备方法
WO2023249037A1 (ja) * 2022-06-24 2023-12-28 日鉄ケミカル&マテリアル株式会社 半導体装置用ボンディングワイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297360A (ja) 1985-10-24 1987-05-06 Mitsubishi Metal Corp 半導体装置のボンデイングワイヤ用表面被覆高純度銅極細線
JP2006190763A (ja) * 2005-01-05 2006-07-20 Nippon Steel Corp 半導体装置用ボンディングワイヤ
JP2011077254A (ja) * 2009-09-30 2011-04-14 Nippon Steel Materials Co Ltd 半導体用ボンディングワイヤー
JP2012036490A (ja) * 2010-08-11 2012-02-23 Tanaka Electronics Ind Co Ltd ボールボンディング用金被覆銅ワイヤ
JP2013131654A (ja) * 2011-12-21 2013-07-04 Tanaka Electronics Ind Co Ltd Pd被覆銅ボールボンディングワイヤ

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120693A (ja) 1984-07-06 1986-01-29 Toshiba Corp ボンデイングワイヤ−
JPS6148543A (ja) 1984-08-10 1986-03-10 Sumitomo Electric Ind Ltd 半導体素子結線用銅合金線
JPS61163194A (ja) 1985-01-09 1986-07-23 Toshiba Corp 半導体素子用ボンデイング線
JPS61234063A (ja) * 1985-04-10 1986-10-18 Tanaka Denshi Kogyo Kk 半導体素子のボンデイング用銅線
JPH0658942B2 (ja) 1985-10-23 1994-08-03 日本電気株式会社 基準電圧発生回路
JPS62130249A (ja) * 1985-11-29 1987-06-12 Furukawa Electric Co Ltd:The ボンデイング用銅細線
JPS62130248A (ja) 1985-11-29 1987-06-12 Furukawa Electric Co Ltd:The ボンデイング用銅細線
JPS63238232A (ja) 1987-03-25 1988-10-04 Furukawa Electric Co Ltd:The 銅細線とその製造法
JPH01290231A (ja) * 1988-05-18 1989-11-22 Mitsubishi Metal Corp 半導体装置用銅合金極細線及び半導体装置
JP2714560B2 (ja) 1988-12-24 1998-02-16 日鉱金属株式会社 ダイレクトボンディング性の良好な銅合金
JP2873770B2 (ja) 1993-03-19 1999-03-24 新日本製鐵株式会社 半導体素子のワイヤボンディング用パラジウム細線
JPH0786325A (ja) 1993-09-14 1995-03-31 Hitachi Cable Ltd 電子機器用銅線
JPH07138678A (ja) * 1994-05-09 1995-05-30 Toshiba Corp 半導体装置
US6337445B1 (en) * 1998-03-16 2002-01-08 Texas Instruments Incorporated Composite connection structure and method of manufacturing
JP4000729B2 (ja) * 1999-12-15 2007-10-31 日立電線株式会社 同軸ケーブル及びその製造方法
MY137479A (en) * 2000-09-18 2009-01-30 Nippon Steel Corp Bonding wire for semiconductor device and method for producing the same
JP2004064033A (ja) 2001-10-23 2004-02-26 Sumitomo Electric Wintec Inc ボンディングワイヤー
TWI287282B (en) 2002-03-14 2007-09-21 Fairchild Kr Semiconductor Ltd Semiconductor package having oxidation-free copper wire
KR100514312B1 (ko) 2003-02-14 2005-09-13 헤라우스오리엔탈하이텍 주식회사 반도체 소자용 본딩 와이어
JP2005167020A (ja) 2003-12-03 2005-06-23 Sumitomo Electric Ind Ltd ボンディングワイヤーおよびそれを使用した集積回路デバイス
EP1677345A1 (en) 2003-10-20 2006-07-05 Sumitomo Electric Industries, Ltd. Bonding wire and integrated circuit device using the same
JP4158928B2 (ja) * 2004-09-02 2008-10-01 古河電気工業株式会社 ボンディングワイヤー及びその製造方法
JP2006216929A (ja) 2005-01-05 2006-08-17 Nippon Steel Corp 半導体装置用ボンディングワイヤ
US7820913B2 (en) 2005-01-05 2010-10-26 Nippon Steel Materials Co., Ltd. Bonding wire for semiconductor device
JP2007012776A (ja) 2005-06-29 2007-01-18 Nippon Steel Materials Co Ltd 半導体装置用ボンディングワイヤ
KR100702662B1 (ko) 2005-02-18 2007-04-02 엠케이전자 주식회사 반도체 패키징용 구리 본딩 와이어
JP2007019349A (ja) 2005-07-08 2007-01-25 Sumitomo Metal Mining Co Ltd ボンディングワイヤ
US8428961B2 (en) * 2005-09-14 2013-04-23 Emsystem, Llc Method and system for data aggregation for real-time emergency resource management
US8610291B2 (en) * 2006-08-31 2013-12-17 Nippon Steel & Sumikin Materials Co., Ltd. Copper alloy bonding wire for semiconductor device
JP5116101B2 (ja) 2007-06-28 2013-01-09 新日鉄住金マテリアルズ株式会社 半導体実装用ボンディングワイヤ及びその製造方法
CN102842539B (zh) * 2007-07-24 2015-06-24 新日铁住金高新材料株式会社 半导体装置用接合线
US20090127317A1 (en) 2007-11-15 2009-05-21 Infineon Technologies Ag Device and method for producing a bonding connection
JP5073759B2 (ja) 2007-12-03 2012-11-14 新日鉄マテリアルズ株式会社 半導体装置用ボンディングワイヤ
JP4904252B2 (ja) 2007-12-03 2012-03-28 新日鉄マテリアルズ株式会社 半導体装置用ボンディングワイヤ
JP4617375B2 (ja) 2007-12-03 2011-01-26 新日鉄マテリアルズ株式会社 半導体装置用ボンディングワイヤ
JP4885117B2 (ja) * 2007-12-03 2012-02-29 新日鉄マテリアルズ株式会社 半導体装置用ボンディングワイヤ
MY147995A (en) 2008-01-25 2013-02-28 Nippon Steel & Sumikin Mat Co Bonding wire semiconductor device
TWI415707B (zh) 2008-09-01 2013-11-21 Advanced Semiconductor Eng 銅製銲線、銲線接合結構及銲線接合方法
KR101573929B1 (ko) * 2009-01-08 2015-12-02 엘지전자 주식회사 과냉각 장치
JP4886899B2 (ja) 2009-03-17 2012-02-29 新日鉄マテリアルズ株式会社 半導体用ボンディングワイヤ
JP4866490B2 (ja) 2009-06-24 2012-02-01 新日鉄マテリアルズ株式会社 半導体用銅合金ボンディングワイヤ
CN102422404B (zh) 2009-07-30 2015-08-12 新日铁住金高新材料株式会社 半导体用接合线
JP5497360B2 (ja) 2009-07-30 2014-05-21 新日鉄住金マテリアルズ株式会社 半導体用ボンディングワイヤー
SG10201500542TA (en) 2010-01-27 2015-03-30 Sumitomo Bakelite Co Semiconductor device
JP5550369B2 (ja) 2010-02-03 2014-07-16 新日鉄住金マテリアルズ株式会社 半導体用銅ボンディングワイヤとその接合構造
TW201205695A (en) 2010-07-16 2012-02-01 Nippon Steel Materials Co Ltd Bonding wire for semiconductor
JP5616739B2 (ja) * 2010-10-01 2014-10-29 新日鉄住金マテリアルズ株式会社 複層銅ボンディングワイヤの接合構造
JP5556577B2 (ja) 2010-10-20 2014-07-23 日立金属株式会社 銅ボンディングワイヤ
JP2012099577A (ja) 2010-10-29 2012-05-24 Sumitomo Metal Mining Co Ltd ボンディングワイヤ
CN102130067B (zh) 2010-12-31 2012-05-02 四川威纳尔特种电子材料有限公司 一种表面镀钯键合铜丝
JP2012160554A (ja) * 2011-01-31 2012-08-23 Toshiba Corp ボンディングワイヤの接合構造及び接合方法
JP5760544B2 (ja) 2011-03-17 2015-08-12 日立金属株式会社 軟質希薄銅合金線、軟質希薄銅合金撚線およびこれらを用いた絶縁電線、同軸ケーブルおよび複合ケーブル
JP6019547B2 (ja) 2011-07-21 2016-11-02 日立金属株式会社 銅ボンディングワイヤ
SG190480A1 (en) * 2011-12-01 2013-06-28 Heraeus Materials Tech Gmbh 3n copper wire with trace additions for bonding in microelectronics device
SG190479A1 (en) 2011-12-01 2013-06-28 Heraeus Materials Tech Gmbh Secondary alloyed 1n copper wire for bonding in microelectronics device
KR101366688B1 (ko) * 2012-04-30 2014-02-25 엠케이전자 주식회사 구리계 본딩 와이어 및 이를 포함하는 반도체 패키지
JP5159000B1 (ja) 2012-06-13 2013-03-06 田中電子工業株式会社 半導体装置接続用アルミニウム合金細線
TWM442579U (en) 2012-06-22 2012-12-01 Feng Ching Metal Corp Long-term storage bonding wire for semiconductor
CN102776408B (zh) 2012-08-16 2014-01-08 烟台一诺电子材料有限公司 一种银合金丝及其制备方法
EP2703116B1 (en) 2012-09-04 2017-03-22 Heraeus Deutschland GmbH & Co. KG Method for manufacturing a silver alloy wire for bonding applications
JP5219316B1 (ja) 2012-09-28 2013-06-26 田中電子工業株式会社 半導体装置接続用銅白金合金細線
JP5213146B1 (ja) 2012-10-03 2013-06-19 田中電子工業株式会社 半導体装置接続用銅ロジウム合金細線
TW201614748A (en) 2013-01-23 2016-04-16 Heraeus Materials Tech Gmbh Coated wire for bonding applications, method for manufacturing the same, and application thereof in an electronic device
TWM454881U (zh) 2013-01-25 2013-06-11 Feng Ching Metal Corp 半導體用銲線
TWI486970B (zh) 2013-01-29 2015-06-01 Tung Han Chuang 銅基合金線材及其製造方法
EP2768019A3 (en) * 2013-02-15 2014-10-29 Heraeus Materials Singapore Pte. Ltd. Copper bond wire and method of making the same
KR101513493B1 (ko) 2013-02-19 2015-04-20 엠케이전자 주식회사 은 합금 본딩 와이어
JP5668087B2 (ja) 2013-02-22 2015-02-12 田中電子工業株式会社 半導体装置接合用銅希薄ニッケル合金ワイヤの構造
JP5529992B1 (ja) 2013-03-14 2014-06-25 タツタ電線株式会社 ボンディング用ワイヤ
CN105229180B (zh) 2013-03-14 2019-09-17 美题隆公司 超高强度铜-镍-锡合金
JP5399581B1 (ja) 2013-05-14 2014-01-29 田中電子工業株式会社 高速信号用ボンディングワイヤ
JP5546670B1 (ja) 2013-06-13 2014-07-09 田中電子工業株式会社 超音波接合用コーティング銅ワイヤの構造
TWM466108U (zh) 2013-07-26 2013-11-21 Feng Ching Metal Corp 半導體用銲線
JP6033744B2 (ja) * 2013-07-31 2016-11-30 ニチコン株式会社 ブリッジレス電源回路
JP5591987B2 (ja) 2013-08-20 2014-09-17 新日鉄住金マテリアルズ株式会社 半導体装置用ボンディングワイヤ
WO2015034071A1 (ja) 2013-09-06 2015-03-12 古河電気工業株式会社 銅合金線材及びその製造方法
KR101582449B1 (ko) 2013-09-12 2016-01-05 엠케이전자 주식회사 은 합금 본딩 와이어 및 이를 이용한 반도체 장치
TWI525726B (zh) 2013-11-25 2016-03-11 Preparation method of package wire with skin layer and its finished product
JP6254841B2 (ja) * 2013-12-17 2017-12-27 新日鉄住金マテリアルズ株式会社 半導体装置用ボンディングワイヤ
CN105393343A (zh) 2014-01-31 2016-03-09 大自达电线株式会社 线键合及其制造方法
KR20180105740A (ko) 2014-04-21 2018-09-28 신닛테츠스미킹 마테리알즈 가부시키가이샤 반도체 장치용 본딩 와이어
CN104051080B (zh) 2014-07-03 2016-06-15 深圳市凯中和东新材料有限公司 绝缘性导线的制备方法
US9368470B2 (en) 2014-10-31 2016-06-14 Freescale Semiconductor, Inc. Coated bonding wire and methods for bonding using same
JP5807992B1 (ja) * 2015-02-23 2015-11-10 田中電子工業株式会社 ボールボンディング用パラジウム(Pd)被覆銅ワイヤ
CN106489199B (zh) 2015-06-15 2019-09-03 日铁新材料股份有限公司 半导体装置用接合线
KR101670209B1 (ko) 2015-06-15 2016-10-27 닛데쓰스미킹 마이크로 메탈 가부시키가이샤 반도체 장치용 본딩 와이어
SG11201604430YA (en) 2015-07-23 2017-02-27 Nippon Micrometal Corp Bonding wire for semiconductor device
WO2017026077A1 (ja) 2015-08-12 2017-02-16 日鉄住金マイクロメタル株式会社 半導体装置用ボンディングワイヤ
JP6002300B1 (ja) 2015-09-02 2016-10-05 田中電子工業株式会社 ボールボンディング用パラジウム(Pd)被覆銅ワイヤ
JP6047214B1 (ja) 2015-11-02 2016-12-21 田中電子工業株式会社 ボールボンディング用貴金属被覆銅ワイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297360A (ja) 1985-10-24 1987-05-06 Mitsubishi Metal Corp 半導体装置のボンデイングワイヤ用表面被覆高純度銅極細線
JP2006190763A (ja) * 2005-01-05 2006-07-20 Nippon Steel Corp 半導体装置用ボンディングワイヤ
JP2011077254A (ja) * 2009-09-30 2011-04-14 Nippon Steel Materials Co Ltd 半導体用ボンディングワイヤー
JP2012036490A (ja) * 2010-08-11 2012-02-23 Tanaka Electronics Ind Co Ltd ボールボンディング用金被覆銅ワイヤ
JP2013131654A (ja) * 2011-12-21 2013-07-04 Tanaka Electronics Ind Co Ltd Pd被覆銅ボールボンディングワイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136435A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184484A (ja) * 2016-06-20 2021-12-02 日鉄マイクロメタル株式会社 半導体装置用銅合金ボンディングワイヤ
JP7174816B2 (ja) 2016-06-20 2022-11-17 日鉄マイクロメタル株式会社 半導体装置用銅合金ボンディングワイヤ
US11721660B2 (en) 2021-06-25 2023-08-08 Nippon Micrometal Corporation Bonding wire for semiconductor devices
KR20240026927A (ko) 2021-06-25 2024-02-29 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
WO2022270076A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
WO2022270077A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
WO2022270051A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
WO2022270049A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
KR20230001012A (ko) 2021-06-25 2023-01-03 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
KR20230001011A (ko) 2021-06-25 2023-01-03 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
WO2022270075A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
US11929343B2 (en) 2021-06-25 2024-03-12 Nippon Micrometal Corporation Bonding wire for semiconductor devices
DE112022001995T5 (de) 2021-06-25 2024-01-25 Nippon Micrometal Corporation Bonddraht für Halbleitervorrichtungen
KR20240015610A (ko) 2021-06-25 2024-02-05 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
KR20240015611A (ko) 2021-06-25 2024-02-05 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
WO2022270050A1 (ja) 2021-06-25 2022-12-29 日鉄マイクロメタル株式会社 半導体装置用ボンディングワイヤ
DE112022002498T5 (de) 2021-06-25 2024-02-29 Nippon Micrometal Corporation Bonddraht für Halbleitervorrichtungen
KR20240026928A (ko) 2021-06-25 2024-02-29 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
KR20240026924A (ko) 2021-06-25 2024-02-29 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
KR20240026929A (ko) 2021-06-25 2024-02-29 닛데쓰마이크로메탈가부시키가이샤 반도체 장치용 본딩 와이어
KR20240027868A (ko) 2022-06-24 2024-03-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 반도체 장치용 본딩 와이어
WO2023248491A1 (ja) 2022-06-24 2023-12-28 日鉄ケミカル&マテリアル株式会社 半導体装置用ボンディングワイヤ

Also Published As

Publication number Publication date
EP3136435A4 (en) 2017-07-26
US10468370B2 (en) 2019-11-05
US20200013748A1 (en) 2020-01-09
DE112015005172T5 (de) 2017-08-17
US20170179064A1 (en) 2017-06-22
PH12016501450B1 (en) 2016-08-22
JP5964534B1 (ja) 2016-08-03
US9773748B2 (en) 2017-09-26
EP3136435A1 (en) 2017-03-01
DE112015005005T5 (de) 2017-08-17
JPWO2017013796A1 (ja) 2017-07-20
KR101742450B1 (ko) 2017-05-31
WO2017013817A1 (ja) 2017-01-26
KR101659254B1 (ko) 2016-09-22
CN107004610B (zh) 2020-07-17
KR20170022969A (ko) 2017-03-02
DE112015005172B4 (de) 2022-01-05
JP2020174185A (ja) 2020-10-22
SG11201604430YA (en) 2017-02-27
JPWO2017013817A1 (ja) 2017-07-20
PH12016501450A1 (en) 2016-08-22
TWI574279B (zh) 2017-03-11
SG11201606185QA (en) 2017-02-27
MY162882A (en) 2017-07-20
TW201705152A (zh) 2017-02-01
US20170200690A1 (en) 2017-07-13
CN105981164B (zh) 2019-10-25
DE112015005005B4 (de) 2021-08-26
CN105981164A (zh) 2016-09-28
CN107004610A (zh) 2017-08-01
JP5893230B1 (ja) 2016-03-23
JP2017028262A (ja) 2017-02-02
EP3136435B1 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP5964534B1 (ja) 半導体装置用ボンディングワイヤ
JP4554724B2 (ja) 半導体装置用ボンディングワイヤ
JP4672373B2 (ja) 半導体装置用ボンディングワイヤ
WO2010106851A1 (ja) 半導体用ボンディングワイヤ
JP6618662B2 (ja) 半導体装置用Cu合金ボンディングワイヤ
TWI657154B (zh) 半導體裝置用接合線
EP3147938B1 (en) Bonding wire for semiconductor device
JP2006216929A (ja) 半導体装置用ボンディングワイヤ
JP6600121B2 (ja) 半導体装置用Cu合金ボンディングワイヤ
JP5393614B2 (ja) 半導体装置用ボンディングワイヤ
JP5591987B2 (ja) 半導体装置用ボンディングワイヤ
JP2018190995A (ja) 半導体装置用ボンディングワイヤ
TWI556337B (zh) Connection lines for semiconductor devices
JP2010245574A (ja) 半導体装置用ボンディングワイヤ
JP2019186246A (ja) ボールボンディング用貴金属被覆銀ワイヤおよびその製造方法、ならびにボールボンディング用貴金属被覆銀ワイヤを使用した半導体装置およびその製造方法
JP6371932B1 (ja) 半導体装置用ボンディングワイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015540380

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020167012367

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2015866376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015866376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15107427

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005172

Country of ref document: DE