[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201205695A - Bonding wire for semiconductor - Google Patents

Bonding wire for semiconductor Download PDF

Info

Publication number
TW201205695A
TW201205695A TW099139295A TW99139295A TW201205695A TW 201205695 A TW201205695 A TW 201205695A TW 099139295 A TW099139295 A TW 099139295A TW 99139295 A TW99139295 A TW 99139295A TW 201205695 A TW201205695 A TW 201205695A
Authority
TW
Taiwan
Prior art keywords
wire
bonding
gold
bonding wire
silver
Prior art date
Application number
TW099139295A
Other languages
Chinese (zh)
Other versions
TWI369748B (en
Inventor
Shinichi Terashima
Tomohiro Uno
Takashi Yamada
Daizo Oda
Original Assignee
Nippon Steel Materials Co Ltd
Nippon Micrometal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2010/062082 external-priority patent/WO2011013527A1/en
Application filed by Nippon Steel Materials Co Ltd, Nippon Micrometal Corp filed Critical Nippon Steel Materials Co Ltd
Publication of TW201205695A publication Critical patent/TW201205695A/en
Application granted granted Critical
Publication of TWI369748B publication Critical patent/TWI369748B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

Disclosed is a bonding wire for semiconductor, which ensures good wedge bonding even of palladium-plated lead frames and has excellent oxidation resistance, and in which copper or a copper alloy is used as a core wire. The bonding wire is characterized by comprising a core wire that comprises copper or a copper alloy, a coating layer that is arranged on the surface of the core wire, has a thickness of 10 to 200 nm and contains palladium, and an alloy layer that is arranged on the surface of the coating layer, has a thickness of 1 to 80 nm and contains a noble metal and palladium, wherein the noble metal is silver or gold, and the noble metal is contained in the alloy layer at a concentration of 10 to 75 vol% inclusive.

Description

201205695 四、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無。 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學弋 六、發明說明: 【發明所屬之技術領域】 本發明係有關於被使用在用以將半導體元件上的電極 與外部連接端子相連接的半導體用接合導線。 ° 【先前技術】 目前’以將半導體元件上的電極與外部連接端子之間 相連接的半導體用接合導線(以下稱為「接合導線而古曰, 主要使用-種線徑2〇-5()㈣左右、材f為高純°度 W4-Nine’純度99.99質量%以上)的金(Au)的接合導線 (金接合導線)。在使金接合導線接合在作為半導體元件之 石夕晶片上的電極時’一般係進行超音波併用熱壓接方式的 球接合(ban bonding)e亦即’使用通用接合裝置,將前 述金接合導線通至被稱為毛細管(capillary)之治具的内 部’將導線前端以電弧輸入熱加熱炼融,藉由表面張力而 使其形成球部之後,在150〜_t的範圍内加熱的前述電 極上,使加熱熔融所形成的球部壓接接合的手法。 201205695 方面’若將金接合導線連接在引線或端子區域 (land)等外部連接端子時,一般並無須形成如前所述之球 部,而是進行將金接合導線直接接合在電極之所謂的楔形 接合。近年來,半導體安裝的構造、材料、連接技術等急 速多樣化’例在安裝構造中’除了現行的使用引線框 木的QFP(Quad Flat Packaging)以外,使用基板或聚醯亞 胺膠 π 等的 BGA(Ball Grid Array)、cSP(Chip Scale201205695 IV. Designation of the representative representative: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None. 5. In the case of a chemical formula, please disclose the chemical which best shows the characteristics of the invention. 6. Description of the Invention: Technical Field The present invention relates to a terminal for connecting an electrode on a semiconductor element to an external terminal. Bonding wires for connected semiconductors. [Prior Art] At present, a bonding wire for a semiconductor that connects an electrode on a semiconductor element to an external connection terminal (hereinafter referred to as "joining a wire, mainly used - a wire diameter of 2 〇 -5 () (4) A gold (Au) bonding wire (gold bonding wire) having a high purity of W4-Nine 'purity of 99.99% by mass or more, and a gold bonding wire bonded to a stone wafer as a semiconductor element. In the case of an electrode, generally, ban bonding e is performed by ultrasonic bonding, that is, 'using a universal bonding device, and the gold bonding wire is passed to the inside of a jig called a capillary. The tip end of the wire is heated by the arc input heat, and after the ball portion is formed by the surface tension, the ball which is heated and melted is pressed and joined to the electrode heated in the range of 150 to _t. 201205695 Aspect: When a gold bond wire is connected to an external connection terminal such as a lead or a land, it is generally not necessary to form the ball portion as described above, but to directly bond the gold bond wire to The so-called wedge-shaped joint. In recent years, the structure, material, and connection technology of semiconductor mounting have been rapidly diversified. In the installation structure, in addition to the current QFP (Quad Flat Packaging) using lead frame wood, the substrate or the poly is used. BGA (Ball Grid Array), cSP (Chip Scale)

Packaging)等新穎的安裝形態被實用化,外部連接端子亦 多樣化。因此,楔形接合特性係比以往更受到重視。 此外,半導體元件小型化的需求漸高,為了進行薄型 安裝,降低接合導線連接的迴路(lQQp)的高度的低迴路接 合技術、或朝向作複數枚層積的晶片而由基板側結束迴路 的逆打接合技術等已廣為普及。 但是,伴隨著近年來的資源價格高張,作為金接合導 線原料的金的價格亦暴漲,轉代金的低成本導線切而 言’對銅(Cu)加以檢討。但是,與金相比’銅較容易被氧 化,因此以單純的銅接合導線,以長期保管,楔升,接人 特性亦並非良好。&外,在如上所示之單純的銅接^導二 的前端形成球部時,為了使球部不會氧化,必須形成 原雾圍氣。具體而言,—般係使用在氮(I)混合4體積j 右的氫(HO而成的氣體,將球部周邊形成為還原雾圍氣°, 但是即使如此亦不易進行使用金接合 2轧, 人甘 咕 守猓之良好的球接 口。基於該4理由,銅接合導線的利用並Novel installation forms such as Packaging are put to practical use, and external connection terminals are also diversified. Therefore, wedge bonding characteristics are more important than ever. In addition, there is a growing demand for miniaturization of semiconductor elements, and in order to perform thin mounting, a low-circuit bonding technique for reducing the height of a circuit (lQQp) for bonding wires, or a wafer for a plurality of layers is stacked, and the reverse of the circuit is terminated by the substrate side. Bonding technology has become widespread. However, with the recent high resource prices, the price of gold, which is the raw material for gold bonding wires, has skyrocketed, and the low-cost wire for the replacement of gold has been reviewed. Copper (Cu) has been reviewed. However, copper is more easily oxidized than gold. Therefore, it is not good to use a simple copper-bonded wire for long-term storage and wedge-lifting. In addition, when the ball portion is formed at the tip end of the simple copper joint 2 as shown above, in order to prevent the ball from being oxidized, it is necessary to form a raw mist. Specifically, a gas obtained by mixing 4 volumes of j right hydrogen (HO) with nitrogen (I) is used to form a gas around the spherical portion as a reducing mist, but even this is not easy to use. , a good ball interface that people are willing to guard against. Based on the 4 reasons, the use of copper bonding wires and

領域。 未日及於-般LSI 201205695 因此,為了解決銅接合導線氧化的課題,提出一種在 銅導線的表面被覆銀(Ag )的銅接合導線。例如,在專利文 獻1中’在銅導線被覆銀的具體例雖未被揭示,但是列舉 出IS(A1)、銅、鐵(Fe)、鐵與錄的合金(jreNi)等非純貴金 屬作為接合導線的内部金屬,以前述接合導線的表面被覆 金屬而言,揭示出對水分、鹽分、鹼等具有耐蝕性的金屬, 例如金或銀。此外,在專利文獻2中,在銅導線被覆銀的 具體例雖未被揭示,但是例示出在銅系導線被覆包含金、 銀的貴金屬的銅系接合導線,記載有若在該銅系導線施行 破覆,耐腐蝕性會更加提升的内容。在專利文獻3中,揭 示出在鋁(A1)或銅導線鍍敷金或銀等貴金屬的接合導線, 右為銅接合導線’ #由前述鍍敷’耐蝕性及熱氧化的問題 即破解決’與引線㈣的接合性亦可得與金接合導線同樣 的可靠性。在專利文獻4中,揭示出在高純度銅極細線的 表面被覆有貴金屬或耐蝕性金屬的銅接合導線,使用銀作 為前述所被覆的貴金屬之一。藉由構成為如上所示;抑 制銅接合導線的表面氧化(具體而言,在大氣中放置^。日 =有無表面氧化)。此外,以前述銅極細線的直徑而言,係 口又為15〜80/im’前述所被覆的被膜係設為1〇⑽〜^ ^均層厚(在實施例中,為25/zm直徑的mu 平均層厚的被膜在專利文獻5中係揭示出在 以線…NUi倍的厚度被覆銀的鋼接二 '、即,以直杈25# m的銅細線形成為〇 〇2〜〇 度之銀被覆的钢接人藤 , ,, 厚 接《導線。藉由被覆銀來抑制鋼的氧化, 201205695 以及使球形成能力提升。 ^外’為了解決銅接合導線氧化的課題,提出―種在 二導::表面被覆貴金屬,具體而言為金(Au)的銅 在專利文獻1中之記載,在銅導線被覆金的具 未被揭示,但是以接合導線的内部金屬而言,列舉 銅、鐵(Fe)、鐵與錄的合金(FeN1)等非純貴金屬, 趟月y接合導線的表面被覆金屬而言,則揭示出對水分、 |'、鹼等具耐錄的金屬,例如金或銀。在專利文獻7 :之α己載’揭不—種將含有銅或錫的銅合金作為芯線,在 ”上作金鑛敷的接合導線,破裂強度會提升。此外,在專 利文獻2中之記載,在銅導線被覆金的具體例雖未被揭 Γ墓1旦是例示在銅系導線被覆包含金、銀的貴金屬的銅接 2 若對銅系導線施行被覆’耐腐姓性會更加提升。 利文獻3中,揭示在紹⑻或銅導線鍍敷金或銀等貴 耐^接口導線,若為銅接合導線’藉由前述鑛敷來解決 、,及熱氧化的問題,與引線框架的接合性 線相同的可靠性。在專利文獻4中係揭示在高純度 ,、·田線的表面被覆責金屬或耐蝕性金屬的鋼接合導線, 使用金作為前述所被覆的貴金屬之一。藉由構成為如上所 :’可抑制銅接合導線的表面氧化(具體而言,在大氣中放 日後有無表面氧化)。此外,以前述銅極細線的直徑 而言為15〜80㈣,前述所被覆的被膜係設為⑽卜一 的千均層厚(在實施例中,& Μ"直徑 之平均層厚的被膜)。在專利文獻8中之記载,揭示以皮 201205695 覆銅芯線的外周,對於由鋁所成之電極的接合性會提升。 在專利文獻9中係揭示由未塑性變形的芯材、及比芯材更 軟化地作塑性變形的外周材所構成的複合導體揭=以金 為芯材之一例,以銅合金為外周材之一例,具有提高導線 與電路之間的連接強度的效果。在專利文獻1Q中係揭示以 金或金合金被覆銅合金的外側,彳防止在將半導體元件樹 脂密封時接合導線彼此接觸的不良事故。在專利文獻u中 係揭示在由無氧銅導線所成的線材表面進行純金錢敷揭 不商頻傳送優異且訊號導通率高的接合導線。在專利文獻 12中係揭示在以銅為主成分的芯材之上透過由銅以外的金 屬所成之異種金屬層而具有由比銅為更高熔點的抗氧化性 金屬所成之被覆層的接合導線’可穩定形成真球的球部, 更加顯示出在被覆層與芯材之間的密接性優異的特性。 但疋,如上所述在導線表面被覆有銀或金的銅接合導 線中,係可抑制銅的表面氧化(尤其保管中的氧化的進 行)’但是在接合時形成在導線前端的球部大部分不會成為 真球而變形’妨礙該銅接合導線的實用化。若被覆銀,當 將導線前端以電弧輸人熱進行加熱溶融時,會與炼點較低 的銀(熔點961 C )會優先熔融,相對於此,熔點較高的銅(熔 2 1〇83。〇則僅有一部分熔融有所關連。此夕卜若被覆金, 當欲將導線前端加熱熔融而藉由電弧來供予熱量輸入時, 會與鋼由於比熱較大(380 J/kg· κ)而不易熔融,相對於 此,金的比熱較小U28 J/kg· Κ),即使為些微的熱量輸 入亦可熔融,結果,在銅與金的複層構造體中,金會優先 201205695 •熔融有所關連。此外,如專利文獻5所示,若在還原雰圍 氣(10%H2-N2)下進行接合,大部分即使為銀被覆亦良好形成 球部’但是在未含有氫的零圍氣下,並無法抑制炼融時的 氧化,因此不易進行接合,而無法達成良好的球部形成。 另一方面,取代被覆銀或金,亦考慮在鋼導線的表面 被覆纪⑽)。實際上,在專利文獻2〜4中,亦例示在被覆 層除了銀或金以外的責金屬,另外還有纪。在前述文獻中 纪的優勢性雖未揭示,但是由於把的溶點比銀高(炼點 1554C),的比熱比金高(244 J/kg.K),因此若被覆把, Z解決如上述的銀或金般銅導線發生㈣而在形 前’被覆層熔融而益法开;{忐古+ …、沄形成真球狀之球部的問題。亦 藉由在銅導線的表面被覆钿,I1 被我’可同時解決銅的氧化防止盥 球部的真球性確保等兩個 .^ ( ’、 ^ 個_ °在專利文獻6係揭示在芯 線與被覆層(外周部)的2廢 ’ 2層接合導線中在芯線與被覆,之 間設置擴散層來改盖被霜 復a之 你田如. 被覆層之密接性等’但是顯示在芯線 接…… 之例。在如上所示之被覆鈀的銅 接&導線中,由於抑制 抑制銅的氧化,因此不僅 長期保管或楔形接合特极復s α導線的 . 、優異,在導線前端形成球部時, 球口Ρ氧化的虞慮亦會大Φ 體的氫,而㈣田/ 因此,未使用屬於危險氣field. LSI 201205695 Therefore, in order to solve the problem of oxidation of copper bonding wires, a copper bonding wire coated with silver (Ag) on the surface of a copper wire has been proposed. For example, in Patent Document 1, a specific example in which silver is coated with a copper wire is not disclosed, but a non-pure precious metal such as IS (A1), copper, iron (Fe), iron, and alloy (jreNi) is used as a joint. The inner metal of the wire, in the case where the surface of the bonding wire is coated with a metal, reveals a metal having corrosion resistance to moisture, salt, alkali, or the like, such as gold or silver. Further, in Patent Document 2, a specific example of coating a copper wire with silver is not disclosed, but a copper-based bonding wire in which a copper-based wire is coated with a noble metal containing gold or silver is exemplified, and it is described that the copper-based wire is applied. Breaking, corrosion resistance will be more enhanced. Patent Document 3 discloses that a bonding wire of a noble metal such as gold or silver is plated on aluminum (A1) or a copper wire, and a copper bonding wire is right on the right side of the copper plating wire. The problem of corrosion resistance and thermal oxidation is solved by the plating described above. The bonding of the leads (4) can also be as reliable as the gold bonded wires. Patent Document 4 discloses a copper bonded wire in which a surface of a high-purity copper ultrafine wire is coated with a noble metal or a corrosion-resistant metal, and silver is used as one of the noble metals covered as described above. By constituting as shown above; suppressing surface oxidation of the copper bonding wire (specifically, placing in the atmosphere ^ day = presence or absence of surface oxidation). Further, in terms of the diameter of the copper thin wire, the film opening is 15 to 80/im', and the coating film to be coated is set to have a thickness of 1 〇 (10) 〜 ^ ^ (in the embodiment, 25/zm diameter) In the patent document 5, it is disclosed in the patent document 5 that the steel is coated with silver at a thickness of NUi times, that is, the copper thin wire of 25# m is formed as 〇〇2 to twist. The silver-covered steel is connected to the vine, and the thick wire is connected to the wire. By coating the silver to suppress the oxidation of the steel, 201205695 and improving the ball forming ability. ^Before solving the problem of oxidation of the copper bonding wire, it is proposed that The second guide: the surface is coated with a noble metal, specifically, copper of gold (Au) is described in Patent Document 1, and the copper wire is covered with gold, but the copper is mainly used for the inner metal of the bonded wire. Non-pure precious metals such as iron (Fe), iron and recorded alloys (FeN1), and the metal coated with metal on the surface of the lunar y-bonded wire reveals a metal that is resistant to moisture, such as alkali, such as gold or Silver. In Patent Document 7: α has carried out a 'copper-type copper alloy containing copper or tin as In the case of the wire, the joint strength of the gold wire is increased, and the fracture strength is improved. Further, as described in Patent Document 2, the specific example of the copper wire covered with gold is not disclosed. Copper joints covering precious metals containing gold and silver 2 If the copper-based wires are coated, the corrosion-resistant surname will be further improved. In Lie 3, it is disclosed that the wires (8) or copper wires are coated with gold or silver. In the case of the copper bonded wire, the problem of thermal oxidation is solved by the above-mentioned mineral deposit, and the reliability of the bonding line with the lead frame is the same. In Patent Document 4, the surface of the high-purity, field line is disclosed. A steel bonded wire coated with a metal or a corrosion-resistant metal, using gold as one of the precious metals covered as described above. By configuring as described above: 'It is possible to suppress surface oxidation of the copper bonded wire (specifically, whether it is placed in the atmosphere in the future) Further, the diameter of the copper thin wire is 15 to 80 (four), and the film to be coated is set to have a thousand-thickness (10) in the embodiment (in the embodiment, &Μ" Thick In the case of Patent Document 8, it is disclosed that the outer circumference of the copper-clad core wire of the skin 201205695 is improved, and the bonding property of the electrode made of aluminum is improved. Patent Document 9 discloses a core material which is not plastically deformed. And a composite conductor composed of a peripheral material which is plastically deformed more softly than the core material, and an example in which gold is used as the core material, and an example in which the copper alloy is used as the outer peripheral material, has an effect of improving the connection strength between the wire and the circuit. In Patent Document 1Q, it is disclosed that the outer side of the copper alloy is coated with gold or a gold alloy, and the defect in which the bonding wires are brought into contact with each other when the semiconductor element resin is sealed is prevented. In Patent Document u, it is disclosed in the case of an oxygen-free copper wire. The surface of the wire is subjected to pure money to remove the bonding wires which are excellent in signal transmission and high in signal transmission rate. Patent Document 12 discloses a bonding of a coating layer made of an oxidation resistant metal having a higher melting point than copper by transmitting a dissimilar metal layer made of a metal other than copper on a core material containing copper as a main component. The wire 'is stable in forming the ball portion of the real ball, and further exhibits excellent adhesion between the coating layer and the core material. However, as described above, in the copper bonded wire in which the surface of the wire is covered with silver or gold, the surface oxidation of copper (especially the progress of oxidation in storage) can be suppressed'. However, most of the ball portion formed at the leading end of the wire at the time of bonding is formed. It does not become a true ball and is deformed to prevent the practical use of the copper bonding wire. If silver is coated, when the front end of the wire is heated and melted by arcing, the silver with a lower melting point (melting point 961 C) will preferentially melt. In contrast, copper with a higher melting point (melting 2 1〇83) 〇 仅有 仅有 仅有 仅有 仅有 仅有 仅有 仅有 仅有 仅有 仅有 仅有 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若) It is not easy to melt. In contrast, the specific heat of gold is smaller than U28 J/kg·Κ), even if it is slightly heat input, it can be melted. As a result, in the complex structure of copper and gold, Kim will give priority to 201205695. Melting is related. Further, as shown in Patent Document 5, when bonding is performed under a reducing atmosphere (10% H2-N2), most of the spherical portions are formed well even if they are coated with silver, but they cannot be obtained under zero encirclement gas containing no hydrogen. Since oxidation at the time of smelting is suppressed, joining is difficult, and formation of a favorable spherical part cannot be achieved. On the other hand, instead of covering silver or gold, it is also considered to cover the surface of the steel wire (10). In fact, in Patent Documents 2 to 4, the metal other than silver or gold is also exemplified in the coating layer. Although the advantages of Ji in the aforementioned literature are not disclosed, since the melting point is higher than silver (refining point 1554C), the specific heat is higher than gold (244 J/kg.K), so if it is coated, Z solves the above. The silver or gold-like copper wire occurs (4) and in the front of the shape, the coating layer melts and the method is opened; {忐古+ ..., the 沄 forms a true spherical ball. Also by covering the surface of the copper wire, I1 is able to simultaneously solve the oxidation of copper and prevent the true sphericality of the ball portion from ensuring two. ^ ( ', ^ _ ° is disclosed in the patent document 6 in the core wire In the 2 waste '2 layer bonding wires of the coating layer (outer peripheral portion), a diffusion layer is provided between the core wire and the coating to cover the cover of the frost layer a. The adhesion of the coating layer is 'but the core wire is connected In the case of the palladium-coated copper wire and the wire shown above, since the oxidation of the copper is suppressed, it is not only long-term storage or wedge-bonding, but also excellent in forming a ball at the tip end of the wire. At the time of the Ministry, the oxidation of the ball Ρ 亦 will also be larger than the hydrogen of the body, and (4) Tian / Therefore, not used is dangerous gas

. 純虱氣體來將球部周邊形成為氮♦ HI 氧,亦可形成真球的球部。 &為鼠分圍 【先前技術文獻】 【專利文獻】 (專利文獻1)曰本特 将開昭57-1 2543號公報 201205695 (專利文獻2)日本特開昭59_181〇4〇號公報 (專利文獻3)日本特開昭61 _285743號公報 (專利文獻4)日本特開昭62 — 97360號公報 (專利文獻5)日本特開昭62_12〇〇57號公報 (專利文獻6)再公表w〇2〇〇2-23618 (專利文獻7)日本特開昭59-1 551 61號公報 (專利文獻8)日本特開昭63-46738號公報 (專利文獻9)日本特開平3 — 32033號公報 (專利文獻1〇)日本特開平4-206646號公報 (專利文獻U)日本特開2003-59.963號公報 (專利文獻丨2)日本特開2004-6740號公報 【發明内容】 (發明所欲解決的課題) 如前所述’鋼接合導線係、藉由在銅導線的表面被覆 纪,作為與金接合導線相比為更為廉價的接合導線而可更 為實用,但是對於最近的车道挪+壯+ 迎的牛導體女裝中的構造/材料/連 接技術等的急速變化戎容媒π # τ _ 艾亿次夕樣化並不一定可對應的問題逐漸 明顯化。 W^丨綠很罘的表面一般是 ir'j 對於此,最近則進展為使用的引線框架n 去之’丄銀鍍敷的引線框架(以下稱為「銀鍍敷引線框架 中,在將引線框架焊接在主機板等基板之前,以儘量才 與焊材的潤濕性的目的了 ’有預先在引線前端將焊材, 201205695 鑛敷的製程(焊材鍍敷製程),由於變為高成本,相較於銀, 將可料材確保高潤濕性的⑱取代銀來㈣在引線框架 上,藉此省略該焊材鑛敷製程來形成為低成本。 發明人等發現若為在銅導線的表面被覆纪的銅接合導 線,_雖然至此為止的銀鑛敷引線框架中並未明顯化’但是 對經纪鍍敷的引線框架的横形接合性變得不充分的案例會 變多的問題。此外,發明人等針對前述問題詳細研究的么士 果發現,由於該銅接合導線的最表面為把,因此在對經絶 鍍敷的引線框架的楔形接合中鈀彼此會相接觸。如此一 來,由於1巴的硬度(把的莫氏硬度4· 75、銅的莫氏硬度3 〇) 較高,因此纪不易變形,是故飽表面的氧化皮模層的破壞 變得不充分即成為上述問題的原因。此外,發現在導線$ 表面的!巴與引線框架上的纪之間所產生的擴散較慢,由此 在兩鈀層之間未形成充分的擴散層亦成為上述問題的原 因。 為了防止銅接合導線的氧化,考慮在銅導線的表面被 覆比銅更不易氧化的貴金屬。一般而言,已知有銀、鉑、 金為比銅更為貴金屬,《中的銀及金如前所述在球部㈣ 成性有其困難性。另-方面,始係極為昂貴的材料,因此 在銅導線的表面被覆鉑的銅接合導線的工業上的利用並 容易。如上所示’即使在銅導線的表面單純被覆貴:: (金、m),要同時滿足在經纪鑛敷的引線框架上 的良好楔形接合性、抗氧化性及耐硫化性並不容易。、 此外,電動機等流通大電流的功率元件所使用的接人 201205695 導線的芯線的線徑需要2 0 〇 大,因此名傲报垃合月祕拉 β m左右,但是此時由於線徑較Pure helium gas forms the periphery of the ball into nitrogen ♦ HI oxygen, which also forms the ball of the true ball. [Patent Document] (Patent Document 1) 曰本特将开昭57-1 2543号 201205695 (Patent Document 2) Japanese Patent Laid-Open No. 59_181〇4〇 (Patent Japanese Patent Laid-Open Publication No. Sho 62-97360 (Patent Document 5) Japanese Laid-Open Patent Publication No. SHO 62-112-57 (Patent Document 6) Japanese Patent Laid-Open Publication No. SHO-63-46738 (Patent Document No. 9) Japanese Patent Application Laid-Open No. Hei No. Hei No. Hei No. Hei. Japanese Unexamined Patent Application Publication No. JP-A No. No. No. No. No. No. No. Publication No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No As mentioned above, the 'steel-bonded wire system, which is covered on the surface of the copper wire, is more practical as a cheaper joint wire than the gold-bonded wire, but for the nearest lane, the ++ Rapid changes in construction/material/connection technology in the cow-conducting women's clothing π # τ _ Ai Yi's eve of the problem is not necessarily compatible with the problem gradually becoming apparent. W^丨 Green is very sturdy surface is generally ir'j For this, recently it has progressed to the use of the lead frame n to the 'silver-plated lead frame (hereinafter referred to as "silver-plated lead frame, in the lead Before the frame is soldered to the substrate such as the motherboard, the purpose of soldering with the solder material as much as possible is to have the welding material, the 201205695 mineral deposit process (welding material plating process), which becomes a high cost. Compared with silver, the material can ensure high wettability of 18-substituted silver (4) on the lead frame, thereby omitting the welding material ore-laying process to form a low cost. The inventors found that if it is in a copper wire The surface-covered copper-bonded wire, _ although it has not become apparent in the silver-plated lead frame until now, has a problem that the cross-bonding property of the lead-plated lead frame becomes insufficient. Further, the inventors and the like have studied in detail the above-mentioned problems, and found that since the outermost surface of the copper bonding wire is a handle, palladium contacts each other in the wedge bonding of the absolutely plated lead frame. Due to 1 bar The hardness (the Mohs hardness of 4·75 and the Mohs hardness of copper is 3 〇) is high, so that it is not easily deformed, so that the destruction of the scaled oxide layer on the surface is insufficient, which is the cause of the above problem. Further, it has been found that the diffusion between the surface of the wire and the surface of the lead frame is slow, whereby the formation of a sufficient diffusion layer between the two palladium layers is also a cause of the above problem. The oxidation of the wire, considering the surface of the copper wire is covered with a precious metal that is less susceptible to oxidation than copper. Generally speaking, silver, platinum, and gold are known to be more precious metals than copper, "the silver and gold in the ball are as described above. Part (4) has difficulty in its formation. On the other hand, it is a very expensive material, so the industrial use of platinum-bonded copper-bonded wires on the surface of copper wires is easy. As shown above, even on the surface of copper wires. Simply covered expensive:: (Gold, m), it is not easy to satisfy the good wedge bondability, oxidation resistance and sulfidation resistance on the lead frame of the brokerage ore. In addition, the power of a large current such as a motor is high. Component office Required diameter of the core wire with access wire 20 201 205 695 billion large, packets were proud refuse secret engagement pull β m month or so, but this time, since the wire diameter than the

'、几氧化性優異、將銅或銅合金設為芯線的半導體用接 合導線。 (用以解決課題的手段) 為達成前述目的,本發明之要旨如下所示。 申請專利範圍帛1項之半導體用接合導線,具有.由 銅或銅合金所構成的芯線;形成在該芯線表面且具有ι〇〜 2〇°nm的厚度的含鈀被覆層;形成在該被覆層的表面、具 有1〜80nm的厚度且含有貴金屬肖把的合金層,其特徵在 於:前述貴金屬為金或銀,前述合金層中之前述貴金屬 濃度為10體積%以上、75體積%以下。 .、 申請專利範圍帛2項之半導體用接合導線巾 :屬為金’前述合金層中之金的濃度為15體積%以上:貝 體積%以下。 b 金層的表面結晶粒之中 申請專利範圍第3項之半導體用接合導 厶麻认_ 导線中’前述合 ,對<111〉結晶方位的拉線方向 10 201205695 - 率為15度以下的結晶粒的面積為40%以上、1〇〇%以下β 申請專利範圍第4項之半導體用接合導線中前述合 金層中之金的濃度為40體積%以上、75體積%以下。 申請專利範圍S 5項之半導體用接合導線中,前述貴 金屬為銀,前述合金層以卜⑽⑽的厚度所形成,前述合 金層中之銀的濃度為10體積%以上、7〇體積%以下。 申請專利範圍第6項之半導體用接合導線中,前述合 金層中之銀的濃度為20體積%以上、7〇體積%以下。 申請專利範圍f 7項之半導體用接合導線中,前述合 金層的表面結晶粒之中’對<1〇。〉結晶方位的拉線方向的斜 率為15度以下的結晶粒的面積為5〇%以上、ι〇〇%以下。 申請專利範IS帛8項之半導體用接合導線中,前述合 金層的表面結晶粒之中,對<lu>結晶方位的拉線方向的斜 率為15度以下的結晶粒的面積為6〇%以上、1〇⑽以下。 人申4專利範圍帛9項之半導體用接合導線中,前述接 合導線的表面的邊耶硬度為〇.2〜2〇(^3的範圍。 人申4專利範圍第1 〇項之半導體用接合導線中,前述芯 線3有B、p、Se中之至少i種總計5〜3〇〇質量卿。 (發明效果) ' 。藉由本發明,提供一種即使為經鈀鍍敷的引線框架, t:確保良好的楔形接合性、抗氧化性優異、將銅或銅合 設為思線的廉價的半導體元件用接合導線。 【實施方式】 11 201205695 以下針對本發明之接合導線之構成更進一步加以說 明》其中’在以下說明中,若沒有特別聲明,「%」意指「體 積%」。此外,組成係僅有在分析複數部位時所得金屬的數 值平均值,碳係作為自然、混入物(不可避免雜質)而存在, 但是並未包含在以下所述組成。 本發明人等發現為了提供確保經鈀鍍敷的引線框架 ⑺下稱為㈣線框架」)上的良好楔形接合性與抗 氧化性之兩者,而且,將銅或銅合金作為芯線的廉價接合 導線,在由銅或銅合金所成之芯線的表面形成包含特定厚 度的把的被覆層,此外,在該被覆層的表面以特定厚度形 成有特定組成的貴金屬與把的合金層的接合導線乃較為有 效。本發明之貴金屬為銀或金。 首先,針對在由銅或銅合金所成之芯線的表面形成包 含適當厚度的把的被覆層的構成加以說明。如前所述銅或 銅合金容易被氧化,因此以由銅或銅合金所構成之接合導 線,長期保管或楔形接合性不佳。另一方面,藉由在由銅 或銅合金所成之芯線的表面形成含鈀的被覆層,銅的氧化 受到抑制,因此不僅前述長期保管或楔形接合特性優異, 在接合導線的前端形成球料球部會氧化的虞慮會被大幅 改善。前述效果係藉由在前述被覆層含有比銅更不易氧化 (亦即氧化物生成熱晶較大)的㈣得。藉此,即使未使 用屬於危險氣體的氫與氮的混合氣體,而僅使用純氮氣體 而將球部周邊形成為氮雾圍氣’亦可形成真球的球部。如 上所示之效果係在該被覆層的厚度為1〇〜2〇〇1^下獲得。 12 201205695 另一方面’若前述被覆層的厚度未達1 〇nm,氧化抑制效果 會變得不充分。若該被覆層的厚度超過20〇nm,大部分會 在球部的表面發生直徑數# m之大小的氣泡,較不理想。 在此’含纪的被覆層中之鈀以外所含有的元素係構成纪之 不可避免雜質與芯線或接合導線之最表面的元素。此外, 該被覆層之鈀的含有量若為50%以上,可得充分的氧化抑 制效果。但是,以該被覆層所含有之鈀以外的元素而言, 後述之構成最表面的銀並未被包含,或在含有銀時以銀 的濃度未達10%為佳。若該被覆層的銀的濃度為1〇%以上, 如上所述之銀被覆導線的問題(球形成時的氧化等)即會呈 現之故。以該被覆層所含有之鈀以外的元素而言,後述之 構成最表面的金並未被包含,或在含有金時,以金的濃度 未達1 5%為佳。若該被覆層的金的濃度為】5%以上如上所 述之金被覆導線的問題(球部不會成為真球而變形的不良 情形)即會呈現之故。 若僅以在由銅或銅合金所成之芯線的表面形成含鈀的 被覆層的上述構成,並無法在鈀鍍敷引線框架上確保良好 的楔形接合性。為了解決該課題,本發明人等發現另外將 銀或金與纪的合金層更加形成在該被覆層的表面即可。該 合金層係在前述被覆層之上另外α卜⑼⑽的厚度所形成 者。此係基於楔形接合性受到離接合導線的最表面為3⑽ 左右的區域的物性值所支配所致。亦,離接合導線的最 表面為至少lnm的區域、較佳為離接合導線的最表面為如m 的區域為銀或金與鈀的合金’在鈀鍍敷引線框架上作楔形 13 201205695 接《時,構成接合導線的最表面的合金層中之銀或金會朝 向鈀鍍敷引線框架上的鈀優先擴散,在接合導線與鈀鍍敷 引線框架之兩者之間容易形成新的合金層。藉此,本發明 之接合導線係與鈀鍍敷引線框架的楔形接合性會提升,例 如2nd剝離強度會變得良好。此係基於銀或金與鈀之間的 相互擴散比飽的自我擴散為更快之故。但是,若該合金層 的厚度未滿lmn,屬於接合導線之基底的被覆層會影響前 述楔形接合性’因此無法確保與鈀鍍敷引線框架的楔形接 合性。此外,若該合金層的厚度未達3nm ’屬於接合導線 之基底的被覆層對前述楔形接合性造成不良影響的危險性 並非為零’而會產生上述效果變得不穩定的風險,因此更 佳為將前述厚度形成為3nm以上。為了獲得前述效果,在 前述銀或金與鈀的合金層的厚度的上限並無特別限制。為 了將前述合金層的厚度形《為料8〇nm,#為後述的電解 錄敷為在大電流下’若為無電解鍵敷為長時間,若為蒸鍵 法為長時間’分別在經銀鍍敷、金鍍敷或銀蒸鍍、金蒸鍍 之後,另外必須將後述之爐内溫度形成為超過74〇。匸的高 溫,難以確保穩定的品質,因此將該合金的厚度的上限設 為8〇nm以下。其中,合金層的厚度以將上限設為5〇酿以 下為更佳。若將上限設為5〇nm以下,即可將該加熱溫度形 成為600C〜650°C之故。 此外,為了獲得藉由前述銀或金與鈀的合金層所得之 上述效果,必須該合金層中之銀或金的組成(銀或金濃度) 為特定的範圍。具體而t ’若前述銀或金與鈀的合金層中 14 201205695 • 之銀或金濃度為ίο%以上、75%以丁 引線框架的楔形接合性。若 °提阿與别述纪鍵敷 並無法獲得前述1 L /金濃度為未達10%, 75%,當在ίί相反地,若前述銀或金漠度超過 前述合…之銀或金會優先炫融有而由="所成之 性增加,故較不佳。1球部的危險 度…下,在接合導線的二=:銀_ 混八,ra + A A、# 層銀或金與鈀會均質 因此當在導線前端形成球部時 熔融,形成變形的球部的危險性會消失 ^ 部之真球性或尺寸精度的情形。,,不會有損及球 金,針對在前述被覆層的表面具有含有銀與纪的合 金層的構成的接合導線更加詳細說明。 該合金層係在前述被覆層之上另外以!〜編的厚度 戶:形成者。此係基於楔形接合性受到離接合導線之最表面 左右的區域的物性值所支配所致。亦即,離接合導 線的最表面為至少lnm的區域、較佳為離接合導線的最表 面為3測的區域若為銀與纪的合金’當在把鍛敷引線框架 上楔形接口時,構成導線的最表面的合金層中的銀會朝向 鈀鍍敷引線框架上的鈀優先擴散,在接合導線與鈀鍍敷引 線框架之兩者之間變得容易形成新的合金層。藉此,本發 明之接合導線係與纪鍍敷引線框架的楔形接合性會提升, 例如2nd剝離強度會變得良好。此係基於銀與纪之間的相 互擴散比飽的自我擴散為快之故。但是,若該合金層的厚 度未達lnm,屬於接合導線之基底的被覆層會影響前述楔 15 201205695 形接合性,因此盔法过 …、法確保與鈀鍍敷引線框架的 性。此外,若贫人模t接5 D 。,曰的厚度未達3nm,屬於接合導 基底的被覆層對前述楔形接合 導权 非為I,而合说a 故取个艮和雩的危險性並 肱义 上述效果變得不穩定的風險,因此更佳 為將前述厚度形成u此更佳 成為3nra以上。為了獲得前述效果,Μ 述銀與鈀的合金層的厘痒扎欢果,在則 述合金層的厚度形成為為了將前 开…“ 底為超過3〇nm ’必須將後述的爐内溫度 形成為超過72〇。〇:的高溫, 又 于不易確保穩定的品質,因 此將該口金的厚度的上限形成為3〇制以下。 、 ▲此外’為了獲得藉由前述銀與紐的合金層所得之上述 果:σ金層中之銀的组成(銀濃度)必須為特定的範 圍。具體而言,若前述銀與纪的合金層中之銀濃度為ι〇% 以上、70%以下,更佔蛊9 佳為2(U以上、70%以下,可更加提高 與剛述麵鍍敷引線框架 1n〇/ 未的楔形接合性。若前述銀濃度未達 〇/0’並無法獲得前述效果。相反地,若前述銀濃度超過 人°。田在導線則端形成球部時,僅有由銀與銘所成之前述 5金層中的銀會優先溶融而形成變形的球部的危險性增 、 較不佳相對於此,若該合金層中之銀漠度為70% 以下’在接合導線的合金層中,銀與雀巴會均質混合,因此 當在導線前端形成球部時,僅有銀會優先溶融,形成變形 的球部的危險性會消失,而不會有損及球部的真球性或尺 寸精度的情形。此外,若前述銀濃度為m以上、m以下, 球部的真球性或尺寸精度會變得更好,故較佳。 因此在本發明之接合導線中,在由銅或銅合金所成 16 201205695 之怎線的表面形成適當厚 又的s絶的被覆層, 的表面施加適當厚度與組 ^覆曰 乂的銀與纪的合金屏, 供確保在鈀鍍敷引線框架 * 錯此可獒 性之兩者,而1# 好的楔形接合性與抗氧化 r王I旬考,而且將銅或銅 此外,判明若m 之廉價的接合導線。 '述銀與鈀的合金層令之聲:fA 20%以上、70%以下,亦可 聲”農度§又為 -般而言,在毛…二 所示之效果。 觸的區域中,係在接合製中毛細管與接合導線相接 相磨擰。此時,避!二毛細管與接合導線不斷地 k岐仏 對接合導線造成擦傷,因此毛 細官的内壁係以在前述區 u此毛 順帶一提,若為習知= 的方式予以加工。 線的表面僅具有含把的被覆層的 ::、 -欠你丨如扣、K C 守深r 右反覆多數 -人例如超過5mm的長形跨距的接人 魂相蛀錨认$ 〇則迷毛細管與接合導 ^目接觸的毛細管的區域會磨損。如此一來,在該區域會 產生銳利的凹凸,結果,因毛細 * ^ ^ 所形成的擦傷會在導線 表面k付顯者。此係基於鈀為 覆層亦會變硬之故。 硬的金屬1此含纪的被 相對於此’在本發明中,設在前述被覆層表面的上述 此:的合金層中,由於提高該合金層中之銀的濃度,因 此可抑制如上所述之銳利的 厶厶生在上述銀與鈀的 ° « ,銀係與Μ以被稱為全率固溶的方式均質混合, :的濃度為較高時,在毛細管與接合導線相接觸的:域 1凸:t優先有助於變形’藉此可抑制如上所述之銳利的 《生。獲得如上所示之效果的是在銀濃度為20%以 17 201205695 上、更佳為30%以上的情形。此外,若銀濃度為7〇%以上, 基於前述理由,球部的真球性或尺寸精度並未充分獲得。 此外,判明出在上述銀與纪的合金層,若將該合金層 中之銀濃度形成A 20%以_L,亦同時獲得如下所示之效果。 順帶-提,若為習知技術’在由鋼或銅合金所成之芯 線的表面僅具有含鈀的被覆層的接合導線中,若在該接合 導線的前端形成大於30㈣的直徑的球部,會有在°數^ 的直控的氣泡多處發生在球部表面的情形。此係與近來之 電子機器的小型化、高功能化相關連。亦即’為了支持電 子機器的小型化、高功能化,半導體.元件亦小型化、、 能化,但是在接合導線中係在減小接合部的面積二 下,減小形成在導線前端的球部的傾向變強,以往即使小 …直徑的球部’相對於此,近來已量產 氣泡儀在:直徑的球部。如前所述之數㈣的微小 β由於二主的5〇 " m以上的直徑的球部中亦會形成,作 疋由於球控較大’因此必然地接合面積亦變大,如上所; 為止並未被特別視為問題。但是,在近來 的大於3〇…直徑的較小球部中,接合面積㈣來 ^ ll A , B 侵口向積亦變小’因 至此為止即使為不成問題的程度的上 合部的接合強度或長期可靠 / ’、對接 題。 成知響,而逐漸被視為問 本發明人等發規如μ _ 趣。亦即, 不之氣泡的存在部位經常為 面的麵在球二於在形成球部時存在於導線表 偏析而形成紐單層的漠化區域,在該區域被 18 201205695 封入因有機物而起的氣體。 相對於此,A 士议 特定濃度以上的銀驻明中,在含她的被覆層的表面含有 在形成球部時並未形成鈀的濃化 1_硃取而代之地形 化區域。因此,在本心曰 銀三元合金的濃 之接合導線中,若為該濃化區域, 因有機物而起的顏护 ^ 、皮封入的危險性變小,因此即使為形 成如大於30//m般的較,丨古广认 直偟的球部的情形,亦可抑制氣 在發生。亦即,若本 2。%以上,可得上…銀與纪的合金中之銀的濃度為 述效果,若更佳為30%以上,則該效果更 加提南’故較佳。 被覆層以及合金層的厚度與組成的測定方法係以一面 由接合導線的表面藉由賤鑛法朝深度方向下挖一面進行分 析的手法、或在接人邋給 ^ 接口導線的剖面下的線分析或點分析較為 效刚者之—面下挖一面測定的手法中,若測定深度變 大’則測疋時間會過於耗費。後者的線分析或點分析,係 在剖面全體的濃唐公右—、去Α — 布或數個。卩位的重現性的確認等較為 狄易方A ,、優點。接合導線的剖面中,線分析雖然較為 :便疋右欲使分析精度提升時,缩窄線分析的分析間 隔、或在放大尤其欲詳細分析的區域之後再進行點分析亦 為有效I在匕’合金層的厚度係由表面在深度方向進行組'The combined conductor for semiconductors which is excellent in oxidation and copper or copper alloy as a core. (Means for Solving the Problem) In order to achieve the above object, the gist of the present invention is as follows. A bonding wire for a semiconductor according to claim 1, comprising: a core wire made of copper or a copper alloy; a palladium-containing coating layer formed on the surface of the core wire and having a thickness of 1 to 2 nm; formed in the coating The surface of the layer, the alloy layer having a thickness of 1 to 80 nm and containing a noble metal, wherein the noble metal is gold or silver, and the concentration of the noble metal in the alloy layer is 10% by volume or more and 75% by volume or less. The joint wire for semiconductors of Patent Application No. 2 is a gold. The concentration of gold in the alloy layer is 15% by volume or more: shell volume% or less. b The surface crystal grain of the gold layer is the semiconductor joint guide ramie in the third application of the patent scope _ the above-mentioned combination in the wire, the wire direction of the crystal orientation of the <111> 10 201205695 - the rate is 15 degrees or less The area of the crystal grain is 40% or more and 1% by mass or less. In the semiconductor bonding wire of the fourth aspect of the invention, the concentration of gold in the alloy layer is 40% by volume or more and 75% by volume or less. In the bonding wire for a semiconductor of the invention of claim 5, the noble metal is silver, the alloy layer is formed by a thickness of (10) (10), and the concentration of silver in the alloy layer is 10% by volume or more and 7% by volume or less. In the bonding wire for a semiconductor of the sixth aspect of the invention, the concentration of silver in the alloy layer is 20% by volume or more and 7% by volume or less. In the joint wire for a semiconductor of claim 7 of the invention, in the surface crystal grain of the alloy layer, 'pair' is <1〇. The area of the crystal grain in which the inclination direction of the crystal orientation is 15 degrees or less is 5 % or more and 〇〇 〇〇 % or less. In the bonding wire for a semiconductor of the above-mentioned alloy layer, the area of the crystal grain of the alloy layer in which the slope of the crystal orientation of the alloy layer is 15 degrees or less is 6〇%. Above, 1〇 (10) or less. In the bonding wire for a semiconductor of the invention of claim 4, the surface of the bonding wire has a side hardness of 〇.2 to 2 〇 (^3). The bonding of the semiconductor of the first application of the Japanese Patent Application No. 4 In the wire, the core wire 3 has at least i of 5, 3, and 3 of B, p, and Se. (Effect of the invention) By the present invention, a lead frame is provided even if palladium is plated, t: A bonding wire for an inexpensive semiconductor element which is excellent in wedge bonding property and oxidation resistance and which is made of copper or copper. [Embodiment] 11 201205695 Hereinafter, the configuration of the bonding wire of the present invention will be further described. In the following description, unless otherwise stated, “%” means “% by volume.” In addition, the composition is only the numerical average of the metals obtained when analyzing the complex parts, and the carbon system is natural and mixed (inevitable) The present invention does not include the composition described below. The present inventors have found that good wedge bonding is provided in order to provide a (four) wire frame under the lead frame (7) which ensures palladium plating. Both the oxidation resistance and the inexpensive bonding wire using copper or a copper alloy as a core wire form a coating layer containing a specific thickness on the surface of a core wire made of copper or a copper alloy, and further, in the coating layer It is effective that the surface is formed with a specific thickness of a noble metal having a specific composition and a bonding wire of the alloy layer. The noble metal of the present invention is silver or gold. First, a configuration in which a coating layer of a suitable thickness is formed on the surface of a core wire made of copper or a copper alloy will be described. Since copper or a copper alloy is easily oxidized as described above, the bonding wire made of copper or a copper alloy has long-term storage or poor wedge-bonding property. On the other hand, by forming a coating layer containing palladium on the surface of a core wire made of copper or a copper alloy, oxidation of copper is suppressed, so that not only the long-term storage or the wedge bonding property is excellent, but also a ball is formed at the tip end of the bonding wire. The concern that the ball will oxidize will be greatly improved. The above effect is obtained by the fact that the coating layer contains (4) which is less susceptible to oxidation than copper (i.e., the oxide generates hot crystals are large). Thereby, even if a mixed gas of hydrogen and nitrogen which is a dangerous gas is not used, and only a pure nitrogen gas is used, and the periphery of the ball portion is formed into a nitrogen mist enclosure, a spherical portion of the true ball can be formed. The effect as shown above is obtained when the thickness of the coating layer is 1 〇 2 2 〇〇 1 ^. 12 201205695 On the other hand, if the thickness of the coating layer is less than 1 〇 nm, the oxidation suppressing effect is insufficient. If the thickness of the coating layer exceeds 20 Å, most of the bubbles having a diameter of #m on the surface of the ball portion are less preferable. The elements other than the palladium in the 'specturing coating layer' constitute an element which is an inevitable impurity and an outermost surface of the core wire or the bonding wire. Further, when the content of palladium in the coating layer is 50% or more, a sufficient oxidation inhibiting effect can be obtained. However, in the case of an element other than palladium contained in the coating layer, silver which constitutes the outermost surface to be described later is not contained, or when silver is contained, the concentration of silver is preferably less than 10%. If the concentration of silver in the coating layer is 1% by weight or more, the problem of the silver-coated wire as described above (oxidation at the time of ball formation, etc.) is revealed. In the element other than palladium contained in the coating layer, gold which constitutes the outermost surface to be described later is not contained, or when gold is contained, the concentration of gold is preferably less than 15%. If the concentration of gold in the coating layer is 5% or more, the problem of the gold-coated wire as described above (the case where the ball portion does not become a true ball and deforms) is present. If the above-described configuration of the palladium-containing coating layer is formed only on the surface of the core wire made of copper or a copper alloy, good wedge-shaped bondability cannot be ensured on the palladium-plated lead frame. In order to solve this problem, the inventors of the present invention have found that an alloy layer of silver or gold may be formed on the surface of the coating layer. The alloy layer is formed by the thickness of the other layer (9) (10) on the coating layer. This is based on the fact that the wedge-shaped bondability is governed by the physical property value of the region where the outermost surface of the bonded wire is about 3 (10). Also, the area of the outermost surface of the bonding wire is at least 1 nm, preferably the outer surface of the bonding wire is a metal such as silver or gold and palladium alloy. 'Wedge shape on the palladium plating lead frame 13 201205695 At this time, silver or gold in the alloy layer constituting the outermost surface of the bonding wire preferentially diffuses toward the palladium on the palladium plating lead frame, and a new alloy layer is easily formed between the bonding wire and the palladium plating lead frame. Thereby, the wedge bonding property of the bonding wire of the present invention and the palladium plating lead frame is improved, and for example, the 2nd peel strength becomes good. This is based on the fact that the interdiffusion between silver or gold and palladium is faster than full self-diffusion. However, if the thickness of the alloy layer is less than lmn, the coating layer belonging to the base of the bonding wire affects the aforementioned wedge-shaped bondability, so that the wedge-shaped bonding property with the palladium-plated lead frame cannot be ensured. Further, if the thickness of the alloy layer is less than 3 nm, the risk that the coating layer belonging to the base of the bonding wire adversely affects the wedge-shaped bondability is not zero, and the above effect becomes unstable, so that it is preferable. The thickness is formed to be 3 nm or more. In order to obtain the aforementioned effects, the upper limit of the thickness of the alloy layer of silver or gold and palladium is not particularly limited. In order to shape the thickness of the alloy layer, "the material is 8 〇 nm, # is the electrolysis recorded later, at a large current", if it is an electroless bond for a long time, if the steaming method is for a long time, After silver plating, gold plating, silver vapor deposition, or gold vapor deposition, it is necessary to form a temperature in the furnace to be described later to be more than 74 Å. Since the high temperature of the crucible is difficult to ensure stable quality, the upper limit of the thickness of the alloy is set to 8 nm or less. Among them, the thickness of the alloy layer is preferably set to an upper limit of 5 or less. When the upper limit is made 5 〇 nm or less, the heating temperature can be formed to be 600 C to 650 ° C. Further, in order to obtain the above effects obtained by the above-mentioned alloy layer of silver or gold and palladium, it is necessary that the composition of silver or gold (silver or gold concentration) in the alloy layer is a specific range. Specifically, if the silver or the alloy layer of gold or palladium is used, the silver or gold concentration is ίο% or more, and the wedge bondability of the butyl lead frame is 75%. If °A and the other words are not able to obtain the above 1 L / gold concentration is less than 10%, 75%, when in ίί, if the aforementioned silver or gold inelquality exceeds the above-mentioned silver or gold Priority is given to the fact that the sexuality is increased by =", so it is less good. 1 The risk of the ball... Under the bonding wire, the second =: silver _ mixed eight, ra + AA, # layer silver or gold and palladium will be homogeneous, so when the ball is formed at the tip of the wire, it melts to form a deformed ball. The danger will disappear ^ the true spherical or dimensional accuracy of the part. The bonding wire having a structure including a silver and a gold alloy layer on the surface of the coating layer will be described in more detail without impairing the gold. The alloy layer is additionally on the aforementioned coating layer! ~Edited thickness User: Former. This is based on the fact that the wedge bondability is governed by the physical property values of the area around the outermost surface of the bonded wire. That is, the area of the outermost surface of the bonding wire is at least 1 nm, preferably the area of the outermost surface of the bonding wire is 3, if the alloy is silver and the alloy is formed when the wedge interface is formed on the forged lead frame. The silver in the alloy layer on the outermost surface of the wire preferentially diffuses toward the palladium on the palladium-plated lead frame, and a new alloy layer is easily formed between the bond wire and the palladium-plated lead frame. Thereby, the wedge bonding property of the bonding wire of the present invention and the lead plating frame is improved, for example, the 2nd peel strength becomes good. This is based on the fact that the interdiffusion between silver and Ji is faster than the self-diffusion of saturating. However, if the thickness of the alloy layer is less than 1 nm, the coating layer belonging to the base of the bonding wire affects the bonding property of the wedge 15 201205695, so that the helmet method ensures the properties of the lead frame with palladium plating. In addition, if the poor model is connected to 5 D. The thickness of the crucible is less than 3 nm, and the coating layer belonging to the bonding guide substrate has a risk of not being I for the wedge-shaped joint guiding, and the risk of taking a sputum and sputum is considered to be a risk that the above effect becomes unstable. Therefore, it is more preferable to form the aforementioned thickness to be more preferably 3 nra or more. In order to obtain the above effect, the yttrium-like effect of the alloy layer of silver and palladium is described. The thickness of the alloy layer is formed so that the front opening is "...the bottom is more than 3 〇 nm", and the furnace temperature to be described later must be formed. In addition, it is difficult to ensure a stable quality, and the upper limit of the thickness of the gold is formed to be 3 以下 or less. ▲ In addition, 'in order to obtain the alloy layer by the silver and the nucleus The above-mentioned effect: the composition (silver concentration) of silver in the σ gold layer must be in a specific range. Specifically, if the silver concentration in the alloy layer of the silver and the kiln is ι〇% or more and 70% or less, it is more 9 is preferably 2 (U or more, 70% or less, which can further improve the wedge-shaped bondability with the surface-plated lead frame 1n〇/not. If the silver concentration is less than 〇/0', the above effect cannot be obtained. If the concentration of silver exceeds that of humans. When the wire forms a ball at the end of the wire, only the silver in the above-mentioned 5 gold layers formed by silver and Ming will preferentially melt to form a deformed ball. Poor relative to this, if the silver in the alloy layer is 70 % Below 'In the alloy layer of the bonding wire, silver and the fins will be homogeneously mixed, so when a ball is formed at the tip of the wire, only silver will preferentially melt, and the risk of forming a deformed ball will disappear without In addition, when the silver concentration is m or more and m or less, the true spherical shape or dimensional accuracy of the ball portion is better, which is preferable. In the bonding wire of the invention, a surface of a coating layer formed of a copper or copper alloy 16 201205695 is formed into a suitably thick and smear coating layer, and an alloy screen of a proper thickness and a stack of silver and a layer is applied. , to ensure that the palladium-plated lead frame * is wrong with both, and 1# good wedge-shaped bondability and anti-oxidation r Wang I test, and copper or copper, in addition, if the cheap joint of m Wire. 'The alloy layer of silver and palladium makes the sound: fA 20% or more, 70% or less, can also be sound." The agricultural degree § is also - in general, the effect shown in the hair ... two. In the joint system, the capillary tube and the bonding wire are connected to each other. At this time, avoid! The capillary tube and the bonding wire continuously scratch the bonding wire, so that the inner wall of the capillary is attached to the hair in the aforementioned region, and is processed in the manner of the conventional =. The surface of the wire has only the handle. Covered layer::, - owe you such as buckle, KC guard depth r right repeat most - people such as more than 5mm long span of the soul of the soul of the anchor $ 蛀 迷 迷 毛细管 capillary and the joint contact The area of the capillary is abraded. As a result, sharp concavities and convexities are generated in this area. As a result, the scratch formed by the capillary * ^ ^ will pay attention to the surface of the wire. This is also hardened by the coating of palladium. In the present invention, in the above-mentioned alloy layer provided on the surface of the coating layer, the concentration of silver in the alloy layer is increased, so that suppression can be suppressed. The sharp twins as described above are in the above-mentioned silver and palladium «, and the silver and strontium are homogeneously mixed in a manner called full-rate solid solution. When the concentration is high, the capillary is in contact with the bonding wire. : Domain 1 convex: t priority helps to deform As described above capable of suppressing the sharp "Health. The effect obtained as described above is a case where the silver concentration is 20% to 17 201205695, more preferably 30% or more. Further, if the silver concentration is 7〇% or more, the true sphericality or dimensional accuracy of the ball portion is not sufficiently obtained for the above reasons. Further, it was found that in the above-mentioned silver and alloy layer, if the silver concentration in the alloy layer forms A 20% in _L, the effects as described below are also obtained. Incidentally, if it is a conventional technique in which a bonding wire having only a palladium-containing coating layer is formed on a surface of a core wire made of steel or a copper alloy, if a ball portion having a diameter larger than 30 (four) is formed at the tip end of the bonding wire, There are cases where a number of directly controlled bubbles of the number ^ are generated on the surface of the ball. This system is related to the miniaturization and high functionality of recent electronic devices. In other words, in order to support the miniaturization and high functionality of the electronic device, the semiconductor device is also miniaturized and can be made. However, in the bonding wire, the area of the bonding portion is reduced, and the ball formed at the leading end of the wire is reduced. In the past, even if the ball portion of the diameter is small, the bubble unit of the diameter is recently produced. The micro-β of the number (4) as described above is also formed in the ball portion of the diameter of the two main 〇" m or more, because the ball control is larger, so the joint area is also inevitably larger, as above; So far it has not been specifically regarded as a problem. However, in the recent smaller ball portion having a diameter larger than 3 〇, the joint area (4) is ll A, and B is also reduced in the sag. Therefore, even if it is a joint strength of the upper joint portion which is not problematic Or long-term reliability / ', docking questions. It became known that it was asked to ask the inventor and other regulations such as μ _ interest. That is, the existing portion of the bubble is often the surface of the surface of the ball, which is formed in the deserted region where the wire is segregated to form a new layer in the formation of the ball, and is enclosed by the organic matter in this region by 18 201205695. gas. On the other hand, in the case of silver in a certain concentration or higher, the surface of the coating layer containing the coating layer contains a concentration of palladium which is not formed when the spherical portion is formed. Therefore, in the concentrated bonding wire of the present yttrium silver ternary alloy, if it is the concentrated region, the risk of skin protection and skin encapsulation due to organic matter becomes small, so even if it is formed, for example, more than 30// M-like comparisons, in the case of the ball that is widely recognized by the ancients, can also inhibit the occurrence of gas. That is, if this is 2. More than %, it is possible to obtain the effect of the silver in the alloy of silver and the alloy, and if it is more preferably 30% or more, the effect is more advanced. The method for measuring the thickness and composition of the coating layer and the alloy layer is a method in which one side of the surface of the bonding wire is digging in the depth direction by the bismuth ore method, or a line under the section of the connecting wire to the interface wire. Analysis or point analysis is more effective in the method of measuring the side of the surface. If the depth of the measurement is increased, the measurement time will be too expensive. The latter's line analysis or point analysis is based on the entire section of the section of the Tang Dynasty, the right to the Α - cloth or several. The confirmation of the reproducibility of the niche is more advantageous than Di Yi Fang A. In the section of the joint wire, although the line analysis is more: when the right side of the wire is to be used to improve the analysis accuracy, the analysis interval of the narrow line analysis, or the point analysis after zooming in the area to be analyzed in detail is also effective. The thickness of the alloy layer is grouped by the surface in the depth direction

成分析而銀的濃;f! n。/ |V u A 為10/D以上的部分的距離(深度)。此外, 被覆層的厚度係由成為前述合金層之厚度的界面在深度方 向進行.、且成刀析而鈀的濃度A 5 以上的部分的距離(深 又)、等刀析所使用的分析裴置而言,可利用βρΜA (電 19 201205695 子線微分析,Electron Probe Micro Analysis)、EDX(能 量为散型 X 線分析,Energy Dispersive X-Ray Analysis)、 AES( & 傑電子分光法,Auger Electron Spectroscopy)、 TEM(透過型電子顯微鏡,Transmission Electron ^^(^〇%〇1)6)等。若上述任一方法所得之厚度或組成在本發 明之範圍内,即可得本發明之作用效果。 為了確保如上所述之在鈀鑛敷引線框架上的良好楔形 接合性與抗氧化性之兩者,另外亦滿足後述的迴路特性, 發明人等發現將導線表面的結晶方位、導線表面的硬度、 或芯線中的添.加元素的種類與組成設為特定的範圍的接合 導線乃較為有效。 關於導線表面的結晶方位,係以在前述合金層的表面 、。aB粒之中,以對<1〇〇>結晶方位的拉線方向的斜率為無或 小者為更佳。具體而言,若前述斜率為15度以下、將結晶 粒的面積設為50%以上、1〇〇%以下,即使在進行逆打接合 時,亦在迴路表面不易產生皺痕,因此較佳,更佳為若形 成為m以上、100%以下,其效果更加提高,故更加良好: 其中,在此的皺痕係在形成迴路時所產生的表面的微小損 傷或凹凸的總稱。結果’在例如近來逐漸增加& 2nd接合 :電極進行球接合,在lst接合用電極進行楔形接合二 此可抑制迴路高度而使晶片的薄型化更加容易。 順帶—提’在如上所述之逆打接合中,首先,在ist 接合用電極進行球接合’將所接合的球正上方的接 切斷·,+祕 灸,在2nd接合用電極進行球接合,最後對之前 20 201205695 所製作的1st接合用電極上的球部進行楔形接合。在該1st 接合用電極進行球接合之後,在將球正上方的接合導線切 斷時,若對接合導線施加較大撞擊,會在接合導線的表面 產生皺痕。此外,因元件的使用所造成的加熱與隨著元件 的停止而冷卻至室溫的熱疲勞經長期間施加於元件時,會 有該皺痕加速發生龜裂的情形。 本發明人等精心研究結果,判明出導線表面(合金層) 的結晶方位與該皺痕不良相關連,該方位如〈丨丨“結晶方位 所代表,若為強度高但是缺乏延展性的方位時,會顯著發 生皺痕。本發明人等更加不斷研究的結果,判明出為了抑 制該鈹痕’在導線表面中減小對<100>結晶方位的拉線方向 的斜率,若欲將該斜率為15度以下之結晶粒的面積形成為 50%以上,可確保足以抑制皺痕的延展性。但是,若該斜率 為15度以下之結晶粒的面積未達5⑽’並無法獲得如上所 示之效果。在此’對在前述合金層的表面所觀察的結晶粒 的<100>結晶方位的拉線方向的斜率係可利用設置在聊 觀察裝置中的微小區域X線法或電子背向散射繞射 (EBSD,Electron Backscattered D,ffract1〇n)^ 定。其中亦以EBSD法係具有觀察個別結晶粒的方位 示相鄰測定點間的結晶方位的角度差的特徵, 合導線般的細線’亦可較為簡便且精度佳地觀^ 斜率’故較為理想。此外’該斜率為15度以下之結曰曰曰、 面積係藉由微小區$ X線法,根據各自的結晶粒二::: 方位的X線強度而作為結晶方位的體積 的〜日 个么出,而且 21 201205695 可藉由々EBSD法而由前述所觀察到的個別結晶粒的方位來 J接計算。為了計算前述面積的比率,觀察導線表面的任 二始將與接合導線的拉線方向呈垂直的方向的長度為接 ^導線的直徑的至少1/4的長度,接合導線的拉線方向的 長度形成為至少1GMra的面,將其觀察面積設為⑽形 成為該斜率為15度以下之結晶粒所佔面積的百分率。若以 ^述任一方法所得之厚度或組成在本發明之範圍内,即可 得本發明之作用效果。 關於導線表面的結晶方位,前述合金層的表面結晶粒 中’以對<111>結晶方位的拉線方向的斜率為無或較小者為 較佳。具體而言,若將前述斜率為15度以下之結晶粒的面 積設為60%以上、10⑽以下,即使在進行3〇〇ym&上的高 迴路高度的特殊接合時,由於不易發生被稱為傾斜不良之 在與接合方向呈垂直的方向迴路傾倒的不良情形,故為較 佳,若更佳為70%以上、1 〇〇%以下,由於其效果更加提高, 故為更佳。此係因為若該方位在<1U>結晶方位或其附近, 則材料的強度或彈性率會變高之故。本發明人等更加反覆 研究的結果,判明出為了抑制傾斜不良的發生率,若在導 線表面中減小對<111>結晶方位的拉線方向的斜率,而將該 斜率為15度以下的結晶粒的面積形成為40%以上,可確保 足以抑制傾斜不良的發生率的強度以及彈性率。但是,若 該斜率為15度以下、結晶粒的面積未達5〇%,抑制傾斜不 良的發生率的效果並不充分。在此,對在前述合金層的表 面所觀察的結晶粒的<111〉結晶方位的拉線方向的斜率係 22 201205695 可利用設置在TEM觀察裝置中的微小區域χ線法或電子背 向散射繞射(EBSD,Electron Backscattered Diffracti〇n) 法等來進行測定。其中EBSD法亦具有觀察個別的結晶粒的 方位,可圖示相鄰測定點間的結晶方位的角度差的特徵, 即使為如接合導線般的細線,亦可較為簡便且精度佳地觀 察結晶粒的斜率’故較為理想。此外,該斜率為15度以下 之結晶粒的面積係可在微小區域χ線法中根據各自的結晶 粒中的結晶方位的χ線強度作為結晶方位的體積比率而求 出,此外在EBSD法中,可由在前述中所觀察到的個別結晶 拉的方位直接計算。計算前述面積的比率時,觀察導線表 面的任意面,在與接合導線的拉線方向呈垂直的方向將接 合導線的直徑的至少1/4的寬幅,在接合導線的拉線方向 至少的長度的面,將該觀察面積設為1〇〇, 該斜率為15度以下之結晶粒所佔面積的百分率。若以上十 任-方法所得之厚度或組成在本發明之範圍: 明之作用效果。 』^于本發 關於導線表面的硬度,甚义 u 度力將别述導線表面的邊耶硬产 (MeyeWss)設為0.2〜2爲的範圍,即使在又 級的迴路南度的低迴路接合時,亦可抑制被稱 : 的不良情形的發生,故為更佳。 貝傷 該頸部損傷係指球部與母線部的交 損傷,當以極端低的迴路高 域(頌告Π中的 、峪间度形成迴路時,會 過度的負擔所產生的不良情形。在近來的己以施加 型電子謝,為了儘量將記憶體的容量大憶體等薄 201205695 。在如上所示之薄 局度’因此以往容 用搭載有複數牧薄型矽晶片的薄型元件 型疋件中,由於必然性地必須降低迴路 易發生前述頸部損傷。 發明人等發現,清楚可知上述頸部損傷的發生係與導 線表面的硬度密切相關’藉由降低該硬 、: 接合時對頸部供予過度的負 氐33 貝何表面亦可塑性變形,可抑 :頸部:傷。具體而言’藉由將前述接合導線的表面的邊 人道綠从* 了传上述效果。但是,若前述接 。導線的表面的邊耶硬度超過2 〇Gpa,形成為與通常的銀 ^金相等的硬度,若在低迴路接合時對頸部供予過度的負 荷時,表面層無法充分塑性變形,並無法獲得前述效果。 另方面右則述接合導線的表面的邊耶硬度未達 〇.2Gpa,由於硬度過小,因此在接合導線的處理過程中容 易在導線表面發生損傷,會有依處理方法而發生多處表面 損傷的情形。在此,所謂邊耶硬度係指使用鋼球或超硬合 金球的壓頭所計測的硬度,指將利用壓頭而在試驗面附加 凹部時的負載除以永久凹部的直徑的投影面積所得的值, 該值具有應力的次元。若使用被稱為奈米壓痕法的物質表 面的解析手法,亦可測定丨nm左右的深度中的邊耶硬度, 因此在確認本發明之邊耶硬度值時,以使用奈米壓痕法為 佳。此外,接合導線的表面的邊耶硬度係以奈米壓痕法來 測疋具有合金層及被覆層的接合導線的最表面所得者。其 中,0.2〜2_〇GPa的邊耶硬度係相當於大概5〇〜57〇Hv的 維氏硬度。 24 201205695 Μ於心線中的添加元素的種類與組成,本發明之芯線 係由銅或銅合金所成者,但是在前述芯線亦可在未損及本 發明之作用效果的範圍内添加各種添加元素。以可添加在 該芯線之元素之例而言,列舉Ca、Β、Ρ、Al、Ag、Se等。 在該等添加元素之中,以含有B、p、Se中的至少i種為更 佳右該添加元素總計含有5〜300質量ppm,接合導線的 強度會更加提升。結果,例如即使在進行超過5mm的迴路 長度的長形迴路接合時亦可確保迴路的直進性。此係因為 該添加7L素有助於芯線中的銅結晶粒内的固溶強化或結晶 ♦界的強化之故。但是,若前述添加元素的漠度未達5質 里ppm ’並無法獲得上述強度更加提升的效果。另一方面, *引述添加元素的浪度超過質量由於使球部過 度硬化,因此會有在球接合時使晶片損傷的危險性增高而 較不理想的情形。關於分析怒線中的成分含有量的手法, 將接合導線切斷,一面由其剖面部藉由濺鍍等朝深度方向 下挖一面分析的手法、或該剖面下的線分析或點分析乃為 有效在削者一面下挖一面測定的手法中,若測定深度變 大'則疋時間會過於耗費。後者的線分析或點分析的優點 在於。彳面全體的濃度分布或數個部位的重現性的確認等較 為谷易。在接合導線的剖面,線分析較為簡便,但是若欲 使刀析的精度提升時,縮窄線分析的分析間隔,或放大尤 /、欲詳細分析的區域之後再進行點分析亦為有效。以該等 刀析所使用的分析裝置而言’可利用ΕΡΜΑ、EDX、AES、TEM 等 此外’在平均組成的調查方面,由表面部階段性以酸 25 201205695 等藥液將接合導線溶解,而由該溶液中所含有的濃度求出 溶解部位的組成的手法亦為可能。若以上述任一方法所得 之厚度或組成在本發明之範圍内,可得本發明之作用效果。 以上敘述本發明之較佳例,惟本發明可適當變形。例 如,亦可在前述芯線與前述被覆層之間形成擴散層。例如, 含有鈀的區域與前述被覆層接續,前述鈀或構成芯線的銅 擴散而含有未達50%的鈀的擴散層。由於存在如上所示之 擴散層,接合導線係可提升被覆層與芯線的密接性。 接著,針對在前述被覆層的表面具有含有金與鈀的合 金層的構成的接合導線加以說明。該合金層係在前述被覆 層之上更加具有1〜80nm的厚度者。此係因楔形接合性受 到離接合導線的最表面為3nm左右的區域的物性值支配之 故。亦即,離導線的最表面為至少lnm的區域,較佳為離 接合導線的最表面為3nm的區域若為金與鈀的合金,使其 楔形接合在鈀鍍敷引線框架上時,構成導線的最表面的合 金層中的金會朝向鈀鍍敷引線框架上的鈀優先擴散,在接 合導線與鈀鍍敷引線框架之兩者之間容易形成新的合金 層。藉此,本發明之接合導線係與鈀鍍敷引線框架的楔形 接合性提升,例如2nd剝離強度會變得良好。此係因為金 與鈀之間的相互擴散會比鈀的自我擴散更快所致。但是, 若該合金層的厚度未達lnm,屬於接合導線之基底的被覆 層會影響前述楔形接合性,因此無法確保與把鑛敷引線框 架的楔形接合性。此外’若該合金層的厚度未& 3⑽,屬 於接合導線《基底的被覆層對前述横形接合性造成不良影 26 201205695 響的危險性並非為零,會 險,因此以更佳為將前、fr 效果變得不穩定的風 更佳為將4厚度設為-以 件別述效果,前述含有金 〜马了獲 特別限制。為了將前述合 並…、 為後述的電解㈣為在大電為超過8Gnm’若 1右為錢法為長時間,分料行金鍍敷或金蒸鑛之後, '、須另外將後述加熱製程中 的高溫,變得不易確伴稃定的:度形成為超過70°°c 疋的品質,因此將該合金的厚度 的上限δ又為80nm以下。且φ 人人 ,、中,。金的厚度係以將上限設為 5〇nm以下為更佳。若 勹 、田 限β又為50nm以下,.可將該加埶 /亚度形成為600t〜650°C之故。 、此外,為了獲得由前述含有金與纪的合金層所得之上 、〇果及σ金層中之金的組成(金濃度)必須在特定的範 圍具體而言,若前述含有金與免的合金層中的金漢度為 15%以上、75%以了’更佳為以上、75%以下,可更加提 高與^述1巴鍍敷引線框架的楔形接合性。若前述金濃度未 達15:’並無法獲得前述效果。相反地,若前述金濃度超 過75%,在導線前端形成球部時含有金與鈀的前述合金層 中的金會優先溶融,藉此使形成變形的球部的危險性增 加因此較不佳。此與如前所述,在將導線前端以電弧輪 入”、、進行加熱熔融時,以熱傳導率較低的金(3i7w/m· 谷易封入熱,金會優先熔融,相對於此,以熱傳導率較高 的銅(4 01 W / m · K )則容易排熱,而銅僅有一部分溶融有所 關連。相對於此,若該合金層中的金濃度為75%以下,在 27 201205695 ==合金層由於金與'均質混合,因此在導線前端 ;、料金優先炼融,ϋ沒有形成變形的球部的 危險!·生不會有損及球部的真球性或尺寸精度的情形。此 外’若前述金濃度為15%以上、未達4Q%,球部的真球性或 尺寸精度會變得更加良好,故為較佳。 匕在本發明之接合導線中,係在由銅或鋼合金所 成之心線的表面具有特定厚度的含鈀的被覆層在該被覆 層的表面具有特定厚度與特定組成的含有金與鈀的合金 層藉此可提供一種把鑛敷引線框架上的良好㈣接合 性,確保抗氧化性以及耐硫化性,而且將銅或銅合金作為 芯線的廉價的接合導線。 被覆層以及合金層的厚度與組成的測定係使用一面由 接合導線的表面藉由濺鍍法朝深度方向下挖一面分析的手 法、或在接合導線的剖面的線分析或點分析的方法。在此, 合金層的厚度係自表面朝深度方向進行組成分析*金的濃 度為15%以上的部分的距離(深度)。此外,被覆層的厚度 係由成為前述合金層的厚度的界面朝深度方向進行組成分 析而鈀的濃度為50%以上的部分的距離(深度)。以該等分 析所使用的分析裝置而言,可利用EPMA(電子線微分析,Into the analysis and the concentration of silver; f! n. / |V u A is the distance (depth) of the part above 10/D. In addition, the thickness of the coating layer is the distance (depth) of the portion which is formed in the depth direction by the interface which is the thickness of the alloy layer, and which is formed into a platen concentration A 5 or more, and the analysis used for the analysis. For example, βρΜA (Electron Probe Micro Analysis, Electron Probe Micro Analysis), EDX (Energy Dispersive X-Ray Analysis), AES ( & Jay Electron Spectrometry, Auger) Electron Spectroscopy, TEM (Transmission Electron Microscope, Transmission Electron ^^ (^〇%〇1) 6), and the like. If the thickness or composition obtained by any of the above methods is within the range of the present invention, the effects of the present invention can be obtained. In order to ensure both the good wedge bondability and the oxidation resistance on the palladium-coated lead frame as described above, and also satisfying the loop characteristics described later, the inventors have found that the crystal orientation of the wire surface, the hardness of the wire surface, It is also effective to use a bonding wire in which the type and composition of the additive element in the core wire are set to a specific range. Regarding the crystal orientation of the surface of the wire, it is on the surface of the aforementioned alloy layer. Among the aB particles, it is more preferable that the slope in the direction of the line direction of the crystal orientation of <1〇〇> is none or less. Specifically, when the slope is 15 degrees or less and the area of the crystal grains is 50% or more and 1% by weight or less, even when the reverse bonding is performed, wrinkles are less likely to occur on the surface of the circuit, which is preferable. More preferably, it is more preferably m or more and 100% or less, and the effect is further improved. Here, the wrinkles are a general term for minute damage or unevenness of the surface generated when the circuit is formed. As a result, for example, the bonding of the electrodes is gradually increased, and the bonding of the electrodes is performed, and the bonding of the electrodes for lst bonding is performed. This suppresses the height of the circuit and makes the thickness of the wafer easier. By the way, in the reverse bonding as described above, first, the ball is joined by the ist bonding electrode, and the ball is joined immediately before the ball to be joined, and the ball is bonded to the 2nd bonding electrode. Finally, the ball portion on the 1st bonding electrode fabricated in the previous 20 201205695 is wedge-bonded. After the ball joint of the 1st bonding electrode is performed, when the bonding wire directly above the ball is cut, if a large impact is applied to the bonding wire, wrinkles are formed on the surface of the bonding wire. Further, when the heating due to the use of the element and the thermal fatigue which is cooled to room temperature with the stop of the element are applied to the element over a long period of time, the wrinkles are accelerated and cracked. The inventors of the present invention have carefully studied the results and found that the crystal orientation of the wire surface (alloy layer) is associated with the wrinkle defect, which is represented by the "丨丨" crystal orientation, and if it is high in strength but lacks ductility. Wrinkles are remarkably observed. As a result of further research by the present inventors, it has been found that in order to suppress the slope, the slope of the wire direction of the <100> crystal orientation is reduced in the surface of the wire, and the slope is desired. When the area of the crystal grains of 15 degrees or less is 50% or more, the ductility sufficient to suppress wrinkles can be ensured. However, if the area of the crystal grains having a slope of 15 degrees or less is less than 5 (10)', the above-described one cannot be obtained. Effect: Here, the slope of the linear direction of the <100> crystal orientation of the crystal grains observed on the surface of the aforementioned alloy layer can be determined by a small-area X-ray method or electron backscattering provided in the viewing device. Diffraction (EBSD, Electron Backscattered D, ffract1〇n) is determined. The EBSD method also has the feature of observing the angular difference of the crystal orientation between adjacent measurement points by observing the orientation of individual crystal grains. The wire-like thin wire 'is also simpler and more accurate to see the slope', so it is ideal. In addition, the slope is 15 degrees or less, and the area is determined by the micro-area $ X-ray method. The crystal grain two::: the X-ray intensity of the orientation is taken as the volume of the crystal orientation, and 21 201205695 can be calculated by the 々EBSD method from the orientation of the individual crystal grains observed as described above. In order to calculate the ratio of the aforementioned area, it is observed that the length of the surface of the wire which is perpendicular to the direction of the wire of the bonding wire is at least 1/4 of the diameter of the wire, and the length of the wire in the direction of the wire. The surface formed into at least 1 GMra, and the observed area thereof is (10) is a percentage of the area occupied by the crystal grains having a slope of 15 degrees or less. If the thickness or composition obtained by any of the methods is within the scope of the present invention, The effect of the present invention is obtained. Regarding the crystal orientation of the surface of the wire, it is preferable that the slope of the surface crystal grain of the alloy layer is not or less than the slope in the direction of the line direction of the crystal orientation of <111>. Specifically, when the area of the crystal grain having the slope of 15 degrees or less is 60% or more and 10 (10) or less, even when special bonding of a high loop height at 3 〇〇 ym & It is preferable that the tilting failure is caused by the fact that the circuit is tilted in a direction perpendicular to the joining direction, and more preferably 70% or more and 1% by weight or less, which is more preferable because the effect is further improved. If the orientation is at or near the crystal orientation of the <1U>, the strength or the modulus of elasticity of the material is increased. As a result of repeated studies, the inventors have found that in order to suppress the incidence of tilt failure, The slope of the pulling direction of the crystal orientation of the <111> is reduced in the surface, and the area of the crystal grain having the slope of 15 degrees or less is formed to be 40% or more, thereby ensuring the strength and elasticity sufficient to suppress the incidence of the tilt failure. rate. However, if the slope is 15 degrees or less and the area of the crystal grains is less than 5 %, the effect of suppressing the incidence of poor tilt is not sufficient. Here, the slope of the linear direction of the <111> crystal orientation of the crystal grains observed on the surface of the alloy layer 22 201205695 can be determined by a micro-region χ line method or electron backscattering provided in the TEM observation apparatus. The measurement was carried out by a diffraction (EBSD, Electron Backscattered Diffracti〇n) method or the like. The EBSD method also has the feature of observing the orientation of individual crystal grains, and can show the difference in the angular difference of the crystal orientation between adjacent measurement points. Even if it is a thin wire such as a bonding wire, the crystal grain can be observed simply and accurately. The slope 'is ideal. Further, the area of the crystal grains having a slope of 15 degrees or less can be obtained by the volume ratio of the ridge line strength of the crystal orientation in the crystal grain as the crystal orientation in the micro area rifling method, and in addition, in the EBSD method. It can be directly calculated from the orientation of the individual crystal pulls observed in the foregoing. When calculating the ratio of the aforementioned area, observing any surface of the surface of the wire, at least 1/4 of the diameter of the bonding wire in a direction perpendicular to the direction of the wire of the bonding wire, at least the length in the direction of the wire of the bonding wire The face is set to 1 〇〇, and the slope is a percentage of the area occupied by the crystal grains of 15 degrees or less. The thickness or composition obtained by the above ten methods is within the scope of the invention: 』^ In this issue, regarding the hardness of the surface of the wire, the U-force of the wire is set to a range of 0.2 to 2 for the surface of the wire, even in the low-circuit junction of the circuit of the re-stage. In addition, it is also preferable to suppress the occurrence of a bad condition called ":". Bell injury The neck injury refers to the damage caused by the ball and the busbar. When the loop is in an extremely low loop, it will cause an excessive burden when the loop is formed. Recently, in order to apply the type of electrons to the electrons, in order to maximize the memory capacity, the memory is as thin as 201205695. In the thinness degree shown above, it has been used in a thin component type device equipped with a plurality of thin-grained wafers. Since it is inevitable that the circuit is liable to reduce the neck damage, the inventors have found that it is clear that the occurrence of the neck injury is closely related to the hardness of the surface of the wire. By reducing the hardness, the neck is supplied at the time of joining. Excessive negative 氐 33 Behe surface can also be plastically deformed, which can be suppressed: neck: injury. Specifically, 'the above effect is transmitted by the side of the surface of the bonding wire from the human body. However, if the above is connected. The surface has a side hardness of more than 2 〇Gpa and is formed to have the same hardness as the usual silver metal. If the neck is subjected to an excessive load during low-circuit bonding, the surface layer cannot be sufficiently plastically deformed. The shape is not able to obtain the aforementioned effect. On the other hand, the surface hardness of the surface of the bonding wire is less than 22 Gpa. Since the hardness is too small, it is easy to damage the surface of the wire during the process of bonding the wire, and there is a treatment. In the case where a plurality of surface damages occur, the term "edge hardness" refers to the hardness measured by the indenter of the steel ball or the super hard alloy ball, and refers to the load when the concave portion is added to the test surface by the indenter. The value obtained by the projected area of the diameter of the permanent recess, which has a stress dimension. If the surface of the material called the nanoindentation method is used, the edge hardness in the depth of about 丨nm can also be measured. Therefore, when confirming the side hardness value of the present invention, it is preferable to use a nanoindentation method. Further, the edge hardness of the surface of the bonding wire is measured by a nanoindentation method to bond the alloy layer and the coating layer. The outermost surface of the wire is obtained. Among them, the side hardness of 0.2~2_〇GPa is equivalent to the Vickers hardness of about 5〇~57〇Hv. 24 201205695 Types and groups of added elements in the heart line In the core wire of the present invention, the core wire is made of copper or a copper alloy. However, the core wire may be added with various additives in a range that does not impair the effects of the present invention. In addition, Ca, Β, Ρ, Al, Ag, Se, and the like are listed. Among the added elements, at least i selected from the group consisting of B, p, and Se is more preferable, and the added element contains 5 to 300 ppm by mass in total. The strength of the bonding wire is further increased. As a result, for example, the straightness of the loop can be ensured even when a long loop of a loop length of more than 5 mm is performed. This is because the addition of 7 liters contributes to the copper crystal grains in the core. The solid solution strengthening or the strengthening of the crystallization boundary. However, if the intrinsic added element does not reach the ppm of 5 masses, the above-mentioned strength is not improved. On the other hand, *When the wave content of the additive element exceeds the mass, the ball portion is excessively hardened, so that the risk of damage to the wafer during ball bonding is increased, which is less desirable. Regarding the method of analyzing the content of the component in the anger line, the method of cutting the joint wire and cutting it in the depth direction by sputtering or the like, or the line analysis or the point analysis under the section is In the method of effectively digging one side of the shaver, if the depth of measurement is increased, the time will be too expensive. The advantage of the latter's line analysis or point analysis is that. The concentration distribution of the entire kneading surface or the reproducibility of several parts is more convenient than that of the grain. In the section of the bonding wire, the line analysis is relatively simple, but if the accuracy of the knife analysis is to be improved, the analysis interval of the narrow line analysis, or the amplification of the area to be analyzed in detail, is also effective. In the analysis device used for the knife analysis, 'the 可, EDX, AES, TEM, etc. can be used. In addition, in the investigation of the average composition, the bonding wire is dissolved by the liquid phase such as acid 25 201205695 in the surface portion. A method of determining the composition of the dissolved portion from the concentration contained in the solution is also possible. If the thickness or composition obtained by any of the above methods is within the scope of the present invention, the effects of the present invention can be obtained. The preferred embodiments of the present invention have been described above, but the present invention can be suitably modified. For example, a diffusion layer may be formed between the core wire and the coating layer. For example, a region containing palladium is connected to the coating layer, and the palladium or copper constituting the core wire is diffused to contain a diffusion layer of less than 50% of palladium. Due to the presence of the diffusion layer as shown above, the bonding wire can improve the adhesion of the coating layer to the core. Next, a bonding wire having a structure in which an alloy layer containing gold and palladium is provided on the surface of the coating layer will be described. The alloy layer has a thickness of 1 to 80 nm on the coating layer. This is because the wedge bondability is governed by the physical property value of the region where the outermost surface of the bonding wire is about 3 nm. That is, a region of at least 1 nm from the outermost surface of the wire, preferably a region of 3 nm from the outermost surface of the bonding wire, if it is an alloy of gold and palladium, is wedge-bonded to the palladium-plated lead frame to form a wire. The gold in the outermost alloy layer preferentially diffuses toward the palladium on the palladium plated leadframe, and a new alloy layer is easily formed between the bond wire and the palladium plated lead frame. Thereby, the bonding property of the bonding wire of the present invention to the palladium-plated lead frame is improved, and for example, the 2nd peel strength becomes good. This is because the interdiffusion between gold and palladium is faster than the self-diffusion of palladium. However, if the thickness of the alloy layer is less than 1 nm, the coating layer which is the base of the bonding wire affects the aforementioned wedge-shaped bondability, so that the wedge-shaped bondability with the coated lead frame cannot be ensured. In addition, if the thickness of the alloy layer is not & 3(10), it belongs to the bonding wire. The coating layer of the substrate has a bad effect on the above-mentioned transverse jointability. The danger of ringing 2012 201295 is not zero, it is dangerous, so it is better to be ahead. It is more preferable that the wind in which the fr effect becomes unstable is set to have a thickness of 4, and the above-mentioned effect of containing gold to horse is particularly limited. In order to combine the above, the electrolysis (4) described later is that when the electric power is more than 8 Gnm', if the right method is a long time, and the gold plating or gold steaming is performed, the heating process will be described later. The high temperature is not easily determined. The degree is formed to a quality exceeding 70 ° C. Therefore, the upper limit δ of the thickness of the alloy is 80 nm or less. And φ everyone, middle,. The thickness of gold is preferably set to an upper limit of 5 〇 nm or less. If the 勹 and the field limit β are 50 nm or less, the twist/sub-degree can be formed to be 600 t to 650 ° C. In addition, in order to obtain the composition (gold concentration) of gold in the upper, the capsule and the σ gold layer obtained from the above-mentioned alloy layer containing gold and gold, it is necessary to be in a specific range, specifically, the aforementioned alloy containing gold and free The degree of gold in the layer is 15% or more, and 75% is more preferably more than 75%, and the wedge-shaped bondability with the 1 bar plating lead frame can be further improved. If the aforementioned gold concentration is less than 15:', the aforementioned effects cannot be obtained. On the other hand, if the gold concentration exceeds 75%, the gold in the alloy layer containing gold and palladium preferentially melts when the ball portion is formed at the tip end of the wire, whereby the risk of forming the deformed ball portion is increased, which is less preferable. As described above, when the tip end of the wire is arc-in, and the heat is melted, gold having a low thermal conductivity (3i7w/m·valley is easily sealed with heat, and gold is preferentially melted. Copper with a high thermal conductivity (4 01 W / m · K ) is easy to remove heat, while copper has only a part of the melting is related. In contrast, if the gold concentration in the alloy layer is 75% or less, at 27 201205695 ==The alloy layer is mixed with gold and 'homogeneously, so it is at the front end of the wire; the material gold is preferentially smelted, and there is no danger of forming a deformed ball portion. · The life will not damage the true sphericality or dimensional accuracy of the ball. In addition, if the gold concentration is 15% or more and less than 4Q%, the true sphericality or dimensional accuracy of the ball portion is further improved, so that it is preferable in the bonding wire of the present invention. Or a palladium-containing coating layer having a specific thickness on the surface of the core of the steel alloy, having a specific thickness and a specific composition of an alloy layer containing gold and palladium on the surface of the coating layer, thereby providing a coating on the lead frame Good (four) bondability to ensure oxidation resistance and resistance Chemically, and copper or copper alloy is used as an inexpensive bonding wire for the core wire. The thickness and composition of the coating layer and the alloy layer are measured by using a surface of the bonding wire by a sputtering method to dig in the depth direction. Or a method of line analysis or point analysis of a cross section of a bonding wire. Here, the thickness of the alloy layer is a distance (depth) of a portion where the concentration of gold is 15% or more from the surface toward the depth direction. The thickness of the coating layer is a distance (depth) of a portion in which the composition of the thickness of the alloy layer is analyzed in the depth direction and the concentration of palladium is 50% or more. The analysis device used for the analysis can be used. EPMA (Electronic Line Microanalysis,

Electron Probe Micro Analysis)、EM(能量分散型 χ 線 刀析,Energy Dispersive X-Ray Analysis)、AES(歐傑電 子分光法,Auger Electron Spectroscopy) ' TEM(透過型 電子顯微鏡,Transmission Electron Microscope)等。若 以上述任一方法所得之厚度或組成在本發明之範圍内可 28 201205695 得本發明之作用效果。 入為了確保如上所述之鈀鍍敷引線框架上的良好楔形接 合性與抗氧化性之兩者,此外亦滿足後述的迴路特性發 ::人等發現將導線表面的結晶方位、導線表面的硬度、或 芯線中的添加元素的種類與組成設為特定範圍的接合導 極為有效。 ’ 關於導線表面的結晶方位,前述合金層的表面結晶粒 之中對<111>結晶方位的拉線方向的斜率為無或較小者為 較佳。具體而言’若將前述斜率為15度以下之結晶粒的面 積设為6G%以上、觀以下,即使在進行_“以上的高 迴路高度的特殊接合時,亦不易發生被稱為傾斜不良之: 與接合方向呈垂直的方向發生迴路傾倒的不良情形,若更 佳為形成4 m以上、議以下’可更加提高其效果:此 係因為若該方位在<ln>結晶方位或其附近時,材料的強度 或彈性率會變高之故。本發明人等更加不斷研究的結果^ 判明出為了抑制傾斜不良的發生率,減小在導線表面中對 <m>結晶方位的拉線方向的斜率,若將該斜率為u度以 下之結晶粒的面積設為60%以上’可確保足以抑制傾:不 良的發生率的強度以及彈性率。但是,若該斜率為Η度以 下結晶粒的面積為未達60%’抑制傾斜不良的發生率:效 果並不充分。在此,對在前述合金層的表面所觀察的結晶 粒的〈ιη>結晶方位的拉線方向的斜率係可利用設置在谓 觀察裝置中的微小區域X線法或電子背向散射繞射 (EBSD,EIectron Backscattered Diffracti〇n)法等來進 29 201205695 行測定。其中,EBSD法亦具有觀察個別結晶粒的方位,可 圖示相鄰測定點間的結晶方位的角度差的特徵,即使為如 接合導線般的細線,亦可較為簡便且精度佳地觀察結晶粒 的斜率,故較為理想。此外’該斜率為15度以下之結晶粒 的面積係可藉由微小區域X線法而根據各自結晶粒中的結 晶方位的X線強度作為結晶方位的體積比率而求出,此外 可藉由EBSD法而由在前述所觀察到的個別結晶粒的方位 來直接進行計算。在計算前述面積的比率時,將導線表面 的任意面,與接合導線的拉線方向呈垂直的方向的長度為 接合導線的直徑的至少1/4的長度,接合導線的拉線方向 的長度設為至少100㈣的面進行觀察,將該觀察面積設為 H)。,設為該斜"15度以下之結晶粒所佔面積的百分 若:上述任一方法所得之厚度或組成在本發明之範圍 内’可得本發明之作用效果。 關於導線表面的硬度,若骆1 ^ n 9 . 夺則述導線表面的邊耶硬度 〜2. 0GPa的範圍’即使在8。 低迴路接合時,亦抑制被稱為广度的 生,MU M貝傷之不良情形的發 該頬部損傷係指球部與母 損傷’當以極端低的迴路&^的父界區域(頸部)中的 過度的負擔所產生的不良情…、 會對頭部施加 型電子機g Φ . 在近來的快閃記憶體等薄 子機'中,為了儘量將記憶體的容量大容㈣ , 用搭載有複數枚薄型矽晶 -量化,而使 型元件中,由於必然性二Γ 。在如上所示之薄 、必頊降低迴路高度,因此以往容 30 201205695 易發生前述頸部損傷。 發明人等發現,清楚可知上述 負邛才貝傷的發生係與導 線表面的硬度密切相關,藉由降低該硬度即使在低迴路 接合時對頸部供予過度的負# ’表面亦可塑性變形,可抑 制頸部損傷。具體而言,藉由將前述接合導線的表面的邊 耶硬度設為2. OGPa以下,可充分獲得上述效果。但是,若 前述接合導線的表面的邊耶硬度超過2· 0Gpa,形成為與通 常的銀合金㈣的硬1 ’若纟低迴路接合時對頸部供予過 度的負荷時’纟面層無法充分塑性變形,並無法充分獲得 前述效果。另一方面,若前述接合導線的表面的邊耶硬度 未達〇.2GPa,由於硬度過小,因此在接合導線的處理過程 中谷易在導線表面發生損傷,會有依處理方法而發生多處 表面損傷的情形。在此,所謂邊耶硬度係指使用鋼球或超 硬合金球的壓頭所計測的硬度,指將利用壓頭而在試驗面 附加凹部時的負載除以永久凹部的直徑的投影面積所得的 值,該值具有應力的次元。若使用被稱為奈米壓痕法的物 質表面的解析手法,亦可測定1 nm左右的深度中的邊耶硬 度’因此在確認本發明之邊耶硬度值時,以使用奈米屢痕 法為佳。此外,接合導線的表面的邊耶硬度係以奈米壓痕 法來測定具有合金層及被覆層的接合導線的最表面所得 者。其中’ 0. 2〜2. OGPa的邊耶硬度係相當於大概50〜 570Hv的維氏硬度。 關於芯線中的添加元素的種類與組成,本發明之芯線 係由銅或銅合金所成者,但是在前述芯線亦可在未損及本 31 201205695 發明之作用效果的範圍内添加各種添加元素。以可添加在 該芯線之元素之例而言,列舉Ca、B、P、A1、Ag、Se等。 在該等添加元素之中,以含有B、P、Se中的至少1種為更 佳。若該添加元素總計含有5〜3〇〇質量ppm,接合導線的 強度會更加提升。結果,例如即使在進行超過5min的迴路 長度的長形迴路接合時亦可確保迴路的直進性。此係因為 該添加元素有助於芯線中的銅結晶粒内的固溶強化或結晶 粒界的強化之故。但是,若前述添加元素的濃度未達5質 •s ppm,並無法充分獲得上述強度更加提升的效果。另一 方面,若前述添加元素的濃度超過3〇〇質量ppm,由於.使 球4更加硬化,因此會有在球接合時使晶片損傷的危險性 增高而較不理想的情形。在分析芯線中的成分含有量時, 係使用將接合導線切斷,—面由其剖面部藉由濺鑛等朝深 度方向下挖_面分析的手法、或該剖面下的線分析或點分 析的手法1該等分析所使用的分析裝置而言,可利用 _、而、廳、葡等。此外,在平均組成的分析方面, 亦可使用由表面部階段性以酸等藥液將接合導線溶解,而 由該溶液t所含有的濃度求出溶解部位的組成的手法。若Electron Probe Micro Analysis), EM (Energy Dispersive X-Ray Analysis), AES (Auger Electron Spectroscopy) 'TEM (Transmission Electron Microscope). If the thickness or composition obtained by any of the above methods is within the scope of the present invention, 28 201205695, the effects of the present invention can be obtained. In order to ensure both good wedge-bonding property and oxidation resistance on the palladium-plated lead frame as described above, it also satisfies the loop characteristics described later: People have found the crystal orientation of the wire surface and the hardness of the wire surface. Or, the type and composition of the added elements in the core wire are extremely effective in the bonding guide of a specific range. Regarding the crystal orientation of the surface of the wire, it is preferable that the slope of the direction of the crystal direction of the <111> crystal orientation among the surface crystal grains of the alloy layer is none or less. Specifically, when the area of the crystal grain having the slope of 15 degrees or less is set to 6 G% or more, or less, even when special bonding of the above high circuit height is performed, it is less likely to be called a poor tilt. : A problem occurs in which the circuit is tilted in a direction perpendicular to the joining direction. If it is more preferable to form 4 m or more, the following effect can be further improved: this is because if the orientation is in the vicinity of the <ln> crystal orientation or The intensity or the modulus of elasticity of the material becomes high. The results of the present inventors have further studied and found that in order to suppress the incidence of poor tilt, the direction of the line of the <m> crystal orientation in the surface of the wire is reduced. If the slope of the crystal grain having the slope of u or less is 60% or more, the strength and the modulus of elasticity which are sufficient to suppress the incidence of the pour failure are ensured. However, if the slope is a crystal grain of a degree below the twist The area is less than 60%. The incidence of suppressing the tilting failure is not sufficient. Here, the diagonal direction of the crystal orientation of the crystal grains observed on the surface of the alloy layer is inclined. It can be measured by a small area X-ray method or an electron backscattered diffraction (EBSD, EIectron Backscattered Diffracti〇n) method, etc., which is set in the observation apparatus, and the EBSD method also has an observation of individual crystal grains. The orientation is such that the angular difference of the crystal orientation between adjacent measurement points can be illustrated, and even if it is a thin wire such as a bonding wire, the slope of the crystal grain can be observed easily and accurately, which is preferable. The area of the crystal grains having a slope of 15 degrees or less can be obtained by the micro-area X-ray method based on the X-ray intensity of the crystal orientation in the respective crystal grains as the volume ratio of the crystal orientation, and can be determined by the EBSD method. The calculation is performed directly on the orientation of the individual crystal grains observed as described above. When calculating the ratio of the aforementioned areas, the length of any surface of the wire surface perpendicular to the direction of the wire of the bonding wire is the diameter of the bonding wire. At least 1/4 of the length, the length of the bonding wire in the wire drawing direction is at least 100 (four), and the observation area is H). "Percentage of area occupied by crystal grains below 15 degrees: The thickness or composition obtained by any of the above methods is within the scope of the present invention. The effect of the present invention can be obtained. Regarding the hardness of the surface of the wire, if Luo 1 ^ n 9 . The edge of the wire is 硬度 硬度 〜 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线 导线It refers to the bad condition caused by the excessive burden in the ball and the mother's injury in the parental area (neck) of the extremely low circuit & ^, and the type of electronic machine g Φ is applied to the head. In a thin-film machine such as a flash memory, in order to maximize the capacity of the memory (4), a plurality of thin-type twins are used to quantify, and in the type of components, the inevitability is second. In the thinness shown above, it is necessary to reduce the height of the circuit. Therefore, the conventional neck 30 201205695 is prone to the aforementioned neck damage. The inventors have found that it is clear that the occurrence of the above-mentioned negative scallops is closely related to the hardness of the surface of the wire, and by lowering the hardness, even if the surface of the neck is excessively negative, the surface of the neck can be plastically deformed. Can inhibit neck damage. Specifically, the above effect can be sufficiently obtained by setting the edge hardness of the surface of the bonding wire to 2.0 GGPa or less. However, when the side surface hardness of the surface of the bonding wire exceeds 2.0 GPa, it is formed so that the hard surface of the normal silver alloy (four) is excessively applied to the neck when the circuit is joined with a low load. Plastic deformation does not fully achieve the aforementioned effects. On the other hand, if the surface hardness of the surface of the bonding wire is less than GP2 GPa, since the hardness is too small, the valley is liable to be damaged on the surface of the wire during the process of bonding the wire, and there are multiple surface damages depending on the treatment method. The situation. Here, the side hardness refers to the hardness measured by the indenter using a steel ball or a super hard alloy ball, and is obtained by dividing the load when the concave portion is added to the test surface by the indenter by the projected area of the diameter of the permanent concave portion. A value that has a dimension of stress. When the surface of the material called the nanoindentation method is used, the edge hardness in the depth of about 1 nm can be measured. Therefore, when the edge hardness value of the present invention is confirmed, the nano-duplication method is used. It is better. Further, the edge hardness of the surface of the bonding wire was obtained by measuring the outermost surface of the bonding wire having the alloy layer and the coating layer by the nanoindentation method. Wherein '0. 2~2. OGPa's side hardness is equivalent to a Vickers hardness of about 50 to 570Hv. Regarding the type and composition of the additive element in the core wire, the core wire of the present invention is made of copper or a copper alloy. However, the above-mentioned core wire may be added with various additive elements within a range that does not impair the effects of the invention of the present invention. Examples of the elements which can be added to the core wire include Ca, B, P, A1, Ag, Se, and the like. Among these added elements, at least one selected from the group consisting of B, P and Se is more preferable. If the added element contains a total of 5 to 3 Å by mass, the strength of the bonding wire is further enhanced. As a result, for example, the straightness of the loop can be ensured even when the long loop of the loop length of more than 5 minutes is engaged. This is because the added element contributes to solid solution strengthening or strengthening of crystal grain boundaries in the copper crystal grains in the core. However, if the concentration of the aforementioned additive element is less than 5 mass s ppm, the above-mentioned strength is not sufficiently obtained. On the other hand, if the concentration of the additive element exceeds 3 〇〇 mass ppm, the ball 4 is hardened more, so that the risk of damage to the wafer during ball bonding is increased, which is less desirable. When analyzing the content of the component in the core wire, the method of cutting the joint wire, the surface from which the face is cut by the splash or the like, or the line analysis or the point analysis under the profile is used. Method 1 For the analysis device used in the analysis, _, 、, 厅, 葡, etc. can be used. Further, in the analysis of the average composition, it is also possible to use a method in which the bonding wire is dissolved in a surface portion by a chemical solution such as an acid, and the composition of the dissolved portion is determined from the concentration contained in the solution t. If

以上述任-方法所得之厚度或組成在本發明 得本發明之作用效果。 圍内T 以上敘述本發明之較佳例,惟本發明可適當變形。 :’亦可在前述芯線與前述被覆層之間形成擴散層。例女 區域與前述被覆層接續,前述免或構成芯線的 擴放而含有未請的絶的擴散層。由於存在如上所干 32 201205695 擴散層,接合導線係可提升被覆層與芯線的密接性。 以下針對本發明之接纟導線之製造方法,言兒明—, f先’針對在前述被覆層的表面具有含有銀與八 金層的構成的接合導線之製造方法加以說明。 、5 為了製造前述組成的接合導線,以高純 99. 99%以上)、戋兮耸古奸电认 、’又的銅(純度 成該專南純度的銅與添加元素原 料進行秤量後,將1在高直_ 叶為出發原 U同真二下或虱或Ar等 加熱而溶解,藉此獲得銅或銅合金的晶鍵。使用:圍乳下 具將該晶鍵拉線至最終所需芯線的直徑為止製模 纪的被覆層係在拉線至最終芯線的直徑為之含 加。以形成含把的被覆層的丰 被施The thickness or composition obtained by any of the above methods gives the effects of the present invention in the present invention. The preferred embodiment of the present invention is described above, but the present invention can be suitably modified. : ' A diffusion layer may be formed between the core wire and the coating layer. The female area is connected to the coating layer, and the above-mentioned exemption or expansion of the core wire contains an undesired diffusion layer. Due to the presence of the 32 201205695 diffusion layer as described above, the bonding wire can improve the adhesion of the coating layer to the core wire. Hereinafter, a method for producing a bonding wire according to the present invention will be described, and a method of manufacturing a bonding wire having a structure including silver and an octagonal layer on the surface of the coating layer will be described. 5, in order to manufacture the above-mentioned composition of the bonding wire, high purity 99.99% or more, 戋兮 古 古 古 、 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ( ( ( ( ( ( ( ( ( ( ( ( 1 in the high straight _ leaves are the original U with the true two or 虱 or Ar or other heating to dissolve, thereby obtaining the crystal bond of copper or copper alloy. Use: the underarms to pull the crystal bond to the final need The diameter of the core wire is adjusted to the diameter of the wire to the final core wire to form a coating layer containing the coating layer.

η 而言,係可利用電解护I 無電解鍍敷、蒸鍍法等。其中_ 鍍數、 解鑛敷為在工業上最為理想。 =工制膜厚的電 形成由銀與飽所成合金。該方法 月]述破覆層的表面 成前述被覆層之後,另外在二為任何方法,例如在形 膜,以-定的爐内溫度在電氣爐中面作為表皮層而形成銀 你电轧爐中,將導線在一 連續掃掠,藉此促進合金化的方 疋迷度下 成與厚度,故較為理想。具體而言, 金的級 硫化一面確實進行前述合金化,為了面防止氧化或 u 在 18(Tc 〜21(Γρ 〜24小時的加熱即可。以在前述被覆層的表 二5 膜的手法而言,係可利用電解铲畆 九成銀 等。此時亦基於上述理由而利用^無電解錢敷、蒸链法 扪用電解鍍敷乃在 為理想。供前述合金化之用的加熱時,係考廣到 硫化,而將爐内的雾圍氣形成為t 1谷易破 或Ar等惰性.雾圍氣,此 201205695 外,不同於習知之接合導線 七一 4 啄的加熱法,將該雾圍氣中所含 有的硫黃濃度設為900ΡΡΠ1以τ。β 乂下。更佳為若在惰性氣體中至 &gt;混入1 ΟΟρρηι氫等還原性氣 a ^ t 乳體時’防止導線硫化的效果會 更加提高,故為較佳。最佳 ^ ^ , 马為了儘可能避免硫黃等雜質 氣體由裝置外部被帶入, A. y 右在分圍氣爐(第一雾圍氣爐)的 外側另外設置另外1層的筮_册 第—分圍氣爐時,即使在第二雾 圍氣路中由外部混入微量雜 .0 重雜質乳體’該等雜質氣體亦無法 輕易到達第一雰圍氣爐,姓a ^ 、 文為車乂佳。此外,爐内的適當溫 X雖然亦依導線的組成戋播括道&amp; 取飞婦掠導線的速度而異,但是若設 為大概2,C〜觀的範圍,可得穩定品質的接合導線, 故為較佳。接著’在拉線製程中掃掠導線的速度係若設為 例如40〜80m/min丈士 丄 左右時,由於可穩定作業,故為較佳。 在本發明之接合導線之製造方法中,對〈祕結晶方位 線方向的斜率為1 5度以下之結晶粒的面積為50%以 上、職以下的製造方法係難以以平常的製造方法予以製 造’而以特殊的方法予以製造。 具體而言,在以前述要領獲得晶鍵後,在前述晶鍵與 上述同樣地形成含鈀的被覆層。此外在其上與上述同樣地 =成銀膜。將形成前述被覆層與銀膜的晶鍵,使用金屬製 模具拉線至最終芯線的直徑為止時,以線徑80㈣以上的 粗細’將前述模具的縮面率設為u〜m左右進行拉線, 未達線徑80 &quot; m的粗細中的拉線時係將前述縮面率以7〜 m左右之比平常為更大的縮面率進行拉線。藉此,可使銀 膜上具有方向性的集合組織(結晶方位在拉線方向呈一致 34 201205695 -的集合組織)發達。但是,若以較大縮面率進行拉線時 生斷線的危險性會變高,因此為了防止接合導線斷線 線速度係以形成為例如4〜化、…平常更為 較佳。在本接合導線中,亦在拉線後與前述同樣地進行促 進合金化的熱處理。在拉線後促進合金化的熱處理製 的溫度若為低溫’對&lt;100&gt;結晶方位的拉線方向的 15度以下之結晶粒的面積的比例會變高,若為高溫,該面 積的比例會降低。該面積的降低若因為在該製 被促進再結晶化時,前 σ '、、、而 】戍杲〇組織中的方向性變得容易失 之故。具體而言,若前述爐内溫度為23〇〇c〜⑽。C,^ 述面積的比例成為簡’若前述爐内溫度為68(TC〜72: C的範圍’前述面積的比例成為50%左右,前述面積的比 例係可利用熱處理的溫度來控制。 在本發明之接合導線之製造方法中,設為對〈⑴〉結晶 的拉線方向的斜率為15度以下之結晶粒的面積為50% :上、100%以下的製造方法係難以以平常的製造方法予以 裏造,而以特殊的方法予以製造。 σ在以則述要領獲得晶錠後,在前述晶錠盥 上述同樣地形成含把的被覆層。另外在其上與上述同樣地 成銀膜㈣成有前述被覆層與銀膜的晶鍵,使用金屬 模具拉線至最終芯線的直徑為止時,若為線徑以 上的粗細’係將前述模具的縮面率形成為20〜謝右來 以上'未達15〇㈣的粗細係 、别返模具的縮面率形成為與18〜19%左右稱大地進行拉 35 201205695 線,未達線徑80 // πι之粗細的拉線時係形成為前述縮面率 而再次使用20〜22%左右的高的值。藉此,可使銀膜上具 有方向性的集合組織(結晶方位在拉線方向呈一致的集合 .卫織)發達。但疋,若以較大縮面率進行拉線時,發生斷線 的危險性會變高,因此為了防止接合導線的斷線,拉線速 度係以例如1〜3m/ min之比平常更為低速為較佳。在本接 合導線中,亦在拉線後,與前述同樣地進行促進合金化的 熱處理。在拉線後促進合金化的熱處理製程中的溫度,若 為低/孤,對&lt; 1 〇 〇 &gt;結晶方位的拉線方向的斜率為1 $度以下 之結晶粒的面積的比例會變高,#為高溫,則該面積的比 例會降低。該面積的降低若因為在該製程中加熱而被促進 再結晶化時,前述集合組織中的方向性變得容易失去所 致。具體而言’若前述爐内溫度為68Gt〜72代,前述面 積的比例成為50% ’若前述爐内溫度為72〇&lt;t〜74(rc的範 圍,前述面積的比例成為超過5〇%、未達7〇%,若前述爐内 /皿度為740 C〜750C的範圍’前述面積的比例成為7〇%以 上,前述面積的比例係、可利用熱處理的溫度來控制。 在本發明之接合導線之製造方法中,被覆層的表面的 邊耶更度為〇. 2〜2. 〇GPa的範圍的接合導線之製造方法係 難乂 乂平韦的製造方法來進行製造’ @以特殊的方法,將 :線表面的銀與鈀的合金特別軟化地加以製造。具體而 ° X上述任何方法拉線至目的線徑為止,前述供合金化 之用的‘、’、處理製程結束後,另外,可將該接合導線按每個 置在被控制在氬雾圍氣的電氣爐中,在〜t 36 201205695 下加熱2 0〜2 4小b#也、任&gt; _ β j時來進仃製造。若為比15CTC為更低溫或 比20 J、時為更紐時間的加熱’並無法將銀與鈀的合金特別 軟化成如上述硬度般。若進行比2。。。。為更高溫或比24小 時為更長時間的加熱,鄰導線間的擴散被促進,會有導 線彼此緊貼在一起的情形。 接著,針對在前述被覆層的表面具有含有金與銳的合 金層的構成的接合導線之製造方法加以說明。 為了製造前述纟且成的接合導線’以高純度的銅(純度 99. 99/β以上)、或該等高純度的銅與添加元素原料為出發原 料進订秤量後,將其在高真空下或氮或Ar等惰性零圍氣下 加熱而洛解’ ϋ此獲得銅或銅合金的晶錠。使用金屬製模 具將該晶錠拉線至最終所需芯線的直徑為止。本發明之含 鈀的被覆層係在拉線至最終芯線的直徑為止之後再被1 加。以形成含鈀的被覆層的手法而言,係可利用電解鍍敷^ 無電解鍍敷、蒸鍍法等。其中以利用可穩定控制膜厚的電 解鐘敷為在卫業上最為理想。之後,在前述被覆層的表面 形成含有金與鈀的合金層。該方法可為任何方法例如在 形成前述被覆層之後…卜在其表面作為表皮層而形成金 膜’以—定的爐内溫度在電氣爐中,將導線在—定速产 連續掃掠,藉此促進合金化的方法可確實控制該合金的組 成與厚度’故較為理想。具體而言1 了-面防:氧化1 面確實進行前述合金化,以在16(TC〜i9(rc進行16〜^ 小時的加熱即可。以在前述被覆層的表面另外形成金膜的 手法而言,係可利用電解鍍敷、無電解鍍―々 療錄法等。 31 201205695 此時亦基於上述理由而利用電解鍍敷乃在工業上為最為理 想❹供前述合金化之用的加熱時,係考慮到原料的污染, 而將爐内的雰圍氣形成為氮或Ar等惰性雰圍氣,此外,不 同於習知之接合導線的加熱法,將該雾圍氣中所含有的氧 濃度設為5000ppm以下。更佳為若在惰性氣體中至少混入 500PPm氫等還原性氣體時,防止導線的原料污染的效果會 更加提高,故為較佳。此外’爐内的適當溫度雖^亦依導 線的組成或掃掠導線的速度而異,但是若設為大概21〇它 〜7〇〇t:的範圍,可得敎品f的接合導線,故為較佳。接 著’在拉線製程中掃料線的速度係若設為例如20〜4〇„ /min左右時,由於可穩定作業,故為較佳。 在本發明之接合導線之製造方法中,對〈仙結晶方位 的拉線方向的斜率$ 15度以下之結晶粒的面積為50%以 上、簡以下的製造方法係難以以平常的製造方法予以製 造,而以特殊的方法予以製造。 具體而言’在以前述要領獲得晶鍵後,在前述晶鍵 上述同樣地形成含鈀的被覆層。另外在其上與上述同樣 形成金膜。將形成有前述被覆層與金臈的晶錠,使用金 製模具拉線至最終芯線的直徑為止時,若為線徑150&quot; 上的粗細’係將前述模具的縮面率形成為i4〜2i%左右 2^,料線徑未達15〜的粗細的拉線時係將前」 # ; M 12〜19%左^之大於平常的縮面率來進行拉線 可使金I具有方向性的集合組織(結晶方位在拉矣 方向呈—致的集合組織)發達。但是,若以較大縮面率㈣ 38 201205695 拉線時’發生斷線的危險性會變冑,因此為了防止接合導 線的斷線,拉線速度係以例如2〜4111/隱之比平常更為低 速為較佳。在本接合導線中,亦在拉線後,與前述同樣地 進行促進合金化的熱處王里。在拉線後促進合金化的熱處理 製程中的溫度,若為低溫,對&lt;111;&gt;結晶方位的拉線方向的 斜率為1 5纟以下之結晶粒的面積的比例會變高,若為高 溫,則該面積的比例會降低。該面積的降低若因為在該製 耘中加熱而被促進再結晶化時’前述集合組織中的方向性 變得容易失去所致。具體而纟,若前述爐内溫度為21〇&lt;t 〜260°C,前述面積的比例成為1〇〇%,若 峨〜戰的範圍,前述面積的比例成為二皿:: 述面積的比例係可利用熱處理的溫度來控制。 ,在本發明之接合導線之製造方法中’被覆層的表面的 邊耶硬度為0.2〜2.0GPa的範圍的接合導線之製造方法係 難以以平常的製造方法來進行製造,@以特殊的方法,將 導線表面的金與鈀的合金特別軟化地加以製造。具體而 言,以上述任何方法拉線至目的線徑為止,前述供合金化 之用的熱處理製程結束後,另外’可將該接合導線按每個 捲軸设置在被控制在於氬混Α 4%的氫的雰圍氣的電氣爐 中’在130〜l8rc下加熱24〜28小時來進行製造。若為 比13(TC為更低溫或比24小時為更短時間的加熱並無法 將金與鈀的合金特別軟化成如上述硬度般。若進行比1 °C為更為高溫或比2 8小時為更長時間的加熱,相鄰導線間 的擴散被促進’會有導線彼此緊貼在一起的情开),因此必 39 201205695 須要注意。 【實施例】 以下針對實施例加以說明。 首先,針對在前述被覆層的表面具有含有銀與絶的人 金層的構成的接合導線之製造例及其評估加以說明。 。以接合導線的原材料而言,分別倩妥純度為99.99質 量%以上的素材’成為芯線所使用的銅、作為芯線t的添加 疋素的B、P、Se ' Ca、A1、被覆層所使料把、表皮層所 使用的銀。以前述的銅、或以銅與添加元素原料為出發原 ;秤量後,將其在咼真空下加熱溶解而得銅或銅合金的 直徑Hnm左右的晶錠。之後,進行鍛造、壓延、拉線而製 作出預定直徑的導線。之後,在各導線的表面以電解鍍敷 形成含鈀的被覆層。在此,前述被覆層的厚度係在電解鍍 敷的時間内進行控制。之後,在前述被覆層的表面以電氣 又敷形成銀膜,在被保持在3 0 0〜8 0 0。(:的爐内將該導線以 /min的速度連續掃掠,藉此在前述被覆層的表面形成 銀x、鈀的合金層。在此,合金層的厚度係以前述銀膜的目 測篁’亦即電氣鍍敷時間來進行控制。如上所示獲得直經 為20以m的接合導線。其中,在一部分的試料中,為了控 制對&lt; 10 〇 &gt;結晶方位的拉線方向的斜率為丨5度以下之結晶 粒的面積’若為線徑8 0 &quot; m以上的粗細,將前述模具的縮 面率形成為13〜18%左右來進行拉線,在線徑未達8〇#m 的粗細的拉線時’係將前述縮面率以8〜12%左右之大於平 常的縮面率來進行拉線。此外,在一部分的試料中,為了 201205695 —控制被覆層的表面的邊耶硬度,將該接合導線按每個捲細 設置在被控制在氬雾圍氣的電氣爐中,在15〇〜2〇〇。匸下 行2 0〜2 4小時的加熱。 完成的該接合導線中的怒線的直徑、被覆層及合金層 的厚度係將接合導線的表面一面進行滅鑛一面以aes進行 分析’此外’將該接合導線作剖面研磨,—^ m分^ 組成-面進行敎。㈣的濃度&amp; 5_上、而且銀的濃 度未達10%的區域作為被覆層,在位於被覆層表面之含有 銀與鈀的合金層中,係將銀濃度為10〜70%的範圍的區域 作為合金層。將被覆層及合金層的厚度及組成分別記載於 表1〜5 ° 為了評估藉由被覆層所得之接合導線的氧化防止效 果,在濕度為85%、溫度為85。(:的高溫高濕爐中將接合導 線按每個捲軸放置72小時,進行促進導線表面氧化的加速 試驗。加熱後,由高溫高濕爐中取出接合導線,以光學顯 微鏡觀察表面氧化程度。此時,若導線表面的全面氧化, 以X δ己號,若導線表面的一部分氧化,以△記號,若導線表 面未氧化,以〇記號,標記在表丨、5中的「長期保管(氧 化)」的攔位。 為了評估藉由被覆層所得之接合導線的硫化防止效 果’在大氣雾圍氣下溫度被保持在1 9 5 °C的高溫爐中,將 接合導線按每個捲軸放置1 5 5小時,進行促進導線表面辟 化的加速試驗。如前所述在大氣雾圍氣中以高溫放置時’ 即使為在大氣中所含有的極微量硫黃,亦可加速硫化反 41 201205695 應。加熱後,由高溫爐中取出接合導線,以市面販售的色 彩計(Minolta CR-300)觀察表面硫化程度,若明度([幻為 30以下,視為硫化,若超過3〇且為4〇以下為實用上不 會有障礙的位級,將超過40設為較佳位級。此時,若在導 線表面觀察到硫化部,以x記號,若為在實用上不會有障礙 的位級,以△記號,若導線表面未硫化,以〇記號,標記 在表1、5中的「長期保管(硫化)」的搁位。 在接合導線的連接係使用市面販售的自動導線接入 器。在接合瞬前藉由電弧放電而在接合導線的前端製作: 部,但是其直徑係以成為接合導線的直徑的17倍的方式 形成為34 // πι。球部製作時的雾圍氣形成為氮。 球部的實際直徑係使用SEM來測定各球部各2〇個, 最大值與最小值的差若超過球徑平均值的ι〇%,視為不 激烈而為不良’以x,若超過5%且為1〇%以下,則視為中 程度,以△,若為超過3%且為5%以下,則沒有實用上的 良情形’視為良好’以〇,若為3%以下,視為極為良好 以◎’標記在们、5中的「氣中FAB真球性」的搁位。 此外’以SEM觀察球部,若在其外觀發現氣泡,在 卜5中的「氮中FAB氣泡抑制」的欄位記載該内容 將各球部每1 〇個作立丨而 u作面研磨而以光學顯微鏡觀察, 面部未觀察到氣泡,為極為良好,以◎◎記號,若10個| 僅在1 2個球部被觀察到氣泡,為良好,以◎記j Η個中僅在3〜4㈣部被觀㈣氣泡,為用上^ 問題的位級,以。叩躲 t 號’右10個中僅在5個球部被觀察! 42 201205695 氣泡’為在實用上可容許的位級,以△記號,若iG個中在 6個以上的球部被觀察到氣泡,為差劣,以X記號,記載在 表卜5中的「氮中FAB氣泡抑制」㈣位。 以接合導線的接合對象而言’分別使用形成在Si晶片 上之厚度l//m的A1電極、及表面為銀或鈀鍍敷引線框架 的引線。將所製作的球部血士也 /、D .&lt;、、至260°C的前述電極作球 接合之後’將接合導線的母線部與加熱至Μ。。。的前述引 線作楔形接合,再次製作球部,藉此連續反覆接合。迴路 長成為4 · 9 πππ。其中,則— 刀別在一部分的試料中係進行:迴 路長為約lmm的前述逆打接合,在其他試料中係進行迴路 二二約說8 一 12mil),迴路長為約-的前述高迴 令人 W其他試料中係進行迴路長為約,迴路 二 ⑴的低迴路接合,在再另外其他試料 '、狀路長為5.3_⑵〇ro⑴的長形接合。 關於接合導線的楔形接合性, 方抓捏經楔形接人的狀能M J用在楔形接合部正上 ㈣接口的狀癌的接合導線 為止’讀取在其切斷時所得的破裂 方上舉至切斷 測定法,來測^條破裂負載(剝離㈣的剝離強度 標準偏差超過_,必須大幅改善 ^右剝離強度的 過_且為6mN以下,為在實 容因此以X’若為超 若為5〜,由於在實用上沒有較二的位級’以△, 標記在表之「Ag々F2nd接合二因此以〇’ 框架的引線)以及「Pd切㈤接二(:為銀鍍數5丨線 框架的引線)的欄位。 〇」(右為鈀鍍數弓|線 43 201205695 在此’以光學顯微鏡觀察是否因毛細管而在迴路產生 損傷。所觀察到的迴路條數為2〇條,若連1條都沒有損傷, 極為良好以◎◎記號,僅在1〜2條迴路被觀察到損傷時, 為良好’以◎記號’僅在3〜4條迴路被觀察到損傷時,為 實用上沒有問題的位級,以〇記號,僅在5條迴路被觀察 到損傷時,為在實用上可容許的位級,以△記號,若6條 以上的迴路被觀察到損傷,為差劣,以χ記號,標記在表丄、 5的「損傷抑制」的欄位。 在前述被覆層的表面所觀察之對結晶粒之〈1〇〇&gt;結晶 方位的拉線方向的斜率係以EBSD法觀察個別結晶粒的方 位之後再進行計算。在進行料算時,在與接合導線的拉 線方向呈垂直的方向具有8&quot;m的寬幅,將在接合導線的拉 線方向具有150㈣的長度的面,各試料均各觀察3視野。 將該值記載於表2〜4的「對〈歸結晶方位的拉線方向的 斜率為15度以下之結晶粒的面積」的欄位。 對在前述被覆層的表面所觀察之結晶粒的⑴卜結晶 万位的拉線方向的斜率 漏法觀察到個別結晶粒 的拉後方 行計H進行料料4與接合導線 的拉2 =直的方向具有^的寬幅,將在接合導線 野。龄舒 ^的長度的面’各試料均各觀察3視 二==二2〜4的「對—結晶方位的拉線方 如儿 °日日粒的面積」的攔位。 在則述逆打接合後之接 以光學顯心μ 9n 導線表面的皺痕係各試料均 兄”迴路,若連1條都沒有皺痕,極為 44 201205695 良好以◎◎記號’僅在1〜2條迴路被觀察到皺痕時,為良 好以@6己號,僅在3〜4條迴路被觀察到皺痕時,為實用 上沒有問題的位級,以〇記號,若在5條迴路被觀察到敏 痕’為差劣’以X記號,標記在表2〜4的「逆打敵痕抑制」 的棚位。 在前述高迴路接合後之接合導線表面的傾斜不良係各 試料均以光學顯微鏡觀察2G條迴路,若連1條都沒有傾斜 不良’極為良好以◎◎記號’僅在卜2條迴路被觀察到傾 斜不良時,為良好,以◎記號’僅在3〜4條迴路被觀察到 傾斜不良時,為實用上沒有問題的位級,以〇記號 5條迴=被觀察到傾斜不良,為差劣,以χ記號,標記在表 的「面迴路傾斜抑制」的攔位。 導線表面的邊耶硬度係藉由奈㈣痕法,卩h =精度進行測定’將該值記載於表3〜4 面的邊耶硬度」的欄位。 扪表 ::述低迴路接合後之頸部中有無損傷 好 察2°條迴路,若連1條都沒有損傷,極為良 為’右在20條中有1〜2條迴路被觀察到損傷, 為-有問相位級,以〇記號,若在 觀察到損傷,為差劣,以χ記號,標記二3::上被 76.2//m(3m⑴級低迴路頭部損傷」的搁位。4的 關於前述長形接合後之迴路的, 定各試料的迴路2〇條。在此,將 *影機來測 得的值設為導線彎曲率:勺值除以迴路長度所 右未達4%,邦斷為極為良好,以 45 201205695 ◎記號,若為4〜5%, 以〇記號,若超過5%, 判斷為在實用上沒有問題的位級, 則判斷為不良, 表4的「5. 3mm(210mil)級長形彎曲」的欄位 以X記號,標記在 金層的構成的接合導線之塑诰相丨Bη . 針對在前述被覆層的表面具有含有金與鈀In the case of η, electrolytic plating, electroless plating, vapor deposition, or the like can be used. Among them, _ plating number and demineralization are the most ideal in the industry. = The electrical thickness of the film thickness is alloyed by silver and saturating. In the method, the surface of the fracture layer is formed into the coating layer, and in addition, in any method, for example, in the film, the surface of the electric furnace is used as a skin layer to form a silver layer. In the middle, it is preferable to sweep the wire in a continuous manner, thereby promoting the alloying and the thickness of the alloy. Specifically, the gold is gradually vulcanized while the alloying is performed, and in order to prevent oxidation or u at 18 (Tc to 21 (heating of Γρ to 24 hours), in the method of the film of the second layer of the coating layer. In other words, it is preferable to use electroless shovel, sputum, sputum, silver, etc., and it is preferable to use electroless plating or steaming method for electrolytic plating for the above reasons. The method is widely used for vulcanization, and the fog entrainment in the furnace is formed into a t1 valley brittle or inert inert gas such as Ar. This 201205695 is different from the conventional heating method of the bonding wire VII 4 ,. The concentration of sulfur contained in the mist enclosure is set to 900 ΡΡΠ 1 to τ.β 乂. More preferably, if it is mixed with a reducing gas a ^ t emulsion such as 1 ΟΟρρηι hydrogen in an inert gas, 'to prevent the vulcanization of the wire. The effect will be further improved, so it is better. The best ^ ^, horse in order to avoid as much as possible the sulfur and other impurity gases are brought in by the outside of the device, A. y right in the divided gas furnace (first fog gas furnace) On the outside, when another 1 layer of 筮_册第分分分炉炉, The second mist is surrounded by a small amount of miscellaneous impurities. The heavy impurities are not easily reachable to the first atmosphere gas furnace. The surname is a ^ and the text is good. In addition, the proper temperature in the furnace is X. Although it depends on the composition of the wire, the speed of the wire is different from that of the flying wire. However, if it is set to a range of about 2, C to 2, a stable quality bonding wire can be obtained, which is preferable. When the speed of sweeping the wire in the wire drawing process is, for example, about 40 to 80 m/min, it is preferable because it can be stably operated. In the method of manufacturing the bonding wire of the present invention, The area in which the slope of the orientation direction is 15 degrees or less is 50% or more, and the manufacturing method below the service level is difficult to manufacture by a usual manufacturing method, and is manufactured by a special method. Specifically, After obtaining a crystal bond, a palladium-containing coating layer is formed in the same manner as described above, and a silver film is formed in the same manner as described above. A crystal bond of the coating layer and the silver film is formed, and a metal mold is used. Pull the wire to the final core When the diameter of the wire is up to the thickness of 80 (four) or more, the shrinkage ratio of the mold is about u~m, and the wire is not drawn to the wire diameter of 80 &quot; m. The face ratio is drawn at a ratio of about 7 to m, which is usually a larger shrinkage ratio. Thereby, the directional structure of the silver film can be obtained (the crystal orientation is uniform in the direction of the pull line 34 201205695 - the collective organization) It is developed. However, if the risk of breaking the wire is increased when the wire is pulled at a large shrinkage ratio, it is more preferable to prevent the wire breakage speed from being formed, for example, to be 4, for example. In the present bonding wire, heat treatment for promoting alloying is also performed in the same manner as described above after the wire is pulled. The temperature of the heat treatment for promoting the alloying after the wire drawing is a low temperature, and the ratio of the area of the crystal grain of 15 degrees or less in the direction of the line direction of the crystal orientation is increased, and if it is a high temperature, the ratio of the area is high. Will decrease. When the area is lowered, the directionality in the 戍杲〇 ' ', 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Specifically, the temperature in the furnace is 23 〇〇 c to (10). The ratio of the area of the C, ^ is "simplified". If the temperature in the furnace is 68 (the range of TC to 72: C), the ratio of the area is about 50%, and the ratio of the area can be controlled by the temperature of the heat treatment. In the manufacturing method of the bonding wire of the invention, it is difficult to use a usual manufacturing method in a manufacturing method in which the slope of the crystal grain in the direction of the pulling direction of the <(1)> crystal is 15 degrees or less is 50%: upper and lower than 100%. It is made in a special way, and it is manufactured by a special method. σ After the ingot is obtained by the method, the coating layer containing the handle is formed in the same manner as described above, and a silver film is formed in the same manner as described above. When the crystal bond of the coating layer and the silver film is formed and the wire is drawn to the diameter of the final core wire by using a metal mold, the thickness of the mold is set to 20 or more. The shrinkage ratio of the thickness of the mold which is less than 15〇(4) is about 18~19%, and the thickness of the wire is 20,05605695. If the wire diameter is less than 80 // πι, the wire is formed as described above. Reducing the face rate and using 20~22% again The value of the right is high. Thereby, the directional assembly on the silver film (the crystal orientation is uniform in the direction of the pull line. Wei weaving) can be developed. However, if the wire is pulled at a large shrinkage ratio In this case, the risk of disconnection becomes high, and therefore, in order to prevent disconnection of the bonding wires, the wire drawing speed is preferably at a lower speed than, for example, 1 to 3 m/min. In the bonding wire, After the wire is pulled, the heat treatment for promoting alloying is performed in the same manner as described above. The temperature in the heat treatment process for promoting alloying after the wire is pulled, if it is low/orphan, is in the direction of the pull of the &lt;1 〇〇&gt; crystal orientation The ratio of the area of the crystal grain having a slope of 1 deg or less becomes high, and when # is a high temperature, the ratio of the area is lowered. If the decrease in the area is promoted by recrystallization in the process, the aforementioned set The directionality in the structure is easily lost. Specifically, 'If the temperature in the furnace is 68 Gt to 72, the ratio of the area is 50%'. If the temperature in the furnace is 72 〇 &lt; t 〜 74 (rc The range of the aforementioned area becomes more than 5〇 %, less than 7〇%, and the ratio of the aforementioned area in the range of 740 C to 750 C in the furnace is 7 % or more, and the ratio of the area is controlled by the temperature of the heat treatment. In the method of manufacturing the bonding wire, the side of the surface of the coating layer is more 〇. 2~2. The manufacturing method of the bonding wire in the range of 〇GPa is difficult to manufacture. The method is as follows: the alloy of silver and palladium on the surface of the wire is specially softened. Specifically, any of the above methods is drawn to the target wire diameter, and the above-mentioned ',' for the alloying process is finished. In addition, the bonding wires can be placed in an electric furnace controlled by an argon mist, and heated at ~t 36 201205695 for 2 0~2 4 small b#, and then _β j. Manufacturing. If it is a lower temperature than 15CTC or a heating time of more than 20 J, the alloy of silver and palladium cannot be particularly softened to the above hardness. If the ratio is 2. . . . For higher temperatures or for a longer period of time than 24 hours of heating, the diffusion between the adjacent wires is promoted, and there are cases where the wires are in close contact with each other. Next, a method of manufacturing a bonding wire having a structure including gold and a sharp alloy layer on the surface of the coating layer will be described. In order to manufacture the above-mentioned bonding wires, the high-purity copper (purity of 99.99/β or more) or the high-purity copper and the additive element raw materials are used as raw materials, and then they are subjected to high vacuum. Or an inert inert gas such as nitrogen or Ar is heated to solve the problem. Thus, an ingot of copper or copper alloy is obtained. The ingot is drawn to the diameter of the final desired core using a metal mold. The palladium-containing coating layer of the present invention is further added after the wire is pulled to the diameter of the final core. In the method of forming a coating layer containing palladium, electrolytic plating, electroless plating, vapor deposition, or the like can be used. Among them, it is most desirable to use the electrolysis clock which can stably control the film thickness. Thereafter, an alloy layer containing gold and palladium is formed on the surface of the coating layer. The method may be any method, for example, after forming the aforementioned coating layer, forming a gold film on the surface thereof as a skin layer, in order to set the furnace temperature in the electric furnace, and continuously sweeping the wire at a constant speed. This method of promoting alloying can surely control the composition and thickness of the alloy, which is preferable. Specifically, the surface-prevention: the oxidation of the first surface is carried out by alloying, and it is sufficient to heat the film on the surface of the coating layer at 16 (TC to i9). In this case, electrolytic plating, electroless plating, or the like can be used. 31 201205695 At this time, electrolytic plating is also used in the industry for the above-mentioned reason. In consideration of the contamination of the raw material, the atmosphere in the furnace is formed into an inert atmosphere such as nitrogen or Ar. Further, unlike the conventional heating method of the bonding wire, the oxygen concentration in the mist surrounding gas is set to It is more preferably 5000 ppm or less. More preferably, when at least 500 ppm of a reducing gas such as hydrogen is mixed in the inert gas, the effect of preventing contamination of the raw material of the wire is further improved, and it is preferable that the appropriate temperature in the furnace is also dependent on the wire. The speed of composing or sweeping the wire varies, but if it is set to a range of about 21 〜7 〇〇t:, it is better to obtain the bonding wire of the product f. Then, 'sweeping in the wire drawing process The speed of the line is set to, for example, 20 In the method of manufacturing a bonded wire according to the present invention, the slope of the direction of the wire in the direction of the wire is less than 15 degrees, and the area of the crystal grain is less than or equal to 15 degrees. The production method of 50% or more and the following is difficult to manufacture by a usual production method, and is manufactured by a special method. Specifically, after the crystal bond is obtained in the above manner, the crystal bond is formed in the same manner as described above. A coating layer of palladium is formed thereon, and a gold film is formed in the same manner as described above. When the ingot of the coating layer and the gold crucible is formed, and the wire is drawn to the diameter of the final core wire using a gold mold, the wire diameter is 150&quot; The thickness of the mold is such that the shrinkage ratio of the mold is about i2~2i% 2^, and the thickness of the wire is less than 15~, and the length of the wire is greater than usual. The shrinkage rate is used to pull the wire so that the gold I has a directional aggregate structure (the crystal orientation is in the direction of the pull direction). However, if the ratio is larger (4) 38 201205695 when pulling the wire' The risk of disconnection will become paralyzed. In order to prevent disconnection of the bonding wires, the wire drawing speed is preferably, for example, 2 to 411/1, which is lower than usual. In the bonding wire, after the wire is pulled, the alloying is promoted in the same manner as described above. In the heat-receiving section, the temperature in the heat treatment process for promoting alloying after pulling the wire, if it is low temperature, the slope of the crystallographic direction of the crystal orientation of the &lt;111;&gt; The ratio will become high, and if it is high temperature, the ratio of the area will decrease. If the decrease in the area is promoted by recrystallization in the process of heating in the crucible, the directionality in the aggregate structure is easily lost. Specifically, if the temperature in the furnace is 21 〇 &lt; t 260 ° C, the ratio of the area is 1 〇〇 %, and if the range is 峨 战 , , , , , , , , , , , , , , , , , , , , , , , , The ratio can be controlled by the temperature of the heat treatment. In the method for producing a bonding wire according to the present invention, the method for producing a bonding wire having a side edge hardness of 0.2 to 2.0 GPa on the surface of the coating layer is difficult to manufacture by a usual manufacturing method, @ in a special method, The alloy of gold and palladium on the surface of the wire is specially softened. Specifically, after the wire is drawn to the target wire diameter by any of the above methods, after the heat treatment process for alloying is completed, the joint wire can be disposed on each reel at 4% controlled by argon mixing. In an electric furnace of hydrogen atmosphere, it is heated by heating at 130 to 18 rc for 24 to 28 hours. If it is a lower temperature than 13 (TC is a lower temperature or a shorter time than 24 hours, it is not possible to soften the alloy of gold and palladium to a hardness as described above. If it is higher than 1 °C or more than 28 hours For longer periods of heat, the diffusion between adjacent wires is promoted to 'there will be a close relationship between the wires.' Therefore, it is necessary to pay attention to 2012056056. [Examples] Hereinafter, examples will be described. First, a manufacturing example of a bonding wire having a structure including silver and a permanent gold layer on the surface of the coating layer and an evaluation thereof will be described. . In the material of the bonding wire, the material used for the core purity is 99.99% by mass or more, and the copper used for the core wire is added to the B, P, Se ' Ca, A1, and coating layers of the core t. The silver used in the skin layer. The above-mentioned copper or copper and an additive element raw material are used as a starting point; after weighing, it is heated and dissolved under a vacuum of hydrazine to obtain an ingot having a diameter of about 2 nm of copper or a copper alloy. Thereafter, forging, rolling, and drawing are performed to make a wire having a predetermined diameter. Thereafter, a palladium-containing coating layer was formed by electrolytic plating on the surface of each of the wires. Here, the thickness of the coating layer is controlled during the time of electrolytic plating. Thereafter, a silver film is electrically formed on the surface of the coating layer, and is held at 300 to 800. In the furnace, the wire is continuously swept at a speed of /min, thereby forming an alloy layer of silver x and palladium on the surface of the coating layer. Here, the thickness of the alloy layer is determined by the above-mentioned silver film. That is, the electroplating time is controlled. As shown above, a bonding wire having a straight diameter of 20 m is obtained. Among them, in a part of the sample, the slope of the wire direction for controlling the crystal orientation of &lt;10 〇&gt; When the area of the crystal grain of 丨5 degrees or less is the thickness of the wire diameter of 80% or more, the shrinkage ratio of the mold is set to about 13 to 18%, and the wire is pulled, and the wire diameter is less than 8 〇 #m. When the thickness of the wire is pulled, the above-mentioned shrinkage ratio is drawn at a ratio of more than 8 to 12%, which is larger than the normal shrinkage ratio. Further, in some samples, for the control of the surface of the coating layer for 201205695 Hardness, the joint wire is arranged in each coil in an electric furnace controlled by an argon mist, and is heated at 15 〇 2 〇〇 2 〇〇 2 2 〜 2 4 hours. The diameter of the anger line, the thickness of the coating layer and the alloy layer will be bonded On the one side of the surface, the side is destroyed, and the analysis is performed by aes. 'In addition, the jointed wire is subjected to cross-section grinding, and the ^m is divided into the composition-surface to carry out the enthalpy. (4) The concentration &amp; 5_, and the concentration of silver is less than 10%. In the alloy layer containing silver and palladium on the surface of the coating layer, a region having a silver concentration of 10 to 70% is used as the alloy layer. The thickness and composition of the coating layer and the alloy layer are separately described. In Table 1 to 5 °, in order to evaluate the oxidation preventing effect of the bonding wire obtained by the coating layer, the bonding wires were placed on each reel for 72 hours in a high-temperature and high-humidity furnace having a humidity of 85% and a temperature of 85 Å. Accelerate the test to promote the oxidation of the surface of the wire. After heating, remove the bonding wire from the high-temperature and high-humidity furnace and observe the degree of surface oxidation by optical microscopy. At this time, if the surface of the wire is fully oxidized, the surface of the wire is X δ A part of the oxidation is marked with △. If the surface of the wire is not oxidized, the mark of "long-term storage (oxidation)" in the surface of the surface is marked with a mark. In order to evaluate the bond obtained by the coating layer. The vulcanization prevention effect of the wire is maintained in a high temperature furnace at a temperature of 1 9.5 ° C under atmospheric fog, and the bonding wires are placed on each reel for 155 hours to accelerate the test of the surface of the wire. When it is placed at a high temperature in the atmosphere fog as described above, even if it is a very small amount of sulfur contained in the atmosphere, it can accelerate the vulcanization. In the case of heating, the joint wire is taken out from the high temperature furnace to the market. The color meter (Minolta CR-300) sold is used to observe the degree of surface vulcanization. If the brightness is less than 30, it is considered to be vulcanized. If it exceeds 3 〇 and it is 4 〇 or less, it will be a practically unobstructed level. 40 is set to the preferred level. At this time, if the vulcanization part is observed on the surface of the wire, the mark is marked with x, if it is a bit level that is not practically practicable, the mark is △, if the surface of the wire is not vulcanized, the mark is marked with 〇 Marked in the "long-term storage (vulcanization)" position in Tables 1 and 5. A commercially available automatic wire accessor is used for the connection of the bonding wires. A portion was formed at the tip end of the bonding wire by arc discharge before the bonding instant, but the diameter was formed to be 34 // πι so as to be 17 times the diameter of the bonding wire. The mist surrounding gas at the time of production of the ball portion is formed into nitrogen. The actual diameter of the ball portion is measured by SEM to measure 2 各 each of the ball portions. If the difference between the maximum value and the minimum value exceeds the average value of the ball diameter, it is considered to be not intense and is not good. When % is less than or equal to 1%, it is considered to be moderate to Δ, and if it is more than 3% and is 5% or less, there is no practical good condition, 'it is good', and if it is 3% or less, It is a very good place to mark the "FAB true ball" in the air. In addition, when the spheroid is observed by SEM, if bubbles are found in the appearance, the field of "FAB bubble suppression in nitrogen" in the table 5 indicates that the ball is ground for each ball. Observed by an optical microscope, the bubbles were not observed on the face, which was extremely good. If the mark was ◎ ◎, if 10 bubbles were observed in only 12 balls, it was good, and only ◎ was recorded in ◎ 4 (four) is observed (four) bubble, for the use of the problem level level.叩 t t ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The bubble is inferior, and the X mark is described in Table 4, "FAB bubble suppression in nitrogen" (four). The A1 electrode having a thickness of 1/m formed on the Si wafer and the lead having a silver or palladium-plated lead frame were respectively used for bonding the bonding wires. After the prepared ball portion blood is also /, D. &lt;, the electrode to 260 ° C is ball bonded, and the bus bar portion of the bonding wire is heated to Μ. . . The aforementioned lead wire is wedge-joined, and the ball portion is again formed, thereby continuously overlappingly joined. The loop length is 4 · 9 πππ. Among them, the knife is carried out in a part of the sample: the reverse stroke joint with a loop length of about 1 mm, and the loop of the second sample is about 8-12 mils in other samples, and the loop length is about the aforementioned high back. In other samples, the length of the loop was approximately the same, the low loop of the second loop (1) was joined, and the other specimens were elongated with a length of 5.3_(2) 〇ro(1). Regarding the wedge-shaped bonding property of the bonding wire, the square-shaped gripping force MJ is used for the bonding wire of the cancer of the cancer at the interface of the wedge-shaped joint (the fourth interface). Cut off the measurement method to measure the crack load (the peeling (four) peel strength standard deviation exceeds _, must greatly improve the ^ right peel strength over _ and is less than 6mN, so in the actual capacity, therefore X' if it is super 5~, since there is no practical bit level 'in △, it is marked in the table "Ag々F2nd joint two so 〇' frame lead) and "Pd cut (five) two (: silver plate number 5丨) The position of the lead of the wire frame. 〇" (Right palladium plated bow | line 43 201205695 Here, it is observed by optical microscope whether damage is caused by the capillary. The number of loops observed is 2 〇, If there is no damage in one piece, it is extremely good to use ◎ ◎ mark, and when only 1 to 2 loops are observed to be damaged, it is good for 'good mark ◎ mark only when it is observed in 3 to 4 circuits. There is no problem at the bit level, with a 〇 mark, only in 5 When the damage is observed, it is a practically permissible bit level, and the △ mark is used. If six or more circuits are observed to be damaged, it is a poor mark, and the mark is marked as "damage suppression" in Table 丄, 5. The slope of the direction of the crystal orientation of the crystal grain of the <1〇〇> crystal orientation observed on the surface of the coating layer is calculated by observing the orientation of the individual crystal grains by the EBSD method. In the case of having a width of 8 &quot; m in a direction perpendicular to the direction of the wire of the bonding wire, a surface having a length of 150 (four) in the wire drawing direction of the bonding wire is observed, and each sample is observed for three fields of view. Tables 2 to 4 are the fields of "the area of the crystal grain having a slope of the line direction of the crystal orientation of 15 degrees or less". The crystal grains observed on the surface of the coating layer (1) The slope of the drawing direction is observed by the leaking method of the individual crystal grains. The drawing of the material 4 and the bonding wire is carried out in the direction of the straight line 2 = the width of the wire will be in the field of the bonding wire. Face 'each sample is observed 3 times two == 2~4 "The alignment of the crystal orientation, such as the area of the granules of the day". After the reverse bonding, the wrinkles of the surface of the wire are optically perceived. Brother "loop, if there is no wrinkle in one, it is extremely 44 201205695 Good to ◎ ◎ mark 'only when 1~2 loops are observed wrinkles, it is good to @6己号, only in 3~4 When the circuit is observed to be wrinkled, it is a practically problem-free bit level, with a 〇 mark. If the 5 traces are observed, the sensitive mark 'is bad' with the X mark, marked in Table 2~4. The stagnation of the enemy's mark is suppressed. The tilting of the surface of the bonding wire after the high-circuit bonding is performed by observing 2G loops with an optical microscope, and if there is no tilting of one of the samples, it is extremely good to ◎ ◎ mark only When it is observed that the tilt is poor in the two loops, it is good. When the ◎ mark is observed in only 3 to 4 loops, the tilt level is poor, and the bit level is practically no problem. Observed the poor tilt, for the difference, with the χ mark, marked in the surface of the table Elam bit suppression "of. The side hardness of the surface of the wire is measured by the neat (four) mark method, 卩h = accuracy, and the value is described in the field of the side hardness of Tables 3 to 4.扪表:: It is said that there is no damage in the neck after the low-circuit joint is observed. If there is no damage in one of the two loops, it is extremely good that there are 1 to 2 loops in the right 20, and the damage is observed. For - there is a phase level, with a 〇 mark, if the damage is observed, the difference is χ mark, mark the 2:3:: 76.2 / / m (3m (1) level low circuit head damage" position. 4 For the loop after the long joint, the loop 2 of each sample is determined. Here, the value measured by the * camera is set as the wire bending rate: the value of the spoon divided by the length of the loop is less than 4%. The state is extremely good, with 45 201205695 ◎ mark, if it is 4~5%, with 〇 mark, if it exceeds 5%, it is judged to be a bit problem with no problem in practical use, it is judged as bad, "5 of Table 4" The field of 3 mm (210 mil class) long curved" is marked with an X mark, and the plastic phase of the bonding wire formed by the gold layer is ηBη. For the surface of the aforementioned coating layer, there is gold and palladium.

敷的時間内進行控制。之後, „ 卜〜 那心攸復層的厚度係在電解鍍Control during the time of application. After that, „ 卜 ~ The thickness of the heart layer is in electrolytic plating

鍍敷形成金膜,在被保持在300 〜8〇〇t的爐内將該導線以 3〇m/min的速度連續掃掠,藉此在前述被覆層的表面形成 金與鈀的合金層。在此,合金層的厚度係以前述金膜的目 測里,亦即電氣鍍敷時間來進行控制。如上所示獲得直徑 為20//m的接合導線。其中,在一部分的試料中,為了控 制對&lt; 111 &gt;結晶方位的拉線方向的斜率為15度以下之結晶 粒的面積’若為線徑150 &quot; m以上的粗細,將前述模具的縮 面率形成為16〜20%左右來進行拉線,在線徑未達i5〇&quot;m 的粗細的拉線時,係將前述縮面率以13〜15%左右之大於 平常的縮面率來進行拉線。此外,在一部分的試料中,為 46 201205695 了控制被覆層的表面的邊耶硬度,將該接合導線按每個捲 軸a置在被控制在氬雾圍氣的電氣爐中,在〜2〇〇〇c下 施行2 0〜2 4小時的加熱。 元成的該接合導線中的芯線的直徑、被覆層及合金層 的厚度係將接合導線的表面一面進行濺鍍一面以AES進行 分析,此外,將該接合導線作剖面研磨,一面以ΕΜ分析 組成一面進行測定。將鈀的濃度為5〇%以上、而且金的濃 度未達15%的區域作為被覆層,在位於被覆層表面之含有 金與鈀的合金層中,係將金濃度為15〜75%的範圍的區域 作為合金層。將被覆層及合金層的厚.度及組成分別記載於 表6〜1 0。 為了評估藉由被覆層所得之接合導線的氧化防止效 果’在濕度為85%、溫度為85t:的高溫高濕爐中將接合導 線按每個捲軸放置72小時,進行促進導線表面氧化的加速 試驗。加熱後,由高溫高濕爐中取出接合導線,以光學顯 微鏡觀察表面氧化程度。此時,若導線表面的全面氧化, 以X記號,若導線表面未氧化,以◦記號,標記在表6、i 〇 中的「長期保管(氧化)」的欄位。 為了評估藉由被覆層所得之接合導線的硫化防止效 果,在大氣雰圍氣下溫度被保持在195t的高溫爐中,將 接合導線按每個捲軸放^ 155小時’進行促進導線表面硫 化的加速試驗。如前所述在大氣雰圍氣中以高溫放置時, 即使為在大氣中所含有的極微量硫黃,亦可加速硫化反 應。加熱後,由兩溫爐中取出接合導線,以市面販售的色 47 201205695 彩計(Minolta CR-300)觀察表面硫化程度,若明度(L*)為 30以下,視為硫化,若超過3〇且為4〇以下實用上不會 有障礙的位級,將超過40設為較佳位級。此時,若在導線 表面觀察到硫化部,以x記號,若為在實用上不會有障礙的 位級,以△記號,若導線表面未硫化,以〇記號’標記在 表6、10中的「長期保管(硫化)」的欄位。 在接合導線的連接係使用市面販自動導線接合 器。在接合瞬前藉由電弧放電而在接合導線的前端製作球 部,但是其直徑係以成為接合導線的直經的17倍的方式 形成為34//m。球部製作時的雾圍氣形成為·氮。 球部的實際直徑係使用SEM來測定各球部各2〇個其 =大值與最小值的差若超過球徑平均值的⑽,視為不均 程烈而為不良,以X,若超過5%且為1〇%以下,則視為中間 2 以△’若為超過3%且為5%以下,則沒有實用上的不 =形,視為良好,以〇,若為3%以下,視為極為良好, 〇,標記在表6、10中的「氮中FAB真球性」的攔位。 即在i匕外’以sem觀察球部,分別若在其外觀發現氣泡, 6、10巾的「氮中FAB氣泡抑制」的欄位標記X記號, 卜觀未發現氣泡,則標記〇記號。 上之厚^ ^導線的接合對象而言’分別使用形成在Si晶片 的弓I線?〃m的A1電極、及表面為金或鈀鍍敷引線框架 接合之$將所製作的球部與加熱i 26Gt的前述電極作球 線作換將接合導線的母線部與加熱至260°C的前述引 μ接合’再次製作球部,藉此連續反覆接合。迴路 48 201205695 - 長成為4. 9職。其中,分別在— 一 路高度為約304. 8 # m(12mi 1)、迴路、式料中係進行:迴 迴路接合,在其他試料中係進行迴路長2 —的前述高 度為76.2#m(3m⑴的低迴路接合 “ 3_、迴路高 進行迴路長為5.3fflm(2I〇m⑴的長形接合另外其他4料中係 關於接合導線的楔形接合性, 方抓捏經楔形接合的狀態的接合導線,朝::::部:上 為y讀取在其切斷時所得的破裂負載之所謂的剝::: /貝,疋法,來測定40條破裂負載(剝離強度)。若剝離強产二 標準偏差超過5mN,必須大幅改善不均,因此以x,若:超 過3ιπΝ且為5mN以下,由於在管 。 …… 由於在貫用上沒有大問題,因此以 右為超過Μ以下’由於不均極小而為良好,因此以 6 1G的「“VF 2nd接合」β為金鑛敷 =架的引線時)以及「……⑹接合」(若㈣ 敷引線框架的引線時)的攔位。 。在此,以光學顯微鏡觀察是否因毛細管而在迴路產生 損傷。所觀察到的迴路條數為20條,若連1條都沒有損傷, 極為良好以◎◎ έ己號,僅在i〜2條迴路被觀察到損傷時, 為良好以◎ 5己號,僅在3〜4條迴路被觀察到損傷時,為 貫用上沒有問題的位級,以◦記號,僅在5條迴路被觀察 到才貝傷時’為在實用上可容許的位級,以△記號,若6條 以上的迴路被觀察到損傷,為差劣,以X記號,標記在表6、 1 0的「損傷抑制」的欄位。 對在前述被覆層的表面所觀察之結晶粒的&lt;11 1&gt;結晶 49 201205695 方位的拉線方向的斜率係在以EBSD法觀察到個別結晶粒 的方位之後再進行計算。在進行該計算時,在與接合導線 方向呈垂直的方向具有8_的寬幅,將在接合導線 野將=具有15°…長度的面,各試料均各觀察3視 ⑽表7〜9的「對〈仙結晶方位的拉線方 向的斜率為15度以下之結晶粒的面積」的搁位。 前述高迴路接合後之接合導線表面令的傾斜不良係各 =Γ:顯微鏡觀察2°條迴路’若連1條均未觀察到 觀察到㈣不X好’以◎◎記號’若僅在1〜2條迴路被 觀察刺斜不良時,為良好1◎記Ε 路被觀察到傾斜不良時, 在3〜4條迴 _,…沒有問題的位級,以 右在5條以上的迴路被觀察到傾斜不良,為差劣 以::r7,「高迴路傾斜抑制:’ 的二奈㈣痕法,…右 面的叫」的棚位“記在表8〜9的「導線的表 顯二無損傷’各試料均以光學 机弁、條迴路,若連u ◎記號’若…有i〜2條被觀二, 的位級,以〇記號,若20條中有^貝傷t又有問題 則為差劣,以x記號,標記在表8〜9的「^觀2_貝傷, 級低迴路頸部損傷」的攔位。 Κ3ΠΠ1) 關於前述長形接合後之迴路 定各試料的迴路2 f 使用鉸办機來測 2〇條。在此,將其平均值除以迴路長度所 50 201205695 •得的值設為導線彎曲率, ◎記號,若…,判斷為達實:上:]斷為極為良好,以 〇記號,若為一判問題的位級,以 若超過⑽,則判斷為不良n用的位級,以△記號, 「5.3_⑵級長 X5己唬’標記在表8的 茛小考曲」的襴位。 在晶片損傷的評估令, 若在電極產生龜裂g ' ϋ邛20個作剖面研磨, 士屯伐厓玍龜裂,即 龜裂則判斷不良而以Χ記號,若未觀察到 Μ斷為良好而以〇記號標 的欄位。 07日日片知傷」 下針對表1〜表10的評估結果加以說明。 纪載如=之實施例1〜63以及表6之實施例136〜192之 ’:的4線的表面形成10〜 200nm 層的表面另外具有厚度的銀與 化性^「長#/金層的接合導線中’可得-面確保抗氧 F A B真球性:=:)化)」的攔?)或球部的真球性(「氮中 、面獲得鈀鍍敷引線框架上的良好 :元接合性(「Pd切2nd接合」的攔位)。㈣於該等, 的=例1所示,若僅為在銅導線之上未特別設置被覆層 ,心、·:長期保管或2nd接合性較為差劣。此外,如比較 例2所不’若將銅芯線的表面的被覆層形成為銀時在氮 中的球部的真球性較為差劣。此外,如比較例3〜5所示, 在銅4線之上僅設有纪的被覆層時,纪鑛敷引線框架上的 =形接合性較為差劣。此外’如比較例6所示,即使在銅 心線之上以l0〜 200nm的範圍内的厚度形成鈀的被覆層, 51 201205695 另外形成在其表面上之銀與銳的合金層的厚度亦比_為 更薄時,把鑛敷引線框架上的楔形接合性較為差劣。此外, 如比較例7所示,即使在銅芯線之上以10〜200nm的範圍 内的厚度形成鈀的被覆層’另外形成在其表面上之銀與鈀 7合金層的厚m編為更厚時,變得不S確保穩定的 扣質該口金層被氧化或被硫化,由此使得所評估的任何 特性亦差劣。此外’如比較例8所示,在銅芯線之上以10 〜20〇nm的範圍内的厚度形成鈀的被覆層另外形成在其 表面上之銀與絶的合金層中之銀濃度低於10%時,纪鑛敷 引線框架上的楔形接合性較為差劣。此外,如比較例9所 不’在銅芯線之上以1〇〜2〇〇nm的範圍内的厚度形成把的 被覆層,另外形成在其表面上之銀與把的合金層中之銀濃 度較高為超過75%時,在氮中的球部的真球性較為差劣。 1匕外:如比較例10所示,若形成在銅芯線之上的鈀的被覆 曰的厚度超過10〜2〇〇nm的範圍時,即使另A gold film was formed by plating, and the wire was continuously swept at a speed of 3 μm/min in a furnace maintained at 300 to 8 Torr to form an alloy layer of gold and palladium on the surface of the coating layer. Here, the thickness of the alloy layer is controlled by the above-mentioned gold film, that is, the electroplating time. A bonding wire having a diameter of 20/m was obtained as shown above. In the sample, in order to control the area of the crystal grain in which the slope of the crystal orientation of the &lt;111 &gt; crystal orientation is 15 degrees or less, the thickness of the wire diameter is 150 &quot; m or more, and the mold is When the shrinkage ratio is formed to be about 16 to 20%, the wire is pulled, and when the wire diameter is less than the thickness of the wire of i5〇&quot;m, the shrinkage ratio is about 13 to 15%, which is larger than the normal shrinkage ratio. Come to pull the line. Further, in a part of the samples, 46 201205695 was used to control the edge hardness of the surface of the coating layer, and the bonding wires were placed in an electric furnace controlled by an argon mist for each reel a at ~2〇〇 〇c under 2 0~2 4 hours of heating. The diameter of the core wire, the thickness of the coating layer and the alloy layer in the bonding wire of the element is analyzed by AES while the surface of the bonding wire is sputtered, and the bonding wire is subjected to cross-section grinding, and the composition is analyzed by ΕΜ The measurement was performed on one side. A region in which the concentration of palladium is 5% by weight or more and the concentration of gold is less than 15% is used as a coating layer, and in the alloy layer containing gold and palladium on the surface of the coating layer, the gold concentration is in the range of 15 to 75%. The area acts as an alloy layer. The thickness and composition of the coating layer and the alloy layer are shown in Tables 6 to 10, respectively. In order to evaluate the oxidation preventing effect of the bonding wire obtained by the coating layer, the bonding wire was placed on each reel for 72 hours in a high-temperature high-humidity furnace having a humidity of 85% and a temperature of 85 t: an accelerated test for promoting surface oxidation of the wire was performed. . After heating, the bonded wires were taken out from the high-temperature and high-humidity furnace, and the degree of surface oxidation was observed by an optical microscope. At this time, if the surface of the wire is completely oxidized, the X mark is used. If the surface of the wire is not oxidized, the column of "long-term storage (oxidation)" in Table 6, i 〇 is marked with a mark. In order to evaluate the vulcanization preventing effect of the bonding wire obtained by the coating layer, the temperature was maintained at 195 t in a high-temperature furnace under atmospheric atmosphere, and the bonding wire was placed on each reel for 155 hours to accelerate the surface vulcanization. . When it is placed at a high temperature in an atmospheric atmosphere as described above, even if it is a trace amount of sulfur contained in the atmosphere, the vulcanization reaction can be accelerated. After heating, the bonding wires are taken out from the two furnaces, and the degree of surface vulcanization is observed by a commercially available color 47 201205695 (Minolta CR-300). If the brightness (L*) is 30 or less, it is regarded as vulcanization. In addition, it is a level of 4 〇 or less that is practically not obstructive, and more than 40 is set to a preferred level. At this time, if the vulcanization portion is observed on the surface of the wire, the mark is marked with x, and if it is a bit level which is not practically practical, the mark is marked with △, and if the surface of the wire is not vulcanized, it is marked with the mark ' in Tables 6, 10 The "long-term storage (vulcanization)" field. A commercially available automatic wire bonder is used in the connection of the bonding wires. The ball portion was formed at the tip end of the bonding wire by arc discharge before the bonding, but the diameter was formed to be 34 / / m so as to be 17 times the straight line of the bonding wire. The mist surrounding gas at the time of production of the ball portion is formed as nitrogen. The actual diameter of the ball portion is measured by SEM to measure each of the two ball portions. If the difference between the large value and the minimum value exceeds the average value of the ball diameter (10), it is considered to be uneven and is not good, and X is exceeded. When 5% is 1% or less, it is regarded as the middle 2, and if Δ' is more than 3% and is 5% or less, there is no practical non-form, and it is considered to be good, and if it is 3% or less, It is considered to be extremely good, 〇, marked in the brackets of “FAB True Ball in Nitrogen” in Tables 6 and 10. That is, the ball portion is observed by sem, and if the bubble is found in the appearance, the field mark of the "FAB bubble suppression in nitrogen" of the 6, 10 towel is marked with an X mark, and when the bubble is not found, the mark is marked. In the case of the bonding object of the thickness of the wire, the wire is formed on the Si wafer. The A1 electrode of 〃m and the surface of the gold or palladium-plated lead frame are joined. The ball portion produced is replaced with the electrode of the heated i 26Gt, and the bus bar portion of the bonding wire is heated to 260 ° C. The aforementioned "joining" is used to make the ball portion again, thereby continuously joining the balls. Circuit 48 201205695 - The long became 4. 9 positions. Among them, the height of each road is about 304. 8 # m (12mi 1), the circuit and the material are carried out: the return loop is joined, and the other height of the loop length 2 in other samples is 76.2#m (3m(1) The low-circuit junction "3_, the loop height is 5.3fflm (2I〇m(1) of the long joint, and the other 4 materials are the wedge-shaped joints of the joint wires, and the joint wires of the wedge-joined state are :::: Department: The so-called stripping::: / shell, 疋 method, for the rupture load obtained at the time of cutting, to determine 40 burst loads (peel strength). If the deviation exceeds 5 mN, the unevenness must be greatly improved. Therefore, if x is more than 3 ιπΝ and 5 mN or less, it is in the tube. ...... Because there is no major problem in the use, the right is more than Μ below. It is good, so the 6 1G ""VF 2nd bonding" β is used as the gold ore for the frame) and the "...(6) bonding" (if (4) when the lead of the lead frame is applied). Observe with an optical microscope whether it is produced in the loop due to capillary Damage: The number of loops observed is 20, and if there is no damage to one, it is very good to ◎ ◎ έ 号, only when i ~ 2 loops are observed to be damaged, it is good to ◎ 5 When only 3 to 4 loops are observed to be damaged, there is no problem with the bit level, and the mark is used, and only 5 loops are observed when the shell is injured. In the case of the △ mark, if six or more circuits are observed to be damaged, they are inferior, and the X mark is used to mark the field of "damage suppression" in Tables 6 and 10. Observed on the surface of the coating layer. &lt;11 1&gt; Crystalline of the crystal grain 201205695 The slope of the orientation direction of the orientation is calculated after the orientation of the individual crystal grains is observed by the EBSD method. When this calculation is performed, it is perpendicular to the direction of the bonding wire. It has a width of 8 mm and will be in the direction of the bonding wire field = 15°... length. Each sample is observed for 3 times. (10) Tables 7 to 9 have a slope of 15 degrees in the direction of the wire direction of the crystal orientation. The rest of the area of the following crystal grains". The bonding after the high loop bonding described above The tilting of the surface of the wire is not good. Γ: Microscopic observation of 2° loops. If no one is observed, no observation is made. (4) No X is good. ◎ ◎ mark 'If only 1 to 2 loops are observed, the skew is observed. When it is bad, it is good for 1 ◎ Ε When the road is observed to be poorly tilted, in the case of 3 to 4 times _, ... no problem, the right level is observed in 5 or more circuits, and the inclination is poor. ::r7, "High loop tilt suppression: 'The two-negative (four) trace method, ... the right side of the booth called "" is shown in Tables 8 to 9 "The wire shows no damage". Each sample is optically 弁, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Marked in the position of "^guan 2_bei injury, low-level circuit neck injury" in Tables 8 to 9. Κ3ΠΠ1) About the loop after the long joint is completed. The loop 2 f of each sample is measured using a hinge machine. Here, the average value is divided by the length of the loop 50 201205695 • The value obtained is set as the wire bending rate, ◎ mark, if..., it is judged as true: upper:] is broken very well, with 〇 mark, if it is one If the level of the problem is exceeded, if it exceeds (10), it is judged to be the bit level used for the bad n, and the position of the 5.3 mark, "5.3_(2) level length X5 唬 ' is marked in the small test piece of Table 8". In the evaluation of the wafer damage, if the crack is generated in the electrode g ' ϋ邛 20 剖面, the stone is cracked, that is, the crack is judged to be bad, and the Χ mark is not observed. And the field marked with 〇 mark. The evaluation results of Table 1 to Table 10 are explained below. The surface of the four lines of Examples 1 to 63 and the examples of Examples 136 to 192 of Table 6 were formed to form a surface of 10 to 200 nm. The surface of the layer additionally had a thickness of silver and chemical properties. In the bonding wire, the 'available surface ensures the anti-oxidation of the FAB (=:))) or the true sphericality of the ball ("Nitrogen, the surface is obtained on the palladium plating lead frame: good Bonding ("Pd cut 2nd joint"). (4) As shown in Example 1, if the coating layer is not specifically provided on the copper wire, the core, ·: long-term storage or 2nd bondability Further, as in Comparative Example 2, when the coating layer on the surface of the copper core wire is formed into silver, the true sphericality of the ball portion in nitrogen is inferior. Further, as shown in Comparative Examples 3 to 5. When only the coating layer is provided on the copper wire 4, the joint shape on the lead frame of the kiln is relatively poor. Further, as shown in Comparative Example 6, even above the copper core wire, l0~ A thickness in the range of 200 nm forms a coating layer of palladium, 51 201205695. Further, when the thickness of the silver and the sharp alloy layer formed on the surface thereof is thinner than that, the ore is applied. In addition, as shown in Comparative Example 7, even if a coating layer of palladium is formed on the copper core wire in a thickness in the range of 10 to 200 nm, silver and palladium are additionally formed on the surface thereof. When the thickness m of the 7 alloy layer is thicker, it becomes not S to ensure a stable buckle. The gold layer is oxidized or vulcanized, thereby making any of the characteristics evaluated poor. Further, as shown in Comparative Example 8. a coating layer in which palladium is formed on the copper core wire in a thickness in the range of 10 to 20 〇 nm, and the silver concentration in the silver and the alloy layer on the surface is less than 10%. The wedge-shaped bondability on the upper side is inferior. Further, as in Comparative Example 9, the coating layer is formed in a thickness of 1 〇 to 2 〇〇 nm over the copper core wire, and silver is additionally formed on the surface thereof. When the silver concentration in the alloy layer is more than 75%, the true sphericality of the ball portion in nitrogen is inferior. 1匕: as shown in Comparative Example 10, if formed on the copper core wire When the thickness of the coated ruthenium of palladium exceeds the range of 10 to 2 〇〇 nm, even if another

面上之銀妓的合金層的厚度為3〜8Gnm的範圍,若在2 中形成小梭致Λβ吐+ X “時亦會發生氣泡(「…ΑΒ氣泡抑制」的 欄位)。如比姑办丨, 置祐…示’若僅為在銅導線之上未特別設 置被覆層的芯線,長期保管或2nd接合性較為差劣, 如比較例12所- # r 2所不’若將銅芯線的表面的被覆層形成為銀 = :::部::球性會大幅差劣,在長期保管中會 表面的破覆層形成為 叉的 差劣。此外 #亂⑼珠。Ρ的真球性會大幅 比較例14〜16所示,若在銅芯線之上僅設 52 201205695 置鈀的被覆層鈀鍍敷引線框架上的楔形接合性會變 差此外如比較例1 7所示,即使在銅芯線之上以丨〇〜 200nm的範圍内的厚度形成鈀的被覆層另外形成在其表 面上之金與鈀的合金層的厚度亦比3nm為更薄時,鈀鍍敷 引線框架上的楔形接合性並不充分。此外,如比較例18所 示,即使在銅芯線之上以1〇〜2〇〇nm的範圍内的厚度形成 纪的被覆層,另外形成在其表面上之金與纪的合金層的厚 度亦比8〇1^為更厚時,變得^確保穩定的品質把錢敷 引線框架上的楔形接合性(「Pd-L/F 2nd接合」的攔位) 較為差劣,此外,由於該合金層被氧化,並無法滿足球部 的真球f生(氮中FAB真球性」的欄位)。此外,如比較例 19所不’在銅芯線之上以】。〜2〇〇nm的範圍内的厚度形 鈀的被覆層,另外形成在其表面上之金與纪的合金層中的 ::農度低&amp; 15%時’鈀鍍敷引線框架上的楔形接合性並不 分。此外’如比較例1〇所示’在銅芯線之上 的範圍内的厚卢报UUnm X形成鈀的被覆層,另外形成在1 金與鈀的合金声φ沾上之 球部的真球性二T此: 75%時,在氮中的 … 如比較例21所示,若开4 在銅4線之上的鈀的被覆層的厚 /成 圍,即使另外妒盆矣而μ d 10〜2〇〇nm的範 卜形成在其表面上之金與鈀的人 3〜80mn的範圍,若在氮中形成小徑球部:二’旱度為 (「氮中FAB氣泡抑制」的攔位)。 …、會發生氣泡The thickness of the alloy layer of the silver iridium on the surface is in the range of 3 to 8 Gnm, and if bubbles are formed in 2, the bubble is generated ("... ΑΒ bubble suppression" field). For example, if you only have a core wire that is not covered with a coating layer on the copper wire, long-term storage or 2nd bonding is poor, as in the case of Comparative Example 12 - #r 2 The coating layer on the surface of the copper core wire is formed into a silver =:::part:: the sphericality is greatly deteriorated, and the cracked layer on the surface is formed as a fork in long-term storage. Also #乱(9)珠. The true sphericality of ruthenium is greatly improved as shown in Examples 14 to 16. If only the copper core wire is provided, the wedge bondability on the palladium-plated lead frame of the coating layer of pour palladium on the surface of the 201205695 is deteriorated. It is shown that even if the coating layer of palladium is formed on the copper core wire in a thickness range of 丨〇 to 200 nm, the thickness of the alloy layer of gold and palladium formed on the surface thereof is also thinner than 3 nm, palladium plating lead The wedge bond on the frame is not sufficient. Further, as shown in Comparative Example 18, even if the coating layer was formed on the copper core wire at a thickness in the range of 1 〇 to 2 〇〇 nm, the thickness of the alloy layer formed on the surface thereof was also When it is thicker than 8〇1^, it becomes a stable quality, and the wedge-shaped bondability ("Pd-L/F 2nd bonding") on the lead frame of the money is inferior. In addition, due to the alloy The layer is oxidized and cannot satisfy the true sphere of the ball (the field of FAB true in the nitrogen). Further, as in Comparative Example 19, it was not on the copper core wire. a coating layer of a thickness-shaped palladium in the range of ~2 〇〇 nm, additionally formed in the alloy layer of the gold and the surface on the surface:: low degree of farming &amp; 15% of the wedge shape on the palladium-plated lead frame Bonding is not divided. Further, 'as shown in Comparative Example 1', the thick U.S. UUnm X in the range above the copper core wire forms a coating layer of palladium, and forms a true spherical shape of the ball portion which is adhered to the alloy φ of gold and palladium. 2T: 75%, in nitrogen... As shown in Comparative Example 21, if the thickness of the coating layer of palladium on the copper 4 line is 4, the thickness of the coating layer is even if it is different. The range of 2 〇〇 nm forms a range of 3 to 80 mn of gold and palladium on the surface of the surface, and if a small diameter sphere is formed in the nitrogen: the 'dry' degree is (the "FAB bubble suppression in nitrogen" is blocked. ). ..., bubbles will occur

金二ΓΓ前述被覆層的表面具有含有銀與一 金層的構成的接合導線之例加以說明。 叼Q 53 201205695 如表1之實施例1〜12、16〜27、31〜42、46〜57之 記載’在銅的芯線的表面形成1G〜·nm的厚度的纪被覆 層,在該被覆層的表面另外具有卜⑽抓的厚度的銀與鈀 的合金層的接合導線中,—面確保抗氧化性(「長期保管(氧 化)」的欄位)或球部的真球性(「氮中FAB真球性」的欄 位),一面獲得鈀鍍敷引線框架上的良好楔形接合性(「Μ' / F 2nd接合」的欄位)。相對於該等,如比較例^所示, 若僅為在銅導線之上未特別設置被覆層的芯線,長期保管 或2nd接合性較為差劣。此外,如比較例2所示,若將銅 芯線的表面的被覆層設為銀時,在氮中的球部的真球性較 為差劣。此外,如比較例3〜5所示,若在銅芯線之上僅設 置叙的被覆層時,纪鑛敷引線框架上的模形接合性較為差 劣。此外,如比較例6所示,即使在銅芯線之上以iQ〜2_m 的弟巳圍内的厚度形成1巴的被覆層,亦使另外形成在其表面 上的銀與纪的合金層的厚度比lnm為更薄時,叙鑛敷引線 框架上的模形接合性較為差劣。此外,如比較例7所示, 即使在銅芯線之上以10〜20_的範圍内的厚度形成㈣ 被覆層,亦使另外形成在其表面上的銀與把的合金層的厚 度亦比3〇nm為更厚時,變得不易確保穩定的品質,該合金 層被氧化或被硫化’由此所評估的任何特性亦為差劣。此 外,如比較例8所示,在銅芯線之上以10〜200nm的範圍 内的厚度形成把的被覆層,亦使另外形成在其表面上的銀 ’、.的口金層中之銀濃度低於j 〇%時,鈀鍍敷引線框架上 的模形接合性較為差劣。此外,如比較例9所示,在銅芯 54 201205695 線之上以10〜?m 外形成在其表面Π的範圍内的厚度形成把的被覆層,另 過70%時,在氮中、與鈀的合金層中之銀濃度較高而超 較们 氣中的球部的真球性較為差劣。此外,如比 孕文例1 〇所示,甚形 過10〜9ηη 乂 銅芯線之上的鈀的被覆層的厚度超 匕10〜2〇〇nro的節圖吐 鈀的入a 關時,即使另外形成在其表面上的銀與 •:己金層的厚度為3〜3〇龍的範圍, u 氣泡(氮中FAB氣泡抑制」的攔位)。 細例16〜63所示,若前述由銀與鈀所成合金中之 以上時,因毛細管所造成的損傷的發生的抑 ^果會更大(「損傷抑制」的欄位),而且即使在氣中形 :、。㈣部,亦抑制氣泡發生(「氮中叫泡抑制」的棚 卜如實知例31〜63所示,若前述銀濃度為30% 以上’前述效果會更高。 如表2之實施例64〜91所示’若對在前述接合導線的 表面所觀察的&lt;100&gt;結晶方位的拉線方向的斜率為π度以 下之結晶粒的面積為5〇%以上、1〇〇%以下時,在逆打:合 時,在迴路的表面所發生的皺痕的抑制效果會變高(「逆打 皺痕抑制」的攔位),若該面積為7〇%以上時,其效果會更 南0 如表2之實施例4〜6所示,若對在前述接合導線的表 面所觀察的&lt;111&gt;結晶方位的拉線方向的斜率為15度以下 之結晶粒的面積為6〇%以上、1〇〇%以下時,在高迴^接合 時,抑制傾斜不良情形的發生的效果會變高(「高迴路㈣ 抑制」的欄位),若該面積為70%以上時,其效果會更言 55 201205695 如表3之實施例92〜96、99〜102、104所示,若前述 接合導線的表面的邊耶硬度為〇. 2〜2. 〇GPa的範圍,即使 另外進行低迴路接合,亦抑制頸部損傷(「76 2 //m(3mil) 級低迴路頸部損傷」的欄位)。 如表4之實施例109〜117、121〜124所示,前述芯線 為含有B、P、Se中的至少1種總計5〜議f量卿的銅 σ金中即使在進行長形接合時,亦抑制迴路的彎曲 (5.3mm(210mil)級長形彎曲」的糊位)。 2表5之實施例125〜135所示,即使在前述被覆層與前述 “線之間產生擴散層、或前述芯線所含有的銅在前述被覆 層中擴散’亦可確保本發明之效果。 接著,針對在前述被覆層的表面具有含有 金層的構成的接合導線之例加以說明 如表6之實施例136〜192之記載,在銅之芯線的表 具有1〇〜200nm的厚度的鈀被覆層,在該被覆層的表面 外具有1〜8〇nm的厚度的金與雀巴的合 係-面確保抗氧化性(「長期保管(氧化)」_:) = 化性(「長期保管(硫化)」的欄位)、或球部的真球性(「 中FAB真球性」的攔位),一面獲得纪鑛敷引線框架上之 好楔形接合性(「Pd切2nd接合J的欄位)者。相對 ^等’如比較们所示,僅以在銅導線之上尤其未設有 層的芯線’長期保管或2nd接合性差劣。此外,如比An example in which the surface of the coating layer of the gold bismuth layer has a bonding wire having a structure of silver and a gold layer will be described.叼Q 53 201205695 As described in Examples 1 to 12, 16 to 27, 31 to 42, and 46 to 57 of Table 1, 'a coating layer having a thickness of 1 G to nm is formed on the surface of the core wire of copper, and the coating layer is formed on the coating layer. In the bonding wire of the alloy layer of silver and palladium having a thickness of 10 (10), the surface is ensured to have oxidation resistance ("long-term storage (oxidation)" field) or the true sphericality of the ball ("Nitrate The FAB is a true sphere, and a good wedge-shaped bond on the palladium-plated lead frame ("Μ' / F 2nd joint" field) is obtained. With respect to these, as shown in the comparative example, if only the core wire of the coating layer is not provided on the copper wire, the long-term storage or the 2nd bondability is inferior. Further, as shown in Comparative Example 2, when the coating layer on the surface of the copper core wire was made of silver, the true sphericality of the ball portion in nitrogen was inferior. Further, as shown in Comparative Examples 3 to 5, when only the coating layer was provided on the copper core wire, the mold bondability on the cored lead frame was inferior. Further, as shown in Comparative Example 6, even if a coating layer of 1 bar was formed on the copper core wire with a thickness in the circumference of iQ~2_m, the thickness of the alloy layer of the silver and the other formed on the surface thereof was also formed. When it is thinner than lnm, the mold bondability on the lead frame of the ore dressing is inferior. Further, as shown in Comparative Example 7, even if the (four) coating layer was formed on the copper core wire in a thickness in the range of 10 to 20 Å, the thickness of the silver and the alloy layer additionally formed on the surface thereof was also 3 When 〇nm is thicker, it becomes difficult to ensure stable quality, and the alloy layer is oxidized or vulcanized', and thus any characteristic evaluated is also inferior. Further, as shown in Comparative Example 8, the coating layer was formed on the copper core wire in a thickness in the range of 10 to 200 nm, and the silver concentration in the gold layer of the silver ', which is additionally formed on the surface thereof, was low. At j 〇%, the mold bondability on the palladium-plated lead frame is poor. In addition, as shown in Comparative Example 9, above the copper core 54 201205695 line, 10~? The thickness of m is formed outside the surface of the surface to form the coating layer. When the thickness is 70%, the silver concentration in the alloy layer of nitrogen and palladium is higher than that of the ball in the gas. The ball is relatively poor. In addition, as shown in the case of the pregnancy example 1 ,, the thickness of the coating layer of palladium above the 10~9ηη 乂 copper core wire exceeds 10~2〇〇nro, and the palladium is poured into a, even if The thickness of the silver and/or gold layer formed on the surface is 3 to 3 〇, and the u bubble (the inhibition of FAB bubble suppression in nitrogen). In the examples 16 to 63, when the above-mentioned alloy of silver and palladium is formed, the damage caused by the capillary is more suppressed (the "damage suppression" field), and even in the case of Gas shape:,. (4) The part also suppresses the occurrence of bubbles ("the bubble suppression in nitrogen" is as shown in the examples 31 to 63. If the silver concentration is 30% or more, the effect is higher. Example 64 of Table 2 When the slope of the crystal grain direction of the &lt;100&gt; crystal orientation observed on the surface of the above-mentioned bonding wire is 〇5 or less, the area of the crystal grain is 5〇% or more and 1%% or less, Counter-attack: When it is combined, the effect of suppressing wrinkles on the surface of the circuit will become higher ("stop wrinkle suppression"). If the area is 7〇% or more, the effect will be more south. As shown in the fourth to sixth embodiments of Table 2, the area of the crystal grain having a slope of the line direction of the &lt;111&gt; crystal orientation observed on the surface of the bonding wire of 15 degrees or less is 6% or more, When the height is less than 1%, the effect of suppressing the occurrence of the tilting failure is high ("high circuit (four) suppression" field), and if the area is 70% or more, the effect is more effective.言55 201205695 as shown in Examples 92 to 96, 99 to 102, 104 of Table 3, if the surface of the bonding wire is The hardness is 〇. 2~2. The range of 〇GPa, even if the low-circuit joint is additionally performed, the neck damage is also suppressed ("76 2 //m(3mil) low-circuit neck injury" field). In the examples of the examples 109 to 117 and 121 to 124, the core wire is composed of at least one of B, P, and Se, and the copper σ gold of the total amount of B, P, and Se is suppressed even when elongated bonding is performed. Bending of the circuit (paste of 5.3 mm (210 mil) grade bend). 2, as shown in Examples 125 to 135 of Table 5, even if a diffusion layer is formed between the coating layer and the "line", or the core wire is contained The copper can be diffused in the coating layer to ensure the effect of the present invention. Next, an example of a bonding wire having a gold layer on the surface of the coating layer will be described as an example of the examples 136 to 192 of Table 6. The surface of the copper core wire has a palladium coating layer having a thickness of 1 〇 to 200 nm, and the thickness of gold and the nipple having a thickness of 1 to 8 〇 nm outside the surface of the coating layer ensures oxidation resistance (" Long-term storage (oxidation)"_:) = chemical ("long-term storage (vulcanization)" field), or The true ball of the ministry ("the FAB true ball" block), on the one hand, obtains the good wedge-shaped bondability on the lead frame ("Pd cut 2nd joint J"). It is shown that only the core wire which is not provided with a layer on the copper wire is used for long-term storage or poor 2nd bondability.

例11所示,若將銅忠線的表面的被覆層形成為金,氮中I 球部的真球性#我#少、 ,. 仏為以。此外,如比較例12所示,即使, 56 201205695 銅芯線之上以Π)〜20-的範圍内的厚度形成纪的被覆 層’亦另外形成在其表面上的金與鈀的合金層的厚度比_ 為更薄時’鈀鍍敷引線框架上的楔形接合性並不充分。此 外,如比較你Η3所示,即使在銅芯線之上以的 範圍内的厚度形成纪的被覆層…卜形成在其表面上的金 與纪的合金層的厚度比8_為更厚時,不易確保穩定的品 質,鈀鍍敷引線框架上的楔形接合性(「pd_L/F2nd接入 的欄位)較為差劣,此外,由於該合金層被氧化,並非為^ 滿足球部的真球性(「氮中FAB真球性」的攔位)者。此外, 如比較例Η所示,在銅芯線之上以1〇〜2〇〇nm的範圍内的 厚度形成把的被覆層,另外形成在其表面上的金與把的入 金層中的金濃度低力15%時’在纪鍍敷引線框架上的㈣ 接合性並不充分。此外,如比較例15所示,在銅芯線之^ 以20〜2G()nm的範圍内的厚度形成把的被覆層另外形成 在其表面上的金與鈀的合金層中的金濃度超過75%而為較 高時,氮中的球部的真球性較為差劣。此外,如比較例Μ 所不’若形成在銅芯線之上的鈀的被覆層的厚度超過工。〜 2〇〇nm的範圍,即使另外形成在其表面上的金與鈀的合金 層的厚度在3〜8〇nm的範圍,若在氮中形成小徑的球部, p會發生氣泡(「氮中FAB氣泡抑制」的欄位)。 二如實施例136〜168、250、251、253、256所示,若由 =述金與鈀所成合金中的金濃度為以上、未達,球 Ρ的真球性會更加提升(「氮中FAB真球性」的襴位)。 如實施例 169〜192、252、254、255、257〜260 所示, 57 201205695 若由前述金與鈀所成合金中的金濃度為4〇%以上楔形接 合特性更加提升(「Pd-L/F 2nd接合」的攔位)。 如表7之實施例193〜216所示,若對在前述接合導線 的表面所被觀察的〈111&gt;結晶方位的拉線方向的斜率為 度以下的結晶粒的面積為50%以上、1〇〇%以下,在進行言 迴路接合時抑制傾斜不良發生的效果會變高(「高迴路傾2 抑制」的攔位)’若該面積為70%以上,則其效果會更高。 如表8之實施例217〜222、225〜228所示,若前述接 合導線的表面的邊耶硬度為0.2〜2. OGPa的範圍,即使另 外進行低迴路接合,亦可抑制頸部損傷(「76 2 &quot;m(3mii) 級低迴路頸部損傷」的爛位)。 如表9之實施例234〜242、246〜249所示,在前述芯 線含有B、P、Se中的至少i種總計5〜3〇〇質量ppm的銅 合金中’即使在進行長形接合時,亦抑制迴路的彎曲 (「5. 3mm(210mil)級長形彎曲」的欄位)。另一方面,如實 施例243所示,若在前述芯線進行超過3〇〇質量ppm的添 加’會產生晶片損傷(「晶片損傷」的欄位)。 如表10之實施例250〜260所示,即使在前述被覆層 與前述芯線之間發生擴散層、或前述芯線所含有的銅在前 述被覆層中擴散’亦可確保本發明之效果。 芯 材 含鈀的被覆層 銀與鈀的合金層 長期 保管 (氧化) 長期 保管 (硫化) Ag-L/F 2nd接 合 氮中 FAB 真球性 Pd-L/F 2nd接 合 損傷 抑制 氮中FAB 氣泡抑制 被覆層 被覆層 的厚度 (nm) 合金層 合金 層 的厚 度 (nm) 實施例1 Cu Yd 10 Agl0Pd90 1 〇 〇 ◎ Δ 〇 〇 58 201205695 實施例2 Cu Pd 10 Agl0Pd90 1 〇 Δ 〇 ◎ Δ 〇 〇 實施例3 Cu Pd 10 Agl0Pd90 1 〇 △ 〇 ◎ Δ 〇 〇 實施例4 Cu Pd 10 Agl0Pd90 3 〇 △ 〇 ◎ 〇 〇 〇 實施例5 Cu Pd 100 Agl0Pd90 3 〇 Δ 〇 ◎ 〇 〇 〇 實施例6 Cu Pd 200 Agl0Pd90 3 〇 Δ 〇 ◎ 〇 〇 〇 實施例7 Cu Pd 10 Agl0Pd90 15 〇 Δ 〇 ◎ 〇 〇 〇 實施例8 Cu Pd 100 Agl0Pd90 15 〇 △ 〇 ◎ 〇 〇 〇 實施例9 Cu Pd 200 Agl0Pd90 15 〇 △ 〇 ◎ 〇 〇 〇 實施例10 Cu Pd 10 Agl0Pd90 30 〇 Δ 〇 ◎ 〇 〇 〇 實施例11 Cu Pd 100 Agl0Pd90 30 〇 Δ 〇 ◎ 〇 〇 〇 實施例12 Cu Pd 200 Agl0Pd90 30 〇 Δ 〇 ◎ 〇 〇 〇 實施例13 Cu Pd 10 Agl0Pd90 80 Δ Δ Δ ◎ Δ Δ Δ 實施例14 Cu Pd 100 Agl0Pd90 80 Δ Δ Δ ◎ Δ Δ Δ 實施例15 Cu Pd 200 Agl0Pd90 80 Δ Δ Δ ◎ Δ Δ Δ 實施例16 Cu Pd 10 Ag20Pd80 1 〇 Δ 〇 ◎ Δ ◎ ◎ 實施例17 Cu Pd 100 Ag20Pd80 1 〇 Δ 〇 ◎ Δ ◎ ◎ 實施例18 Cu Pd 200 Ag20Pd80 1 〇 Δ 〇 ◎ Δ ◎ ◎ 實施例19 Cu Pd 10 Ag20Pd80 3 〇 △ 〇 ◎ 〇 ◎ ◎ 實施例20 Cu Pd 100 Ag20Pd80 3 〇 △ 〇 ◎ 〇 ◎ ◎ 實施例21 Cu Pd 200 Ag20Pd80 3 〇 Δ 〇 ◎ 〇 ◎ ◎ 實施例22 Cu Pd 10 Ag20Pd80 15 〇 Δ 〇 ◎ 〇 ◎ ◎ 實施例23 Cu Pd 100 Ag20Pd80 15 〇 △ 〇 ◎ 〇 ◎ ◎ 實施例24 Cu Pd 200 Ag20Pd80 15 〇 Δ 〇 ◎ 〇 ◎ ◎ 實施例25 Cu Pd 10 Ag20Pd80 30 〇 Δ 〇 ◎ 〇 ◎ ◎ 實施例26 Cu Pd 100 Ag20Pd80 30 〇 Δ 〇 ◎ 〇 ◎ ◎ 實施例27 Cu Pd 200 Ag20Pd80 30 〇 △ 〇 ◎ 〇 ◎ ◎ 實施例28 Cu Pd 10 Ag20Pd80 80 Δ Δ Δ ◎ Δ ◎ ◎ 實施例29 Cu Pd 100 Ag20Pd80 80 Δ Δ Δ ◎ Δ ◎ ◎ 實施例30 Cu Pd 200 Ag20Pd80 80 Δ Δ Δ ◎ Δ ◎ ◎ 實施例31 Cu Pd 10 Ag30Pd70 1 〇 △ 〇 ◎ Δ ◎◎ ◎◎ 實施例32 Cu Pd 100 Ag40Pd60 1 〇 Δ 〇 ◎ Δ ◎◎ ◎◎ 實施例33 Cu Pd 200 Ag30Pd70 1 〇 Δ 〇 ◎ Δ ◎◎ ◎◎ 實施例34 Cu Pd 10 Ag30Pd70 3 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例35 Cu Pd 100 Ag40Pd60 3 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例36 Cu Pd 200 Ag30Pd70 3 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例37 Cu Pd 10 Ag40Pd60 15 〇 △ 〇 ◎ 〇 ◎◎ ◎◎ 實施例38 Cu Pd 100 Ag30Pd70 15 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例39 Cu Pd 200 Ag40Pd60 15 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例40 Cu Pd 10 Ag30Pd70 30 〇 △ 〇 ◎ 〇 ◎◎ ◎◎ 實施例41 Cu Pd 100 Ag40Pd60 30 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例42 Cu Pd 200 Ag30Pd70 30 〇 △ 〇 ◎ 〇 ◎◎ ◎◎ 實施例43 Cu Pd 10 Ag30Pd70 80 Δ Δ Δ ◎ Δ ◎◎ ◎◎ 實施例44 Cu Pd 100 Ag30Pd70 80 Δ Δ Δ ◎ Δ ◎◎ ◎◎ 實施例45 Cu Pd 200 Ag30Pd70 80 Δ Δ Δ ◎ Δ ◎◎ ◎◎ 實施例46 Cu Pd 10 Ag50Pd50 1 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例47 Cu Pd 100 Ag60Pd40 1 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例48 Cu Pd 200 Ag70Pd30 1 〇 Δ 〇 ◎ 〇 ◎◎ ◎◎ 實施例49 Cu Pd 10 Ag50Pd50 3 〇 Δ 〇 ◎ ◎ ◎◎ ◎◎ 實施例50 Cu Pd 100 Ag60Pd40 3 〇 Δ 〇 ◎ ◎ ◎◎ ◎◎ 實施例51 Cu Pd 200 Ag70Pd30 3 〇 Δ 〇 ◎ ◎ ◎◎ ◎◎ 實施例52 Cu Pd 10 Ag70Pd30 15 〇 Δ 〇 ◎ ◎ ◎◎ ◎◎ 實施例53 Cu Pd 100 Ag60Pd40 15 〇 △ 〇 ◎ ◎ ◎◎ ◎◎ 實施例54 Cu Pd 200 Ag50Pd50 15 〇 △ 〇 ◎ ◎ ◎◎ ◎◎ 59 201205695 實施例55 Cu Pd 10 Ag60Pd40 30 〇 △ 〇 ◎ ◎ ◎◎ ◎◎ 實施例56 Cu Pd 100 Ag70Pd30 30 〇 Δ 〇 ◎ ◎ ◎◎ ◎◎ 實施例57 Cu Pd 200 Ag50Pd50 30 〇 △ 〇 ◎ ◎ ◎◎ ◎◎ 實施例58 Cu Pd 10 Ag50Pd50 80 Δ Δ Δ ◎ ◎ ◎◎ ◎◎ 實施例59 Cu Pd 100 Ag50Pd50 80 Δ Δ Δ ◎ ◎ ◎◎ ◎◎ 實施例60 Cu Pd 200 Ag50Pd50 80 △ △ △ ◎ ◎ ◎◎ ◎◎ 實施例61 Cu Pd 10 Ag75Pd25 80 △ △ △ Δ ◎ ◎◎ ◎◎ 比較例1 Cu 無 0 無 0 X 〇 X X X 〇 〇 比較例2 Cu Ag 200 無 0 〇 〇 〇 X ◎ ◎◎ ◎◎ 比較例3 Cu Pd 100 無 0 〇 〇 〇 ◎ X X X 比較例4 Cu Pd 5 無 0 X 〇 X X X X X 比較例5 Cu Pd 210 無 0 〇 〇 〇 ◎ X X X表面亦有氣 泡 比較例6 Cu Pd 10 Agl0Pd90 0 〇 Δ 〇 ◎ X X X 比較例7 Cu Pd 100 Agl0Pd90 90 X △ X X X X X 比較例8 Cu Pd 200 Ag5Pd95 3 〇 △ 〇 ◎ X X X 比較例9 Cu Pd 200 Ag80Pd20 30 〇 △ 〇 X ◎ ◎◎ ◎◎ 比較例10 Cu Pd 210 Ag20Pd80 15 〇 △ 〇 ◎ 〇 ◎ X表面亦有氣 泡 (表2) 芯 材 含鈀鈞被覆層 銀與鈀的合金層 對&lt;100〉結晶方位的 拉線方向的斜率為 15度以下之結晶粒 的面積(¾) 對&lt;m&gt;結晶方位的 拉線方向的斜率為 15度以下之結晶粒 的面積(%) 逆打 抑制 高迴路 傾斜 抑制 被覆層 被復層 的厚度 (nm) 合金層 合金層 的厚度 (nm) 實施例4 Cu Pd 10 Agl0Pd90 3 40 60 〇 ◎ 實施例5 Cu Pd 100 Agl0Pd90 3 30 70 〇 ◎◎ 實施例6 Cu Pd 200 Agl0Pd90 3 20 80 〇 ◎◎ 實施例64 Cu Pd 10 Agl0Pd90 1 50 50 ◎ 〇 實施例65 Cu Pd 10 Agl0Pd90 1 60 40 ◎ 〇 實施例66 Cu Pd 10 Agl0Pd90 1 70 30 ◎◎ 〇 實施例67 Cu Pd 10 Agl0Pd90 1 100 0 ◎◎ 〇 實施例68 Cu Pd 10 Agl0Pd90 3 50 50 ◎ 〇 實施例69 Cu Pd 10 Agl0Pd90 3 60 40 ◎ 〇 實施例70 Cu Pd 10 Agl0Pd90 3 70 30 ◎◎ 〇 實施例71 Cu Pd 10 Agl0Pd90 3 100 0 ◎◎ 〇 實施例72 Cu Pd 100 Ag20Pd80 15 50 50 ◎ 〇 實施例73 Cu Pd 100 Ag20Pd80 15 60 40 ◎ 〇 實施例74 Cu Pd 100 Ag20Pd80 15 70 30 ◎◎ 〇 實施例75 Cu Pd 100 Ag20Pd80 15 100 0 ◎◎ 〇 實施例76 Cu Pd 10 Ag30Pd70 30 50 50 ◎ 〇 實施例77 Cu Pd 10 Ag30Pd70 30 60 40 ◎ 〇 實施例78 Cu Pd 10 Ag30Pd70 30 70 30 ◎◎ 〇 實施例79 Cu Pd 10 Ag30Pd70 30 100 0 ◎◎ 〇 實施例80 Cu Pd 10 Ag30Pd70 80 50 50 ◎ 〇 實施例81 Cu Pd 10 Ag30Pd70 80 60 40 ◎ 〇 實施例82 Cu Pd 10 Ag30Pd70 80 70 30 ◎◎ 〇 實施例83 Cu Pd 10 Ag30Pd70 80 100 0 ◎◎ 〇 實施例84 Cu Pd 200 Ag70Pd30 15 50 50 ◎ 〇 實施例85 Cu Pd 200 Ag70Pd30 15 60 40 ◎ 〇 實施例86 Cu Pd 200 Ag70Pd30 15 70 30 ◎◎ 〇 實施例87 Cu Pd 200 Ag70Pd30 15 100 0 ◎◎ 〇 實施例88 Cu Pd 200 Ag75Pd25 15 50 50 ◎ 〇 60 201205695In the eleventh example, when the coating layer on the surface of the Cubic line is formed into gold, the true sphericality of the I-ball portion in the nitrogen is less, and . Further, as shown in Comparative Example 12, even if the thickness of the coating layer in the range of Π) to 20- above the copper core wire of 56 201205695 is formed, the thickness of the alloy layer of gold and palladium additionally formed on the surface thereof is also formed. When the ratio is thinner, the wedge-shaped bondability on the palladium-plated lead frame is not sufficient. Further, as shown in the comparison of Η3, even if the thickness of the coating layer is formed in the range of the thickness of the copper core wire, the thickness of the alloy layer formed on the surface thereof is thicker than 8_, It is difficult to ensure stable quality, and the wedge-shaped bondability on the palladium-plated lead frame ("pd_L/F2nd access field") is inferior. In addition, since the alloy layer is oxidized, it does not satisfy the true sphericality of the ball portion. ("The interception of FAB true ball in nitrogen"). Further, as shown in the comparative example, the coating layer was formed on the copper core wire in a thickness ranging from 1 Å to 2 Å, and the gold concentration on the surface and the gold concentration in the gold-input layer were formed. When the low force is 15%, the (4) bondability on the lead-plated lead frame is not sufficient. Further, as shown in Comparative Example 15, the gold concentration in the range of 20 to 2 G () nm of the copper core wire was such that the gold concentration in the alloy layer of gold and palladium additionally formed on the surface of the coating layer exceeded 75. When the value is high, the true sphericality of the ball portion in the nitrogen is poor. Further, as in the comparative example, the thickness of the coating layer of palladium formed on the copper core wire exceeds the work. In the range of ~2〇〇nm, even if the thickness of the alloy layer of gold and palladium formed on the surface thereof is in the range of 3 to 8 〇 nm, if a small-diameter ball portion is formed in nitrogen, bubbles may occur in p (" "Field of FAB bubble suppression in nitrogen"). 2. As shown in Examples 136 to 168, 250, 251, 253, and 256, if the gold concentration in the alloy formed by the combination of gold and palladium is not more than the above, the true sphericality of the ball python is further improved ("Nitr In the FAB true ball position"). As shown in Examples 169 to 192, 252, 254, 255, and 257 to 260, 57 201205695, if the gold concentration in the alloy of gold and palladium is 4% or more, the wedge bonding property is further improved ("Pd-L/ F 2nd joint" block). As shown in Examples 193 to 216 of Table 7, the slope of the crystal grain in the direction of the line direction of the <111> crystal orientation observed on the surface of the bonding wire was 50% or more, 1〇. When the area is below 70%, the effect of suppressing the occurrence of the tilt failure is increased ("high circuit tilt 2 suppression"). If the area is 70% or more, the effect is higher. As shown in Examples 217 to 222 and 225 to 228 of Table 8, when the surface of the bonding wire has a side hardness of 0.2 to 2. OGPa, neck damage can be suppressed even if low-circuit bonding is additionally performed (" 76 2 &quot;m(3mii) low loop neck injury" rotten position). As shown in Examples 234 to 242 and 246 to 249 of Table 9, in the case where the core wire contains at least i kinds of copper alloys of 5 to 3 Å by mass in total of B, P, and Se, even when elongated bonding is performed. Also, the bending of the loop is suppressed ("5. 3mm (210mil) grade bend" field). On the other hand, as shown in the embodiment 243, when the core wire is added in excess of 3 〇〇 mass ppm, wafer damage ("wafer damage" field) occurs. As shown in Examples 250 to 260 of Table 10, the effect of the present invention can be ensured even if a diffusion layer is formed between the coating layer and the core wire or copper contained in the core wire is diffused in the coating layer. Core material palladium-coated coating layer Silver and palladium alloy layer long-term storage (oxidation) Long-term storage (vulcanization) Ag-L/F 2nd bonding nitrogen in FAB true spherical Pd-L/F 2nd bonding damage inhibition FAB bubble inhibition Thickness of coating layer (nm) Thickness (nm) of alloy layer alloy layer Example 1 Cu Yd 10 Agl0Pd90 1 〇〇 ◎ Δ 〇〇 58 201205695 Example 2 Cu Pd 10 Agl0Pd90 1 〇Δ 〇 ◎ Δ 〇〇 Example 3 Cu Pd 10 Agl0Pd90 1 〇 △ 〇 ◎ Δ 〇〇 Example 4 Cu Pd 10 Agl0Pd90 3 〇 △ 〇 ◎ Example 5 Cu Pd 100 Agl0Pd90 3 〇Δ 〇 ◎ 〇〇〇 Example 6 Cu Pd 200 Agl0Pd90 3 〇Δ 〇 ◎ 〇〇〇 Example 7 Cu Pd 10 Agl0Pd90 15 〇Δ 〇 ◎ 〇〇〇 Example 8 Cu Pd 100 Agl0Pd90 15 〇 △ 〇 ◎ 〇〇〇 Example 9 Cu Pd 200 Agl0Pd90 15 〇 △ 〇 ◎ 〇〇〇 Example 10 Cu Pd 10 Agl0Pd90 30 〇Δ 〇 ◎ Example 11 Cu Pd 100 Agl0Pd90 30 〇Δ 〇 ◎ 〇〇〇 Example 12 Cu Pd 200 Agl0Pd90 30 〇Δ 〇 ◎ 〇〇〇 Example 13 Cu Pd 10 Agl0Pd90 80 Δ Δ Δ ◎ Δ Δ Δ Example 14 Cu Pd 100 Agl0Pd90 80 Δ Δ Δ ◎ Δ Δ Δ Example 15 Cu Pd 200 Agl0Pd90 80 Δ Δ Δ ◎ Δ Δ Δ Example 16 Cu Pd 10 Ag20Pd80 1 〇Δ 〇 ◎ Δ ◎ ◎ Example 17 Cu Pd 100 Ag20Pd80 1 〇Δ 〇 ◎ Δ ◎ ◎ Example 18 Cu Pd 200 Ag20Pd80 1 〇Δ 〇 ◎ Δ ◎ ◎ Example 19 Cu Pd 10 Ag20Pd80 3 〇 △ 〇 ◎ ◎ ◎ Example 20 Cu Pd 100 Ag20Pd80 3 〇 △ 〇 ◎ ◎ ◎ Example 21 Cu Pd 200 Ag20Pd80 3 〇 Δ 〇 ◎ ◎ ◎ Example 22 Cu Pd 10 Ag20Pd80 15 〇Δ 〇 ◎ 〇 ◎ ◎ Example 23 Cu Pd 100 Ag20Pd80 15 〇 △ 〇 〇 ◎ ◎ Example 24 Cu Pd 200 Ag20Pd80 15 〇Δ 〇 ◎ ◎ ◎ Example 25 Cu Pd 10 Ag20Pd80 30 〇Δ 〇 ◎ ◎ ◎ ◎ Example 26 Cu Pd 100 Ag20Pd80 30 〇Δ 〇 ◎ ◎ ◎ Example 27 Cu Pd 200 Ag20Pd80 30 〇 △ 〇 ◎ ◎ ◎ Example 28 Cu Pd 10 Ag20Pd80 80 Δ Δ Δ ◎ Δ ◎ ◎ Example 29 Cu Pd 100 Ag20Pd80 80 Δ Δ Δ ◎ Δ ◎ ◎ Example 30 Cu Pd 200 Ag20Pd80 80 Δ Δ Δ ◎ Δ ◎ ◎ Example 31 Cu Pd 10 Ag30Pd70 1 〇 △ 〇 ◎ Δ ◎ ◎ ◎ ◎ Example 32 Cu Pd 100 Ag40Pd60 1 〇Δ 〇 ◎ Δ ◎ ◎ ◎ ◎ Example 33 Cu Pd 200 Ag30Pd70 1 〇 Δ 〇 ◎ Δ ◎ ◎ ◎ ◎ Example 34 Cu Pd 10 Ag30Pd70 3 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ Example 35 Cu Pd 100 Ag40Pd60 3 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ ◎ Example 36 Cu Pd 200 Ag30Pd70 3 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ Example 37 Cu Pd 10 Ag40Pd60 15 〇 △ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ Example 38 Cu Pd 100 Ag30Pd70 15 〇 Δ 〇◎ 〇 ◎ ◎ ◎ ◎ Example 39 Cu Pd 200 Ag40Pd60 15 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ ◎ Example 40 Cu Pd 10 Ag30Pd70 30 〇 △ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ Example 41 Cu Pd 100 Ag40Pd60 30 〇 Δ 〇 ◎ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ Cu 44 Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Δ Δ Δ ◎ Δ ◎ ◎ ◎ ◎ Example 45 Cu Pd 200 Ag30Pd70 80 Δ Δ Δ ◎ Δ ◎ ◎ ◎ ◎ Example 46 Cu Pd 10 Ag50Pd50 1 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ Example 47 Cu Pd 100 Ag60Pd40 1 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu 〇◎ ◎ ◎ ◎ ◎ ◎ Example 51 Cu Pd 200 Ag70Pd30 3 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ Example 52 Cu Pd 10 Ag70Pd30 15 〇 Δ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ Example 53 Cu Pd 100 Ag60Pd40 15 〇 △ 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Ag70Pd30 30 〇Δ 〇 ◎ ◎ ◎ ◎ ◎ Example 57 Cu Pd 200 Ag50Pd50 30 〇 △ 〇 ◎ ◎ ◎ ◎ ◎ Example 58 Cu Pd 10 Ag50Pd50 80 Δ Δ Δ ◎ ◎ ◎ ◎ ◎ ◎ Example 59 Cu Pd 100 Ag50Pd50 80 Δ Δ Δ ◎ ◎ ◎ ◎ ◎ ◎ Example 60 Cu Pd 200 Ag50Pd50 80 △ △ △ ◎ ◎ ◎ ◎ ◎ ◎ Example 61 Cu Pd 10 Ag75Pd25 80 △ △ △ Δ ◎ ◎ ◎ ◎ ◎ ◎ Comparative Example 1 Cu No 0 None 0 X 〇 XXX 〇〇 Comparative Example 2 Cu Ag 200 No 0 〇〇〇X ◎ ◎ ◎ ◎ ◎ Comparative Example 3 Cu Pd 100 No 0 〇〇〇 ◎ XXX Comparative Example 4 Cu Pd 5 No 0 X 〇 XXXXX Comparative Example 5 Cu Pd 210 No 0 〇〇〇 ◎ XXX surface also has bubbles Comparative Example 6 Cu Pd 10 Agl0Pd90 0 〇Δ 〇 ◎ XXX Comparative Example 7 Cu Pd 100 Agl0Pd90 90 X △ XXXXX Comparative Example 8 Cu Pd 200 Ag5Pd95 3 〇△ 〇 ◎ XXX Comparative Example 9 Cu Pd 200 Ag80Pd20 30 〇 △ 〇 X ◎ ◎ ◎ ◎ ◎ Comparative Example 10 Cu Pd 210 Ag20Pd80 15 〇 △ 〇 ◎ 〇 ◎ X surface also has bubbles (Table 2) Core material containing palladium ruthenium coated silver The area of the crystal grain of the alloy layer with palladium in the direction of the linear orientation of the crystal orientation of 15 degrees or less (3⁄4) and the crystal grain of the slope of the crystal direction of the &lt;m&gt; crystal orientation of 15 degrees or less Area (%) Circuit inclination suppression coating layer thickness (nm) Alloy layer alloy layer thickness (nm) Example 4 Cu Pd 10 Agl0Pd90 3 40 60 〇 ◎ Example 5 Cu Pd 100 Agl0Pd90 3 30 70 〇 ◎ ◎ Example 6 Cu Pd 200 Agl0Pd90 3 20 80 〇 ◎ ◎ Example 64 Cu Pd 10 Agl0Pd90 1 50 50 ◎ Example 65 Cu Pd 10 Agl0Pd90 1 60 40 ◎ 〇 Example 66 Cu Pd 10 Agl0Pd90 1 70 30 ◎ ◎ 〇 Example 67 Cu Pd 10 Agl0Pd90 1 100 0 ◎ ◎ Example 68 Cu Pd 10 Agl0Pd90 3 50 50 ◎ Example 69 Cu Pd 10 Agl0Pd90 3 60 40 ◎ 〇 Example 70 Cu Pd 10 Agl0Pd90 3 70 30 ◎ ◎ 〇 Example 71 Cu Pd 10 Agl0Pd90 3 100 0 ◎ ◎ Example 72 Cu Pd 100 Ag20Pd80 15 50 50 ◎ Example 73 Cu Pd 100 Ag20Pd80 15 60 40 ◎ 〇 Example 74 Cu Pd 100 Ag20Pd80 15 70 30 ◎ ◎ Example 75 Cu Pd 100 Ag20Pd80 15 100 0 ◎ ◎ Example 76 Cu Pd 10 Ag30Pd70 30 50 50 ◎ Example 77 Cu Pd 10 Ag30Pd70 30 60 40 ◎ 〇 Example 78 Cu Pd 10 Ag30Pd70 30 70 30 ◎ ◎ 〇 Example 79 Cu Pd 10 A g30Pd70 30 100 0 ◎ ◎ 〇 Example 80 Cu Pd 10 Ag30Pd70 80 50 50 ◎ Example 81 Cu Pd 10 Ag30Pd70 80 60 40 ◎ Example 82 Cu Pd 10 Ag30Pd70 80 70 30 ◎ ◎ Example 83 Cu Pd 10 Ag30Pd70 80 100 0 ◎ ◎ Example 84 Cu Pd 200 Ag70Pd30 15 50 50 ◎ Example 85 Cu Pd 200 Ag70Pd30 15 60 40 ◎ Example 86 Cu Pd 200 Ag70Pd30 15 70 30 ◎ ◎ Example 87 Cu Pd 200 Ag70Pd30 15 100 0 ◎◎ 〇Example 88 Cu Pd 200 Ag75Pd25 15 50 50 ◎ 〇60 201205695

對&lt;100〉結晶方位 的拉線方向的斜率 為15度以下之 結晶粒的面積(¾) 被覆層 的厚度 (nm) 合金層 合金層 的厚度 (nm) 導線的 表面的 邊耶硬度 (GPa) 逆打皺痕 抑制 76. 2;um(3mil)級 低迴路頸部損傷The slope of the linear direction of the &lt;100> crystal orientation is the area of the crystal grain of 15 degrees or less (3⁄4) The thickness of the coating layer (nm) The thickness of the alloy layer alloy layer (nm) The edge hardness of the surface of the wire (GPa ) Anti-wrinkle suppression 76. 2; um (3mil) low loop neck injury

(表4) 芯幸 含鈀的 帔覆層 與鈀的公仝爲 對〈丨00&gt;結晶方位 的拉線方向的斜率 為15度以下之 結晶粒的面積(%) 導線的 表面的 邊耶硬度 (GPa) 逆打 皺痕抑制 76.2jum C3mil) 級低迴路 頸部損傷 5. 3mm (210mil) 級長形 弩曲 芯材殘部 (除了不可避 免雜質以外) 芯材中的 添加元素 (質量ppm) 被復層 被覆層 的厚度 (nm) 合金層 合金層 的厚度 (&quot;nm、 實施例4 Cu 無 Pd 10 Agl〇Pd9〇 3 40 0 1 〇 〇 〇 實施例105 Cu 5ppoiCa Pd 10 Agl〇Pd90 3 40 〇. 1 〇 〇 〇 實施例106 Cu lOppmAl Pd 10 Agl〇Pd9〇 3 40 0. 1 〇 〇 〇 實施例107 Cu 20ppmAg Pd 10 AglOPdfln 3 40 0. 1 〇 〇 〇 實施例108 Cu 4ppmB Pd 10 Agl〇Pd9〇 3 40 0 1 〇 〇 〇 實施例109 Cu 5ppmB Pd 10 ASl0Pd90 3 40 0.1 〇 〇 ◎ 實施例110 Cu 5ppmP Pd 10 Agl〇Pd90 3 40 η 1 〇 〇 ◎ 實施例111 Cu 5ppmSe Pd 10 Agl〇Pd90 3 40 0.1 〇 〇 ◎ 實施例112 Cu lOppmB Pd 10 AglOPdQn 3 40 0.1 〇 〇 ◎ 實施例113 Cu lOppmP Pd 10 Agl〇Pd9〇 3 40 0.] 〇 〇 ◎ 實施例114 Cu 1OppmSe Pd 10 AglOPdiin 3 40 0 1 〇 〇 ◎ 實施例115 Cu 300ppmB Pd 10 A|]〇Pd9〇 3 40 0.1 〇 〇 ◎ 實施例116 Cu 300ppmP Pd 10 Agl〇Pd9〇 3 40 0.1 〇 〇 ◎ 實施例117 Cu 300ppmSe Pd 10 Agl〇Pd9〇 3 40 0 1 〇 〇 ◎ 實施例118 Cu 310ppmP Pd 10 A8l0Pd90 3 40 0 1 〇 〇 ◎ 實施例119 Cu 無 Pd 10 AglOPd9〇 3 50 0.2 ◎ ◎ 〇 實施例120 Cu 5ppmAl Pd 10 AglOPdgo 3 50 0 2 ◎ ◎ 〇 實施例121 Cu 8ppmB Pd 10 Agi〇Pd9〇 3 50 0 5 ◎ ◎ ◎ 實施例122 Cu 15ppmP Pd 10 AglOPd9〇 3 50 1.0 ◎ ◎ ◎ 實施例123 Cu 30ppmSe Pd 10 Agl〇Pd9〇 3 50 2 0 ◎ ◎ ◎ 實施例124 Cu 7ppmP Pd 10 Agl〇_ 3 40 2.2 〇 〇 ◎ 61 201205695 (表5) 擴散層 含鈀的被覆層 銀與鈀的合金層 « &lt;b TAR 合金層 損傷 ILt r/vc 芯 擴倣層 被復層 保管 保管 Ag-L/F 氮中FAB Pd-L/F 氣泡 材 擴散層 的厚度 被復層 的厚度 合金層 的厚度 (氧化) (硫化) 2nd接合 真球性 2nd接合 抑制 抑制 (ran) (nm) (nm) 實施例125 Cu 無 0 Cu50Pd50 40 Agl0Pd90 1 〇 Λ Ο ◎ Λ Ο 〇 赏施例126 Cu 無 0 Cu50Pd50 40 Agl0Pd90 3 〇 Δ Ο ◎ Ο ο ο 實施例127 Cu 無 0 Cu50Pd50 50 Ag20Pd80 3 〇 A 〇 ◎ 〇 a 實施例128 Cu 無 0 Cu30Pd70 50 AglOPd60Cu30 5 〇 Δ 〇 ◎ Ο a ◎ 貧絶例12ί Cu Cu20Pd80 10 Cu8Pd90Ag2 80 Ag30Pd70 10 〇 厶 〇 ◎ Ο ◎◎ ◎◎ 貧施例130 Cu 無 0 Cu9Pd90Agl 100 Ag50Pd50 15 〇 Δ 〇 〇 ◎ ◎◎ ◎◎ 實施例131 Cu 無 0 Cul0Pd90 200 Agl0Pd90 20 〇 Δ 0 ◎ Ο ο Ο 資拖例132 Cu 無 0 CulOPd90 40 Ag20Pd80 25 〇 Δ 〇 ◎ Ο a ◎ 貧跑例132 Cu Cu20Pd80 10 Cu41Pd50Ag9 60 Ag30Pd70 30 〇 Δ 〇 ◎ Ο ◎◎ ◎◎ 實施例134 Cu 無 0 Cu9Pd90Agl 90 Ag50Pd50 3 〇 Δ 〇 〇 ◎◎ ◎◎ 實铯例135 Cu 無 0 Cu50Pd50 200 Ag50Pd50 20 〇 Δ 〇 〇 ◎ ◎◎ ◎◎ (表6) 材 含鈀的被覆層 金與鈀的合金層 長期保管 (氧化) 長期保管 (硫化) Ag-L/F 2nd接合 氮中FAB 真球性 Pd-L/F 2nd接合 損傷 抑制 氮中FAB 氣泡抑制 被覆層 被覆層 的厚度 (nm) 合金層 合金層 的厚度 (nm) 實施例136 Cu Pd 10 Aul5Pd85 1 〇 〇 〇 ◎ A Λ 實施例137 Cu Pd 100 Aul5Pd85 1 〇 〇 〇 ◎ Δ Λ 〇 〇 實施例138 Cu Pd 200 Aul5Pd85 1 〇 〇 〇 ◎ Λ 實施例139 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ ί施例140 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ Λ U D 實施例141 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ Λ r\ 實施例142 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ Λ Γ) 實施例143 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ A Λ 〇 實施例144 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ 資施例145 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ Λ U 〇 實施例146 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ 資施例147 Cu Pd 10 Aul0Pd90 3 〇 〇 〇 ◎ Δ 實施例148 Cu Pd 10 Aul5Pd85 3 〇 〇 〇 ◎ 〇 Λ 〇 實施例149 Cu Pd 100 Aul5Pd85 3 〇 〇 〇 ◎ 〇 Λ 實施例150 Cu Pd 2W Aul5Pd85 3 〇 〇 〇 ◎ 〇 -Δ Λ U 〇 實施例151 Cu Pd 10 Aul5Pd85 40 〇 〇 〇 ◎ 〇 實施例152 Cu Pd 100 Aul5Pd85 40 〇 〇 〇 ◎ 〇 Λ 〇 實施例153 Cu Pd 200 Aul5Pd85 40 〇 〇 〇 ◎ 〇 Λ r\ 實施例154 Cu Pd 10 Aul5Pd85 80 〇 〇 〇 ◎ 〇 Λ 實施例155 Cu Pd 1U0 Aul5Pd85 80 〇 〇 〇 ◎ 〇 Λ U 〇 實施例156 Cu Pd 200 Aul5Pd85 80 〇 〇 〇 ◎ 〇 Λ 實施例157 Cu Pd 10 Au38Pd62 1 〇 〇 〇 ◎ Δ Λ D 實施例158 Cu Pd 100 Au38Pd62 1 〇 〇 〇 ◎ Δ Λ 實施例159 Cu Pd 2UU Au38Pd62 I 〇 〇 〇 ◎ Δ A U 實施例160 Cu Pd 10 Au38Pd62 3 〇 〇 〇 ◎ Ο Λ CJ 實施例161 Cu Pd 100 Au38Pd62 3 〇 〇 〇 ◎ 〇 Λ 〇 Γ\ 實施例162 Cu Pd 2UU Au38Pd62 3 〇 〇 〇 〇 Λ U 〇 實施例163 Cu Pd 10 Au38Pd62 40 〇 〇 〇 ◎ 〇 Λ 〇 資施例164 Cu Pd 100 Au38Pd62 40 〇 〇 〇 ◎ 〇 Λ 實施例165 Cu Pd 200 Au38Pd62 40 〇 〇 〇 ◎ 〇 Λ 〇 實施例16(i Cu Pd 10 Au38Pd62 80 〇 〇 〇 ◎ 〇 厶 〇 實施例167 Cu Pd 100 Au38Pd62 80 〇 〇 〇 —---- ◎ 〇 Λ 實施例168 Cu Pd 2ϋϋ Au38Pd62 80 〇 〇 〇 ◎ 〇 Λ U r\ 實施例169 Cu Pd 10 Au40Pd60 3 〇 〇 〇 〇 ◎ Λ U 〇 62 201205695(Table 4) The combination of the palladium-coated palladium coating and palladium is the area (%) of the crystal grain of the slope of the line direction of the crystal orientation of the line (00&gt; (GPa) Anti-wrinkle suppression 76.2jum C3mil) Grade low loop neck damage 5. 3mm (210mil) grade long curved core residue (except for unavoidable impurities) Additive element (mass ppm) in the core material Thickness of layer coating layer (nm) Thickness of alloy layer alloy layer (&quot;nm, Example 4 Cu No Pd 10 Agl〇Pd9〇3 40 0 1 〇〇〇Example 105 Cu 5ppoiCa Pd 10 Agl〇Pd90 3 40 〇 1 〇〇〇 Example 106 Cu lOppm Al Pd 10 Agl〇Pd9〇3 40 0. 1 〇〇〇 Example 107 Cu 20ppm Ag Pd 10 AglOPdfln 3 40 0. 1 〇〇〇 Example 108 Cu 4ppmB Pd 10 Agl〇Pd9 〇3 40 0 1 〇〇〇Example 109 Cu 5ppmB Pd 10 AS10Pd90 3 40 0.1 〇〇 ◎ Example 110 Cu 5ppmP Pd 10 Agl〇Pd90 3 40 η 1 〇〇 ◎ Example 111 Cu 5ppm Se Pd 10 Agl〇Pd90 3 40 0.1 〇〇 ◎ Example 112 Cu lOppmB Pd 10 AglOPdQn 3 40 0.1 〇 ◎ Example 113 Cu lOppmP Pd 10 Agl〇Pd9〇3 40 0.] 〇〇◎ Example 114 Cu 1OppmSe Pd 10 AglOPdiin 3 40 0 1 〇〇 ◎ Example 115 Cu 300ppmB Pd 10 A|]〇Pd9〇3 40 0.1 〇〇 ◎ Example 116 Cu 300 ppm P Pd 10 Agl 〇 Pd9 〇 3 40 0.1 〇〇 ◎ Example 117 Cu 300 ppm Se Pd 10 Agl 〇 Pd9 〇 3 40 0 1 〇〇 ◎ Example 118 Cu 310 ppm P Pd 10 A810 Pd90 3 40 0 1 〇〇 ◎ Example 119 Cu No Pd 10 AglOPd9 〇 3 50 0.2 ◎ ◎ Example 120 Cu 5ppm Al Pd 10 AglOPdgo 3 50 0 2 ◎ ◎ 〇 Example 121 Cu 8ppmB Pd 10 Agi〇Pd9〇3 50 0 5 ◎ ◎ 例 Example 122 Cu 15ppmP Pd 10 AglOPd9〇3 50 1.0 ◎ ◎ ◎ Example 123 Cu 30ppm Se Pd 10 Agl〇Pd9〇3 50 2 0 ◎ ◎ ◎ Example 124 Cu 7ppmP Pd 10 Agl〇_ 3 40 2.2 〇 〇◎ 61 201205695 (Table 5) Diffusion layer palladium-coated coating layer alloy layer of silver and palladium« &lt;b TAR alloy layer damage ILt r/vc core expansion layer is stored in a multi-layer storage Ag-L/F nitrogen in FAB The thickness of the Pd-L/F bubble material diffusion layer is complex Thickness of layer thickness of alloy layer (oxidation) (vulcanization) 2nd bonding true spherical 2nd joint inhibition inhibition (ran) (nm) (nm) Example 125 Cu No 0 Cu50Pd50 40 Agl0Pd90 1 〇Λ Ο ◎ Λ Ο 〇 〇 Example 126 Cu No 0 Cu50Pd50 40 Agl0Pd90 3 〇Δ Ο ◎ Ο ο ο Example 127 Cu No 0 Cu50Pd50 50 Ag20Pd80 3 〇A 〇◎ 〇a Example 128 Cu No 0 Cu30Pd70 50 AglOPd60Cu30 5 〇Δ 〇◎ Ο a ◎ Poor Exception 12 Cu Cu Cu20Pd80 10 Cu8Pd90Ag2 80 Ag30Pd70 10 〇厶〇 ◎ ◎ ◎ ◎ ◎ ◎ Example 130: Cu No 0 Cu9Pd90Agl 100 Ag50Pd50 15 〇 Δ 〇〇 ◎ ◎ ◎ ◎ ◎ Example 131 Cu No 0 Cul0Pd90 200 Agl0Pd90 20 〇 Δ 0 ◎ Ο ο Ο 拖 拖 132 132 Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu9Pd90Agl 90 Ag50Pd50 3 〇Δ 〇〇◎◎ ◎◎ Example 135 Cu No 0 Cu50Pd50 200 Ag50Pd50 20 〇Δ 〇〇◎ ◎◎ ◎◎ (Table 6) Coating layer containing palladium Long-term storage (oxidation) of alloy layer with palladium Long-term storage (vulcanization) Ag-L/F 2nd Bonding of FA in FAB True spherical Pd-L/F 2nd joint damage inhibition FAB in FAB bubble suppression coating layer thickness (nm ) Thickness (nm) of alloy layer alloy layer Example 136 Cu Pd 10 Aul5Pd85 1 〇〇〇 ◎ A 实施 Example 137 Cu Pd 100 Aul5Pd85 1 〇〇〇 ◎ Δ Λ 〇〇 Example 138 Cu Pd 200 Aul5Pd85 1 〇〇 〇 ◎ 实施 Example 139 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ ί Example 140 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ Λ UD Example 141 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ Λ r\ Example 142 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ Λ Γ) Example 143 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ A Λ 〇 Example 144 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ Instance 145 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ Λ U 〇 Example 146 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Example 147 Cu Pd 10 Aul0Pd90 3 〇〇〇 ◎ Δ Example 148 Cu Pd 10 Aul5Pd85 3 〇〇〇 ◎ 〇Λ Example 149 Cu Pd 10 0 Aul5Pd85 3 〇〇〇 ◎ 实施 Example 150 Cu Pd 2W Aul5Pd85 3 〇〇〇 ◎ 〇-Δ Λ U 〇 Example 151 Cu Pd 10 Aul5Pd85 40 〇〇〇 ◎ Example 152 Cu Pd 100 Aul5Pd85 40 〇〇 〇 〇Λ 〇Λ 〇 Example 153 Cu Pd 200 Aul5Pd85 40 〇〇〇 ◎ 〇Λ r\ Example 154 Cu Pd 10 Aul5Pd85 80 〇〇〇 ◎ 实施 Example 155 Cu Pd 1U0 Aul5Pd85 80 〇〇〇 ◎ 〇Λ U Example 156 Cu Pd 200 Aul5Pd85 80 〇〇〇 〇Λ 实施 Example 157 Cu Pd 10 Au38Pd62 1 〇〇〇 ◎ Δ Λ D Example 158 Cu Pd 100 Au38Pd62 1 〇〇〇 ◎ Δ 实施 Example 159 Cu Pd 2UU Au38Pd62 I 〇〇〇 Δ AU Example 160 Cu Pd 10 Au38Pd62 3 〇〇〇 ◎ Ο Λ CJ Example 161 Cu Pd 100 Au38Pd62 3 〇〇〇 ◎ 〇Λ 〇Γ \ Example 162 Cu Pd 2UU Au38Pd62 3 〇〇 〇〇Λ U 〇 Example 163 Cu Pd 10 Au38Pd62 40 〇〇〇 ◎ 〇 施 施 164 Cu Pd 100 Au38Pd62 40 〇〇〇 ◎ 实施 Example 165 Cu Pd 200 Au38Pd62 40 〇〇〇 ◎ 〇 〇 Example 16 (i Cu Pd 10 Au38Pd62 80 〇〇〇 〇厶〇 Example 167 Cu Pd 100 Au38Pd62 80 〇〇〇 - - 实施 168 Example 168 Cu Pd 2ϋϋ Au38Pd62 80 〇〇〇 ◎ 〇Λ U r\ Example 169 Cu Pd 10 Au40Pd60 3 〇〇〇〇◎ Λ U 〇62 201205695

實施例170 Cu Pd 100 Au50Pd50 3 〇 〇 〇 〇 ◎ △ 〇 實施例171 Cu Pd 200 Au40Pd60 3 〇 〇 〇 〇 ◎ Δ 〇 實施例172 Cu Pd 10 Au40Pd60 3 〇 〇 〇 〇 ◎ Δ 〇 實施例173 Cu Pd 100 Au50Pd50 3 〇 〇 〇 〇 ◎ Δ 〇 實施例174 Cu Pd 200 Au40Pd60 3 〇 〇 〇 〇 ◎ Δ 〇 實施例175 Cu Pd 10 Au50Pd50 40 〇 〇 〇 〇 ◎ Δ 〇 實施例176 Cu Pd 100 Au40Pd60 40 〇 〇 〇 〇 ◎ Δ 〇 實施例177 Cu Pd 200 Au50Pd50 40 〇 〇 〇 〇 ◎ Δ 〇 實施例Π8 Cu Pd 10 Au40Pd60 80 〇 〇 〇 〇 ◎ Δ 〇 實施例179 Cu Pd 100 Au50Pd50 80 〇 〇 〇 〇 ◎ Δ 〇 實施例180 Cu Pd 200 Au40Pd60 80 〇 〇 〇 〇 ◎ Δ 〇 實施例181 Cu Pd 10 Au60Pd40 3 〇 〇 〇 〇 ◎ Δ 〇 實施例182 Cu Pd 100 Au70Pd30 3 〇 〇 〇 〇 ◎ Δ 〇 實施例183 Cu Pd 200 Au75Pd25 3 〇 〇 〇 〇 ◎ Δ 〇 實施例184 Cu Pd 10 Au60Pd40 3 〇 〇 〇 〇 ◎ Δ 〇 實施例185 Cu Pd 100 Au70Pd30 3 〇 〇 〇 〇 ◎ Δ 〇 實施例186 Cu Pd 200 Au75Pd25 3 〇 〇 〇 〇 ◎ Δ o 實施例187 Cu Pd 10 Au75Pd25 40 〇 〇 〇 〇 ◎ Δ 〇 實施例188 Cu Pd 100 Au70Pd30 40 〇 〇 〇 〇 ◎ Δ 〇 實施例189 Cu Pd 200 Au60Pd40 40 〇 〇 〇 〇 ◎ Δ 〇 實施例190 Cu Pd 10 Au70Pd30 80 〇 〇 〇 〇 ◎ Δ 〇 實施例191 Cu Pd 100 Au75Pd25 80 〇 〇 〇 〇 ◎ Δ o 實施例192 Cu Pd 200 Au60Pd40 80 〇 〇 〇 〇 ◎ Δ 〇 比較例11 Cu Au 200 無 0 〇 〇 〇 X ◎ X 〇 比較例12 Cu Pd 10 Aul5Pd85 0 〇 〇 〇 ◎ X Δ 〇 比較例13 Cu Pd 100 Aul5Pd85 90 X 〇 X X X Δ 〇 比較例14 Cu Pd 200 Au5Pd95 3 〇 〇 〇 ◎ X Δ 〇 比較例15 Cu Pd 200 Au80Pd20 80 〇 〇 〇 X ◎ Δ 〇 比較例16 Cu Pd 210 Au38Pd62 40 〇 〇 〇 ◎ 〇 Δ X (表7) 芯材 含把的被覆層 金與Ig的合金層 對&lt;111〉結晶方位的拉線 方向的斜率為15度以下 之結晶粒的面積(%) 高迴路 傾斜抑制 被覆層 被覆層 的厚度 (nm) 合金層 合金層 的厚度 (nm) 實施例148 Cu Pd 10 Aul5Pd85 3 40 〇 實施例193 Cu Pd 10 Aul5Pd85 1 50 ◎ 實施例194 Cu Pd 10 Aul5Pd85 1 60 ◎ 實施例195 Cu Pd 10 Aul5Pd85 1 70 ◎◎ 實施例196 Cu Pd 10 Aul5Pd85 1 100 ◎◎ 實施例197 Cu Pd 10 Aul0Pd90 3 50 ◎ 實施例198 Cu Pd 10 Aul0Pd90 3 60 ◎ 實施例199 Cu Pd 10 Aul0Pd90 3 70 ◎◎ 實施例200 Cu Pd 10 Aul0Pd90 3 100 ◎◎ 實施例201 Cu Pd 10 Aul5Pd85 3 50 ◎ 實施例202 Cu Pd 10 Aul5Pd85 3 60 ◎ 實施例203 Cu Pd 10 Aul5Pd85 3 70 ◎◎ 實施例204 Cu Pd 10 Aul5Pd85 3 100 ◎◎ 實施例205 Cu Pd 100 Au38Pd62 40 50 ◎ 實施例206 Cu Pd 100 Au38Pd62 40 60 ◎ 實施例207 Cu Pd 100 Au38Pd62 40 70 ◎◎ 63 201205695 實施例208 Cu Pd 100 Au38Pd62 40 100、 實施例209 Cu Pd 10 Au40Pd60 80 50 —' 實施例210 Cu Pd 10 Au40Pd60 80 60、 實施例211 Cu Pd 10 Au40Pd60 80 70 實施例212 Cu Pd 10 Au40Pd60 80 100〜 實施例213 Cu Pd 200 Au75Pd25 40 50、 實施例214 Cu Pd 200 Au75Pd25 40 60、 實施例215 Cu Pd 200 Au75Pd25 40 70〜 ΪΤ施例216 Cu Pd 200 Au75Pd25 40 100〜 (表8) 實施例148Example 170 Cu Pd 100 Au50Pd50 3 〇〇〇〇 ◎ 〇 〇 Example 171 Cu Pd 200 Au40Pd60 3 〇〇〇〇 ◎ Δ 〇 Example 172 Cu Pd 10 Au40Pd60 3 〇〇〇〇 ◎ Δ 〇 Example 173 Cu Pd 100 Au50Pd50 3 〇〇〇〇 ◎ 〇 〇 Example 174 Cu Pd 200 Au40Pd60 3 〇〇〇〇 ◎ Δ 〇 Example 175 Cu Pd 10 Au50Pd50 40 〇〇〇〇 ◎ Δ 〇 Example 176 Cu Pd 100 Au40Pd60 40 〇〇 〇〇 ◎ Δ 〇 Example 177 Cu Pd 200 Au50Pd50 40 〇〇〇〇 ◎ Δ 〇 Example Cu 8 Cu Pd 10 Au40Pd60 80 〇〇〇〇 ◎ Δ 〇 Example 179 Cu Pd 100 Au50Pd50 80 〇〇〇〇 ◎ Δ 〇 Example 180 Cu Pd 200 Au40Pd60 80 〇〇〇〇 Δ 〇 Example 181 Cu Pd 10 Au60Pd40 3 〇〇〇〇 ◎ 〇 〇 Example 182 Cu Pd 100 Au70Pd30 3 〇〇〇〇 ◎ Δ 〇 Example 183 Cu Pd 200 Au75Pd25 3 〇〇〇〇 ◎ 〇 〇 Example 184 Cu Pd 10 Au60Pd40 3 〇〇〇〇 ◎ Δ 〇 Example 185 Cu Pd 100 Au70Pd30 3 〇〇〇〇 ◎ Δ 〇 implementation Example 186 Cu Pd 200 Au75Pd25 3 〇〇〇〇 ◎ Δ o Example 187 Cu Pd 10 Au75Pd25 40 〇〇〇〇 ◎ Δ 〇 Example 188 Cu Pd 100 Au70Pd30 40 〇〇〇〇 ◎ Δ 〇 Example 189 Cu Pd 200 Au60Pd40 40 〇〇〇〇 Δ 〇 Example 190 Cu Pd 10 Au70Pd30 80 〇〇〇〇 Δ 〇 Example 191 Cu Pd 100 Au75Pd25 80 〇〇〇〇 ◎ Δ o Example 192 Cu Pd 200 Au60Pd40 80 〇〇〇 〇 ◎ Δ 〇 Comparative Example 11 Cu Au 200 No 0 〇〇〇 X ◎ X 〇 Comparative Example 12 Cu Pd 10 Aul5Pd85 0 〇〇〇 ◎ X Δ 〇 Comparative Example 13 Cu Pd 100 Aul5Pd85 90 X 〇 XXX Δ 〇 Comparative Example 14 Cu Pd 200 Au5Pd95 3 〇〇〇 ◎ X Δ 〇 Comparative Example 15 Cu Pd 200 Au80Pd20 80 〇〇〇X ◎ Δ 〇 Comparative Example 16 Cu Pd 210 Au38Pd62 40 〇〇〇◎ 〇Δ X (Table 7) Core material containing The area of the crystal layer of the coating layer of gold and Ig in the direction of the line direction of the crystal orientation of the crystal region of 15 degrees or less (%). The slope of the coating layer of the coating layer is suppressed by the thickness of the coating layer (nm). Alloy layer alloy Floor Thickness (nm) Example 148 Cu Pd 10 Aul5Pd85 3 40 〇 Example 193 Cu Pd 10 Aul5Pd85 1 50 ◎ Example 194 Cu Pd 10 Aul5Pd85 1 60 ◎ Example 195 Cu Pd 10 Aul5Pd85 1 70 ◎ ◎ Example 196 Cu Pd 10 Aul5Pd85 1 100 ◎ ◎ Example 197 Cu Pd 10 Aul0Pd90 3 50 ◎ Example 198 Cu Pd 10 Aul0Pd90 3 60 ◎ Example 199 Cu Pd 10 Aul0Pd90 3 70 ◎ ◎ Example 200 Cu Pd 10 Aul0Pd90 3 100 ◎ ◎ Example 201 Cu Pd 10 Aul5Pd85 3 50 ◎ Example 202 Cu Pd 10 Aul5Pd85 3 60 ◎ Example 203 Cu Pd 10 Aul5Pd85 3 70 ◎ ◎ Example 204 Cu Pd 10 Aul5Pd85 3 100 ◎ ◎ Example 205 Cu Pd 100 Au38Pd62 40 50 ◎ Example 206 Cu Pd 100 Au38Pd62 40 60 ◎ Example 207 Cu Pd 100 Au38Pd62 40 70 ◎ ◎ 63 201205695 Example 208 Cu Pd 100 Au38Pd62 40 100, Example 209 Cu Pd 10 Au40Pd60 80 50 — ' Example 210 Cu Pd 10 Au40Pd60 80 60, Example 211 Cu Pd 10 Au40Pd60 80 70 Example 212 Cu Pd 10 Au40Pd60 80 100~ Example 213 Cu Pd 200 Au75Pd25 40 50, Example 214 Cu Pd 200 Au75Pd25 40 60 Example 215 Cu Pd 200 Au75Pd25 40 70~ ΪΤExample 216 Cu Pd 200 Au75Pd25 40 100~ (Table 8) Example 148

Cu 含鈀的被覆層 被覆層 被覆層 的厚度 (nm) 10 金與鈀的合金層 合金層 合金層 的厚度 (nm) 對&lt;丨11&gt;結晶方位 的拉線方向的斜率 為15度以下之 結晶粒的面積(%) 導線的表面 的邊耶硬度 (CPa) 76.2Thickness (nm) of Cu-containing palladium-coated coating layer coating layer 10 Gold-palladium alloy layer alloy layer alloy layer thickness (nm) The slope of the line direction of &lt;丨11&gt; crystal orientation is 15 degrees or less Area of crystal grain (%) Edge hardness of the surface of the wire (CPa) 76.2

Aul5Pd85 實施例217Aul5Pd85 Example 217

CuCu

Pd 10Pd 10

Aul5Pd85 實施例218Aul5Pd85 Example 218

CuCu

Pd 10Pd 10

Aul0Pd90 40 實施例219Aul0Pd90 40 Example 219

CuCu

Pd 10Pd 10

Aul5Pd85 40 實施例220Aul5Pd85 40 Example 220

CuCu

Pd 10Pd 10

Aul5Pd85 40 實施例221 實施例222 實施例223 實施例224 實施例225 實施例226 實施例227 實施例228 實施例229Aul5Pd85 40 Embodiment 221 Embodiment 222 Embodiment 223 Embodiment 224 Embodiment 225 Embodiment 226 Embodiment 227 Example 228 Example 229

CuCu

CuCu

CuCu

CuCu

CuCu

CuCu

CuCu

CuCu

CuCu

PdPd

PdPd

PdPd

PdPd

PdPd

PdPd

Pd 10 10 10 50 100 200 60 150 180Pd 10 10 10 50 100 200 60 150 180

Aul5Pd85Aul5Pd85

Aul5Pd85Aul5Pd85

Aul5Pd85Aul5Pd85

Au38Pd62Au38Pd62

Au40Pd60Au40Pd60

Au50Pd50Au50Pd50

Au60Pd40Au60Pd40

Au70Pd30Au70Pd30

Au75Pd25 40 40 40 10 30 60 70 50 60 70 頸都:{s 100Au75Pd25 40 40 40 10 30 60 70 50 60 70 Neck: {s 100

(表9) 芯材 含鈀的被覆層 金與ie的合金層 對&lt;111 &gt;結晶方位 的祖線方向的斜牟 為15度以下之結晶 粒的面積(%) 導線的 表面的 邊耶硬度 (GPa) 高迴路 倾斜 抑制 76. 2^ιη (3mil) 級低迴路 頸部損傷 5. 3mm (210mil) 級長形 弩曲 晶片 損傷 芯材殘部 (除了不可 避免雜質 以外) 芯材中的 添加元素 (質量ppm) 被復層 被復層 的厚度 (nm) 合金層 合金層 的厚度 (nm) 實施例148 Cu 無 Pd 10 Aul5Pd85 3 40 0.1 〇 〇 〇 〇 實施例23C Cu 5ppmCa Pd 10 Aul5Pd85 3 40 0.1 〇 〇 〇 〇 實施例231 Cu IOddhiAI Pd 10 Aul5Pd85 3 40 0.1 〇 〇 .〇 〇 貧施例232 Cu 20ρρσιΑε Pd 10 Aul5Pd85 3 40 0.1 〇 〇 〇 〇 實施例233 Cu 4ρ〇ηΒ Pd 10 Aul5Pd85 3 40 0.1 〇 〇 〇 〇 實施例234 Cu 5pmnB Pd 10 Aul5Pd85 3 40 0.1 〇 〇 ◎ 〇 實施例235 Cu 5ppmP Pd 10 Aul5Pd85 3 40 0.1 0 0 ◎ 〇 實施例236 Cu 5〇DinSe Pd 10 Aul5Pd85 3 40 0.1 〇 〇 ◎ 〇 貧施例237 Cu l〇DDmB Pd 10 Aul5Pd85 3 40 0.1 〇 〇 ◎ 〇 貧施例23Ϊ Cu l〇DDmP Pd 10 Aul5Pd85 3 40 0.1 〇 0 ◎ \ 〇 實施例23^ Cu lOppmSe Pd 10 Aul5Pd85 3 40 0.1 〇 〇 ◎ 〇 實施例240 Cu 300ddi〇B Pd 10 Aul5Pd85 3 40 0.1 〇 〇 ◎ 〇 實施例241 Cu 300ddidP Pd 10 Aul5Pd85 3 40 0.1 0 ο 1 ◎ 〇 實施例242 Cu 30〇DDmSe Pd Aul5Pd85 3 40 o.i 1 〇 〇 ◎ 〇 實施例243 Cu 310p〇niP Pd 10 Aul5Pd85 3 40 0.1 〇 〇 ◎ X 貧施例244 Cu 無 Pd 10 Aul5Pd85 3 50 0.2 ◎ ◎ △ 〇 實铯例245 Cu 5ppmAl Pd 10 Aul5Pd85 3 50 0.2 Ί ◎ ◎ 〇 〇 實施例246 Cu 8ppmB Pd 10 Aul5Pd85 3 50 0.5 ◎ ◎ ◎ 〇 64 201205695 實施例247 Cu 15ppmP Pd 10 Aul5Pd85 3 50 1.0 ◎ ◎ ◎ 〇 實施例248 Cu 30ppmSe Pd 10 Aul5Pd85 3 50 2.0 ◎ ◎ ◎ 〇 實施例249 Cu 7ppmP Pd 10 Aul5Pd85 3 40 2.2 〇 〇 ◎ 〇 (表 10) 擴散層 含鈀的被覆層 金與纪的合金層 長期 保管 (氡化) 長期 保管 (硫化) 氮中 芯 擴散層 被覆層 合金層 Ag-L/F 氮中FAB Pd-L/F 損傷 FAB 材 擴散層 的厚度 Cnm) 被覆層 的厚度 (nm) 合金層 的厚度 (rnn) 2nd接合 真球性 2nd接合 抑制 氣泡 抑制 實施例250 Cu 無 0 Cu50Pd50 40 Aul5Pd85 3 〇 〇 〇 ◎ Δ Δ 〇 實施例251 Cu 無 0 Cu50Pd50 40 Aul5Pd85 3 〇 〇 〇 ◎ 〇 Δ 〇 實施例252 Cu 無 0 Cu50Pd50 50 Au40Pd60 3 〇 〇 〇 〇 ◎ Δ 〇 實施例253 Cu 無 0 Cu30Pd70 50 Aul5Pd60Cu25 10 〇 〇 〇 ◎ 〇 Δ 〇 實施例254 Cu Cu20Pd80 10 Cu8Pd90Au2 80 Au45Pd55 30 〇 〇 〇 〇 ◎ △ 〇 實施例255 Cu 無 0 Cu9Pd90Aul 100 Au70Pd30 40 〇 〇 〇 〇 ◎ Δ 〇 實施例256 Cu 無 0 Cul0Pd90 200 Aul5Pd85 60 〇 〇 〇 ◎ 〇 Δ 〇 實施例257 Cu 無 0 Cul0Pd90 40 Au40Pd60 70 〇 〇 〇 〇 ◎ △ 〇 實施例258 Cu Cu20Pd80 0 Cu50Pd50 40 Aul5Pd85 3 〇 〇 〇 ◎ Δ Δ 〇 實施例259 Cu 無 0 Cu50Pd50 40 Aul5Pd85 3 〇 〇 〇 ◎ 〇 Δ 〇 實施例260 Cu 無 0 Cu50Pd50 50 Au40Pd60 3 〇 〇 〇 〇 ◎ Δ 〇 【圖式簡單說明】 jfe 〇 4 *»' 【主要元件符號說明】 益 〇 ”》、 65(Table 9) The core layer of the palladium-containing coating layer and the alloy layer of IE have a bevel of the crystal orientation of the crystal orientation of the &lt;111&gt; crystal orientation of 15 degrees or less (%) of the surface of the wire. Hardness (GPa) High loop tilt suppression 76. 2^ιη (3mil) grade low loop neck damage 5. 3mm (210mil) graded tortuous wafer damage core material residue (except for unavoidable impurities) Additive elements in core material (ppm by mass) Thickness of layer to be laminated (nm) Thickness (nm) of alloy layer alloy layer Example 148 Cu No Pd 10 Aul5Pd85 3 40 0.1 〇〇〇〇 Example 23C Cu 5ppmCa Pd 10 Aul5Pd85 3 40 0.1 Example 231 Cu IOddhiAI Pd 10 Aul5Pd85 3 40 0.1 〇〇. 〇〇 Poor Example 232 Cu 20ρρσιΑε Pd 10 Aul5Pd85 3 40 0.1 〇〇〇〇 Example 233 Cu 4ρ〇ηΒ Pd 10 Aul5Pd85 3 40 0.1 〇 〇〇〇Example 234 Cu 5pmnB Pd 10 Aul5Pd85 3 40 0.1 〇〇 〇 Example 235 Cu 5ppmP Pd 10 Aul5Pd85 3 40 0.1 0 0 ◎ 〇 Example 236 Cu 5〇DinSe Pd 10 Aul5Pd85 3 40 0.1 〇〇◎ 〇 Lean application 237 Cu l〇DDmB Pd 10 Aul5Pd85 3 40 0.1 〇〇 ◎ 〇 施 施 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 Example 240 Cu 300ddi〇B Pd 10 Aul5Pd85 3 40 0.1 〇〇 〇 Example 241 Cu 300ddidP Pd 10 Aul5Pd85 3 40 0.1 0 ο 1 ◎ Example 242 Cu 30〇DDmSe Pd Aul5Pd85 3 40 oi 1 〇〇◎ 〇Implementation Example 243 Cu 310p〇niP Pd 10 Aul5Pd85 3 40 0.1 〇〇 ◎ X Lean Example 244 Cu No Pd 10 Aul5Pd85 3 50 0.2 ◎ ◎ △ 〇 铯 Example 245 Cu 5ppm Al Pd 10 Aul5Pd85 3 50 0.2 Ί ◎ ◎ 〇〇 Implementation Example 246 Cu 8ppmB Pd 10 Aul5Pd85 3 50 0.5 ◎ ◎ 〇 64 201205695 Example 247 Cu 15 ppm P Pd 10 Aul5Pd85 3 50 1.0 ◎ ◎ ◎ Example 248 Cu 30 ppm Se Pd 10 Aul5Pd85 3 50 2.0 ◎ ◎ ◎ 〇 Example 249 Cu 7ppmP Pd 10 Aul5Pd85 3 40 2.2 〇〇◎ 〇 (Table 10) Diffusion layer Palladium-containing coating layer Gold and alloy layer for long-term storage (deuteration) Long-term storage (vulcanization) Nitrogen core diffusion layer coating alloy Layer Ag-L/F Nitrogen FAB Pd-L/F Damage thickness of FAB material diffusion layer Cnm) Thickness of coating layer (nm) Thickness of alloy layer (rnn) 2nd bonding true spherical 2nd joint suppression bubble suppression Example 250 Cu No 0 Cu50Pd50 40 Aul5Pd85 3 〇〇〇 ◎ Δ Δ 〇 Example 251 Cu No 0 Cu50Pd50 40 Aul5Pd85 3 〇〇〇 ◎ 〇 Δ 〇 Example 252 Cu No 0 Cu50Pd50 50 Au40Pd60 3 〇〇〇〇 ◎ Δ 〇 Example 253 Cu no 0 Cu30Pd70 50 Aul5Pd60Cu25 10 〇〇〇 ◎ 〇 Δ 〇 Example 254 Cu Cu20Pd80 10 Cu8Pd90Au2 80 Au45Pd55 30 〇〇〇〇 ◎ 〇 〇 Example 255 Cu No 0 Cu9Pd90Aul 100 Au70Pd30 40 〇〇〇〇 ◎ Δ 〇 Example 256 Cu No 0 Cul0Pd90 200 Aul5Pd85 60 〇〇〇 ◎ 〇 Δ 〇 Example 257 Cu No 0 Cul0Pd90 40 Au40Pd60 70 〇〇〇〇 ◎ △ 〇 Example 258 Cu Cu20Pd80 0 Cu50Pd50 40 Aul5Pd85 3 〇〇〇 ◎ Δ Δ 〇 Example 259 Cu No 0 Cu50Pd50 40 Aul5Pd85 3 〇〇〇 ◎ 〇 Δ 〇 Example 260 Cu No 0 Cu50Pd50 50 Au40Pd60 3 〇〇〇〇 ◎ Δ 〇 [Simple description of the drawing] jfe 〇 4 *»' [Description of main component symbols] Benefits 》", 65

Claims (1)

201205695 七、申請專利範圍: 1. 一種半導體用接合導線,具有: 心線,由銅或銅合金所成; 含纪被覆層,形成在該芯線表面且具有1〇n的 厚度; 含有貴金屬與把的合金層,形成在該被覆層的表面、 具有1〜80nm的厚度, 其特徵在於: 前述貴金屬為金或銀, 前述合金層中之前述貴金屬的濃度為10體積%以上、 7 5體積%以下。 2. 如申請專利範圍帛!項所述的半導體用接合導線, 其中,前述貴金屬為金, 前述合金層令之金的濃度為15體積%以上、75體積% 以下。 3·如申請專利範圍第2項所述的半導體用接合導線, 其中,前述合金層的表面結晶粒之中,對&lt;m&gt;結晶方位的 拉線方向的斜率為15度以下的結晶粒的面積為4〇%以上、 100%以下。 4.如申請專利範圍第Μ 3項所述的半導體用接合導 線,其中,前述合金層令之金的填度為4〇體積%以上、75 體積%以下。 5.如申請專利範圍第!項所述的半導體用接合導線, 其中,前述貴金屬為銀, 66 201205695 前述合金層以1〜30nm的厚唐袖 &amp; Γ叮办成, 、70體積% 前述合金層中之銀的濃度為1〇體積%以上 以下。 6. 如申請專利範圍第5項所述的半導體用接合導線, 其中,前述合金層中之銀的濃度為2〇體積%以上、7〇體積 %以下。 7. 如申請專利範圍第6項所述的半導體用接合導線, 其中,前述合金層的表面結晶粒之中,對〈1〇〇&gt;結晶方位的 拉線方向的斜率為15度以下的結晶粒的面積為5Q%以上、 10 0 %以下。 8.如申請專利範圍第6項所述的半導體用接合導線, 其中,則述合金層的表面結晶粒之中,對〈丨丨丨〉結晶方位的 拉線方向的斜率為15度以下的結晶粒的面積為6〇%以上、 10 0 %以下。 項所述的半導體 邊耶硬度為〇. 2 9.如申請專利範圍第1直8項中任一 用接合導線’其中’前述接合導線的表面的 〜2. OGPa的範圍。 項所述的半導體 Se令之至少1種 1 〇.如申請專利範圍第1至9項中任一 用接合導線,其中,前述芯線含有β、Ρ、 總計5〜300質量ppm。 67 201205695 四、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無。 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學弋 六、發明說明: 【發明所屬之技術領域】 本發明係有關於被使用在用以將半導體元件上的電極 與外部連接端子相連接的半導體用接合導線。 ° 【先前技術】 目前’以將半導體元件上的電極與外部連接端子之間 相連接的半導體用接合導線(以下稱為「接合導線而古曰, 主要使用-種線徑2〇-5()㈣左右、材f為高純°度 W4-Nine’純度99.99質量%以上)的金(Au)的接合導線 (金接合導線)。在使金接合導線接合在作為半導體元件之 石夕晶片上的電極時’一般係進行超音波併用熱壓接方式的 球接合(ban bonding)e亦即’使用通用接合裝置,將前 述金接合導線通至被稱為毛細管(capillary)之治具的内 部’將導線前端以電弧輸入熱加熱炼融,藉由表面張力而 使其形成球部之後,在150〜_t的範圍内加熱的前述電 極上,使加熱熔融所形成的球部壓接接合的手法。201205695 VII. Patent application scope: 1. A bonding wire for semiconductor, comprising: a core wire formed of copper or a copper alloy; a coating layer formed on the surface of the core wire and having a thickness of 1〇n; containing precious metal and The alloy layer is formed on the surface of the coating layer and has a thickness of 1 to 80 nm. The noble metal is gold or silver, and the concentration of the noble metal in the alloy layer is 10% by volume or more and 7.55% by volume or less. . 2. If you apply for a patent range! The bonding wire for a semiconductor according to the above aspect, wherein the noble metal is gold, and the alloy layer has a gold concentration of 15% by volume or more and 75% by volume or less. The bonding wire for a semiconductor according to the second aspect of the invention, wherein, in the surface crystal grain of the alloy layer, the slope of the crystal direction of the crystal orientation of the &lt;m&gt; crystal orientation is 15 degrees or less. The area is 4% or more and 100% or less. 4. The bonding wire for a semiconductor according to the third aspect of the invention, wherein the alloy layer has a filling degree of gold of 4 vol% or more and 75 vol% or less. 5. If you apply for a patent range! The bonding wire for a semiconductor according to the invention, wherein the noble metal is silver, 66 201205695, the alloy layer is made of a thick sleeve of 1 to 30 nm, and 70% by volume of the silver in the alloy layer is 1 〇 5% by volume or more. 6. The bonding wire for a semiconductor according to claim 5, wherein a concentration of silver in the alloy layer is 2% by volume or more and 7% by volume or less. 7. The bonding wire for a semiconductor according to the sixth aspect of the invention, wherein the crystal grain of the surface layer of the alloy layer has a slope of a gradient of 15 degrees or less with respect to a crystal orientation of the crystal orientation. The area of the granules is 5Q% or more and 100% or less. 8. The bonding wire for a semiconductor according to the sixth aspect of the invention, wherein the crystal grain of the surface layer of the alloy layer has a slope of a gradient of 15 degrees or less in the direction of the crystal orientation of the film. The area of the granules is 6〇% or more and 100% or less. The semiconductor side hardness of the item is 〇. 2 9. The range of the 〜2. OGPa of the surface of the bonding wire of the bonding wire '. The bonding wire according to any one of claims 1 to 9, wherein the core wire contains β, Ρ, and a total of 5 to 300 ppm by mass. 67 201205695 IV. Designation of Representative Representatives: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None. 5. In the case of a chemical formula, please disclose the chemical which best shows the characteristics of the invention. 6. Description of the Invention: Technical Field The present invention relates to a terminal for connecting an electrode on a semiconductor element to an external terminal. Bonding wires for connected semiconductors. [Prior Art] At present, a bonding wire for a semiconductor that connects an electrode on a semiconductor element to an external connection terminal (hereinafter referred to as "joining a wire, mainly used - a wire diameter of 2 〇 -5 () (4) A gold (Au) bonding wire (gold bonding wire) having a high purity of W4-Nine 'purity of 99.99% by mass or more, and a gold bonding wire bonded to a stone wafer as a semiconductor element. In the case of an electrode, generally, ban bonding e is performed by ultrasonic bonding, that is, 'using a universal bonding device, and the gold bonding wire is passed to the inside of a jig called a capillary. The tip end of the wire is heated by the arc input heat, and after the ball portion is formed by the surface tension, the ball portion heated and melted is pressure-bonded to the electrode heated in the range of 150 to _t.
TW099139295A 2010-07-16 2010-11-16 Bonding wire for semiconductor TW201205695A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062082 WO2011013527A1 (en) 2009-07-30 2010-07-16 Bonding wire for semiconductor

Publications (2)

Publication Number Publication Date
TW201205695A true TW201205695A (en) 2012-02-01
TWI369748B TWI369748B (en) 2012-08-01

Family

ID=46763222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099139295A TW201205695A (en) 2010-07-16 2010-11-16 Bonding wire for semiconductor

Country Status (1)

Country Link
TW (1) TW201205695A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413702B (en) * 2013-02-19 2013-11-01 Truan Sheng Lui Copper-palladium alloy wire formed by solid phase diffusion reaction and the manufacturing method thereof
EP3086362A1 (en) * 2015-02-26 2016-10-26 Nippon Micrometal Corporation Bonding wire for semiconductor devices
EP3121841A4 (en) * 2015-05-26 2018-02-28 Nippon Micrometal Corporation Bonding wire for semiconductor device
TWI627637B (en) * 2015-12-02 2018-06-21 新加坡賀利氏材料私人有限公司 Silver alloyed copper wire
TWI628671B (en) * 2015-05-26 2018-07-01 日鐵住金新材料股份有限公司 Bonding wire for semiconductor device
TWI631227B (en) * 2015-06-15 2018-08-01 日商日鐵住金新材料股份有限公司 Bonding wire for semiconductor device
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622531B2 (en) * 2017-09-28 2020-04-14 Nichia Corporation Light-emitting device
JP2019068053A (en) * 2017-09-28 2019-04-25 日亜化学工業株式会社 Light emitting device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413702B (en) * 2013-02-19 2013-11-01 Truan Sheng Lui Copper-palladium alloy wire formed by solid phase diffusion reaction and the manufacturing method thereof
EP3086362A1 (en) * 2015-02-26 2016-10-26 Nippon Micrometal Corporation Bonding wire for semiconductor devices
US10672733B2 (en) 2015-05-26 2020-06-02 Nippon Micrometal Corporation Cu alloy core bonding wire with Pd coating for semiconductor device
EP3121841A4 (en) * 2015-05-26 2018-02-28 Nippon Micrometal Corporation Bonding wire for semiconductor device
TWI628671B (en) * 2015-05-26 2018-07-01 日鐵住金新材料股份有限公司 Bonding wire for semiconductor device
US10236272B2 (en) 2015-05-26 2019-03-19 Nippon Micrometal Corporation Cu alloy core bonding wire with Pd coating for semiconductor device
US10497663B2 (en) 2015-05-26 2019-12-03 Nippon Micrometal Corporation Cu alloy core bonding wire with Pd coating for semiconductor device
US10737356B2 (en) 2015-06-15 2020-08-11 Nippon Micrometal Corporation Bonding wire for semiconductor device
TWI631227B (en) * 2015-06-15 2018-08-01 日商日鐵住金新材料股份有限公司 Bonding wire for semiconductor device
US10137534B2 (en) 2015-06-15 2018-11-27 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10414002B2 (en) 2015-06-15 2019-09-17 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10610976B2 (en) 2015-06-15 2020-04-07 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device
TWI627637B (en) * 2015-12-02 2018-06-21 新加坡賀利氏材料私人有限公司 Silver alloyed copper wire

Also Published As

Publication number Publication date
TWI369748B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US8742258B2 (en) Bonding wire for semiconductor
TW201205695A (en) Bonding wire for semiconductor
JP5073759B2 (en) Bonding wires for semiconductor devices
JP4554724B2 (en) Bonding wires for semiconductor devices
CN107004610B (en) Bonding wire for semiconductor device
TWI496900B (en) Copper alloy bonding wire for semiconductors
JP4637256B1 (en) Bonding wire for semiconductor
JP5497360B2 (en) Bonding wire for semiconductor
TWI524443B (en) Power semiconductor device, method of manufacturing the same, and bonding wire
WO2012043727A1 (en) Structure for joining multilayer copper bonding wire
TW200937546A (en) Bonding wire for semiconductor devices
US10840208B2 (en) Bonding wire for semiconductor device
TW201037777A (en) Bonding wire
JP2010225722A (en) Coated copper wire for ball bonding
CN107962313B (en) Bonding wire for semiconductor device
TW200419683A (en) A gold bonding wire for a semiconductor device and a method for producing the same
Tsai et al. An innovative annealing-twinned Ag-Au-Pd bonding wire for IC and LED packaging
JP5293728B2 (en) Bonding wire
JP2010153539A (en) Method of manufacturing copper bonding wire and copper bonding wire manufactured with the same
TW201711150A (en) Copper alloy wire for ball bonding capable of increasing the Young&#39;s modulus by adjusting the blending ratio